WorldWideScience

Sample records for intramolecular amide bonds

  1. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi

    2018-01-15

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  2. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi; Liao, Hsuan-Hung; Chatupheeraphat, Adisak; Rueping, Magnus

    2018-01-01

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  3. Copper(II)-catalyzed amidations of alkynyl bromides as a general synthesis of ynamides and Z-enamides. An intramolecular amidation for the synthesis of macrocyclic ynamides.

    Science.gov (United States)

    Zhang, Xuejun; Zhang, Yanshi; Huang, Jian; Hsung, Richard P; Kurtz, Kimberly C M; Oppenheimer, Jossian; Petersen, Matthew E; Sagamanova, Irina K; Shen, Lichun; Tracey, Michael R

    2006-05-26

    A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.

  4. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    CERN Document Server

    Park, Y T; Kim, M S; Kwon, J H

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  5. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee [Kyungpook National Univ., Daegu (Korea, Republic of)

    2002-09-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  6. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    International Nuclear Information System (INIS)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed

  7. Zinc(II) complexes with intramolecular amide oxygen coordination as models of metalloamidases.

    Science.gov (United States)

    Rivas, Juan C Mareque; Salvagni, Emiliano; Prabaharan, Ravi; de Rosales, Rafael Torres Martin; Parsons, Simon

    2004-01-07

    Polydentate ligands (6-R1-2-pyridylmethyl)-R2(R1= NHCOtBu, R2= bis(2-pyridylmethyl)amine L1, bis(2-(methylthio)ethyl)amine L2 and N(CH2CH2)2S L3) form mononuclear zinc(II) complexes with intramolecular amide oxygen coordination and a range of coordination environments. Thus, the reaction of Zn(ClO4)2.6H2O with L1-3 in acetonitrile affords [(L)Zn](ClO4)2(L=L1, 1; L2, 2) and [(L3)Zn(H2O)(NCCH3)](ClO4)2 3. The simultaneous amide/water binding in resembles the motif that has been proposed to be involved in the double substrate/nucleophile Lewis acidic activation and positioning mechanism of amide bond hydrolysis in metallopeptidases. X-ray diffraction, 1H and 13C NMR and IR data suggests that the strength of amide oxygen coordination follows the trend 1>2 >3. L1-3 and undergo cleavage of the tert-butylamide upon addition of Me4NOH.5H2O (1 equiv.) in methanol at 50(1)degrees C. The rate of amide cleavage follows the order 1> 2> 3, L1-3. The extent by which the amide cleavage reaction is accelerated in 1-3 relative to the free ligands, L1-3, is correlated with the strength of amide oxygen binding and Lewis acidity of the zinc(II) centre in deduced from the X-ray, NMR and IR studies.

  8. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  9. C—C bond formation in the intramolecular Diels-Alder reaction of triene amides

    Directory of Open Access Journals (Sweden)

    Abdelilah Benallou

    2018-02-01

    Full Text Available The mechanism nature of the intramolecular Diels–Alder reaction has been performed; and thus, the changes of C—C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C—C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2—C3 σ bond while the second stage aims for C1—C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  10. C-C bond formation in the intramolecular Diels-Alder reaction of triene amides.

    Science.gov (United States)

    Benallou, Abdelilah; El Alaoui El Abdallaoui, Habib; Garmes, Hocine

    2018-02-01

    The mechanism nature of the intramolecular Diels-Alder reaction has been performed; and thus, the changes of C-C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C-C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2-C3 σ bond while the second stage aims for C1-C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  11. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  12. Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern.

    Science.gov (United States)

    Huang, Li-Shar; Cobessi, David; Tung, Eric Y; Berry, Edward A

    2005-08-19

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28 A resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cytochrome b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density, the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alphaA helix.

  13. Binding of the Respiratory Chain Inhibitor Antimycin to theMitochondrial bc1 Complex: A New Crystal Structure Reveals an AlteredIntramolecular Hydrogen-Bonding Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-05-10

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex.Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28Angstrom resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alpha-A helix.

  14. Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Gårdsvoll, H.; Ploug, M.

    2005-01-01

    Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable...... if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional...... are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity...

  15. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.

    Science.gov (United States)

    Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K

    2015-08-06

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  16. Amide proton temperature coefficients as hydrogen bond indicators in proteins

    International Nuclear Information System (INIS)

    Cierpicki, Tomasz; Otlewski, Jacek

    2001-01-01

    Correlations between amide proton temperature coefficients (Δσ HN /ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than -4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between -4 and -1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 A show Δσ HN /ΔT 10 helices and 98% in β-turns have temperature coefficients more positive than -4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than -2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures

  17. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    Directory of Open Access Journals (Sweden)

    Hailiang Zhao

    2016-12-01

    Full Text Available Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  19. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    Science.gov (United States)

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  20. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    Directory of Open Access Journals (Sweden)

    Peter I. Nagy

    2014-10-01

    Full Text Available A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011 or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic in acid-base complexes have been surveyed.

  1. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds

    Science.gov (United States)

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-01-01

    Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342

  2. Intramolecularly Hydrogen-Bonded Polypyrroles as Electro-Optical Sensors

    National Research Council Canada - National Science Library

    Nicholson, Jesse

    2001-01-01

    We have developed a new class of polypyrroles bearing both hydrogen-bond acceptor and hydrogen-donor groups such that the intramolecular hydrogen bonding holds the system planar enhancing conjugation...

  3. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    Science.gov (United States)

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens

    DEFF Research Database (Denmark)

    Rand, Kasper D; Adams, Christopher M; Zubarev, Roman A

    2008-01-01

    scrambling) that occurs during vibrational excitation of gas-phase ions. Unlike traditional collisional ion activation, electron capture dissociation (ECD) is not associated with substantial vibrational excitation. We investigated the extent of intramolecular backbone amide hydrogen (1H/2H) migration upon...... ECD using peptides with a unique selective deuterium incorporation. Our results show that only limited amide hydrogen migration occurs upon ECD, provided that vibrational excitation prior to the electron capture event is minimized. Peptide ions that are excessively vibrationally excited...

  5. Intramolecular Hydrogen Bonding and Conformational Preferences of Arzanol—An Antioxidant Acylphloroglucinol

    Directory of Open Access Journals (Sweden)

    Liliana Mammino

    2017-08-01

    Full Text Available Arzanol is a naturally-occurring prenylated acylphloroglucinol isolated from Helichrysum italicum and exhibiting anti-oxidant, antibiotic and antiviral activities. The molecule contains an α-pyrone moiety attached to the phloroglucinol moiety through a methylene bridge. The presence of several hydrogen bond donor or acceptor sites makes intramolecular hydrogen bonding patterns the dominant stabilising factor. Conformers with all the possible different hydrogen bonding patterns were calculated at the HF/6-31G(d,p and DFT/B3LYP/6-31+G(d,p levels with fully relaxed geometry in vacuo and in three solvents—chloroform, acetonitrile and water (these levels being chosen to enable comparisons with previous studies on acylphloroglucinols. Calculations in solution were performed with the Polarisable Continuum Model. The results show that the lowest energy conformers have the highest number of stronger intramolecular hydrogen bonds. The influence of intramolecular hydrogen bonding patterns on the other molecular properties is also analysed.

  6. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    Science.gov (United States)

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  7. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )-H Bonds.

    Science.gov (United States)

    Wang, He; Tang, Guodong; Li, Xingwei

    2015-10-26

    Nitrogenation by direct functionalization of C-H bonds represents an important strategy for constructing C-N bonds. Rhodium(III)-catalyzed direct amidation of unactivated C(sp(3) )-H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp(3) )-H bonds are amidated under rhodium catalysis in high efficiency using 3-substituted 1,4,2-dioxazol-5-ones as the amide source. The protocol broadens the scope of rhodium(III)-catalyzed C(sp(3) )-H activation chemistry, and is applicable to the late-stage functionalization of natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    Science.gov (United States)

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  9. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides

    Directory of Open Access Journals (Sweden)

    Malose Jack Mphahlele

    2017-01-01

    Full Text Available The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (1H-NMR, UV-Vis, FT-IR, and FT-Raman and X-ray crystallographic techniques complemented with a density functional theory (DFT method. The hindered rotation of the C(O–NH2 single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the 1H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide (ABB as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar–NH2 single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p basis set revealed that the conformer (A with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  10. BINDING OF THE RESPIRATORY CHAIN INHIBITOR ANTIMYCIN TO THE MITOCHONDRIAL bc1 COMPLEX: A NEW CRYSTAL STRUCTURE REVEALS AN ALTERED INTRAMOLECULAR HYDROGEN-BONDING PATTERN.

    OpenAIRE

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-01-01

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Tw...

  11. Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides.

    Science.gov (United States)

    Liu, Zhuqing; Huang, Fei; Wu, Ping; Wang, Quannan; Yu, Zhengkun

    2018-05-18

    Amide bond formation is one of the most important transformations in organic synthesis, drug development, and materials science. Efficient construction of amides has been among the most challenging tasks for organic chemists. Herein, we report a concise methodology for amide bond (-CONH-) formation assisted by vicinal group migration in alkylthio-functionalized enaminones (α-oxo ketene N, S-acetals) under mild conditions. Simple treatment of such enaminones with PhI(OAc) 2 at ambient temperature in air afforded diverse multiply functionalized α,β-unsaturated amides including β-cyclopropylated acrylamides, in which a wide array of functional groups such as aryl, (hetero)aryl, alkenyl, and alkyl can be conveniently introduced to a ketene moiety. The reaction mechanism was investigated by exploring the origins of the amide oxygen and carbon atoms as well as isolation and structural characterization of the reaction intermediates. The amide bond formation reactions could also be efficiently performed under solventless mechanical milling conditions.

  12. Unprecedented twofold intramolecular hydroamination in diam(m)ine-dicarboxylatodichloridoplatinum(IV) complexes - ethane-1,2-diamine vs. ammine ligands.

    Science.gov (United States)

    Reithofer, Michael R; Galanski, Markus; Arion, Vladimir B; Keppler, Bernhard K

    2008-03-07

    Reaction of (OC-6-13)-bis(2Z-3-carboxyacrylato)dichlorido(ethane-1,2-diamine)platinum(IV) and (OC-6-13)-diamminebis(2Z-3-carboxyacrylato)dichloridoplatinum(IV) with propylamine in the presence of 1,1'-carbonyl diimidazole afforded not the expected amides; instead, beside amide formation, a twofold intramolecular attack of the am(m)ine ligand at the C[double bond, length as m-dash]C bonds was observed involving either both (ethane-1,2-diamine) or only one (ammine) coordinated nitrogen atom(s).

  13. Intramolecular Hydrogen Bonding in (2-Hydroxybenzoyl)benzoylmethane Enol

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Winther, Morten; Spanget-Larsen, Jens

    2014-01-01

    , and the dienol form of 1,3-dibenzoylacetone. But in these examples the two H-bonds are equivalent, while in the case of OHDBM they are chemically different, involving one enolic and one phenolic hydroxy group. OHDBM is thus an interesting model compound with two competing H-bonds to the same carbonyl group......In the stable enol tautomer of the title compound (OHDBM), one carbonyl group is flanked by two β-hydroxy groups, giving rise to bifold intramolecular H-bonding. A similar situation is found in other β,β'-dihydroxy carbonyl compounds like chrysazin, anthralin, 2,2'-dihydroxybenzophenone...

  14. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    Science.gov (United States)

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  15. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  16. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides.

    Science.gov (United States)

    Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M

    2014-07-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.

  17. OH stretching frequencies in systems with intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens; Hansen, Bjarke Knud Vilster; Hansen, Poul Erik

    2011-01-01

    OH stretching wavenumbers were investigated for 30 species with intramolecularly hydrogen bonded hydroxyl groups, covering the range from 3600 to ca. 1900 cm-1. Theoretical wavenumbers were predicted with B3LYP/6-31G(d) density functional theory using the standard harmonic approximation, as well...

  18. T. thermophila group I introns that cleave amide bonds

    Science.gov (United States)

    Joyce, Gerald F. (Inventor)

    1997-01-01

    The present invention relates to nucleic acid enzymes or enzymatic RNA molecules that are capable of cleaving a variety of bonds, including phosphodiester bonds and amide bonds, in a variety of substrates. Thus, the disclosed enzymatic RNA molecules are capable of functioning as nucleases and/or peptidases. The present invention also relates to compositions containing the disclosed enzymatic RNA molecule and to methods of making, selecting, and using such enzymes and compositions.

  19. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  20. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    OpenAIRE

    Jović, Branislav; Nikolić, Aleksandar; Petrović, Slobodan

    2012-01-01

    The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA) have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are...

  1. CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonding: Effect of local rigidification on solvent extraction toward f-block elements

    International Nuclear Information System (INIS)

    Chu, Hongzhu; He, Lutao; Jiang, Qian; Fang, Yuyu; Jia, Yiming; Yuan, Xiangyang; Zou, Shuliang; Li, Xianghui; Feng, Wen; Yang, Yuanyou; Liu, Ning; Luo, Shunzhong; Yang, Yanqiu; Yang, Liang; Yuan, Lihua

    2014-01-01

    Highlights: • Three CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonds were designed and synthesized. • The influence of local rigidification caused by intramolecular hydrogen bonds upon extraction of f-elements was investigated. • Selective extraction is realized via tuning local chelating surroundings by aid of intramolecular hydrogen bonds. -- Abstract: To understand intramolecular hydrogen bonding in effecting liquid–liquid extraction behavior of CMPO-calixarenes, three CMPO-modified calix[4]arenes (CMPO-CA) 5a–5c with hydrogen-bonded spacer were designed and synthesized. The impact of spacer rotation that is hindered by introduction of intramolecular hydrogen bonding upon extraction of La 3+ , Eu 3+ , Yb 3+ , Th 4+ , and UO 2 2+ has been examined. The results show that 5b and 5c containing only one hydrogen bond with a less hindered rotation spacer extract La 3+ more efficiently than 5a containing two hydrogen bonds with a more hindered rotation spacer, demonstrating the importance of local rigidification of spacer in the design of extractants in influencing the coordination environment. The large difference in extractability between La 3+ and Yb 3+ (or Eu 3+ ) by 5b (or 5c), and the small difference by 5a, suggests intramolecular hydrogen bonding do exert pronounced influence upon selective extraction of light and heavy lanthanides. Log–log plot analysis indicates a 1:1, 2:1 and 1:1 stoichiometry (ligand/metal) for the extracted complex formed between 5b and La 3+ , Th 4+ , UO 2 2+ , respectively. Additionally, their corresponding acyclic analogs 7a–7c exhibit negligible extraction toward these metal ions. These results reveal the possibility of selective extraction via tuning local chelating surroundings of CMPO-CA by aid of intramolecular hydrogen bonding

  2. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization.

    Science.gov (United States)

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-10-04

    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Water-stable helical structure of tertiary amides of bicyclic β-amino acid bearing 7-azabicyclo[2.2.1]heptane. Full control of amide cis-trans equilibrium by bridgehead substitution.

    Science.gov (United States)

    Hosoya, Masahiro; Otani, Yuko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko

    2010-10-27

    Helical structures of oligomers of non-natural β-amino acids are significantly stabilized by intramolecular hydrogen bonding between main-chain amide moieties in many cases, but the structures are generally susceptible to the environment; that is, helices may unfold in protic solvents such as water. For the generation of non-hydrogen-bonded ordered structures of amides (tertiary amides in most cases), control of cis-trans isomerization is crucial, even though there is only a small sterical difference with respect to cis and trans orientations. We have established methods for synthesis of conformationally constrained β-proline mimics, that is, bridgehead-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acids. Our crystallographic, 1D- and 2D-NMR, and CD spectroscopic studies in solution revealed that a bridgehead methoxymethyl substituent completely biased the cis-trans equilibrium to the cis-amide structure along the main chain, and helical structures based on the cis-amide linkage were generated independently of the number of residues, from the minimalist dimer through the tetramer, hexamer, and up to the octamer, and irrespective of the solvent (e.g., water, alcohol, halogenated solvents, and cyclohexane). Generality of the control of the amide equilibrium by bridgehead substitution was also examined.

  4. Does the Intramolecular Hydrogen Bond Affect the Spectroscopic Properties of Bicyclic Diazole Heterocycles?

    Directory of Open Access Journals (Sweden)

    Paweł Misiak

    2018-01-01

    Full Text Available The formation of an intramolecular hydrogen bond in pyrrolo[1,2-a]pyrazin-1(2H-one bicyclic diazoles was analyzed, and the influence of N-substitution on HB formation is discussed in this study. B3LYP/aug-cc-pVDZ calculations were performed for the diazole, and the quantum theory of atoms in molecules (QTAIM approach as well as the natural bond orbital (NBO method was applied to analyze the strength of this interaction. It was found that the intramolecular hydrogen bond that closes an extra ring between the C=O proton acceptor group and the CH proton donor, that is, C=O⋯H–C, influences the spectroscopic properties of pyrrolopyrazine bicyclic diazoles, particularly the carbonyl frequencies. The influence of N-substitution on the aromaticity of heterocyclic rings is also discussed in this report.

  5. On prediction of OH stretching frequencies in intramolecularly hydrogen bonded systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2012-01-01

    OH stretching frequencies are investigated for a series of non-tautomerizing systems with intramolecular hydrogen bonds. Effective OH stretching wavenumbers are predicted by the application of empirical correlation procedures based on the results of B3LYP/6-31G(d) theoretical calculations...

  6. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.

    Science.gov (United States)

    Liljeblad, Arto; Kallio, Pauli; Vainio, Marita; Niemi, Jarmo; Kanerva, Liisa T

    2010-02-21

    Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.

  7. Conformational properties of oxazole-amino acids: effect of the intramolecular N-H···N hydrogen bond.

    Science.gov (United States)

    Siodłak, Dawid; Staś, Monika; Broda, Małgorzata A; Bujak, Maciej; Lis, Tadeusz

    2014-03-06

    Oxazole ring occurs in numerous natural peptides, but conformational properties of the amino acid residue containing the oxazole ring in place of the C-terminal amide bond are poorly recognized. A series of model compounds constituted by the oxazole-amino acids occurring in nature, that is, oxazole-alanine (L-Ala-Ozl), oxazole-dehydroalanine (ΔAla-Ozl), and oxazole-dehydrobutyrine ((Z)-ΔAbu-Ozl), was investigated using theoretical calculations supported by FTIR and NMR spectra and single-crystal X-ray diffraction. It was found that the main feature of the studied oxazole-amino acids is the stable conformation β2 with the torsion angles φ and ψ of -150°, -10° for L-Ala-Ozl, -180°, 0° for ΔAla-Ozl, and -120°, 0° for (Z)-ΔAbu-Ozl, respectively. The conformation β2 is stabilized by the intramolecular N-H···N hydrogen bond and predominates in the low polar environment. In the case of the oxazole-dehydroamino acids, the π-electron conjugation that is spread on the oxazole ring and C(α)═C(β) double bond is an additional stabilizing interaction. The tendency to adopt the conformation β2 clearly decreases with increasing the polarity of environment, but still the oxazole-dehydroamino acids are considered to be more rigid and resistant to conformational changes.

  8. Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR

    Science.gov (United States)

    Matsumori, Nobuaki; Yamaguchi, Toshiyuki; Maeta, Yoshiko; Murata, Michio

    2015-01-01

    Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1′-13C-2-15N-labeled and 2′-13C-2-15N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on 13C and 15N chemical-shift anisotropies and intramolecular 13C-15N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation. PMID:26083921

  9. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  10. Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Bork, Nicolai; Strømgaard, Kristian

    2014-01-01

    The influence of arylthiols on cysteine-free ligation, i.e. the reaction between an alkyl thioester and a primary amine forming an amide bond, was studied in a polar aprotic solvent. We reacted the ethylthioester of hippuric acid with cyclohexylamine in the absence or presence of various quantities...... of thiophenol (PhSH) in a slurry of disodium hydrogen phosphate in dry DMF. Quantitative conversions into the resulting amide were observed within a few hours in the presence of equimolar amounts of thiophenol. Ab initio calculations showed that the reaction mechanism in DMF is similar to the well-known aqueous...... reaction mechanism. The energy barrier of the catalyzed amidation reaction is approximately 40 kJ mol(-1) lower than the non-catalyzed amidation reaction. At least partially this can be explained by a hydrogen bond from the amine to the π-electrons of the thiophenol, stabilizing the transition state...

  11. Benchmarking lithium amide versus amine bonding by charge density and energy decomposition analysis arguments.

    Science.gov (United States)

    Engelhardt, Felix; Maaß, Christian; Andrada, Diego M; Herbst-Irmer, Regine; Stalke, Dietmar

    2018-03-28

    Lithium amides are versatile C-H metallation reagents with vast industrial demand because of their high basicity combined with their weak nucleophilicity, and they are applied in kilotons worldwide annually. The nuclearity of lithium amides, however, modifies and steers reactivity, region- and stereo-selectivity and product diversification in organic syntheses. In this regard, it is vital to understand Li-N bonding as it causes the aggregation of lithium amides to form cubes or ladders from the polar Li-N covalent metal amide bond along the ring stacking and laddering principle. Deaggregation, however, is more governed by the Li←N donor bond to form amine adducts. The geometry of the solid state structures already suggests that there is σ- and π-contribution to the covalent bond. To quantify the mutual influence, we investigated [{(Me 2 NCH 2 ) 2 (C 4 H 2 N)}Li] 2 ( 1 ) by means of experimental charge density calculations based on the quantum theory of atoms in molecules (QTAIM) and DFT calculations using energy decomposition analysis (EDA). This new approach allows for the grading of electrostatic Li + N - , covalent Li-N and donating Li←N bonding, and provides a way to modify traditional widely-used heuristic concepts such as the -I and +I inductive effects. The electron density ρ ( r ) and its second derivative, the Laplacian ∇ 2 ρ ( r ), mirror the various types of bonding. Most remarkably, from the topological descriptors, there is no clear separation of the lithium amide bonds from the lithium amine donor bonds. The computed natural partial charges for lithium are only +0.58, indicating an optimal density supply from the four nitrogen atoms, while the Wiberg bond orders of about 0.14 au suggest very weak bonding. The interaction energy between the two pincer molecules, (C 4 H 2 N) 2 2- , with the Li 2 2+ moiety is very strong ( ca. -628 kcal mol -1 ), followed by the bond dissociation energy (-420.9 kcal mol -1 ). Partitioning the interaction energy

  12. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jović Branislav

    2012-01-01

    Full Text Available The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are in good agreement with conclusions of other spectroscopic and thermodynamic analysis.

  13. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas

    2013-01-01

    -protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains...... of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...... to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1...

  14. Effect of intramolecular hydrogen bonding and electron donation on substituted anthrasemiquinone characteristics

    International Nuclear Information System (INIS)

    Pal, H.; Mukherjee, T.

    1994-01-01

    The acid-base and redox characteristics of the semiquinones of a number of hydroxy and amino-substituted anthraquinones have been investigated. Results are explained on the basis of electron-donating properties and intramolecular hydrogen bond forming capabilities of the substituents. (author). 4 refs., 1 tab., 1 fig

  15. Cis–Trans Amide Bond Rotamers in β-Peptoids and Peptoids: Evaluation of Stereoelectronic

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler; Engel-Andreasen, Jens; Fristrup, Peter

    2013-01-01

    to folding propensity. Thus, we here report an investigation of the effect of structural variations on the cis–trans amide bond rotamer equilibria in a selection of monomer model systems. In addition to various side chain effects, which correlated well with previous studies of α-peptoids, we present...... the synthesis and investigation of cis–trans isomerism in the first examples of peptoids and β-peptoids containing thioamide bonds as well as trifluoroacetylated peptoids and β-peptoids. These systems revealed an increase in the preference for cis-amides as compared to their parent compounds, and thus provide...

  16. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides.

    Science.gov (United States)

    Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2018-01-17

    Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.

  17. Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Bache, Nicolai; Roepstorff, Peter

    2005-01-01

    of doubly protonated peptides that the original regioselective deuterium pattern of these peptides is completely erased (Jørgensen, T. J. D., Gårdsvoll, H., Ploug, M., and Roepstorff, P. (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc...... randomization among all exchangeable sites (i.e. all N- and O-linked hydrogens) also occurs upon high energy collisional activation of singly protonated peptides. This intense proton/deuteron traffic precludes the use of MALDI tandem time-of-flight mass spectrometry to obtain reliable information...

  18. On Hydrogen Bonding in the Intramolecularly Chelated Taitomers of Enolic Malondialdehyde and its Mono- and Dithio-Analogues

    DEFF Research Database (Denmark)

    Carlsen, Lars; Duus, Fritz

    1980-01-01

    The intramolecular hydrogen bondings in enolic malondialdehyde and it mono- and dithio-analogues have been evaluated by a semiempricial SCF–MO–CNDO method. The calculations predict that the hydrogen bonds play an important part in the stabilities of malondialdehyde and monothiomalondialdehyde...

  19. CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonding: effect of local rigidification on solvent extraction toward f-block elements.

    Science.gov (United States)

    Chu, Hongzhu; He, Lutao; Jiang, Qian; Fang, Yuyu; Jia, Yiming; Yuan, Xiangyang; Zou, Shuliang; Li, Xianghui; Feng, Wen; Yang, Yuanyou; Liu, Ning; Luo, Shunzhong; Yang, Yanqiu; Yang, Liang; Yuan, Lihua

    2014-01-15

    To understand intramolecular hydrogen bonding in effecting liquid-liquid extraction behavior of CMPO-calixarenes, three CMPO-modified calix[4]arenes (CMPO-CA) 5a-5c with hydrogen-bonded spacer were designed and synthesized. The impact of spacer rotation that is hindered by introduction of intramolecular hydrogen bonding upon extraction of La(3+), Eu(3+), Yb(3+), Th(4+), and UO2(2+) has been examined. The results show that 5b and 5c containing only one hydrogen bond with a less hindered rotation spacer extract La(3+) more efficiently than 5a containing two hydrogen bonds with a more hindered rotation spacer, demonstrating the importance of local rigidification of spacer in the design of extractants in influencing the coordination environment. The large difference in extractability between La(3+) and Yb(3+) (or Eu(3+)) by 5b (or 5c), and the small difference by 5a, suggests intramolecular hydrogen bonding do exert pronounced influence upon selective extraction of light and heavy lanthanides. Log-log plot analysis indicates a 1:1, 2:1 and 1:1 stoichiometry (ligand/metal) for the extracted complex formed between 5b and La(3+), Th(4+), UO2(2+), respectively. Additionally, their corresponding acyclic analogs 7a-7c exhibit negligible extraction toward these metal ions. These results reveal the possibility of selective extraction via tuning local chelating surroundings of CMPO-CA by aid of intramolecular hydrogen bonding. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Photoinduced Intramolecular Bifurcate Hydrogen Bond: Unusual Mutual Influence of the Components.

    Science.gov (United States)

    Sigalov, Mark V; Shainyan, Bagrat A; Sterkhova, Irina V

    2017-09-01

    A series of 7-hydroxy-2-methylidene-2,3-dihydro-1H-inden-1-ones with 2-pyrrolyl (3), 4-dimethylaminophenyl (4), 4-nitrophenyl (5), and carboxyl group (6) as substituents at the exocyclic double bond was synthesized in the form of the E-isomers (4-6) or predominantly as the Z-isomer (3) which in solution is converted to the E-isomer. The synthesized compounds and their model analogues were studied by NMR spectroscopy, X-ray analysis, and MP2 theoretical calculations. The E-isomers having intramolecular O-H···O═C hydrogen bond are converted by UV irradiation to the Z-isomers having bifurcated O-H···O···H-X hydrogen bond. Unexpected shortening (and, thus, strengthening) of the O-H···O═C component of the bifurcated hydrogen bond upon the formation of the C═O···H-X hydrogen bond was found experimentally, proved theoretically (MP2), and explained by a roundabout interaction of the H-donor (HX) and H-acceptor (C═O) via the system of conjugated bonds.

  1. TDDFT study on intramolecular hydrogen bond of photoexcited methyl salicylate.

    Science.gov (United States)

    Qu, Peng; Tian, Dongxu

    2014-01-01

    The equilibrium geometries, IR-spectra and transition mechanism of intramolecular hydrogen-bonded methyl salicylate in excited state were studied using DFT and TDDFT with 6-31++G (d, p) basis set. The length of hydrogen bond OH⋯OC is decreased from 1.73 Å in the ground state to 1.41 and 1.69 Å in the excited S1 and S3 states. The increase of bond length for HO and CO group also indicates that in excited state the hydrogen bond OH⋯OC is strengthened. IR spectra show HO and CO stretching bands are strongly redshifted by 1387 and 67 cm(-1) in the excited S1 and S3 states comparing to the ground state. The excitation energy and the absorption spectrum show the S3 state is the main excited state of the low-lying excited states. By analyzing the frontier molecular orbitals, the transition from the ground state to the excited S1 and S3 states was predicted to be the π→π∗ mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    Science.gov (United States)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  3. Design and optimization of selective azaindole amide M1 positive allosteric modulators.

    Science.gov (United States)

    Davoren, Jennifer E; O'Neil, Steven V; Anderson, Dennis P; Brodney, Michael A; Chenard, Lois; Dlugolenski, Keith; Edgerton, Jeremy R; Green, Michael; Garnsey, Michelle; Grimwood, Sarah; Harris, Anthony R; Kauffman, Gregory W; LaChapelle, Erik; Lazzaro, John T; Lee, Che-Wah; Lotarski, Susan M; Nason, Deane M; Obach, R Scott; Reinhart, Veronica; Salomon-Ferrer, Romelia; Steyn, Stefanus J; Webb, Damien; Yan, Jiangli; Zhang, Lei

    2016-01-15

    Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  5. Rh(III-catalyzed directed C–H bond amidation of ferrocenes with isocyanates

    Directory of Open Access Journals (Sweden)

    Satoshi Takebayashi

    2012-10-01

    Full Text Available [RhCp*(OAc2(H2O] [Cp* = pentamethylcyclopentadienyl] catalyzed the C–H bond amidation of ferrocenes possessing directing groups with isocyanates in the presence of 2 equiv/Rh of HBF4·OEt2. A variety of disubstituted ferrocenes were prepared in high yields, or excellent diastereoselectivities.

  6. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    Science.gov (United States)

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    Science.gov (United States)

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  8. Selective C(sp2)-C(sp) bond cleavage: the nitrogenation of alkynes to amides.

    Science.gov (United States)

    Qin, Chong; Feng, Peng; Ou, Yang; Shen, Tao; Wang, Teng; Jiao, Ning

    2013-07-22

    Breakthrough: A novel catalyzed direct highly selective C(sp2)-C(sp) bond functionalization of alkynes to amides has been developed. Nitrogenation is achieved by the highly selective C(sp2)-C(sp) bond cleavage of aryl-substituted alkynes. The oxidant-free and mild conditions and wide substrate scope make this method very practical. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rhodium(III)-Catalyzed Activation of C(sp3)-H Bonds and Subsequent Intermolecular Amidation at Room Temperature.

    Science.gov (United States)

    Huang, Xiaolei; Wang, Yan; Lan, Jingbo; You, Jingsong

    2015-08-03

    Disclosed herein is a Rh(III)-catalyzed chelation-assisted activation of unreactive C(sp3)-H bonds, thus enabling an intermolecular amidation to provide a practical and step-economic route to 2-(pyridin-2-yl)ethanamine derivatives. Substrates with other N-donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional-group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C(sp3)-H bonds. A rhodacycle having a SbF6(-) counterion was identified as a plausible intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Energy of Intramolecular Hydrogen Bonding in ortho-Hydroxybenzaldehydes, Phenones and Quinones. Transfer of Aromaticity from ipso-Benzene Ring to the Enol System(s

    Directory of Open Access Journals (Sweden)

    Danuta Rusinska-Roszak

    2017-03-01

    Full Text Available Intramolecular hydrogen bonding (HB is one of the most studied noncovalent interactions of molecules. Many physical, spectral, and topological properties of compounds are under the influence of HB, and there are many parameters used to notice and to describe these changes. Hitherto, no general method of measurement of the energy of intramolecular hydrogen bond (EHB has been put into effect. We propose the molecular tailoring approach (MTA for EHB calculation, modified to apply it to Ar-O-H∙∙∙O=C systems. The method, based on quantum calculations, was checked earlier for hydroxycarbonyl-saturated compounds, and for structures with resonance-assisted hydrogen bonding (RAHB. For phenolic compounds, the accuracy, repeatability, and applicability of the method is now confirmed for nearly 140 structures. For each structure its aromaticity HOMA indices were calculated for the central (ipso ring and for the quasiaromatic rings given by intramolecular HB. The comparison of calculated HB energies and values of estimated aromaticity indices allowed us to observe, in some substituted phenols and quinones, the phenomenon of transfer of aromaticity from the ipso-ring to the H-bonded ring via the effect of electron delocalization.

  11. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    Science.gov (United States)

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  12. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    Science.gov (United States)

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  13. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products

    Science.gov (United States)

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech

    2018-01-01

    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.

  14. TD-DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10-hydroxybenzo[h]quinoline: Topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-01-01

    Here, we report a Density Functional Theoretical (DFT) study on the photophysics of a potent Excited-State Intramolecular Proton Transfer (ESIPT) molecular system, viz., 10-hydroxybenzo[h]quinoline (HBQ). Particular emphasis has been rendered on the assessment of the proton transfer reaction in HBQ in the ground and excited-states through elucidation and a careful perusal of the potential energy surfaces (PES). The non-viability of Ground-State Intramolecular Proton Transfer (GSIPT) process is dictated by a high-energy barrier coupled with no energy minimum for the proton transferred (K-form) form at the ground-state (S 0 ) PES. Remarkable reduction of the barrier along with thermodynamic stability inversion between the enol (E-form) and the keto forms (K-form) of HBQ upon photoexcitation from S 0 to the S 1 -state advocate for the operation of ESIPT process. These findings have been cross-validated on the lexicon of analysis of optimized geometry parameters, Mulliken's charge distribution on the heavy atoms, and molecular orbitals (MO) of the E- and the K-forms of HBQ. Our computational results also corroborate to experimental observations. From the modulations in optimized geometry parameters in course of the PT process a critical assessment has been endeavoured to delve into the movement of the proton during the process. Additional stress has been placed on the analysis of the intramolecular hydrogen bonding (IMHB) interaction in HBQ. The IMHB interaction has been explored by calculation of electron density ρ(r) and the Laplacian ∇ 2 ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and by calculation of interaction between σ* of OH with the lone pair of the nitrogen atom using Natural Bond Orbital (NBO) analysis. - Highlights: → Theoretical modelling of the photophysics of an ESIPT probe 10-hydroxybenzo[h]quinoline (HBQ). → Calculation of intramolecular hydrogen bond (IMHB) energy. → Role of hyperconjugative charge transfer

  15. N-(N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl)-(S)-phenylglycine tert-butyl ester (DAPT): an inhibitor of γ-secretase, revealing fine electronic and hydrogen-bonding features

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, Andrzej; Valenzuela, Francisco [Peptides International Inc., 11621 Electron Drive, Louisville, KY 40299 (United States); Afonine, Pavel [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Dauter, Miroslawa, E-mail: dauter@anl.gov [Basic Research Program, SAIC-Frederick Inc., Synchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building 202, Argonne, IL 60439 (United States); Dauter, Zbigniew [Synchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building 202, Argonne, IL 60439 (United States); Peptides International Inc., 11621 Electron Drive, Louisville, KY 40299 (United States)

    2010-12-01

    The title compound, C{sub 23}H{sub 26}F{sub 2}N{sub 2}O{sub 4}, is a dipeptidic inhibitor of γ-secretase, one of the enzymes involved in Alzheimer’s dis@@ease. The mol@@ecule adopts a compact conformation, without intra@@molecular hydrogen bonds. In the crystal structure, one of the amide N atoms forms the only inter@@molecular N—H⋯O hydrogen bond; the second amide N atom does not form hydrogen bonds. High-resolution synchrotron diffraction data permitted the unequivocal location and refinement without restraints of all H atoms, and the identification of the characteristic shift of the amide H atom engaged in the hydrogen bond from its ideal position, resulting in a more linear hydrogen bond. Significant residual densities for bonding electrons were revealed after the usual SHELXL refinement, and modeling of these features as additional inter@@atomic scatterers (IAS) using the program PHENIX led to a significant decrease in the R factor from 0.0411 to 0.0325 and diminished the r.m.s. deviation level of noise in the final difference Fourier map from 0.063 to 0.037 e Å{sup −3}.

  16. Influence of intermolecular amide hydrogen bonding on the geometry, atomic charges, and spectral modes of acetanilide: An ab initio study

    Science.gov (United States)

    Binoy, J.; Prathima, N. B.; Murali Krishna, C.; Santhosh, C.; Hubert Joe, I.; Jayakumar, V. S.

    2006-08-01

    Acetanilide, a compound of pharmaceutical importance possessing pain-relieving properties due to its blocking the pulse dissipating along the nerve fiber, is subjected to vibrational spectral investigation using NIR FT Raman, FT-IR, and SERS. The geometry, Mulliken charges, and vibrational spectrum of acetanilide have been computed using the Hartree-Fock theory and density functional theory employing the 6-31G (d) basis set. To investigate the influence of intermolecular amide hydrogen bonding, the geometry, charge distribution, and vibrational spectrum of the acetanilide dimer have been computed at the HF/6-31G (d) level. The computed geometries reveal that the acetanilide molecule is planar, while twisting of the secondary amide group with respect to the phenyl ring is found upon hydrogen bonding. The trans isomerism and “amido” form of the secondary amide, hyperconjugation of the C=O group with the adjacent C-C bond, and donor-acceptor interaction have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of the phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation, and hyperconjugation. A decrease in the NH and C=O bond orders and increase in the C-N bond orders due to donor-acceptor interaction can be observed in the vibrational spectra. The SERS spectral analysis reveals that the flat orientation of the molecule on the adsorption plane is preferred.

  17. Intermolecular and very strong intramolecular C-SeO/N chalcogen bonds in nitrophenyl selenocyanate crystals.

    Science.gov (United States)

    Wang, Hui; Liu, Ju; Wang, Weizhou

    2018-02-14

    Single-crystal X-ray diffraction reveals that polymorphic ortho-nitrophenyl selenocyanate (o-NSC, crystals 1a and 1b) and monomorphic para-nitrophenyl selenocyanate (p-NSC, crystal 2) crystals are all stabilized mainly by intermolecular and very strong intramolecular C-SeO/N chalcogen bonds, as well as by other different interactions. Thermogravimetric (TG) and differential scanning calorimetry thermogram (DSC) analyses show that the starting decomposition temperatures and melting points of the three crystals are different, following the order 1b > 1a > 2, which is consistent with the structural characteristics of the crystals. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses indicate that the total strengths of the C-SeO and C-SeN chalcogen bonds decrease in the order 1b > 1a > 2. This study could be significant for engineering functional crystals based on robust C-SeO and C-SeN chalcogen bonds, and for designing drugs containing selenium as well as understanding their interaction in biosystems.

  18. Rotational Isomers, Intramolecular Hydrogen Bond, and IR Spectra of o-Vinylphenol Homologs

    Science.gov (United States)

    Glazunov, V. P.; Berdyshev, D. V.; Balaneva, N. N.; Radchenko, O. S.; Novikov, V. L.

    2018-03-01

    The ν(OH) stretching-mode bands in solution IR spectra of five o-vinylphenol (o-VPh) homologs in the slightly polar solvents CCl4 and n-hexane were studied. Several rotamers with free OH groups were found in solutions of o-VPh and its methyl-substituted derivatives in n-hexane. The proportion of rotamers in o-VPh homologs with intramolecular hydrogen bonds (IHBs) O-H...π varied from 22 to 97% in the gas and cyclohexane according to B3LYP/cc-pVTZ calculations. The theoretically estimated effective enthalpies -ΔH of their IHBs varied in the range 0.20-2.24 kcal/mol.

  19. Amide temperature coefficients in the protein G B1 domain

    International Nuclear Information System (INIS)

    Tomlinson, Jennifer H.; Williamson, Mike P.

    2012-01-01

    Temperature coefficients have been measured for backbone amide 1 H and 15 N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283–313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pK a values. 1 H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide 15 N coefficients have no clear relationship with structure.

  20. Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides.

    Science.gov (United States)

    Babu, N Jagadeesh; Reddy, L Sreenivas; Nangia, Ashwini

    2007-01-01

    The carboxamide-pyridine N-oxide heterosynthon is sustained by syn(amide)N-H...O-(oxide) hydrogen bond and auxiliary (N-oxide)C-H...O(amide) interaction (Reddy, L. S.; Babu, N. J.; Nangia, A. Chem. Commun. 2006, 1369). We evaluate the scope and utility of this heterosynthon in amide-containing molecules and drugs (active pharmaceutical ingredients, APIs) with pyridine N-oxide cocrystal former molecules (CCFs). Out of 10 cocrystals in this study and 7 complexes from previous work, amide-N-oxide heterosynthon is present in 12 structures and amide dimer homosynthon occurs in 5 structures. The amide dimer is favored over amide-N-oxide synthon in cocrystals when there is competition from another H-bonding functional group, e.g., 4-hydroxybenzamide, or because of steric factors, as in carbamazepine API. The molecular organization in carbamazepine.quinoxaline N,N'-dioxide 1:1 cocrystal structure is directed by amide homodimer and anti(amide)N-H...O-(oxide) hydrogen bond. Its X-ray crystal structure matches with the third lowest energy frame calculated in Polymorph Predictor (Cerius(2), COMPASS force field). Apart from generating new and diverse supramolecular structures, hydration is controlled in one substance. 4-Picoline N-oxide deliquesces within a day, but its cocrystal with barbital does not absorb moisture at 50% RH and 30 degrees C up to four weeks. Amide-N-oxide heterosynthon has potential utility in both amide and N-oxide type drug molecules with complementary CCFs. Its occurrence probability in the Cambridge Structural Database is 87% among 27 structures without competing acceptors and 78% in 41 structures containing OH, NH, H(2)O functional groups.

  1. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    Science.gov (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  2. Dehydroacetic Acid Derivatives Bearing Amide or Urea Moieties as Effective Anion Receptors.

    Science.gov (United States)

    Bregović, Nikola; Cindro, Nikola; Bertoša, Branimir; Barišić, Dajana; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2017-08-01

    Derivatives of dehydroacetic acid comprising amide or urea subunits have been synthesized and their anion-binding properties investigated. Among a series of halides and oxyanions, the studied compounds selectively bind acetate and dihydrogen phosphate in acetonitrile and dimethyl sulfoxide. The corresponding complexation processes were characterized by means of 1 H NMR titrations, which revealed a 1:1 complex stoichiometry in most cases, with the exception of dihydrogen phosphate, which formed 2:1 (anion/ligand) complexes in acetonitrile. The complex stability constants were determined and are discussed with respect to the structural properties of the receptors, the hydrogen-bond-forming potential of the anions, and the characteristics of the solvents used. Based on the spectroscopic data and results of Monte Carlo simulations, the amide or urea groups were affirmed as the primary binding sites in all cases. The results of the computational methods indicate that an array of both inter- and intramolecular hydrogen bonds can form in the studied systems, and these were shown to play an important role in defining the overall stability of the complexes. Solubility measurements were carried out in both solvents and the thermodynamics of transfer from acetonitrile to dimethyl sulfoxide were characterized on a quantitative level. This has afforded a detailed insight into the impact of the medium on the complexation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    International Nuclear Information System (INIS)

    Mori, Yukie; Masuda, Yuichi

    2015-01-01

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl 4 , acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17 O and 1

  4. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yukie, E-mail: mori.yukie@ocha.ac.jp; Masuda, Yuichi

    2015-09-08

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl{sub 4}, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the {sup 17

  5. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    Science.gov (United States)

    Forsythe, J. G.; Weber, A. L.

    2017-01-01

    Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.

  6. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  7. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides

    NARCIS (Netherlands)

    Geerts, R.; Kuijer, P.; Ginkel, van C.G.; Plugge, C.M.

    2014-01-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with

  8. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2015-01-01

    Full Text Available Succinimide formation from aspartic acid (Asp residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe as a model compound, we propose the possibility that acetic acid (AA, which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  9. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  10. Influence of intramolecular hydrogen bonds on the binding potential of methylated β-cyclodextrin derivatives

    Directory of Open Access Journals (Sweden)

    Gerhard Wenz

    2012-11-01

    Full Text Available Various heptasubstituted derivatives of β-cyclodextrin (β-CD bearing 1, 2 and 3 methyl substituents per glucose unit were synthesized by regioselective methods. Binding free energies and binding enthalpies of these hosts towards 4-tert-butylbenzoate and adamantane-1-carboxylate were determined by isothermal titration microcalorimetry (ITC. It was found that methyl substituents at the secondary positions of β-CD lead to a tremendous reduction of the binding potential, while methylation at the primary positions significantly improved binding. Stabilizing intramolecular hydrogen bonds between the glucose units were made responsible for the high binding potentials of those β-CD derivatives that possess secondary hydroxy groups.

  11. Salt forms of the pharmaceutical amide dihydrocarbamazepine.

    Science.gov (United States)

    Buist, Amanda R; Kennedy, Alan R

    2016-02-01

    Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride, C15H15N2O(+)·Cl(-)}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O(+)·Cl(-)·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O(+)·Br(-)·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z' = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C-N bond shortening) and the supramolecular structures. The amide-to-amide and dimeric hydrogen-bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one-dimensional polymeric constructs with no direct amide-to-amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.

  12. Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins

    Science.gov (United States)

    Hu, Jiefeng; Wang, Minyan; Pu, Xinghui; Shi, Zhuangzhi

    2017-05-01

    Amide and olefins are important synthetic intermediates with complementary reactivity which play a key role in the construction of natural products, pharmaceuticals and manmade materials. Converting the normally highly stable aliphatic amides into olefins directly is a challenging task. Here we show that a Ni/NHC-catalytic system has been established for decarbonylative elimination of aliphatic amides to generate various olefins via C-N and C-C bond cleavage. This study not only overcomes the acyl C-N bond activation in aliphatic amides, but also encompasses distinct chemical advances on a new type of elimination reaction called retro-hydroamidocarbonylation. This transformation shows good functional group compatibility and can serve as a powerful synthetic tool for late-stage olefination of amide groups in complex compounds.

  13. Highly efficient induction of chirality in intramolecular

    Science.gov (United States)

    Cossio; Arrieta; Lecea; Alajarin; Vidal; Tovar

    2000-06-16

    Highly stereocontrolled, intramolecular [2 + 2] cycloadditions between ketenimines and imines leading to 1,2-dihydroazeto[2, 1-b]quinazolines have been achieved. The source of stereocontrol is a chiral carbon atom adjacent either to the iminic carbon or nitrogen atom. In the first case, the stereocontrol stems from the preference for the axial conformer in the first transition structure. In the second case, the origin of the stereocontrol lies on the two-electron stabilizing interaction between the C-C bond being formed and the sigma orbital corresponding to the polar C-X bond, X being an electronegative atom. These models can be extended to other related systems for predicting the stereochemical outcome in this intramolecular reaction.

  14. A molecular mechanics (MM3(96)) force field for metal-amide complexes

    International Nuclear Information System (INIS)

    Hay, B.P.; Clement, O.; Sandrone, G.; Dixon, D.A.

    1998-01-01

    A molecular mechanics (MM3(96)) force field is reported for modeling metal complexes of amides in which the amide is coordinated through oxygen. This model uses a points-on-a-sphere approach which involves the parameterization of the Msingle bondO stretch, the Msingle bondO double-bond C bend, and the Msingle bondO double-bond Csingle bondX (X = C, H, N) torsion interactions. Relationships between force field parameters and metal ion properties (charge, ionic radius, and electronegativity) are presented that allow the application of this model to a wide range of metal ions. The model satisfactorily reproduces the structures of over fifty amide complexes with the alkaline earths, transition metals, lanthanides, and actinides

  15. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-10-02

    Considering the ubiquity of organophosphorus compounds in organic synthesis, pharmaceutical discovery agrochemical crop protection and materials chemistry, new methods for their construction hold particular significance. A conventional method for the synthesis of C-P bonds involves cross-coupling of aryl halides and dialkyl phosphites (the Hirao reaction). We report a catalytic deamidative phosphorylation of a wide range of amides using a palladium or nickel catalyst giving aryl phosphonates in good to excellent yields. The present method tolerates a wide range of functional groups. The reaction constitutes the first example of a transition-metal-catalyzed generation of C-P bonds from amides. This redox-neutral protocol can be combined with site-selective conventional cross-coupling for the regioselective synthesis of potential pharmacophores. Mechanistic studies suggest an oxidative addition/transmetallation pathway. In light of the importance of amides and phosphonates as synthetic intermediates, we envision that this Pd and Ni-catalyzed C-P bond forming method will find broad application. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    Science.gov (United States)

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  17. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  18. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara

    2017-06-05

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  19. Intramolecular oxidative deselenization of acylselenoureas: a facile synthesis of benzoxazole amides and carbonic anhydrase inhibitors.

    Science.gov (United States)

    Angeli, A; Peat, T S; Bartolucci, G; Nocentini, A; Supuran, C T; Carta, F

    2016-12-28

    A mild, efficient and one pot procedure to access benzoxazoles using easily accessible acylselenoureas as starting materials has been discovered. Mechanistic studies revealed a pH dependent intramolecular oxidative deselenization, with ring closure due to an intramolecular nucleophilic attack of a phenoxide ion. All the benzoxazoles herein reported possessed a primary sulfonamide zinc binding group and showed effective inhibitory action on the enzymes, carbonic anhydrases.

  20. Phase transition and intramolecular hydrogen bonding in nitro derivatives of ortho-hydroxy acetophenones

    Science.gov (United States)

    Filarowski, A.; Kochel, A.; Koll, A.; Bator, G.; Mukherjee, S.

    2006-03-01

    The crystal structures of two ortho-hydroxy aryl ketones (5-chloro-3-nitro-2-hydroxyacetophenone, 5-methyl-3-nitro-2-hydroxyacetophenone and the complex 5-chloro-3-nitro-2-hydroxyacetophenone with 2-aminobenzoic acid (anthranilic acid)) were determined by X-ray diffraction. The existence of an intramolecular hydrogen bond of enol character between the hydroxyl and acetyl groups was found by the X-ray method. The enol character was also confirmed by DFT (B3LYP/6-31+G(d,p)) calculations. A phase transition was found at 138 K in 5-chloro-3-nitro-2-hydroxyacetophenone. This phase transition was investigated by differential scanning calorimetry (DSC), dilatometry, and the dielectric method. A study of the nitro-group dynamics in the ortho-hydroxy acetophenones was carried out with DFT (B3LYP/6-31+G(d,p)) calculations.

  1. Engineering macrocyclic figure–eight motif

    Indian Academy of Sciences (India)

    TECS

    the helical arrangement is held by intramolecular hydrogen bonding or as a backbone requirement, but in all cases, a planar .... valine-proline amide bond that facilitates an unusual ..... The functional properties, dynamics, energetics and the ...

  2. An intramolecular inverse electron demand Diels–Alder approach to annulated α-carbolines

    Directory of Open Access Journals (Sweden)

    Zhiyuan Ma

    2012-06-01

    Full Text Available Intramolecular inverse electron demand cycloadditions of isatin-derived 1,2,4-triazines with acetylenic dienophiles tethered by amidations or transesterifications proceed in excellent yields to produce lactam- or lactone-fused α-carbolines. Beginning with various isatins and alkynyl dienophiles, a pilot-scale library of eighty-eight α-carbolines was prepared by using this robust methodology for biological evaluation.

  3. On the unconventional amide I band in acetanilide

    Science.gov (United States)

    Tenenbaum, Alexander; Campa, Alessandro; Giansanti, Andrea

    1987-04-01

    We developed a new model to study the molecular dynamics of the acetanilide (ACN) crystal by computer simulation. Low-frequency oscillations of the molecules as a whole were considered with high-frequency vibrations of the amidic degrees of freedom involved in hydrogen bonding. The low-temperature power spectrum has two peaks, shifted by 15 cm -1, in the region of the amide I band: one of them corresponds to the so-called anomalous amide I band in the IR and Raman spectra of ACN. We found that this peak is due to the coupling of the low-frequency motion in the chain of molecules with the motion of the hydrogen-bonded protons, at variance with current suggestions.

  4. Competing intramolecular N-H⋯O=C hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Aamer, E-mail: aamersaeed@yahoo.com [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Khurshid, Asma [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Jasinski, Jerry P. [Department of Chemistry, Keene State College, 229 Main Street Keene, NH 03435-2001 (United States); Pozzi, C. Gustavo; Fantoni, Adolfo C. [Instituto de Física La Plata, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 49 y 115, La Plata, Buenos Aires (Argentina); Erben, Mauricio F., E-mail: erben@quimica.unlp.edu.ar [CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, (1900) La Plata, Buenos Aires (Argentina)

    2014-03-18

    Highlights: • Two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible in the title molecule. • Crystal structures and vibrational properties were determined. • The C=O and C=S double bonds of the acyl-thiourea group are mutually oriented in opposite directions. • A strong hyperconjugative lpO1 → σ{sup ∗}(N2-H) remote interaction was detected. • Topological analysis reveals a Cl⋯N interaction playing a relevant role in crystal packing. - Abstract: The synthesis of a novel 1-acyl-thiourea species (C{sub 14}H{sub 17}N{sub 2}O{sub 2}SCl), has been tailored in such a way that two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible. The X-ray structure analysis as well as the vibrational (FT-IR and FT-Raman) data reveal that the S conformation is preferred, with the C=O and C=S bonds of the acyl-thiourea group pointing in opposite directions. The preference for the intramolecular N-H⋯O=C hydrogen bond within the -C(O)NHC(S)NH- core is confirmed. The Natural Bond Orbital and the Atom in Molecule approaches demonstrate that a strong hyperconjugative lpO → σ{sup ∗}(N-H) remote interaction between the acyl and the thioamide N-H groups is responsible for the stabilization of the S conformation. Intermolecular interactions have been characterized in the periodic system electron density and the topological analysis reveals the presence of an extended intermolecular network in the crystal, including a Cl⋯N interaction playing a relevant role in crystal packing.

  5. Surprisingly Mild Enolate-Counterion-Free Pd(0)-Catalyzed Intramolecular Allylic Alkylations

    DEFF Research Database (Denmark)

    Madec, David; Prestat, Guillaume; Martini, Elisabetta

    2005-01-01

    Palladium-catalyzed intramolecular allylic alkylations of unsaturated EWG-activated amides can take place under phase-transfer conditions or in the presence of a crown ether. These new reaction conditions are milder and higher yielding than those previously reported. A rationalization for such an...... for such an unexpected result is put forth and validated by DFT-B3LYP calculations. The results suggest cyclization via a counterion-free (E)-enolate TS....

  6. An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway

    Science.gov (United States)

    Szostak, Roman; Aubé, Jeffrey

    2015-01-01

    N-protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding, as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C–N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology. PMID:25766378

  7. C-H Bond Functionalization via Hydride Transfer: Formation of α-Arylated Piperidines and 1,2,3,4-Tetrahydroisoquinolines via Stereoselective Intramolecular Amination of Benzylic C-H Bonds

    OpenAIRE

    Vadola, Paul A.; Carrera, Ignacio; Sames, Dalibor

    2012-01-01

    We here report a study of the intramolecular amination of sp3 C-H bonds via the hydride transfer cyclization of N-tosylimines (HT-amination). In this transformation, 5-aryl-aldehydes are subjected to N-toluenesulfonamide in the presence of BF3•OEt2 to effect imine formation and HT-cyclization, leading to 2-aryl-piperidines and 3-aryl-1,2,3,4-tetrahydroisoquinolines in a one-pot procedure. We examined the reactivity of a range of aldehyde substrates as a function of their conformational flexib...

  8. Pressure effect on the amide I frequency of the solvated α-helical structure in water

    International Nuclear Information System (INIS)

    Takekiyo, T; Yoshimura, Y; Shimizu, A; Koizumi, T; Kato, M; Taniguchi, Y

    2007-01-01

    As a model system of the pressure dependence of the amide I mode of the solvated α-helical structure in a helical peptide, we have calculated the frequency shifts of the amide I modes as a function of the distance between trans-N-methylacetamide (t-NMA) dimer and a water molecule (d C=O···H-O ) by the density-functional theory (DFT) method at the B3LYP/6-31G++(d,p) level. Two amide I frequencies at 1652 and 1700 cm -1 were observed under this calculation. The former is ascribed to the amide I mode forming the intermolecular hydrogen bond (H-bond) between t-NMA and H 2 O in addition to the intermolecular H-bond in the t-NMA dimer. The latter is due to the amide I mode forming only the intermolecular H-bond in the t-NMA dimer. We have found that the amide I frequency at 1652 cm -1 shifts to a lower frequency with decreasing d C=O···H-O ) (i.e., increasing pressure), whereas that at 1700 cm -1 shifts to a higher frequency. The amide I frequency shift of 1652 cm -1 is larger than that of 1700 cm -1 by the intermolecular H-bond. Thus, our results clearly indicate that the pressure-induced amide I frequency shift of the solvated α-helical structure correlates with the change in d C=O···H-O )

  9. INTRAMOLECULAR ISOTOPE EFFECTS IN HYDROCARBON MASS SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, D. P.; Schachtschneider, J. H.

    1963-07-15

    Approximate calculations based on the quasi-equilibrium rate theory of the origin of mass spectra are shown to lead to an approximately correct magnitude for the intramolecular ( pi /sup -/) isotope effect on C--H bond dissociation probabilities of various deuterohydrocarbons. (auth)

  10. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy

    Science.gov (United States)

    Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander

    2017-01-01

    The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.

  11. Energetics of hydrogen bonding in proteins: a model compound study.

    OpenAIRE

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-...

  12. Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C-N Rotational Pathway.

    Science.gov (United States)

    Szostak, Roman; Aubé, Jeffrey; Szostak, Michal

    2015-08-21

    Twisted amides containing nitrogen at the bridgehead position are attractive practical prototypes for the investigation of the electronic and structural properties of nonplanar amide linkages. Changes that occur during rotation around the N-C(O) axis in one-carbon-bridged twisted amides have been studied using ab initio molecular orbital methods. Calculations at the MP2/6-311++G(d,p) level performed on a set of one-carbon-bridged lactams, including 20 distinct scaffolds ranging from [2.2.1] to [6.3.1] ring systems, with the C═O bond on the shortest bridge indicate significant variations in structures, resonance energies, proton affinities, core ionization energies, frontier molecular orbitals, atomic charges, and infrared frequencies that reflect structural changes corresponding to the extent of resonance stabilization during rotation along the N-C(O) axis. The results are discussed in the context of resonance theory and activation of amides toward N-protonation (N-activation) by distortion. This study demonstrates that one-carbon-bridged lactams-a class of readily available, hydrolytically robust twisted amides-are ideally suited to span the whole spectrum of the amide bond distortion energy surface. Notably, this study provides a blueprint for the rational design and application of nonplanar amides in organic synthesis. The presented findings strongly support the classical amide bond resonance model in predicting the properties of nonplanar amides.

  13. Spectral and cyclic voltammetric studies on some intramolecularly hydrogen bonded arylhydrazones: Crystal and molecular structure of 2-(2-(3-nitrophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione

    Science.gov (United States)

    Sethukumar, A.; Arul Prakasam, B.

    2010-01-01

    A series of arylhydrazone derivatives ( 1- 7) were prepared by the coupling of acetylacetone/dimedone with respective aromatic diazonium salts and characterized by IR, 1H and 13C NMR spectra. The IR and NMR spectral data clearly manifests the effective intramolecular hydrogen bonding in all the cases. Cyclic voltammetric studies certainly indicate that in all the cases the reduced center is C dbnd N bond of hydrazonic moiety. The single crystal X-ray structural analysis of 2-(2-(3-nitrophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione ( 6) is also reported. Single crystal X-ray analysis of 6 evidences the intramolecular hydrogen bonding with the N(2)⋯O(4) distance of 2.642(15) Å, which can be designated as S(6) according to Etter's graph nomenclature. The cyclohexane ring conformation in the molecule ( 6) can be described as an envelope. RAHB studies suggest that the resonance assistance for hydrogen bonding is significantly reduced for the compound ( 6) due to the non-planarity of the six atoms which are involved in resonant cycle S(6) of Etter's graph. The planarity of the resonant cycle S(6) is very much disturbed by the conformational requirement of the cyclohexane ring and hence RAHB concept is less operative in this case.

  14. N,N′-(Ethane-1,2-diyldi-o-phenylenebis(pyridine-2-carboxamide

    Directory of Open Access Journals (Sweden)

    Shuranjan Sarkar

    2011-11-01

    Full Text Available The title molecule, C26H22N4O2, is centrosymmetric and adopts an anti conformation. Two intramolecular hydrogen bonds, viz. amide–pyridine N—H...N and phenyl–amide C—H...O, stabilize the trans conformation of the (pyridine-2-carboxamidophenyl group about the amide plane. In the crystal, the presence of weak intermolecular C—H...O hydrogen bonds results in the formation of a three-dimensional network.

  15. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2013-02-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇{sup 2}ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems.

  16. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2013-01-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇ 2 ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems

  17. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    Science.gov (United States)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  18. Steroids linked with amide bond - extended cholesterol

    Czech Academy of Sciences Publication Activity Database

    Černý, Ivan; Buděšínský, Miloš; Pouzar, Vladimír; Drašar, P.

    2009-01-01

    Roč. 74, č. 1 (2009), s. 88-94 ISSN 0039-128X R&D Projects: GA MŠk(CZ) LC06077; GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40550506 Keywords : synthesis * oligomers * amides Subject RIV: CC - Organic Chemistry Impact factor: 2.905, year: 2009

  19. ‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis

    Science.gov (United States)

    Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.

    2010-01-01

    The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205

  20. 2,2,2-Trichloro-N-(3,4-dimethylphenylacetamide

    Directory of Open Access Journals (Sweden)

    Hartmut Fuess

    2009-05-01

    Full Text Available The conformation of the N—H bond in the title compound, C10H10Cl3NO, is anti to the C=O bond. The amide H atom exhibits both intramolecular N—H...Cl and intermolecular N—H...O hydrogen bonding. The latter interactions link the molecules into infinite chains.

  1. THE ROLE OF INTRAMOLECULAR TIES ENERGY IN THE PYROLYSIS PROCESS OF PET

    Directory of Open Access Journals (Sweden)

    P. Iu. Salikov

    2014-01-01

    Full Text Available Summary. Recycling plastic waste to focus on. The main type of used products made of polyethylene terephthalate (PET is a container from the various types of beverages. There was considered a possibility of waste of PET (bottles, bottles, packaging containers by pyrolysis. Most of the proposed methods are not suitable for recycling (recycling of waste consumption contamination. Purpose - to develop technological foundations and optimum modes waste PET to obtain useful secondary products, taking into account the energy of chemical intramolecular bonds. Applied scientific basis of recycling PET into useful forms of secondary products, in particular the establishment of the collapse of the intramolecular bonds, depending on the temperature of the pyrolysis method of mathematical processing - differentiation of polynomial equations change in the degree of pyrolysis temperature-dependent. The optimum modes of processing. The block diagram of apparatus for processing contaminated waste PET pyrolysis methods of control processing in accordance with the specified composition of secondary products. The possibility of controlling the amount and types of fuel components of secondary products due to measurable parameters of the pyrolysis process. The effective temperature pyrolysis of waste PET with the CCA-tures energy intramolecular bonds.

  2. Preparation and Evaluation at the Delta Opioid Receptor of a Series of Linear Leu-Enkephalin Analogues Obtained by Systematic Replacement of the Amides

    Science.gov (United States)

    2013-01-01

    Leu-enkephalin analogues, in which the amide bonds were sequentially and systematically replaced either by ester or N-methyl amide bonds, were prepared using classical organic chemistry as well as solid phase peptide synthesis (SPPS). The peptidomimetics were characterized using competition binding, ERK1/2 phosphorylation, receptor internalization, and contractility assays to evaluate their pharmacological profile over the delta opioid receptor (DOPr). The lipophilicity (LogD7.4) and plasma stability of the active analogues were also measured. Our results revealed that the last amide bond can be successfully replaced by either an ester or an N-methyl amide bond without significantly decreasing the biological activity of the corresponding analogues when compared to Leu-enkephalin. The peptidomimetics with an N-methyl amide function between residues Phe and Leu were found to be more lipophilic and more stable than Leu-enkephalin. Findings from the present study further revealed that the hydrogen-bond donor properties of the fourth amide of Leu-enkephalin are not important for its biological activity on DOPr. Our results show that the systematic replacement of amide bonds by isosteric functions represents an efficient way to design and synthesize novel peptide analogues with enhanced stability. Our findings further suggest that such a strategy can also be useful to study the biological roles of amide bonds. PMID:23650868

  3. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    Science.gov (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  4. First examples of intramolecular addition of primary amidyl radicals to olefins

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreault, P.; Drouin, C.; Lessard, J. [Sherbrooke Univ., PQ (Canada). Dept. de Chimie

    2005-07-01

    This paper presents the first examples of radical cyclization involving a primary amidyl radical and a pendant olefin. Amidyl radicals have attracted interest in terms of their structure, reactivity, and ways to generate them. The intramolecular addition of an amidyl radical on a pendant olefin appears to be a powerful synthetic tool for creating nitrogen-containing heterocycles. Although several examples of cyclization involving secondary amidyl radicals are cited in the the literature, there are no examples of a successful cyclization involving a primary amidyl radical. This is because all attempts to prepare the usual radical precursors have failed when applied to olefinic primary amides. This study reveals that N-(phenylthio) derivatives of olefinic primary amides can be easily prepared and that nitrogen heterocycles resulting from their radical cyclization can be obtained in good to very good yields. Four olefinic primary amides were chosen as models for radical cyclization of primary amidyl radicals. They were prepared from the corresponding carboxylic acids via the acid chlorides. Conversion of primary amides into suitable amidyl radical precursors was also examined. The study showed that N-(phenylthio) amides could be easily prepared by following a slightly modified protocol developed by Esker and Newcomb, by reacting the anion of the amide with phenylsulfenyl chloride. In particular, olefinic N-(phenylthio) amides were prepared and used as primary amidyl radical precursors in a reaction with a solution of 2,2'-azobis(isobutyronitrile) in catalytic quantities and tributyltin hydride in benzene. The resulting yields of cyclic products ranged from 63 to 85 per cent. The intent of the study was to demonstrate that it is no longer necessary to prepare an N-protected precursor and then remove the protecting group after cyclization. Further studies are currently underway. 10 refs., 1 tab.

  5. Catalytic synthesis of amides via aldoximes rearrangement.

    Science.gov (United States)

    Crochet, Pascale; Cadierno, Victorio

    2015-02-14

    Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.

  6. Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum.

    Science.gov (United States)

    Lei, Jeremy; Burgess, Elaine J; Richardson, Alistair T B; Hawkins, Bill C; Baird, Sarah K; Smallfield, Bruce M; van Klink, John W; Perry, Nigel B

    2015-08-01

    Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells. Georg Thieme Verlag KG Stuttgart · New York.

  7. Cyclisation versus 1,1-Carboboration: Reactions of B(C6F5)3 with Propargyl Amides.

    Science.gov (United States)

    Melen, Rebecca L; Hansmann, Max M; Lough, Alan J; Hashmi, A Stephen K; Stephan, Douglas W

    2013-09-02

    A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N-substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo-boration cyclisation reaction, which afforded the 5-alkylidene-4,5-dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1-carboboration is favoured as a result of the increased steric hindrance (1,3-allylic strain) in the 5-alkylidene-4,5-dihydrooxazolium borate species. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. NMR study of conformational exchange and double-well proton potential in intramolecular hydrogen bonds in monoanions of succinic acid and derivatives.

    Science.gov (United States)

    Guo, Jing; Tolstoy, Peter M; Koeppe, B; Denisov, Gleb S; Limbach, Hans-Heinrich

    2011-09-08

    We present a (1)H, (2)H, and (13)C NMR study of the monoanions of succinic (1), meso- and rac-dimethylsuccinic (2, 3), and methylsuccinic (4) acids (with tetraalkylammonium as the counterion) dissolved in CDF(3)/CDF(2)Cl at 300-120 K. In all four monoanions, the carboxylic groups are linked by a short intramolecular OHO hydrogen bond revealed by the bridging-proton chemical shift of about 20 ppm. We show that the flexibility of the carbon skeleton allows for two gauche isomers in monoanions 1, 2, and 4, interconverting through experimental energy barriers of 10-15 kcal/mol (the process itself and the energy barrier are also reproduced in MP2/6-311++G** calculations). In 3, one of the gauche forms is absent because of the steric repulsion of the methyl groups. In all four monoanions, the bridging proton is located in a double-well potential and subject, at least to some extent, to proton tautomerism, for which we estimate the two proton positions to be separated by ca. 0.2 Å. In 1 and 3, the proton potential is symmetric. In 2, slowing the conformational interconversion introduces an asymmetry to the proton potential, an effect that might be strong enough even to synchronize the proton tautomerism with the interconversion of the two gauche forms. In 4, the asymmetry of the proton potential is due to the asymmetric substitution. The intramolecular H-bond is likely to remain intact during the interconversion of the gauche forms in 1, 3, and 4, whereas the situation in 2 is less clear.

  9. Conformation-Specific IR and UV Spectroscopy of the Amino Acid Glutamine: Amide-Stacking and Hydrogen Bonding in AN Important Residue in Neurodegenerative Diseases

    Science.gov (United States)

    Walsh, Patrick S.; Dean, Jacob C.; Zwier, Timothy S.

    2014-06-01

    Glutamine plays an important role in several neurodegenerative diseases including Huntington's disease (HD) and Alzheimer's disease (AD). An intriguing aspect of the structure of glutamine is its incorporation of an amide group in its side chain, thereby opening up the possibility of forming amide-amide H-bonds between the peptide backbone and side chain. In this study the conformational preferences of two capped gluatamines Z(carboxybenzyl)-Glutamine-X (X=OH, NHMe) are studied under jet-cooled conditions in the gas phase in order to unlock the intrinsic structural motifs that are favored by this flexible sidechain. Conformational assignments are made by comparing the hydride stretch ( 3100-3700 cm-1) and amide I and II ( 1400-1800 cm-1) resonant ion-dip infrared spectra with predictions from harmonic frequency calculations. Assigned structures will be compared to previously published results on both natural and unnatural residues. Particular emphasis will be placed on the comparison between glutamine and unconstrained γ-peptides due to the similar three-carbon spacing between backbone and side chain in glutamine to the backbone spacing in γ-peptides. The ability of the glutamine side-chain to form amide stacked conformations will be a main focus, along with the prevalence of extended backbone type structures. W. H. James, III, C W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2009, 131(40), 14243-14245.

  10. Amide group anchored glucose oxidase based anodic catalysts for high performance enzymatic biofuel cell

    Science.gov (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Kim, Do-Heyoung; Kwon, Yongchai

    2017-01-01

    A new enzyme catalyst is formed by fabricating gold nano particle (GNP)-glucose oxidase (GOx) clusters that are then attached to polyethyleneimine (PEI) and carbon nanotube (CNT) with cross-linkable terephthalaldehyde (TPA) (TPA/[CNT/PEI/GOx-GNP]). Especially, amide bonds belonging to TPA play an anchor role for incorporating rigid bonding among GNP, GOx and CNT/PEI, while middle size GNP is well bonded with thiol group of GOx to form strong GNP-GOx cluster. Those bonds are identified by chemical and electrochemical characterizations like XPS and cyclic voltammogram. The anchording effect of amide bonds induces fast electron transfer and strong chemical bonding, resulting in enhancements in (i) catalytic activity, (ii) amount of immobilized GOx and (ii) performance of enzymatic biofuel cell (EBC) including the catalyst. Regarding the catalytic activity, the TPA/[CNT/PEI/GOx-GNP] produces high electron transfer rate constant (6 s-1), high glucose sensitivity (68 μA mM-1 cm-2), high maximum current density (113 μA cm-2), low charge transfer resistance (17.0 Ω cm2) and long-lasting durability while its chemical structure is characterized by XPS confirming large portion of amide bond. In EBC measurement, it has high maximum power density (0.94 mW cm-2) compatible with catalytic acitivity measurements.

  11. Carbamoyl anion-initiated cascade reaction for stereoselective synthesis of substituted α-hydroxy-β-amino amides.

    Science.gov (United States)

    Lin, Chao-Yang; Ma, Peng-Ju; Sun, Zhao; Lu, Chong-Dao; Xu, Yan-Jun

    2016-01-18

    A carbamoyl anion-initiated cascade reaction with acylsilanes and imines has been used to rapidly construct substituted α-hydroxy-β-amino amides. The Brook rearrangement-mediated cascade allows the formation of two C-C bonds and one O-Si bond in a single pot. Using this approach, a range of α-aryl α-hydroxy-β-amino amides has been synthesized in high yields with excellent diastereoselectivities.

  12. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  13. Direct Lactamization of Azido Amides via Staudinger-Type Reductive Cyclization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, In Jung; Lee, Su Jeong; Cho, Chang Woo [Kyungpook National University, Daegu (Korea, Republic of)

    2012-01-15

    The direct lactamization of 1,3- and 1,4-azido amides has been achieved using triphenylphosphine and water, affording various γ- and δ-lactams in good to excellent yields. The direct lactamization of the azido amides was performed via the Staudinger-type reductive cyclization in which the amide group acts as the electrophile for lactam synthesis. This lactamization provides a mild, functional group tolerant and efficient route for the synthesis of various γ- and δ-lactams found in natural products and pharmaceuticals. Further studies will be conducted to develop new synthetic routes for the synthesis of various lactams. The lactam ring system is one of the most ubiquitous structural motifs found in natural products and pharmaceuticals. Owing to the prevalence of lactams, their synthesis has attracted considerable attention. Lactams are usually prepared by the coupling of activated carboxylic acid derivatives with amines. Alternative routes include the Beckmann rearrangement of oximes, the Schmidt reaction of cyclic ketones and hydrazoic acid, the Kinugasa reaction of nitrones and terminal acetylenes, the Diels-Alder reaction of cyclopentadiene and chlorosulfonyl isocyanate, transition metal catalyzed lactamization of amino alcohols, and iodolactamization of amides and alkenes. In particular, the intramolecular Staudinger ligation of azides and activated carboxy acids, including esters, is well known as an environmentally friendly and mild protocol for lactam synthesis.

  14. Direct Lactamization of Azido Amides via Staudinger-Type Reductive Cyclization

    International Nuclear Information System (INIS)

    Heo, In Jung; Lee, Su Jeong; Cho, Chang Woo

    2012-01-01

    The direct lactamization of 1,3- and 1,4-azido amides has been achieved using triphenylphosphine and water, affording various γ- and δ-lactams in good to excellent yields. The direct lactamization of the azido amides was performed via the Staudinger-type reductive cyclization in which the amide group acts as the electrophile for lactam synthesis. This lactamization provides a mild, functional group tolerant and efficient route for the synthesis of various γ- and δ-lactams found in natural products and pharmaceuticals. Further studies will be conducted to develop new synthetic routes for the synthesis of various lactams. The lactam ring system is one of the most ubiquitous structural motifs found in natural products and pharmaceuticals. Owing to the prevalence of lactams, their synthesis has attracted considerable attention. Lactams are usually prepared by the coupling of activated carboxylic acid derivatives with amines. Alternative routes include the Beckmann rearrangement of oximes, the Schmidt reaction of cyclic ketones and hydrazoic acid, the Kinugasa reaction of nitrones and terminal acetylenes, the Diels-Alder reaction of cyclopentadiene and chlorosulfonyl isocyanate, transition metal catalyzed lactamization of amino alcohols, and iodolactamization of amides and alkenes. In particular, the intramolecular Staudinger ligation of azides and activated carboxy acids, including esters, is well known as an environmentally friendly and mild protocol for lactam synthesis

  15. The Strength of Hydrogen Bonds between Fluoro-Organics and Alcohols, a Theoretical Study.

    Science.gov (United States)

    Rosenberg, Robert E

    2018-05-10

    Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the strengths of hydrogen bonds involving fluorine. There are only a few published examples of the strengths of these bonds. This study provides a high level ab initio study of inter- and intramolecular hydrogen bonds between RF and R'OH, where R and R' are aryl, vinyl, alkyl, and cycloalkyl. Intermolecular binding energies average near 5 kcal/mol, while intramolecular binding energies average about 3 kcal/mol. Inclusion of zero-point energies and applying a counterpoise correction lessen the difference. In both series, modest increases in binding energies are seen with increased acidity of R'OH and increased electron donation of R in RF. In the intramolecular compounds, binding energy increases with the rigidity of the F-(C) n -OH ring. Inclusion of free energy corrections at 298 K results in exoergic binding energies for the intramolecular compounds and endoergic binding energies for the intermolecular compounds. Parameters such as bond lengths, vibrational frequencies, and atomic populations are consistent with formation of a hydrogen bond and with slightly stronger binding in the intermolecular cases over the intramolecular cases. However, these parameters correlated poorly with binding energies.

  16. Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory

    Science.gov (United States)

    Fennie, Michael W.; Roth, Jessica M.

    2016-01-01

    In this laboratory experiment, upper-division undergraduate chemistry and biochemistry majors investigate amide-bond-forming reactions from a green chemistry perspective. Using hydrocinnamic acid and benzylamine as reactants, students perform three types of amide-forming reactions: an acid chloride derivative route; a coupling reagent promoted…

  17. Fluorine substitution and nonconventional OH...pi intramolecular bond: high-resolution UV spectroscopy and ab initio calculations of 2-(p-fluorophenyl)ethanol.

    Science.gov (United States)

    Karaminkov, Rosen; Chervenkov, Sotir; Neusser, Hans J

    2008-05-21

    The para-fluorinated flexible neurotransmitter analogue 2-phenylethanol has been investigated by highly resolved resonance-enhanced two-photon ionisation two-colour UV laser spectroscopy with mass resolution and ab initio structural optimisations and energy calculations. Two stable conformations, gauche and anti, separated by a high potential barrier have been identified in the cold molecular beam by rotational analysis of the vibronic band structures. The theoretically predicted higher-lying conformations most likely relax to these two structures during the adiabatic expansion. The lowest-energy gauche conformer is stabilised by an intramolecular nonconventional OH...pi-type hydrogen bond between the terminal OH group of the side chain and the pi electrons of the phenyl ring. The good agreement between the experimental and theoretical results demonstrates that even the substitution with a strongly electronegative atom of 2-phenylethanol at the para position has no noticeable effect on the strength and orientation of the OH...pi bond.

  18. Direct Amination of alpha-Hydroxy Amides

    NARCIS (Netherlands)

    Chandgude, Ajay L.; Dömling, Alexander

    A TiCl4-mediated reaction for the direct amination of alpha-hydroxy amides has been developed. This simple, general, additive/base/ligand-free reaction is mediated by economical TiCl4. The reaction runs under mild conditions. This highly efficient C-N bond formation protocol is valid for diverse

  19. Spontaneous Self-Assembly of Fully Protected Ester 1:1 [α/α-Nα-Bn-hydrazino] Pseudodipeptides into a Twisted Parallel β-Sheet in the Crystal State.

    Science.gov (United States)

    Romero, Eugénie; Moussodia, Ralph-Olivier; Kriznik, Alexandre; Wenger, Emmanuel; Acherar, Samir; Jamart-Grégoire, Brigitte

    2016-10-07

    Previous studies have demonstrated that amidic α/β-pseudodipeptides, 1:1 [α/α-N α -Bn-hydrazino], have the ability to fold via a succession of γ-turn (C 7 pseudocycle) and hydrazinoturn in CDCl 3 solution, their amide terminals enabling the formation of an intramolecular H-bond network. Despite their lack of a primary amide terminals allowing the formation of the hydrazinoturn, their ester counterparts 1-4 were proven to self-assemble into C 6 and C 7 pseudocycles by intramolecular H-bonds in solution state and into an uncommon twisted parallel β-sheet through intermolecular H-bonding in the crystal state to form a supramolecular helix, with eight molecules needed to complete a full 360° rotation. Such self-organization (with eight molecules) has only been observed in a specific α/α-pseudodipeptide, depsipeptide (Boc-Leu-Lac-OEt). Relying on IR absorption, NMR, X-ray diffraction, and CD analyses, the aim of this study was to demonstrate that stereoisomers of ester 1:1 [α/α-N α -Bn-hydrazino] pseudodipeptides 1-4 are able to self-assemble into this β-helical structure. The absolute configuration of the asymmetric C α -atom of the α-amino acid residue influences the left- or right-handed twist without changing the pitch of the formed helix.

  20. Polymorphs and polymorphic cocrystals of temozolomide.

    Science.gov (United States)

    Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini

    2008-07-07

    Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.

  1. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian; Hsiao, Chien-Chi; Guo, Lin; Rueping, Magnus

    2018-01-01

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  4. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian

    2018-05-09

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  5. Amide-based inhibitors of p38alpha MAP kinase. Part 2: design, synthesis and SAR of potent N-pyrimidyl amides.

    Science.gov (United States)

    Tester, Richland; Tan, Xuefei; Luedtke, Gregory R; Nashashibi, Imad; Schinzel, Kurt; Liang, Weiling; Jung, Joon; Dugar, Sundeep; Liclican, Albert; Tabora, Jocelyn; Levy, Daniel E; Do, Steven

    2010-04-15

    Optimization of a tri-substituted N-pyridyl amide led to the discovery of a new class of potent N-pyrimidyl amide based p38alpha MAP kinase inhibitors. Initial SAR studies led to the identification of 5-dihydrofuran as an optimal hydrophobic group. Additional side chain modifications resulted in the introduction of hydrogen bond interactions. Through extensive SAR studies, analogs bearing free amino groups and alternatives to the parent (S)-alpha-methyl benzyl moiety were identified. These compounds exhibited improved cellular activities and maintained balance between p38alpha and CYP3A4 inhibition. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR). An easy entry to linear bicyclic scaffolds.

    Science.gov (United States)

    Miró, Javier; Sánchez-Roselló, María; Sanz, Álvaro; Rabasa, Fernando; Del Pozo, Carlos; Fustero, Santos

    2015-01-01

    A new tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR) has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM-IMDAR protocols.

  7. Intra- versus Intermolecular Hydrogen Bonding: Solvent-Dependent Conformational Preferences of a Common Supramolecular Binding Motif from 1 H NMR and Vibrational Circular Dichroism Spectra.

    Science.gov (United States)

    Demarque, Daniel P; Merten, Christian

    2017-12-19

    When predicting binding properties of small molecules or larger supramolecular aggregates, intra- and intermolecular hydrogen bonds are often considered the most important factor. Spectroscopic techniques such as 1 H NMR spectroscopy are typically utilized to characterize such binding events, but interpretation is often qualitative and follows chemical intuition. In this study, we compare the effects of intramolecular hydrogen bonding and solvation on two chiral 2,6-pyridinediyl-dialkylamides. In comparison with 1 H NMR spectroscopy, vibrational circular dichroism (VCD) spectroscopy proved to be more sensitive to conformational changes. In fact, the change of the solvent from CDCl 3 to [D 6 ]DMSO generates mirror-image VCD spectra for the same enantiomer. Here, the common sense that the sterically less hindered group is more prone to solvation proved to be wrong according predicted VCD spectra, which clearly show that both asymmetric amide hydrogens are equally likely to be solvated, but never simultaneously. The competition between intra- and intermolecular hydrogen bonding and their importance for a correct prediction of spectral properties are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    Science.gov (United States)

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  9. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    Science.gov (United States)

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  10. Vibrational Spectroscopy and Gas-Phase Thermochemistry of the Model Dipeptide N-Acetyl Glycine Methyl Amide

    Science.gov (United States)

    Leavitt, Christopher; Raston, Paul; Moody, Grant; Shirley, Caitlyne; Douberly, Gary

    2014-06-01

    The structure-function relationship in proteins is widely recognized, motivating numerous investigations of isolated neutral and ionic polypeptides that generally employ conformation specific, multidimensional UV and IR spectroscopies. This data taken in conjunction with computed harmonic frequencies has provided a snapshot of the underlying molecular physics at play in many polypeptides, but few experiments have been able to probe the energetics of these systems. In this study, we use vibrational spectroscopy to measure the gas-phase enthalpy change for isomerization between two conformations of the dipeptide N-acetyl glycine methyl amide (NAGMA). A two-stage oven source is implemented producing a gas-phase equilibrium distribution of NAGMA molecules that is flash frozen upon pickup by He nanodroplets. Using polarization spectroscopy, the IR spectrum is assigned to a mixture of two conformers having intramolecular hydrogen bonds made up of either five- or seven-membered rings, C5 and C7, respectively. The interconversion enthalpy, obtained from the van't Hoff relation, is 4.52{±}0.12 kJ/mol for isomerization from the C7 to the C5-conformer. This experimental measurement is compared to computations employing a broad range of theoretical methods.

  11. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  12. Characteristic conformation of Mosher's amide elucidated using the cambridge structural database.

    Science.gov (United States)

    Ichikawa, Akio; Ono, Hiroshi; Mikata, Yuji

    2015-07-16

    Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides) deposited in the Cambridge Structural Database (CSD) were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83%) of the amide carbonyl groups and the trifluoromethyl groups ranged from -30° to 0° with an average angle θ1 of -13°. The other conformational properties were also clarified: (1) one of the fluorine atoms was antiperiplanar (ap) to the amide carbonyl group, forming a staggered conformation; (2) the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3) in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide), the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4) the phenyl plane was inclined from the O-Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5) the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.

  13. Structural study of salt forms of amides; paracetamol, benzamide and piperine

    Science.gov (United States)

    Kennedy, Alan R.; King, Nathan L. C.; Oswald, Iain D. H.; Rollo, David G.; Spiteri, Rebecca; Walls, Aiden

    2018-02-01

    Single crystal x-ray diffraction has been used to investigate the structures of six complexes containing O-atom protonated cations derived from the pharmaceutically relevant amides benzamide (BEN), paracetamol (PAR) and piperine (PIP). The structures of the salt forms [PAR(H)][SO3C6H4Cl], [BEN(H)][O3SC6H4Cl] and [BEN(H)][Br]·H2O are reported along with those of the hemi-halide salt forms [PAR(H)][I3]. PAR, [PIP(H)][I3]·PIP and [PIP(H)][I3]0·5[I]0.5. PIP. The structure of the cocrystal BEN. HOOCCH2Cl is also presented for comparison. The geometry of the amide group is found to systematically change upon protonation, with the Cdbnd O distance increasing and the Csbnd N distance decreasing. The hemi-halide species all feature strongly hydrogen bonded amide(H)/amide pairs. The amide group Cdbnd O and Csbnd N distances for both elements of each such pair are intermediate between those found for simple neutral amide and protonated amide forms. It was found that crystallising paracetamol from aqueous solutions containing Ba2+ ions gave orthorhombic paracetamol.

  14. α-Bromodiazoacetamides – a new class of diazo compounds for catalyst-free, ambient temperature intramolecular C–H insertion reactions

    Directory of Open Access Journals (Sweden)

    Åsmund Kaupang

    2013-07-01

    Full Text Available In this work, we introduce a new class of halodiazocarbonyl compounds, α-halodiazoacetamides, which through a metal-free, ambient-temperature thermolysis perform intramolecular C–H insertions to produce α-halo-β-lactams. When carried out with α-bromodiazoacetamides bearing cyclic side chains, the thermolysis reaction affords bicyclic α-halo-β-lactams, in some cases in excellent yields, depending on the ring size and substitution pattern of the cyclic amide side chains.

  15. Tandem cross enyne metathesis (CEYM–intramolecular Diels–Alder reaction (IMDAR. An easy entry to linear bicyclic scaffolds

    Directory of Open Access Journals (Sweden)

    Javier Miró

    2015-08-01

    Full Text Available A new tandem cross enyne metathesis (CEYM–intramolecular Diels–Alder reaction (IMDAR has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM–IMDAR protocols.

  16. A simple semi-empirical approximation for bond energy

    International Nuclear Information System (INIS)

    Jorge, F.E.; Giambiagi, M.; Giambiagi, M.S. de.

    1985-01-01

    A simple semi-empirical expression for bond energy, related with a generalized bond index, is proposed and applied within the IEH framework. The correlation with experimental data is good for the intermolecular bond energy of base pairs of nucleic acids and other hydrogen bonded systems. The intramolecular bond energies for a sample of molecules containing typical bonds and for hydrides are discussed. The results are compared with those obtained by other methods. (Author) [pt

  17. Intramolecular photoinduced electron-transfer in azobenzene-perylene diimide

    International Nuclear Information System (INIS)

    Feng Wen-Ke; Wang Shu-Feng; Gong Qi-Huang; Feng Yi-Yu; Feng Wei; Yi Wen-Hui

    2010-01-01

    This paper studies the intramolecular photoinduced electron-transfer (PET) of covalent bonded azobenzene-perylene diimide (AZO-PDI) in solvents by using steady-state and time-resolved fluorescence spectroscopy together with ultrafast transient absorption spectroscopic techniques. Fast fluorescence quenching is observed when AZO-PDI is excited at characteristic wavelengths of AZO and perylene moieties. Reductive electron-transfer with transfer rate faster than 10 11 s −1 is found. This PET process is also consolidated by femtosecond transient absorption spectra

  18. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer

    Science.gov (United States)

    Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai

    2017-12-01

    Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.

  19. On the intramolecular origin of the blue shift of A-H stretching frequencies: triatomic hydrides HAX.

    Science.gov (United States)

    Karpfen, Alfred; Kryachko, Eugene S

    2009-04-30

    A series of intermolecular complexes formed between the triatomic hydrides HAX and various interaction partners are investigated computationally aiming (1) to demonstrate that either an appearance or nonappearance of a blue shift of the A-H stretching frequency is directly related to the sign of the intramolecular coupling that exists between the two degrees of freedom, the A-H and A-X bond lengths, and (2) to offer the following conjecture: the theoretical protonation of a triatomic neutral molecule HAX at the site X is a simple and rather efficient probe of a red or blue shift that the stretching frequency nu(A-H) undergoes upon complex formation regardless of whether this bond is directly involved in hydrogen bonding or not. In other words, to predict whether this A-H bond is capable to display a blue or red shift of nu(A-H), it suffices to compare the equilibrium structures and vibrational spectra of a given molecule with its protonated counterpart. The two above goals are achieved invoking a series of 11 triatomic molecules: HNO, HSN, HPO, and HPS characterized by a negative intramolecular coupling; HON and HNS as intermediate cases; and HOF, HOCl, HCN, HNC, and HCP with a positive intramolecular coupling. For these purposes, the latter molecules are investigated at the MP2/6-311++G(2p,2d) level in the neutral and protonated HAXH(+) forms as well as their complexes with H(2)O and with the fluoromethanes H(3)CF, H(2)CF(2), and HCF(3).

  20. A Direct Proof of the Resonance-Impaired Hydrogen Bond (RIHB) Concept.

    Science.gov (United States)

    Lin, Xuhui; Wu, Wei; Mo, Yirong

    2018-01-24

    The concept of resonance-enhanced hydrogen bond (RAHB) has been widely accepted and applied as it highlights the positive impact of π-conjugation on intramolecular H-bonds. However, electron delocalization is directional and there is a possibility that π-resonance goes from the H-bond acceptor to the H-bond donor, leading to a negative impact on H-bonds. Here we used the block-localized wavefunction (BLW) method which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently, to quantify the interplay between H-bond and π-resonance in the terms of geometry, energetics and spectral properties. The comparison of geometrical optimizations with and without π-resonance shows that conjugation can indeed either enhance or weaken intramolecular H-bonds. We further experimented with various substituents attached to either the H-bond acceptor and/or H-bond donor side(s) to tune the H-bonding strength in both directions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The temperature dependent amide I band of crystalline acetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Leonor [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Physics Department, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Freedman, Holly [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  2. The temperature dependent amide I band of crystalline acetanilide

    Science.gov (United States)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  3. The temperature dependent amide I band of crystalline acetanilide

    International Nuclear Information System (INIS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-01-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  4. N-(2,6-Dimethylphenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2009-11-01

    Full Text Available The asymmetric unit of the title compound, C12H13NO3, contains two independent molecules. The conformation of the N—H bond and the C=O bond in the amide segment are anti to each other. The molecular conformation of each molecule is stabilized by an intramolecular O—H...O hydrogen bond. In the crystal, molecules are connected through intermolecular N—H...O hydrogen bonds. In addition, there is a carbonyl–carbonyl dipolar interaction with an O...C contact of 2.926 (3 Å.

  5. Steric effects in release of amides from linkers in solid-phase synthesis. Molecular mechanics modeling of key step in peptide and combinatorial chemistry

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Jensen, Knud Jørgen

    2006-01-01

    Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid-lability of the ba......Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid......-lability of the backbone amide linkage (BAL), which releases sec. amides, compared to C-terminal amide anchoring, which releases primary amides, was rationalized by steric relief upon cleavage. Thus, the relative stability of the carbenium ion formed from the linker in the acidolytic release is an insufficient measure...

  6. Nickel-Catalyzed Phosphine Free Direct N-Alkylation of Amides with Alcohols.

    Science.gov (United States)

    Das, Jagadish; Banerjee, Debasis

    2018-03-16

    Herein, we developed an operational simple, practical, and selective Ni-catalyzed synthesis of secondary amides. Application of renewable alcohols, earth-abundant and nonprecious nickel catalyst facilitates the transformations, releasing water as byproduct. The catalytic system is tolerant to a variety of functional groups including nitrile, allylic ether, and alkene and could be extended to the synthesis of bis-amide, antiemetic drug Tigan, and dopamine D2 receptor antagonist Itopride. Preliminary mechanistic studies revealed the participation of a benzylic C-H bond in the rate-determining step.

  7. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis

    Science.gov (United States)

    Park, In-Hee; Venable, John D.; Steckler, Caitlin; Cellitti, Susan E.; Lesley, Scott A.; Spraggon, Glen; Brock, Ansgar

    2015-01-01

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure and dynamics. More recently, Hydrogen Exchange Mass Spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from Molecular Dynamics (MD) simulation snapshots is used to determine partitioning over bonded and non-bonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for Fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of

  8. The Role of Backbone Hydrogen Bonds in the Transition State for Protein Folding of a PDZ Domain.

    Directory of Open Access Journals (Sweden)

    Søren W. Pedersen

    Full Text Available Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a β-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding.

  9. In vitro evaluation of N-methyl amide tripeptidomimetics as substrates for the human intestinal di-/tri-peptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Andersen, Rikke; Nielsen, Carsten Uhd; Begtrup, Mikael

    2006-01-01

    application of N-methyl amide bioisosteres as peptide bond replacements in tripeptides in order to decrease degradation by peptidases and yet retain affinity for and transport via hPEPT1. Seven structurally diverse N-methyl amide tripeptidomimetics were selected based on a principal component analysis...... of structural properties of 6859 N-methyl amide tripeptidomimetics. In vitro extracellular degradation of the selected tripeptidomimetics as well as affinity for and transepithelial transport via hPEPT1 were investigated in Caco-2 cells. Decreased apparent degradation was observed for all tripeptidomimetics...... to be substrates for hPEPT1 than tripeptidomimetics with charged side chains. The results of the present study indicate that the N-methyl amide peptide bond replacement approach for increasing bioavailability of tripeptidomimetic drug candidates is not generally applicable to all tripeptides. Nevertheless...

  10. A protocol for amide bond formation with electron deficient amines and sterically hindered substrates

    DEFF Research Database (Denmark)

    Due-Hansen, Maria E; Pandey, Sunil K; Christiansen, Elisabeth

    2016-01-01

    A protocol for amide coupling by in situ formation of acyl fluorides and reaction with amines at elevated temperature has been developed and found to be efficient for coupling of sterically hindered substrates and electron deficient amines where standard methods failed.......A protocol for amide coupling by in situ formation of acyl fluorides and reaction with amines at elevated temperature has been developed and found to be efficient for coupling of sterically hindered substrates and electron deficient amines where standard methods failed....

  11. Hydrosilylation induced by N→Si intramolecular coordination: spontaneous transformation of organosilanes into 1-aza-silole-type molecules in the absence of a catalyst.

    Science.gov (United States)

    Novák, Miroslav; Dostál, Libor; Alonso, Mercedes; De Proft, Frank; Růžička, Aleš; Lyčka, Antonín; Jambor, Roman

    2014-02-24

    Our attempts to synthesize the N→Si intramolecularly coordinated organosilanes Ph2 L(1) SiH (1 a), PhL(1) SiH2 (2 a), Ph2 L(2) SiH (3 a), and PhL(2) SiH2 (4 a) containing a CH=N imine group (in which L(1) is the C,N-chelating ligand {2-[CH=N(C6 H3 -2,6-iPr2)]C6 H4}(-) and L(2) is {2-[CH=N(tBu)]C6 H4}(-)) yielded 1-[2,6-bis(diisopropyl)phenyl]-2,2-diphenyl-1-aza-silole (1), 1-[2,6-bis(diisopropyl)phenyl]-2-phenyl-2-hydrido-1-aza-silole (2), 1-tert-butyl-2,2-diphenyl-1-aza-silole (3), and 1-tert-butyl-2-phenyl-2-hydrido-1-aza-silole (4), respectively. Isolated organosilicon amides 1-4 are an outcome of the spontaneous hydrosilylation of the CH=N imine moiety induced by N→Si intramolecular coordination. Compounds 1-4 were characterized by NMR spectroscopy and X-ray diffraction analysis. The geometries of organosilanes 1 a-4 a and their corresponding hydrosilylated products 1-4 were optimized and fully characterized at the B3LYP/6-31++G(d,p) level of theory. The molecular structure determination of 1-3 suggested the presence of a Si-N double bond. Natural bond orbital (NBO) analysis, however, shows a very strong donor-acceptor interaction between the lone pair of the nitrogen atom and the formal empty p orbital on the silicon and therefore, the calculations show that the Si-N bond is highly polarized pointing to a predominantly zwitterionic Si(+) N(-) bond in 1-4. Since compounds 1-4 are hydrosilylated products of 1 a-4 a, the free energies (ΔG298), enthalpies (ΔH298), and entropies (ΔH298) were computed for the hydrosilylation reaction of 1 a-4 a with both B3LYP and B3LYP-D methods. On the basis of the very negative ΔG298 values, the hydrosilylation reaction is highly exergonic and compounds 1 a-4 a are spontaneously transformed into 1-4 in the absence of a catalyst. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    International Nuclear Information System (INIS)

    Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava; Svoboda, Jan; Zima, Vítězslav

    2013-01-01

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparation of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy

  13. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    Science.gov (United States)

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from

  14. Disulphide bond formation in food protein aggregation and gelation

    NARCIS (Netherlands)

    Visschers, R.W.; Jongh, de H.H.J.

    2005-01-01

    In this short review we discuss the role of cysteine residues and cystine bridges for the functional aggregation of food proteins. We evaluate how formation and cleavage of disulphide bonds proceeds at a molecular level, and how inter- and intramolecular disulfide bonds can be detected and modified.

  15. QTAIM and Stress Tensor Characterization of Intramolecular Interactions Along Dynamics Trajectories of a Light-Driven Rotary Molecular Motor.

    Science.gov (United States)

    Wang, Lingling; Huan, Guo; Momen, Roya; Azizi, Alireza; Xu, Tianlv; Kirk, Steven R; Filatov, Michael; Jenkins, Samantha

    2017-06-29

    A quantum theory of atoms in molecules (QTAIM) and stress tensor analysis was applied to analyze intramolecular interactions influencing the photoisomerization dynamics of a light-driven rotary molecular motor. For selected nonadiabatic molecular dynamics trajectories characterized by markedly different S 1 state lifetimes, the electron densities were obtained using the ensemble density functional theory method. The analysis revealed that torsional motion of the molecular motor blades from the Franck-Condon point to the S 1 energy minimum and the S 1 /S 0 conical intersection is controlled by two factors: greater numbers of intramolecular bonds before the hop-time and unusually strongly coupled bonds between the atoms of the rotor and the stator blades. This results in the effective stalling of the progress along the torsional path for an extended period of time. This finding suggests a possibility of chemical tuning of the speed of photoisomerization of molecular motors and related molecular switches by reshaping their molecular backbones to decrease or increase the degree of coupling and numbers of intramolecular bond critical points as revealed by the QTAIM/stress tensor analysis of the electron density. Additionally, the stress tensor scalar and vector analysis was found to provide new methods to follow the trajectories, and from this, new insight was gained into the behavior of the S 1 state in the vicinity of the conical intersection.

  16. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  17. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.; Alghamdi, Miasser; Poater, Albert; Falivene, Laura; Scaranto, Jessica; Beetstra, Dirk J.; Morton, Jason G.; Cavallo, Luigi

    2015-01-01

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  18. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond

    Science.gov (United States)

    Samgina, Tatiana Yu; Kovalev, Sergey V.; Tolpina, Miriam D.; Trebse, Polonca; Torkar, Gregor; Lebedev, Albert T.

    2018-05-01

    Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops. [Figure not available: see fulltext.

  19. Hydrogen bonding analysis of hydroxyl groups in glucose aqueous solutions by a molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Chen, Cong; Li, Wei Zhong; Song, Yong Chen; Weng, Lin Dong; Zhang, Ning

    2012-01-01

    Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-H w is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4

  20. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.; Dittrich, Birger; Schirmeister, Tanja; Luger, Peter; Hesse, Malte; Chen, Yu-Sheng; Spackman, Peter R.; Spackman, Mark A.; Grabowsky, Simon (Heinrich-Heine); (Freie); (UC); (Bremen); (JG-UM); (UWA)

    2017-01-24

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us to predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.

  1. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  2. Synthesis of Bioactive 2-(Arylaminothiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation

    Directory of Open Access Journals (Sweden)

    Damien Hédou

    2016-06-01

    Full Text Available A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H-one derivatives (series 8, 10, 14 and 17 was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H-one (3 has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer’s disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.

  3. 4-Nitro-N-(8-quinolylbenzamide

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2008-12-01

    Full Text Available In the title compound, C16H11N3O3, the amide group is twisted away from the plane of the quinoline benzene ring by 3.93 (5°, but is twisted away from the nitrobenzene ring by 22.68 (4°. A weak intramolecular C—H...O hydrogen bond is observed. In the crystal structure, molecules are linked into a chain along the a axis by intermolecular C—H...O hydrogen bonds.

  4. Unique Intramolecular Electronic Communications in Mono-ferrocenylpyrimidine Derivatives: Correlation between Redox Properties and Structural Nature

    International Nuclear Information System (INIS)

    Xiang, Debo; Noel, Jerome; Shao, Huibo; Dupas, Georges; Merbouh, Nabyl; Yu, Hua-Zhong

    2015-01-01

    Highlights: • Unique intramolecular electronic communications (electron withdrawing and π-bond delocalization effects) exist in the mono-ferrocenylpyrimidine derivatives. • The redox potential shift correlates the pyrimidine ring torsion angle with the extent of electron delocalization. • The correlation between redox properties and structural nature in mono-ferrocenylpyrimidine derivatives is evident. - Abstract: The correlation between redox properties and structural nature in a complete set of mono-ferrocenylpyrimidine derivatives (2-ferrocenylpyrimidine, 2-FcPy; 4-ferrocenylpyrimidine, 4-FcPy; 5-ferrocenylpyrimidine, 5-FcPy) was evaluated by investigating the intramolecular electronic communications. Both conventional electrochemical measurements in organic solvents and thin-film voltammetric studies of these compounds were carried out. It was discovered that their formal potentials are significantly different from each other, and shift negatively in the order of 4-FcPy > 5-FcPy > 2-FcPy. This result suggests that the intramolecular electronic communication is dictated by the delocalization effect of the π-bonding systems in 2-FcPy, and that the electron-withdrawing effect of the nitrogen atoms in the pyrimidine ring plays the key role in 4-FcPy and 5-FcPy. The single crystal X-ray structure analyis and Density Functional Theory (DFT) calculation provided additional evidence (e.g., different torsion angles between the cyclopentadienyl and pyrimidine rings) to support the observed correlation between the redox properties and structural nature

  5. Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells.

    Science.gov (United States)

    Kovar, Lubomir; Etrych, Tomas; Kabesova, Martina; Subr, Vladimir; Vetvicka, David; Hovorka, Ondrej; Strohalm, Jiri; Sklenar, Jan; Chytil, Petr; Ulbrich, Karel; Rihova, Blanka

    2010-08-01

    To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.

  6. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO 2 Anchoring Characteristics for Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jacqueline M. [Cavendish; ISIS; Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Department; Blood-Forsythe, Martin A. [Cavendish; Lin, Tze-Chia [Cavendish; Pattison, Philip [Swiss; Gong, Yun [Cavendish; Vázquez-Mayagoitia, Álvaro [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Waddell, Paul G. [Cavendish; Australian Centre for Neutron Scattering, Australian Nuclear Science; Zhang, Lei [Cavendish; Koumura, Nagatoshi [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Mori, Shogo [Division

    2017-07-25

    Donor-pi-acceptor dyes containing thiophenyl pi-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S center dot center dot center dot C equivalent to N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the pi-conjugated portion of MK-44 shows that this S center dot center dot center dot C equivalent to N bonding underpins the highly efficient intramolecular charge transfer(ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S center dot center dot center dot C equivalent to N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of,MK-2. More generally, this study provides the first unequivocal evidence for an S center dot center dot center dot C equivalent to N

  7. Studies of Hydrogen Bonding Between N, N-Dimethylacetamide and Primary Alcohols

    Directory of Open Access Journals (Sweden)

    M. S. Manjunath

    2009-01-01

    Full Text Available Hydrogen bonding between N, N-dimethylacetamide (DMA and alcohols has been studied in carbon tetrachloride solution by an X-band Microwave bench at 936GHz. The dielectric relaxation time (τ of the binary system are obtained by both Higasi's method and Gopalakrishna method. The most likely association complex between alcohol and DMA is 1:1 stoichiometric complex through the hydroxyl group of the alcohol and the carbonyl group of amide. The results show that the interaction between alcohols and amides is 1:1 complex through the free hydroxyl group of the alcohol and the carbonyl group of amide and the alkyl chain-length of both the alcohols and amide plays an important role in the determination of the strength of hydrogen bond (O-H: C=O formed and suggests that the proton donating ability of alcohols is in the order: 1-propanol < 1-butanol < 1-pentanol and the accepting ability of DMA.

  8. Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction

    Energy Technology Data Exchange (ETDEWEB)

    Pastorczak, Ewa; Prlj, Antonio; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gonthier, Jérôme F. [Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)

    2015-12-14

    We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already deliver a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π − π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.

  9. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    Science.gov (United States)

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  10. Crystal structure of 4-fluoro-N-[2-(4-fluoro-benzo-yl)hydra-zine-1-carbono-thio-yl]benzamide.

    Science.gov (United States)

    Firdausiah, Syadza; Salleh Huddin, Ameera Aqeela; Hasbullah, Siti Aishah; Yamin, Bohari M; Yusoff, Siti Fairus M

    2014-09-01

    In the title compound, C15H11F2N3O2S, the dihedral angle between the fluoro-benzene rings is 88.43 (10)° and that between the central semithiocarbazide grouping is 47.00 (11)°. The dihedral angle between the amide group and attached fluoro-benzene ring is 50.52 (11)°; the equivalent angle between the carbonyl-thio-amide group and its attached ring is 12.98 (10)°. The major twists in the mol-ecule occur about the C-N-N-C bonds [torsion angle = -138.7 (2)°] and the Car-Car-C-N (ar = aromatic) bonds [-132.0 (2)°]. An intra-molecular N-H⋯O hydrogen bond occurs, which generates an S(6) ring. In the crystal, the mol-ecules are linked by N-H⋯O and N-H⋯S hydrogen bonds, generating (001) sheets. Weak C-H⋯O and C-H⋯F inter-actions are also observed.

  11. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K.; Pallan, Pradeep S.; Kennedy, Scott D.; Egli, Martin; Kelley, Melissa L.; Smith, Anja van Brabant; Rozners, Eriks

    2017-06-27

    While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA–DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs.

  12. Numerical simulation of dynamic quenching of dual-split fluorescence of molecules with intramolecular hydrogen bonds

    International Nuclear Information System (INIS)

    Morozov, V.A.; Chuvulkin, N.D.; Smolenskij, E.A.; Dubina, Yu.M.

    2014-01-01

    The dynamic quenching of intensity pulses of the dual-split fluorescence (DSF) has been simulated using numerical solutions of the equations for the population matrix of five states of the model fluorescent molecule (FM). The state with the highest energy is considered as resonantly excited by irradiation, and two other excited states populated by subsequent relaxation processes are taken as initial states for the FM transitions with emission of the DSF photons. The FM model parameters are selected to fit typical parameters of the molecules with intramolecular proton photo transfer. Quenching is considered as a consequence of non-radiative decay of the FM excited states due to collisions with the quencher molecules. Examples of two types of the DSF quenching of the FM are given. The first type leads to an intramolecular radiationless decay of particular excited states of the FM, and the second one results in radiationless transitions from the same states to the quencher molecule states. (authors)

  13. Hydroalumination of Ketenimines and Subsequent Reactions with Heterocumulenes: Synthesis of Unsaturated Amide Derivatives and 1,3-Diimines.

    Science.gov (United States)

    Jin, Xing; Willeke, Matthias; Lucchesi, Ralph; Daniliuc, Constantin-Gabriel; Fröhlich, Roland; Wibbeling, Birgit; Uhl, Werner; Würthwein, Ernst-Ulrich

    2015-06-19

    The series of differently substituted ketenimines 1 was hydroluminated using di-iso-butyl aluminum hydride. For the sterically congested ketenimine 1a, preferred hydroalumination of the C═N-bond was proven by X-ray crystallography (compound 5a). In situ treatment of the hydroaluminated ketenimines 5 with various heterocumulenes like carbodiimides, isocycanates, isothiocyanates and ketenimines as electrophiles and subsequent hydrolytic workup resulted in novel enamine derived amide species in case of N-attack (sterically less hindered ketenimines) under formation of a new C-N-bond or in 1,3-diimines by C-C-bond-formation in case of bulky substituents at the ketenimine-nitrogen atom. Furthermore, domino reactions with more than 1 equiv of the electrophile or by subsequent addition of two different electrophiles are possible and lead to polyfunctional amide derivatives of the biuret type which are otherwise not easily accessible.

  14. Lithium amide (LiNH2) under pressure.

    Science.gov (United States)

    Prasad, Dasari L V K; Ashcroft, N W; Hoffmann, Roald

    2012-10-11

    Static high pressure lithium amide (LiNH(2)) crystal structures are predicted using evolutionary structure search methodologies and intuitive approaches. In the process, we explore the relationship of the structure and properties of solid LiNH(2) to its molecular monomer and dimer, as well as its valence-isoelectronic crystalline phases of methane, water, and ammonia all under pressure. A NaNH(2) (Fddd) structure type is found to be competitive for the ground state of LiNH(2) above 6 GPa with the P = 1 atm I4[overline] phase. Three novel phases emerge at 11 (P4[overline]2(1)m), 13 (P4(2)/ncm), and 46 GPa (P2(1)2(1)2(1)), still containing molecular amide anions, which begin to form N-H···N hydrogen bonds. The P2(1)2(1)2(1) phase remains stable over a wide pressure range. This phase and another Pmc2(1) structure found at 280 GPa have infinite ···(H)N···H···N(H)···H polymeric zigzag chains comprising symmetric N···H···N hydrogen bonds with one NH bond kept out of the chain, an interesting general feature found in many of our high pressure (>280 GPa) LiNH(2) structures, with analogies in high pressure H(2)O-ices. All the predicted low enthalpy LiNH(2) phases are calculated to be enthalpically stable with respect to their elements but resist metallization with increasing pressure up to several TPa. The possibility of Li sublattice melting in the intermediate pressure range structures is raised.

  15. N-(3-Chlorophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-07-01

    Full Text Available In the title compound, C10H8ClNO3, the molecular conformation is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond within the maleamic acid unit and the second is a C—H...O hydrogen bond which connects the amide group with the phenyl ring. The maleamic acid unit is essentially planar, with an r.m.s. deviation of 0.044 Å, and makes a dihedral angle of 15.2 (1° with the phenyl ring. In the crystal, intermolecular N—H...O hydrogen bonds link the molecules into C(7 chains running [010].

  16. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-08-14

    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2–3 cm{sup −1}. This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance.

  17. Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine-ruthenium framework.

    Science.gov (United States)

    Miura, Takashi; Naruto, Masayuki; Toda, Katsuaki; Shimomura, Taiki; Saito, Susumu

    2017-05-16

    Amides are ubiquitous and abundant in nature and our society, but are very stable and reluctant to salt-free, catalytic chemical transformations. Through the activation of a "sterically confined bipyridine-ruthenium (Ru) framework (molecularly well-designed site to confine adsorbed H 2 in)" of a precatalyst, catalytic hydrogenation of formamides through polyamide is achieved under a wide range of reaction conditions. Both C=O bond and C-N bond cleavage of a lactam became also possible using a single precatalyst. That is, catalyst diversity is induced by activation and stepwise multiple hydrogenation of a single precatalyst when the conditions are varied. The versatile catalysts have different structures and different resting states for multifaceted amide hydrogenation, but the common structure produced upon reaction with H 2 , which catalyzes hydrogenation, seems to be "H-Ru-N-H."

  18. Rh(I) -Catalyzed Intramolecular Carbonylative C-H/C-I Coupling of 2-Iodobiphenyls Using Furfural as a Carbonyl Source.

    Science.gov (United States)

    Furusawa, Takuma; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Tanimoto, Hiroki; Kakiuchi, Kiyomi

    2016-08-19

    Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C-H/C-I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C-H bond cleavage but, rather, the oxidative addition of the C-I bond to a Rh(I) center. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Intramolecular Association within the SAFT Framework

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Chapman, Walter G.

    2011-01-01

    A general theory for modelling intramolecular association within the SAFT framework is proposed. Sear and Jackson [Phys. Rev. E. 50 (1), 386 (1994)] and Ghonasgi and Chapman [J. Chem. Phys. 102 (6), 2585 (1995)] have previously extended SAFT to include intramolecular association for chains with two...... the contribution to the Helmholtz free energy from association (inter- as well as intramolecularly) at equilibrium. Sear and Jackson rederived the contribution to the Helmholtz free energy from association from the theory by Wertheim [J. Stat. Phys. 42 (3–4), 459 (1986)] with inclusion of intramolecular...

  20. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs.

    Science.gov (United States)

    Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K; Pallan, Pradeep S; Kennedy, Scott D; Egli, Martin; Kelley, Melissa L; Smith, Anja van Brabant; Rozners, Eriks

    2017-08-21

    While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA-DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    Science.gov (United States)

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  2. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    Directory of Open Access Journals (Sweden)

    Katherine M. Byrd

    2015-04-01

    Full Text Available The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  3. Dynamics of urokinase receptor interaction with Peptide antagonists studied by amide hydrogen exchange and mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Gårdsvoll, Henrik; Danø, Keld

    2004-01-01

    Using amide hydrogen exchange combined with electrospray ionization mass spectrometry, we have in this study determined the number of amide hydrogens on several peptides that become solvent-inaccessible as a result of their high-affinity interaction with the urokinase-type plasminogen activator...... receptor (uPAR). These experiments reveal that at least six out of eight amide hydrogens in a synthetic nine-mer peptide antagonist (AE105) become sequestered upon engagement in uPAR binding. Various uPAR mutants with decreased affinity for this peptide antagonist gave similar results, thereby indicating...... that deletion of the favorable interactions involving the side chains of these residues in uPAR does not affect the number of hydrogen bonds established by the main chain of the peptide ligand. The isolated growth factor-like domain (GFD) of the cognate serine protease ligand for uPAR showed 11 protected amide...

  4. (Z)-N,N-Dimethyl-2-[phen­yl(pyridin-2-yl)methyl­idene]hydrazinecarbothio­amide

    Science.gov (United States)

    Jayakumar, K.; Sithambaresan, M.; Prathapachandra Kurup, M. R.

    2011-01-01

    The title compound, C15H16N4S, exists in the Z conformation with the thionyl S atom lying cis to the azomethine N atom. The shortening of the N—N distance [1.3697 (17) Å] is due to extensive delocalization with the pyridine ring. The hydrazine–carbothio­amide unit is almost planar, with a maximum deviation of 0.013 (2) Å for the amide N atom. The stability of this conformation is favoured by the formation of an intra­molecular N—H⋯N hydrogen bond. The packing of the mol­ecules involves no classical inter­molecular hydrogen-bonding inter­actions; however, a C—H⋯π inter­action occurs. PMID:22199715

  5. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  6. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department for NMR-Based Structural Biology (Germany)

    2015-07-15

    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common {sup 13}C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR.

  7. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments

    International Nuclear Information System (INIS)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2015-01-01

    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common 13 C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR

  8. TDDFT study on excited state intramolecular proton transfer mechanism in 2-amino-3-(2‧-benzazolyl)-quinolines

    Science.gov (United States)

    Jia, Xueli; Li, Chaozheng; Li, Donglin; Liu, Yufang

    2018-03-01

    The intramolecular proton transfer reaction of the 2-amino-3-(2‧-benzoxazolyl)-quinoline (ABO) and 2-amino-3-(2‧-benzothiazolyl)-quinoline (ABT) molecules in both S0 and S1 states at B3LYP/6-311 ++G(d,p) level in ethanol solvent have been studied to reveal the deactivation mechanism of the tautomers of the two molecules from the S1 state to the S0 state. The results show that the tautomers of ABO and ABT molecules may return to the S0 state by emitting fluorescence. In addition, the bond lengths, angles and infrared spectra are analyzed to confirm the hydrogen bonds strengthened upon photoexcitation, which can facilitate the proton transfer process. The frontier molecular orbitals (MOs) and natural bond orbital (NBO) are also calculated to indicate the intramolecular charge transfer which can be used to explore the tendency of ESIPT reaction. The potential energy surfaces of the ABO and ABT molecules in the S0 and S1 states have been constructed. According to the energy potential barrier of 9.12 kcal/mol for ABO molecule and 5.96 kcal/mol for ABT molecule, it can be indicated that the proton transfer may occur in the S1 state.

  9. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues.

    Science.gov (United States)

    Wang, Yue-Hu; Goto, Masuo; Wang, Li-Ting; Hsieh, Kan-Yen; Morris-Natschke, Susan L; Tang, Gui-Hua; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-10-15

    Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    Science.gov (United States)

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed β-helices typically consisting of mixtures of type II and type IV β-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II β-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the β-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy

  11. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  12. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    Science.gov (United States)

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  13. Location of protons in N-H···N hydrogen-bonded systems: a theoretical study on intramolecular pyridine-dihydropyridine and pyridine-pyridinium pairs.

    Science.gov (United States)

    Mori, Yukie; Takano, Keiko

    2012-08-21

    Two-dimensional potential energy surfaces (PESs) were calculated for the degenerate intramolecular proton transfer (PT) in two N-H···N hydrogen-bonded systems, (Z)-2-(2-pyridylmethylidene)-1,2-dihydropyridine (1) and monoprotonated di(2-pyridyl) ether (2), at the MP2/cc-pVDZ level of theory. The calculated PES had two minima in both cases. The energy barrier in 1 was higher than the zero-point energy (ZPE) level, while that in 2 was close to the ZPE. Vibrational wavefunctions were obtained by solving time-independent Schrödinger equations with the calculated PESs. The maximum points of the probability density were shifted from the energy minima towards the region where the covalent N-H bond was elongated and the N···N distance shortened. The effects of a polar solvent on the PES were investigated with the continuum or cluster models in such a way that the solute-solvent electrostatic interactions could be taken into account under non-equilibrated conditions. A solvated contact ion-pair was modelled by a cluster consisting of one cation 2, one chloride ion and 26 molecules of acetonitrile. The calculation with this model suggested that the bridging proton is localised in the deeper well due to the significant asymmetry of the PES and the high potential barrier.

  14. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides.

    Science.gov (United States)

    Selvakumar, Karuthapandi; Shah, Poonam; Singh, Harkesh B; Butcher, Ray J

    2011-11-04

    The synthesis of some ebselen analogues and diaryl diselenides, which have amino acid functions as an intramolecularly coordinating group (Se···O) has been achieved by the DCC coupling procedure. The reaction of 2,2'-diselanediylbis(5-tert-butylisophthalic acid) or the activated ester tetrakis(2,5-dioxopyrrolidin-1-yl) 2,2'-diselanediylbis(5-tert-butylisophthalate) with different C-protected amino acids (Gly, L-Phe, L-Ala, and L-Trp) afforded the corresponding ebselen analogues. The used precursor diselenides have been found to undergo facile intramolecular cyclization during the amide bond formation reaction. In contrast, the DCC coupling of 2,2'-diselanediyldibenzoic acid with C-protected amino acids (Gly, L/D-Ala and L-Phe) affords the corresponding amide derivatives and not the ebselen analogues. Some of the representative compounds have been structurally characterized by single-crystal X-ray crystallography. The glutathione peroxidase (GPx)-like activities of the ebselen analogues and the diaryl diselenides have been evaluated by using the coupled reductase assay method. Intramolecularly stabilized ebselen analogues show slightly higher maximal velocity (V(max)) than ebselen. However, they do not show any GPx-like activity at low GSH concentrations at which ebselen and related diselenides are active. This could be attributed to the peroxide-mediated intramolecular cyclization of the corresponding selenenyl sulfide and diaryl diselenide intermediates generated during the catalytic cycle. Interestingly, the diaryl diselenides with alanine (L,L or D,D) amide moieties showed excellent catalytic efficiency (k(cat)/K(M)) with low K(M) values in comparison to the other compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    Science.gov (United States)

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  16. Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of (-)-11β-Hydroxycurvularin.

    Science.gov (United States)

    Choe, Hyeonjeong; Pham, Thuy Trang; Lee, Joo Yun; Latif, Muhammad; Park, Haeil; Kang, Young Kee; Lee, Jongkook

    2016-03-18

    The first total synthesis and structure revision of (-)-11β-hydroxycurvularin (1b), a macrolide possessing a β-hydroxyketone moiety, were accomplished. The β-hydroxyketone moiety in this natural product was introduced by cleavage of the N-O bond in an isoxazoline ring that was formed diastereoselectively in a 1,5-remote stereocontrolled fashion by employing intramolecular nitrile oxide cycloaddition.

  17. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    Science.gov (United States)

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  18. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs

    Science.gov (United States)

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D.; Pallan, Pradeep S.; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-01-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3′-CH2-CO-NH-5′ amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P–OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5′-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. PMID:24813446

  19. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Poul Erik Hansen

    2017-03-01

    Full Text Available For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, νOH, and OH chemical shifts, δOH (in the latter case, after correction for ring current effects. Limits for O–H···Y systems are taken as 2800 > νOH > 1800 cm−1, and 19 ppm > δOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as β-diketone enols, β-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long been used as a parameter for hydrogen bond strength in O–H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted β-diketone enols this correlation is relatively weak.

  20. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-15

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  1. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liao, Hsuan-Hung; Cai, Yunfei; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  2. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Verma

    2016-03-01

    Full Text Available We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps followed by decay (≈390 ps to the corresponding ground state.

  3. Dissecting Hofmeister Effects: Direct Anion-Amide Interactions Are Weaker than Cation-Amide Binding.

    Science.gov (United States)

    Balos, Vasileios; Kim, Heejae; Bonn, Mischa; Hunger, Johannes

    2016-07-04

    Whereas there is increasing evidence for ion-induced protein destabilization through direct ion-protein interactions, the strength of the binding of anions to proteins relative to cation-protein binding has remained elusive. In this work, the rotational mobility of a model amide in aqueous solution was used as a reporter for the interactions of different anions with the amide group. Protein-stabilizing salts such as KCl and KNO3 do not affect the rotational mobility of the amide. Conversely, protein denaturants such as KSCN and KI markedly reduce the orientational freedom of the amide group. Thus these results provide evidence for a direct denaturation mechanism through ion-protein interactions. Comparing the present findings with results for cations shows that in contrast to common belief, anion-amide binding is weaker than cation-amide binding. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Vibrational properties of the amide group in acetanilide: A molecular-dynamics study

    Science.gov (United States)

    Campa, Alessandro; Giansanti, Andrea; Tenenbaum, Alexander

    1987-09-01

    A simplified classical model of acetanilide crystal is built in order to study the mechanisms of vibrational energy transduction in a hydrogen-bonded solid. The intermolecular hydrogen bond is modeled by an electrostatic interaction between neighboring excess charges on hydrogen and oxygen atoms. The intramolecular interaction in the peptide group is provided by a dipole-charge interaction. Forces are calculated up to second-order terms in the atomic displacements from equilibrium positions; the model is thus a chain of nonlinear coupled oscillators. Numerical molecular-dynamics experiments are performed on chain segments of five molecules. The dynamics is ordered, at all temperatures. Energy is widely exchanged between the stretching and the bending of the N-H bond, with characteristic times of the order of 0.2 ps. Energy transduction through the H bond is somewhat slower and of smaller amplitude, and is strongly reduced when the energies of the two bound molecules are very different: This could reduce the dissipation of localized energy fluctuations.

  5. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Science.gov (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  6. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.

    Science.gov (United States)

    Nakajima, Minami; Oda, Yukiko; Wada, Takamasa; Minamikawa, Ryo; Shirokane, Kenji; Sato, Takaaki; Chida, Noritaka

    2014-12-22

    As the complexity of targeted molecules increases in modern organic synthesis, chemoselectivity is recognized as an important factor in the development of new methodologies. Chemoselective nucleophilic addition to amide carbonyl centers is a challenge because classical methods require harsh reaction conditions to overcome the poor electrophilicity of the amide carbonyl group. We have successfully developed a reductive nucleophilic addition of mild nucleophiles to tertiary amides, secondary amides, and N-methoxyamides that uses the Schwartz reagent [Cp2 ZrHCl]. The reaction took place in a highly chemoselective fashion in the presence of a variety of sensitive functional groups, such as methyl esters, which conventionally require protection prior to nucleophilic addition. The reaction will be applicable to the concise synthesis of complex natural alkaloids from readily available amide groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view.

    Science.gov (United States)

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-28

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  8. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    Science.gov (United States)

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  9. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs.

    Science.gov (United States)

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D; Pallan, Pradeep S; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-06-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3'-CH2-CO-NH-5' amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5'-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Photoinduced gelation by stilbene oxalyl amide compounds.

    Science.gov (United States)

    Miljanić, Snezana; Frkanec, Leo; Meić, Zlatko; Zinić, Mladen

    2005-03-29

    Oxalyl amide derivatives bearing 4-dodecyloxy-stilbene as a cis-trans photoisomerizing unit were synthesized. The trans derivative acted as a versatile gelator of various organic solvents, whereas the corresponding cis derivative showed a poor gelation ability or none at all. In diluted solution (c = 2.0 x10(-5) mol dm(-3), ethanol), the cis isomer was photochemically converted into the trans isomer within 4 min. Depending on the radiation wavelength, the trans isomer was stable or liable to photodecomposition. When exposed to irradiation, a concentrated solution of the cis isomer (c = 2.0 x 10(-2) mol dm(-3), ethanol) turned into a gel. The FT-Raman, FT-IR, and 1H NMR spectra demonstrated that the gelation process occurred because of a rapid cis --> trans photoisomerization followed by a self-assembly of the trans molecules. Apart from the formation of hydrogen bonding between the oxalyl amide parts of the molecules, confirmed by FT-IR spectroscopy, it was assumed that the pi-pi stacking between the trans-stilbene units of the molecule and a lipophilic interaction between long alkyl chains were the interactions responsible for gelation.

  11. 2-Propoxybenzamide

    Directory of Open Access Journals (Sweden)

    Yosef Al Jasem

    2012-09-01

    Full Text Available In the title molecule, C10H13NO2, the amide –NH2 group is oriented toward the propoxy substituent and an intramolecular N—H...O hydrogen bond is formed between the N—H group and the propoxy O atom. The benzene ring forms dihedral angles of 12.41 (2 and 3.26 (2° with the amide and propoxy group mean planes, respectively. In the crystal, N—H...O hydrogen bonds order pairs of molecules with their molecular planes parallel, but at an offset of 0.73 (2 Å to each other. These pairs are ordered into two types of symmetry-related columns extended along the a axis with the mean plane of a pair in one column approximately parallel to (-122 and in the other to (-1-22. The two planes form dihedral angle of 84.40 (1°. Overall, in a three-dimensional network, the hydrogen-bonded pairs of molecules are either located in (-1-22 or (-122 layers. In one layer, each pair is involved in four C—H...O contacts, twice as a donor and twice as an acceptor. Additionally, there is a short C—H...C contact between a benzene C—H group and the amide π-system.

  12. Nonplanar Tertiary Amides in Rigid Chiral Tricyclic Dilactams. Peptide Group Distortions and Vibrational Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Pazderková, Markéta; Profant, V.; Hodačová, J.; Šebestík, Jaroslav; Pazderka, T.; Novotná, P.; Urbanová, M.; Šafařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, V.; Maloň, Petr

    2013-01-01

    Roč. 117, č. 33 (2013), s. 9626-9642 ISSN 1520-6106 R&D Projects: GA ČR GAP205/10/1276 Institutional support: RVO:61388963 Keywords : spirodilactams * amide bond * vibrational circular dichroism * non-planarity * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  13. Amides in Nature and Biocatalysis.

    Science.gov (United States)

    Pitzer, Julia; Steiner, Kerstin

    2016-10-10

    Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    Science.gov (United States)

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  15. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    Science.gov (United States)

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis, Antifungal Evaluation and In Silico Study of N-(4-Halobenzyl)amides.

    Science.gov (United States)

    Montes, Ricardo Carneiro; Perez, Ana Luiza A L; Medeiros, Cássio Ilan S; Araújo, Marianna Oliveira de; Lima, Edeltrudes de Oliveira; Scotti, Marcus Tullius; Sousa, Damião Pergentino de

    2016-12-13

    A collection of 32 structurally related N -(4-halobenzyl)amides were synthesized from cinnamic and benzoic acids through coupling reactions with 4-halobenzylamines, using (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as a coupling agent. The compounds were identified by spectroscopic methods such as infrared, ¹H- and 13 C- Nuclear Magnetic Resonance (NMR) and high-resolution mass spectrometry. The compounds were then submitted to antimicrobial tests by the minimum inhibitory concentration method (MIC) and nystatin was used as a control in the antifungal assays. The purpose of the tests was to evaluate the influence of structural changes in the cinnamic and benzoic acid substructures on the inhibitory activity against strains of Candida albicans , Candida tropicalis , and Candida krusei . A quantitative structure-activity relationship (QSAR) study with KNIME v. 3.1.0 and Volsurf v. 1.0.7 softwares were realized, showing that descriptors DRDRDR, DRDRAC, L4LgS, IW4 and DD2 influence the antifungal activity of the haloamides. In general, 10 benzamides revealed fungal sensitivity, especially a vanillic amide which enjoyed the lowest MIC. The results demonstrate that a hydroxyl group in the para position, and a methoxyl at the meta position enhance antifungal activity for the amide skeletal structure. In addition, the double bond as a spacer group appears to be important for the activity of amide structures.

  18. Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers.

    Science.gov (United States)

    Eckstein, Brian J; Melkonyan, Ferdinand S; Manley, Eric F; Fabiano, Simone; Mouat, Aidan R; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J

    2017-10-18

    We report a new naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide (NBA) building block for polymeric semiconductors. Computational modeling suggests that regio-connectivity at the 2,6- or 3,7-NBA positions strongly modulates polymer backbone torsion and, therefore, intramolecular π-conjugation and aggregation. Optical, electrochemical, and X-ray diffraction characterization of 3,7- and 2,6-dithienyl-substituted NBA molecules and corresponding isomeric NBA-bithiophene copolymers P1 and P2, respectively, reveals the key role of regio-connectivity. Charge transport measurements demonstrate that while the twisted 3,7-NDA-based P1 is a poor semiconductor, the planar 2,6-functionalized NBA polymers (P2-P4) exhibit ambipolarity, with μ e and μ h of up to 0.39 and 0.32 cm 2 /(V·s), respectively.

  19. Intramolecular hydrogen bond: Can it be part of the basis set of ...

    Indian Academy of Sciences (India)

    However, we know that IMHB is a weak bond and hence its RFC has to be a measure of bond strength. .... oxalic acid, 1,4-butanediol, and 1,2-ethanediol, where .... −59.0. −56.2. −62.8. −165.8 −59.4 −179.4 −170.9. Relative energies∗∗. HF.

  20. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaolong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Wang, Gangmin [Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Shi, Ting [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Shao, Zhihong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Zhao, Peng; Shi, Donglu [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Ren, Jie [Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Lin, Chao, E-mail: chaolin@tongji.edu.cn [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Peijun, E-mail: tjpjwang@sina.com [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China)

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T{sub 1}-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T{sub 1}-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T{sub 1}-contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  1. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-01-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T 1 -weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T 1 -weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T 1 -contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  2. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  3. Diels-Alder reactions in water : Enforced hydrophobic interaction and hydrogen bonding

    NARCIS (Netherlands)

    Engberts, Jan B.F.N.

    1995-01-01

    Second-order rate constants have been measured for the Diels-Alder (DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and hydrogen-bond acceptor capacity in water, in a series of organic solvents and in alcohol-water mixtures. The intramolecular DA reaction of

  4. DIELS-ALDER REACTIONS IN WATER - ENFORCED HYDROPHOBIC INTERACTION AND HYDROGEN-BONDING

    NARCIS (Netherlands)

    Engberts, J.B.F.N.

    Second-order rate constants have been measured for the Diels-Alder (DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and hydrogen-bond acceptor capacity in water, in a series of organic solvents and in alcohol-water mixtures. The intramolecular DA reaction of

  5. Shielding and mediating of hydrogen bonding in amide-based (macro)molecules

    NARCIS (Netherlands)

    Harings, J.A.W.

    2009-01-01

    Polymers are long chain molecules comprising continuously repeating building blocks, monomers, which are chemically linked via covalent bonds, for example the C-C bond in polyethylene. A distinction can be made in biopolymers that are made in nature and synthetic polymers that are produced by the

  6. Stabilization of sulfide cations: mechanisms relevant to oxidation of peptides and proteins containing methionine

    International Nuclear Information System (INIS)

    Bobrowski, K.; Hug, G.L.; Pogocki, D.; Horner, G.; Marciniak, B.; Schoneich, C.

    2006-01-01

    Sulfide radical cations (R 2 S +. ) have recently attracted considerable attention. In particular they are implicated in assorted biological electron transfers where they are likely intermediates in biological redox-processes. There is unambigous theoretical and experimental evidence that R 2 S +. can be stabilized through intramolecular complexation with nucleophiles that are present in neighboring groups. Reactions of this type are of special interest to biology when stabilization of sulfide radical cations derived from methionine, Met(>S +. ) occurs in peptides and proteins. The methionine (Met) residues in these biopolymers are susceptible to attack by Reactive Oxygen Species (ROS) during oxidative stress and biological aging. Moreover, the pathogenesis of some neurodegenerative diseases (Alzheimer's, Jacob-Creutzfeld's, and Parkinson's) seems to be strongly linked to the presence in brain tissue of β-amyloid peptide (βAP), human prion protein (hPrP), and an aggregated form of α-synuclein, respectively. These macro- molecules contain methionine(s) with βAP having a Met 35 residue in its C-terminal α-helical domain, hPrP having three out of nine Met-residues (namely Met 205 , Met 206 , and Met 213 ) located within its α-helical segments, and α-synuclein having four Met-residues. The effective neighboring-group interactions would likely involve nucleophilic functionalities in the side chain of amino acids residues. However, very often heteroatoms in peptide bonds are the only nucleophiles present in the vicinity of Met(>S +. ). In this regard, it was recently shown that such interactions play an important role in N-acetylmethione amide and in oligopeptides of the form N-Ac-Gly-Met-Gly and N-Ac-Gly-(Gly) 2 -Met-(Gly) 3 . Intramolecularly bonded sulfide radical cations, Met(>S +. ), were directly observed in these systems with the bonding partner being either the carbonyl oxygen or the amide nitrogen of a peptide bond. Cyclic dipeptides are suitable model

  7. Crystal structure of 2-pentyloxybenzamide

    Directory of Open Access Journals (Sweden)

    Bernhard Bugenhagen

    2014-10-01

    Full Text Available In the title molecule, C12H17NO2, the amide NH2 group is oriented toward the pentyloxy substituent and an intramolecular N—H...O hydrogen bond is formed with the pentyloxy O atom. The benzene ring forms dihedral angles of 2.93 (2 and 5.60 (2° with the amide group and the pentyloxy group mean planes, respectively. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with their molecular planes parallel, but at an offset of 0.45 (1 Å to each other. These dimers are ordered into two types of symmetry-related columns extended along the a axis, with the mean plane of one set of dimers in a column approximately parallel to (121 and the other in a column approximately parallel to (1-21. The two planes form a dihedral angle of 85.31 (2°, and are linked via C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional framework structure.

  8. On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Renato Contreras

    2012-11-01

    Full Text Available The mechanism of the intramolecular Diels–Alder (IMDA reaction of benzoquinone 1, in the absence and in the presence of three water molecules, 1w, has been studied by means of density functional theory (DFT methods, using the M05-2X and B3LYP functionals for exploration of the potential energy surface (PES. The energy and geometrical results obtained are complemented with a population analysis using the NBO method, and an analysis based on the global, local and group electrophilicity and nucleophilicity indices. Both implicit and explicit solvation emphasize the increase of the polarity of the reaction and the reduction of activation free energies associated with the transition states (TSs of this IMDA process. These results are reinforced by the analysis of the reactivity indices derived from the conceptual DFT, which show that the increase of the electrophilicity of the quinone framework by the hydrogen-bond formation correctly explains the high polar character of this intramolecular process. Large polarization at the TSs promoted by hydrogen-bonds and implicit solvation by water together with a high electrophilicity-nucleophilicity difference consistently explains the catalytic effects of water molecules.

  9. Vibrational spectra and natural bond orbital analysis of organic crystal L-prolinium picrate

    Science.gov (United States)

    Edwin, Bismi; Amalanathan, M.; Hubert Joe, I.

    2012-10-01

    Vibrational spectral analysis and quantum chemical computations based on density functional theory (DFT) have been performed on the organic crystal L-prolinium picrate (LPP). The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers of LPP have been investigated using B3LYP method. The calculated molecular geometry has been compared with the experimental data. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA 4 program. The various intramolecular interactions confirming the biological activity of the compound have been exposed by natural bond orbital analysis. The distribution of Mulliken atomic charges and bending of natural hybrid orbitals associated with hydrogen bonding also reflects the presence of intramolecular hydrogen bonding thereby enhancing bioactivity. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and low value of energy gap indicates electron transport in the molecule and thereby bioactivity. Vibrational analysis reveals the presence of strong O-H⋯O and N-H⋯O interaction between L-prolinium and picrate ions providing evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity.

  10. Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-adapted perturbation theory

    Science.gov (United States)

    Gonthier, Jérôme F.; Corminboeuf, Clémence

    2014-04-01

    Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitive terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non-bonded

  11. Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-adapted perturbation theory

    International Nuclear Information System (INIS)

    Gonthier, Jérôme F.; Corminboeuf, Clémence

    2014-01-01

    Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitive terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non-bonded

  12. A theoretical investigation on the regioselectivity of the intramolecular hetero Diels-Alder and 1,3-dipolar cycloaddition of 2-vinyloxybenzaldehyde derivatives

    Directory of Open Access Journals (Sweden)

    Hamzehloueian Mahshid

    2014-01-01

    Full Text Available The present study reports a systematic computational analysis of the two possible pathways, fused and bridged, for an intramolecular hetero Diels-Alder (IMHDA and an intramolecular 1,3-dipolar cycloaddition (IMDCA of 2-vinyloxybenzaldehyde derivatives. The potential energy surface analysis for both reactions is in agreement with experimental observations. The activation energies associated with the two regioisomeric channels in IMHDA reaction show that the bridged product is favored, although in IMDCA, the most stable TS results the fused product. The global electronic properties of fragments within each molecule were studied to discuss the reactivity patterns and charge transfer direction in the intramolecular processes. The asynchronicity of the bond formation and aromaticity of the optimized TSs in the Diels-Alder reaction as well as cycloaddition reaction were evaluated. Finally, 1H NMR chemical shifts of the possible regioisomers have been calculated using the GIAO method which of the most stable products are in agreement with the experimental data in the both reaction.

  13. Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies

    Science.gov (United States)

    Wang, Ke-Dong; Wang, Mei-Ting; Meng, Ju

    2014-10-01

    Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.

  14. X-ray, MP2 and DFT studies of the structure and vibrational spectra of trigonellinium chloride

    International Nuclear Information System (INIS)

    Szafran, M.; Koput, J.; Dega-Szafran, Z.; Katrusiak, A.; Pankowski, M.; Stobiecka, K.

    2003-01-01

    The effects of hydrogen bonding, inter- and intramolecular electrostatic interactions on the conformation of trigonellinium chloride, TRGH...Cl, in the crystal and on that of a single molecule have been studied by X-ray diffraction, FT-IR, Raman, 1 H and 13 C NMR spectroscopies, and by MP2 and DFT calculations. In the crystal, the Cl - anion is connected with protonated trigonelline via hydrogen bond, O-H...Cl - =2.915(3) Angst, and three N + ...Cl - intermolecular electrostatic interactions. In a single molecule, the Cl - anion is also engaged in a slightly longer hydrogen bond, O-H...Cl - =2.948-3.019 Angst, but only in one type of intramolecular electrostatic interaction. The optimized bond lengths and bond angles at the MP2 and B3LYP levels of theory are in good agreement with the X-ray data, except conformation of the COOH group, which is cis (syn) in the crystal and trans (anti) in the single molecule. The probable assignments for the experimental solid state vibrational spectra of TRGH.Cl and TRGD.Cl based on the calculated MP2/cc-pVDZ frequencies and intensities were made. The effect of quaternization of nicotinic acid, its salt and amide on chemical shifts of the ring protons and carbons is analyzed

  15. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes.

    Science.gov (United States)

    Nunes, S C; de Zea Bermudez, V

    2018-02-06

    The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  17. Relative substituent orientation in the structure of cis-3-chloro-1,3-dimethyl-N-(4-nitrophenyl-2-oxocyclopentane-1-carboxamide

    Directory of Open Access Journals (Sweden)

    Matthias Zeller

    2014-09-01

    Full Text Available The structure of the title compound, C14H15ClN2O4, prepared by reaction of a methacryloyl dimer with nitroaniline, was determined to establish the relative substituent orientation on the cyclopentanone ring. In agreement with an earlier proposed reaction mechanism, the amide group and the methyl group adjacent to the chloro substituent adopt equatorial positions and relative cis orientation, whereas the Cl substituent itself and the methyl group adjacent to the amide have axial orientations relative to the mean plane of the five-membered ring. The conformation of the molecule is stabilized by one classical N—H...O (2.18 Å and one non-classical C—H...O (2.23 Å hydrogen bond, each possessing an S(6 graph-set motif. The crystal packing is defined by several non-classical intramolecular hydrogen bonds, as well as by partial stacking of the aromatic rings.

  18. Polyamides : hydrogen bonding, the Brill transition, and superheated water

    NARCIS (Netherlands)

    Dijkstra - Vinken, E.

    2008-01-01

    Aliphatic polyamide, commonly known as nylon, was the world’s first synthetic fiber and has found its largest application range in tires, carpets, stockings, upholstery, and adhesives. All polyamides have a recurring amide group (–CONH–) present in the molecular structure with hydrogen bonds between

  19. Poly(ether amide) segmented block copolymers with adipicacid based tetra amide segments

    NARCIS (Netherlands)

    Biemond, G.J.E.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Poly(tetramethylene oxide)-based poly(ether ester amide)s with monodisperse tetraamide segments were synthesized. The tetraamide segment was based on adipic acid, terephthalic acid, and hexamethylenediamine. The synthesis method of the copolymers and the influence of the tetraamide concentration,

  20. Ethyl 5-cyano-4-[2-(2,4-dichlorophenoxyacetamido]-1-phenyl-1H-pyrrole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2009-08-01

    Full Text Available In the title compound, C22H17Cl2N3O4, the pyrrole ring and the 2,4-dichlorophenyl group form a dihedral angle of 8.14 (13°; the phenyl ring is twisted with respect to the pyrrole ring, forming a dihedral angle of 60.77 (14°. The C=O bond length is 1.213 (3 Å, indicating that the molecule is in the keto form, associated with a –CONH– group, and the amide group adopts the usual trans conformation. The molecule is stabilized by an intramolecular N—H...O hydrogen-bonding interaction. In the crystal, the stacked molecules exhibit intermolecular C—H...O and C—H...N hydrogen-bonding interactions.

  1. The amide III vibrational circular dichroism band as a probe to detect conformational preferences of alanine dipeptide in water.

    Science.gov (United States)

    Mirtič, Andreja; Merzel, Franci; Grdadolnik, Jože

    2014-07-01

    The conformational preferences of blocked alanine dipeptide (ADP), Ac-Ala-NHMe, in aqueous solution were studied using vibrational circular dichroism (VCD) together with density functional theory (DFT) calculations. DFT calculations of three most representative conformations of ADP surrounded by six explicit water molecules immersed in a dielectric continuum have proven high sensitivity of amide III VCD band shape that is characteristic for each conformation of the peptide backbone. The polyproline II (PII ) and αR conformation of ADP are associated with a positive VCD band while β conformation has a negative VCD band in amide III region. Knowing this spectral characteristic of each conformation allows us to assign the experimental amide III VCD spectrum of ADP. Moreover, the amide III region of the VCD spectrum was used to determine the relative populations of conformations of ADP in water. Based on the interpretation of the amide III region of VCD spectrum we have shown that dominant conformation of ADP in water is PII which is stabilized by hydrogen bonded water molecules between CO and NH groups on the peptide backbone. Copyright © 2014 Wiley Periodicals, Inc.

  2. Insights into the Intramolecular Properties of η6-Arene-Ru-Based Anticancer Complexes Using Quantum Calculations

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-01-01

    Full Text Available The factors that determine the stability and the effects of noncovalent interaction on the η6-arene ruthenium anticancer complexes are determined using DFT method. The intramolecular and intra-atomic properties were computed for two models of these half-sandwich ruthenium anticancer complexes and their respective hydrated forms. The results showed that the stability of these complexes depends largely on the network of hydrogen bonds (HB, strong nature of charge transfer, polarizability, and electrostatic energies that exist within the complexes. The hydrogen bonds strength was found to be related to the reported anticancer activities and the activation of the complexes by hydration. The metal–ligand bonds were found to be closed shell systems that are characterised by high positive Laplacian values of electron density. Two of the complexes are found to be predominantly characterised by LMCT while the other two are predominately characterised by MLCT.

  3. Mass Spectra Analyses of Amides and Amide Dimers of Steviol, Isosteviol, and Steviolbioside

    Directory of Open Access Journals (Sweden)

    Lin-Wen Lee

    2012-01-01

    Full Text Available The mass spectra of a series of stevioside analogues including the amide and dimer compounds of steviol, isosteviol, and steviolbioside were examined. Positive ion mass spectral fragmentation of new steviol, isosteviol, and steviolbioside amides and the amide dimers are reported and discussed. The techniques included their synthesis procedures, fast-atom bombardment (FAB, and LC/MS/MS mass spectra. Intense [M+H]+ and [M+Na]+ ion peaks were observed on the FAB and ESI spectra. LC/MS/MS also yielded ES+ and ES− ion peaks that fairly agreed with the results of the FAB and ESI studies. Mass spectral analysis of compounds 4p-q, 5a-g, 6, and 7 revealed the different cleavage pathway patterns that can help in identifying the structures of steviolbioside and its amide derivatives.

  4. Antifungal activity of natural and synthetic amides from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joaquim V.; Oliveira, Alberto de; Kato, Massuo J., E-mail: majokato@iq.usp.b [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica; Raggi, Ludmila; Young, Maria C. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2010-07-01

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 {mu}g. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  5. New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid Derived Amides and the Natural Occurrence of an Intense Umami Amide in Zanthoxylum piperitum.

    Science.gov (United States)

    Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming

    2015-08-19

    A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China.

  6. 2-({[(Pyridin-1-ium-2-ylmethylcarbamoyl]formamido}methylpyridin-1-ium bis(3,5-dicarboxybenzoate: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Mukesh M. Jotani

    2016-02-01

    Full Text Available The asymmetric unit of the title salt, C14H16N4O22+·2C9H5O6−, comprises half a dication, being located about a centre of inversion, and one anion, in a general position. The central C4N2O2 group of atoms in the dication are almost planar (r.m.s. deviation = 0.009 Å, and the carbonyl groups lie in an anti disposition to enable the formation of intramolecular amide-N—H...O(carbonyl hydrogen bonds. To a first approximation, the pyridinium and amide N atoms lie to the same side of the molecule [Npy—C—C—Namide torsion angle = 34.8 (2°], and the anti pyridinium rings are approximately perpendicular to the central part of the molecule [dihedral angle = 68.21 (8°]. In the anion, one carboxylate group is almost coplanar with the ring to which it is connected [Cben—Cben—Cq—O torsion angle = 2.0 (3°], whereas the other carboxylate and carboxylic acid groups are twisted out of the plane [torsion angles = 16.4 (3 and 15.3 (3°, respectively]. In the crystal, anions assemble into layers parallel to (10-4 via hydroxy-O—H...O(carbonyl and charge-assisted hydroxy-O—H...O(carboxylate hydrogen bonds. The dications are linked into supramolecular tapes by amide-N—H...O(amide hydrogen bonds, and thread through the voids in the anionic layers, being connected by charge-assisted pyridinium-N—O(carboxylate hydrogen bonds, so that a three-dimensional architecture ensues. An analysis of the Hirshfeld surface points to the importance of O—H...O hydrogen bonding in the crystal structure.

  7. The dimers of glyoxal and acrolein with H 2O and HF: Negative intramolecular coupling and blue-shifted C-H stretch

    Science.gov (United States)

    Karpfen, Alfred; Kryachko, Eugene S.

    2010-04-01

    The structures and the vibrational spectra of the hydrogen-bonded complexes: glyoxal-H 2O, glyoxal-HF, acrolein-H 2O, and acrolein-HF, are investigated within the MP2/aug-cc-pVTZ computational approach. It is demonstrated that the calculated blue shifts of the C-H stretching frequencies in the glyoxal-H 2O complexes are only indirectly pertinent to hydrogen bonding to the C-H group. The comparison with the glyoxal-HF and the acrolein-HF complexes reveals that these blue shifts are a direct consequence of a negative intramolecular coupling between vicinal C dbnd O and C-H bonds in the aldehyde groups of isolated glyoxal and acrolein molecules. To support this interpretation, the halogen-bonded complexes glyoxal-BrF and acrolein-BrF are discussed.

  8. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahn, Dirk

    2004-01-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C···O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate

  9. Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State†

    Science.gov (United States)

    Xu, Guoyan G.; Zhang, Yan; Mercedes-Camacho, Ana Y.; Etzkorn, Felicia A.

    2011-01-01

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R–pSer–Ψ[CH2N]–Pro–2-(indol-3-yl)-ethylamine, 1 (R = fluorenylmethoxycarbonyl, Fmoc), and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC50 value of 6.3 μM, which is 4.5-fold better inhibition for Pin1 than our comparable ground state analogue, a cis-amide alkene isostere containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination, and resulted in an IC50 value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser, and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1. PMID:21980916

  10. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures

    International Nuclear Information System (INIS)

    Guo Feng; Hu Hai-Quan; Zhang Hong; Cheng Xin-Lu

    2014-01-01

    To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC–DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra- and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter- and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C–H bond is observed in solid RDX, which may lead to further decomposition and even detonation. (condensed matter: structural, mechanical, and thermal properties)

  11. Backbone amide linker strategy

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    In the backbone amide linker (BAL) strategy, the peptide is anchored not at the C-terminus but through a backbone amide, which leaves the C-terminal available for various modifications. This is thus a very general strategy for the introduction of C-terminal modifications. The BAL strategy...

  12. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2015-10-20

    The volume-averaged amide link scission in the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine was quantified at a variety of free chlorine exposure times, concentrations, and pH and rinsing conditions. The results showed that (i) hydroxyl ions are needed for scission to occur, (ii) hydroxide-induced amide link scission is a strong function of exposure to hypochlorous acid, (iii) the ratio between amide links broken and chlorine atoms taken up increased with the chlorination pH and reached a maximum of ∼25%, (iv) polyamide disintegration occurs when high free chlorine concentrations, alkaline conditions, and high exposure times are combined, (v) amide link scission promotes further chlorine uptake, and (vi) scission at the membrane surface is unrepresentative of volume-averaged scission in the active layer. Our observations are consistent with previously proposed mechanisms describing amide link scission as a result of the hydrolysis of the N-chlorinated amidic N-C bond due to nucleophilic attack by hydroxyl ions. This study increases the understanding of the physicochemical changes that could occur for membranes in treatment plants using chlorine as an upstream disinfectant and the extent and rate at which those changes would occur.

  13. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    Science.gov (United States)

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.

  14. Sunlight-Driven Forging of Amide/Ester Bonds from Three Independent Components: An Approach to Carbamates.

    Science.gov (United States)

    Zhao, Yating; Huang, Binbin; Yang, Chao; Chen, Qingqing; Xia, Wujiong

    2016-11-04

    A photoredox catalytic route to carbamates enabled by visible irradiation (or simply sunlight) has been developed. This process leads to a novel approach to the construction of heterocyclic rings wherein the amide or ester motifs of carbamates were assembled from three isolated components. Large-scale experiments were realized by employing continuous flow techniques, and reuse of photocatalyst demonstrated the green and sustainable aspects of this method.

  15. Hydrogren-Bonding between Thioacetamide and Some N,N-dimethylalkylamides in Chloroform.

    OpenAIRE

    Park, Hee-Suk; Choi, Jae-Young; Kim, Young-Ae; Huh, Young-Duk; Yoon, Chang-Ju; Choi, Young-Sang

    1990-01-01

    The near-IR spectra of thioacetamide were recorded for the investigation of hydrogen bonding between thioacetamide (TA) and N,N-dimethylalkylamides (DMF, OMA, DMP) in chloroform over the range of 5°C to 55°C. The v0 + amide II combination band has been resolved into contributions from monomeric TA, 1:1 hydrogen bonded complex and 1:2 complex by the parameterized matrix modeling method. The association constants

  16. Two-pulse laser control of bond-selective fragmentation

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1996-01-01

    We elaborate on a two-pulse (pump-pump) laser control scheme for selective bond-breaking in molecules [Amstrup and Henriksen, J. Chem. Phys. 97, 8285 (1992)]. We show, in particular, that with this scheme one can overcome the obstacle of intramolecular vibrational relaxation. As an example, we...... consider an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18. It is shown that asymmetric bond stretching can be created in simple (intense) laser fields. We predict that an alternating high selectivity between the channels O-16+(OO)-O-16-O-18 and (OO)-O-16-O-16+ O-18 can...

  17. NMR and IR investigations of strong intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2017-01-01

    been used as a parameter for hydrogen bond strength in O–H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted beta-diketone enols this correlation is relatively weak.......–1, and 19 >  dOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as beta-diketone enols, beta-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long...

  18. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Science.gov (United States)

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  19. 3-Methyl-N-(2-methylphenylbenzamide

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-07-01

    Full Text Available The molecular structure of the title compound, C15H15NO, involves an intramolecular C—H...O hydrogen bond. The central amide group –NH—C(=O– is twisted by 37.95 (12° out of the meta-substituted benzoyl ring and by 37.88 (12° out of the ortho-substituted aniline ring. The two benzene rings are inclined to one another at only 4.2 (1° having an interplanar spacing of ca 0.90 Å. The crystal structure is stabilized by intermolecular N—H...O hydrogen bonds, which link the molecules into chains running along the b axis. A weak intermolecular C—H...π interaction is also present.

  20. A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C-S coupling

    KAUST Repository

    Shen, Chao

    2012-01-01

    Sugar-based benzothiazoles are a new class of molecules promising for many biological applications. Here, we have synthesized a wide range of sugar-based benzothiazoles from readily accessible glycosyl thioureas by chemoselective, palladium-catalyzed C-S coupling reactions. Corroborated by theoretical calculations, a mechanistic investigation indicates that the coordination to the palladium by a pivaloyl carbonyl group and the presence of intramolecular hydrogen bonding play important roles in the efficiency and chemoselectivity of reaction. These fluorescent glycoconjugates can be observed to readily enter mammalian tumor cells and exhibit potential in vitro antitumor activity. This journal is © The Royal Society of Chemistry 2012.

  1. 40 CFR 721.3720 - Fatty amide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty amide. 721.3720 Section 721.3720... Fatty amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a fatty amide (PMN P-91-87) is subject to reporting under this section...

  2. 40 CFR 721.2120 - Cyclic amide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...

  3. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    Science.gov (United States)

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  4. The Relative Hydrogen Bonding Strength of Oxygen and Nitrogen Atoms as a Proton Acceptor

    International Nuclear Information System (INIS)

    Hyun, Jong Cheol; Lee, Ho Jin; Kim, Nak Kyoon; Choi, Young Sang; Park, Jeung Hee; Yoon, Chang Ju

    1999-01-01

    The thermodynamic parameters for the formation of the hydrogen bonding were widely used to understand the protein- ligand interaction. We have been interested in the hydrogen bonding strength of various proton acceptors toward the amide in a nonpolar solvent, This work is in the line of our interest. In drug design, the functional group is often replaced in order to enhance or reduce the binding affinity, which is usually determined by hydrogen bonding strength. Therefore, to understand this biochemical process the knowledge of relative hydrogen bonding strength is of importance.

  5. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states

    International Nuclear Information System (INIS)

    Nguyen, Trong-Nghia; Putikam, Raghunath; Lin, M. C.

    2015-01-01

    We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH 2 OO and anti/syn-CH 3 C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH 2 OO and anti-CH 3 C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH 3 C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH 3 C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH 3 group by the terminal O atom producing CH 2 C(H)O–OH. At 298 K, the intramolecular insertion process in CH 2 OO was found to be 600 times faster than the commonly assumed ring-closing reaction

  6. Discovery of competing anaerobic and aerobic pathways in umpolung amide synthesis allows for site-selective amide 18O-labeling

    Science.gov (United States)

    Shackleford, Jessica P.; Shen, Bo; Johnston, Jeffrey N.

    2012-01-01

    The mechanism of umpolung amide synthesis was probed by interrogating potential sources for the oxygen of the product amide carbonyl that emanates from the α-bromo nitroalkane substrate. Using a series of 18O-labeled substrates and reagents, evidence is gathered to advance two pathways from the putative tetrahedral intermediate. Under anaerobic conditions, a nitro-nitrite isomerization delivers the amide oxygen from nitro oxygen. The same homolytic nitro-carbon fragmentation can be diverted by capture of the carbon radical intermediate with oxygen gas (O2) to deliver the amide oxygen from O2. This understanding was used to develop a straightforward protocol for the preparation of 18O-labeled amides in peptides by simply performing the umpolung amide synthesis reaction under an atmosphere of . PMID:22184227

  7. A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state.

    Science.gov (United States)

    Xu, Guoyan G; Zhang, Yan; Mercedes-Camacho, Ana Y; Etzkorn, Felicia A

    2011-11-08

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.

  8. Construction of Azabicyclo[6.4.0]dodecatrienes Based on Rhodium(I)-Catalyzed Intramolecular [6+2] Cycloaddition between Azetidine, Allene, and Alkynes.

    Science.gov (United States)

    Yasuda, Shigeo; Yokosawa, Haruna; Mukai, Chisato

    2016-01-01

    Treatment of the allenylazetidine-alkynes with a catalytic amount of [RhCl(CO)dppp]2 (dppp: 1,3-bis(diphenylphosphino)propane) effected the intramolecular hetero-[6+2]-type ring-closing reaction via the C-C bond cleavage of the azetidine ring to produce azabicyclo[6.4.0]dodecatriene derivatives in good to excellent yields. The formation of the oxa analogue could also be achieved.

  9. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  10. Crystal structure and hydrogen bonding in N-(1-deoxy-β-d-fructopyranos-1-yl-2-aminoisobutyric acid

    Directory of Open Access Journals (Sweden)

    Valeri V. Mossine

    2018-01-01

    Full Text Available The title compound, alternatively called d-fructose-2-aminoisobutyric acid (FruAib, C10H19NO7, (I, crystallizes exclusively in the β-pyranose form, with two conformationally non-equivalent molecules [(IA and (IB] in the asymmetric unit. In solution, FruAib establishes an equilibrium, with 75.6% of the population consisting of β-pyranose, 10.4% β-furanose, 10.1% α-furanose, 3.0% α-pyranose and <0.7% the acyclic forms. The carbohydrate ring in (I has the normal 2C5 chair conformation and the amino acid portion is in the zwitterion form. Bond lengths and valence angles compare well with the average values from related pyranose structures. All carboxyl, hydroxy and ammonium groups are involved in hydrogen bonding and form a three-dimensional network of infinite chains that are connected through homodromic rings and short chains. Intramolecular hydrogen bonds bridge the amino acid and sugar portions in both molecules. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar–amino acids suggests an increasing role of intramolecular heteroatom interactions in crystal structures with an increasing proportion of C—H bonds.

  11. Conformational Effects through Hydrogen Bonding in a Constrained γ-Peptide Template: From Intraresidue Seven-Membered Rings to a Gel-Forming Sheet Structure.

    Science.gov (United States)

    Awada, Hawraà; Grison, Claire M; Charnay-Pouget, Florence; Baltaze, Jean-Pierre; Brisset, François; Guillot, Régis; Robin, Sylvie; Hachem, Ali; Jaber, Nada; Naoufal, Daoud; Yazbeck, Ogaritte; Aitken, David J

    2017-05-05

    A series of three short oligomers (di-, tri-, and tetramers) of cis-2-(aminomethyl)cyclobutane carboxylic acid, a γ-amino acid featuring a cyclobutane ring constraint, were prepared, and their conformational behavior was examined spectroscopically and by molecular modeling. In dilute solutions, these peptides showed a number of low-energy conformers, including ribbonlike structures pleated around a rarely observed series of intramolecular seven-membered hydrogen bonds. In more concentrated solutions, these interactions defer to an organized supramolecular assembly, leading to thermoreversible organogel formation notably for the tripeptide, which produced fibrillar xerogels. In the solid state, the dipeptide adopted a fully extended conformation featuring a one-dimensional network of intermolecularly H-bonded molecules stacked in an antiparallel sheet alignment. This work provides unique insight into the interplay between inter- and intramolecular H-bonded conformer topologies for the same peptide template.

  12. Hindered Csbnd N bond rotation in triazinyl dithiocarbamates

    Science.gov (United States)

    Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon

    2018-01-01

    The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.

  13. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). Copyright © 2014 John Wiley & Sons, Ltd.

  14. Twisted intramolecular charge transfer investigation of semi organic L-Glutamic acid hydrochloride single crystal for organic light-emitting and optical limiting applications

    Science.gov (United States)

    Joy, Lija K.; George, Merin; Alex, Javeesh; Aravind, Arun; Sajan, D.; Vinitha, G.

    2018-03-01

    Single crystals of L-Glutamic acid hydrochloride (LGHCl) were grown by slow evaporation solution technique and good crystalline perfection was confirmed by Powder X-ray diffraction studies. The complete vibrational studies of the compound were analyzed by FT-IR, FT-Raman and UV-visible spectra combined with Normal Coordinate Analysis (NCA) following the scaled quantum mechanical force field methodology and density functional theory (DFT). Twisted Intramolecular Charge Transfer (ICT) occurs due to the presence of strong ionic intra-molecular Nsbnd H⋯O hydrogen bonding was confirmed by Hirshfeld Surface analysis. The existence of intermolecular Nsbnd H⋯Cl hydrogen bonds due to the interaction between the lone pair of oxygen with the antibonding orbital was established by NBO analysis. The Z-scan result indicated that the title molecule exhibits saturable absorption behavior. The attractive third-order nonlinear properties suggest that LGHCl can be a promising candidate for the design and development devices for optical limiting applications. LGHCL exhibits distinct emission in the blue region of the fluorescence lifetime which proves to be a potential candidate for blue- Organic light-emitting diodes (OLEDs) fabrication.

  15. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Selective and reactive hydration of nitriles to amides in water using silver nanoparticles stabilized by organic ligands

    International Nuclear Information System (INIS)

    Kawai, Koji; Kawakami, Hayato; Narushima, Takashi; Yonezawa, Tetsu

    2015-01-01

    Water-dispersible silver nanoparticles stabilized by silver–carbon covalent bonds were prepared. They exhibited high catalytic activities for the selective hydration of nitriles to amides in water. The activation of a nitrile group by the functional groups of the substrates and the hydrophobic layer on the nanoparticles influenced the catalyzed reaction were confirmed. Alkyl nitriles could also be selectively hydrated

  17. Photophysical studies on the interaction of amides with Bovine Serum Albumin (BSA) in aqueous solution: Fluorescence quenching and protein unfolding

    International Nuclear Information System (INIS)

    Kumaran, R.; Ramamurthy, P.

    2014-01-01

    Addition. of amides containing a H-CO(NH 2 ) or CH 3 -CO(NH 2 ) framework to BSA results in a fluorescence quenching. On the contrary, fluorescence enhancement with a shift in the emission maximum towards the blue region is observed on the addition of dimethylformamide (DMF) (H-CON(CH 3 ) 2 ). Fluorescence quenching accompanied initially with a shift towards the blue region and a subsequent red shift in the emission maximum of BSA is observed on the addition of formamide (H-CO(NH 2 )), whereas a shift in the emission maximum only towards the red region results on the addition of acetamide (CH 3 -CONH 2 ). Steady state emission spectral studies reveal that amides that possess a free NH 2 and N(CH 3 ) 2 moiety result in fluorescence quenching and enhancement of BSA respectively. The 3D contour spectral studies of BSA with formamide exhibit a shift in the emission towards the red region accompanied with fluorescence quenching, which indicates that the tryptophan residues of the BSA are exposed to a more polar environment. Circular Dichroism (CD) studies of BSA with amides resulted in a gradual decrease in the α-helical content of BSA at 208 nm, which confirms that there is a conformational change in the native structure of BSA. Time-resolved fluorescence studies illustrate that the extent of buried trytophan moieties exposed to the aqueous phase on the addition of amides follows the order DMF 2 hydrogen and the carbonyl oxygen of amide form a concerted hydrogen-bonding network with the carbonyl oxygen and the amino moieties of amino acids respectively is established from fluorescence methods. -- Highlights: • The manuscript deals with the absorption, emission and fluorescence lifetime studies of Bovine Serum Albumin with amides in aqueous medium. • Fluorescence is correlated to the presence of fluorescing amino acid, tryptophan located in a heterogeneous environment. • This article provides an insight about the fluorescence spectral characteristics of a protein

  18. Kinetics of Free Radical Polymerization of N-Substituted Amides and Their Structural Implications

    Directory of Open Access Journals (Sweden)

    Anca Aldea

    2016-01-01

    Full Text Available Two N-substituted amides (N-acryloyl morpholine and N-methyl-N-vinylacetamide were polymerized in different solvents using radical initiator. The tacticity of obtained polymers was determined by 400 MHz 1H-NMR and 13C-NMR. At a given temperature, the syndiotacticity increased with increasing the solvent polarity. This solvent effect may be related to the hydrogen bonding interaction among solvent, monomer, and/or growing species. A peculiar aspect regards the steric hindrance at the nitrogen atom.

  19. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material.

    Science.gov (United States)

    Yang, Lijun; Guo, Jing; Yu, Yue; An, Qingda; Wang, Liyan; Li, Shenglin; Huang, Xuelin; Mu, Siyang; Qi, Shanwei

    2016-05-20

    Sodium alginate/Antarctic krill protein composite material (SA/AKP) was successfully obtained by blending method. The hydrogen bonds of SA/AKP composite material were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance hydrogen spectrum (HNMR). Experiment manifested the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system; strength of intermolecular hydrogen bond enhanced with the increase of AKP in the composite material and the interaction strength of hydrogen bonding followed the order: OH…Ether O>OH…π>OH…N. The percentage of intermolecular hydrogen bond decreased with increase of pH. At the same time, the effect of hydrogen bonds on properties of the composite material was discussed. The increase of intermolecular hydrogen bonding led to the decrease of crystallinity, increase of apparent viscosity and surface tension, as well as obvious decrease of heat resistance of SA/AKP composite material. SA/AKP fiber SEM images and energy spectrum showed that crystallized salt was separated from the fiber, which possibly led to the fibrillation of the composite fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides.

    Science.gov (United States)

    Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki

    2009-10-15

    The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.

  1. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    Science.gov (United States)

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  2. Spectroscopic and molecular modeling investigation on the binding of a synthesized steroidal amide to protein

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua-xin, E-mail: h.x.zhang@yeah.net; Liu, E.

    2014-09-15

    Owing to the various valuable biological activities, steroidal amides have become a hot topic in steroidal pharmaceutical chemistry. In this paper, an anti-tumor steroid derivate (DAAO) was synthesized and identified. The interaction between DAAO and human serum albumin (HSA) was studied by fluorescence spectra, circular dichroism (CD) spectra, molecular modeling and molecular probe techniques. The results suggested that DAAO had reacted with HSA through hydrogen bonds and van der Waals power. The formation of DAAO–HSA complex at ground state led to static quenching of HSA's fluorescence. The number of binding sites, binding constants, enthalpy change (ΔH{sup θ}), Gibbs free energy change (ΔG{sup θ}) and entropy change (ΔS{sup θ}) were calculated at different temperatures based on fluorescence quenching theory and classic equation. Molecular modeling investigation indicated that DAAO was more inclined to absorb on Sudlow's site I in subdomain IIA of HSA molecule on grounds of the lowest energy principle and steric hindrance effect. The binding location was further confirmed by fluorescence probe experiment using warfarin (site I probe) for displacement. Furthermore, the conformational changes of HSA in presence of DAAO were investigated by CD spectra. The results could provide new evidence explaining the relationship between the chemical structure and biological activity and may be useful for understanding the anti-cancer mechanism of steroidal drug. - Highlights: • A designed steroidal amide compound (DAAO) was synthesized by introducing amido bonds into a steroid nucleus. • DAAO binds to Sudlow's site I in HSA through hydrogen bonds and van der Waals power. • The interaction was a spontaneous and exothermic process with modest degree of reversibility. • The secondary structure of HSA and the microenvironment of TRP214 altered. • Amido bond in steroid nucleus (–NH–CO–) plays important role in stabling the structure of

  3. Hydrogen abstraction reactions by amide electron adducts

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Sevilla, C.L.; Swarts, S.

    1982-01-01

    Electron reactions with a number of peptide model compounds (amides and N-acetylamino acids) in aqueous glasses at low temperature have been investigated using ESR spectroscopy. The radicals produced by electron attachment to amides, RC(OD)NDR', are found to act as hydrogen abstracting agents. For example, the propionamide electron adduct is found to abstract from its parent propionamide. Electron adducts of other amides investigated show similar behavior except for acetamide electron adduct which does not abstract from its parent compound, but does abstract from other amides. The tendency toward abstraction for amide electron adducts are compared to electron adducts of several carboxylic acids, ketones, aldehydes and esters. The comparison suggests the hydrogen abstraction tendency of the various deuterated electron adducts (DEAs) to be in the following order: aldehyde DEA > acid DEA = approximately ester DEA > ketone DEA > amide DEA. In basic glasses the hydrogen abstraction ability of the amide electron adducts is maintained until the concentration of base is increased sufficiently to convert the DEA to its anionic form, RC(O - )ND 2 . In this form the hydrogen abstracting ability of the radical is greatly diminished. Similar results were found for the ester and carboxylic acid DEA's tested. (author)

  4. The Origin of the Non-Additivity in Resonance-Assisted Hydrogen Bond Systems.

    Science.gov (United States)

    Lin, Xuhui; Zhang, Huaiyu; Jiang, Xiaoyu; Wu, Wei; Mo, Yirong

    2017-11-09

    The concept of resonance-assisted hydrogen bond (RAHB) has been widely accepted, and its impact on structures and energetics can be best studied computationally using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently. In this work, we use the BLW method to examine a few molecules that result from the merging of two malonaldehyde molecules. As each of these molecules contains two hydrogen bonds, these intramolecular hydrogen bonds may be cooperative or anticooperative, depended on their relative orientations, and compared with the hydrogen bond in malonaldehyde. Apart from quantitatively confirming the concept of RAHB, the comparison of the computations with and without π resonance shows that both σ-framework and π-resonance contribute to the nonadditivity in these RAHB systems with multiple hydrogen bonds.

  5. Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes

    Science.gov (United States)

    Wu, Hao; Radomkit, Suttipol; O’Brien, Jeannette M.; Hoveyda, Amir H.

    2012-01-01

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C–B bond forming reactions are promoted in the presence of 2.5–7.5 mol % of a readily accessible C1-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B2(pin)2], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides and aldehydes can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50–66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene or aldehyde). PMID:22559866

  6. Fused-Ring Formation by an Intramolecular "Cut-and-Sew" Reaction between Cyclobutanones and Alkynes.

    Science.gov (United States)

    Deng, Lin; Jin, Likun; Dong, Guangbin

    2018-03-01

    The development of a catalytic intramolecular "cut-and-sew" transformation between cyclobutanones and alkynes to construct cyclohexenone-fused rings is described herein. The challenge arises from the need for selective coupling at the more sterically hindered proximal position, and can be addressed by using an electron-rich, but less bulky, phosphine ligand. The control experiment and 13 C-labelling study suggest that the reaction may start with cleavage of the less hindered distal C-C bond of cyclobutanones, followed by decarbonylation and CO reinsertion to enable Rh insertion at the more hindered proximal position. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Amides in Nature and Biocatalysis

    NARCIS (Netherlands)

    Pitzer, J.; Steiner, K.

    2016-01-01

    Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the

  8. N-(3-Nitrophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-07-01

    Full Text Available In the title compound, C10H8N2O5, the molecule is slightly distorted from planarity. The molecular structure is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond (H...O distance = 1.57 Å within the maleamic acid unit and the second is a C—H...O hydrogen bond (H...O distance = 2.24 Å which connects the amide group with the benzene ring. The nitro group is twisted by 6.2 (2° out of the plane of the benzene ring. The crystal structure manifests a variety of hydrogen bonding. The packing is dominated by a strong intermolecular N—H...O interaction which links the molecules into chains running along the b axis. The chains within a plane are further assembled by three additional types of intermolecular C—H...O hydrogen bonds to form a sheet parallel to the (overline{1}01 plane.

  9. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    Science.gov (United States)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  10. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    Science.gov (United States)

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  11. Molecular Dynamics Simulation of Barnase: Contribution of Noncovalent Intramolecular Interaction to Thermostability

    Directory of Open Access Journals (Sweden)

    Zhiguo Chen

    2013-01-01

    Full Text Available Bacillus amyloliquefaciens ribonuclease Barnase (RNase Ba is a 12 kD (kilodalton small extracellular ribonuclease. It has broad application prospects in agriculture, clinical medicine, pharmaceutical, and so forth. In this work, the thermal stability of Barnase has been studied using molecular dynamics simulation at different temperatures. The present study focuses on the contribution of noncovalent intramolecular interaction to protein stability and how they affect the thermal stability of the enzyme. Profiles of root mean square deviation and root mean square fluctuation identify thermostable and thermosensitive regions of Barnase. Analyses of trajectories in terms of secondary structure content, intramolecular hydrogen bonds and salt bridge interactions indicate distinct differences in different temperature simulations. In the simulations, Four three-member salt bridge networks (Asp8-Arg110-Asp12, Arg83-Asp75-Arg87, Lys66-Asp93-Arg69, and Asp54-Lys27-Glu73 have been identified as critical salt bridges for thermostability which are maintained stably at higher temperature enhancing stability of three hydrophobic cores. The study may help enlighten our knowledge of protein structural properties, noncovalent interactions which can stabilize secondary peptide structures or promote folding, and also help understand their actions better. Such an understanding is required for designing efficient enzymes with characteristics for particular applications at desired working temperatures.

  12. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    Science.gov (United States)

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  13. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2012-04-01

    Full Text Available The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN and 7-deazaguanine urea (DeUG is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylaminopyridine (DMAP-catalyzed peptide synthesis with N-(3-dimethylaminopropyl-N’-ethyl carbodiimide hydrochloride (EDC as activating agent, affording the respective amide products 5, 8, and 10 in 60–71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide–alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange–red in color, and azobenzene coupled DeUG modules 12 and 18 are orange–yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN–DeUG and DAN–UPy (2-ureido-4(1H-pyrimidone quadruply hydrogen-bonding interactions.

  14. Similarities between intra- and intermolecular hydrogen bonds in RNA kissing complexes found by means of cross-correlated relaxation

    International Nuclear Information System (INIS)

    Dittmer, Jens; Kim, Chul-Hyun; Bodenhausen, Geoffrey

    2003-01-01

    The bond lengths and dynamics of intra- and intermolecular hydrogen bonds in an RNA kissing complex have been characterized by determining the NMR relaxation rates of various double- and triple-quantum coherences that involve an imino proton and two neighboring nitrogen-15 nuclei belonging to opposite bases. New experiments allow one to determine the chemical shift anisotropy of the imino protons. The bond lengths derived from dipolar relaxation and the lack of modulations of the nitrogen chemical shifts indicate that the intermolecular hydrogen bonds which hold the kissing complex together are very similar to the intramolecular hydrogen bonds in the double-stranded stem of the RNA

  15. Synthesis of Chromane Derivatives via Indium-mediated Intramolecular Allenylation and Allylation to Imines

    International Nuclear Information System (INIS)

    Kang, Han Young; Yu, Yeon Kwon

    2004-01-01

    The results of preparing chromans by intramolecular allylation are shown in Table 2. The results indicated that the indium-mediated allylation was not as efficient as the allenylation. About 10-20% decrease in yields was observed. As mentioned above, in each case only a single isomer was observed, and the stereochemistry of the product was determined as cis by analysis of 1 H NMR and NOE spectra. There are, however, still some limitations in these transformations. Especially, in the case of allylation mixtures of cis and trans isomers are always produced in about 2 : 1 ratio (cis/trans). The ratio was not improved under the various reaction conditions we attempted. Since the indium-mediated addition to carbonyl groups has been successful, it occurred to us that it would be worthwhile to test the addition to carbon-nitrogen double bonds, that is, imine groups. We wish to report here the results of the investigations on allylation and allenylation to C=N bond to provide the chromane structures. The whole transformations

  16. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trong-Nghia [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Physical Chemistry, Hanoi University of Science and Technology, Hanoi (Viet Nam); Putikam, Raghunath; Lin, M. C., E-mail: chemmcl@emory.edu [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2015-03-28

    We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH{sub 2}OO and anti/syn-CH{sub 3}C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH{sub 2}OO and anti-CH{sub 3}C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH{sub 3}C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH{sub 3}C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH{sub 3} group by the terminal O atom producing CH{sub 2}C(H)O–OH. At 298 K, the intramolecular insertion process in CH{sub 2}OO was found to be 600 times faster than the commonly assumed ring-closing reaction.

  17. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols.

    Science.gov (United States)

    Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji

    2013-07-01

    To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.

  18. Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families

    Science.gov (United States)

    Defelipe, Lucas A.; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A.; Turjanski, Adrián G.

    2015-01-01

    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. PMID:25741692

  19. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    Science.gov (United States)

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  20. Chemical bonding and electronic localization in a Ga(I) amide.

    Science.gov (United States)

    Thomsen, Maja K; Dange, Deepak; Jones, Cameron; Overgaard, Jacob

    2015-10-05

    The electron density in a one-coordinate [Ga(I) N(SiMe3 )R] complex has been determined from ab initio calculations and multipole modeling of 90 K X-ray data. The topologies of the Laplacian distribution and the ELI-D match a situation having an sp(3) -hybridized nitrogen with a tetrahedral arrangement of two single σ-bonds (to carbon and silicon) and two lone pairs pointing towards gallium in a scissor-grasping fashion. The analysis of the Laplacian distribution furthermore reveals a ligand-induced charge concentration (LICC) in the outer core of gallium oriented directly towards the nitrogen atom, and thus in between the two lone pairs. These observations might suggest that the trigonal planar nitrogen geometry result from a dative GaN bond, in which the roles of the metal and the ligand have been reversed with respect to a "standard" metal-ligand interaction, that is, the metal is here electron-donating. The ELI-D reveals a diffuse and directional lone pair on gallium, suggesting that this complex could serve as a σ-donor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Towards a Molecular Movie: Real Time Observation of Hydrogen Bond Breaking by Transient 2D-IR Spectroscopy in a Cyclic Peptide

    Science.gov (United States)

    Kolano, Christoph; Helbing, Jan; Sander, Wolfram; Hamm, Peter

    Transient two-dimensional infrared spectroscopy (T2D-IR) has been used to observe in real time the non-equilibrium structural dynamics of intramolecular hydrogen bond breaking in a small cyclic disulfide-bridged peptide.

  3. How amide hydrogens exchange in native proteins.

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2015-08-18

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N-H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N-H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion.

  4. How amide hydrogens exchange in native proteins

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2015-01-01

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N–H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N–H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion. PMID:26195754

  5. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Tatiana Radchenko

    Full Text Available Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids. This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The

  6. Synthesis of Cyclohexane-Fused Isocoumarins via Cationic Palladium(II)-Catalyzed Cascade Cyclization Reaction of Alkyne-Tethered Carbonyl Compounds Initiated by Intramolecular Oxypalladation of Ester-Substituted Aryl Alkynes.

    Science.gov (United States)

    Zhang, Jianbo; Han, Xiuling; Lu, Xiyan

    2016-04-15

    A cationic Pd(II)-catalyzed cascade cyclization reaction of alkyne-tethered carbonyl compounds was developed. This reaction is initiated by intramolecular oxypalladation of alkynes with an ester group followed by 1,2-addition of the formed C-Pd(II) bond to the carbonyl group, providing a highly efficient method for the synthesis of cyclohexane-fused isocoumarins.

  7. Poly(ester-amide)s derived from PET containing uniform bisester amide segments

    OpenAIRE

    Ascanio Nuñez, Yanireth

    2013-01-01

    Poly(ethylene terephthalate) has experienced a growth in its demand as a bottle container and food packaging material. However, in order to expand its uses, its barrier properties to gases like carbon dioxide and oxygen, have to be improved. In this way, bisester amide units have been introduced as a third component in the main chain of PET, with the aim to reduce both CO2 and O2 permeability. In this project, poly(ester-amide)s based on PET (PETxMXy) have been synthesized, according to th...

  8. New stereoselective intramolecular

    Science.gov (United States)

    Alajarin; Vidal; Tovar; Ramirez De Arellano MC; Cossio; Arrieta; Lecea

    2000-11-03

    Efficient 1,4-asymmetric induction has been achieved in the highly stereocontrolled intramolecular [2 + 2] cycloadditions between ketenimines and imines, leading to 1,2-dihydroazeto[2, 1-b]quinazolines. The chiral methine carbon adjacent to the iminic nitrogen controls the exclusive formation of the cycloadducts with relative trans configuration at C2 and C8. The stepwise mechanistic model, based on theoretical calculations, fully supports the stereochemical outcome of these cycloadditions.

  9. Intramolecular excimer formation of diastereoisomeric model compounds of polystyrene in fluid solution: their local molecular motion and photophysical properties

    International Nuclear Information System (INIS)

    Itagaki, Hideyuki; Horie, Kazuyuki; Mita, Itaru; Washio, Masakazu; Tagawa, Seiichi; Tabata, Yoneho

    1989-01-01

    The dynamic process of intramolecular excimer formation in diasteroisomeric oligomers model compounds of polystyrene, was investigated by using a picosecond pulse radiolysis technique. Monomer fluorescence of all-racemic isomers decays single-exponentially, while that of other isomers decays dual-exponentially. Multicomponent fluorescence decay curves are supposed to be mainly induced by conformational changes. The results suggest that the excimer in oligostyrenes (or polystyrene) is formed mainly in meso diad. It is definitely proved that there exists singlet energy migration in styrene trimer and tetramer systems. The conformational change in PS3 and PS4 is concluded to occur by way of cooperative motions in backbone chains bond such as a crankshaft transition, not by way of independent rotation around each carbon-carbon bond of the backbone chain. (author)

  10. Spectroscopic evidence for gas-phase formation of successive beta-turns in a three-residue peptide chain.

    Science.gov (United States)

    Chin, Wutharath; Compagnon, Isabelle; Dognon, Jean-Pierre; Canuel, Clélia; Piuzzi, François; Dimicoli, Iliana; von Helden, Gert; Meijer, Gerard; Mons, Michel

    2005-02-09

    We report the first gas-phase spectroscopic study of a three-residue model of a peptide chain, Ac-Phe-Gly-Gly-NH2 (Ac = acetyl), using the IR/UV double resonance technique. The existence of at least five different conformers under supersonic expansion conditions is established, most of them exhibiting rather strong intramolecular H-bonds. One of the most populated conformers, however, exhibits a different H-bonding network characterized by two weak H-bonds. Comparison of the amide A and I/II experimental data with density functional theory calculations carried out on a series of selected conformations enables us to assign this conformer to two successive beta-turns along the peptide chain, the two H-bonds being of C10 type, i.e., each of them closing a 10-atom ring in the molecule. The corresponding form is found to be more stable than the 310 helix secondary structure (not observed), presumably because of specific effects due to the glycine residues.

  11. Catecholic amides as potential selective phosphodiesterase 4D inhibitors: Design, synthesis, pharmacological evaluation and structure-activity relationships.

    Science.gov (United States)

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Chen, Yu-Fang; Shi, Xiu-Dong; Yang, Xue-Mei; Xu, Jiang-Ping

    2015-11-15

    In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. C-H Bond Functionalization via Hydride Transfer: Direct Coupling of Unactivated Alkynes and sp3 C-H Bonds Catalyzed by Platinum Tetraiodide

    Science.gov (United States)

    Vadola, Paul A.; Sames, Dalibor

    2010-01-01

    We report a catalytic intramolecular coupling between terminal unactivated alkynes and sp3 C-H bonds via the through-space hydride transfer (HT-cyclization of alkynes). This method enables one-step preparation of complex heterocyclic compounds by α-alkenylation of readily available cyclic ethers and amines. We show that PtI4 is an effective Lewis acid catalyst for the activation of terminal alkynes for the hydride attack and subsequent C-C bond formation. In addition, we have shown that the activity of neutral platinum salts (PtXn) can be modulated by the halide ligands. This modulation in turn allows for fine-tuning of the platinum center reactivity to match the reactivity and stability of selected substrates and products. PMID:19852462

  13. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea.

    Science.gov (United States)

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The analysis of molecular electron density matrices in terms of quasi-atomic orbitals, which was developed in previous investigations, is quantitatively exemplified by a detailed application to the urea molecule. The analysis is found to identify strong and weak covalent bonding interactions as well as intramolecular charge transfers. It yields a qualitative as well as quantitative ab initio description of the bonding structure of this molecule, which raises questions regarding some traditional rationalizations.

  14. Vibrational, NMR and quantum chemical investigations of acetoacetanilde, 2-chloroacetoacetanilide and 2-methylacetoacetanilide.

    Science.gov (United States)

    Arjunan, V; Kalaivani, M; Senthilkumari, S; Mohan, S

    2013-11-01

    The vibrational assignment and analysis of the fundamental modes of the compounds acetoacetanilide (AAA), 2-chloroacetoacetanilide (2CAAA) and 2-methylacetoacetanilide (2MAAA) have been performed. Density functional theory studies have been carried out with B3LYP method utilising 6-311++G(**) and cc-pVTZ basis sets to determine structural, thermodynamic and vibrational characteristics of the compounds and also to understand the influence of chloro and methyl groups on the characteristic frequencies of amide (CONH) group. Intramolecular hydrogen bond exists in acetoacetanilide and o-substituted acetoacetanilide molecules and the N⋯O distance is found to be around 2.7Å. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecules were determined and the same have been calculated using the gauge independent atomic orbital (GIAO) method. The energies of the frontier molecular orbitals have been determined. In AAA, 2CAAA and 2MAAA molecules, the nN→πCO(∗) interaction between the nitrogen lone pair and the amide CO antibonding orbital gives strong stabilization of 64.75, 62.84 and 64.18kJmol(-1), respectively. The blue shift in amide-II band of 2MAAA is observed by 45-50cm(-1) than that of AAA. The steric effect of ortho methyl group significantly operating on the NH bond properties. The amide-III, the CN stretching mode of methyl and chloro substituted acetoacetanilide compounds are not affected by the substitution while the amide-V band, the NH out of plane bending mode of 2-chloroacetoacetanilide compound is shifted to a higher frequency than that of AAA. The substituent chlorine plays significantly and the blue shift in o-substituted compounds than the parent in the amide-V vibration is observed. The amide-VI, CO out of plane bending modes of 2MAAA and 2CAAA are significantly raised than that of AAA. A blue shift of amide-VI, CO out of plane bending modes of 2MAAA and 2CAAA than AAA is observed. Copyright © 2013 Elsevier B.V. All rights

  15. Total synthesis of (+/-)-taiwaniaquinol B via a domino intramolecular friedel-crafts acylation/carbonyl alpha-tert-alkylation reaction.

    Science.gov (United States)

    Fillion, Eric; Fishlock, Dan

    2005-09-28

    The first synthesis of taiwaniaquinol B, a 6-nor-5(6-->7)abeoabietane-type diterpenoid exhibiting the uncommon fused 6-5-6 tricyclic carbon skeleton, was accomplished in 15 steps. A Lewis acid-promoted tandem intramolecular Friedel-Crafts/carbonyl alpha-tert-alkylation reaction was exploited as the core strategy for the synthesis of the sterically congested 1-indanone-containing tricyclic structure. This multiple carbon-carbon bond forming reaction exploits the unique reactivity of Meldrum's acid. The facile precursor synthesis makes this a useful methodology for the expedient modification and assembly of sterically congested 1-indanone-containing ring systems.

  16. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.

    Science.gov (United States)

    Jung, Naeyoung; Kwon, Soongeun; Lee, Dongwook; Yoon, Dong-Myung; Park, Young Min; Benayad, Anass; Choi, Jae-Young; Park, Jong Se

    2013-12-17

    Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photochemical reduction of uranyl ion with amides

    International Nuclear Information System (INIS)

    Brar, A.S.; Chander, R.; Sandhu, S.S.

    1981-01-01

    The photochemical reduction of uranyl ion by formamide, acetamide, propionamide, butyramide, iso butyramids, n-methylformamide, N, N-dimethylformamide and N, N-diethylformamide in aqueous medium using radiation >= 380 nm from a medium pressure mercury vapour lamp has been investigated. The reduction with the said amides has been found to obey pseudo first order kinetics. The magnitude of the rate of reduction for the simple amides has been found to follow the following order formamide > isobutyramide approx. butyramide > propionamide > acetamide while the rate order for N-alkylformamides compared with that of the formamide has been found to be formamide > N-methylformamide > N,N-diethylformamide approx. N,N-dimethylformamide. The pseudo first order rate constants and quenching constants have been found from the kinetic data. It has been found that physical and chemical quenching compete with each other. Plots of reciprocal of quantum yields versus reciprocal [amide] have been found to be linear with intercepts on the ordinate axis. Absorption spectra of uranyl ion in doubly distilled water, in the presence of acid and in the presence of acid and amide reveal that there is no ground state interaction between uranyl ion and the amide. A mechanism of photoreduction of uranyl ion with amides has been proposed. (author)

  18. Influence of Alternative Tubulin Inhibitors on the Potency of a Epirubicin-Immunochemotherapeutic Synthesized with an Ultra Violet Light-Activated Intermediate: Influence of incorporating an internal/integral disulfide bond structure and Alternative Tubulin/Microtubule Inhibitors on the Cytotoxic Anti-Neoplastic Potency of Epirubicin-(C3-amide)-Anti-HER2/neu Synthesized Utilizing a UV-Photoactivated Anthracycline Intermediate.

    Science.gov (United States)

    Coyne, C P; Jones, Toni; Bear, Ryan

    2012-11-01

    Immunochemotherapeutics, epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] with an internal disulfide bond, and epirubicin-(C 3 - amide )-[anti-HER2/ neu ] were synthesized utilizing succinimidyl 2-[(4,4'-azipentanamido) ethyl]-1,3'-dithioproprionate or succinimidyl 4,4-azipentanoate respectively. Western blot analysis was used to determine the presence of any immunoglobulin fragmentation or IgG-IgG polymerization. Retained HER2/ neu binding characteristics of epirubicin-(C 3 - amide )-[anti-HER2/ neu ] and epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] were validated by cell-ELISA using a mammary adenocarcinoma (SKBr-3) population that highly over-expresses trophic HER2/ neu receptor complexes. Cytotoxic anti-neoplastic potency of epirubicin-(C 3 - amide )-[anti-HER2/ neu ] and epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] between epirubicin-equivalent concentrations of 10 -10 M and 10 -6 M was determined by measuring the vitality/proliferation of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3 cell type). Cytotoxic anti-neoplastic potency of benzimidazoles (albendazole, flubendazole, membendazole) and griseofulvin were assessed between 0-to-2 μg/ml and 0-to-100 μg/ml respectively while mebendazole and griseofulvin were analyzed at fixed concentrations of 0.35 μg/ml and 35 g/ml respectively in dual combination with gradient concentrations of epirubicin-(C 3 - amide )-[anti-HER2/ neu ] and epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ]. Cytotoxic anti-neoplastic potency for epirubicin-(C 3 - amide )-[anti-HER2/ neu ] and epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was nearly identical at epirubicin-equivalent concentrations of 10 -10 M and 10 -6 M. The benzimadazoles also possessed cytotoxic anti-neoplastic activity with flubendazole and albendazole being the most and least potent respectively. Similarly, griseofulvin had cytotoxic anti-neoplastic activity and was more potent than

  19. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    International Nuclear Information System (INIS)

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-01-01

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40 0 C for a tightly bound 15 N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads

  20. Nickel-Catalyzed Reductive Transamidation of Secondary Amides with Nitroarenes

    OpenAIRE

    Cheung, Chi Wai; Ploeger, Marten Leendert; Hu, Xile

    2017-01-01

    Transmidation is an attractive method for amide synthesis. However, transamidation of secondary amides is challenging. Here, we describe a reductive transamidation method that employs readily available nitro(hetero)arenes as the nitrogen sources, zinc or manganese as reductant, and simple nickel salt and ligand as a catalyst system. The scope of amides includes both alkyl and aryl secondary amides, with high functional group compatibility.

  1. Amide proton solvent protection in amylin fibrils probed by quenched hydrogen exchange NMR.

    Directory of Open Access Journals (Sweden)

    Andrei T Alexandrescu

    Full Text Available Amylin is an endocrine hormone that accumulates in amyloid plaques in patients with advanced type 2 diabetes. The amyloid plaques have been implicated in the destruction of pancreatic β-cells, which synthesize amylin and insulin. To better characterize the secondary structure of amylin in amyloid fibrils we assigned the NMR spectrum of the unfolded state in 95% DMSO and used a quenched hydrogen-deuterium exchange technique to look at amide proton solvent protection in the fibrils. In this technique, partially exchanged fibrils are dissolved in 95% DMSO and information about amide proton occupancy in the fibrils is determined from DMSO-denatured monomers. Hydrogen exchange lifetimes at pH 7.6 and 37°C vary between ∼5 h for the unstructured N-terminus to 600 h for amide protons in the two β-strands that form inter-molecular hydrogen bonds between amylin monomers along the length of the fibril. Based on the protection data we conclude that residues A8-H18 and I26-Y37 comprise the two β-strands in amylin fibrils. There is variation in protection within the β-strands, particularly for strand β1 where only residues F15-H18 are strongly protected. Differences in protection appear to be due to restrictions on backbone dynamics imposed by the packing of two-layers of C2-symmetry-related β-hairpins in the protofilament structure, with strand β1 positioned on the surface and β2 in the interior.

  2. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage

  3. Analytical applications of resins containing amide and polyamine functional groups

    International Nuclear Information System (INIS)

    Orf, G.M.

    1977-01-01

    Resins are prepared by chemically bonding N,N-dialkylamides and polyamine functional groups to Amberlite XAD-4. These resins are applied to the concentration of metal ions from dilute aqueous solution and the rapid separation of metal ions by high-speed liquid chromatography with continuous on-line detection of the eluent stream. A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from seawater. A triethylenetetramine resin is used for the separation of copper(II) from equal molar amounts and large excesses of nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III) and aluminum(III). Copper(II), nickel(II), zinc(II), cobalt(II) and cadmium(II) are determined in the presence of large excesses of calcium(II) and magnesium(II). The resin was found to be selective for silver(I) and mercury(II) at low pH values and a rapid separation of equal molar amounts of copper(II) and silver(I) was performed. The resin was also found to have an affinity for anionic metal complexes such as iron(III)-tartrate when the resin is in the hydrogen form. A study of the retention of the anions chromium(III)-tartrate and dichromate at various pH values was performed to better understand the anion exchange properties of the resin. Triethylenetetramine resins were also prepared from polystyrene gel to make a resin with higher capacities for copper

  4. Crystal structure of 2-hydroxyimino-2-(pyridin-2-yl-N′-[1-(pyridin-2-ylethylidene]acetohydrazide

    Directory of Open Access Journals (Sweden)

    Maxym O. Plutenko

    2014-12-01

    Full Text Available The molecule of the title compound, C14H13N5O2, is approximately planar (r.m.s deviation for all non-H atoms = 0.093 Å, with the planes of the two pyridine rings inclined to one another by 5.51 (7°. The oxime group is syn to the amide group, probably due to the formation of an intramolecular N—H...N hydrogen bond that forms an S(6 ring motif. In the crystal, molecules are linked by pairs of bifurcated O—H...(O,N hydrogen bonds, forming inversion dimers. The latter are linked via C—H...O and C—H...N hydrogen bonds, forming sheets lying parallel to (502. The sheets are linked via π–π stacking interactions [inter-centroid distance = 3.7588 (9 Å], involving the pyridine rings of inversion-related molecules, forming a three-dimensional structure.

  5. A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding

    NARCIS (Netherlands)

    Pham, Tuan Anh; Choi, Byung Choon; Lim, Kwon Taek; Jeong, Yeon Tae

    2011-01-01

    Amino - functionalized gold nanoparticles with a diameter of around 5 nm were immobilized onto the surface of graphene oxide sheets (GOS) by covalent bonding through a simple amidation reaction. Pristine graphite was firstly oxidized and exfoliated to obtain GOS, which further were acylated with

  6. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    Science.gov (United States)

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  7. Intramolecular hydrogen bonding

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Winther, Morten; Spanget-Larsen, Jens

    2006-01-01

    The vibrational structure of the title compound (DBM) was investigated by FTIR spectroscopy in liquid solutions, by FTIR linear dichroism (LD) measurements, and by Raman spectroscopy. The results were supported by the application of theoretical model calculations and analyzed with particular atte...

  8. Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.

    Science.gov (United States)

    Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar

    2003-12-07

    The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.

  9. A remarkable enhancement of selectivity towards versatile analytes by a strategically integrated H-bonding site containing phase.

    Science.gov (United States)

    Mallik, Abul K; Qiu, Hongdeng; Kuwahara, Yutaka; Takafuji, Makoto; Ihara, Hirotaka

    2015-09-28

    A double β-alanylated L-glutamide-derived organic phase has been newly designed and synthesized in such a way that integrated H-bonding (interaction) sites make it very suitable for the separation of versatile analytes, including shape-constrained isomers, and nonpolar, polar and basic compounds. The β-alanine residues introduced into two long-chain alkyl group moieties provide ordered polar groups through H-bonding among the amide groups.

  10. Poly(ether ester amide)s for tissue engineering

    NARCIS (Netherlands)

    Deschamps, A.A.; van Apeldoorn, Aart A.; de Bruijn, Joost Dick; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Poly(ether ester amide) (PEEA) copolymers based on poly(ethylene glycol) (PEG), 1,4-butanediol and dimethyl-7,12-diaza-6,13-dione-1,18-octadecanedioate were evaluated as scaffold materials for tissue engineering. A PEEA copolymer based on PEG with a molecular weight of 300 g/mol and 25 wt% of soft

  11. Formation of carboxy- and amide-terminated alkyl monolayers on silicon(111) investigated by ATR-FTIR, XPS, and X-ray scattering: Construction of photoswitchable surfaces

    DEFF Research Database (Denmark)

    Rück-Braun, Karola; Petersen, Michael Åxman; Michalik, Fabian

    2013-01-01

    -FTIR and XPS studies of the fulgimide samples revealed closely covered amide-terminated SAMs. Reversible photoswitching of the headgroup was read out by applying XPS, ATR-FTIR, and difference absorption spectra in the mid-IR. In XPS, we observed a reversible breathing of the amide/imide C1s and N1s signals......We have prepared high-quality, densely packed, self-assembled monolayers (SAMs) of carboxy-terminated alkyl chains on Si(111). The samples were made by thermal grafting of methyl undec-10-enoate under an inert atmosphere and subsequent cleavage of the ester functionality to disclose the carboxylic...... zigzag-like substitution pattern for the ester- and carboxy-terminated monolayer. Hydrolysis of the remaining H-Si(111) bonds at the surface furnished HO-Si(111) groups according to XPS and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) studies. The amide-terminated alkyl...

  12. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    Science.gov (United States)

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  13. Ligand-enabled ortho-C-H olefination of phenylacetic amides with unactivated alkenes.

    Science.gov (United States)

    Lu, Ming-Zhu; Chen, Xing-Rong; Xu, Hui; Dai, Hui-Xiong; Yu, Jin-Quan

    2018-02-07

    Although chelation-assisted C-H olefination has been intensely investigated, Pd(ii)-catalyzed C-H olefination reactions are largely restricted to acrylates and styrenes. Here we report a quinoline-derived ligand that enables the Pd(ii)-catalyzed olefination of the C(sp 2 )-H bond with simple aliphatic alkenes using a weakly coordinating monodentate amide auxiliary. Oxygen is used as the terminal oxidant with catalytic copper as the co-oxidant. A variety of functional groups in the aliphatic alkenes are tolerated. Upon hydrogenation, the ortho -alkylated product can be accessed. The utility of this reaction is also demonstrated by the late-stage diversification of drug molecules.

  14. Synthesis, characterization and biological evaluation of novel α, β unsaturated amides.

    Science.gov (United States)

    Esmailzadeh, K; Housaindokht, M R; Moradi, A; Esmaeili, A A; Sharifi, Z

    2016-05-15

    Three derivatives of α,β unsaturated amides have been successfully synthesized via Ugi-four component (U-4CR) reaction. The interactions of the amides with calf thymus deoxyribonucleic acid (ct-DNA) have been investigated in the Tris-HCl buffer (pH=7.4) using viscometric, spectroscopic, thermal denaturation studies, and also molecular docking. By UV-Vis absorption spectroscopy studies, adding CT-DNA to the compound solution caused the hypochromism indicates that there are interactions between the compounds and DNA base pairs. In competitive fluorescence with methylene blue as an intercalator probe, adding compounds to DNA-MB solution caused an increase in emission spectra of the complex. This could be because of compound replacing, with similar binding mode of MB, between the DNA base pairs due to release of bonded MB molecules from DNA-MB complex. Thermal denaturation studies and viscometric experiments also indicated that all three investigated compounds bind to CT-DNA by non-classical intercalation mode. Additionally, molecular docking technique predicted partial intercalation binding mode for the compounds. Also, the highest binding energy was obtained for compound 5a. These results are in agreement with results obtained by empirical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  16. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  17. Assessment of the amide-I local modes in gamma- and beta-turns of peptides.

    Science.gov (United States)

    Wang, Jianping

    2009-07-14

    The amide-I local modes, mainly the C[double bond, length as m-dash]O stretching vibrations, form the structural basis of femtosecond 2D IR spectroscopy in characterizing backbone structures and dynamics of peptides and proteins. In this work, a density functional theory (DFT) level of computational assessment of the amide-I local modes in oligomers mostly in the turn conformations was carried out. It is shown that local mode properties, including transition frequencies and transition dipole magnitudes and orientations, are slightly conformational dependent. However, the distributions of these properties in the peptide oligomers are narrow and have mean values almost identical to those from an isolated peptide monomer, justifying the prevalent use of a uniform local mode in modeling the 1D and 2D IR spectra. In addition, it is shown that the transition dipole magnitude and orientation of the peptide monomer predicted by the DFT calculations can be well approximated by electrostatic potential-based transition charge schemes, e.g. Merz-Singh-Kollman, CHELP, as well as CHELPG.

  18. Metal extraction by amides of carboxylic acids

    International Nuclear Information System (INIS)

    Skorovarov, D.I.; Chumakova, G.M.; Rusin, L.I.; Ul'anov, V.S.; Sviridova, R.A.; Sviridov, A.L.

    1988-01-01

    Extraction ability of various amides was studied. Data on extraction of rare earths, vanadium, molybdenum, rhenium, uranium, niobium, tantalum by N,N-dibutyl-amides of acetic, nonanic acids and fatly synthetic acids of C 7 -C 9 fractions are presented. Effect of salting-out agents, inorganic acid concentrations on extraction process was studied. Potential ability of using amides of carboxylic acids for extractional concentration of rare earths as well as for recovery and separation of iron, rhenium, vanadium, molybdenum, uranium, niobium, and tantalum was shown

  19. Structural, photophysical, and theoretical studies of imidazole-based excited-state intramolecular proton transfer molecules

    Science.gov (United States)

    Somasundaram, Sivaraman; Kamaraj, Eswaran; Hwang, Su Jin; Park, Sanghyuk

    2018-02-01

    Imidazole-based excited state intramolecular proton transfer (ESIPT) blue fluorescent molecules, 2-(1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Cl) and 2-(1-(4-bromophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Br) were designed and synthesized by Debus-Radziszewski method through a one-pot multicomponent reaction in high yield. The synthesized compounds were fully characterized by 1H NMR, 13C NMR, FT-IR, FT-Raman, GC-Mass, and elemental analysis. The molecular structures in single crystal lattice were studied by X-ray crystallographic analysis. Because of the intramolecular hydrogen bonding, hydroxyphenyl group is planar to the central imidazole ring, while the other phenyl rings gave distorted conformations to the central heterocyclic ring. BHPI-Cl and BHPI-Br molecules showed intense ESIPT fluorescence at 480 nm, because the two twisted phenyl rings on 4- and 5-positions have reduced intermolecular interaction between adjacent molecules in each crystal through a head-to-tail packing manner. Quantum chemical calculations of energies were carried out by (TD-)DFT using B3LYP/6-31G(d, p) basis set to predict the electronic absorption spectra of the compounds, and they showed good agreement between the computational and the experimental values. The thermal analyses of the synthesized molecules were also carried out by TGA/DSC method.

  20. Spectral response of crystalline acetanilide and N -methylacetamide: Vibrational self-trapping in hydrogen-bonded crystals

    Science.gov (United States)

    Edler, Julian; Hamm, Peter

    2004-06-01

    Femtosecond pump-probe and Fourier transform infrared spectroscopy is applied to compare the spectral response of the amide I band and the NH-stretching band of acetanilide (ACN) and N -methylacetamide (NMA), as well as their deuterated derivatives. Both molecules form hydrogen-bonded molecular crystals that are regarded to be model systems for polypeptides and proteins. The amide I bands of both ACN and NMA show a temperature-dependent sideband, while the NH bands are accompanied by a sequence of equidistantly spaced satellite peaks. These spectral anomalies are interpreted as a signature of vibrational self-trapping. Two different types of states can be identified in both crystals in the pump-probe signal: a delocalized free-exciton state and a set of localized self-trapped states. The phonons that mediate self-trapping in ACN and deuterated ACN are identified by their temperature dependence, confirming our previous results. The study shows that the substructure of the NH band in NMA (amide A and amide B bands) originates, at least partly, from vibrational self-trapping and not, as often assumed, from a Fermi resonance.

  1. Solvent Exchange Rates of Side-chain Amide Protons in Proteins

    International Nuclear Information System (INIS)

    Rajagopal, Ponni; Jones, Bryan E.; Klevit, Rachel E.

    1998-01-01

    Solvent exchange rates and temperature coefficients for Asn/Gln side-chain amide protons have been measured in Escherichia coli HPr. The protons of the eight side-chain amide groups (two Asn and six Gln) exhibit varying exchange rates which are slower than some of the fast exchanging backbone amide protons. Differences in exchange rates of the E and Z protons of the same side-chain amide group are obtained by measuring exchange rates at pH values > 8. An NOE between a side-chain amide proton and a bound water molecule was also observed

  2. Coherent pulse and environmental characteristics of the intramolecular proton-transfer lasers based on 3-hydroxyflavone and fisetin

    Science.gov (United States)

    Parthenopoulos, Dimitri A.; Kasha, Michael

    1988-04-01

    Coherent stimulated emission and laser beams of good quality are reported for 3-hydroxyfiavone (3-HF) and a polyhydroxyfiavone, risetin, acting as intramolecular proton-transfer lasers. The laser beam quality of these materials is comparable to that observed for rhodamine-6G. Studies of amplified spontaneous emission of 3-hydroxyflavone in highly polar solvents are also reported. The very large changes in dipole moment upon electronic excitation of 3-HF expected according to ZINDO semiempirical molecular orbital calculations fail to give rise to spectral shifts in the high dielectric constant solvents. The results are interpreted as a masking spectral effect caused by specific hydrogen bonding by the solvent.

  3. Intramolecular and Transannular Diels-Alder Reactions

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Ascic, Erhad

    2014-01-01

    Few reactions can compete with the Diels-Alder (DA) [4+2] cycloaddition for the rapid and efficient generation of molecular complexity. The DA reaction is atom-economic and stereospecific, as well as diastereo- and regioselective. The intramolecular version (IMDA) of the DA cycloaddition and its...... and dienophile, methods for acceleration of IMDA reactions (such as use of high pressure) and catalysis (using oxophilic or carbophilic metal complexes, Brønsted acids, and enzymes). The use of furans as diene components (IMDAF), intramolecular hetero-DA (IMHDA) and IMDA reactions with inverse electron demand...... are also covered. Applications of IMDA to asymmetric synthesis (from substrate control through to enantioselective catalysis, including organocatalysis) are presented, along with tandem sequences involving IMDA cycloaddition. A theme pervading the whole chapter is the use of IMDA reactions for the total...

  4. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  5. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    OpenAIRE

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  6. Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.

    Science.gov (United States)

    Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji

    2014-12-07

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  7. Effect of aromatization of the ring on intramolecular H-bond in 3-hydroxy-4-formylo derivatives of fulvene

    Science.gov (United States)

    Oziminski, Wojciech P.; Krygowski, Tadeusz M.

    2011-06-01

    DFT optimization of H-bonded 3-hydroxy-4-formylo derivatives of fulvene aromatized by amino substitution at C6 or by complexation with Li atom was performed using the B3LYP functional together with 6-311+G(d,p) basis set. Several aromaticity indicators (HOMA, NICS, pEDA and Shannon aromaticity) confirm an increase of aromaticity in the sequence: fulvene, 6-aminofulvene, Li-complex with fulvene and in the case of H-bonded 3-hydroxy-4-formylo derivatives, exhibited in the same sequence an increase of H-bond strength estimated by direct comparison of energy for H-bonded and open conformations, as well as by using AIM based electron densities at bond critical point.

  8. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide

    Science.gov (United States)

    Abraham, Jose P.; Sajan, D.; Joe, I. Hubert; Jayakumar, V. S.

    2008-11-01

    The infrared absorption, Raman spectra and SERS spectra of p-amino acetanilide have been analyzed with the aid of density functional theory calculations at B3LYP/6-311G(d,p) level. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the synthesized molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Computed geometries reveal that the PAA molecule is planar, while secondary amide group is twisted with respect to the phenyl ring is found, upon hydrogen bonding. The hyperconjugation of the C dbnd O group with adjacent C-C bond and donor-acceptor interaction associated with the secondary amide have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation and hyperconjugation. The existence of intramolecular C dbnd O⋯H hydrogen bonded have been investigated by means of the natural bonding orbital (NBO) analysis. The influence of the decrease of N-H and C dbnd O bond orders and increase of C-N bond orders due to donor-acceptor interaction has been identified in the vibrational spectra. The SERS spectral analysis reveals that the large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'atleast vertical' configuration, with the ring perpendicular to the silver surface.

  9. CHROMIUM(II) AMIDES - SYNTHESIS AND STRUCTURES

    NARCIS (Netherlands)

    EDEMA, JJH; GAMBAROTTA, S; MEETSMA, A; SPEK, AL; SMEETS, WJJ; CHIANG, MY

    1993-01-01

    A novel class of mono- and di-meric chromium(II) amides has been prepared and characterized. Reaction of [CrCl2(thf)2] (thf = tetrahydrofuran) with 2 equivalents of M(NR2) (R = C6H11, Pr(i), Ph, or phenothiazinyl; M = Li or Na) allowed the formation of the homoleptic amides [{Cr(mu-NR2)(NR2)}2] (R =

  10. Rotational Spectrum, Conformational Composition, Intramolecular Hydrogen Bonding, and Quantum Chemical Calculations of Mercaptoacetonitrile (HSCH2C≡N), a Compound of Potential Astrochemical Interest.

    Science.gov (United States)

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2016-03-31

    The microwave spectra of mercaptoacetonitrile (HSCH2C≡N) and one deuterated species (DSCH2C≡N) were investigated in the 7.5-124 GHz spectral interval. The spectra of two conformers denoted SC and AP were assigned. The H-S-C-C chain of atoms is synclinal in SC and anti-periplanar in AP. The ground state of SC is split into two substates separated by a comparatively small energy difference resulting in closely spaced transitions with equal intensities. Several transitions of the parent species of SC deviate from Watson's Hamiltonian. Only slight improvements were obtained using a Hamiltonian that takes coupling between the two substates into account. Deviations from Watson's Hamiltonian were also observed for the parent species of AP. However, the spectrum of the deuterated species, which was investigated only for the SC conformer, fits satisfactorily to Watson's Hamiltonian. Relative intensity measurements found SC to be lower in energy than AP by 3.8(3) kJ/mol. The strength of the intramolecular hydrogen bond between the thiol and cyano groups was estimated to be ∼2.1 kJ/mol. The microwave work was augmented by quantum chemical calculations at CCSD and MP2 levels using basis sets of minimum triple-ζ quality. Mercaptoacetonitrile has astrochemical interest, and the spectra presented herein should be useful for a potential identification of this compound in the interstellar medium. Three different ways of generating mercaptoacetonitrile from compounds already found in the interstellar medium were explored by quantum chemical calculations.

  11. Role of hydrogen bonds in the reaction mechanism of chalcone isomerase.

    Science.gov (United States)

    Jez, Joseph M; Bowman, Marianne E; Noel, Joseph P

    2002-04-23

    In flavonoid, isoflavonoid, and anthocyanin biosynthesis, chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into (S)-flavanones with a second-order rate constant that approaches the diffusion-controlled limit. The three-dimensional structures of alfalfa CHI complexed with different flavanones indicate that two sets of hydrogen bonds may possess critical roles in catalysis. The first set of interactions includes two conserved amino acids (Thr48 and Tyr106) that mediate a hydrogen bond network with two active site water molecules. The second set of hydrogen bonds occurs between the flavanone 7-hydroxyl group and two active site residues (Asn113 and Thr190). Comparison of the steady-state kinetic parameters of wild-type and mutant CHIs demonstrates that efficient cyclization of various chalcones into their respective flavanones requires both sets of contacts. For example, the T48A, T48S, Y106F, N113A, and T190A mutants exhibit 1550-, 3-, 30-, 7-, and 6-fold reductions in k(cat) and 2-3-fold changes in K(m) with 4,2',4'-trihydroxychalcone as a substrate. Kinetic comparisons of the pH-dependence of the reactions catalyzed by wild-type and mutant enzymes indicate that the active site hydrogen bonds contributed by these four residues do not significantly alter the pK(a) of the intramolecular cyclization reaction. Determinations of solvent kinetic isotope and solvent viscosity effects for wild-type and mutant enzymes reveal a change from a diffusion-controlled reaction to one limited by chemistry in the T48A and Y106F mutants. The X-ray crystal structures of the T48A and Y106F mutants support the assertion that the observed kinetic effects result from the loss of key hydrogen bonds at the CHI active site. Our results are consistent with a reaction mechanism for CHI in which Thr48 polarizes the ketone of the substrate and Tyr106 stabilizes a key catalytic water molecule. Hydrogen bonds contributed by Asn113 and Thr190 provide additional

  12. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.

    Science.gov (United States)

    Poelma, Saemi O; Burnett, G Leslie; Discekici, Emre H; Mattson, Kaila M; Treat, Nicolas J; Luo, Yingdong; Hudson, Zachary M; Shankel, Shelby L; Clark, Paul G; Kramer, John W; Hawker, Craig J; Read de Alaniz, Javier

    2016-08-19

    Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity.

  13. Unusual NHC-Iridium(I) Complexes and Their Use in the Intramolecular Hydroamination of Unactivated Aminoalkenes

    KAUST Repository

    Sipos, Gellé rt; Ou, Arnold; Skelton, Brian W.; Falivene, Laura; Cavallo, Luigi; Dorta, Reto

    2016-01-01

    N-heterocyclic carbene (NHC) ligands with naphthyl side chains were employed for the synthesis of unsaturated, yet isolable [(NHC)Ir(cod)]+ (cod=1,5-cyclooctadiene) complexes. These compounds are stabilised by an interaction of the aromatic wingtip that leads to a sideways tilt of the NHC-Ir bond. Detailed studies show how the tilting of such N-heterocyclic carbenes affects the electronic shielding properties of the carbene carbon atom and how this is reflected by significant upfield shifts in the 13CNMR signals. When employed in the intramolecular hydroamination, these [(NHC)Ir(cod)]+ species show very high catalytic activity under mild reaction conditions. An enantiopure version of the catalyst system produces pyrrolidines with excellent enantioselectivities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Unusual NHC-Iridium(I) Complexes and Their Use in the Intramolecular Hydroamination of Unactivated Aminoalkenes

    KAUST Repository

    Sipos, Gellért

    2016-04-10

    N-heterocyclic carbene (NHC) ligands with naphthyl side chains were employed for the synthesis of unsaturated, yet isolable [(NHC)Ir(cod)]+ (cod=1,5-cyclooctadiene) complexes. These compounds are stabilised by an interaction of the aromatic wingtip that leads to a sideways tilt of the NHC-Ir bond. Detailed studies show how the tilting of such N-heterocyclic carbenes affects the electronic shielding properties of the carbene carbon atom and how this is reflected by significant upfield shifts in the 13CNMR signals. When employed in the intramolecular hydroamination, these [(NHC)Ir(cod)]+ species show very high catalytic activity under mild reaction conditions. An enantiopure version of the catalyst system produces pyrrolidines with excellent enantioselectivities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    Science.gov (United States)

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  16. Crystal structure of 2-hy-droxy-imino-2-(pyridin-2-yl)-N'-[1-(pyridin-2-yl)ethyl-idene]acetohydrazide.

    Science.gov (United States)

    Plutenko, Maxym O; Lampeka, Rostislav D; Haukka, Matti; Nordlander, Ebbe

    2014-12-01

    The mol-ecule of the title compound, C14H13N5O2, is approximately planar (r.m.s deviation for all non-H atoms = 0.093 Å), with the planes of the two pyridine rings inclined to one another by 5.51 (7)°. The oxime group is syn to the amide group, probably due to the formation of an intra-molecular N-H⋯N hydrogen bond that forms an S(6) ring motif. In the crystal, mol-ecules are linked by pairs of bifurcated O-H⋯(O,N) hydrogen bonds, forming inversion dimers. The latter are linked via C-H⋯O and C-H⋯N hydrogen bonds, forming sheets lying parallel to (502). The sheets are linked via π-π stacking inter-actions [inter-centroid distance = 3.7588 (9) Å], involving the pyridine rings of inversion-related mol-ecules, forming a three-dimensional structure.

  17. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Kyo; Shin, Won Kyu; An, Duk Keun [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2013-05-15

    In conclusion, we have developed a facile, alternative method for the formation of secondary and tertiary amides including morpholine amides from acid chlorides by using diisobutyl(amino)aluminum under mild reaction conditions. The advantages of the present method include the high product yields, simple experimental procedure, short reaction time (10 min), and the fact that an excess amount of amine is not required. This result suggests that our new method can provide an alternative method for the synthesis of useful amides from acid chlorides. Amides are valuable functional groups in biological, agrochemical, and pharmaceutical molecules. Several amides such as Weinreb amides, morpholine amides, and pyrrolidine amides are useful intermediates for the synthesis of aldehydes or ketones. Among them, morpholine amides are a cheap and good substitute for Weinreb amides.

  18. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum

    International Nuclear Information System (INIS)

    Park, Jae Kyo; Shin, Won Kyu; An, Duk Keun

    2013-01-01

    In conclusion, we have developed a facile, alternative method for the formation of secondary and tertiary amides including morpholine amides from acid chlorides by using diisobutyl(amino)aluminum under mild reaction conditions. The advantages of the present method include the high product yields, simple experimental procedure, short reaction time (10 min), and the fact that an excess amount of amine is not required. This result suggests that our new method can provide an alternative method for the synthesis of useful amides from acid chlorides. Amides are valuable functional groups in biological, agrochemical, and pharmaceutical molecules. Several amides such as Weinreb amides, morpholine amides, and pyrrolidine amides are useful intermediates for the synthesis of aldehydes or ketones. Among them, morpholine amides are a cheap and good substitute for Weinreb amides

  19. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  20. Tetrahydrofuran Calpha-tetrasubstituted amino acids: two consecutive beta-turns in a crystalline linear tripeptide.

    Science.gov (United States)

    Maity, Prantik; Zabel, Manfred; König, Burkhard

    2007-10-12

    The synthesis of tetrahydrofuran Calpha-tetrasubstituted amino acids (TAAs) and their effect on the conformation in small peptides are reported. The synthesis starts from the protein amino acid methionine, which is protected at the C and N terminus and converted into the corresponding sulfonium salt by alkylation. Simple base treatment in the presence of an aryl aldehyde leads to the formation of tetrahydrofuran tetrasubstituted Calpha-amino acids in a highly diastereoselective (trans/cis ratio up to 97:3) reaction with moderate to good yields (35-78%) depending on the aldehyde used. Palladium-catalyzed coupling reactions allow a subsequent further functionalization of the TAA. The R,S,S-TAA-Ala dipeptide amide adopts a beta-turn type I conformation, whereas its S,R,S isomer does not. The R,S,S-Gly-TAA-Ala tripeptide amide shows in the solid state and in solution a conformation of two consecutive beta-turn type III structures, stabilized by i+3-->i intramolecular hydrogen bonds.

  1. Discovery of novel N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent RORγt inhibitors.

    Science.gov (United States)

    Wang, Yonghui; Cai, Wei; Zhang, Guifeng; Yang, Ting; Liu, Qian; Cheng, Yaobang; Zhou, Ling; Ma, Yingli; Cheng, Ziqiang; Lu, Sijie; Zhao, Yong-Gang; Zhang, Wei; Xiang, Zhijun; Wang, Shuai; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Xu, Yan; Zhang, Jing; Gao, Ruina; Huxdorf, Melanie; Xiang, Jia-Ning; Zhong, Zhong; Elliott, John D; Leung, Stewart; Lin, Xichen

    2014-01-15

    Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Science.gov (United States)

    2010-07-01

    ... amide (generic). 721.10063 Section 721.10063 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under this...

  3. Friedel-Crafts Acylation with Amides

    Science.gov (United States)

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  4. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    Science.gov (United States)

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  5. Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping?

    Science.gov (United States)

    Edler, J.; Hamm, P.

    2003-08-01

    Two-dimensional infrared (2D-IR) spectroscopy is applied to investigate acetanilide, a molecular crystal consisting of quasi-one-dimensional hydrogen bonded peptide units. The amide-I band exhibits a double peak structure, which has been attributed to different mechanisms including vibrational self-trapping, a Fermi resonance, or the existence of two conformational substates. The 2D-IR spectrum of crystalline acetanilide is compared with that of two different molecular systems: (i) benzoylchloride, which exhibits a strong symmetric Fermi resonance and (ii) N-methylacetamide dissolved in methanol which occurs in two spectroscopically distinguishable conformations. Both 2D-IR spectra differ significantly from that of crystalline acetanilide, proving that these two alternative mechanisms cannot account for the anomalous spectroscopy of crystalline acetanilide. On the other hand, vibrational self-trapping of the amide-I band can naturally explain the 2D-IR response.

  6. Biosynthesis and function of simple amides in Xenorhabdus doucetiae.

    Science.gov (United States)

    Bode, Edna; He, Yue; Vo, Tien Duy; Schultz, Roland; Kaiser, Marcel; Bode, Helge B

    2017-11-01

    Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long-chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides was tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Intramolecular interactions in a new tris-dithizonatocobalt(III) complex

    International Nuclear Information System (INIS)

    Eschwege, Karel G. von; As, Lydia van; Joubert, Chris C.; Swarts, Jannie C.; Aquino, Manuel A.S.; Cameron, T. Stanley

    2013-01-01

    Graphical abstract: Electrochemically Co(HDz) 3 (5), show three main ligand-based redox processes, two reductions and one oxidation. Ligand oxidations can be resolved into three components highlighting effective intramolecular interactions between molecular fragments; a spectroelectrochemical study of (5) highlighted spectroscopic changes during the six observed redox steps. - Highlights: • Comparative CV's of dithizone (1), PhHg(HDz) and new Co(HDz) 3 (5), is discussed. • One oxidation and two reductions per ligand and a Co III/II couple for (5) are observed. • Mono- and tris-coordinated PhHg(HDz) and (5) have stable metal thioether bonds. • Crystal structure details explain good resolution between ligand redox processes. • Spectro-electrochemistry of (5) highlights spectroscopic properties of redox products. - Abstract: The reactions between dithizone (H 2 Dz (1)) or potassium dithizonate (KHDz (3)), and [Co(H 2 O) 6 ] 2+ (6), in acetone or methanol to liberate tris-dithizonatocobalt(III), Co(HDz) 3 (5), are described. The structure of (5) was confirmed by single crystal X-ray analyses and shows bidentate coordination to Co III via S and N donor atoms for all three HDz − ligands. A comparative voltammetric and spectro-electrochemical study revealed that (1) can be oxidised in two one-electron transfer steps, to generate a disulphide first and then HDz + . In contrast, upon complexation with cobalt, the free mercaptan group of (1) becomes a stable “metal thioether”, Co-S-C, which effectively prevents disulphide formation in all three ligands of (5) upon electrochemical oxidation. As a result, each ligand of Co(HDz) 3 shows just one oxidation process. Intramolecular communication between ligands is evident because the three separate ligand-based oxidations are well resolved. Two irreversible ligand reduction steps, each consisting of three unresolved components related to each of the three ligands, were also observed. The Co II /Co III couple

  8. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  9. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10191 Amides, coco, N-[3-(dibutylamino)propyl]. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco...

  10. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    Science.gov (United States)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  11. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    Science.gov (United States)

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  12. Experimental and theoretical understanding of the gas phase oxidation of atmospheric amides with OH radicals: kinetics, products, and mechanisms.

    Science.gov (United States)

    Borduas, Nadine; da Silva, Gabriel; Murphy, Jennifer G; Abbatt, Jonathan P D

    2015-05-14

    Atmospheric amides have primary and secondary sources and are present in ambient air at low pptv levels. To better assess the fate of amides in the atmosphere, the room temperature (298 ± 3 K) rate coefficients of five different amides with OH radicals were determined in a 1 m(3) smog chamber using online proton-transfer-reaction mass spectrometry (PTR-MS). Formamide, the simplest amide, has a rate coefficient of (4.44 ± 0.46) × 10(-12) cm(3) molec(-1) s(-1) against OH, translating to an atmospheric lifetime of ∼1 day. N-methylformamide, N-methylacetamide and propanamide, alkyl versions of formamide, have rate coefficients of (10.1 ± 0.6) × 10(-12), (5.42 ± 0.19) × 10(-12), and (1.78 ± 0.43) × 10(-12) cm(3) molec(-1) s(-1), respectively. Acetamide was also investigated, but due to its slow oxidation kinetics, we report a range of (0.4-1.1) × 10(-12) cm(3) molec(-1) s(-1) for its rate coefficient with OH radicals. Oxidation products were monitored and quantified and their time traces were fitted using a simple kinetic box model. To further probe the mechanism, ab initio calculations are used to identify the initial radical products of the amide reactions with OH. Our results indicate that N-H abstractions are negligible in all cases, in contrast to what is predicted by structure-activity relationships. Instead, the reactions proceed via C-H abstraction from alkyl groups and from formyl C(O)-H bonds when available. The latter process leads to radicals that can readily react with O2 to form isocyanates, explaining the detection of toxic compounds such as isocyanic acid (HNCO) and methyl isocyanate (CH3NCO). These contaminants of significant interest are primary oxidation products in the photochemical oxidation of formamide and N-methylformamide, respectively.

  13. 1,1,3,3-Tetramethylguanidine solvated lanthanide aryloxides: pre-catalysts for intramolecular hydroalkoxylation.

    Science.gov (United States)

    Janini, Thomas E; Rakosi, Robert; Durr, Christopher B; Bertke, Jeffrey A; Bunge, Scott D

    2009-12-21

    The synthesis and structural characterization of six 1,1,3,3-tetramethylguanidine (H-TMG) solvated lanthanide aryloxide complexes are reported. Ln[N{Si(CH3)3}2]3 (Ln = Nd, La) was reacted with two equivalents of both H-TMG and HOAr {HOAr = HOC6H2(CMe3)2-2,6 (H-DBP) or HOC6H2(CMe3)2-2,6-CH3-4 (H-4MeDBP)} and one equivelent of ethanol (HOEt) to yield the corresponding [Nd(H-TMG)2(4MeDBP)2(OEt)] (1) and [La(H-TMG)2(DBP)2(OEt)] (2). Compounds 1 and 2 were further reacted with 4-pentyn-1-ol {HO(CH2)3C[triple bond]CH} to isolate [Nd(H-TMG)2(4MeDBP)2{O(CH2)3C[triple bond]CH}] (3) and [La(H-TMG)2(DBP)2{O(CH2)3C[triple bond]CH}] (4), respectively. Three equivalents of HOAr and one equivalent of H-TMG were additionally reacted with Ln[N{Si(CH3)3}2]3 to generate [Nd(4MeDBP)3(H-TMG)] (5) and [La(DBP)3(H-TMG)] (6). In order to examine the formation of 1-6, the interaction of H-TMG and HOAr was further examined in solution and the hydrogen bonded complexes (H-TMG:HOAr), 7 and 8, were isolated. Upon successful isolation of 1-6, the utility of 1, 2, 4 and 5 as pre-catalysts for the intramolecular hydroalkoxylation of 4-pentyn-1-ol was investigated. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and 1H and 13C NMR investigations.

  14. Conductance and activation energy for electron transport in series and parallel intramolecular circuits.

    Science.gov (United States)

    Hsu, Liang-Yan; Wu, Ning; Rabitz, Herschel

    2016-11-30

    We investigate electron transport through series and parallel intramolecular circuits in the framework of the multi-level Redfield theory. Based on the assumption of weak monomer-bath couplings, the simulations depict the length and temperature dependence in six types of intramolecular circuits. In the tunneling regime, we find that the intramolecular circuit rule is only valid in the weak monomer coupling limit. In the thermally activated hopping regime, for circuits based on two different molecular units M a and M b with distinct activation energies E act,a > E act,b , the activation energies of M a and M b in series are nearly the same as E act,a while those in parallel are nearly the same as E act,b . This study gives a comprehensive description of electron transport through intramolecular circuits from tunneling to thermally activated hopping. We hope that this work can motivate additional studies to design intramolecular circuits based on different types of building blocks, and to explore the corresponding circuit laws and the length and temperature dependence of conductance.

  15. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    International Nuclear Information System (INIS)

    Freire, J J

    2008-01-01

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches

  16. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es

    2008-07-16

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.

  17. 17O NMR Studies of the Solvation State of cissolidustrans Isomers of Amides and Model Protected Peptides

    Science.gov (United States)

    Gerothanassis; Vakka; Troganis

    1996-06-01

    17O shielding constants have been utilized to investigate solvation differences of the cissolidustrans isomers of N-methylformamide (NMF), N-ethylformamide (NEF), and tert-butylformamide (TBF) in a variety of solvents with particular emphasis on aqueous solution. Comparisons are also made with protected peptides of the formulas CH3CO-YOH, CH3CO-Y-NHR (Y = Pro, Sar), and CH3CO-Y-Z-NHR (Y = Pro; Z = D-Ala) selectively enriched in 17O at the acetyl oxygen atom. Hydration at the amide oxygen induces large and specific modifications of the 17O shielding constants, which are practically the same for the cis and trans isomers of NMF, NEF, and the protected peptides. For tert-butylformamide, the strong deshielding of the trans isomer compared to that of the cis isomer may be attributed to an out-of-plane (torsion-angle) deformation of the amide bond andsolidusor a significant reduction of solvation of the trans isomer due to steric inhibition of the bulky tert-butyl group. Good linear correlation between delta(17O) of amides and delta(17O) of acetone was found for different solvents which have varying dielectric constants and solvation abilities. Sum-over-states calculations, within the solvaton model, underestimate effects of the dielectric constant of the medium on 17O shielding, while finite-perturbation-theory calculations give good agreement with the experiment.

  18. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of Bacillus cereus

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, Antoni P.A.; Poor, Catherine B.; Jureller, Justin E.; Budzik, Jonathan M.; He, Chuan; Schneewind, Olaf (UC)

    2012-09-05

    Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated cross-linking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA -- CNA{sub 1}, CNA{sub 2}, XNA and CNA{sub 3} -- each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showed that mutants unable to form the intramolecular isopeptide bonds in the CNA2 or CNA3 domains retain the ability to form pilus bundles. A mutant lacking the CNA{sub 1} isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp{sup 312}Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp{sup 312}Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA{sub 1} and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure.

  19. Supramolecular packing and polymorph screening of N-isonicotinoyl arylketone hydrazones with phenol and amino modifications

    Science.gov (United States)

    Hean, Duane; Michael, Joseph P.; Lemmerer, Andreas

    2018-04-01

    Thirteen structural variants based on the (E)-N‧-(1-arylethylidene)pyridohydrazide template were prepared, investigated and screened for possible polymorphic behaviour. Four variants showed from Differential Scanning Calorimetry Scans thermal events indicative of new solid-state phases. The thirteen variants included substituents R = sbnd OH or sbnd NH2 placed at ortho, meta and para positions on the phenyl ring; and shifting the pyridyl nitrogen between positions 4-, 3- and 2-. The crystal structures of twelve of the compounds were determined to explore their supramolecular structures. The outcomes of these modifications demonstrated that the pyridyl nitrogen at the 2- position is 'locked' by forming a hydrogen bond with the amide hydrogen; while placing the pyridyl nitrogen at positions 3- and 4- offers a greater opportunity for hydrogen bonding with neighbouring molecules. Such interactions include Osbnd H⋯N, Nsbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, Nsbnd H⋯π, π⋯π stacking, as well as other weaker interactions such as Csbnd H⋯N, Csbnd H⋯O, Csbnd H⋯N(pyridyl). When OH or NH2 donors are placed in the ortho position, an intramolecular hydrogen bond is formed between the acceptor hydrazone nitrogen and the respective donor. The meta- and para-positioned donors form an unpredictable array of supramolecular structures by forming hydrogen-bonded chains with the pyridyl nitrogen and carbonyl acceptors respectively. In addition to the intramolecular and chain hydrogen bond formation demonstrated throughout the crystal structures under investigation, larger order hydrogen-bonded rings were also observed in some of the supramolecular aggregations. The extent of the hydrogen-bonded ring formations range from two to six molecular participants depending on the specific crystal structure.

  20. Nearest-Neighbor Interactions and Their Influence on the Structural Aspects of Dipeptides

    Directory of Open Access Journals (Sweden)

    Gunajyoti Das

    2013-01-01

    Full Text Available In this theoretical study, the role of the side chain moiety of C-terminal residue in influencing the structural and molecular properties of dipeptides is analyzed by considering a series of seven dipeptides. The C-terminal positions of the dipeptides are varied with seven different amino acid residues, namely. Val, Leu, Asp, Ser, Gln, His, and Pyl while their N-terminal positions are kept constant with Sec residues. Full geometry optimization and vibrational frequency calculations are carried out at B3LYP/6-311++G(d,p level in gas and aqueous phase. The stereo-electronic effects of the side chain moieties of C-terminal residues are found to influence the values of Φ and Ω dihedrals, planarity of the peptide planes, and geometry around the C7   α-carbon atoms of the dipeptides. The gas phase intramolecular H-bond combinations of the dipeptides are similar to those in aqueous phase. The theoretical vibrational spectra of the dipeptides reflect the nature of intramolecular H-bonds existing in the dipeptide structures. Solvation effects of aqueous environment are evident on the geometrical parameters related to the amide planes, dipole moments, HOMOLUMO energy gaps as well as thermodynamic stability of the dipeptides.

  1. Hydrogen bond dynamics governs the effective photoprotection mechanism of plant phenolic sunscreens.

    Science.gov (United States)

    Liu, Fang; Du, Likai; Lan, Zhenggang; Gao, Jun

    2017-02-15

    Sinapic acid derivatives are important sunscreen species in natural plants, which could provide protection from solar UV radiation. Using a combination of ultrafast excited state dynamics, together with classical molecular dynamics studies, we demonstrate that there is direct coupling of hydrogen bond motion with excited state photoprotection dynamics as part of the basic mechanism in solution. Beyond the intra-molecular degree of freedom, the inter-molecular motions on all timescales are potentially important for the photochemical or photophysical events, ranging from the ultrafast hydrogen bond motion to solvent rearrangements. This provides not only an enhanced understanding of the anomalous experimental spectroscopic results, but also the key idea in the development of sunscreen agents with improved photo-chemical properties. We suggest that the hydrogen bond dynamics coupled excited state photoprotection mechanism may also be possible in a broad range of bio-related molecules in the condensed phase.

  2. The controlled formation and cleavage of an intramolecular d8-d8 Pt-Pt interaction in a dinuclear cycloplatinated molecular "pivot-hinge".

    Science.gov (United States)

    Koo, Chi-Kin; Wong, Ka-Leung; Lau, Kai-Cheung; Wong, Wai-Yeung; Lam, Michael Hon-Wah

    2009-08-03

    The bis(diphenylphosphino)methane (dppm)-bridged dinuclear cycloplatinated complex {[Pt(L)](2)(mu-dppm)}(2+) (Pt(2)dppm; HL: 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine) demonstrates interesting reversible "pivot-hinge"-like intramolecular motions in response to the protonation/deprotonation of L. In its protonated "closed" configuration, the two platinum(II) centers are held in position by intramolecular d(8)-d(8) Pt-Pt interaction. In its deprotonated "open" configuration, such Pt-Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)](2)(mu-dchpm)}(2+) (Pt(2)dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic pi-pi interactions between the phenyl moieties of the mu-dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt-Pt interaction in Pt(2)dppm. In the case of Pt(2)dchpm, spectroscopic and spectrofluorometric titrations as well as X-ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room-temperature triplet metal-metal-to-ligand charge-transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1-pyrazolyl-N moiety and the methylene CH and phenyl C-H of the mu-dppm. The "open" configuration of the deprotonated Pt(2)dppm was estimated to be 19 kcal mol(-1) more stable than its alternative "closed" configuration. On the other hand, the open configuration of the deprotonated Pt(2)dchpm was 6 kcal mol(-1) less stable than its alternative closed configuration.

  3. Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups

    Science.gov (United States)

    Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia

    2018-05-01

    Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.

  4. Synthesis of Secondary Aromatic Amides via Pd-Catalyzed Aminocarbonylation of Aryl Halides Using Carbamoylsilane as an Amide Source.

    Science.gov (United States)

    Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin

    2017-11-03

    Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.

  5. Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using SmI2/Amine/H2O under Mild Conditions

    Science.gov (United States)

    2014-01-01

    Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C–N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C–O cleavage products are not formed under the reaction conditions. The observed reactivity is opposite to the electrophilicity of polar carbonyl groups resulting from the nX → π*C=O (X = O, N) conjugation. Mechanistic studies suggest that coordination of Sm to the carbonyl and then to Lewis basic nitrogen in the tetrahedral intermediate facilitate electron transfer and control the selectivity of the C–N/C–O cleavage. Notably, the method provides direct access to acyl-type radicals from unactivated amides under mild electron transfer conditions. PMID:24460078

  6. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: Synthesis, cell compatibility, and intracellular anticancer drug delivery

    NARCIS (Netherlands)

    Sun, H.; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A.; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-01-01

    A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate

  7. Synthesis of amide isosteres of schweinfurthin-based stilbenes.

    Science.gov (United States)

    Stockdale, David P; Beutler, John A; Wiemer, David F

    2017-10-15

    The schweinfurthins are plant-derived stilbenes with an intriguing profile of anti-cancer activity. To obtain analogues of the schweinfurthins that might preserve the biological activity but have greater water solubility, a formal replacement of the central olefin with an amide has been explored. Two pairs of amides have been prepared, each containing the same hexahydroxanthene "left half" joined through an amide linkage to two different "right halves." In each series, the amide has been inserted in both possible orientations, placing the carbonyl group on the tricyclic ABC ring system and the amine on the D-ring, or placing the amine on the hexahydroxanthene and the carbonyl group on the D-ring. The four new schweinfurthin analogues have been tested in the NCI 60 cell line screen, and in both cases the more active isomer carried the carbonyl group on the C-ring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed

  9. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    Science.gov (United States)

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  10. Synthesis of 3H-3-azido-salicyl-N-(n-decyl) amide

    International Nuclear Information System (INIS)

    Lu Bin; Xu Jianxing; Chen Shizhi

    2000-01-01

    A novel method for the synthesis of molecular probe of ubiquinone-binding protein is described. With 3-nitrosalicylic acid and decylamine as initial compounds and under the existence of DCC, the 3-nitro-salicyl-N-(n-decyl)amide is synthesized at room temperature. Then, 3-nitro-salicyl-N-(n-decyl)amide is reduced by hydrogen with 5 % Pd/C as catalyst to form 3-amino-salicyl-N-(n-decyl)amide which is exchanged with tritium to be 3 H-3-amino-salicyl-N-(n-decyl)amide. At the temperature below 5 degree C, 3 H-3-amino-salicyl-N-(n-decyl)amide reacts with NaNO 2 and HCl, and the 3-diazo-salicyl-N-(n-decyl)amide is formed in an ice salt bath. As soon as the reaction is completed, NaN 3 is added to the mixture and stirred for 3 h at the temperature between 0 - 5 degree C and in the dark, the molecular probe of studying ubiquinone-binding protein, i. e., 3 H-3-azido-salicyl-N-(n-decyl)amide is produced

  11. X-ray and Hydrogen-bonding Properties of 1-((1H-benzotriazol-1-ylmethylnaphthalen-2-ol

    Directory of Open Access Journals (Sweden)

    Jaime Ríos-Motta

    2009-03-01

    Full Text Available The solid state structure of 1-((1H-benzotriazol-1-ylmethylnaphthalen-2-ol, C17H13N3O, shows that this Mannich base crystallizes forming intermolecular N···HO hydrogen bonds, rather than intramolecular ones. Factors contributing to this choice of hydrogen-bonding mode are discussed. The compound crystallizes in the monoclinic system, P21/c space group, with lattice constants: a = 11.7934(9 Å, b = 14.3002(14 Å, c = 8.4444(8 Å, β = 106.243(5 deg, V = 1367.3(2 Å3, Z = 4, F(000 = 576, R1 = 6.96%, wR2 = 11.4%.

  12. Electrochemical reduction of nitrate in the presence of an amide

    Science.gov (United States)

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  13. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins.

    Science.gov (United States)

    Grohe, Kristof; Movellan, Kumar Tekwani; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2017-05-01

    We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1 H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.

  14. Structures and the Hydrogen Bonding Abilities of Estrogens Studied by Supersonic Jet/laser Spectroscopy

    Science.gov (United States)

    Morishima, Fumiya; Inokuchi, Yoshiya; Ebata, Takayuki

    2013-06-01

    Estrone, estradiol, estriol are known as endogenous estrogen which have the same steroidal frame with different substituent, leading to difference of physiological activity upon the formation of hydrogen bond with estrogen receptor. In the present study, structures of estrogens and their hydrated clusters in a supersonic jet have been studied by various laser spectroscopic techniques and density functional theory calculation to study how the difference of substituents affects their hydrogen bonding ability. Infrared spectra in the OH stretching region indicate a formation of intramolecular hydrogen-bond in estriol, which may lead to weaker physiological activity among the three estrogens. We also measured electronic and infrared spectra of 1:1 hydrated clusters of estrogen. The results show a switch of stable hydration site from the phenolic OH group to the five member ring by substituting one more OH group.

  15. 17O NMR Studies of the Solvation State of cis/trans Isomers of Amides and Model Protected Peptides

    Science.gov (United States)

    Gerothanassis, Ioannis P.; Vakka, Constantina; Troganis, Anastasios

    1996-06-01

    17O shielding constants have been utilized to investigate solvation differences of the cis/trans isomers ofN-methylformamide (NMF),N-ethylformamide (NEF), andtert-butylformamide (TBF) in a variety of solvents with particular emphasis on aqueous solution. Comparisons are also made with protected peptides of the formulas CH3CO-YOH, CH3CO-Y-NHR (Y = Pro, Sar), and CH3CO-Y-Z-NHR (Y = Pro; Z =D-Ala) selectively enriched in17O at the acetyl oxygen atom. Hydration at the amide oxygen induces large and specific modifications of the17O shielding constants, which are practically the same for the cis and trans isomers of NMF, NEF, and the protected peptides. Fortert-butylformamide, the strong deshielding of the trans isomer compared to that of the cis isomer may be attributed to an out-of-plane (torsion-angle) deformation of the amide bond and/or a significant reduction of solvation of the trans isomer due to steric inhibition of the bulkytert-butyl group. Good linear correlation between δ(17O) of amides and δ(17O) of acetone was found for different solvents which have varying dielectric constants and solvation abilities. Sum-over-states calculations, within the solvaton model, underestimate effects of the dielectric constant of the medium on17O shielding, while finite-perturbation-theory calculations give good agreement with the experiment.

  16. Solvent control of intramolecular proton transfer

    DEFF Research Database (Denmark)

    Manolova, Y.; Marciniak, Heinz; Tschierlei, S.

    2017-01-01

    of molecules in the enol and zwitterionic proton transfer (PT) form exists in the ground state. However, the zwitterion is the energetically favored one in the electronically excited state. Optical excitation of the enol form results in intramolecular proton transfer and formation of the PT form within 1.4 ps...

  17. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Science.gov (United States)

    2010-07-01

    ... fluorinated alkylaryl amide. 721.9075 Section 721.9075 Protection of Environment ENVIRONMENTAL PROTECTION... amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688) is...

  18. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  19. Non-amidated and amidated members of the C-type allatostatin (AST-C) family are differentially distributed in the stomatogastric nervous system of the American lobster, Homarus americanus.

    Science.gov (United States)

    Christie, Andrew E; Miller, Alexandra; Fernandez, Rebecca; Dickinson, Evyn S; Jordan, Audrey; Kohn, Jessica; Youn, Mina C; Dickinson, Patsy S

    2018-01-13

    The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS.

  20. Predicting protein amidation sites by orchestrating amino acid sequence features

    Science.gov (United States)

    Zhao, Shuqiu; Yu, Hua; Gong, Xiujun

    2017-08-01

    Amidation is the fourth major category of post-translational modifications, which plays an important role in physiological and pathological processes. Identifying amidation sites can help us understanding the amidation and recognizing the original reason of many kinds of diseases. But the traditional experimental methods for predicting amidation sites are often time-consuming and expensive. In this study, we propose a computational method for predicting amidation sites by orchestrating amino acid sequence features. Three kinds of feature extraction methods are used to build a feature vector enabling to capture not only the physicochemical properties but also position related information of the amino acids. An extremely randomized trees algorithm is applied to choose the optimal features to remove redundancy and dependence among components of the feature vector by a supervised fashion. Finally the support vector machine classifier is used to label the amidation sites. When tested on an independent data set, it shows that the proposed method performs better than all the previous ones with the prediction accuracy of 0.962 at the Matthew's correlation coefficient of 0.89 and area under curve of 0.964.

  1. Tripodal diglycol-amides as highly efficient extractants for f-elements

    Energy Technology Data Exchange (ETDEWEB)

    Janczewski, D.; Reinhoudt, D. N.; Verboom, W. [Univ Twente, Mesa Res Inst Nanotechnol, Lab Supramol Chem and Technol, NL-7500 AE Enschede, (Netherlands); Janczewski, D. [Inst Mat Res and Engn, Singapore 117602, (Singapore); Verboom, W. [Univ Twente, Mesa Res Inst Nanotechnol, Lab Mol Nanofabricat, NL-7500 AE Enschede, (Netherlands); Hill, C.; Allignol, C.; Duchesne, M. T. [CEA Valrho, DRCP/SCPS/LCSE, F-30207 Bagnols Sur Ceze, (France)

    2008-07-01

    A series of new ligands bearing three diglycol-amide functions pre-organized at the C-pivot and tri-alkyl-phenyl platforms was synthesized. They are very efficient extractants for Am{sup 3+} and Eu{sup 3+} with an up to five times relative extraction ability for Eu{sup 3+}. The distribution coefficients are up to 1000 times increased upon alkylation or arylation of the N-position of the diglycol-amide moieties. The tripodal diglycol-amides show a 1: 1 metal to ligand stoichiometry as proven with three independent methods for the complexation of the 3-pentyl N-substituted diglycol-amide ligand with Eu{sup 3+} (K = 2.5 x 10{sup 5} M{sup -1} in acetonitrile-water). A cage-like cryptand, containing three diglycol-amide units, was prepared using a Eu{sup 3+} templated synthesis. However, it does not exhibit improved extraction properties. (authors)

  2. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, peanut-oil, N-[3... Specific Chemical Substances § 721.10176 Amides, peanut-oil, N-[3-(dimethylamino)propyl]. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides...

  3. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10192 Amides, coco, N-[3-(dibutylamino)propyl], acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides...

  4. Bonding and compressibility in molecular and polymeric phases of solid CO2

    International Nuclear Information System (INIS)

    Gracia, L; Marques, M; Beltran, A; Pendas, A Martin; Recio, J M

    2004-01-01

    We present the results of a theoretical study of the response of molecular CO 2 -I and CO 2 -III, and polymeric CO 2 -V polymorphs to hydrostatic pressure. Total energy calculations and geometry optimizations have been performed under the local density functional approximation combining a pseudopotential and planewave scheme as implemented in the VASP code. Using the atoms in molecules theory, the network of inter- and intra-molecular chemical bonds of the different phases are rigorously characterized in terms of the values of the electron density and the Laplacian at the bond critical points. The chemical graph of a hypothetical orthorhombic structure displays bonding features that are associated with a precursor geometry of polymeric carbon four-fold coordinated phases. In addition, the bulk compressibility is decomposed into atomic and molecular contributions with the aim of providing a better understanding of the reasons that explain the emergence of low compressible polymorphs at high pressures

  5. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    Science.gov (United States)

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  6. Disulfide bond within mu-calpain active site inhibits activity and autolysis.

    Science.gov (United States)

    Lametsch, René; Lonergan, Steven; Huff-Lonergan, Elisabeth

    2008-09-01

    Oxidative processes have the ability to influence mu-calpain activity. In the present study the influence of oxidation on activity and autolysis of mu-calpain was examined. Furthermore, LC-MS/MS analysis was employed to identify and characterize protein modifications caused by oxidation. The results revealed that the activity of mu-calpain is diminished by oxidation with H2O2 in a reversible manner involving cysteine and that the rate of autolysis of mu-calpain concomitantly slowed. The LC-MS/MS analysis of the oxidized mu-calpain revealed that the amino acid residues 105-133 contained a disulfide bond between Cys(108) and Cys(115). The finding that the active site cysteine in mu-calpain is able to form a disulfide bond has, to our knowledge, not been reported before. This could be part of a unique oxidation mechanism for mu-calpain. The results also showed that the formation of the disulfide bond is limited in the control (no oxidant added), and further limited in a concentration-dependent manner when beta-mercaptoethanol is added. However, the disulfide bond is still present to some extent in all conditions indicating that the active site cysteine is potentially highly susceptible to the formation of this intramolecular disulfide bond.

  7. Photoswitchable Intramolecular Hydrogen Bonds in 5-Phenylazopyrimidines Revealed By In Situ Irradiation NMR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Čechová, Lucie; Kind, J.; Janeba, Zlatko; Thiele, C. M.; Dračínský, Martin

    2018-01-01

    Roč. 24, č. 2 (2018), s. 492-498 ISSN 0947-6539 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : azopyrimidines * heterocycles * hydrogen bonds * NMR spectroscopy * UV/Vis in situ irradiation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  8. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  9. New organic semiconductors with imide/amide-containing molecular systems.

    Science.gov (United States)

    Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing

    2014-10-29

    Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Picosecond thermometer in the amide I band of myoglobin

    DEFF Research Database (Denmark)

    Austin, R.H.; Xie, A.; Meer, L. van der

    2005-01-01

    The amide I and II bands in myoglobin show a heterogeneous temperature dependence, with bands at 6.17 and 6.43 mu m which are more intense at low temperatures. The amide I band temperature dependence is on the long wavelength edge of the band, while the short wavelength side has almost...... can be used to determine the time it takes vibrational energy to flow into the hydration shell. We determine that vibrational energy flow to the hydration shell from the amide I takes approximately 20 ps to occur....

  11. Citral derived amides as potent bacterial NorA efflux pump inhibitors

    DEFF Research Database (Denmark)

    Thota, Niranjan; Koul, Surrinder; Reddy, Mallepally V

    2008-01-01

    Monoterpene citral and citronellal have been used as starting material for the preparation of 5,9-dimethyl-deca-2,4,8-trienoic acid amides and 9-formyl-5-methyl-deca-2,4,8-trienoic acid amides. The amides on bioevaluation as efflux pump inhibitors (EPIs) against Staphylococcus aureus 1199 and NorA...

  12. 3-{(E-[4-(4-Hydroxy-3-methoxyphenylbutan-2-ylidene]amino}-1-phenylurea: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Ming Yueh Tan

    2018-01-01

    Full Text Available Two independent molecules (A and B comprise the asymmetric unit of the title compound, C18H21N3O3. The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN2O urea core [dihedral angles = 25.57 (11 (A and 29.13 (10° (B]. The second amine is connected to an imine (E conformation, which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intramolecular amine-N—H...N(imine and hydroxyl-O—H...O(methoxy hydrogen bonds close S(5 loops in each case. The molecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81 (A and 48.55 (7° (B. In the crystal, amide-N—H...O(amide hydrogen bonds link the molecules A and B via an eight-membered {...HNCO}2 synthon. Further associations between molecules, leading to supramolecular layers in the ac plane, are hydrogen bonds of the type hydroxyl-O—H...N(imine and phenylamine-N—H...O(methoxy. Connections between layers, leading to a three-dimensional architecture, comprise benzene-C—H...O(hydroxy interactions. A detailed analysis of the calculated Hirshfeld surfaces shows molecules A and B participate in very similar intermolecular interactions and that any variations relate to conformational differences between the molecules.

  13. The radiation chemistry of organic amides: Pt. 1

    International Nuclear Information System (INIS)

    Langan, J.R.; Liu, K.J.; Salmon, G.A.; Edwards, P.P.; Ellaboudy, A.; Holton, D.M.

    1989-01-01

    Pulse radiolysis of four cyclic amides including N-methylpyrrolidinone (NMP), and the non-cyclic amide tetramethylurea (TMU) yielded absorption spectra in the near infrared that are attributed to solvated electrons. Addition of a variety of alkali-metal salts caused no detectable change in the absorption spectrum of e s - and no new absorptions attributable to alkali-metal anions were detected. The effect of dose on the decay of e s - in NMP was studied in detail. The yields of e s - in these amides were estimated by using trans-stilbene as an electron scavenger. Absorption spectra, which are not removed by saturation with N 2 O and CO 2 , are observed in the wavelength range 300-500 nm. (author)

  14. Crystal structure of beryllium amide, Be(NH2)2

    International Nuclear Information System (INIS)

    Jacobs, H.

    1976-01-01

    The x-ray investigation of single crystals of beryllium amide led to the following results. The compound crystallizes tetragonally a = 10.170 +- 0.005 A, c = 16.137 +- 0.008 A, and c/a = 1.587. The space group is I4 1 /acd. The lattice contains 32 formula units. The positions of all atoms including hydrogen were determined. The structure of Be(NH 2 ) 2 can be described by a strongly deformed cubic closepacking of anions. The cations occupy tetrahedral interstices so that 4 Be 2+ ions form a regular tetrahedron with the shortest Be-Be distances. This causes units, which can be described by Be 4 (NH 2 ) 6 (NH 2 ) 4 / 2 whereas the outer 4 amide ions serve as bridging anions to give a threedimensional arrangement. The orientation of the amide ions is given and compared with earlier results on similar metal amides. (author)

  15. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    Science.gov (United States)

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  16. Adsorption equilibrium of uranium from seawater on chelating resin containing amide oxime group

    International Nuclear Information System (INIS)

    Hori, Takahiro; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1987-01-01

    Chelating resins containing amide oxime group were synthesized by radiation-induced graft polymerization. The amount of the amide oxime groups was controlled below about 0.1 mol per kg of base polymer. The adsorption equilibrium of uranium from seawater on this resin was investigated. It was suggested that two neighboring amide oxime groups on the grafted chain captured one uranyl ion, and that single amide oxime ligand had little capacity for the adsorption of uranium. The adsorption equilibrium was correlated by a Langmuir-type equation. The content of neighboring amide oxime groups was 0.406 x 10 -3 mol per kg of base polymer, which corresponded to 0.39 % of the total amount of amide oxime groups. The apparent stoichiometric stability constant for the complex of uranyl ion with the neighboring amide oxime groups in seawater was calculated to be 10 -21.7 . (author)

  17. AMIDE: A Free Software Tool for Multimodality Medical Image Analysis

    Directory of Open Access Journals (Sweden)

    Andreas Markus Loening

    2003-07-01

    Full Text Available Amide's a Medical Image Data Examiner (AMIDE has been developed as a user-friendly, open-source software tool for displaying and analyzing multimodality volumetric medical images. Central to the package's abilities to simultaneously display multiple data sets (e.g., PET, CT, MRI and regions of interest is the on-demand data reslicing implemented within the program. Data sets can be freely shifted, rotated, viewed, and analyzed with the program automatically handling interpolation as needed from the original data. Validation has been performed by comparing the output of AMIDE with that of several existing software packages. AMIDE runs on UNIX, Macintosh OS X, and Microsoft Windows platforms, and it is freely available with source code under the terms of the GNU General Public License.

  18. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    Science.gov (United States)

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  19. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    Science.gov (United States)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  20. Analytical applications of resins containing amide and polyamine functional groups

    International Nuclear Information System (INIS)

    Orf, G.M.

    1977-12-01

    A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from sea water

  1. Analytical applications of resins containing amide and polyamine functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Orf, Gene Michael [Iowa State Univ., Ames, IA (United States)

    1977-12-01

    A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from sea water.

  2. Facile access to amides and hydroxamic acids directly from nitroarenes.

    Science.gov (United States)

    Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A

    2014-09-07

    A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.

  3. Polyimides Containing Amide And Perfluoroisopropyl Links

    Science.gov (United States)

    Dezem, James F.

    1993-01-01

    New polyimides synthesized from reactions of aromatic hexafluoroisopropyl dianhydrides with asymmetric amide diamines. Soluble to extent of at least 10 percent by weight at temperature of about 25 degrees C in common amide solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide. Polyimides form tough, flexible films, coatings, and moldings. Glass-transition temperatures ranged from 300 to 365 degrees C, and crystalline melting temperatures observed between 543 and 603 degrees C. Display excellent physical, chemical, and electrical properties. Useful as adhesives, laminating resins, fibers, coatings for electrical and decorative purposes, films, wire enamels, and molding compounds.

  4. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    rate. Time-dependent density functional theory calculations have been performed to understand the observed spectroscopic results. Keywords. Intramolecular charge transfer; absorption and fluorescence; time resolved fluorescence measurements; acid concentration dependence; time-dependent density functional theory.

  5. Synthesis and biological activity of pyridazine amides, hydrazones and hydrazides.

    Science.gov (United States)

    Buysse, Ann M; Yap, Maurice Ch; Hunter, Ricky; Babcock, Jonathan; Huang, Xinpei

    2017-04-01

    Optimization studies on compounds initially designed to be herbicides led to the discovery of a series of [6-(3-pyridyl)pyridazin-3-yl]amides exhibiting aphicidal properties. Systematic modifications of the amide moiety as well as the pyridine and pyridazine rings were carried out to determine if these changes could improve insecticidal potency. Structure-activity relationship (SAR) studies showed that changes to the pyridine and pyridazine rings generally resulted in a significant loss of insecticidal potency against green peach aphids [Myzus persicae (Sulzer)] and cotton aphids [(Aphis gossypii (Glover)]. However, replacement of the amide moiety with hydrazines, hydrazones, or hydrazides appeared to be tolerated, with small aliphatic substituents being especially potent. A series of aphicidal [6-(3-pyridyl)pyridazin-3-yl]amides were discovered as a result of random screening of compounds that were intially investigated as herbicides. Follow-up studies of the structure-activity relationship of these [6-(3-pyridyl)pyridazin-3-yl]amides showed that biosteric replacement of the amide moiety was widely tolerated suggesting that further opportunities for exploitation may exist for this new area of insecticidal chemistry. Insecticidal efficacy from the original hit, compound 1, to the efficacy of compound 14 produced greater than 10-fold potency improvement against Aphis gossypii and greater than 14-fold potency improvement against Myzus persicae. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Amrita [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India); Kar, Samiran [Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India)], E-mail: nikhilg@postmark.net

    2006-01-05

    The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate (t-MDMAC) donor-acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters ({alpha}). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (-NMe{sub 2}) and acceptor (-CH = CHCOOMe) sites shows stabilization of S{sub 1} state and destabilization S{sub 2} and S{sub 0} states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S{sub 1} state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90 deg. twisted configuration. The S{sub 1} energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.

  7. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    Science.gov (United States)

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  8. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  9. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  10. Performance of Several Density Functional Theory Methods on Describing Hydrogen-Bond Interactions.

    Science.gov (United States)

    Rao, Li; Ke, Hongwei; Fu, Gang; Xu, Xin; Yan, Yijing

    2009-01-13

    We have investigated eleven density functionals, including LDA, PBE, mPWPW91, TPSS, B3LYP, X3LYP, PBE0, O3LYP, B97-1, MPW1K, and TPSSh, for their performances on describing hydrogen bond (HB) interactions. The emphasis has been laid not only on their abilities to calculate the intermolecular hydrogen bonding energies but also on their performances in predicting the relative energies of intermolecular H-bonded complexes and the conformer stabilities due to intramolecular hydrogen bondings. As compared to the best theoretical values, we found that although PBE and PBE0 gave the best estimation of HB strengths, they might fail to predict the correct order of relative HB energies, which might lead to a wrong prediction of the global minimum for different conformers. TPSS and TPSSh did not always improve over PBE and PBE0. B3LYP was found to underestimate the intermolecular HB strengths but was among the best performers in calculating the relative HB energies. We showed here that X3LYP and B97-1 were able to give good values for both absolute HB strengths and relative HB energies, making these functionals good candidates for HB description.

  11. Evaluation of an amide-based stationary phase for supercritical fluid chromatography

    Science.gov (United States)

    Borges-Muñoz, Amaris C.; Colón, Luis A.

    2017-01-01

    A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE® C18-amide) was evaluated for use in supercritical fluid chromatography. The amide-based column was compared with columns packed with bare silica, C18 silica, and a terminal-amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five-component test mixture, consisting of a group of drug-like molecules was separated isocratically. The results show that the C18-amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18-amide column was able to provide baseline resolution of all the drug-like probe compounds in a text mixture, while the other columns tested did not. PMID:27396487

  12. Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction

    International Nuclear Information System (INIS)

    Chen Jianshan; Sheng Tianlu; Hu Shengmin; Xiang Shengchang; Fu Ruibiao; Zhu Qilong; Wu Xintao

    2012-01-01

    Using aminocarboxylate derivates (S)-N-(4-cyanobenzoic)-glutamic acid (denoted as cbg, 1a) and (S)-N-(4-nitrobenzoic)-glutamic acid (denoted as nbg, 1b) as chiral ligands, five new homochiral coordination polymers formulated as [Cu(cbg)(H 2 O) 2 ] n (3), [Cu(cbop) 2 (4,4′-bipy)(H 2 O)] n (4) (cbop=(S)-N-(4-cyanobenzoic)-5-oxoproline, 4,4′-bipy=4,4′-bipyridine), {[Cu(nbop) 2 (4,4′-bipy)]·4H 2 O} n (5) (nbop=(S)-N-(4-nitrobenzoic)-5-oxoproline), {[Cd(nbop) 2 (4,4′-bipy)]·2H 2 O} n (6), and [Ni(nbop) 2 (4,4′-bipy)(H 2 O) 2 ] n (7) have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction study reveals that the original chirality of aminocarboxylate derivates is maintained in all these complexes. Complexes 3, 4, and 7 are one-dimensional infinite chain coordination polymers, while complexes 5 and 6 possess two-dimensional network structures. In situ cyclization of 1a and 1b was taken place in the formation of complexes 4–7, which may be due to the competition of 4,4′-bipyridine with chiral ligands during the coordination process. Preliminary optical behavior investigation indicates that ligands 1a, 1b, and complexes 6, 7 are nonlinear optical active. - Graphical abstract: Using aminocarboxylate derivates as chiral ligands, five new homochiral coordination polymers possessing second harmonic generation activities have been hydrothermally synthesized. Highlights: ► Two new chiral aminocarboxylate derivates were firstly synthesized. ► Five new homochiral metal organic complexes were obtained hydrothermally based on these ligands. ► Intramolecular amidation was taken place on the aminocarboxylate derivates during the formation of these complexes. ► In situ amidation may be due to the impact of 4,4′-bipyridine. ► The homochiral complexes are nonlinear optical active.

  13. Do resonance-assisted intramolecular halogen bonds exist without a charge transfer and a sigma-hole?

    Czech Academy of Sciences Publication Activity Database

    Pandiyan, B. V.; Deepa, Palanisamy; Kolandaivel, P.

    2015-01-01

    Roč. 17, č. 41 (2015), s. 27496-27508 ISSN 1463-9076 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ab initio * hydrogen bonds * noncovalent interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  14. Oxidative activation of dihydropyridine amides to reactive acyl donors

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Trads, Julie Brender; Gothelf, Kurt Vesterager

    2015-01-01

    Amides of 1,4-dihydropyridine (DHP) are activated by oxidation for acyl transfer to amines, alcohols and thiols. In the reduced form the DHP amide is stable towards reaction with amines at room temperature. However, upon oxidation with DDQ the acyl donor is activated via a proposed pyridinium...

  15. Determination of Disulfide Bond Connectivity of Cysteine-rich Peptide IpTx{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Won; Kim, Jim Il [Chonnam National Univ., Gwangju (Korea, Republic of); Sato, Kazuki [Fukuoka Women' s Univ., Fukuoka (Japan)

    2013-06-15

    Cysteine-rich peptides stabilized by intramolecular disulfide bonds have often been isolated from venoms of microbes, animals and plants. These peptides typically have much higher stability and improved biopharmaceutical properties compared to their linear counterparts. Therefore the correct disulfide bond formation of small proteins and peptides has been extensively studied for a better understanding of their folding mechanism and achieving efficient generation of the naturally occurring biologically active product. Imperatoxin A (IpTx{sub a}), a peptide toxin containing 6 cysteine residues, was isolated from the venom of scorpion Pandinus imperator, selectively binds the ryanodine receptors and activates Ca{sup 2+} release from sarcoplasmic reticulum (SR). IpTx{sub a} increases the binding of ryanodine to ryanodine receptors (RyRs) and encourages reconstituted single channel to induce subconductance states.

  16. Nine of 16 stereoisomeric polyhydroxylated proline amides are potent β-N-acetylhexosaminidase inhibitors.

    Science.gov (United States)

    Ayers, Benjamin J; Glawar, Andreas F G; Martínez, R Fernando; Ngo, Nigel; Liu, Zilei; Fleet, George W J; Butters, Terry D; Nash, Robert J; Yu, Chu-Yi; Wormald, Mark R; Nakagawa, Shinpei; Adachi, Isao; Kato, Atsushi; Jenkinson, Sarah F

    2014-04-18

    All 16 stereoisomeric N-methyl 5-(hydroxymethyl)-3,4-dihydroxyproline amides have been synthesized from lactones accessible from the enantiomers of glucuronolactone. Nine stereoisomers, including all eight with a (3R)-hydroxyl configuration, are low to submicromolar inhibitors of β-N-acetylhexosaminidases. A structural correlation between the proline amides is found with the ADMDP-acetamide analogues bearing an acetamidomethylpyrrolidine motif. The proline amides are generally more potent than their ADMDP-acetamide equivalents. β-N-Acetylhexosaminidase inhibition by an azetidine ADMDP-acetamide analogue is compared to an azetidine carboxylic acid amide. None of the amides are good α-N-acetylgalactosaminidase inhibitors.

  17. Isentropic compressibilities of (amide + water) mixtures: A comparative study

    International Nuclear Information System (INIS)

    Papamatthaiakis, Dimitris; Aroni, Fryni; Havredaki, Vasiliki

    2008-01-01

    The density and ultrasonic velocity of aqueous solutions of formamide (FA), N-methylformamide (NMF), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), pyrrolidin-2-one (PYR), N-methyl-2-pyrrolidinone (NMP), and their pure phases have been measured at 298.15 K and atmospheric pressure. Densities and ultrasonic velocities in pure amides have been also measured at the temperature range 288.15 K to 308.15 K for the computation of their thermal expansivities. Isentropic compressibility, intermolecular free length, relative association, apparent molar compressibility, as well as the excess quantities, ultrasonic velocity, isentropic compressibility, intermolecular free length, have been evaluated and fitted to the Redlich-Kister type equation. The deviation from ideal mixing law in ultrasonic velocity is positive while the deviations in isentropic compressibility and intermolecular free length are negative for all (amide + water) mixtures. This behavior reveals the nature and the magnitude of intermolecular interactions between the amide-water molecules. The sequence of superimposed curves of various ultrasonic parameters vs. the amide mole fraction is related to the strength of interactions between the unlike molecules and the role of -CH 3 substitution in amides. The comparison of ultrasonic to volumetric properties reveals differences on the position of the extrema and their relation with the degree of substitution while the interpretation of these differences is discussed. Two different approaches on the computation of excess functions, applied in this work, brought out a difference in the magnitude of deviations and a partial reversion to the sequence of amides curves suggesting a different estimation in terms of deviations from ideal mixing law and therefore of the relative molecular interactions

  18. A cyclic carbo-isosteric penta-depsipeptide: cyclo(Phe1–d-Ala2–Gly3–Phe4–APO5

    Directory of Open Access Journals (Sweden)

    Stéphanie M. Guéret

    2015-01-01

    Full Text Available The title compound, cyclo(Phe1–d-Ala2–Gly3–Phe4–APO5, C26H32N4O5, is the minor diastereoisomer of a cyclic penta-peptidomimetic analogue containing a novel 2-aminopropyl lactone (APO motif, which displays the same number of atoms as the native amino acid glycine and has a methyl group in place of the carbonyl O atom. The crystal structure presented here allows the analysis of the secondary structure of this unprecedented cyclic carbo-isosteric depsipeptide. The conformation of the central ring is stabilized by an intramolecular N—H...O hydrogen bond between the carbonyl O atom of the first residue (Phe1 and the amide group H atom of the fourth residue (Phe4. Based on the previously reported hydrogen bond and on the values of the torsion angles ϕ and ψ, the loop formed by the first, second, third and fourth residues (Phe1, d-Ala2, Gly3 and Phe4 can be classified as a type II′ β-turn. The loop around the new peptidomimetic motif, on the other hand, resembles an open γ-turn containing a weak N—H...O hydrogen bond between the carbonyl group O atom of the fourth residue (Phe4 and the amide unit H atom of the first residue (Phe1. In the crystal, the peptidomimetic molecules are arranged in chains along the b-axis direction. Within such a chain, the molecules of the structure are linked via N—H...O hydrogen bonds between the amide group H atom of the secondary residue (d-Ala2 and the carboxy unit O atom of the fourth residue (Phe4 in a neighboring molecule. The newly formed methyl stereocentre of the APO peptidomimetic motif (APO5 was obtained as the minor diastereoisomer in a ring-closing reductive amination reaction and adopts an R configuration.

  19. The piroxicam complex of copper(II), trans-[Cu(Pir)2(THF)2], and its interaction with DNA

    Science.gov (United States)

    Hadadzadeh, Hassan; Salimi, Mona; Weil, Matthias; Jannesari, Zahra; Darabi, Farivash; Abdi, Khatereh; Khalaji, Aliakbar Dehno; Sardari, Soroush; Ahangari, Reza

    2012-08-01

    The mononuclear Cu(II) complex, trans-[Cu(Pir)2(THF)2], where Pir is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been prepared and characterized by elemental analysis, spectroscopic methods (UV-Vis, IR, and 1H NMR) and single crystal X-ray structure analysis. The molecular structure of the centrosymmetric complex is made up of two monoanionic bidentate Pir ligands coordinated to the Cu(II) atom through the pyridyl N atom and the carbonyl O atom of the amide group in equatorial positions. The elongated rhombic octahedral (ERO) coordination of the CuNONOO2″ chromophore is completed by the O atoms of two THF molecules in axial positions. A strong intramolecular hydrogen bond between the amide N-H function and the enolate O atom confirms the ZZZ conformation of piroxicam. In addition, CD spectroscopy and gel electrophoresis assays have been used to investigate the interaction of the complex with DNA. The results revealed that the binding of the complex with DNA led to DNA backbone distortion.

  20. Solution NMR Structures of Oxidized and Reduced Ehrlichia chaffeensis thioredoxin: NMR-Invisible Structure Owing to Backbone Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Myler, Peter J.

    2018-01-02

    Thioredoxins (Trxs) are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site, CGPC. Here, we describe the NMR solution structures of a Trx from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, in both the oxidized and reduced states. The overall topology of the calculated structures is similar in both redox states and similar to other Trx structures, a five-strand, mixed -sheet (1:3:2:4:5) surrounded by four -helices. Unlike other Trxs studied by NMR in both redox states, the 1H-15N HSQC spectra of reduced Ec-Trx was missing eight amide cross peaks relative to the spectra of oxidized Ec-Trx. These missing amides correspond to residues C32-E39 in the active site containing helix (2) and S72-I75 in a loop near the active site and suggest a substantial change in the backbone dynamics associated with the formation of an intramolecular C32-C35 disulfide bond.

  1. Synthesis and uses of the amides extractants

    International Nuclear Information System (INIS)

    Musikas, C.

    1989-01-01

    Carboxylic acids amides (RR'NCOCR''), malonic acid amides (RR'NCOCH 2 CONRR') and substituted malonic acid amides (RR'NCOCHR'' CONRR') are extractants of the actinides ions. They show good prospects for use in the nuclear industry because of their complete incinerability. In addition, their degradation products interfer much more less in the separation processes when compared with organophosphorus extractants. The synthesis and the purification of two typical extractants: N-N-di (2-ethylhexyl) butyramide (C 4 H 9 CHC 2 H 5 CH 2 ) 2 NCOC 3 H 7 and N,N'-dimethyl N,N'-dibutyl 1.3 diamide 2(3-oxa)nonyl propane (C 4 H 9 CH 3 NCO) 2 CHC 2 H 4 OC 6 H 13 are described. The purities, checked by NMR, elemental analysis and potentiometry, were in the range 98 to 99.5%. The yields for monoamides were in the range 70 to 90% and for the diamides 20 to 40%. 3 figs, 3 tabs, 10 refs

  2. Designing of molecular architecture, synthesis and properties of the next generation of state-of-the-art high-performance thermoplastic fluoro-poly(ether amide)s, (6F-PEA), fluoro-poly(ether amide-imide)s (6F-PEAI), and their co-polymers

    International Nuclear Information System (INIS)

    Vora, Rohitkumar H.

    2010-01-01

    Graphical abstract: Molecular architectures of next generation of high-performance advanced heat stable thermoplastic polymer compositions of fluoro-poly(ether amide) (6F-PA) and fluoro-poly(ether amide-imide) (6F-PEAI) having di-ether diamines moieties were designed based on fluoro-polyimide (6F-PI) chemistry, and polymers were synthesized using two novel state-of-the-art 2-(3,4'-carboxy anhydrophenyl-2(4-carboxyphenyl) hexafluoropropane (6FTMA) and 2,2'-bis(4-carboxyphenyl) hexafluropropane (6F-DAc) monomers. Their copolymers: fluoro-copoly(ether amide-(ether imide))s (6F-co(PEA-PEI)), fluoro-copoly(ether amide-(ether amide-imide))s (6F-co(PEA-PEAI)) and fluoro-copoly(ether amide-imide-(ether imide))s (6F-co(PEAI-PEI)) were also designed and synthesized using 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydrides (6FDA) for the advanced aerospace, defense and industrial engineering applications. -- Abstract: A new generation of high-performance polymers for the advanced industrial, aerospace and defense engineering applications are being investigated in the academic and industrial research institutions throughout the world. Fluoro-polyimides (6F-PI) are one such sub-class of high-performance polyimide polymers. In the last 25 years a number of fluoro-polyimides have been reported but only a handful of them have been commercialized. This paper describes the 6F-polyimide chemistry-based designed molecular architectures and synthesis of two series of next generation of heat stable thermoplastic polymer compositions having di-ether diamines moieties, such as fluoro-poly(ether amide) (6F-PA) and fluoro-poly(ether amide-imide) (6F-PEAI) using the novel state-of-the-art 2-(3,4'-carboxy anhydrophenyl-2(4-carboxyphenyl) hexafluoropropane (6F-TMA) and 2,2'-bis(4-carboxyphenyl) hexafluoropropane (6F-DAc) monomers. Their co-polymers: fluoro-copoly(ether amide-(ether imide))s (6F-co(PEA-PEI)), fluoro-copoly(ether amide-(ether amide-imide))s (6F-co(PEA-PEAI)) and fluoro

  3. Vinylcyclopropylacyl and polyeneacyl radicals. Intramolecular ketene alkyl radical additions in ring synthesis.

    Science.gov (United States)

    De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald

    2005-01-21

    Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.

  4. Biosynthesis, degradation, and pharmacological importance of the fatty acid amides

    Science.gov (United States)

    Farrell, Emma K.; Merkler, David J.

    2008-01-01

    The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically-occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics. PMID:18598910

  5. Radiation-induced cleavage of disulfide bonds in proteins. Clivage radiolytique des ponts disulfure des proteines

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V; Tourbez, H; Lhoste, J M [Paris-11 Univ., 91 - Orsay (FR); Houee-Levin, C [Paris-5 Univ., 75 (FR)

    1991-06-01

    The reduction of the disulfide bonds in apo-Riboflavin-Binding Protein (apoRBP) by the CO{sub 2}{sup -}{center dot} radical occurred under {gamma}-ray irradiation as a chain reaction whose efficiency increased upon acidification of the medium. Pulse-radiolysis analysis showed a rapid one-electron oxidation of the disulfide bonds yielding the anionic or protonated form of the disulfide radical. The main decay path of this radical under acidic conditions consisted of the rapid formation of a thiyl radical intermediate in equilibrium with the closed, cyclic form. At pH 8 the disulfide radical anion decayed via intramolecular and/or intermolecular routes including disproportionation, protein-protein crosslinking, non-dismutative recombination processes, and reaction with sulfhydryl groups in pre-reduced systems.

  6. Quantifying the Sigma and Pi interactions between U(V) f orbitals and halide, alkyl, alkoxide, amide and ketimide ligands

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lukens, Wayne W.; Edelstein, Norman M.; Magnani, Nicola; Hayton, Trevor W.; Fortier, Skye; Seaman, Lani A.

    2013-06-20

    f Orbital bonding in actinide and lanthanide complexes is critical to their behavior in a variety of areas from separations to magnetic properties. Octahedral f1 hexahalide complexes have been extensively used to study f orbital bonding due to their simple electronic structure and extensive spectroscopic characterization. The recent expansion of this family to include alkyl, alkoxide, amide, and ketimide ligands presents the opportunity to extend this study to a wider variety of ligands. To better understand f orbital bonding in these complexes, the existing molecular orbital (MO) model was refined to include the effect of covalency on spin orbit coupling in addition to its effect on orbital angular momentum (orbital reduction). The new MO model as well as the existing MO model and the crystal field (CF) model were applied to the octahedral f1 complexes to determine the covalency and strengths of the ? and ? bonds formed by the f orbitals. When covalency is significant, MO models more precisely determined the strengths of the bonds derived from the f orbitals; however, when covalency was small, the CF model was better than either MO model. The covalency determined using the new MO model is in better agreement with both experiment and theory than that predicted by the existing MO model. The results emphasize the role played by the orbital energy in determining the strength and covalency of bonds formed by the f orbitals.

  7. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  8. Biosynthesis of amidated joining peptide from pro-adrenocorticotropin-endorphin

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, E.I.; Mains, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1987-09-01

    Joining peptide is the major alpha-amidated product of pro-ACTH/endorphin (PAE) in AtT-20 corticotropic tumor cells. To study intracellular joining peptide synthesis, affinity purified antibodies directed against gamma-MSH, joining peptide, and ACTH were used to immunoprecipitate extracts from biosynthetically labeled AtT-20 cells. Immunoprecipitates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by tryptic peptide mapping on HPLC. In steady labeling experiments, radioactivity in amidated joining peptide (JP) increased roughly linearly with time, in the manner of a final product, whereas radioactivity associated with PAE (1-94)NH2 reached a constant value after 2-4 h, indicating that PAE(1-94)NH2 is an intermediate in the biosynthesis of JP. Radioactivity appeared in ACTH(1-39) well before JP, consistent with a cleavage order in which ACTH is cleaved from PAE(1-95) before JP sequences are cleaved from PAE(1-74). This conclusion was supported by tryptic peptide analyses of immunoprecipitates, which indicated that less than 5% of JP-related material is cleaved from PAE(1-74) before being cleaved from ACTH-related sequences. After a pulse label, radioactivity in PAE(1-94)NH2 reached a peak value after 1 h of chase and declined with a half-life of less than 1 h. Amidated JP increased to a constant level after 2 h of chase. Enough radiolabeled PAE(1-94)NH2 was detected to account for about half of the radioactivity found in amidated JP, indicating that about half of JP-related material is first cleaved from PAE(1-95) before being amidated. This result was corroborated using HPLC purification to determine both amidated and glycine-extended forms of JP.

  9. Biosynthesis of amidated joining peptide from pro-adrenocorticotropin-endorphin

    International Nuclear Information System (INIS)

    Cullen, E.I.; Mains, R.E.

    1987-01-01

    Joining peptide is the major alpha-amidated product of pro-ACTH/endorphin (PAE) in AtT-20 corticotropic tumor cells. To study intracellular joining peptide synthesis, affinity purified antibodies directed against gamma-MSH, joining peptide, and ACTH were used to immunoprecipitate extracts from biosynthetically labeled AtT-20 cells. Immunoprecipitates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by tryptic peptide mapping on HPLC. In steady labeling experiments, radioactivity in amidated joining peptide (JP) increased roughly linearly with time, in the manner of a final product, whereas radioactivity associated with PAE (1-94)NH2 reached a constant value after 2-4 h, indicating that PAE(1-94)NH2 is an intermediate in the biosynthesis of JP. Radioactivity appeared in ACTH(1-39) well before JP, consistent with a cleavage order in which ACTH is cleaved from PAE(1-95) before JP sequences are cleaved from PAE(1-74). This conclusion was supported by tryptic peptide analyses of immunoprecipitates, which indicated that less than 5% of JP-related material is cleaved from PAE(1-74) before being cleaved from ACTH-related sequences. After a pulse label, radioactivity in PAE(1-94)NH2 reached a peak value after 1 h of chase and declined with a half-life of less than 1 h. Amidated JP increased to a constant level after 2 h of chase. Enough radiolabeled PAE(1-94)NH2 was detected to account for about half of the radioactivity found in amidated JP, indicating that about half of JP-related material is first cleaved from PAE(1-95) before being amidated. This result was corroborated using HPLC purification to determine both amidated and glycine-extended forms of JP

  10. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  11. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    Science.gov (United States)

    Pirillo, S.; López-Corral, I.; Germán, E.; Juan, A.

    2012-12-01

    The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new moleculesbnd surface formed bonds after adsorption. We found that Ptsbnd Pt bonds interacting with the molecule and acrolein Cdbnd O and Cdbnd C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained Csbnd Pt and Osbnd Pt OP values suggest that the most stable adsorption modes are η3-cis and η4-trans, while the η1-trans is the less favored configuration. We also found that C pz orbital and Pt pz and d orbitals participate strongly in the adsorption process.

  12. Effect of amides on lithium tetraborate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Tsekhanskij, R S; Skvortsov, V C; Molodkin, A K; Sadetdi-pov, Sh V [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (USSR); Universitet Druzhby Narodov, Moscow (USSR))

    1983-03-01

    Using the methods of solubility, densi- and refractometry at 25 deg C, it has been established that the systems lithium tetraborate-formamide (acetamide, dimethyl-formamide)-water are of a simple eutonic type. Amides decrease the salt solubility. Lyotropic effect, as calculated for molar concentrations (-Lsub(M)) relative to the absolute value, increases from formamide to dimethyl-formamide. The sequence is determined by the fact that, when there is one or two hydrophilic methyl groups in amide molecules which are in contact with tetraborate, they decrease the hydration energy of lithium cations.

  13. Effect of amides on sodium tetraborate solubility

    International Nuclear Information System (INIS)

    Tsekhanskij, R.S.; Skvortsov, V.G.; Molodkin, A.K.; Sadetdinov, Sh.V.

    1986-01-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate

  14. Effect of amides on lithium tetraborate solubility

    International Nuclear Information System (INIS)

    Tsekhanskij, R.S.; Skvortsov, V.C.; Molodkin, A.K.; Sadetdi- pov, Sh.V.

    1983-01-01

    Using the methods of solubility, densi- and refractometry at 25 deg C, it has been established that the systemS lithium tetraborate-formamide (acetamide, dimethyl-formamide)-water are of a simple eutonic type. Amides decrease the salt solubility. Lyotropic effect, as calculated for molar concentrations (-Lsub(M)) relative to the absolute value, increases from formamide to dimethylformamide. The sequence is determined by the fact that, when there is one or two hydrophilic methyl groups in amide molecules which are in contact with tetraborate, they decrease the hydration energy of lithium cations

  15. Effect of amides on sodium tetraborate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Tsekhanskij, R S; Skvortsov, V G; Molodkin, A K; Sadetdinov, Sh V

    1986-11-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate.

  16. TROSY of side-chain amides in large proteins

    Science.gov (United States)

    Liu, Aizhuo; Yao, Lishan; Li, Yue; Yan, Honggao

    2012-01-01

    By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N–HE{DZ} and 15N–HZ{DE} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N–HE{DZ} isotopomers of side-chain amides are as significant as on backbone amides. PMID:17347000

  17. Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides.

    Science.gov (United States)

    Tsikolia, Maia; Bernier, Ulrich R; Coy, Monique R; Chalaire, Katelyn C; Becnel, James J; Agramonte, Natasha M; Tabanca, Nurhayat; Wedge, David E; Clark, Gary G; Linthicum, Kenneth J; Swale, Daniel R; Bloomquist, Jeffrey R

    2013-09-01

    Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10(-4) nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm(2) for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm(2) against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm(2) compared to DEET (MED of 0.091 μmol/cm(2)). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm(2) which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent

  18. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    Science.gov (United States)

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Intramolecular electron transfer in single-site-mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; Pascher, T

    1993-01-01

    . Natl. Acad. Sci. U.S.A. 86, 6968-6972]. The RSSR- radical produced in the above reaction was reoxidized in a slower intramolecular electron-transfer process (30-70 s-1 at 298 K) concomitant with a further reduction of the Cu(II) ion. The temperature dependence of the latter rates was determined......, lambda = 135 kJ mol-1 for the reorganization energy was derived. When Trp48, situated midway between the donor and the acceptor, was replaced by Leu or Met, only a small change in the rate of intramolecular electron transfer was observed, indicating that the aromatic residue in this position...... is apparently only marginally involved in electron transfer in wild-type azurin. Pathway calculations also suggest that a longer, through-backbone path is more efficient than the shorter one involving Trp48. The former pathway yields an exponential decay factor, beta, of 6.6 nm-1. Another mutation, raising...

  20. Metal-Free N-Arylation of Secondary Amides at Room Temperature

    OpenAIRE

    Tinnis, Fredrik; Stridfeldt, Elin; Lundberg, Helena; Adolfsson, Hans; Olofsson, Berit

    2015-01-01

    The arylation of secondary acyclic amides has been achieved with diaryliodonium salts under mild and metal-free conditions. The methodology has a wide scope, allows synthesis of tertiary amides with highly congested aryl moieties, and avoids the regioselectivity problems observed in reactions with (diacetoxyiodo)benzene.

  1. Cross-Dehydrogenative Coupling Reactions Between P(O)-H and X-H (X = S, N, O, P) Bonds.

    Science.gov (United States)

    Hosseinian, Akram; Farshbaf, Sepideh; Fekri, Leila Zare; Nikpassand, Mohammad; Vessally, Esmail

    2018-05-26

    P(O)-X (X = S, N, O, P) bond-containing compounds have extensive application in medicinal chemistry, agrochemistry, and material chemistry. These useful organophosphorus compounds also have many applications in organic synthesis. In light of the importance of titled compounds, there is continuing interest in the development of synthetic methods for P(O)-X bonds construction. In the last 4 years, the direct coupling reaction of P(O)-H compounds with thiols, alcohols, and amines/amides has received much attention because of the atom-economic character. This review aims to give an overview of new developments in cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds, with special emphasis on the mechanistic aspects of the reactions.

  2. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone.

    Science.gov (United States)

    Lamperti, Marco; Maspero, Angelo; Tønnesen, Hanne H; Bondani, Maria; Nardo, Luca

    2014-08-28

    Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  3. Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone

    Directory of Open Access Journals (Sweden)

    Marco Lamperti

    2014-08-01

    Full Text Available Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  4. IR Dissociation spectroscopy of ethylene bonded to CH4, CH2D2 and CD4 and intramolecular dynamics of NeCl2

    International Nuclear Information System (INIS)

    Janda, K.C.

    1986-01-01

    The goal of my project is to understand how intramolecular vibrational relaxation effects the high resolution spectroscopy of vibrationally excited molecules. Their first results indicated that for molecular complexes of ethylene, vibrationally excited in the nu 7 out-of-plane bending mode, IVR is so fast that high resolution spectroscopy is vitiated by lifetime broadening. Only for rare gas-ethylene complexes was rotational resolution achieved. These results led them to postulate that IVR in ethylene complexes occurs by a V-T,R mechanism where the rate is limited by angular momentum constraints

  5. Synthesis, Antifungal Activity and QSAR of Some Novel Carboxylic Acid Amides

    Directory of Open Access Journals (Sweden)

    Shijie Du

    2015-03-01

    Full Text Available A series of novel aromatic carboxylic acid amides were synthesized and tested for their activities against six phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to good activity. Among them N-(2-(1H-indazol-1-ylphenyl-2-(trifluoromethylbenzamide (3c exhibited the highest antifungal activity against Pythium aphanidermatum (EC50 = 16.75 µg/mL and Rhizoctonia solani (EC50 = 19.19 µg/mL, compared to the reference compound boscalid with EC50 values of 10.68 and 14.47 µg/mL, respectively. Comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA were employed to develop a three-dimensional quantitative structure-activity relationship model for the activity of the compounds. In the molecular docking, a fluorine atom and the carbonyl oxygen atom of 3c formed hydrogen bonds toward the hydroxyl hydrogens of TYR58 and TRP173.

  6. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  7. Environment-friendly wood fibre composite with high bonding strength and water resistance

    Science.gov (United States)

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi; Guo, Minghui

    2018-04-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.

  8. Characterization of intramolecular disulfide bonds and secondary modifications of the glycoprotein from viral hemorrhagic septicemia virus, a fish rhabdovirus

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Nielsen, Thomas Krogh; Roepstorff, Peter

    1998-01-01

    were analyzed by mass spectrometry before and after chemical reduction, and six disulfide bonds were identified: Cys29-Cys339, Cys44-Cys295, Cys90-Cys132, Cys172-Cys177, Cys195-Cys265, and Cys231-CyS236. Mass spectrometric analysis in combination with glycosidases allowed characterization of the glycan...... of the protein, The present study was initiated to identify the disulfide bonds and other structural aspects relevant to vaccine design. The N-terminal amino acid residue was identified as being a pyroglutamic acid, corresponding to Gln21 of the primary transcript, Peptides from endoproteinase-degraded G protein...... cysteine residues are situated at conserved positions, This finding suggests that there might be some common disulfide bonding pattern among the six rhabdoviruses....

  9. Nitrile hydration by thiolate- and alkoxide-ligated Co-NHase analogues. Isolation of Co(III)-amidate and Co(III)-iminol intermediates.

    Science.gov (United States)

    Swartz, Rodney D; Coggins, Michael K; Kaminsky, Werner; Kovacs, Julie A

    2011-03-23

    Nitrile hydratases (NHases) are thiolate-ligated Fe(III)- or Co(III)-containing enzymes, which convert nitriles to the corresponding amide under mild conditions. Proposed NHase mechanisms involve M(III)-NCR, M(III)-OH, M(III)-iminol, and M(III)-amide intermediates. There have been no reported crystallographically characterized examples of these key intermediates. Spectroscopic and kinetic data support the involvement of a M(III)-NCR intermediate. A H-bonding network facilitates this enzymatic reaction. Herein we describe two biomimetic Co(III)-NHase analogues that hydrate MeCN, and four crystallographically characterized NHase intermediate analogues, [Co(III)(S(Me2)N(4)(tren))(MeCN)](2+) (1), [Co(III)(S(Me2)N(4)(tren))(OH)](+) (3), [Co(III)(S(Me2)N(4)(tren))(NHC(O)CH(3))](+) (2), and [Co(III)(O(Me2)N(4)(tren))(NHC(OH)CH(3))](2+) (5). Iminol-bound 5 represents the first example of a Co(III)-iminol compound in any ligand environment. Kinetic parameters (k(1)(298 K) = 2.98(5) M(-1) s(-1), ΔH(‡) = 12.65(3) kcal/mol, ΔS(‡) = -14(7) e.u.) for nitrile hydration by 1 are reported, and the activation energy E(a) = 13.2 kcal/mol is compared with that (E(a) = 5.5 kcal/mol) of the NHase enzyme. A mechanism involving initial exchange of the bound MeCN for OH- is ruled out by the fact that nitrile exchange from 1 (k(ex)(300 K) = 7.3(1) × 10(-3) s(-1)) is 2 orders of magnitude slower than nitrile hydration, and that hydroxide bound 3 does not promote nitrile hydration. Reactivity of an analogue that incorporates an alkoxide as a mimic of the highly conserved NHase serine residue shows that this moiety facilitates nitrile hydration under milder conditions. Hydrogen-bonding to the alkoxide stabilizes a Co(III)-iminol intermediate. Comparison of the thiolate versus alkoxide intermediate structures shows that C≡N bond activation and C═O bond formation proceed further along the reaction coordinate when a thiolate is incorporated into the coordination sphere.

  10. Near-infrared analysis of hydrogen-bonding in glass- and rubber-state amorphous saccharide solids.

    Science.gov (United States)

    Izutsu, Ken-ichi; Hiyama, Yukio; Yomota, Chikako; Kawanishi, Toru

    2009-01-01

    Near-infrared (NIR) spectroscopic analysis of noncrystalline polyols and saccharides (e.g., glycerol, sorbitol, maltitol, glucose, sucrose, maltose) was performed at different temperatures (30-80 degrees C) to elucidate the effect of glass transition on molecular interaction. Transmission NIR spectra (4,000-12,000 cm(-1)) of the liquids and cooled-melt amorphous solids showed broad absorption bands that indicate random configuration of molecules. Heating of the samples decreased an intermolecular hydrogen-bonding OH vibration band intensity (6,200-6,500 cm(-1)) with a concomitant increase in a free and intramolecular hydrogen-bonding OH group band (6,600-7,100 cm(-1)). Large reduction of the intermolecular hydrogen-bonding band intensity at temperatures above the glass transition (T(g)) of the individual solids should explain the higher molecular mobility and lower viscosity in the rubber state. Mixing of the polyols with a high T(g) saccharide (maltose) or an inorganic salt (sodium tetraborate) shifted both the glass transition and the inflection point of the hydrogen-bonding band intensity to higher temperatures. The implications of these results for pharmaceutical formulation design and process monitoring (PAT) are discussed.

  11. Magnetic-superexchange interactions of uranium(IV) chloride-addition complexes with amides, 2

    International Nuclear Information System (INIS)

    Miyake, Chie; Hinatsu, Yukio; Imoto, Shosuke

    1983-01-01

    The magnetic susceptibilities of five cyclic amide (lactam)-addition complexes of uranium(IV) chloride were measured between room temperature and 2 K. Magnetic-exchange interaction was found only for N-methyl-substituted amide complexes, and a dimer structure was assumed for them on the basis of their chemical properties. Treating interdimer interaction with a molecular-field approximation, the magnetic susceptibilities were calculated to be in good agreement with the experimental results in the temperature region of the maxima in chi sub(A). The transmission of antiparallel spin coupling via the π orbitals of the bridging amide ligands is proposed to explain the strong intradimer superexchange interaction for the uranium(IV) chloride-amide complexes with the magnetic-susceptibility maximum. (author)

  12. Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using 13C NMR hydrogen/deuterium isotope shifts

    International Nuclear Information System (INIS)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    1987-01-01

    Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a 13 C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D 2 O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H 2 O solutions; in 1:1 H 2 O/D 2 O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with 13 C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results

  13. Amide Synthesis from Alcohols and Amines by the Extrusion of Dihydrogen

    DEFF Research Database (Denmark)

    Nordstrøm, Lars Ulrik Rubæk; Vogt, Henning; Madsen, R.

    2008-01-01

    An environmentally friendly method for synthesis of amides is presented where a simple ruthenium catalyst mediates the direct coupling between an alcohol and an amine with the liberation of two molecules of dihydrogen. The active catalyst is generated in situ from an easily available ruthenium...... complex, an N-heterocyclic carbene and a phosphine. The reaction allows primary alcohols to be coupled with primary alkyamines to afford the corresponding secondary amides in good yields. The amide formation presumably proceeds through a catalytic cycle where the intermediate aldehyde and hemiaminal...

  14. Cytotoxic cassaine diterpenoid-diterpenoid amide dimers and diterpenoid amides from the leaves of Erythrophleum fordii.

    Science.gov (United States)

    Du, Dan; Qu, Jing; Wang, Jia-Ming; Yu, Shi-Shan; Chen, Xiao-Guang; Xu, Song; Ma, Shuang-Gang; Li, Yong; Ding, Guang-Zhi; Fang, Lei

    2010-10-01

    Detailed phytochemical investigation from the leaves of Erythrophleum fordii resulted in the isolation of 13 compounds, including three cassaine diterpenoid-diterpenoid amide dimers (1, 3 and 5), and seven cassaine diterpenoid amides (6 and 8-13), together with three previously reported ones, erythrophlesins D (2), C (4) and 3beta-hydroxynorerythrosuamide (7). Compounds 1, 3 and 5 are further additions to the small group of cassaine diterpenoid dimers represented by erythrophlesins A-D. Their structures were determined by analysis of extensive one- and two-dimensional NMR experiments and ESIMS methods. Cytotoxic activities of the isolated compounds were tested against HCT-8, Bel-7402, BGC-823, A549 and A2780 human cancer cell lines in the MTT test. Results showed that compounds 1 and 3-5 exhibited significantly selective cytotoxic activities (IC(50)<10 microM) against these cells, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases.

    Science.gov (United States)

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish

    2009-12-01

    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  16. Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing.

    Science.gov (United States)

    Li, Kai; Feng, Qi; Niu, Guangle; Zhang, Weijie; Li, Yuanyuan; Kang, Miaomiao; Xu, Kui; He, Juan; Hou, Hongwei; Tang, Ben Zhong

    2018-04-23

    In this work, a benzothiazole-based aggregation-induced emission luminogen (AIEgen) of 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (3) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolecular rotation (RIR) processes. 3 was successfully used as a ratiometric fluorescent chemosensor for the detection of pH, which exhibited reversible acid/base-switched yellow/cyan emission transition. More importantly, the pH jump of 3 was very precipitous from 7.0 to 8.0 with a midpoint of 7.5, which was well matched with the physiological pH. This feature makes 3 very suitable for the highly sensitive detection of pH fluctuation in biosamples and neutral water samples. 3 was also successfully used as a ratiometric fluorescence chemosensor for the detection of acidic and basic organic vapors in test papers.

  17. Selective Reductive Removal of Ester and Amide Groups from Arenes and Heteroarenes through Nickel-Catalyzed C−O and C−N Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-21

    An inexpensive nickel(II) catalyst and a hydrosilane were used for the efficient reductive defunctionalization of aryl and heteroaryl esters through a decarbonylative pathway. This versatile method could be used for the removal of ester and amide functional groups from various organic molecules. Moreover, a scale-up experiment and a synthetic application based on the use of a removable carboxylic acid directing group highlight the usefulness of this reaction.

  18. Selective Reductive Removal of Ester and Amide Groups from Arenes and Heteroarenes through Nickel-Catalyzed C−O and C−N Bond Activation

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Lee, Shao-Chi; Liu, Xiangqian; Rueping, Magnus

    2017-01-01

    An inexpensive nickel(II) catalyst and a hydrosilane were used for the efficient reductive defunctionalization of aryl and heteroaryl esters through a decarbonylative pathway. This versatile method could be used for the removal of ester and amide functional groups from various organic molecules. Moreover, a scale-up experiment and a synthetic application based on the use of a removable carboxylic acid directing group highlight the usefulness of this reaction.

  19. Experimental and theoretical studies on the structural, spectroscopic and hydrogen bonding on 4-nitro-n-(2,4-dinitrophenyl) benzenamine

    Science.gov (United States)

    Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.

    2018-04-01

    Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.

  20. Preparation of CN /Carbon Nanotube Intramolecular Junctions by ...

    African Journals Online (AJOL)

    NICO

    intramolecular junctions composed of CNx with a bamboo-like structure and empty hollow carbon nanotubes were observed, ... and excellent thermal and mechanical properties.1,2 In recent .... tion of hexane, and the other segment with a curved compart- ... by an arrow lies at the interface of the junction between 'b' and.