WorldWideScience

Sample records for intraguild predators affect

  1. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites.

    Science.gov (United States)

    Seiter, Michael; Schausberger, Peter

    2015-10-09

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments.

  2. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails

    Science.gov (United States)

    Lorda, J.; Hechinger, R.F.; Cooper, S. D.; Kuris, A. M.; Lafferty, Kevin D.

    2016-01-01

    The California horn snail, Cerithideopsis californica, and the shore crabs, Pachygrapsus crassipesand Hemigrapsus oregonensis, compete for epibenthic microalgae, but the crabs also eat snails. Such intraguild predation is common in nature, despite models predicting instability. Using a series of manipulations and field surveys, we examined intraguild predation from several angles, including the effects of stage-dependent predation along with direct consumptive and nonconsumptive predator effects on intraguild prey. In the laboratory, we found that crabs fed on macroalgae, snail eggs, and snails, and the size of consumed snails increased with predator crab size. In field experiments, snails grew less in the presence of crabs partially because snails behaved differently and were buried in the sediment (nonconsumptive effects). Consistent with these results, crab and snail abundances were negatively correlated in three field surveys conducted at three different spatial scales in estuaries of California, Baja California, and Baja California Sur: (1) among 61 sites spanning multiple habitat types in three estuaries, (2) among the habitats of 13 estuaries, and (3) among 34 tidal creek sites in one estuary. These results indicate that shore crabs are intraguild predators on California horn snails that affect snail populations via predation and by influencing snail behavior and performance.

  3. Adaptive and variable intraguild predators facilitate local coexistence in an intraguild predation module.

    Science.gov (United States)

    Wu, San-He; Okuyama, Toshinori

    2012-05-24

    Intraguild predation (IGP) is common in nature, but its ecological role is still illusive. A number of studies have investigated a three species IGP module that consists of an intraguild predator, intraguild prey, and resource species in which the intraguild predator and the intraguild prey exploitatively compete for the resource while the intraguild predator also consumes the intraguild prey. A common prediction of models of the IGP module is that the coexistence of the species is difficult, which is considered inconsistent to the ubiquity of IGP in nature. This study revisits the IGP module and provides an alternative coexistence mechanism by focusing on a commonly used analysis method (i.e., invasion analysis) in light of individual variation in adaptive behavior. Invasion analysis underestimates the possibility of coexistence regardless of the presence or absence of adaptive behavior. Coexistence is possible even when invasion analysis predicts otherwise. The underestimation by invasion analysis is pronounced when the intraguild predator forages adaptively, which is even further pronounced when the expression of foraging behavior is variable among intraguild predators. The possibility of coexistence in the IGP module is greater than previously thought, which may have been partly due to how models were analyzed. Inconsistent conclusions may result from the same model depending on how the model is analyzed. Individual variation in adaptive behavior can be an important factor promoting the coexistence of species in IGP modules.

  4. Dynamics of a Stochastic Intraguild Predation Model

    Directory of Open Access Journals (Sweden)

    Zejing Xing

    2016-04-01

    Full Text Available Intraguild predation (IGP is a widespread ecological phenomenon which occurs when one predator species attacks another predator species with which it competes for a shared prey species. The objective of this paper is to study the dynamical properties of a stochastic intraguild predation model. We analyze stochastic persistence and extinction of the stochastic IGP model containing five cases and establish the sufficient criteria for global asymptotic stability of the positive solutions. This study shows that it is possible for the coexistence of three species under the influence of environmental noise, and that the noise may have a positive effect for IGP species. A stationary distribution of the stochastic IGP model is established and it has the ergodic property, suggesting that the time average of population size with the development of time is equal to the stationary distribution in space. Finally, we show that our results may be extended to two well-known biological systems: food chains and exploitative competition.

  5. Intraguild predation and native lady beetle decline.

    Directory of Open Access Journals (Sweden)

    Mary M Gardiner

    Full Text Available Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows

  6. Analysis of adaptive foraging in an intraguild predation system

    Directory of Open Access Journals (Sweden)

    T. Okuyama

    2003-09-01

    Full Text Available An intraguild predation (IGP system with adaptive foraging behavior was analyzed using a simple mathematical model. The main aim was to explore how the adaptive behavior affects species interactions as well as how such interactions derived from adaptive behavior affect community stability. The focal system contained top predators, intermediate predators, and basal prey. Intermediate predators exhibit antipredator behavior and balance costs (e.g. perceived predation risk and benefits (e.g. resource intake to determine their foraging effort. Density-dependent foraging behavior with the unique connectance of the IGP food web created unusual species interactions. Notably, increased prey density can transmit negative indirect effects to top predators while increased top predator density transmits positive indirect effects to prey population. The nature of these interactions is density-dependent. The results suggest that both IGP (as opposed to linear food chain and adaptive foraging behaviors may strongly influence community dynamics due to emergent interactions among direct effects and indirect effects. Furthermore, the adaptive foraging of intermediate predators may stabilize the community as a whole.

  7. Intraguild predation in pioneer predator communities of alpine glacier forelands.

    Science.gov (United States)

    Raso, Lorna; Sint, Daniela; Mayer, Rebecca; Plangg, Simon; Recheis, Thomas; Brunner, Silvia; Kaufmann, Rüdiger; Traugott, Michael

    2014-08-01

    Pioneer communities establishing themselves in the barren terrain in front of glacier forelands consist principally of predator species such as carabid beetles and lycosid spiders. The fact that so many different predators can co-inhabit an area with no apparent primary production was initially explained by allochthonous material deposited in these forelands. However, whether these populations can be sustained on allochthonous material alone is questionable and recent studies point towards this assumption to be flawed. Intraguild predation (IGP) might play an important role in these pioneer predator assemblages, especially in the very early successional stages where other prey is scarce. Here, we investigated IGP between the main predator species and their consumption of Collembola, an important autochthonous alternative prey, within a glacier foreland in the Ötztal (Austrian Alps). Multiplex PCR and stable isotope analysis were used to characterize the trophic niches in an early and late pioneer stage over 2 years. Results showed that intraguild prey was consumed by all invertebrate predators, particularly the larger carabid species. Contrary to our initial hypothesis, the DNA detection frequency of IGP prey was not significantly higher in early than in late pioneer stage, which was corroborated by the stable isotope analysis. Collembola were the most frequently detected prey in all of the predators, and the overall prey DNA detection patterns were consistent between years. Our findings show that IGP appears as a constant in these pioneer predator communities and that it remains unaffected by successional changes. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  8. Stability of an intraguild predation system with mutual predation

    Science.gov (United States)

    Wang, Yuanshi; DeAngelis, Donald L.

    2016-04-01

    We examine intraguild predation (IGP), in which species both compete for resources or space and prey on each other. The IGP system is modeled here by a lattice gas model of the mean-field theory. First, we consider the IGP system of one species in which individuals of the same species cannibalize each other. The dynamical behavior of the model demonstrates a mechanism by which the intraspecific predation promotes persistence of the species. Then we consider the IGP system of two species with mutual predation. Global dynamics of the model exhibit basic properties of IGP: (i) When both species' efficiencies in converting the consumptions into fitness are large, the outcome of their interaction is mutualistic in form and the IGP promotes persistence of both species. (ii) When one species' efficiency is large but the other's is small, the interaction outcomes become parasitic in nature, in which an obligate species can survive through the mutual predation with a facultative one. (iii) When both species' efficiencies are small, the interaction outcomes are competitive in nature and the IGP leads to extinction of one of the species. A novel result of this work is that varying one parameter or population density of the species can lead to transition of interaction outcomes between mutualism, parasitism and competition. On the other hand, dynamics of the models demonstrate that over-predation or under-predation will result in extinction of one/both species, while intermediate predation is favorable under certain parameter ranges.

  9. Coexistence of Predator and Prey in Intraguild Predation systems with Ontogenetic Niche Shifts

    NARCIS (Netherlands)

    Hin, V.; Schellekens, T.; Persson, L.; Roos, A.M.

    2011-01-01

    In basic intraguild predation (IGP) systems, predators and prey also compete for a shared resource. Theory predicts that persistence of these systems is possible when intraguild prey is superior in competition and productivity is not too high. IGP often results from ontogenetic niche shifts, in

  10. Cannibalism and intraguild predation of eggs within a diverse predator assemblage.

    Science.gov (United States)

    Takizawa, Tadashi; Snyder, William E

    2011-02-01

    Greater biodiversity among aphid predators sometimes leads to greater predator reproductive success. This could occur if cannibalism of predator eggs is consistently stronger than intraguild predation, such that diversity dilutes cannibalism risk when total predator densities remain constant across diversity levels. We compared the frequency of cannibalism versus intraguild predation by adult predators of four species [the lady beetles Coccinella septempunctata L. and Hippodamia convergens Guerin-Meneville, and the predatory bugs Geocoris bullatus (Say) and Nabis alternatus Parshley] on the eggs of three predator species (all of these predators but Nabis). For both coccinellid species, egg predation averaged across all intraguild predators was less frequent than cannibalism. In contrast, Geocoris eggs were generally more likely to be consumed by intraguild predators than by conspecifics. Closer inspection of the data revealed that Geocoris consistently consumed fewer eggs than the other species, regardless of egg species. Indeed, for lady beetle eggs it was relatively infrequent egg predation by Geocoris that brought down the average across all heterospecific predators, masking the fact that adults of the two lady beetles were no more likely to act as egg cannibals than as intraguild predators. Nabis ate eggs of the two beetles at approximately equal rates, but rarely ate Geocoris eggs. Female predators generally consumed more eggs than did males, but this did not alter any of the patterns described above. Altogether, our results suggest that species-specific differences in egg predation rates determined the relative intensity of egg intraguild-predation versus cannibalism, rather than any more general trend for egg cannibalism to always exceed intraguild predation.

  11. Prey-mediated avoidance of an intraguild predator by its intraguild prey.

    Science.gov (United States)

    Wilson, Ryan R; Blankenship, Terry L; Hooten, Mevin B; Shivik, John A

    2010-12-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist.

  12. Stability of equilibrium points in intraguild predation model with disease with SI model

    Science.gov (United States)

    Hassan, Aimi Nuraida binti Ali; Bujang, Noriham binti; Mahdi, Ahmad Faisal Bin

    2017-04-01

    Intraguild Predation (IGP) is classified as killing and eating among potential competitors. Intraguild Predation is a universal interaction, differing from competition or predation. Lotka Volterra competition model and Intraguild predation model has been analyze. The assumption for this model is no any immigration or migration involves. This paper is only considered IGP model for susceptible and infective (SI) only. The analysis of stability of the equilibrium points of Intraguild Predation Models with disease using Routh Hurwitz criteria will be illustrated using some numerical example.

  13. Biological Invasion and Coexistence in Intraguild Predation

    Directory of Open Access Journals (Sweden)

    Wenting Wang

    2013-01-01

    the intraguild prey (IGprey, they invade and spread through patchy invasion which corresponds to the invasion at the edge of extinction. Increase of the IGprey's dispersal rate and decrease of the IGpredator's may make the IGprey invade. But the interactions of the postinvasion web will change from IGP to competition, which is absolutely different from the first case. Finally, the common existence of IGP was explored once again from the perspective of biological invasion.

  14. Coexistence of predator and prey in intraguild predation systems with ontogenetic niche shifts.

    Science.gov (United States)

    Hin, Vincent; Schellekens, Tim; Persson, Lennart; de Roos, André M

    2011-12-01

    In basic intraguild predation (IGP) systems, predators and prey also compete for a shared resource. Theory predicts that persistence of these systems is possible when intraguild prey is superior in competition and productivity is not too high. IGP often results from ontogenetic niche shifts, in which the diet of intraguild predators changes as a result of growth in body size (life-history omnivory). As a juvenile, a life-history omnivore competes with the species that becomes its prey later in life. Competition can hence limit growth of young predators, while adult predators can suppress consumers and therewith neutralize negative effects of competition. We formulate and analyze a stage-structured model that captures both basic IGP and life-history omnivory. The model predicts increasing coexistence of predators and consumers when resource use of stage-structured predators becomes more stage specific. This coexistence depends on adult predators requiring consumer biomass for reproduction and is less likely when consumers outcompete juvenile predators, in contrast to basic IGP. Therefore, coexistence occurs when predation structures the community and competition is negligible. Consequently, equilibrium patterns over productivity resemble those of three-species food chains. Life-history omnivory thus provides a mechanism that allows intraguild predators and prey to coexist over a wide range of resource productivity.

  15. Impacts of intraguild predation on Arctic copepod communities

    Directory of Open Access Journals (Sweden)

    Karolane Dufour

    2016-09-01

    Full Text Available Communities of large copepods form an essential hub of matter and energy fluxes in Arctic marine food webs. Intraguild predation on eggs and early larval stages occurs among the different species of those communities and it has been hypothesized to impact its structure and function. In order to better understand the interactions between dominant copepod species in the Arctic, we conducted laboratory experiments that quantified intraguild predation between the conspicuous and omnivorous Metridia longa and the dominant Calanus hyperboreus. We recorded individual egg ingestion rates for several conditions of temperature, egg concentration and alternative food presence. In each of these experiments, at least some females ingested eggs but individual ingestion rates were highly variable. The global mean ingestion rate of M. longa on C. hyperboreus eggs was 5.8 eggs ind-1 d-1, or an estimated 37% of M. longa daily metabolic need. Among the different factors tested and the various individual traits considered (prosome length, condition index, only the egg concentration had a significant and positive effect on ingestion rates. We further explored the potential ecological impacts of intraguild predation in a simple 1D numerical model of C. hyperboreus eggs vertical distribution in the Amundsen Gulf. Our modelling results showed an asymmetric relationship in that M. longa has little potential impact on the recruitment of C. hyperboreus (< 3% egg standing stock removed by IGP at most whereas the eggs intercepted by the former can account for a significant portion of its metabolic requirement during winter (up to a third.

  16. The ubiquity of intraguild predation among predatory arthropods.

    Directory of Open Access Journals (Sweden)

    Annie-Ève Gagnon

    Full Text Available Intraguild predation (IGP occurs when one predator species attacks another predator species with which it competes for a shared prey species. Despite the apparent omnipresence of intraguild interactions in natural and managed ecosystems, very few studies have quantified rates of IGP in various taxa under field conditions. We used molecular analyses of gut contents to assess the nature and incidence of IGP among four species of coccinellid predators in soybean fields. Over half of the 368 predator individuals collected in soybean contained the DNA of other coccinellid species indicating that IGP was very common at our field site. Furthermore, 13.2% of the sampled individuals contained two and even three other coccinellid species in their gut. The interaction was reciprocal, as each of the four coccinellid species has the capacity to feed on the others. To our knowledge, this study represents the most convincing field evidence of a high prevalence of IGP among predatory arthropods. The finding has important implications for conservation biology and biological control.

  17. The ubiquity of intraguild predation among predatory arthropods.

    Science.gov (United States)

    Gagnon, Annie-Ève; Heimpel, George E; Brodeur, Jacques

    2011-01-01

    Intraguild predation (IGP) occurs when one predator species attacks another predator species with which it competes for a shared prey species. Despite the apparent omnipresence of intraguild interactions in natural and managed ecosystems, very few studies have quantified rates of IGP in various taxa under field conditions. We used molecular analyses of gut contents to assess the nature and incidence of IGP among four species of coccinellid predators in soybean fields. Over half of the 368 predator individuals collected in soybean contained the DNA of other coccinellid species indicating that IGP was very common at our field site. Furthermore, 13.2% of the sampled individuals contained two and even three other coccinellid species in their gut. The interaction was reciprocal, as each of the four coccinellid species has the capacity to feed on the others. To our knowledge, this study represents the most convincing field evidence of a high prevalence of IGP among predatory arthropods. The finding has important implications for conservation biology and biological control.

  18. Habitat selection of a parasitoid mediated by volatiles informing on host and intraguild predator densities

    DEFF Research Database (Denmark)

    Cotes, Belén; Rännbäck, Linda Marie; Björkman, Maria

    2015-01-01

    both a parasitoid and its host, parasitoids may reduce the risk of intraguild predation (IGP) by avoiding such patches. In this study, we examined whether the presence of the entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana in soil habitats of a root herbivore, Delia radicum, affects...... volatile compounds to locate high densities of prey, but also compounds related to fungal presence to reduce the risk of IGP towards themselves and their offspring....

  19. Population dynamics of intraguild predation in a lattice gas system.

    Science.gov (United States)

    Wang, Yuanshi; Wu, Hong

    2015-01-01

    In the system of intraguild predation (IGP) we are concerned with, species that are in a predator-prey relationship, also compete for shared resources (space or food). While several models have been established to characterize IGP, mechanisms by which IG prey and IG predator can coexist in IGP systems with spatial competition, have not been shown. This paper considers an IGP model, which is derived from reactions on lattice and has a form similar to that of Lotka-Volterra equations. Dynamics of the model demonstrate properties of IGP and mechanisms by which the IGP leads to coexistence of species and occurrence of alternative states. Intermediate predation is shown to lead to persistence of the predator, while extremely big predation can lead to extinction of one/both species and extremely small predation can lead to extinction of the predator. Numerical computations confirm and extend our results. While empirical observations typically exhibit coexistence of IG predator and IG prey, theoretical analysis in this work demonstrates exact conditions under which this coexistence can occur. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Parasitised caterpillars suffer reduced predation: potential implications for intra-guild predation.

    Science.gov (United States)

    Chen, Wen-Bin; Vasseur, Liette; You, Min-Sheng; Li, Jian-Yu; Wang, Cheng-Xiang; Meng, Ruo-Xue; Gurr, Geoff M

    2017-02-23

    Intra-guild predation (IGP) is an important phenomenon structuring ecological communities and affects the success of biological control. Here we show that parasitism by the koinobiont wasp Cotesia vestalis is associated with behavioural changes in its larval host (diamondback moth, Plutella xylostella) that reduce risk of IGP. Compared with unparasitised caterpillars, parasitised P. xylostella moved less frequently to new feeding patches on plants and were less likely to fall from the plant. Wolf spiders killed significantly fewer parasitised larvae. Reflecting their reduced movement and capacity to select plant tissue of optimal quality, parasitised caterpillars fed at a lower rate and exhibited delayed development suggesting a trade-off between IGP avoidance and nutrient intake by the host. This change in behaviour to reduce risk may cascade to the first trophic level and help explain the stability of IGP systems.

  1. Dynamics of a intraguild predation model with generalist or specialist predator.

    Science.gov (United States)

    Kang, Yun; Wedekin, Lauren

    2013-11-01

    Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.

  2. Compensatory growth following transient intraguild predation risk in predatory mites

    Science.gov (United States)

    Walzer, Andreas; Lepp, Natalia; Schausberger, Peter

    2015-01-01

    Compensatory or catch-up growth following growth impairment caused by transient environmental stress, due to adverse abiotic factors or food, is widespread in animals. Such growth strategies commonly balance retarded development and reduced growth. They depend on the type of stressor but are unknown for predation risk, a prime selective force shaping life history. Anti-predator behaviours by immature prey typically come at the cost of reduced growth rates with potential negative consequences on age and size at maturity. Here, we investigated the hypothesis that transient intraguild predation (IGP) risk induces compensatory or catch-up growth in the plant-inhabiting predatory mite Phytoseiulus persimilis. Immature P. persimilis were exposed in the larval stage to no, low or high IGP risk, and kept under benign conditions in the next developmental stage, the protonymph. High but not low IGP risk prolonged development of P. persimilis larvae, which was compensated in the protonymphal stage by increased foraging activity and accelerated development, resulting in optimal age and size at maturity. Our study provides the first experimental evidence that prey may balance developmental costs accruing from anti-predator behaviour by compensatory growth. PMID:26005221

  3. Influence of density on intraguild predation of aquatic Hemiptera (Heteroptera: implications in biological control of mosquito

    Directory of Open Access Journals (Sweden)

    S. Brahma

    2014-04-01

    Full Text Available The water bugs Diplonychus rusticus (Fabricius (Heteroptera: Belostomatidae and Anisops bouvieri (Kirkaldy (Heteroptera: Notonectidae co-occur in wetlands sharing mosquito larvae as prey. As a consequence, an asymmetrical intraguild predation (IGP involving D. rusticus as IG predator and A. bouvieri as IG prey can be possible, the outcome of which may vary with the relative density of interacting species. Based on this proposition density dependent effects on the IG prey and shared prey mortality were assessed in the laboratory using varying numbers of IG predator and shared prey (IV instar Culex quinquefasciatus larva. In contrast to single predator system, mosquito larvae were proportionately less vulnerable to predation in IGP, at low density of shared prey. An increase in density of mosquito decreased the mortality of IG prey (A. bouvieri, but the mean mortality of the IG prey increased with the density of IG predator, in IGP system. Increase in density of mosquito and D. rusticus enhanced risk to predation of mosquito while reducing the mortality of A. bouvieri. Interaction between D. rusticus and A. bouvieri as a part of IGP system provides a possible reason of coexistence of mosquito immature along with predators in wetlands. Biological regulation of mosquitoes may be affected, if appropriate predator numbers are not available in the habitats.

  4. Habitat selection of a parasitoid mediated by volatiles informing on host and intraguild predator densities

    DEFF Research Database (Denmark)

    Cotes, Belén; Rännbäck, Linda Marie; Björkman, Maria;

    2015-01-01

    To locate and evaluate host patches before oviposition, parasitoids of herbivorous insects utilize plant volatiles and host-derived cues, but also evaluate predator-derived infochemicals to reduce predation risks. When foraging in host habitats infested with entomopathogenic fungi that can infect...... both a parasitoid and its host, parasitoids may reduce the risk of intraguild predation (IGP) by avoiding such patches. In this study, we examined whether the presence of the entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana in soil habitats of a root herbivore, Delia radicum, affects...... the behavior of Trybliographa rapae, a parasitoid of D. radicum. Olfactometer bioassays revealed that T. rapae avoided fungal infested host habitats and that this was dependent on fungal species and density. In particular, the parasitoid avoided habitats with high densities of the more virulent fungus, M...

  5. Gregarious pupation act as a defensive mechanism against cannibalism and intraguild predation.

    Science.gov (United States)

    Roberge, Claudia; Fréchette, Bruno; Labrie, Geneviève; Dumont, François; Lucas, Eric

    2016-08-01

    Coccinellid pupae use an array of defensive strategies against their natural enemies. This study aims to assess the efficiency of gregarious pupation as a defensive mechanism against intraguild predators and cannibals in coccinellid. The study was designed specifically (i) to determine the natural occurrence of gregarious pupation in the field for different coccinellid species, and (ii) to evaluate the adaptive value of gregarious pupation as a defensive mechanism against 2 types of predators (i.e., cannibals and intraguild predators). In the field, gregarious pupation consisted of a group of 2-5 pupae. The proportion of gregarious pupation observed varied according to species, the highest rate being observed with Harmonia axyridis Pallas (Coccinellidae; 14.17%). Gregarious pupation had no impact on the probability that intraguild predators and cannibals locate pupae. Intraguild predation occurred more often in site with gregarious pupation, while cannibalism occurred as often in site with gregarious pupation as in site with isolated pupa. However, for a specific pupa, the mortality rate was higher for isolated pupae than for pupae located in a gregarious pupation site both in the presence of intraguild predators and in the presence of cannibals. The spatial location of pupae within the group had no impact on mortality rate. Since it reduces the risk of predation, it is proposed that gregarious pupation act as a defensive mechanism for H. axyridis pupae. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  6. Biodiversity loss following the introduction of exotic competitors: does intraguild predation explain the decline of native lady beetles?

    Science.gov (United States)

    Smith, Chelsea A; Gardiner, Mary M

    2013-01-01

    Exotic species are widely accepted as a leading cause of biodiversity decline. Lady beetles (Coccinellidae) provide an important model to study how competitor introductions impact native communities since several native coccinellids have experienced declines that coincide with the establishment and spread of exotic coccinellids. This study tested the central hypothesis that intraguild predation by exotic species has caused these declines. Using sentinel egg experiments, we quantified the extent of predation on previously-common (Hippodamia convergens) and common (Coleomegilla maculata) native coccinellid eggs versus exotic coccinellid (Harmonia axyridis) eggs in three habitats: semi-natural grassland, alfalfa, and soybean. Following the experiments quantifying egg predation, we used video surveillance to determine the composition of the predator community attacking the eggs. The extent of predation varied across habitats, and egg species. Native coccinellids often sustained greater egg predation than H. axyridis. We found no evidence that exotic coccinellids consumed coccinellid eggs in the field. Harvestmen and slugs were responsible for the greatest proportion of attacks. This research challenges the widely-accepted hypothesis that intraguild predation by exotic competitors explains the loss of native coccinellids. Although exotic coccinellids may not be a direct competitor, reduced egg predation could indirectly confer a competitive advantage to these species. A lower proportion of H. axyridis eggs removed by predators may have aided its expansion and population increase and could indirectly affect native species via exploitative or apparent competition. These results do not support the intraguild predation hypothesis for native coccinellid decline, but do bring to light the existence of complex interactions between coccinellids and the guild of generalist predators in coccinellid foraging habitats.

  7. Biodiversity loss following the introduction of exotic competitors: does intraguild predation explain the decline of native lady beetles?

    Directory of Open Access Journals (Sweden)

    Chelsea A Smith

    Full Text Available Exotic species are widely accepted as a leading cause of biodiversity decline. Lady beetles (Coccinellidae provide an important model to study how competitor introductions impact native communities since several native coccinellids have experienced declines that coincide with the establishment and spread of exotic coccinellids. This study tested the central hypothesis that intraguild predation by exotic species has caused these declines. Using sentinel egg experiments, we quantified the extent of predation on previously-common (Hippodamia convergens and common (Coleomegilla maculata native coccinellid eggs versus exotic coccinellid (Harmonia axyridis eggs in three habitats: semi-natural grassland, alfalfa, and soybean. Following the experiments quantifying egg predation, we used video surveillance to determine the composition of the predator community attacking the eggs. The extent of predation varied across habitats, and egg species. Native coccinellids often sustained greater egg predation than H. axyridis. We found no evidence that exotic coccinellids consumed coccinellid eggs in the field. Harvestmen and slugs were responsible for the greatest proportion of attacks. This research challenges the widely-accepted hypothesis that intraguild predation by exotic competitors explains the loss of native coccinellids. Although exotic coccinellids may not be a direct competitor, reduced egg predation could indirectly confer a competitive advantage to these species. A lower proportion of H. axyridis eggs removed by predators may have aided its expansion and population increase and could indirectly affect native species via exploitative or apparent competition. These results do not support the intraguild predation hypothesis for native coccinellid decline, but do bring to light the existence of complex interactions between coccinellids and the guild of generalist predators in coccinellid foraging habitats.

  8. Coincidental intraguild predation by caterpillars on spider mites.

    Science.gov (United States)

    Shirotsuka, Kanako; Yano, Shuichi

    2012-01-29

    Intraguild predation (IGP) is defined as the killing and eating of prey species by a predator that also can utilize the resources of the prey. It is mainly reported among carnivores that share common herbivorous prey. However, a large chewing herbivore could prey upon sedentary and/or micro herbivores in addition to utilizing a host plant. To investigate such coincidental IGP, we observed the behavioral responses of the polyphagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when its host plant Cayratia japonica (Thunb.) Gagnep. (Vitaceae) was attacked by hornworms, Theretra japonica Boisduval (Sphingidae) and T. oldenlandiae Fabricius (Sphingidae). We also examined an interaction between the oligophagous mite Panonychus citri McGregor (Acari: Tetranychidae) and caterpillars of the swallowtail Papilio xuthus L. (Papilionidae) that share citrus plants as their main food source. Although all T. kanzawai and some active stage P. citri tried to escape from the coincidental IGP, some were consumed together with eggs, quiescent mites, and host plant leaves, suggesting that coincidental IGP occurs on spider mites in the wild. Moreover, neither hornworms nor swallowtail caterpillars distinguished between spider mite-infested and uninfested leaves, suggesting that the mite-infested leaves do not discourage caterpillar feeding. The reasons that the mites have no effective defense against coincidental IGP other than escaping are discussed.

  9. The Behavioral Type of a Top Predator Drives the Short-Term Dynamic of Intraguild Predation.

    Science.gov (United States)

    Michalko, Radek; Pekár, Stano

    2017-03-01

    Variation in behavior among individual top predators (i.e., the behavioral type) can strongly shape pest suppression in intraguild predation (IGP). However, the effect of a top predator's behavioral type-namely, foraging aggressiveness (number of killed divided by prey time) and prey choosiness (preference degree for certain prey type)-on the dynamic of IGP may interact with the relative abundances of top predator, mesopredator, and pest. We investigated the influence of the top predator's behavioral type on the dynamic of IGP in a three-species system with a top predator spider, a mesopredator spider, and a psyllid pest using a simulation model. The model parameters were estimated from laboratory experiments and field observations. The top predator's behavioral type altered the food-web dynamics in a context-dependent manner. The system with an aggressive/nonchoosy top predator, without prey preferences between pest and mesopredator, suppressed the pest more when the top predator to mesopredator abundance ratio was high. In contrast, the system with a timid/choosy top predator that preferred the pest to the mesopredator was more effective when the ratio was low. Our results show that the behavioral types and abundances of interacting species need to be considered together when studying food-web dynamics, because they evidently interact. To improve biocontrol efficiency of predators, research on the alteration of their behavioral types is needed.

  10. Intraguild predation and successful invasion by introduced ladybird beetles.

    Science.gov (United States)

    Snyder, William E; Clevenger, Garrett M; Eigenbrode, Sanford D

    2004-08-01

    Introductions of two ladybird beetle (Coleoptera: Coccinellidae) species, Coccinella septempunctata and Harmonia axyridis, into North America for aphid biocontrol have been followed by declines in native species. We examined intraguild predation (IGP) between larvae of these two exotic species and larvae of the two most abundant native coccinellids in eastern Washington State, C. transversoguttata and Hippodamia convergens. In pairings between the two native species in laboratory microcosms containing pea ( Pisum sativum) plants, neither native had a clear advantage over the other in IGP. When the natives were paired with either Harmonia axyridis or C. septempunctata, the natives were more frequently the victims than perpetrators of IGP. In contrast, in pairings between the exotic species, neither had an IGP advantage, although overall rates of IGP between these two species were very high. Adding alternative prey (aphids) to microcosms did not alter the frequency and patterns of relative IGP among the coccinellid species. In observations of encounters between larvae, the introduced H. axyridis frequently survived multiple encounters with the native C. transversoguttata, whereas the native rarely survived a single encounter with H. axyridis. Our results suggest that larvae of the native species face increased IGP following invasion by C. septempunctata and H. axyridis, which may be contributing to the speed with which these exotic ladybird beetles displace the natives following invasion.

  11. Facilitation of intraguild prey by its intraguild predator in a three-species Lotka-Volterra model.

    Science.gov (United States)

    Shchekinova, Elena Y; Löder, Martin G J; Boersma, Maarten; Wiltshire, Karen H

    2014-03-01

    Explaining the coexistence of multiple species in the competition and predation theatre has proven a great challenge. Traditional intraguild predation (IGP) models have only relatively small regions of stable coexistence of all species. Here, we investigate potential additional mechanisms that extend these regions of stable coexistence. We used a 3-species Lotka-Volterra system to which we added an interaction term to model a unidirectional facilitative relationship between the two predators in the IGP. In this modelling study the IG predator was able to precondition a part of the common resource by an instantaneous manipulation, which resulted in the immobilization of the resource species. This mechanism of immobilization facilitated the resource uptake by the IG prey and thus increased its growth rates even in the presence of the common predator. The facilitative relationship of the IG prey by the IG predator produced a stable coexistence of both predators even though the IG prey was an inferior competitor for a common resource, which cannot be attained with the traditional IGP models. Furthermore, our model predicted a 3-species stable coexistence even at high enrichment where no coexistence was found in the basic IGP model. Thus, we showed that diversity of resource traits could significantly alter emergent community patterns via shifts in exploitative competition of IGP-related predators. The described mechanism could potentially lead to a higher efficiency in exploitation of common resources and thus promote higher diversity in a real community. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Intraguild predation behaviour of ladybirds in semi-field experiments explains invasion success of Harmonia axyridis.

    Directory of Open Access Journals (Sweden)

    C Lidwien Raak-van den Berg

    Full Text Available Harmonia axyridis has been introduced as a biological control agent in Europe and the USA. Since its introduction, it has established and spread, and it is now regarded as an invasive alien species. It has been suggested that intraguild predation is especially important for the invasion success of H. axyridis. The aim of this study was to compare the intraguild predation behaviour of three ladybird species (Coccinella septempunctata, Adalia bipunctata, and H. axyridis. Predation behaviour was investigated in semi-field experiments on small lime trees (Tilia platyphyllos. Two fourth-instar larvae placed on a tree rarely made contact during 3-hour observations. When placed together on a single leaf in 23%-43% of the observations at least one contact was made. Of those contacts 0%-27% resulted in an attack. Harmonia axyridis attacked mostly heterospecifics, while A. bipunctata and C. septempunctata attacked heterospecifics as often as conspecifics. In comparison with A. bipunctata and C. septempunctata, H. axyridis was the most successful intraguild predator as it won 86% and 44% of heterospecific battles against A. bipunctata and C. septempunctata respectively, whilst A. bipunctata won none of the heterospecific battles and C. septempunctata won only the heterospecific battles against A. bipunctata. Coccinella septempunctata dropped from a leaf earlier and more often than the other two species but was in some cases able to return to the tree, especially under cloudy conditions. The frequency with which a species dropped did not depend on the species the larva was paired with. The results of these semi-field experiments confirm that H. axyridis is a strong intraguild predator as a consequence of its aggressiveness and good defence against predation from heterospecific species. The fact that H. axyridis is such a strong intraguild predator helps to explain its successful establishment as invasive alien species in Europe and the USA.

  13. Intraguild predation behaviour of ladybirds in semi-field experiments explains invasion success of Harmonia axyridis

    NARCIS (Netherlands)

    Raak-van den Berg, C.L.; Lange, de H.J.; Lenteren, van J.C.

    2012-01-01

    Harmonia axyridis has been introduced as a biological control agent in Europe and the USA. Since its introduction, it has established and spread, and it is now regarded as an invasive alien species. It has been suggested that intraguild predation is especially important for the invasion success of H

  14. Intraguild predation behaviour of ladybirds in semi-field experiments explains invasion success of Harmonia axyridis

    NARCIS (Netherlands)

    Raak-van den Berg, C.L.; Lange, de H.J.; Lenteren, van J.C.

    2012-01-01

    Harmonia axyridis has been introduced as a biological control agent in Europe and the USA. Since its introduction, it has established and spread, and it is now regarded as an invasive alien species. It has been suggested that intraguild predation is especially important for the invasion success of H

  15. Intraguild Predation Among Biological Control Agents Used in Greenhouse Floriculture Crops: A Preliminary Review

    Science.gov (United States)

    Literature on intraguild predation (IGP) in greenhouse floriculture (GHFC) was reviewed. Despite production practices that could increase the incidence IGP, no studies concretely showed that IGP disrupts GHFC biocontrol. Further studies need to include large-scale trials over entire crop cycles. H...

  16. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.

    Science.gov (United States)

    Davenport, Jon M; Chalcraft, David R

    2012-01-01

    1. Many taxa can be found in food webs that differ in trophic complexity, but it is unclear how trophic complexity affects the performance of particular taxa. In pond food webs, larvae of the salamander Ambystoma opacum occupy the intermediate predator trophic position in a partial intraguild predation (IGP) food web and can function as keystone predators. Larval A. opacum are also found in simpler food webs lacking either top predators or shared prey. 2. We conducted an experiment where a partial IGP food web was simplified, and we measured the growth and survival of larval A. opacum in each set of food webs. Partial IGP food webs that had either a low abundance or high abundance of total prey were also simplified by independently removing top predators and/or shared prey. 3. Removing top predators always increased A. opacum survival, but removal of shared prey had no effect on A. opacum survival, regardless of total prey abundance. 4. Surprisingly, food web simplification had no effect on the growth of A. opacum when present in food webs with a low abundance of prey but had important effects on A. opacum growth in food webs with a high abundance of prey. Simplifying a partial IGP food web with a high abundance of prey reduced A. opacum growth when either top predators or shared prey were removed from the food web and the loss of top predators and shared prey influenced A. opacum growth in a non-additive fashion. 5. The non-additive response in A. opacum growth appears to be the result of supplemental prey availability augmenting the beneficial effects of top predators. Top predators had a beneficial effect on A. opacum populations by reducing the abundance of A. opacum present and thereby reducing the intensity of intraspecific competition. 6. Our study indicates that the effects of food web simplification on the performance of A. opacum are complex and depend on both how a partial IGP food web is simplified and how abundant prey are in the food web. These

  17. Effects of intraguild predators on nest-site selection by prey.

    Science.gov (United States)

    Huang, Wen-San; Pike, David A

    2012-01-01

    Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with "classical" predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one ("closed-in") or two openings ("open"). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.

  18. Prey, predators, parasites: intraguild predation or simpler community modules in disguise?

    Science.gov (United States)

    Sieber, Michael; Hilker, Frank M

    2011-03-01

    1. Competition and predation are at the heart of community ecology. The theoretical concept of intraguild predation (IGP) combines these key interactions in a single community module. Because IGP is believed to be ubiquitous in nature, it has been subject to extensive research, and there exists a well-developed theoretical framework. 2. We show that a general class of IGP models can be transformed to simpler, but equivalent community structures. This rather unexpected simplification depends critically on the property of 'indiscriminate predation', which we define broadly as the top-predator not distinguishing between its two different prey species. 3. In a broader context, the great importance of IGP and of the simplifying transformation we report here is enhanced by the recent insight that the basic IGP structure extends naturally to host-parasitoid and host-pathogen communities. We show that parasites infecting prey (predators) tend to render IGP effectively into exploitative competition (tritrophic food chain, respectively). 4. The equivalence between the original and simplified community module makes it possible to take advantage from already existing insights. We illustrate this by means of an eco-epidemiological IGP model that is strikingly similar to a classical exploitative competition model. 5. The change of perspective on certain community modules may contribute to a better understanding of food web dynamics. In particular, it may help explain the interactions in food webs that include parasites. Given the ubiquity of parasitism, food webs may appear in a different light when they are transformed to their simplified analogue. © 2010 The Authors. Journal of Animal Ecology © 2010 British Ecological Society.

  19. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  20. Intraguild predation on the whitefly parasitoid Eretmocerus eremicus by the generalist predator Geocoris punctipes: a behavioral approach

    OpenAIRE

    María Concepción Velasco-Hernández; Ricardo Ramirez-Romero; Lizette Cicero; Claudia Michel-Rios; Nicolas Desneux

    2013-01-01

    Intraguild predation (IGP) takes place when natural enemies that use similar resources attack each other. The impact of IGP on biological control can be significant if the survival of natural enemy species is disrupted. In the present study, we assessed whether Geocoris punctipes (Hemiptera: Lygaeidae) engages in IGP on Eretmocerus eremicus (Hymenoptera: Aphelinidae) while developing on whitefly nymphs of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). In choice and non-choice tests, we e...

  1. Fatal attraction? Intraguild facilitation and suppression among predators

    Science.gov (United States)

    Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.

    2017-01-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  2. Trade-offs, temporal variation, and species coexistence in communities with intraguild predation.

    Science.gov (United States)

    Amarasekare, Priyanga

    2007-11-01

    Intraguild predation/parasitism (IGP: competing species preying on or parasitizing each other) is widespread in nature, but the mechanisms by which intraguild prey and predators coexist remain elusive. Theory predicts that a trade-off between resource competition and IGP should allow local niche partitioning, but such trade-offs are expressed only at intermediate resource productivity and cannot explain observations of stable coexistence at high productivity. Coexistence must therefore involve additional mechanisms beside the trade-off, but very little is known about the operation of such mechanisms in nature. Here I present the first experimental test of multiple coexistence mechanisms in a natural community exhibiting IGP. The results suggest that, when resource productivity constrains the competition-IGP trade-off, a temporal refuge for the intraguild prey can not only promote coexistence, but also change species abundances to a pattern qualitatively different from that expected based on the trade-off or a refuge alone. This is the first empirical study to demonstrate a mechanism for why communities with IGP do not lose species diversity in highly productive environments. These results have implications for diversity maintenance in multi-trophic communities, and the use of multiple natural enemies in biological control.

  3. Stable coexistence in a Lotka-Volterra model with heterogeneous resources and intraguild predation

    Science.gov (United States)

    Shchekinova, Elena Y.; Löder, Martin G. J.; Wiltshire, Karen H.; Boersma, Maarten

    2013-12-01

    In this study we model population dynamics in a three-species food web with heterogeneous resources and intraguild predation by using a nonspatial Lotka-Volterra system with a density-dependent interaction of resource items. The model consists of two predators with an intraguild predation (IGP) relation competing for a common resource. The resource is subdivided into subpopulations of different quality that are distinguished by grazing rates of the two predators, contact rates between subpopulations and mortality rates. The proposed system describes an exchange of traits between species from distinct subpopulations by using a species interaction term. In particular, we examine the percentage of stable coexistence solutions versus resource carrying capacity and contact rates between distinct resource pools. We also present a numerical comparison of the percentage of stable food webs found for different numbers of subpopulations. While at high enrichment no stable coexistence was found in the IGP system with a single resource, our model predicts a stable coexistence of two IGP-related predators and resources at high and intermediate enrichment already at a low contact rate between subpopulations.

  4. Stable coexistence in a Lotka-Volterra model with heterogeneous resources and intraguild predation.

    Science.gov (United States)

    Shchekinova, Elena Y; Löder, Martin G J; Wiltshire, Karen H; Boersma, Maarten

    2013-12-01

    In this study we model population dynamics in a three-species food web with heterogeneous resources and intraguild predation by using a nonspatial Lotka-Volterra system with a density-dependent interaction of resource items. The model consists of two predators with an intraguild predation (IGP) relation competing for a common resource. The resource is subdivided into subpopulations of different quality that are distinguished by grazing rates of the two predators, contact rates between subpopulations and mortality rates. The proposed system describes an exchange of traits between species from distinct subpopulations by using a species interaction term. In particular, we examine the percentage of stable coexistence solutions versus resource carrying capacity and contact rates between distinct resource pools. We also present a numerical comparison of the percentage of stable food webs found for different numbers of subpopulations. While at high enrichment no stable coexistence was found in the IGP system with a single resource, our model predicts a stable coexistence of two IGP-related predators and resources at high and intermediate enrichment already at a low contact rate between subpopulations.

  5. The influence of intraguild predation on prey suppression and prey release: a meta-analysis.

    Science.gov (United States)

    Vance-Chalcraft, Heather D; Rosenheim, Jay A; Vonesh, James R; Osenberg, Craig W; Sih, Andrew

    2007-11-01

    Intraguild predation (IGP) occurs when one predator species consumes another predator species with whom it also competes for shared prey. One question of interest to ecologists is whether multiple predator species suppress prey populations more than a single predator species, and whether this result varies with the presence of IGP. We conducted a meta-analysis to examine this question, and others, regarding the effects of IGP on prey suppression. When predators can potentially consume one another (mutual IGP), prey suppression is greater in the presence of one predator species than in the presence of multiple predator species; however, this result was not found for assemblages with unidirectional or no IGP. With unidirectional IGP, intermediate predators were generally more effective than the top predator at suppressing the shared prey, in agreement with IGP theory. Adding a top predator to an assemblage generally caused prey to be released from predation, while adding an intermediate predator caused prey populations to be suppressed. However, the effects of adding a top or intermediate predator depended on the effectiveness of these predators when they were alone. Effects of IGP varied across different ecosystems (e.g., lentic, lotic, marine, terrestrial invertebrate, and terrestrial vertebrate), with the strongest patterns being driven by terrestrial invertebrates. Finally, although IGP theory is based on equilibrium conditions, data from short-term experiments can inform us about systems that are dominated by transient dynamics. Moreover, short-term experiments may be connected in some way to equilibrium models if the predator and prey densities used in experiments approximate the equilibrium densities in nature.

  6. Molecular analysis of the gut contents of Harmonia axyridis (Coleoptera: Coccinellidae) as a method for detecting intra-guild predation by this species on aphidophagous predators other than coccinellids

    NARCIS (Netherlands)

    Ingels, B.; Aebi, A.; Hautier, L.; Van Leeuwen, T.; De Clercq, P.

    2013-01-01

    Several studies have demonstrated that the invasive ladybird Harmonia axyridis is a strong intra-guild predator of native species of ladybird. Laboratory studies have shown that H. axyridis can be an intra-guild predator of aphid predators other than coccinellids, including the hoverfly Episyrphus b

  7. The king of snakes: performance and morphology of intraguild predators (Lampropeltis) and their prey (Pantherophis).

    Science.gov (United States)

    Penning, David A; Moon, Brad R

    2017-03-15

    Across ecosystems and trophic levels, predators are usually larger than their prey, and when trophic morphology converges, predators typically avoid predation on intraguild competitors unless the prey is notably smaller in size. However, a currently unexplained exception occurs in kingsnakes in the genus Lampropeltis Kingsnakes are able to capture, constrict and consume other snakes that are not only larger than themselves but that are also powerful constrictors (such as ratsnakes in the genus Pantherophis). Their mechanisms of success as intraguild predators on other constrictors remain unknown. To begin addressing these mechanisms, we studied the scaling of muscle cross-sectional area, pulling force and constriction pressure across the ontogeny of six species of snakes (Lampropeltiscaliforniae, L.getula, L.holbrooki, Pantherophisalleghaniensis, P.guttatus and P.obsoletus). Muscle cross-sectional area is an indicator of potential force production, pulling force is an indicator of escape performance, and constriction pressure is a measure of prey-handling performance. Muscle cross-sectional area scaled similarly for all snakes, and there was no significant difference in maximum pulling force among species. However, kingsnakes exerted significantly higher pressures on their prey than ratsnakes. The similar escape performance among species indicates that kingsnakes win in predatory encounters because of their superior constriction performance, not because ratsnakes have inferior escape performance. The superior constriction performance by kingsnakes results from their consistent and distinctive coil posture and perhaps from additional aspects of muscle structure and function that need to be tested in future research.

  8. Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa

    DEFF Research Database (Denmark)

    Sohrabi, Fariba; Enkegaard, Annie; Shishehbor, Parviz

    2013-01-01

    Intraguild predation of Orius majusculus (Reuter) (Heteroptera: Anthocoridae) on Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae), both natural enemies of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was studied under laboratory conditions. The experiments quantified prey consumption b...... instars of O. majusculus with early 4th instar whiteflies and E. formosa pupae. The results indicate that intraguild interactions between O. majusculus and E. formosa may have negative effects on biological control of B. tabaci....

  9. Feeding History Affects Intraguild Interactions Between Harmonia Axyridis (Coleoptera: Coccinellidae) and Episyrphus Balteatus (Diptera: Syrphidae)

    NARCIS (Netherlands)

    Ingels, B.; van Hassel, P.; Van Leeuwen, T.; De Clercq, P.

    2015-01-01

    While the effect of several factors such as predator and prey size, morphology and developmental stage on intraguild predation (IGP) is widely investigated, little is known about the influence of diet on the occurrence and outcome of IGP. In the present study, the effect of the diet experienced duri

  10. Feeding History Affects Intraguild Interactions Between Harmonia Axyridis (Coleoptera: Coccinellidae) and Episyrphus Balteatus (Diptera: Syrphidae)

    NARCIS (Netherlands)

    Ingels, B.; van Hassel, P.; Van Leeuwen, T.; De Clercq, P.

    2015-01-01

    While the effect of several factors such as predator and prey size, morphology and developmental stage on intraguild predation (IGP) is widely investigated, little is known about the influence of diet on the occurrence and outcome of IGP. In the present study, the effect of the diet experienced duri

  11. Feeding History Affects Intraguild Interactions Between Harmonia Axyridis (Coleoptera: Coccinellidae) and Episyrphus Balteatus (Diptera: Syrphidae)

    NARCIS (Netherlands)

    Ingels, B.; van Hassel, P.; Van Leeuwen, T.; De Clercq, P.

    2015-01-01

    While the effect of several factors such as predator and prey size, morphology and developmental stage on intraguild predation (IGP) is widely investigated, little is known about the influence of diet on the occurrence and outcome of IGP. In the present study, the effect of the diet experienced

  12. Biological control through intraguild predation: case studies in pest control, invasive species and range expansion.

    Science.gov (United States)

    Bampfylde, C J; Lewis, M A

    2007-04-01

    Intraguild predation (IGP), the interaction between species that eat each other and compete for shared resources, is ubiquitous in nature. We document its occurrence across a wide range of taxonomic groups and ecosystems with particular reference to non-indigenous species and agricultural pests. The consequences of IGP are complex and difficult to interpret. The purpose of this paper is to provide a modelling framework for the analysis of IGP in a spatial context. We start by considering a spatially homogeneous system and find the conditions for predator and prey to exclude each other, to coexist and for alternative stable states. Management alternatives for the control of invasive or pest species through IGP are presented for the spatially homogeneous system. We extend the model to include movement of predator and prey. In this spatial context, it is possible to switch between alternative stable steady states through local perturbations that give rise to travelling waves of extinction or control. The direction of the travelling wave depends on the details of the nonlinear intraguild interactions, but can be calculated explicitly. This spatial phenomenon suggests means by which invasions succeed or fail, and yields new methods for spatial biological control. Freshwater case studies are used to illustrate the outcomes.

  13. Systemic Imidacloprid Affects Intraguild Parasitoids Differently.

    Science.gov (United States)

    Taylor, Sally V; Burrack, Hannah J; Roe, R Michael; Bacheler, Jack S; Sorenson, Clyde E

    2015-01-01

    Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera, Ichneumonidae) are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011-2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches.

  14. Systemic Imidacloprid Affects Intraguild Parasitoids Differently.

    Directory of Open Access Journals (Sweden)

    Sally V Taylor

    Full Text Available Toxoneuron nigriceps (Viereck (Hymenoptera, Braconidae and Campoletis sonorensis (Cameron (Hymenoptera, Ichneumonidae are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius (Lepidoptera, Noctuidae. They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011-2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches.

  15. Intraguild predation of Geocoris punctipes on Eretmocerus eremicus and its influence on the control of the whitefly Trialeurodes vaporariorum.

    Science.gov (United States)

    Bao-Fundora, Lourdes; Ramirez-Romero, Ricardo; Sánchez-Hernández, Carla V; Sánchez-Martínez, José; Desneux, Nicolas

    2016-06-01

    Geocoris punctipes (Hemiptera: Lygaeidae) and Eretmocerus eremicus (Hymenoptera: Aphelinidae) are whitefly natural enemies. Previously, under laboratory conditions, we showed that G. punctipes engages in intraguild predation (IGP), the attack of one natural enemy by another, on E. eremicus. However, it is unknown whether this IGP interaction takes place under more complex scenarios, such as semi-field conditions. Even more importantly, the effect of this interaction on the density of the prey population requires investigation. Therefore, the present study aimed to establish whether this IGP takes place under semi-field conditions and to determine whether the predation rate of G. punctipes on the whitefly decreases when IGP takes place. Molecular analysis showed that, under semi-field conditions, G. punctipes performed IGP on E. eremicus. However, although IGP did take place, the predation rate by G. punctipes on the whitefly was nevertheless higher when both natural enemies were present together than when the predator was present alone. While IGP of G. punctipes on E. eremicus does occur under semi-field conditions, it does not adversely affect whitefly control. The concomitant use of these two natural enemies seems a valid option for inundative biological control programmes of T. vaporariorum in tomato. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Intraguild Predation Responses in Two Aphidophagous Coccinellids Identify Differences among Juvenile Stages and Aphid Densities

    Directory of Open Access Journals (Sweden)

    Gabriele Rondoni

    2014-12-01

    Full Text Available (1 Intraguild predation (IGP can occur among aphidophagous predators thus reducing their effectiveness in controlling crop pests. Among ladybirds, Coccinella septempunctata L. and Hippodamia variegata Goeze are the most effective predators upon Aphis gossypii Glov., which is an economically important pest of melon. Understanding their likelihood to engage in reciprocal predation is a key point for conservation of biological control. Here, we aim to investigate, under laboratory conditions, the level of IGP between the two above mentioned aphidophagous species. (2 Fourth-instars of the two species were isolated in petri dishes with combinations of different stages of the heterospecific ladybird and different densities of A. gossypii. The occurrence of IGP events was recorded after six hours. (3 C. septempunctata predated H. variegata at a higher rate than vice versa (70% vs. 43% overall. Higher density of the aphid or older juvenile stage of the IG-prey (22% of fourth instars vs. 74% of eggs and second instars reduces the likelihood of predation. (4 To our knowledge, IGP between C. septempunctata and H. variegata was investigated for the first time. Results represent a baseline, necessary to predict the likelihood of IGP occurrence in the field.

  17. Intraguild Predation Responses in Two Aphidophagous Coccinellids Identify Differences among Juvenile Stages and Aphid Densities.

    Science.gov (United States)

    Rondoni, Gabriele; Ielo, Fulvio; Ricci, Carlo; Conti, Eric

    2014-12-08

    (1) Intraguild predation (IGP) can occur among aphidophagous predators thus reducing their effectiveness in controlling crop pests. Among ladybirds, Coccinella septempunctata L. and Hippodamia variegata Goeze are the most effective predators upon Aphis gossypii Glov., which is an economically important pest of melon. Understanding their likelihood to engage in reciprocal predation is a key point for conservation of biological control. Here, we aim to investigate, under laboratory conditions, the level of IGP between the two above mentioned aphidophagous species. (2) Fourth-instars of the two species were isolated in petri dishes with combinations of different stages of the heterospecific ladybird and different densities of A. gossypii. The occurrence of IGP events was recorded after six hours. (3) C. septempunctata predated H. variegata at a higher rate than vice versa (70% vs. 43% overall). Higher density of the aphid or older juvenile stage of the IG-prey (22% of fourth instars vs. 74% of eggs and second instars) reduces the likelihood of predation. (4) To our knowledge, IGP between C. septempunctata and H. variegata was investigated for the first time. Results represent a baseline, necessary to predict the likelihood of IGP occurrence in the field.

  18. "Reversed" intraguild predation: red fox cubs killed by pine marten.

    Science.gov (United States)

    Brzeziński, Marcin; Rodak, Lukasz; Zalewski, Andrzej

    2014-01-01

    Camera traps deployed at a badger Meles meles set in mixed pine forest in north-eastern Poland recorded interspecific killing of red fox Vulpes vulpes cubs by pine marten Martes martes. The vixen and her cubs settled in the set at the beginning of May 2013, and it was abandoned by the badgers shortly afterwards. Five fox cubs were recorded playing in front of the den each night. Ten days after the first recording of the foxes, a pine marten was filmed at the set; it arrived in the morning, made a reconnaissance and returned at night when the vixen was away from the set. The pine marten entered the den several times and killed at least two fox cubs. It was active at the set for about 2 h. This observation proves that red foxes are not completely safe from predation by smaller carnivores, even those considered to be subordinate species in interspecific competition.

  19. Intraguild Predation by Harmonia Axyridis (Coleoptera: Coccinellidae) on Native Insects in Europe: Molecular Detection from Field Samples

    NARCIS (Netherlands)

    Brown, P.M.J.; Ingels, B.; Wheatley, A.; Rhule, E.L.; de Clercq, P.; van Leeuwen, T.; Thomas, A.

    2015-01-01

    Intraguild predation (IGP) is a potential mechanism of negative effects on native species populations by invasive non-native species such as Harmonia axyridis. Molecular techniques (polymerase chain reaction) were used to probe for the presence of various insect (coccinellid, syrphid and chrysopid)

  20. Intraguild predation by Harmonia axyridis (Coleoptera: Coccinellidae) on native insects in Europe: molecular detection from field samples

    NARCIS (Netherlands)

    Brown, P.M.J.; Ingels, B.; Wheatley, A.; Rhule, E.L.; de Clercq, P.; Van Leeuwen, T.; Thomas, A.

    2015-01-01

    Intraguild predation (IGP) is a potential mechanism of negative effects on native species populations by invasive non-native species such as Harmonia axyridis. Molecular techniques (polymerase chain reaction) were used to probe for the presence of various insect (coccinellid, syrphid and chrysopid)

  1. Emergent impacts of cannibalism and size refuges in prey on intraguild predation systems.

    Science.gov (United States)

    Rudolf, Volker H W; Armstrong, Joanna

    2008-10-01

    Many organisms undergo ontogenetic niche shifts due to considerable changes in size during their development. These ontogenetic shifts can alter the trophic position of individuals, the type and strength of ecological interactions across species, and allow for cannibalism within species. In this study we ask if and how the interaction of a size refuge and cannibalism in the prey alters the dynamics of intraguild predation (IGP) systems. By manipulating the composition of large cannibalistic (Aeshna umbrosa) and predatory (Anax junius) dragonfly larvae in mesocosms we show that the interaction of cannibals and predators was non-linear and increased the survival of prey. The structure of the final resource community shared by prey and predator differed between small and large dragonfly treatments but not within size classes across species. In general, the small prey stage showed similar shifts in microhabitat use and refuge use when exposed to either conspecific cannibals or predators, while large cannibals showed no clear anti-predator response. However, further behavioral experiments revealed that specific behavioral components, such as distances between individuals or number of movements, differed when individuals were exposed to either cannibals or predators. This indicates that individuals discriminated between conspecific or heterospecific predators. Furthermore, in similar experiments large cannibals and predators showed different behaviors when exposed to conspecifics rather than to each other. These changes in behavior are consistent with the observed increase in prey survival. In general, the results indicate that cannibalism and ontogenetic niche shifts can result in behavior-mediated indirect interactions that reduce the impact of the predator on the mortality of its prey and alter the interactions of IGP systems. However, they also indicate that size is not the sole determinant and that we also need to account for the species identity when predicting the

  2. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-01-01

    Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.

  3. Dynamics of asymmetric intraguild predation with time lags in reproduction and maturation

    Directory of Open Access Journals (Sweden)

    Joydeb Bhattacharyya

    2015-12-01

    Full Text Available A three dimensional (3D stage-structured predator–prey model is proposed and analyzed to study the effect of intraguild predation with harvesting of the adult species. Time lags in reproduction and maturation of the organism are introduced in the system and conditions for local asymptotic stability of steady states of delay differential forms of the ODE model are derived. The length of the delay preserving the stability is also estimated. Moreover, it is shown that the system undergoes a Hopf bifurcation when the time lags cross certain critical values. The stability and direction of the Hopf bifurcations are determined by applying the normal form method and the center manifold theory. Computer simulations have been carried out to illustrate various analytical results.

  4. Effects of generalized and specialized adaptive defense by shared prey on intra-guild predation.

    Science.gov (United States)

    Ikegawa, Yusuke; Ezoe, Hideo; Namba, Toshiyuki

    2015-01-07

    Intra-guild predation (IGP), predation on consumers which share common prey with the predators, is an important community module to understand a mechanism for persistence of complex food webs. However, classical theory suggests that persistence of an IGP system is unlikely particularly at high productivity, while empirical data do not support the prediction. Recently, adaptive defense by shared prey has been recognized to enhance coexistence of species and stability of the system. Some organisms having multiple predators in IGP systems employ two types of defenses; generalized defense that is effective against multiple predators and specialized one that is effective against only a specific predator species. We consider an IGP model including shared prey that can use the two types of defenses in combination against the consumer or omnivore. Assuming that the shared prey can change the allocation of defensive effort to increase its fitness, we show that the joint use of two types of adaptive defenses promotes three species coexistence and enhances stability of the IGP system when the specialized defense is more effective than the generalized one. When the system is unstable, a variety of oscillations appear and both the population densities and defensive efforts or only the population densities oscillate. Joint use of defenses against the consumer tends to increase the equilibrium population density of the shared prey with the defense efficiencies. In contrast, efficient generalized and specialized defenses against the omnivore often decrease the prey population. Consequently, adaptive defense by shared prey may not necessarily heighten the population size of the defender but sometimes increases densities of both the attackers and defender in IGP systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Intraguild predation on the whitefly parasitoid Eretmocerus eremicus by the generalist predator Geocoris punctipes: a behavioral approach.

    Directory of Open Access Journals (Sweden)

    María Concepción Velasco-Hernández

    Full Text Available Intraguild predation (IGP takes place when natural enemies that use similar resources attack each other. The impact of IGP on biological control can be significant if the survival of natural enemy species is disrupted. In the present study, we assessed whether Geocoris punctipes (Hemiptera: Lygaeidae engages in IGP on Eretmocerus eremicus (Hymenoptera: Aphelinidae while developing on whitefly nymphs of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae. In choice and non-choice tests, we exposed G. punctipes to parasitized and non-parasitized whitefly nymphs. We found that G. punctipes does practice IGP on E. eremicus. However, choice tests assessing G. punctipes consumption revealed a significant preference for non-parasitized T. vaporariorum nymphs. Subsequently, we investigated whether E. eremicus females modify their foraging behavior when exposed to conditions involving IGP risk. To assess this, we analyzed wasp foraging behavior under the following treatments: i whitefly nymphs only (control = C, ii whitefly nymphs previously exposed to a predator ( = PEP and, iii whitefly nymphs and presence of a predator ( = PP. In non-choice tests we found that E. eremicus did not significantly modify its number of attacks, attack duration, oviposition duration, or behavior sequences. However, E. eremicus oviposited significantly more eggs in the PEP treatment. In the PP treatment, G. punctipes also preyed upon adult E. eremicus wasps, significantly reducing their number of ovipositions and residence time. When the wasps were studied under choice tests, in which they were exposed simultaneously to all three treatments, the number of attacks and frequency of selection were similar under all treatments. These results indicate that under IGP risk, E. eremicus maintains several behavioral traits, but can also increase its number of ovipositions in the presence of IG-predator cues. We discuss these findings in the context of population dynamics

  6. Intraguild predation on the whitefly parasitoid Eretmocerus eremicus by the generalist predator Geocoris punctipes: a behavioral approach.

    Science.gov (United States)

    Velasco-Hernández, María Concepción; Ramirez-Romero, Ricardo; Cicero, Lizette; Michel-Rios, Claudia; Desneux, Nicolas

    2013-01-01

    Intraguild predation (IGP) takes place when natural enemies that use similar resources attack each other. The impact of IGP on biological control can be significant if the survival of natural enemy species is disrupted. In the present study, we assessed whether Geocoris punctipes (Hemiptera: Lygaeidae) engages in IGP on Eretmocerus eremicus (Hymenoptera: Aphelinidae) while developing on whitefly nymphs of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). In choice and non-choice tests, we exposed G. punctipes to parasitized and non-parasitized whitefly nymphs. We found that G. punctipes does practice IGP on E. eremicus. However, choice tests assessing G. punctipes consumption revealed a significant preference for non-parasitized T. vaporariorum nymphs. Subsequently, we investigated whether E. eremicus females modify their foraging behavior when exposed to conditions involving IGP risk. To assess this, we analyzed wasp foraging behavior under the following treatments: i) whitefly nymphs only (control = C), ii) whitefly nymphs previously exposed to a predator ( = PEP) and, iii) whitefly nymphs and presence of a predator ( = PP). In non-choice tests we found that E. eremicus did not significantly modify its number of attacks, attack duration, oviposition duration, or behavior sequences. However, E. eremicus oviposited significantly more eggs in the PEP treatment. In the PP treatment, G. punctipes also preyed upon adult E. eremicus wasps, significantly reducing their number of ovipositions and residence time. When the wasps were studied under choice tests, in which they were exposed simultaneously to all three treatments, the number of attacks and frequency of selection were similar under all treatments. These results indicate that under IGP risk, E. eremicus maintains several behavioral traits, but can also increase its number of ovipositions in the presence of IG-predator cues. We discuss these findings in the context of population dynamics and

  7. Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands

    Science.gov (United States)

    Wissinger, S.A.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.; Steltzer, H.

    1996-01-01

    Comparative data from subalpine wetlands in Colorado indicate that larvae of the limnephilid caddisflies, Asynarchus nigriculus and Limnephilus externus, are reciprocally abundant among habitats - Limnephilus larvae dominate in permanent waters, whereas Asynarchus larvae dominate in temporary basins. The purpose of this paper is to report on field and laboratory experiments that link this pattern of abundance to biotic interactions among larvae. In the first field experiment, growth and survival were compared in single and mixed species treatments in littoral enclosures. Larvae, which eat mainly vascular plant detritus, grew at similar rates among treatments in both temporary and permanent habitats suggesting that exploitative competition is not important under natural food levels and caddisfly densities. However, the survival of Limnephilus larvae was reduced in the presence of Asynarchus larvae. Subsequent behavioral studies in laboratory arenas revealed that Asynarchus larvae are extremely aggressive predators on Limnephilus larvae. In a second field experiment we manipulated the relative sizes of larvae and found that Limnephilus larvae were preyed on only when Asynarchus larvae had the same size advantage observed in natural populations. Our data suggest that the dominance of Asynarchus larvae in temporary habitats is due to asymmetric intraguild predation (IGP) facilitated by a phenological head start in development. These data do not explain the dominance of Limnephilus larvae in permanent basins, which we show elsewhere to be an indirect effect of salamander predation. Behavioral observations also revealed that Asynarchus larvae are cannibalistic. In contrast to the IGP on Limnephilus larvae, Asynarchus cannibalism occurs among same-sized larvae and often involves the mobbing of one victim by several conspecifics. In a third field experiment, we found that Asynarchus cannibalism was not density-dependent and occurred even at low larval densities. We

  8. Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa

    DEFF Research Database (Denmark)

    Sohrabi, Fariba; Enkegaard, Annie; Shishehbor, Parviz;

    2013-01-01

    by 5th instar nymphs and adults of O. majusculus offered unparasitised 3rd, early 4th or 4th instar B. tabaci nymphs or parasitised nymphs containing 2nd or 3rd larval instar or pupal parasitoids. In addition, prey preference of the two stages of O. majusculus for parasitised or unparasitised whitefly...... instar B. tabaci and 2nd instar parasitoids. Predation of predator stages was lowest on 4th instar B. tabaci and E. formosa pupae. In all prey combinations, both stages of O. majusculus showed a significant preference for parasitised over unparasitised whitefly nymphs except for the combination of 5th...

  9. Response of coccinellid larvae to conspecific and heterospecific larval tracks: a mechanism that reduces cannibalism and intraguild predation.

    Science.gov (United States)

    Meisner, Matthew H; Harmon, Jason P; Ives, Anthony R

    2011-02-01

    Cannibalism, where one species feeds on individuals of its own species, and intraguild predation (IGP), where a predator feeds on other predatory species, can both pose significant threats to natural enemies and interfere with their biological control of pests. Behavioral mechanisms to avoid these threats, however, could help maintain superior pest control. Here, we ask whether larvae of Coccinella septempunctata (Coleoptera: Coccinellidae) and Harmonia axyridis (Coleoptera: Coccinellidae) respond to larval tracks deposited by the other and whether this behavioral response reduces the threat of cannibalism and IGP. In petri dish experiments, we show that both H. axyridis and C. septempunctata avoid foraging in areas with conspecific larval tracks. Using a method of preventing larvae from depositing tracks, we then demonstrate that the frequency of cannibalism is greater for both species when larvae are prevented from depositing tracks compared with when the tracks are deposited. For multi-species interactions we show in petri dish experiments that C. septempunctata avoids H. axyridis larval tracks but H. axyridis does not avoid C. septempunctata larval tracks, demonstrating an asymmetry in response to larval tracks that parallels the asymmetry in aggressiveness between these species as intraguild predators. On single plants, we show that the presence of H. axyridis larval tracks reduces the risk of IGP by H. axyridis on C. septempunctata. Our study suggests that larval tracks can be used in more ways than previously described, in this case by changing coccinellid larval behavior in a way that reduces cannibalism and IGP.

  10. Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs.

    Science.gov (United States)

    Guidetti, Paolo

    2007-12-01

    Indirect effects of predators in the classic trophic cascade theory involve the effects of basal species (e.g. primary producers) mediated by predation upon strongly interactive consumers (e.g. grazers). The diversity and density of predators, and the way in which they interact, determine whether and how the effects of different predators on prey combine. Intraguild predation, for instance, was observed to dampen the effects of predators on prey in many ecosystems. In marine systems, species at high trophic levels are particularly susceptible to extinction (at least functionally). The loss of such species, which is mainly attributed to human activities (mostly fishing), is presently decreasing the diversity of marine predators in many areas of the world. Experimental studies that manipulate predator diversity and investigate the effects of this on strongly interactive consumers (i.e. those potentially capable of causing community-wide effects) in marine systems are scant, especially in the rocky sublittoral. I established an experiment that utilised cage enclosures to test whether the diversity and density of fish predators (two sea breams and two wrasses) would affect predation upon juvenile and adult sea urchins, the most important grazers in Mediterranean sublittoral rocky reefs. Changes in species identity (with sea breams producing major effects) and density of predators affected predation upon sea urchins more than changes in species richness per se. Predation upon adult sea urchins decreased in the presence of multiple predators, probably due to interference competition between sea breams and wrasses. This study suggests that factors that influence both fish predator diversity and density in Mediterranean rocky reefs (e.g. fishing and climate change) may have the potential to affect the predators' ability to control sea urchin population density, with possible repercussions for the whole benthic community structure.

  11. Intraguild predation between small pelagic fish in the Bay of Biscay: impact on anchovy (Engraulis encrasicolus L.) egg mortality

    KAUST Repository

    Bachiller, Eneko

    2015-05-12

    Small pelagic fish can play an important role in various ecosystems linking lower and upper trophic levels. Among the factor behind the observed inter-annual variations in small pelagic fish abundance, intra- and inter-specific trophic interactions could have a strong impact on the recruitment variability (e.g. anchovy). Egg cannibalism observed in anchovies has been postulated to be a mechanism that determines the upper limit of the population density and self-regulates the population abundance of the species. On the other hand, predation by other guild species is commonly considered as a regulation mechanism between competing species. This study provides empirical evidence of anchovy cannibalism and predation of the main small pelagic fish species on anchovy eggs and estimates the effect of intraguild predation on the anchovy egg mortality rate. Results show that, depending on the year (2008–2009), up to 33 % of the total anchovy egg mortality was the result of sardine predation and up to 4 % was the result of egg cannibalism together with predation by Atlantic and Atlantic Chub mackerel and sprat. Results also indicate that in the Bay of Biscay, fluctuations in the survival index of the early life stages of anchovy are likely to be attributable at least in part to egg cannibalism and especially to a high sardine predation on anchovy eggs. © 2015 Springer-Verlag Berlin Heidelberg

  12. Molecular evidence of facultative intraguild predation by Monochamus titillator larvae (Coleoptera: Cerambycidae) on members of the southern pine beetle guild

    Science.gov (United States)

    Schoeller, Erich N.; Husseneder, Claudia; Allison, Jeremy D.

    2012-11-01

    The southern pine bark beetle guild (SPBG) is arguably the most destructive group of forest insects in the southeastern USA. This guild contains five species of bark beetles (Coleoptera: Curculionidae: Scolytinae): Dendroctonus frontalis, Dendroctonus terebrans, Ips avulsus, Ips calligraphus, and Ips grandicollis. A diverse community of illicit receivers is attracted to pheromones emitted by the SPBG, including the woodborers Monochamus carolinensis and Monochamus titillator (Coleoptera: Cerambycidae). These woodborers have been traditionally classified as resource competitors; however, laboratory assays suggest that larval M. carolinensis may be facultative intraguild predators of SPBG larvae. This study used polymerase chain reaction (PCR)-based molecular gut content analyses to characterize subcortical interactions between M. titillator and members of the SPBG. The half-lives of SPBG DNA were estimated in the laboratory prior to examining these interactions in the field. A total of 271 field-collected M. titillator larvae were analyzed and 26 (9.6 %) tested positive for DNA of members of the SPBG. Of these larvae, 25 (96.2 %) tested positive for I. grandicollis and one (3.8 %) for I. calligraphus. Failure to detect D. terebrans and D. frontalis was likely due to their absence in the field. I. avulsus was present, but primers developed using adult tissues failed to amplify larval tissue. Results from this study support the hypothesis that larval Monochamus spp. are facultative intraguild predators of bark beetle larvae. Additionally, this study demonstrates the capabilities of PCR in elucidating the interactions of cryptic forest insects and provides a tool to better understand mechanisms driving southern pine beetle guild population fluctuations.

  13. Intraguild predation among Scolothrips longicornis (Thysanoptera: Thripidae), Neoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytoseiidae) under laboratory conditions.

    Science.gov (United States)

    Farazmand, Azadeh; Fathipour, Yaghoub; Kamali, Karim

    2015-04-01

    This study was carried out on the ability of predatory thrips Scolothrips longicornis Priesner to feed on 2 phytoseiid species and vice versa. Also the effect of predation of Neoseiulus californicus (McGregor) on Typhlodromus bagdasarjani Wainstein and Arutunjan and vice versa was evaluated. The larvae, prepupae, and pupae of thrips and the eggs, larvae, and protonymphs of phytoseiids were selected as intraguild prey. The intraguild predation (IGP) among S. longicornis and 2 phytoseiid species was unidirectional and in favor of phytoseiids, i.e., S. longicornis was not able to feed on larval stages of 2 phytoseiids. However, N. californicus and T. bagdasarjani fed on the 1st instar larvae (1.39 and 0.80 per day), 2nd instar larvae (0.87 and 0.55 per day), prepupae (0.51 and 0.48 per day), and pupae of thrips (0.51 and 0.49 per day, respectively). Both phytoseiids fed on eggs, larvae, and protonymphal stages of each other. Females of N. californicus consumed more phytoseiid larvae (2.49 per day) than T. bagdasarjani, which consumed 1.08 N. californicus larvae per day. When Tetranychus urticae was presented as an extraguild prey, intensity of IGP between 2 species of phytoseiids and on larval stages of S. longicornis reduced significantly. Therefore, it is concluded that (i) IGP existed among the 3 examined species and lack of feeding of S. longicornis on 2 phytoseiid species can be justified by its feeding type (monophagy), (ii) N. californicus was much more prone to IGP than was T. bagdasarjani. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  14. Intraguild Predation Among Three Common Coccinellids (Coleoptera: Coccinellidae) in China: Detection Using DNA-Based Gut-Content Analysis.

    Science.gov (United States)

    Yang, Fan; Wang, Qian; Wang, Dongmei; Xu, Bin; Xu, Jianxiang; Lu, Yanhui; Harwood, James D

    2017-02-01

    The ubiquity of intraguild predation (IGP) has been widely recognized for predatory coccinellids (Coleoptera: Coccinellidae). In Chinese agroecosystems, three species (Coccinella septempunctata L., Harmonia axyridis (Pallas), and Propylea japonica (Thunberg)) are particularly common, but there is little information of interactions occurring between them. In no-choice laboratory feeding trials, differential directional predation was observed between species: C. septempunctata preyed on eggs of P. japonica more than H. axyridis and H. axyridis consumed eggs of C. septempunctata and P. japonica equally, whereas P. japonica had a very low predation rate on eggs of the other two species. In choice trials, C. septempunctata and P. japonica larvae preyed less on H. axyridis eggs than those of P. japonica and C. septempunctata, respectively, contrasting with H. axyridis larvae, which showed similar preference for both species. Species-specific primers were developed for each coccinellid and used to determine the relative frequency of prey consumption in the field. Prior to field-based analysis, primer specificity was confirmed and consumption of prey elicited a positive reaction success, and detection time varied between different predator-prey combinations. Predators were then collected from cotton agroecosystems and, interestingly, no DNA of C. septempunctata was found in P. japonica, but all other predator-prey combinations yielded positive documentation of IGP in the field, with the greatest rate of 9% of C. septempunctata testing positive for H. axyridis DNA. This study confirmed the frequency of IGP among three common coccinellids in Chinese agroecosystems and the likelihood for interference to the biological control services provided by these important natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Feeding History Affects Intraguild Interactions between Harmonia axyridis (Coleoptera: Coccinellidae and Episyrphus balteatus (Diptera: Syrphidae.

    Directory of Open Access Journals (Sweden)

    Brecht Ingels

    Full Text Available While the effect of several factors such as predator and prey size, morphology and developmental stage on intraguild predation (IGP is widely investigated, little is known about the influence of diet on the occurrence and outcome of IGP. In the present study, the effect of the diet experienced during larval development on IGP between the ladybird Harmonia axyridis and the syrphid Episyrphus balteatus is investigated. Four diets were tested for H. axyridis: eggs of the Mediterranean flour moth Ephestia kuehniella, pea aphids, Acyrthosiphon pisum, in an ad libitum amount, pea aphids in a limited amount, and honey bee pollen. For E. balteatus only the two aphid diets were tested. First, experiments were performed to determine the quality of the various diets for development of both predators. Second, IGP experiments between H. axyridis and E. balteatus were performed both in Petri dishes and on potted pepper plants. The diet of both species influenced the incidence of IGP between H. axyridis and E. balteatus both in Petri dishes and on potted plants. In general, smaller larvae of H. axyridis (those fed on poor or restricted diet fed more on hoverflies than large (well-nourished ladybird larvae. Further, poorly nourished (smaller larvae of E. balteatus were more susceptible to predation than well-fed (larger hoverfly larvae. The observed effects were not only due to the lower fitness of larvae of both predators reared on an inferior quality diet but also to changes in predator behaviour. The results from this study show that IGP interactions are influenced by a multitude of factors, including feeding history of the organisms involved, and emphasize the importance of taking these factors into account in order to fully understand the ecological relevance of IGP.

  16. Feeding History Affects Intraguild Interactions between Harmonia axyridis (Coleoptera: Coccinellidae) and Episyrphus balteatus (Diptera: Syrphidae).

    Science.gov (United States)

    Ingels, Brecht; Van Hassel, Pieter; Van Leeuwen, Thomas; De Clercq, Patrick

    2015-01-01

    While the effect of several factors such as predator and prey size, morphology and developmental stage on intraguild predation (IGP) is widely investigated, little is known about the influence of diet on the occurrence and outcome of IGP. In the present study, the effect of the diet experienced during larval development on IGP between the ladybird Harmonia axyridis and the syrphid Episyrphus balteatus is investigated. Four diets were tested for H. axyridis: eggs of the Mediterranean flour moth Ephestia kuehniella, pea aphids, Acyrthosiphon pisum, in an ad libitum amount, pea aphids in a limited amount, and honey bee pollen. For E. balteatus only the two aphid diets were tested. First, experiments were performed to determine the quality of the various diets for development of both predators. Second, IGP experiments between H. axyridis and E. balteatus were performed both in Petri dishes and on potted pepper plants. The diet of both species influenced the incidence of IGP between H. axyridis and E. balteatus both in Petri dishes and on potted plants. In general, smaller larvae of H. axyridis (those fed on poor or restricted diet) fed more on hoverflies than large (well-nourished) ladybird larvae. Further, poorly nourished (smaller) larvae of E. balteatus were more susceptible to predation than well-fed (larger) hoverfly larvae. The observed effects were not only due to the lower fitness of larvae of both predators reared on an inferior quality diet but also to changes in predator behaviour. The results from this study show that IGP interactions are influenced by a multitude of factors, including feeding history of the organisms involved, and emphasize the importance of taking these factors into account in order to fully understand the ecological relevance of IGP.

  17. The enemy of my enemy is my friend: intraguild predation between invaders and natives facilitates coexistence with shared invasive prey

    Science.gov (United States)

    MacNeil, Calum; Dick, Jaimie T. A.

    2014-01-01

    Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning. PMID:25122739

  18. Potency of Intraguild Predation to Disrupt the Optimum Functions of Predatory Arthropods: An Ecological Perspective

    Directory of Open Access Journals (Sweden)

    Nugroho Susetya Putra

    2006-12-01

    Full Text Available Some empirical studies have revealed the ecological consequence of interspecific relationships among predatory arthropods that is the disruption of natural functions of indigenous species of predators on their preys, i.e. phytophagous arthropods. In relation to many efforts on the utilization of introduced species of natural enemies, particularly predatory arthropods, the effects oflntraguild Predation (IGP on key predators should be considered carefully to optimize their potency. In addition, understanding the impact of biological traits of each species of predatory arthropods on their ability to adapt from being predated by other species might be important to predict their composition and possibilities for being exist in ecosystem.

  19. Intraguild predation and cannibalism between the predatory mites Neoseiulus neobaraki and N. paspalivorus, natural enemies of the coconut mite Aceria guerreronis.

    Science.gov (United States)

    Negloh, Koffi; Hanna, Rachid; Schausberger, Peter

    2012-11-01

    Neoseiulus neobaraki and N. paspalivorus are amongst the most common phytoseiid predators of coconut mite, Aceria guerreronis, found in the spatial niche beneath coconut fruit bracts. Both predators may occur on the same coconut palms in Benin and Tanzania and are therefore likely to interact with each other. Here, we assessed cannibalism and intraguild predation (IGP) of the two predators in the absence and presence of their primary prey A. guerreronis. In the absence of the shared extraguild prey, A. guerreronis, N. neobaraki killed 19 larvae of N. paspalivorus per day and produced 0.36 eggs/female/day, while the latter species killed only 7 larvae of the former and produced 0.35 eggs/female/day. Presence of A. guerreronis only slightly decreased IGP by N. neobaraki but strongly decreased IGP by N. paspalivorus, which consumed 4-7 times less IG prey than N. neobaraki. Resulting predator offspring to IG prey ratios were, however, 4-5 times higher in N. paspalivorus than N. neobaraki. Overall, provision of A. guerreronis increased oviposition in both species. In the cannibalism tests, in the absence of A. guerreronis, N. neobaraki and N. paspalivorus consumed 1.8 and 1.2 conspecific larvae and produced almost no eggs. In the presence of abundant herbivorous prey, cannibalism dramatically decreased but oviposition increased in both N. neobaraki and N. paspalivorus. In summary, we conclude that (1) N. neobaraki is a much stronger intraguild predator than N. paspalivorus, (2) cannibalism is very limited in both species, and (3) both IGP and cannibalism are reduced in the presence of the common herbivorous prey with the exception of IGP by N. neobaraki, which remained at high levels despite presence of herbivorous prey. We discuss the implications of cannibalism and IGP on the population dynamics of A. guerreronis and the predators in view of their geographic and within-palm distribution patterns.

  20. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel).

    Science.gov (United States)

    Makler-Pick, Vardit; Hipsey, Matthew R; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-03-29

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.

  1. Intraguild predation control

    NARCIS (Netherlands)

    Lenteren, van J.C.

    2002-01-01

    From 1–6 October 2000, the Antonie van Leeuwenhoek Symposiun (7th European Workshop on Insect Parasitoids) was held in Haarlem, The Netherlands. At this symposium, the 100 participants discussed the biology of insect parasitoids in sections on the History of insect parasitism; Physiological and mole

  2. Cannibalism and intraguild predation of phytoseiid mites Neoseiulus barkeri and Neoseiulus cucumeris%两种植绥螨的同类相残和集团内捕食作用

    Institute of Scientific and Technical Information of China (English)

    彭勇强; 孟瑞霞; 张东旭; 张鹏飞; 韩玉花

    2013-01-01

    Phytoseiid mites Neoseiulus barkeri and N.cucumeris are the generalists mainly preying on spider mites and thrips,and widely used in agricultural bio-control.In this paper,the cannibalism and intraguild predation of N.barkeri and N.cucumeris and the female aggressiveness on larvae (quantified as attack probability) in intraguild predation were studied,aimed to elucidate the interrelationships between these two species of predatory mite to reasonably establish a combination of different natural enemies in biological control.The results showed that the phytoseiid mites consumed more con-and heterospecific larvae,lesser protonymphs,and seldom con-and heterospecific eggs.The adult females of the two species mites exhibited higher predation rates on heterospecific larvae and protonymphs than on conspecific larvae and protonymphs,suggesting that the two species of mites preferentially engaged in intraguild predation in absence of other food sources.The predation rate of N.barkeri on heterospecific larvae and protonymphs was higher than that of N.cucumeri.Moreover,N.barkeri was more aggressive to heterospecific larvae than N.cucumeri in intraguild predation.Therefore,N.barkeri was most probably a potential intraguild predator of N.cucumeris,whereas N.cucumeri was a potential intraguild prey when the intraguild predation occurred between N.barkeri and N.cucumeris.%巴氏新小绥螨(Neoseiulus barkeri)和黄瓜新小绥螨(N.cucumeris)是两种多食性植绥螨,主要捕食叶螨和蓟马等,目前在我国广泛应用于农业生物防治中.本文研究了这两种植绥螨种内的同类相残(cannibalism)和种间的集团内捕食作用(intraguild predation)以及相互之间的攻击强度,以明确两者之间的相互关系,为合理构建天敌组合及评估生物防治的作用提供依据.结果显示:两种植绥螨对同种或异种幼螨的捕食量最大,其次是若螨,而对卵的捕食量极低.两种植绥螨对异种幼螨或若螨的捕食量均极

  3. Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism, intraguild predation and habitat drying.

    Science.gov (United States)

    Fincke, Ola M

    1994-11-01

    The relative importance of intraspecific, interspecific, and seasonal causes of larval mortality were investigated for aquatic larvae of the giant damselfly Megaloprepus coerulatus in Panama. These larvae live in water-filled holes in fallen and living trees, where they and three other common odonate species are the top predators. By mid wet season, M. coerulatus larvae were found in nearly half of all tree holes that harbored odonates. Although M. coerulatus were typically, but not always, eliminated from holes inhabited by larger hetero-specifics, M. coerulatus were more likely to encounter conspecifics than other odonate species. Hole with less than 11 of water rarely contained more than a single larva. In large holes where M. coerulatus was the only odonate species present, multiple larvae coexisted at a density of one larva per 1-21 of water. There the absence of 2-4 of the 5 larval size classes, despite a continuous input of eggs, suggested that cannibalism was a common cause of mortality. The size of the final instar, which determined adult body size, was correlated positively with tree hole volume for male, but not female, larvae. Experiments showed that when two larvae were placed together in 0.4-1 holes with abundant tadpole prey, the larger larva killed the smaller one. Often the larva that was killed was not eaten. Small larvae were more tolerant of each other than were pairs of medium or large larvae. Before killing occurred, the presence of larger larvae reduced the growth of smaller individuals, relative to controls. 'Obligate' killing was density-dependent. In 3.0-1 holes with ad libitum prey, conspecific killing occurred until the larval density stabilized at one larva per 1-1.5 I, similar to the density found in large holes under field conditions, For M. coerulatus, cannibalism functions to reduce the number of potential competitors for food in addition to providing nutrition. When interactions between paired larvae in small holes were

  4. Effects of a disease affecting a predator on the dynamics of a predator-prey system.

    Science.gov (United States)

    Auger, Pierre; McHich, Rachid; Chowdhury, Tanmay; Sallet, Gauthier; Tchuente, Maurice; Chattopadhyay, Joydev

    2009-06-07

    We study the effects of a disease affecting a predator on the dynamics of a predator-prey system. We couple an SIRS model applied to the predator population, to a Lotka-Volterra model. The SIRS model describes the spread of the disease in a predator population subdivided into susceptible, infected and removed individuals. The Lotka-Volterra model describes the predator-prey interactions. We consider two time scales, a fast one for the disease and a comparatively slow one for predator-prey interactions and for predator mortality. We use the classical "aggregation method" in order to obtain a reduced equivalent model. We show that there are two possible asymptotic behaviors: either the predator population dies out and the prey tends to its carrying capacity, or the predator and prey coexist. In this latter case, the predator population tends either to a "disease-free" or to a "disease-endemic" state. Moreover, the total predator density in the disease-endemic state is greater than the predator density in the "disease-free" equilibrium (DFE).

  5. Intraguild interactions implicating invasive species: Harmonia axyridis as a model species

    Directory of Open Access Journals (Sweden)

    Francis, F.

    2010-01-01

    Full Text Available Understanding the mechanisms that result in the success of exotic species will contribute to predicting future invasions and managing invaded systems. Exotic animal species, whether introduced accidentally or deliberately, may impact communities of native species through different intraguild interactions. As an effective generalist predator of aphids and other soft-body pests the harlequin ladybird Harmonia axyridis Pallas has been a successful biological control agent. This species was deliberately introduced into several countries for biological control of different arthropods pests, but it was also introduced accidentally into several other countries. It became an invasive species, affecting the dynamic and composition of several guilds through direct or indirect interactions. In this paper we will specifically review the existing data on mechanisms of intraguild interactions, within exotic guilds, that result in the success of H. axyridis as an invasive alien. We will use these studies to interpret the observed population declines in predator diversity in the field, and predict species at risk in regions not yet invaded. Finally, we will review the available data on the impact of intraguild interactions implicating H. axyridis on pest biocontrol.

  6. Food and predators affect egg production in song sparrows.

    Science.gov (United States)

    Zanette, Liana; Clinchy, Michael; Smith, James N M

    2006-10-01

    Although the possibility that food and predators may interact in limiting avian populations has long been recognized, there have been few attempts to test this experimentally in the field. We conducted a manipulative food addition experiment on the demography of Song Sparrows (Melospiza melodia) across sites that varied in predator abundance, near Victoria, British Columbia, Canada, over three consecutive breeding seasons. We previously showed that food and predators had interactive effects on annual reproductive success (young fledged per female). Here, we report the effects on egg production. Our results show that food limits the total number of eggs laid over the breeding season ("total egg production") and that interactive food and predator effects, including food effects on nest predation, determine how those eggs are "parceled out" into different nests. Food addition alone significantly affected total egg production, and there was no significant interannual variability in this result. At the same time, both food and predators affected the two determinants of total egg production: "clutch number" (total number of clutches laid) and average clutch size. Both clutch number and size were affected by a food x predator x year interaction. Clutch number was lower at low-predator locations because there was less nest predation and thus less renesting. Food addition also significantly reduced nest predation, but there was significant interannual variation in this effect. This interannual variation was responsible for the food x predator x year interactions because the larger the effect of food on nest predation in a given year, the smaller was the effect of food on clutch number; and the smaller the effect of food on clutch number, the larger was the effect of food on clutch size. Potential predator and year effects on total egg production were thus cancelled out by an inverse relationship between clutch number and clutch size. We suggest that combined food and

  7. Escaping peril: perceived predation risk affects migratory propensity

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders;

    2015-01-01

    to record the migration of individual roach (Rutilus rutilus), a partially migratory fish, in the wild following exposure to manipulation of direct (predator presence/absence) and indirect (high/low roach density) perceived predation risk in experimental mesocosms. Following exposure, we released fish......) affected timing but not propensity showing that elevated risk carried over to alter migratory behaviour in the wild. Our key finding demonstrates predator-driven migratory plasticity, highlighting the powerful role of predation risk for migratory decision-making and dynamics....

  8. Intraguild interactions between spiders and ants and top-down control in a grassland food web.

    Science.gov (United States)

    Sanders, Dirk; Platner, Christian

    2007-01-01

    In most terrestrial ecosystems ants (Formicidae) as eusocial insects and spiders (Araneida) as solitary trappers and hunters are key predators. To study the role of predation by these generalist predators in a dry grassland, we manipulated densities of ants and spiders (natural and low density) in a two-factorial field experiment using fenced plots. The experiment revealed strong intraguild interactions between ants and spiders. Higher densities of ants negatively affected the abundance and biomass of web-building spiders. The density of Linyphiidae was threefold higher in plots without ant colonies. The abundance of Formica cunicularia workers was significantly higher in spider-removal plots. Also, population size of springtails (Collembola) was negatively affected by the presence of wandering spiders. Ants reduced the density of Lepidoptera larvae. In contrast, the abundance of coccids (Ortheziidae) was positively correlated with densities of ants. To gain a better understanding of the position of spiders, ants and other dominant invertebrate groups in the studied food web and important trophic links, we used a stable isotope analysis ((15)N and (13)C). Adult wandering spiders were more enriched in (15)N relative to (14)N than juveniles, indicating a shift to predatory prey groups. Juvenile wandering and web-building spiders showed delta(15)N ratios just one trophic level above those of Collembola, and they had similar delta(13)C values, indicating that Collembola are an important prey group for ground living spiders. The effects of spiders demonstrated in the field experiment support this result. We conclude that the food resource of spiders in our study system is largely based on the detrital food web and that their effects on herbivores are weak. The effects of ants are not clear-cut and include predation as well as mutualism with herbivores. Within this diverse predator guild, intraguild interactions are important structuring forces.

  9. Intraguild Competition of Three Noctuid Maize Pests.

    Science.gov (United States)

    Bentivenha, J P F; Baldin, E L L; Hunt, T E; Paula-Moraes, S V; Blankenship, E E

    2016-08-01

    The western bean cutworm Striacosta albicosta (Smith), the fall armyworm Spodoptera frugiperda (J. E. Smith), and the corn earworm Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) are among the major lepidopteran pests of maize in the United States, belonging to the same guild and injuring the reproductive tissues of this crop. Here, intraguild competition of these lepidopterans on non-Bt maize was evaluated through survival analysis of each species under laboratory and field conditions. Competition scenarios were carried out in arenas containing maize silk or ear tissue, using larvae on different stadium of development. Fitness cost competition studies were conducted to examine the influence of intraguild competition and cannibalism and predation rates on larval development. The survival of S. albicosta competing with the other species was significantly lower than in intraspecific competition, even when the larvae were more developed than the competitor. For S. frugiperda, survival remained high in the different competition scenarios, except when competing in a smaller stadium with H. zea Larvae of H. zea had a high rate of cannibalism, higher survival when competing against S. albicosta than S. frugiperda, and reduced survival when the H. zea larvae were at the same development stadium or smaller than the competitors. Based on fitness cost results, the absence of a competitor for the feeding source may confer an advantage to the larval development of S. frugiperda and H. zea Our data suggest that S. frugiperda has a competitive advantage against the other species, while S. albicosta has the disadvantage in the intraguild competition on non-Bt maize.

  10. Does predation risk affect mating behavior? An experimental test in dumpling squid (Euprymna tasmanica.

    Directory of Open Access Journals (Sweden)

    Amanda M Franklin

    Full Text Available INTRODUCTION: One of the most important trade-offs for many animals is that between survival and reproduction. This is particularly apparent when mating increases the risk of predation, either by increasing conspicuousness, reducing mobility or inhibiting an individual's ability to detect predators. Individuals may mitigate the risk of predation by altering their reproductive behavior (e.g. increasing anti-predator responses to reduce conspicuousness. The degree to which individuals modulate their reproductive behavior in relation to predation risk is difficult to predict because both the optimal investment in current and future reproduction (due to life-history strategies and level of predation risk may differ between the sexes and among species. Here, we investigate the effect of increased predation risk on the reproductive behavior of dumpling squid (Euprymna tasmanica. RESULTS: Females, but not males, showed a substantial increase in the number of inks (an anti-predator behavior before mating commenced in the presence of a predator (sand flathead Platycephalus bassensis. However, predation risk did not affect copulation duration, the likelihood of mating, female anti-predator behavior during or after mating or male anti-predator behavior at any time. CONCLUSIONS: Inking is a common anti-predator defense in cephalopods, thought to act like a smokescreen, decoy or distraction. Female dumpling squid are probably using this form of defense in response to the increase in predation risk prior to mating. Conversely, males were undeterred by the increase in predation risk. A lack of change in these variables may occur if the benefit of completing mating outweighs the risk of predation. Prioritizing current reproduction, even under predation risk, can occur when the chance of future reproduction is low, there is substantial energetic investment into mating, or the potential fitness payoffs of mating are high.

  11. Social deprivation affects cooperative predator inspection in a cichlid fish.

    Science.gov (United States)

    Hesse, Saskia; Anaya-Rojas, Jaime M; Frommen, Joachim G; Thünken, Timo

    2015-03-01

    The social environment individuals are exposed to during ontogeny shapes social skills and social competence in group-living animals. Consequently, social deprivation has serious effects on behaviour and development in animals but little is known about its impact on cooperation. In this study, we examined the effect of social environment on cooperative predator inspection. Predator inspection behaviour is a complex behaviour, which is present in a variety of shoaling fish species. Often, two fish leave the safety of the group and inspect a potentially dangerous predator in order to gather information about the current predation risk. As predator inspection is highly risky, it is prone to conflicts and cheating. However, cooperation among individuals may reduce the individual predation risk. We investigated this complex social behaviour in juveniles of the cichlid fish Pelvicachromis taeniatus that were reared in two different social environments throughout development. Fish reared in a group inspected more often than isolation-reared fish and were more likely to cooperate, i.e. they conducted conjoint inspection of a predator. By contrast, isolation-reared fish were more likely to perform a single inspection without a companion. These results suggest an impairment of cooperative behaviour in isolation-reared fish most probably due to lack of social experience and resulting in lowered social skills needed in coordinated behaviour.

  12. Seasonally Varying Predation Behavior and Climate Shifts Are Predicted to Affect Predator-Prey Cycles.

    Science.gov (United States)

    Tyson, Rebecca; Lutscher, Frithjof

    2016-11-01

    The functional response of some predator species changes from a pattern characteristic for a generalist to that for a specialist according to seasonally varying prey availability. Current theory does not address the dynamic consequences of this phenomenon. Since season length correlates strongly with altitude and latitude and is predicted to change under future climate scenarios, including this phenomenon in theoretical models seems essential for correct prediction of future ecosystem dynamics. We develop and analyze a two-season model for the great horned owl (Bubo virginialis) and snowshoe hare (Lepus americanus). These species form a predator-prey system in which the generalist to specialist shift in predation pattern has been documented empirically. We study the qualitative behavior of this predator-prey model community as summer season length changes. We find that relatively small changes in summer season length can have a profound impact on the system. In particular, when the predator has sufficient alternative resources available during the summer season, it can drive the prey to extinction, there can be coexisting stable states, and there can be stable large-amplitude limit cycles coexisting with a stable steady state. Our results illustrate that the impacts of global change on local ecosystems can be driven by internal system dynamics and can potentially have catastrophic consequences.

  13. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color.

    Science.gov (United States)

    McCollum, S A; Leimberger, J D

    1997-02-01

    Predator-induced defenses are well studied in plants and invertebrate animals, but have only recently been recognized in vertebrates. Gray treefrog (Hylachrysoscelis) tadpoles reared with predatory dragonfly (Aeshnaumbrosa) larvae differ in shape and color from tadpoles reared in the absence of dragonflies. By exposing tadpoles to tail damage and the non-lethal presence of starved and fed dragonflies, we determined that these phenotypic differences are induced by non-contact cues present when dragonflies prey on Hyla. The induced changes in shape are in the direction that tends to increase swimming speed; thus, the induced morphology may help tadpoles evade predators. Altering morphology in response to predators is likely to influence interactions with other species in the community as well.

  14. Previous and present diets of mite predators affect antipredator behaviour of whitefly prey

    NARCIS (Netherlands)

    Meng, R.; Janssen, A.; Nomikou, M.; Zhang, Q.-W.; Sabelis, M.W.

    2006-01-01

    Abstract Predator diet is known to influence antipredator behaviour in prey. Yet, it is not clear how antipredator behaviour is affected by diet changes of the predator. We studied the effect of previous and present diet of a predatory mite Typhlodromips swirskii on the antipredator response of its

  15. How predation and landscape fragmentation affect vole population dynamics

    DEFF Research Database (Denmark)

    Dalkvist, Trine; Sibly, Richard; Topping, Christopher John

    2011-01-01

    on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation...... to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered...

  16. How Predation and Landscape Fragmentation Affect Vole Population Dynamics

    DEFF Research Database (Denmark)

    Dalkvist, Trine; Sibly, Richard M.; Topping, Chris J.

    2011-01-01

    on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation...... to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered...

  17. Fishing top predators indirectly affects condition and reproduction in a reef-fish community.

    Science.gov (United States)

    Walsh, S M; Hamilton, S L; Ruttenberg, B I; Donovan, M K; Sandin, S A

    2012-03-01

    To examine the indirect effects of fishing on energy allocation in non-target prey species, condition and reproductive potential were measured for five representative species (two-spot red snapper Lutjanus bohar, arc-eye hawkfish Paracirrhites arcatus, blackbar devil Plectroglyphidodon dickii, bicolour chromis Chromis margaritifer and whitecheek surgeonfish Acanthurus nigricans) from three reef-fish communities with different levels of fishing and predator abundance in the northern Line Islands, central Pacific Ocean. Predator abundance differed by five to seven-fold among islands, and despite no clear differences in prey abundance, differences in prey condition and reproductive potential among islands were found. Body condition (mean body mass adjusted for length) was consistently lower at sites with higher predator abundance for three of the four prey species. Mean liver mass (adjusted for total body mass), an indicator of energy reserves, was also lower at sites with higher predator abundance for three of the prey species and the predator. Trends in reproductive potential were less clear. Mean gonad mass (adjusted for total body mass) was high where predator abundance was high for only one of the three species in which it was measured. Evidence of consistently low prey body condition and energy reserves in a diverse suite of species at reefs with high predator abundance suggests that fishing may indirectly affect non-target prey-fish populations through changes in predation and predation risk.

  18. Aspectos biológicos de Harmonia axyridis alimentada com duas espécies de presas e predação intraguilda com Eriopis connexa Biological aspects of Harmonia axyridis fed on two prey species and intraguild predation with Eriopis connexa

    Directory of Open Access Journals (Sweden)

    Natália Ribeiro Pereira dos Santos

    2009-06-01

    Full Text Available O objetivo deste trabalho foi determinar os aspectos biológicos de Harmonia axyridis, alimentada com duas espécies de presas, e a ocorrência de predação intraguilda com Eriopis connexa. Larvas de H. axyridis foram alimentadas diariamente com ovos de Anagasta kuehniella ou com o pulgão Schizaphis graminum. Adultos da joaninha foram separados em dez casais que receberam o mesmo tipo de alimento da fase larval. Na avaliação da predação, uma larva de quarto instar de cada espécie foi mantida na presença ou ausência de abrigo e de ovos de A. kuehniella. A fase larval de H. axyridis durou 10,2 e 8,9 dias, quando alimentada com A. kuehniella e S. graminum, respectivamente. A sobrevivência do predador, em fase imatura, variou de 70 a 100%. A joaninha apresentou período de oviposição de 47,3 e 51,7 dias, com 887,6 e 822,5 ovos, ao se alimentar de A. kuehniella e S. graminum, respectivamente. A longevidade das fêmeas foi de 74,1 e 76,2 dias e a dos machos de 67,3 e 70,3 dias, em A. kuehniella e S. graminum, respectivamente. H. axyridis atuou como predador intraguilda e foi a espécie dominante na competição com E. connexa.The objective of this work was to determine the biological aspects Harmonia axyridis, fed on two prey species, and the occurrence of intraguild predation with Eriopis connexa. Larvae of H. axyridis were fed daily with Anagasta kuehniella eggs or Schizaphis graminum aphid. Adults of H. axyridis were separated in ten couples which received the same food type of the larval stage. For the estimation of predation, a fourth instar larva of each species was maintained in the presence or absence of shelter and eggs of A. kuehniella. The larval stage lasted 10.2 days, when H. axyridis fed on A. kuehniella eggs, and 8.9 days when reared with S. graminum. The survival of predator during immature stages ranged from 70 to 100%. H. axyridis had an oviposition period of 47.3 and 51.7 days, laying a total of 887.6 and 822.5 eggs

  19. Eutrophication and predation risk interact to affect sexual trait expression and mating success.

    Science.gov (United States)

    Cothran, Rickey D; Stiff, Andy R; Jeyasingh, Punidan D; Relyea, Rick A

    2012-03-01

    Sexual traits are especially sensitive to low food resources. Other environmental parameters (e.g., predation) should also affect sexual trait expression by favoring investment in viability traits rather than sexual traits. We know surprisingly little about how predators alter investment in sexual traits, or how predator and resource environments interact to affect sexual trait investment. We explored how increasing phosphorous (P) availability, at a level mimicking cultural eutrophication, affects the development of sexual, nonsexual, and viability traits of amphipods in the presence and absence of predators. Sexual traits and growth were hypersensitive to low P compared to nonsexual traits. However, a key sexual trait responded to low P only when predator cues were absent. Furthermore, investment trade-offs between sexual traits and growth only occurred when P was low. The phenotypic changes caused by predator cues and increased P availability resulted in higher male mating success. Thus, eutrophication not only affects sexual trait expression but also masks the trade-off between traits with similar P demand. Sensitivity of sexually selected traits to changes in P, combined with the important roles these traits play in determining fitness and driving speciation, suggests that human-induced environmental change can greatly alter the evolutionary trajectories of populations.

  20. Nutrient balance affects foraging behaviour of a trap-building predator

    DEFF Research Database (Denmark)

    Mayntz, David; Toft, Søren; Vollrath, Fritz

    2009-01-01

    Predator foraging may be affected by previous prey capture, but it is unknown how nutrient balance affects foraging behaviour. Here, we use a trap-building predator to test whether nutrients from previous prey captures affect foraging behaviour. We fed orb-weaving spiders (Zygiella x-notata) prey...... flies of different nutrient composition and in different amounts during their first instar and measured the subsequent frequency of web building and aspects of web architecture. We found that both the likelihood of web building and the number of radii in the web were affected by prey nutrient...

  1. Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata).

    Science.gov (United States)

    van der Bijl, Wouter; Thyselius, Malin; Kotrschal, Alexander; Kolm, Niclas

    2015-08-07

    Large brains are thought to result from selection for cognitive benefits, but how enhanced cognition leads to increased fitness remains poorly understood. One explanation is that increased cognitive ability results in improved monitoring and assessment of predator threats. Here, we use male and female guppies (Poecilia reticulata), artificially selected for large and small brain size, to provide an experimental evaluation of this hypothesis. We examined their behavioural response as singletons, pairs or shoals of four towards a model predator. Large-brained females, but not males, spent less time performing predator inspections, an inherently risky behaviour. Video analysis revealed that large-brained females were further away from the model predator when in pairs but that they habituated quickly towards the model when in shoals of four. Males stayed further away from the predator model than females but again we found no brain size effect in males. We conclude that differences in brain size affect the female predator response. Large-brained females might be able to assess risk better or need less sensory information to reach an accurate conclusion. Our results provide experimental support for the general idea that predation pressure is likely to be important for the evolution of brain size in prey species.

  2. Feature of Intraguild Predation Level Under the Case of no Extraguild Prey%无集团外猎物情况下棉蚜捕食者之间的集团内捕食水平特征

    Institute of Scientific and Technical Information of China (English)

    阿力甫·那思尔

    2016-01-01

    集团内捕食作用是一种更为复杂的种间关系,广泛存在于各类生态系统中。为明确棉蚜捕食性天敌之间集团内捕食水平与个体发育阶段的关系,观察了大草蛉,七星瓢虫与多异瓢虫不同虫态之间40个处理组合的集团内捕食水平。在温室盆栽棉花(无蚜虫)上接种等量的试虫,观察24 h后的存活数量。结果表明,当参与双方的虫态不同时,出现不对称捕食,高一虫态处于优势;当参与双方的幼虫龄期不同时,高龄幼虫的存活数量显著大于低龄幼虫,呈现单向捕食;成虫对卵、1龄和4龄幼虫的捕食程度随虫龄增大而呈抛物线增长,存在显著的二次函数关系。本研究结果说明,在没有集团外猎物(蚜虫)存在的情况下,当广谱捕食性天敌大草蛉、七星瓢虫与多异瓢虫之间的集团内捕食水平在参与者的虫态或虫龄不同时,集团内捕食水平与双方发育阶段有关;当参与者虫态或虫龄相同时,取决于物种生物学特性。%Intra group predation is a more complex inter species relationship,which is widely existed in all kinds of ecological systems. The relationship between the group of predators in clear aphid predation levels and indi-vidual developmental stages,Chrysopa septempunctata,Coccinella septempunctata and Hippodamia variegata to ob-serve the level of predation in the group of 40 treatment groups with different insect States. In greenhouse pot cotton (no aphids)were inoculated with the same amount of test worms,the number of survival after 24 h. The results indi-cate that when the participating parties are in a different state of the insect,Asymmetric predation occurs,the higher one is in the dominant position:When the larval instar of both sides is different,Old larvae survival number was sig-nificantly greater than that of the young larvae,Unidirectional prey:The degree of predation on the eggs,the 1 and the 4 instar

  3. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    Science.gov (United States)

    Schartel, Tyler E; Schauber, Eric M

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.

  4. Brain size affects female but not male survival under predation threat.

    Science.gov (United States)

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas

    2015-07-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size.

  5. Distribution and abundance of predators that affect duck production--prairie pothole region

    Science.gov (United States)

    Sargeant, A.B.; Greenwood, R.J.; Sovada, M.A.; Shaffer, T.L.

    1993-01-01

    During 1983-88, the relative abundance of 18 species and species-groups of mammalian and avian predators affecting duck production in the prairie pothole region was determined in 33 widely scattered study areas ranging in size from 23-26 km2. Accounts of each studied species and species-group include habitat and history, population structure and reported densities, and information on distribution and abundance from the present study. Index values of undetected, scarce, uncommon, common, or numerous were used to rate abundance of nearly all species in each study area. Principal survey methods were livetrapping of striped skunks (Mephitis mephitis) and Franklin's ground squirrels (Spermophilus franklinii), systematic searches for carnivore tracks in quarter sections (0.65 km2), daily records of sightings of individual predator species, and systematic searches for occupied nests of tree-nesting avian predators. Abundances of predators in individual areas were studied 1-3 years.The distribution and abundance of predator species throughout the prairie pothole region have undergone continual change since settlement of the region by Europeans in the late 1800's. Predator populations in areas we studied differed markedly from those of pristine times. The changes occurred from habitat alterations, human-inflicted mortality of predators, and interspecific relations among predator species. Indices from surveys of tracks revealed a decline in the abundance of red foxes (Vulpes vulpes) and an albeit less consistent decline in the abundance of raccoons (Procyon lotor) with an increase in the abundance of coyotes (Canis latrans). Records of locations of occupied nests revealed great horned owls (Bubo virginianus) and red-tailed hawks (Buteo jamaicensis) tended to nest 0.5 km apart, and American crows (Corvus brachyrhynchos) tended to avoid nesting 0.5 km of nests of red-tailed hawks. Excluding large gulls, for which no measurements of abundance were obtained, the number of

  6. Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages

    NARCIS (Netherlands)

    Goedknegt, M.A.; Welsh, J.E.; Drent, J.; Thieltges, D.W.

    2015-01-01

    Climate change is expected to affect disease risk in many parasite-host systems, e.g., via an effect of temperature on infectivity (temperature effects). However, recent studies indicate that ambient communities can lower disease risk for hosts, for instance via predation on free-living stages of

  7. Chewing insect predation on artificial caterpillars is related to activity density of ground beetles (Coleoptera: Carabidae)

    DEFF Research Database (Denmark)

    Ferrante, M.; Lövei, G. L.

    2015-01-01

    is complicated by interactions such as cannibalism, intra-guild predation, and competition. Directly measuring predation is preferred, although ecological and logistical constraints make it difficult. Using artificial caterpillars to quantify arthropod predation is gaining more attention, as model prey are cheap...

  8. Bird predation affects diurnal and nocturnal web-building spiders in a Mediterranean citrus grove

    Science.gov (United States)

    Mestre, L.; Garcia, N.; Barrientos, J. A.; Espadaler, X.; Piñol, J.

    2013-02-01

    Spiders and birds can greatly decrease insect populations, but birds also limit spider densities in some habitats. Bird predation is thought to be one of the causes behind nocturnal activity in spiders, so night-active spiders that hide in retreats during the day should be less affected by bird foraging than day-active spiders. However, this hypothesis has not yet been tested. We investigated the importance of bird predation on the spider community of a Mediterranean organic citrus grove. We excluded birds by placing net cages over the trees and we conducted visual searches in the canopies to sample web-building spiders. As there are many nocturnal species in the family Araneidae, we conducted searches both by day and by night to compare the abundance of active araneids in these two time periods. We sampled the tree trunks with cardboard bands to collect hunting spiders. In bird-excluded canopies there were more spiders of the families Araneidae and Theridiidae. There were higher numbers of active Araneidae at night, but these were just as negatively affected by bird predation as day-active Araneidae, so there was no evidence of nocturnal activity serving as an anti-predator strategy. We did not find any negative impact of birds on hunting spiders. Our results contrast with other studies reporting a negative effect of birds on hunting but not on web-building spiders.

  9. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    Science.gov (United States)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  10. Acidification and warming affect both a calcifying predator and prey, but not their interaction

    DEFF Research Database (Denmark)

    Landes, Anja; Zimmer, Martin

    2012-01-01

    Both ocean warming and acidification have been demonstrated to affect the growth, performance and reproductive success of calcifying invertebrates. However, relatively little is known regarding how such environmental change may affect interspecific interactions. We separately treated green crabs...... Carcinus maenas and periwinkles Littorina littorea under conditions that mimicked either ambient conditions (control) or warming and acidification, both separately and in combination, for 5 mo. After 5 mo, the predators, prey and predator-prey interactions were screened for changes in response...... to environmental change. Acidification negatively affected the closer-muscle length of the crusher chela and correspondingly the claw-strength increment in C. maenas. The effects of warming and/or acidification on L. littorea were less consistent but indicated weaker shells in response to acidification...

  11. Escape by the Balearic Lizard (Podarcis lilfordi is affected by elevation of an approaching predator, but not by some other potential predation risk factors

    Directory of Open Access Journals (Sweden)

    William E. Cooper

    2011-12-01

    Full Text Available Many predation risk factors to affect escape behavior by lizards, but effects of some potential risk factors are unknown or are variable among species. We studied effects of several risk factors on escape responses by the Balearic lizard (Podarcis lilfordi, Lacertidae on escape responses. Escape was elicited by an approaching experimenter who recorded flight initiation distance (predator-prey distance when escape begins and distance fled. When an experimenter approached from above (upslope, flight initiation distance and distance fled were longer than when the experimenter approached from below. This novel effect suggests that lizards exposed to aerial predation might have been naturally selected to respond rapidly to predators approaching from above or that effects of path inclination of escape ability may differ between predators and prey in a manner requiring a larger margin of safety during approaches from above than below. Although sex differences in aspects of escape occur in some lizards, including lacertids, no sex difference was observed in P. lilfordi. Because vigilance and some other aspects of antipredatory behavior exhibit cortical lateralization, we tested effects of approach from the left and right sides of lizards. As predicted by optimal escape theory, side of approach did not affect flight initiation distance. Because many lizards have color vision and respond to pigmentation of conspecifics in social settings, researchers have often worn only drably colored clothing when simulating predators. This precaution may be unnecessary because flight initiation distance did not differ among investigator shirt colors (red, orange, olive.

  12. Feeding behaviour of an intertidal snail: Does past environmental stress affect predator choices and prey vulnerability?

    Science.gov (United States)

    Gestoso, Ignacio; Arenas, Francisco; Olabarria, Celia

    2015-03-01

    Predation is one of the most important factors in determining structure and dynamics of communities on intertidal rocky shores. Such regulatory role may be of special relevance in novel communities resulting from biological invasions. Non-indigenous species frequently escape natural predators that limit their distribution and abundance in the native range. However, biological interactions also can limit the establishment and spread of non-native populations. There is a growing concern that climate change might affect predator-prey interactions exacerbating the ecological impacts of non-indigenous species. However, mechanisms underlying such interactions are poorly understood in marine ecosystems. Here, we explored if past environmental stress, i.e., increasing temperature and decreasing pH, could affect the vulnerability of two mussel prey, the native Mytilus galloprovincialis and the non-indigenous Xenostrobus securis, to predation by the native dogwhelk Nucella lapillus. In addition, we evaluated the consequences on the feeding behaviour of N. lapillus. First, we exposed monospecific assemblages of each mussel species to combined experimental conditions of increasing temperature and decreasing pH in mesocosms for 3 weeks. Then assemblages were placed on a rocky shore and were enclosed in cages with dogwhelks where they remained for 3 weeks. Despite the lack of preference, consumption was much greater on the native than on the invasive mussels, which barely were consumed by dogwhelks. However, this trend was diverted when temperature increased. Thus, under a coastal warming scenario shifts in dogwhelks feeding behaviour may help to contain invader's populations, especially in estuarine areas where these predators are abundant.

  13. Experimental evidence that livestock grazing intensity affects the activity of a generalist predator

    Science.gov (United States)

    Villar, Nacho; Lambin, Xavier; Evans, Darren; Pakeman, Robin; Redpath, Steve

    2013-05-01

    Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.

  14. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Indrikis Krams

    2016-08-01

    Full Text Available Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus, and the percentage of carbon (C and nitrogen (N content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C, a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures.

  15. Along came a spider who sat down beside her: Perceived predation risk, but not female age, affects female mate choosiness.

    Science.gov (United States)

    Atwell, Ashley; Wagner, William E

    2015-06-01

    Organisms often exhibit behavioral plasticity in response to changes in factors, such as predation risk, mate density, and age. Particularly, female mate choosiness (the strength of female's attraction to male traits as they deviate from preferred trait values) has repeatedly been shown to be plastic. This is due to the costs associated with searching for preferred males fluctuating with changes in such factors. Because these factors can interact naturally, it is important to understand how female mate choosiness responds to these interactions. We studied the interaction between perceived predation risk and female age on the variable field cricket, Gryllus lineaticeps. Females were either exposed or not exposed to predation cues from a sympatric, cursorial, wolf spider predator, Hogna sp. We then tested the females at one of three adult ages and measured their choosiness by recording their responsiveness to a low quality male song. We found female choosiness plasticity was affected by neither age nor the interaction between age and perceived predation risk. Perceived predation risk was the only factor to significantly affect the plasticity of female mate choosiness: females were less choosy when they perceived predation risk and were more choosy when they did not. Predation may be such a strong source of selection that, regardless of differences in other factors, most individuals respond similarly.

  16. Do predator-prey relationships on the river bed affect fine sediment ingress?

    Science.gov (United States)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between

  17. Recent research trends in the use of predators for biological control

    Science.gov (United States)

    We focus on recent interesting research trends in biological control using predators by selecting four areas of current research: 1) Intraguild predation (IGP): defined as the “killing and eating of species that use similar resources and are thus potential competitors”. In biological control, the si...

  18. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation.

    Directory of Open Access Journals (Sweden)

    Markus Andreas Strodl

    Full Text Available Social familiarity, which is based on the ability to recognise familiar conspecific individuals following prior association, may affect all major life activities of group-living animals such as foraging, reproduction and anti-predator behaviours. A scarcely experimentally tested explanation why social familiarity is beneficial for group-living animals is provided by limited attention theory. Limited attention theory postulates that focusing on a given task, such as inspection and assessment of unfamiliar group members, has cognitive and associated physiological and behavioural costs with respect to the attention paid to other tasks, such as anti-predator vigilance and response. Accordingly, we hypothesised that social familiarity enhances the anti-predator success of group-living predatory mites, Phytoseiulus persimilis, confronted with an intraguild predator, the predatory mite Amblyseius andersoni.We videotaped and analysed the response of two P. persimilis larvae, held in familiar or unfamiliar pairs, to attacks by a gravid A. andersoni female, using the behavioural analyses software EthoVision Pro®. Familiar larvae were more frequently close together, reacted more quickly to predator attacks, survived more predator encounters and survived longer than unfamiliar larvae.In line with the predictions of limited attention theory, we suggest that social familiarity improves anti-predator behaviours because it allows prey to shift attention to other tasks rather than group member assessment.

  19. Does predation by grey seals (Halichoerus grypus) affect Bothnian Sea herring stock estimates?

    DEFF Research Database (Denmark)

    Gårdmark, Anna; Östman, Örjan; Nielsen, Anders

    2012-01-01

    estimated grey seal predation from diet data and reanalysed herring spawning stock biomass (SSB) during 1973–2009. Accounting for predation increased the herring SSB 16% (maximum 19%), but this was within the confidence intervals when ignoring predation. Although mortality in older individuals was inflated...

  20. Ecological conditions affect evolutionary trajectory in a predator-prey system.

    Science.gov (United States)

    Gallet, Romain; Tully, Thomas; Evans, Margaret E K

    2009-03-01

    The arms race of adaptation and counter adaptation in predator-prey interactions is a fascinating evolutionary dynamic with many consequences, including local adaptation and the promotion or maintenance of diversity. Although such antagonistic coevolution is suspected to be widespread in nature, experimental documentation of the process remains scant, and we have little understanding of the impact of ecological conditions. Here, we present evidence of predator-prey coevolution in a long-term experiment involving the predatory bacterium Bdellovibrio bacteriovorus and the prey Pseudomonas fluorescens, which has three morphs (SM, FS, and WS). Depending on experimentally applied disturbance regimes, the predator-prey system followed two distinct evolutionary trajectories, where the prey evolved to be either super-resistant to predation (SM morph) without counter-adaptation by the predator, or moderately resistant (FS morph), specialized to and coevolving with the predator. Although predation-resistant FS morphs suffer a cost of resistance, the evolution of extreme resistance to predation by the SM morph was apparently unconstrained by other traits (carrying capacity, growth rate). Thus we demonstrate empirically that ecological conditions can shape the evolutionary trajectory of a predator-prey system.

  1. Witnessing predation can affect strength of counterattack in phytoseiids with ontogenetic predatoreprey role reversal

    NARCIS (Netherlands)

    Choh, Y.; Takabayashi, J.; Sabelis, M.W.; Janssen, A.

    2014-01-01

    Predators are usually larger than their prey, but because size changes during ontogeny, predator and prey roles may be reversed. Hence, an individual may be prey when juvenile, but as an adult, it may counterattack the juveniles of its childhood enemy. Earlier, we showed that juvenile predatory mite

  2. Foraging mode affects the evolution of egg size in generalist predators embedded in complex food webs.

    Science.gov (United States)

    Verdeny-Vilalta, O; Fox, C W; Wise, D H; Moya-Laraño, J

    2015-06-01

    Ecological networks incorporate myriad biotic interactions that determine the selection pressures experienced by the embedded populations. We argue that within food webs, the negative scaling of abundance with body mass and foraging theory predict that the selective advantages of larger egg size should be smaller for sit-and-wait than active-hunting generalist predators, leading to the evolution of a difference in egg size between them. Because body mass usually scales negatively with predator abundance and constrains predation rate, slightly increasing egg mass should simultaneously allow offspring to feed on more prey and escape from more predators. However, the benefits of larger offspring would be relatively smaller for sit-and-wait predators because (i) due to their lower mobility, encounters with other predators are less common, and (ii) they usually employ a set of alternative hunting strategies that help to subdue relatively larger prey. On the other hand, for active predators, which need to confront prey as they find them, body-size differences may be more important in subduing prey. This difference in benefits should lead to the evolution of larger egg sizes in active-hunting relative to sit-and-wait predators. This prediction was confirmed by a phylogenetically controlled analysis of 268 spider species, supporting the view that the structure of ecological networks may serve to predict relevant selective pressures acting on key life history traits.

  3. Susceptibility to predation affects trait-mediated indirect interactions by reversing interspecific competition.

    Directory of Open Access Journals (Sweden)

    Sophie L Mowles

    Full Text Available Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence trophic interactions.

  4. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    Science.gov (United States)

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  5. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    Directory of Open Access Journals (Sweden)

    Corinna E Dreher

    Full Text Available Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and

  6. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    Science.gov (United States)

    Dreher, Corinna E; Cummings, Molly E; Pröhl, Heike

    2015-01-01

    Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological

  7. Stress in the wild: chronic predator pressure and acute restraint affect plasma DHEA and corticosterone levels in a songbird.

    Science.gov (United States)

    Newman, A E M; Zanette, L Y; Clinchy, M; Goodenough, N; Soma, K K

    2013-05-01

    The effects of chronic stressors on glucocorticoid levels are well described in laboratory rodents, but far less is known about the effects of chronic stressors on wild animals or on dehydroepiandrosterone (DHEA) levels. DHEA can be produced by the adrenal cortex and has prominent antiglucocorticoid properties. Here, we examined wild songbirds to elucidate the relationship between chronic predator pressure and plasma DHEA and corticosterone levels. We measured circulating steroid levels at baseline and after acute restraint in the breeding and nonbreeding seasons. During the breeding season, males in low predator pressure (LPP) environments had higher baseline DHEA levels than males in high predator pressure (HPP) environments. Also, acute restraint decreased DHEA levels in LPP males only but increased corticosterone levels in HPP and LPP males similarly. During the nonbreeding season, DHEA and corticosterone levels were lower than during the breeding season, and acute restraint decreased DHEA levels in both HPP and LPP males. Unlike males, breeding females showed no effect of predator pressure on baseline DHEA or corticosterone levels. These data suggest that naturalistic chronic and acute stressors affect circulating DHEA and corticosterone levels in wild animals and highlight the importance of using multiple endpoints when studying the physiological effects of chronic stress.

  8. Do fruit morphology and scarification affect germination and predation rates of Babassu seeds?

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Gonçalves Ferreira

    Full Text Available ABSTRACT Seed predation is a natural phenomenon that can occur either before or after dispersal and can significantly reduce the economic value and reproductive potential of plants. The babassu palm (Attalea vitrivir, Arecaceae is important to rural communities that extract oil from its fruits for a wide variety of uses. We evaluated the predation and germination of A. vitrivirseeds in Pandeiros River Environmental Protection Area (EPA-Pandeiros in Minas Gerais State, Brazil. Sixty individual plants were evaluated to determine their fruiting patterns. Seed predation and germination were evaluated in the natural environment for eight months for fruits divided into two treatments: scarified and intact. Germination of fruits submitted to these same treatments was also evaluated under greenhouse conditions. Our results indicated that fruiting is continuous in this species and that fruit morphology does not influence either germination or predation. Likewise, fruit scarification did not influence seed germination. Pachymerus cardo (Coleoptera: Chrysomelidae preferentially oviposited on scarified fruits, but only after their dispersal. The predation rate in the natural environment was 14.6%. Germination was not observed under natural conditions, but reached 33.05% under greenhouse conditions.

  9. Swimming with predators and pesticides: how environmental stressors affect the thermal physiology of tadpoles.

    Directory of Open Access Journals (Sweden)

    Marco Katzenberger

    Full Text Available To forecast biological responses to changing environments, we need to understand how a species's physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor by determining whether exposures to predator cues and an herbicide (Roundup can alter their critical maximum temperature (CTmax and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt for swimming speed and the shape of the thermal performance curve (TPC. We discovered that predator cues induced a 0.4°C higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5°C, while exposure to the herbicide marginally lowered Topt by 0.4°C. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5°C higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming.

  10. Swimming with predators and pesticides: how environmental stressors affect the thermal physiology of tadpoles.

    Science.gov (United States)

    Katzenberger, Marco; Hammond, John; Duarte, Helder; Tejedo, Miguel; Calabuig, Cecilia; Relyea, Rick A

    2014-01-01

    To forecast biological responses to changing environments, we need to understand how a species's physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered that predator cues induced a 0.4°C higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5°C, while exposure to the herbicide marginally lowered Topt by 0.4°C. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5°C higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming.

  11. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield.

    Science.gov (United States)

    Penn, Hannah J; Dale, Andrew M

    2017-08-01

    Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    Science.gov (United States)

    Rosenblatt, Adam E.; Nifong, James C.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael S.; Jeffery, Brian M.; Elsey, Ruth M.; Decker, Rachel A.; Silliman, Brian R.; Guillette, Louis J.; Lowers, Russell H.; Larson, Justin C.

    2015-01-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  13. Is the reaction to chemical cues of predators affected by age or experience in fire salamanders (Salamandra salamandra)

    NARCIS (Netherlands)

    Ibanez, A.; Caspers, B.A.; Lopez, P.; Martin, J.; Krause, E.T.

    2014-01-01

    Predation is one of the strongest forces driving natural selection. Predator success reduces future prey fitness to zero. Thus, recognition and avoidance of a potential predator is an essential fitness-relevant skill for prey. Being well equipped in the predator-prey arms race is highly adaptive. In

  14. Coexistence in streams: do source-sink dynamics allow salamanders to persist with fish predators?

    Science.gov (United States)

    Sepulveda, Adam J; Lowe, Winsor H

    2011-08-01

    Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence.

  15. Habitat area and structure affect the impact of seed predators and the potential for coevolutionary arms races.

    Science.gov (United States)

    Mezquida, Eduardo T; Benkman, Craig W

    2010-03-01

    Both habitat patch size and structure affect the abundance and occurrence of species and thereby can affect the ecology and evolution of species interactions. Here we contrast the level of seed predation and selection exerted by Common Crossbills (Loxia curvirostra complex) and red squirrels (Sciurus vulgaris) in the extensive mountain pine (Pinus uncinata) forests in the Pyrenees with their level of seed predation in two small, isolated forests. Crossbills consumed 5.1 times more seeds in the Pyrenees than in the isolated forests, and six of seven cone traits under selection by crossbills were enhanced in the Pyrenees. In contrast, red squirrels tend to be uncommon in the open mountain pine forests, consuming relatively few seeds in both regions and having limited impact on both mountain pine and the interaction between crossbills and mountain pine. Resident crossbills in mountain pine forests in the Pyrenees have larger bills than in nearby forests, consistent with local adaptation by crossbills and a coevolutionary arms race between crossbills and mountain pine. The mechanisms leading to variation in the interaction between crossbills and mountain pine should be general to many systems because habitat patch size and structure often vary across the range of a species.

  16. Pirimicarb, an aphid selective insecticide, adversely affects demographic parameters of the aphid predator Hippodamia variegata (Goeze (Coleoptera: Coccinellidae

    Directory of Open Access Journals (Sweden)

    Rahmani Shima

    2016-12-01

    Full Text Available Demographic toxicology is recommended for toxicity determination of the long term effects of a pesticide since it gives a more accurate and efficient measure of the effect of a pesticide. Thus, in the current study the sublethal effects of pirimicarb (carbamate insecticide two concentrations of LC30 and LC10 were used against third instar larvae of Hippodamia variegata (Goeze in order to determine the effects of the pesticide on demographic parameters of the predator under laboratory conditions. Results showed that pirimicarb did not affect individual life parameters such as development time of larva, pupa, adult longevity, female and male longevity, adult preoviposition period (APOP, and total preoviposition period (TPOP. However, population parameters such as intrinsic rate of increase (r, net reproductive rate (R0, mean generation time (T, and finite rate of increase (λ was affected by sublethal treatment. For example, intrinsic rate of increase (r was 0.18 day-1 in the controls but it was 0.13 and 0.14 day-1 in the treated insects with LC10 and LC30 concentrations, respectively. Also, there were significant differences between mean generation time (T of the treatments and the controls i.e. mean generation time of the controls was 29.03 days while mean generation time in the two treatments of LC10 and LC30 was 33.93 and 31.66 days, respectively. The finite rate of increase was also significantly affected by sublethal effects of the pesticide. The results showed that pirimicarb, even at low concentrations, has potential to adversely affect the predatory ladybird, therefore care should be taken when this insecticide is used in the Integrated Pest Management (IPM program.

  17. Escherichia coli carbon source metabolism affects longevity of its predator Caenorhabditis elegans.

    Science.gov (United States)

    Brokate-Llanos, Ana María; Garzón, Andrés; Muñoz, Manuel J

    2014-01-01

    Nutrition is probably the most determinant factor affecting aging. Microorganisms of the intestinal flora lay in the interface between available nutrients and nutrients that are finally absorbed by multicellular organisms. They participate in the processing and transformation of these nutrients in a symbiotic or commensalistic relationship. In addition, they can also be pathogens. Alive Escherichia coli OP50 are usually used to culture the bacteriovorus nematode Caenorhabditis elegans. Here, we report a beneficial effect of low concentration of saccharides on the longevity of C. elegans. This effect is only observed when the bacterium can metabolize the sugar, suggesting that physiological changes in the bacterium feeding on the saccharides are the cause of this beneficial effect.

  18. Spatiotemporal analysis of predation by carabid beetles (Carabidae on nematode infected and uninfected slugs in the field.

    Directory of Open Access Journals (Sweden)

    Bjørn Arild Hatteland

    Full Text Available The dynamics of predation on parasites within prey has received relatively little attention despite the profound effects this is likely to have on both prey and parasite numbers and hence on biological control programmes where parasites are employed. The nematode Phasmarhabditis hermaphrodita is a commercially available biological agent against slugs. Predation on these slugs may, at the same time, result in intraguild predation on slug-parasitic nematodes. This study describes, for the first time, predation by carabid beetles on slugs and their nematode parasites on both spatial and temporal scales, using PCR-based methods. The highest nematode infection levels were found in the slugs Deroceras reticulatum and Arion silvaticus. Numbers of infected slugs decreased over time and no infected slugs were found four months after nematode application. The density of the most abundant slug, the invasive Arion vulgaris, was positively related to the activity-density of the carabid beetle, Carabus nemoralis. Predation on slugs was density and size related, with highest predation levels also on A. vulgaris. Predation on A. vulgaris decreased significantly in summer when these slugs were larger than one gram. Predation by C. nemoralis on slugs was opportunistic, without any preferences for specific species. Intraguild predation on the nematodes was low, suggesting that carabid beetles such as C. nemoralis probably do not have a significant impact on the success of biological control using P. hermaphrodita.

  19. How does shape affect predator- prey interactions in fish? Implications for marine food web structure and dynamics

    OpenAIRE

    Cachera, Marie; Villanueva, Ching-maria; Ernande, Bruno; Baheux, Mickael; Rouquette, Manuel; Chambord, Sophie; Lefebvre, Sebastien

    2011-01-01

    Each species pertains to a given functional niche, depending on its relationships with others species and its interactions with the abiotic environment. Understanding inter-specific interactions is critical to know and predict ecosystems' structure, functioning and dynamics, but also their response to anthropogenic impacts. Predator-prey relationship is one of the main biotic interactions as it both determines the survival of the prey and the predator and is the keystone of food webs. Unra...

  20. Limbic system activation is affected by prenatal predator exposure and postnatal environmental enrichment and further moderated by dam and sex.

    Science.gov (United States)

    Korgan, Austin C; Green, Amanda D; Perrot, Tara S; Esser, Michael J

    2014-02-01

    Epilepsy is a relatively common and chronic neurological condition, affecting 1-2% of the population. However, understanding of the underlying pathophysiology remains incomplete. To identify potential factors in the early environment that may increase the risk for experiencing seizures, maternal stress and environmental enrichment (EE) were utilized. Pregnant Long-Evans rats were exposed to an ethologically relevant predator stress (PS) and maternal glucocorticoid (GC) response was assessed across the exposure period. At birth, litters were divided into standard care (SC) and EE groups until postnatal day 14 (PD14) when a model of febrile convulsions was used to determine seizure susceptibility of the various groups. Pup brains were then processed for immunohistochemical detection of FosB from several structures in the limbic system as a measure of neuronal activation. Maternal PS-induced GC levels were elevated early in the exposure period, and pup birth weights, in both sexes, were lower in litters from dams exposed to PS. Seizure scores at PD14 were highly individualized and litter dependent, suggesting a dam-dependent and variable effect of controlled pre- and postnatal environmental factors. Further, analysis of FosB-immunoreactive (-ir) patterns revealed an activity dependent distribution, reflecting individual seizure susceptibility. EE had a varying effect on FosB-ir that was dependent on region. In the hippocampus FosB-ir levels were greater in the EE groups while extra-hippocampal regions showed lower levels of FosB-ir. Our results support the concept that pre- and postnatal environmental influences affect fetal programming and neurodevelopment of processes that could underlie seizure susceptibility, but that the magnitude of these effects appears to be dam- or litter-dependent.

  1. Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (J.E. Smith) on Bt cotton.

    Science.gov (United States)

    Malaquias, J B; Ramalho, F S; Omoto, C; Godoy, W A C; Silveira, R F

    2014-03-01

    Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) is one of the most common asopine species in the neotropical region and its occurrence was reported in several countries of South and Central America, as an important biological control agent for many crops. This study was carried out to identify the imidacloprid impacts on the functional response of predator P. nigrispinus fed on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) strain resistant to lambda-cyhalothrin, on Bt cotton expressing Cry1Ac (Bollgard(®)). Spodoptera frugiperda larvae were used in the following conditions: resistant (1) and susceptible (2) strains to lambda-cyhalothrin fed on Bollgard(®) cotton leaves (DP 404 BG); and resistant (3) and susceptible (4) strains to lambda-cyhalothrin fed on non-genetically modified cotton leaves (cultivar DP4049). The predatory behavior of P. nigrispinus was affected by imidacloprid and the type II asymptotic curve was the one that best described the functional response data. Handling time (T h ) of predator females did not differ among treatments in the presence of imidacloprid. The attack rate did decrease, however, due to an increase in the density of larvae offered. Regardless of the treatment (S. frugiperda strain or cotton cultivar), the predation of P. nigrispinus females on S. frugiperda larvae was significantly lower when exposed to imidacloprid, especially at a density of 16 larvae/predator. The predation behavior of P. nigrispinus on S. frugiperda larvae is affected by the insecticide imidacloprid showing that its applications should be used in cotton crop with caution.

  2. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses

    NARCIS (Netherlands)

    Boukal, D.; Sabelis, M.W.; Berec, L.

    2007-01-01

    In Rosenzweig-MacArthur models of predator-prey dynamics, Allee effects in prey usually destabilize interior equilibria and can suppress or enhance limit cycles typical of the paradox of enrichment. We re-evaluate these conclusions through a complete classification of a wide range of Allee effects

  3. Predator Presence and Vegetation Density Affect Capture Rates and Detectability of Litoria aurea Tadpoles: Wide-Ranging Implications for a Common Survey Technique.

    Science.gov (United States)

    Sanders, Madeleine R; Clulow, Simon; Bower, Deborah S; Clulow, John; Mahony, Michael J

    2015-01-01

    Trapping is a common sampling technique used to estimate fundamental population metrics of animal species such as abundance, survival and distribution. However, capture success for any trapping method can be heavily influenced by individuals' behavioural plasticity, which in turn affects the accuracy of any population estimates derived from the data. Funnel trapping is one of the most common methods for sampling aquatic vertebrates, although, apart from fish studies, almost nothing is known about the effects of behavioural plasticity on trapping success. We used a full factorial experiment to investigate the effects that two common environmental parameters (predator presence and vegetation density) have on the trapping success of tadpoles. We estimated that the odds of tadpoles being captured in traps was 4.3 times higher when predators were absent compared to present and 2.1 times higher when vegetation density was high compared to low, using odds ratios based on fitted model means. The odds of tadpoles being detected in traps were also 2.9 times higher in predator-free environments. These results indicate that common environmental factors can trigger behavioural plasticity in tadpoles that biases trapping success. We issue a warning to researchers and surveyors that trapping biases may be commonplace when conducting surveys such as these, and urge caution in interpreting data without consideration of important environmental factors present in the study system. Left unconsidered, trapping biases in capture success have the potential to lead to incorrect interpretations of data sets, and misdirection of limited resources for managing species.

  4. Intraguild predation among plant pests: western flower thrips larvae feed on whitefly crawlers

    NARCIS (Netherlands)

    van Maanen, R.; Broufas, G.; Oveja, M.F.; Sabelis, M.W.; Janssen, A.

    2012-01-01

    Omnivores obtain resources from more than one trophic level, and choose their food based on quantity and quality of these resources. For example, omnivores may switch to feeding on plants when prey are scarce. Larvae of the western flower thrips Frankiniella occidentalis Pergande (Thysanoptera:

  5. Potential for exploitative competition, not intraguild predation, between invasive harlequin ladybirds and flowerbugs in urban parks

    DEFF Research Database (Denmark)

    Howe, Andrew Gordon; Ravn, Hans Peter; Pipper, Christian Bressen

    2016-01-01

    -content analysis, we investigated the relative frequencies of IGP by H. axyridis on the predatory flowerbug Anthocoris nemoralis Fabricius (Heteroptera: Anthocoridae) and prey overlap for a shared prey, the lime aphid Eucallipterus tiliae L. (Hemiptera: Aphididae), in Tilia × europaea crowns in urban parks...

  6. Predators determine how weather affects the spatial niche of lizard prey: exploring niche dynamics at a fine scale.

    Science.gov (United States)

    Lopez-Darias, Marta; Schoener, Thomas W; Spiller, David A; Losos, Jonathan B

    2012-12-01

    Although abiotic and biotic factors can interact to shape the spatial niche of a species, studies that explore the interactive effects of both at a local scale are rare. We demonstrate that one of the main axes (perch height) characterizing the spatial niche of a common lizard, Anolis sagrei, varies according to the interactive effects of weather and the activity of a larger predatory lizard, Leiocephalus carinatus. Results were completely consistent: no matter how favorable the weather conditions for using the ground (mainly characterized by temperature, humidity, wind speed, rain), A. sagrei did not do so if the predator was present. Hence, great behavioral plasticity enabled A. sagrei to adjust its use of space very quickly. To the best of our knowledge, these results constitute the first field demonstration for anoles (and possibly for other animals as well) of how time-varying environmental conditions and predator presence interact to produce short-term changes in utilization along a major niche axis.

  7. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    Science.gov (United States)

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  8. Small-scale spatial pattern of web-building spiders (Araneae) in alfalfa: relationship to disturbance from cutting, prey availability, and intraguild interactions.

    Science.gov (United States)

    Birkhofer, Klaus; Scheu, Stefan; Wise, David H

    2007-08-01

    Understanding the development of spatial patterns in generalist predators will improve our ability to incorporate them into biological control programs. We studied the small-scale spatial patterns of spider webs in alfalfa by analyzing the relationship between web locations over distances ranging from 4 to 66 cm. Using a coordinate-based spatial statistic (O-ring) and assuming a heterogeneous distribution of suitable web sites, we analyzed the impact of cutting and changes in spider abundance on web distribution. We analyzed the influence of small-scale variation in prey availability by comparing web distributions to the pattern of sticky-trap captures of Aphididae and Diptera described by a count-based spatial statistic (SADIE). Cutting of alfalfa reduced the overall density of web-building spiders but had no immediate impact on the spatial distribution of their webs. Availability of aphids was highest before the alfalfa was cut and was clumped at a scale of 66 cm. Spider webs, however, were not clumped at any scale or date. In contrast, webs were regularly distributed at smaller distances (web-building spiders were most active during this period, we hypothesize that the development of small-scale regularity in web locations was driven by intraguild interactions. Our results suggest that intraguild interactions contribute to the development of small-scale spatial patterns of spider webs in alfalfa. Variation in prey availability may have more of an influence on web distribution in crops with a different vegetation structure or if patterns are studied at larger spatial scales.

  9. Preference for cannibalism and ontogenetic constraints in competitive ability of piscivorous top predators.

    Science.gov (United States)

    Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart

    2013-01-01

    Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has

  10. Preference for cannibalism and ontogenetic constraints in competitive ability of piscivorous top predators.

    Directory of Open Access Journals (Sweden)

    Pär Byström

    Full Text Available Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over

  11. Guardian or threat: does golden eagle predation risk have cascading effects on forest grouse?

    Science.gov (United States)

    Lyly, Mari S; Villers, Alexandre; Koivisto, Elina; Helle, Pekka; Ollila, Tuomo; Korpimäki, Erkki

    2016-10-01

    Previous studies on intraguild predation have mainly focused on within-class assemblages, even though avian top predators may also influence mammalian mesopredator prey. By using nation-wide long-term data from Finland, northern Europe, we examined the impacts of golden eagles (Aquila chrysaetos) together with red foxes (Vulpes vulpes) and pine martens (Martes martes) on forest-dwelling herbivores, black grouse (Tetrao tetrix) and hazel grouse (Tetrastes bonasia). We hypothesized that eagles may alleviate the overall predation pressure on grouse by imposing intraguild predation risk on mesopredators. The predation impact of eagle was modelled using eagle density estimates and distance to eagle nest. Wildlife triangle counts were used as predation impact proxies of mammalian mesopredators and as measures of response in grouse. Our results show that eagle density correlated negatively with black grouse abundance indices while being positively associated with the proportion of juveniles in both grouse species, irrespective of the abundance of mesopredators. Yet, foxes and martens alone had a negative effect on the abundance indices and the proportion of young in the two grouse species. This suggests that the possible cascading effects of eagles are not mediated by decreased mesopredator numbers, but instead by fear effects. Alternatively, they may be mediated by other species than fox or marten studied here. In conclusion, we found support for the hypothesis that eagles provide protection for juvenile black and hazel grouse, whereas they are a threat for adult grouse. This important information helps us to better understand the role of avian top predators in terrestrial ecosystems.

  12. Eating chemically defended prey: alkaloid metabolism in an invasive ladybird predator of other ladybirds (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Sloggett, J J; Davis, A J

    2010-01-15

    By comparison with studies of herbivore physiological adaptation to plant allelochemicals, work on predator physiological adaptation to potentially toxic prey has been very limited. Such studies are important in understanding how evolution could shape predator diets. An interesting question is the specificity of predator adaptation to prey allelochemicals, given that many predators consume diverse prey with different chemical defences. The ladybird Harmonia axyridis, an invasive species in America, Europe and Africa, is considered a significant predatory threat to native invertebrates, particularly other aphid-eating ladybirds of which it is a strong intraguild predator. Although ladybirds possess species-specific alkaloid defences, H. axyridis exhibits high tolerance for allospecific ladybird prey alkaloids. Nonetheless, it performs poorly on species with novel alkaloids not commonly occurring within its natural range. We examined alkaloid fate in H. axyridis larvae after consumption of two other ladybird species, one containing an alkaloid historically occurring within the predator's native range (isopropyleine) and one containing a novel alkaloid that does not (adaline). Our results indicate that H. axyridis rapidly chemically modifies the alkaloid to which it has been historically exposed to render it less harmful: this probably occurs outside of the gut. The novel, more toxic alkaloid persists in the body unchanged for longer. Our results suggest metabolic alkaloid specialisation, in spite of the diversity of chemically defended prey that the predator consumes. Physiological adaptations appear to have made H. axyridis a successful predator of other ladybirds; however, limitations are imposed by its physiology when it eats prey with novel alkaloids.

  13. Deadly competition and life-saving predation: the potential for alternative stable states in a stage-structured predator-prey system.

    Science.gov (United States)

    Toscano, Benjamin J; Rombado, Bianca R; Rudolf, Volker H W

    2016-08-31

    Predators often undergo complete ontogenetic diet shifts, engaging in resource competition with species that become their prey during later developmental stages. Theory posits that this mix of stage-specific competition and predation, termed life-history intraguild predation (LHIGP), can lead to alternative stable states. In one state, prey exclude predators through competition (i.e. juvenile competitive bottleneck), while in the alternative, adult predators control prey density to limit competition and foster coexistence. Nevertheless, the interactions leading to these states have not been demonstrated in an empirical LHIGP system. To address this gap, we manipulated densities of cannibalistic adult cyclopoid copepods (Mesocyclops edax) and their cladoceran prey (Daphnia pulex) in a response-surface design and measured the maturation and survival of juvenile copepods (nauplii). We found that Daphnia reduced and even precluded both nauplii maturation and survival through depletion of a shared food resource. As predicted, adult copepods enhanced nauplii maturation and survival through Daphnia consumption, yet this positive effect was dependent on the relative abundance of Daphnia as well as the absolute density of adult copepods. Adult copepods reduced nauplii survival through cannibalism at low Daphnia densities and at the highest copepod density. This work demonstrates that predation can relax a strong juvenile competitive bottleneck in freshwater zooplankton, though cannibalism can reduce predator recruitment. Thus, our results highlight a key role for cannibalism in LHIGP dynamics and provide evidence for the interactions that drive alternative stable states in such systems.

  14. Infochemical-mediated intraguild interactions among three predatory mites on cassava plants.

    Science.gov (United States)

    Gnanvossou, Désiré; Hanna, Rachid; Dicke, Marcel

    2003-03-01

    Carnivorous arthropods exhibit complex intraspecific and interspecific behaviour among themselves when they share the same niche or habitat and food resources. They should simultaneously search for adequate food for themselves and their offspring and in the meantime avoid becoming food for other organisms. This behaviour is of great ecological interest in conditions of low prey availability. We examined by means of an olfactometer, how volatile chemicals from prey patches with conspecific or heterospecific predators might contribute to shaping the structure of predator guilds. To test this, we used the exotic predatory mites Typhlodromalus manihoti and T. aripo, and the native predatory mite Euseius fustis, with Mononychellus tanajoa as the common prey species for the three predatory mite species. We used as odour sources M. tanajoa-infested cassava leaves or apices with or without predators. T. manihoti avoided patches inhabited by the heterospecifics T. aripo and E. fustis or by conspecifics when tested against a patch without predators. Similarly, both T. aripo and E. fustis females avoided patches with con- or heterospecifics when tested against a patch without predators. When one patch contained T. aripo and the other T. manihoti, females of the latter preferred the patch with T. aripo. Thus, T. manihoti is able to discriminate between odours from patches with con- and heterospecifics. Our results show that the three predatory mite species are able to assess prey patch profitability using volatiles. Under natural conditions, particularly when their food sources are scarce, the three predatory mite species might be involved in interspecific and/or intraspecific interactions that can substantially affect population dynamics of the predators and their prey.

  15. Pasta Predation.

    Science.gov (United States)

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  16. Interactions in an acarine predator guild: impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Benin, West Africa.

    Science.gov (United States)

    Onzo, Alexis; Hanna, Rachid; Sabelis, Maurice W

    2003-01-01

    density. The density of T. aripo was usually positively affected by the presence of other predator species except for T. saltus in presence of T. manihoti that negatively affected the density of T. aripo in swamp areas, an effect likely mediated by either intraguild predation or competition for food. Path analysis showed that indigenous phytoseiid species were more important in suppression of M. tanajoa populations in cassava fields than previously thought. We suggest that the lack of negative effects of the predator species complex is likely due to differential niche use by the various species which reduces interference among the predators. Manipulative experiments are, however, needed to provide details on the relative importance in M. tanajoa suppression by each species within this acarine predator guild.

  17. Foraging trade-offs along a predator-permanence gradient in subalpine wetlands

    Science.gov (United States)

    Wissinger, S.A.; Whiteman, H.H.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.

    1999-01-01

    We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders

  18. Vibrio cholerae as a predator: lessons from evolutionary principles

    Directory of Open Access Journals (Sweden)

    Stefan ePukatzki

    2013-12-01

    Full Text Available Diarrheal diseases are the second-most common cause of death among children under the age of five worldwide. Cholera alone, caused by the marine bacterium Vibrio cholerae, is responsible for several million cases and over 120,000 deaths annually. When contaminated water is ingested, V. cholerae passes through the gastric acid barrier, penetrates the mucin layer of the small intestine, and adheres to the underlying epithelial lining. V. cholerae multiplies rapidly, secretes cholera toxin, and exits the human host in vast numbers during diarrheal purges. How V. cholerae rapidly reaches such high numbers during each purge is not clearly understood. We propose that V. cholerae employs its bactericidal type VI secretion system to engage in intraspecies and intraguild predation for nutrient acquisition to support rapid growth and multiplication.

  19. Predator-prey interactions mediated by prey personality and predator hunting mode.

    Science.gov (United States)

    Belgrad, Benjamin A; Griffen, Blaine D

    2016-04-13

    Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics.

  20. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests.

    Science.gov (United States)

    Furlong, Michael J

    2015-02-01

    The importance of natural enemies as the foundation of integrated pest management (IPM) is widely accepted, but few studies conduct the manipulative field experiments necessary to directly quantify their impact on pest populations in this context. This is particularly true for predators. Studying arthropod predator-prey interactions is inherently difficult: prey items are often completely consumed, individual predator-prey interactions are ephemeral (rendering their detection difficult) and the typically fluid or soft-bodied meals cannot be easily identified visually within predator guts. Serological techniques have long been used in arthropod predator gut-contents analysis, and current enzyme linked immunosorbent assays (ELISA) are highly specific and sensitive. Recently, polymerase chain reaction (PCR) methods for gut-contents analysis have developed rapidly and they now dominate the diagnostic methods used for gut-contents analysis in field-based research. This work has identified trophic linkages within food webs, determined predator diet breadth and preference, demonstrated the importance of cannibalism and intraguild predation within and between certain taxa, and confirmed the benefits (predator persistence) and potential disadvantages (reduced feeding on pest species) of the availability of alternative nonpest prey. Despite considerable efforts to calibrate gut-contents assays, these methods remain qualitative. Available techniques for predator gut-contents analysis can provide rapid, accurate, cost-effective identification of predation events. As such, they perfectly compliment the ecological methods developed to directly assess predator impacts on prey populations but which are imperfect at identifying the key predators. These diagnostic methods for gut-contents analysis are underexploited in agricultural research and they are almost never applied in unison with the critical field experiments to measure predator impact. This paper stresses the need for a

  1. Reproduction in Risky Environments: The Role of Invasive Egg Predators in Ladybird Laying Strategies.

    Directory of Open Access Journals (Sweden)

    Sarah C Paul

    Full Text Available Reproductive environments are variable and the resources available for reproduction are finite. If reliable cues about the environment exist, mothers can alter offspring phenotype in a way that increases both offspring and maternal fitness ('anticipatory maternal effects'-AMEs. Strategic use of AMEs is likely to be important in chemically defended species, where the risk of offspring predation may be modulated by maternal investment in offspring toxin level, albeit at some cost to mothers. Whether mothers adjust offspring toxin levels in response to variation in predation risk is, however, unknown, but is likely to be important when assessing the response of chemically defended species to the recent and pervasive changes in the global predator landscape, driven by the spread of invasive species. Using the chemically defended two-spot ladybird, Adalia bipunctata, we investigated reproductive investment, including egg toxin level, under conditions that varied in the degree of simulated offspring predation risk from larval harlequin ladybirds, Harmonia axyridis. H. axyridis is a highly voracious alien invasive species in the UK and a significant intraguild predator of A. bipunctata. Females laid fewer, larger egg clusters, under conditions of simulated predation risk (P+ than when predator cues were absent (P-, but there was no difference in toxin level between the two treatments. Among P- females, when mean cluster size increased there were concomitant increases in both the mass and toxin concentration of eggs, however when P+ females increased cluster size there was no corresponding increase in egg toxin level. We conclude that, in the face of offspring predation risk, females either withheld toxins or were physiologically constrained, leading to a trade-off between cluster size and egg toxin level. Our results provide the first demonstration that the risk of offspring predation by a novel invasive predator can influence maternal investment in

  2. Responses of a top and a meso predator and their prey to moon phases.

    Science.gov (United States)

    Penteriani, Vincenzo; Kuparinen, Anna; del Mar Delgado, Maria; Palomares, Francisco; López-Bao, José Vicente; Fedriani, José María; Calzada, Javier; Moreno, Sacramento; Villafuerte, Rafael; Campioni, Letizia; Lourenço, Rui

    2013-11-01

    We compared movement patterns and rhythms of activity of a top predator, the Iberian lynx Lynx pardinus, a mesopredator, the red fox Vulpes vulpes, and their shared principal prey, the rabbit Oryctolagus cuniculus, in relation to moon phases. Because the three species are mostly nocturnal and crepuscular, we hypothesized that the shared prey would reduce its activity at most risky moon phases (i.e. during the brightest nights), but that fox, an intraguild prey of lynx, would avoid lynx activity peaks at the same time. Rabbits generally moved further from their core areas on darkest nights (i.e. new moon), using direct movements which minimize predation risk. Though rabbits responded to the increased predation risk by reducing their activity during the full moon, this response may require several days, and the moon effect we observed on the rabbits had, therefore, a temporal gap. Lynx activity patterns may be at least partially mirroring rabbit activity: around new moons, when rabbits moved furthest and were more active, lynxes reduced their travelling distances and their movements were concentrated in the core areas of their home ranges, which generally correspond to areas of high density of rabbits. Red foxes were more active during the darkest nights, when both the conditions for rabbit hunting were the best and lynxes moved less. On the one hand, foxes increased their activity when rabbits were further from their core areas and moved with more discrete displacements; on the other hand, fox activity in relation to the moon seemed to reduce dangerous encounters with its intraguild predator.

  3. Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: a molecular approach.

    Science.gov (United States)

    Moreno-Ripoll, R; Gabarra, R; Symondson, W O C; King, R A; Agustí, N

    2012-08-01

    The whiteflies Bemisia tabaci Gennadius and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) are two of the main pests in tomato crops. Their biological control in Mediterranean IPM systems is based on the predators Macrolophus pygmaeus (Rambur) and Nesidiocoris tenuis Reuter (Hemiptera: Miridae), as well as on the parasitoids Eretmocerus mundus (Mercet) and Encarsia pergandiella Howard (Hymenoptera: Aphelinidae). These natural enemies may interact with each other and their joint use could interfere with the biological control of those whitefly pests. Analysis of predator-prey interactions under field conditions is therefore essential in order to optimize whitefly control. Species-specific polymerase chain reaction (PCR)-primers were designed to detect DNA fragments of these whiteflies and parasitoids within both predator species in tomato greenhouses. We demonstrated that both predators feed on both whitefly species, as well as on both parasitoids under greenhouse conditions. Prey molecular detection was possible where prey abundance was very low or even where predation was not observed under a microscope. Whitefly DNA detection was positively correlated with adult whitefly abundance in the crop. However, a significant relationship was not observed between parasitoid DNA detection and the abundance of parasitoid pupae, even though the predation rate on parasitoids was high. This unidirectional intraguild predation (predators on parasitoids) could potentially reduce their combined impact on their joint prey/host. Prey molecular detection provided improved detection of prey consumption in greenhouse crops, as well as the possibility to identify which prey species were consumed by each predator species present in the greenhouse, offering a blueprint with wider applicability to other food webs.

  4. Impacts of biotic resource enrichment on a predator-prey population.

    Science.gov (United States)

    Safuan, H M; Sidhu, H S; Jovanoski, Z; Towers, I N

    2013-10-01

    The environmental carrying capacity is usually assumed to be fixed quantity in the classical predator-prey population growth models. However, this assumption is not realistic as the environment generally varies with time. In a bid for greater realism, functional forms of carrying capacities have been widely applied to describe varying environments. Modelling carrying capacity as a state variable serves as another approach to capture the dynamical behavior between population and its environment. The proposed modified predator-prey model is based on the ratio-dependent models that have been utilized in the study of food chains. Using a simple non-linear system, the proposed model can be linked to an intra-guild predation model in which predator and prey share the same resource. Distinct from other models, we formulate the carrying capacity proportional to a biotic resource and both predator and prey species can directly alter the amount of resource available by interacting with it. Bifurcation and numerical analyses are presented to illustrate the system's dynamical behavior. Taking the enrichment parameter of the resource as the bifurcation parameter, a Hopf bifurcation is found for some parameter ranges, which generate solutions that posses limit cycle behavior.

  5. INTERACTIONS BETWEEN BRANCHIATE MOLE SALAMANDERS (AMBYSTOMA TALPOIDEUM) AND LESSER SIRENS (SIREN INTERMEDIA): ASYMMETRICAL COMPETITION AND INTRAGUILD PREDATION. (R825795)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Avian top predator and the landscape of fear: responses of mammalian mesopredators to risk imposed by the golden eagle.

    Science.gov (United States)

    Lyly, Mari S; Villers, Alexandre; Koivisto, Elina; Helle, Pekka; Ollila, Tuomo; Korpimäki, Erkki

    2015-01-01

    Top predators may induce extensive cascading effects on lower trophic levels, for example, through intraguild predation (IGP). The impacts of both mammalian and avian top predators on species of the same class have been extensively studied, but the effects of the latter upon mammalian mesopredators are not yet as well known. We examined the impact of the predation risk imposed by a large avian predator, the golden eagle (Aquila chrysaetos, L.), on its potential mammalian mesopredator prey, the red fox (Vulpes vulpes, L.), and the pine marten (Martes martes, L.). The study combined 23 years of countrywide data from nesting records of eagles and wildlife track counts of mesopredators in Finland, northern Europe. The predation risk of the golden eagle was modeled as a function of territory density, density of fledglings produced, and distance to nearest active eagle territory, with the expectation that a high predation risk would reduce the abundances of smaller sized pine martens in particular. Red foxes appeared not to suffer from eagle predation, being in fact most numerous close to eagle nests and in areas with more eagle territories. This is likely due to similar prey preferences of the two predators and the larger size of foxes enabling them to escape eagle predation risk. Somewhat contrary to our prediction, the abundance of pine martens increased from low to intermediate territory density and at close proximity to eagle nests, possibly because of similar habitat preferences of martens and eagles. We found a slightly decreasing trend of marten abundance at high territory density, which could indicate that the response in marten populations is dependent on eagle density. However, more research is needed to better establish whether mesopredators are intimidated or predated by golden eagles, and whether such effects could in turn cascade to lower trophic levels, benefitting herbivorous species.

  7. Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia).

    Science.gov (United States)

    Klarner, Bernhard; Winkelmann, Helge; Krashevska, Valentyna; Maraun, Mark; Widyastuti, Rahayu; Scheu, Stefan

    2017-01-01

    Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world's hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change.

  8. Interference in the tundra predator guild studied using local ecological knowledge.

    Science.gov (United States)

    Ehrich, Dorothee; Strømeng, Marita A; Killengreen, Siw T

    2016-04-01

    The decline or recolonization of apex predators such as wolves and lynx, often driven by management decisions, and the expansion of smaller generalist predators such as red foxes, can have important ecosystem impacts. The mesopredator release hypothesis proposes that apex predators control medium-sized predator populations through competition and/or intraguild predation. The decline of apex predators thus leads to an increase in mesopredators, possibly with a negative impact on prey populations. Information about the abundance of mammalian tundra predators, wolf (Canis lupus), wolverine (Gulo gulo), lynx (Lynx lynx), red fox (Vulpes vulpes) and arctic fox (Vulpes lagopus) was collected from local active outdoors people during semi-structured interviews in 14 low arctic or sub-arctic settlements in western Eurasia. The perceived abundance of red fox decreased with higher wolf abundance and in more arctic areas, but the negative effect of wolves decreased in more arctic and therefore less productive ecosystems. The perceived abundance of arctic fox increased towards the arctic and in areas with colder winters. Although there was a negative correlation between the two fox species, red fox was not included in the model for perceived arctic fox abundance, which received most support. Our results support the mesopredator release hypothesis regarding the expansion of red foxes in subarctic areas and indicate that top-down control by apex predators is weaker in less productive and more arctic ecosystems. We showed that local ecological knowledge is a valuable source of information about large-scale processes, which are difficult to study through direct biological investigations.

  9. The relationship between direct predation and antipredator responses: a test with multiple predators and multiple prey.

    Science.gov (United States)

    Creel, Scott; Dröge, Egil; M'soka, Jassiel; Smit, Daan; Becker, Matt; Christianson, Dave; Schuette, Paul

    2017-08-01

    Most species adjust their behavior to reduce the likelihood of predation. Many experiments have shown that antipredator responses carry energetic costs that can affect growth, survival, and reproduction, so that the total cost of predation depends on a trade-off between direct predation and risk effects. Despite these patterns, few field studies have examined the relationship between direct predation and the strength of antipredator responses, particularly for complete guilds of predators and prey. We used scan sampling in 344 observation periods over a four-year field study to examine behavioral responses to the immediate presence of predators for a complete antelope guild (dominated by wildebeest, zebra, and oribi) in Liuwa Plains National Park, Zambia, testing for differences in response to all large carnivores in the ecosystem (lions, spotted hyenas, cheetahs, and African wild dogs). We quantified the proportion that each prey species contributed to the kills made by each predator (516 total kills), used distance sampling on systematic line transects to determine the abundance of each prey species, and combined these data to quantify the per-capita risk of direct predation for each predator-prey pair. On average, antelopes increased their vigilance by a factor of 2.4 when predators were present. Vigilance varied strongly among prey species, but weakly in response to different predators. Increased vigilance was correlated with reduced foraging in a similar manner for all prey species. The strength of antipredator response was not detectably related to patterns of direct predation (n = 15 predator-prey combinations with sufficient data). This lack of correlation has implications for our understanding of the role of risk effects as part of the limiting effect of predators on prey. © 2017 by the Ecological Society of America.

  10. Predation and caribou populations

    Directory of Open Access Journals (Sweden)

    Dale R. Seip

    1991-10-01

    Full Text Available Predation, especially wolf (Canis lupus predation, limits many North American caribou (Rangifer tarandus populations below the density that food resources could sustain. The impact of predation depends on the parameters for the functional and numerical response of the wolves, relative to the potential annual increment of the caribou population. Differences in predator-avoidance strategies largely explain the major differences in caribou densities that occur naturally in North America. Caribou migrations that spatially separate caribou from wolves allow relatively high densities of caribou to survive. Non-migratory caribou that live in areas where wolf populations are sustained by alternate prey can be eliminated by wolf predation.

  11. Costly plastic morphological responses to predator specific odour cues in three-spined sticklebacks (Gasterosteus aculeatus)

    NARCIS (Netherlands)

    Frommen, Joachim G.; Herder, Fabian; Engqvist, Leif; Mehlis, Marion; Bakker, Theo C. M.; Schwarzer, Julia; Thuenken, Timo

    Predation risk is one of the major forces affecting phenotypic variation among and within animal populations. While fixed anti-predator morphologies are favoured when predation level is consistently high, plastic morphological responses are advantageous when predation risk is changing temporarily,

  12. Predator-induced neophobia in juvenile cichlids.

    Science.gov (United States)

    Meuthen, Denis; Baldauf, Sebastian A; Bakker, Theo C M; Thünken, Timo

    2016-08-01

    Predation is an important but often fluctuating selection factor for prey animals. Accordingly, individuals plastically adopt antipredator strategies in response to current predation risk. Recently, it was proposed that predation risk also plastically induces neophobia (an antipredator response towards novel cues). Previous studies, however, do not allow a differentiation between general neophobia and sensory channel-specific neophobic responses. Therefore, we tested the neophobia hypothesis focusing on adjustment in shoaling behavior in response to a novel cue addressing a different sensory channel than the one from which predation risk was initially perceived. From hatching onwards, juveniles of the cichlid Pelvicachromis taeniatus were exposed to different chemical cues in a split-clutch design: conspecific alarm cues which signal predation risk and heterospecific alarm cues or distilled water as controls. At 2 months of age, their shoaling behavior was examined prior and subsequent to a tactical disturbance cue. We found that fish previously exposed to predation risk formed more compact shoals relative to the control groups in response to the novel disturbance cue. Moreover, the relationship between shoal density and shoal homogeneity was also affected by experienced predation risk. Our findings indicate predator-induced, increased cross-sensory sensitivity towards novel cues making neophobia an effective antipredator mechanism.

  13. Effects of uniform rotational flow on predator-prey system

    Science.gov (United States)

    Lee, Sang-Hee

    2012-12-01

    Rotational flow is often observed in lotic ecosystems, such as streams and rivers. For example, when an obstacle interrupts water flowing in a stream, energy dissipation and momentum transfer can result in the formation of rotational flow, or a vortex. In this study, I examined how rotational flow affects a predator-prey system by constructing a spatially explicit lattice model consisting of predators, prey, and plants. A predation relationship existed between the species. The species densities in the model were given as S (for predator), P (for prey), and G (for plant). A predator (prey) had a probability of giving birth to an offspring when it ate prey (plant). When a predator or prey was first introduced, or born, its health state was assigned an initial value of 20 that subsequently decreased by one with every time step. The predator (prey) was removed from the system when the health state decreased to less than zero. The degree of flow rotation was characterized by the variable, R. A higher R indicates a higher tendency that predators and prey move along circular paths. Plants were not affected by the flow because they were assumed to be attached to the streambed. Results showed that R positively affected both predator and prey survival, while its effect on plants was negligible. Flow rotation facilitated disturbances in individuals’ movements, which consequently strengthens the predator and prey relationship and prevents death from starvation. An increase in S accelerated the extinction of predators and prey.

  14. Risk of predation and weather events affect nest site selection by sympatric Pacific (Gavia pacifica) and Yellow-billed (Gavia adamsii) loons in Arctic habitats

    Science.gov (United States)

    Haynes, Trevor B.; Schmutz, Joel A.; Lindberg, Mark S.; Rosenberger, Amanda E.

    2014-01-01

    Pacific (Gavia pacifica) and Yellow-billed (G. adamsii) loons nest sympatrically in Arctic regions. These related species likely face similar constraints and requirements for nesting success; therefore, use of similar habitats and direct competition for nesting habitat is likely. Both of these loon species must select a breeding lake that provides suitable habitat for nesting and raising chicks; however, characteristics of nest site selection by either species on interior Arctic lakes remains poorly understood. Here, logistic regression was used to compare structural and habitat characteristics of all loon nest locations with random points from lakes on the interior Arctic Coastal Plain, Alaska. Results suggest that both loon species select nest sites to avoid predation and exposure to waves and shifting ice. Loon nest sites were more likely to be on islands and peninsulas (odds ratio = 16.13, 95% CI = 4.64–56.16) than mainland shoreline, which may help loons avoid terrestrial predators. Further, nest sites had a higher degree of visibility (mean degrees of visibility to 100 and 200 m) of approaching predators than random points (odds ratio = 2.57, 95% CI = 1.22–5.39). Nests were sheltered from exposure, having lower odds of being exposed to prevailing winds (odds ratio = 0.34, 95% CI = 0.13–0.92) and lower odds of having high fetch values (odds ratio = 0.46, 95% CI = 0.22–0.96). Differences between Pacific and Yellow-billed loon nesting sites were subtle, suggesting that both species have similar general nest site requirements. However, Yellow-billed Loons nested at slightly higher elevations and were more likely to nest on peninsulas than Pacific Loons. Pacific Loons constructed built up nests from mud and vegetation, potentially in response to limited access to suitable shoreline due to other territorial loons. Results suggest that land managers wishing to protect habitats for these species should focus on lakes with islands as well as shorelines

  15. Egg Predation by the Introduced Lady Beetle, Coccinella septempunctata (Coleoptera: Coccinellidae, Lowers Mortality but Raises Relative Risk for the Native Lady Beetle, Coccinella novemnotata.

    Directory of Open Access Journals (Sweden)

    Rakim Turnipseed

    Full Text Available Populations of the native ninespotted lady beetle, Coccinella novemnotata Herbst, have undergone precipitous declines in North America following the establishment of the exotic sevenspotted lady beetle, Coccinella septempunctata L. Recent volunteer efforts have made it possible to establish colonies of the now-rare C. novemnotata and test mechanisms contributing to its decline. We evaluated the relative frequencies of intraguild predation and cannibalism of eggs between these two species. A single C. novemnotata or C. septempunctata adult was exposed to conspecific and heterospecific eggs in either the presence or absence of pea aphids. The study revealed two expected results: 1 eggs of C. novemnotata were consumed more frequently than eggs of C. septempunctata by both species, and 2 egg consumption was higher when aphids were absent, independent of predator and egg species. There were also two unexpected results from the study: 1 the asymmetry between egg predation rates was higher when aphids were present, and 2 higher predation rates on C. novemnotata eggs in the absence of alternate prey was due to a relatively higher rate of intraspecific cannibalism. This implies that C. novemnotata would have suffered higher egg mortality rates before the invasion of C. septempunctata, but even though the aggregate rate of egg predation on C. novemnotata eggs is lower post-invasion, it is still significantly higher than the aggregate rate of predation of C. septempunctata eggs. This differential pattern of asymmetric predation could contribute to habitat compression and the overall decline of C. novemnotata.

  16. Egg Predation by the Introduced Lady Beetle, Coccinella septempunctata (Coleoptera: Coccinellidae), Lowers Mortality but Raises Relative Risk for the Native Lady Beetle, Coccinella novemnotata

    Science.gov (United States)

    Turnipseed, Rakim; Ugine, Todd A.; Losey, John E.

    2015-01-01

    Populations of the native ninespotted lady beetle, Coccinella novemnotata Herbst, have undergone precipitous declines in North America following the establishment of the exotic sevenspotted lady beetle, Coccinella septempunctata L. Recent volunteer efforts have made it possible to establish colonies of the now-rare C. novemnotata and test mechanisms contributing to its decline. We evaluated the relative frequencies of intraguild predation and cannibalism of eggs between these two species. A single C. novemnotata or C. septempunctata adult was exposed to conspecific and heterospecific eggs in either the presence or absence of pea aphids. The study revealed two expected results: 1) eggs of C. novemnotata were consumed more frequently than eggs of C. septempunctata by both species, and 2) egg consumption was higher when aphids were absent, independent of predator and egg species. There were also two unexpected results from the study: 1) the asymmetry between egg predation rates was higher when aphids were present, and 2) higher predation rates on C. novemnotata eggs in the absence of alternate prey was due to a relatively higher rate of intraspecific cannibalism. This implies that C. novemnotata would have suffered higher egg mortality rates before the invasion of C. septempunctata, but even though the aggregate rate of egg predation on C. novemnotata eggs is lower post-invasion, it is still significantly higher than the aggregate rate of predation of C. septempunctata eggs. This differential pattern of asymmetric predation could contribute to habitat compression and the overall decline of C. novemnotata. PMID:26090935

  17. Do predators influence the behaviour of bats?

    Science.gov (United States)

    Lima, Steven L; O'Keefe, Joy M

    2013-08-01

    Many aspects of animal behaviour are affected by real-time changes in the risk of predation. This conclusion holds for virtually all taxa and ecological systems studied, but does it hold for bats? Bats are poorly represented in the literature on anti-predator behaviour, which may reflect a lack of nocturnal predators specialized on bats. If bats actually experience a world with minimal anti-predator concerns, then they will provide a unique contrast within the realm of vertebrate ecology. Alternatively, such predator-driven behaviour in bats may not yet be fully understood, given the difficulties in working with these highly mobile and nocturnal animals. We provide a wide-ranging exploration of these issues in bat behaviour. We first cover the basic predator-prey information available on bats, both on potential predators and the ways in which bats might perceive predators and respond to attacks. We then cover work relevant to key aspects of bat behaviour, such as choice of daytime roosts, the nature of sleep and torpor, evening roost departures, moonlight avoidance, landscape-related movement patterns, and habitat selection. Overall, the evidence in favour of a strong influence of predators on bat behaviour is equivocal, with the picture clouded by contradictory results and a lack of information on potential predators and the perception of risk by bats. It seems clear that day-active bats run a considerable risk of being killed by diurnal raptors, which are able to capture bats with relative ease. Thus, bats taking advantage of a pulse of insects just prior to sunset are likely taking risks to gain much-needed energy. Further, the choice of daytime roosts by bats is probably strongly influenced by roost safety. Few studies, however, have directly addressed either of these topics. As a group, insectivorous temperate-zone bats show no clear tendency to avoid apparently risky situations, such as activity on moonlit nights. However, some observations are consistent

  18. Dynamics of additional food provided predator-prey system with mutually interfering predators.

    Science.gov (United States)

    Prasad, B S R V; Banerjee, Malay; Srinivasu, P D N

    2013-11-01

    Use of additional/alternative food source to predators is one of the widely recognised practices in the field of biological control. Both theoretical and experimental works point out that quality and quantity of additional food play a vital role in the controllability of the pest. Theoretical studies carried out previously in this direction indicate that incorporating mutual interference between predators can stabilise the system. Experimental evidence also point out that mutual interference between predators can affect the outcome of the biological control programs. In this article dynamics of additional food provided predator-prey system in the presence of mutual interference between predators has been studied. The mutual interference between predators is modelled using Beddington-DeAngelis type functional response. The system analysis highlights the role of mutual interference on the success of biological control programs when predators are provided with additional food. The model results indicate the possibility of stable coexistence of predators with low prey population levels. This is in contrast to classical predator-prey models wherein this stable co-existence at low prey population levels is not possible. This study classifies the characteristics of biological control agents and additional food (of suitable quality and quantity), permitting the eco-managers to enhance the success rate of biological control programs.

  19. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: Implications for their natural distribution in Swiss agricultural soils.

    Science.gov (United States)

    Campos-Herrera, Raquel; Půža, Vladimir; Jaffuel, Geoffrey; Blanco-Pérez, Rubén; Čepulytė-Rakauskienė, Rasa; Turlings, Ted C J

    2015-11-01

    Entomopathogenic nematodes (EPN) are excellent biological control agents to fight soil-dwelling insect pests. In a previous survey of agricultural soils of Switzerland, we found mixtures of free-living nematodes (FLN) in the genus Oscheius, which appeared to be in intense competition with EPN. As this may have important implications for the long-term persistence of EPN, we studied this intraguild competition in detail. We hypothesized that (i) Oscheius spp. isolates act as scavengers rather than entomopathogens, and (ii) cadavers with relatively small numbers of EPN are highly suitable resources for Oscheius spp. reproduction. To study this, we identified Oscheius spp. isolated from Swiss soils, quantified the outcome of EPN/Oscheius competition in laboratory experiments, developed species-specific primers and probe for quantitative real-time PCR, and evaluated their relative occurrence in the field in the context of the soil food web. Molecular analysis (ITS/D2D3) identified MG-67/MG-69 as Oscheius onirici and MG-68 as O. tipulae (Dolichura-group). Oscheius spp. indeed behaved as scavengers, reproducing in ∼64% of frozen-killed cadavers from controlled experiments. Mixed infection in the laboratory by Oscheius spp. with low (3 IJs) or high (20 IJs) initial EPN numbers revealed simultaneous reproduction in double-exposed cadavers which resulted in a substantial reduction in the number of EPN progeny from the cadaver. This effect depended on the number of EPN in the initial inoculum and differed by EPN species; Heterorhabditis megidis was better at overcoming competition. This study reveals Oscheius spp. as facultative kleptoparasites that compete with EPN for insect cadavers. Using real-time qPCR, we were able to accurately quantify this strong competition between FLN and EPN in cadavers that were recovered after soil baiting (∼86% cadavers with >50% FLN production). The severe competition within the host cadavers and the intense management of the soils in

  20. Revealing the role of predator interference in a predator-prey system with disease in prey population

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Kooi, B.W.; Biswas, B.

    2015-01-01

    on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator-prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how...... the interference among predators affects the dynamics and structure of the predator-prey community. We perform a detailed numerical bifurcation analysis and find an unusually large variety of complex dynamics, such as, bistability, torus and chaos, in the presence of predators. We show that, depending...... on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice...

  1. Interactions between a Top Order Predator and Exotic Mesopredators in the Australian Rangelands

    Directory of Open Access Journals (Sweden)

    Katherine E. Moseby

    2012-01-01

    Full Text Available An increase in mesopredators caused by the removal of top-order predators can have significant implications for threatened wildlife. Recent evidence suggests that Australia’s top-order predator, the dingo, may suppress the introduced cat and red fox. We tested this relationship by reintroducing 7 foxes and 6 feral cats into a 37 km2 fenced paddock in arid South Australia inhabited by a male and female dingo. GPS datalogger collars recorded locations of all experimental animals every 2 hours. Interactions between species, mortality rates, and postmortems were used to determine the mechanisms of any suppression. Dingoes killed all 7 foxes within 17 days of their introduction and no pre-death interactions were recorded. All 6 feral cats died between 20 and 103 days after release and dingoes were implicated in the deaths of at least 3 cats. Dingoes typically stayed with fox and cat carcasses for several hours after death and/or returned several times in ensuing days. There was no evidence of intraguild predation, interference competition was the dominant mechanism of suppression. Our results support anecdotal evidence that dingoes may suppress exotic mesopredators, particularly foxes. We outline further research required to determine if this suppression translates into a net benefit for threatened prey species.

  2. Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Richard M Pendleton

    Full Text Available Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across

  3. Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment.

    Science.gov (United States)

    Pendleton, Richard M; Hoeinghaus, David J; Gomes, Luiz C; Agostinho, Angelo A

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  4. Plant defences limit herbivore population growth by changing predator-prey interactions.

    Science.gov (United States)

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  5. Behavior is a major determinant of predation risk in zooplankton

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; van Someren Gréve, Hans; Kiørboe, Thomas

    2017-01-01

    Zooplankton exhibit different small-scale motile behaviors related to feeding and mating activities. These different motile behaviors may result in different levels of predation risk, which may partially determine the structure of planktonic communities. Here, we experimentally determined predation...... behavior is a key trait in zooplankton that significantly affects predation risk and therefore is a main determinant of distribution and composition of zooplankton communities in the ocean...

  6. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions.

    Directory of Open Access Journals (Sweden)

    Ezio Peri

    Full Text Available Research on interspecific competitive interactions among insect parasitoids has often been characterized by laboratory studies in which host insects are exposed to female parasitoids of different species in various sequences and combinations. In the last years, an increasing number of studies have investigated interspecific interactions under field and semi-field conditions although just a few number of works focused on egg parasitoids. In this work, we undertook a two-year study to investigate interspecific interactions between Trissolcus basalis (Wollaston (Hymenoptera: Platygastridae and Ooencyrtus telenomicida (Vassiliev (Hymenoptera: Encyrtidae, two egg parasitoids of the pest Nezara viridula (L. (Heteroptera: Pentatomidae that co-occur in cultivated crops. Under semi-field (in out-door mesh cages and field conditions, we investigated: 1 the seasonal occurrence of competing parasitoid species on sentinel egg masses; 2 the impact achieved by competing species on the shared host on naturally laid egg masses; 3 the outcome of intraguild interactions under controlled conditions. Results from sentinel egg masses showed that T. basalis occurs in May and successfully parasitizes hosts until the end of September/beginning of October, whereas O. telenomicida is mainly occurring in July-August. In both years, it was found that T. basalis is predominant. From naturally laid egg masses, results indicated that T. basalis achieves higher impact on the hosts, even in those egg masses which are parasitized by more than one female of different species ( =  multiparasitism. Results from manipulating intraguild interactions showed that T. basalis achieves higher impact on N. viridula when released alone, but it suffers from competition with O. telenomicida. The ecological factors that play a role in intraguild interactions in the context of biological control perspective are discussed.

  7. Differential Habitat Use or Intraguild Interactions: What Structures a Carnivore Community?

    Directory of Open Access Journals (Sweden)

    Matthew E Gompper

    Full Text Available Differential habitat use and intraguild competition are both thought to be important drivers of animal population sizes and distributions. Habitat associations for individual species are well-established, and interactions between particular pairs of species have been highlighted in many focal studies. However, community-wide assessments of the relative strengths of these two factors have not been conducted. We built multi-scale habitat occupancy models for five carnivore taxa of New York's Adirondack landscape and assessed the relative performance of these models against ones in which co-occurrences of potentially competing carnivore species were also incorporated. Distribution models based on habitat performed well for all species. Black bear (Ursus americanus and fisher (Martes pennanti distribution was similar in that occupancy of both species was negatively associated with paved roads. However, black bears were also associated with larger forest fragments and fishers with smaller forest fragments. No models with habitat features were more supported than the null habitat model for raccoons (Procyon lotor. Martens (Martes americana were most associated with increased terrain ruggedness and elevation. Weasel (Mustela spp. occupancy increased with the cover of deciduous forest. For most species dyads habitat-only models were more supported than those models with potential competitors incorporated. The exception to this finding was for the smallest carnivore taxa (marten and weasel where habitat plus coyote abundance models typically performed better than habitat-only models. Assessing this carnivore community as whole, we conclude that differential habitat use is more important than species interactions in maintaining the distribution and structure of this carnivore guild.

  8. Differential Habitat Use or Intraguild Interactions: What Structures a Carnivore Community?

    Science.gov (United States)

    Gompper, Matthew E.; Lesmeister, Damon B.; Ray, Justina C.; Malcolm, Jay R.; Kays, Roland

    2016-01-01

    Differential habitat use and intraguild competition are both thought to be important drivers of animal population sizes and distributions. Habitat associations for individual species are well-established, and interactions between particular pairs of species have been highlighted in many focal studies. However, community-wide assessments of the relative strengths of these two factors have not been conducted. We built multi-scale habitat occupancy models for five carnivore taxa of New York’s Adirondack landscape and assessed the relative performance of these models against ones in which co-occurrences of potentially competing carnivore species were also incorporated. Distribution models based on habitat performed well for all species. Black bear (Ursus americanus) and fisher (Martes pennanti) distribution was similar in that occupancy of both species was negatively associated with paved roads. However, black bears were also associated with larger forest fragments and fishers with smaller forest fragments. No models with habitat features were more supported than the null habitat model for raccoons (Procyon lotor). Martens (Martes americana) were most associated with increased terrain ruggedness and elevation. Weasel (Mustela spp.) occupancy increased with the cover of deciduous forest. For most species dyads habitat-only models were more supported than those models with potential competitors incorporated. The exception to this finding was for the smallest carnivore taxa (marten and weasel) where habitat plus coyote abundance models typically performed better than habitat-only models. Assessing this carnivore community as whole, we conclude that differential habitat use is more important than species interactions in maintaining the distribution and structure of this carnivore guild. PMID:26731404

  9. Predator cannibalism can intensify negative impacts on heterospecific prey.

    Science.gov (United States)

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  10. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae

    DEFF Research Database (Denmark)

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter;

    2015-01-01

    Biological control of pests in agroecosystems could be enhanced by combining multiple natural enemies. However, this approach might also compromise the control efficacy through intraguild predation (IGP) among the natural enemies. Parasitoids may be able to avoid the risk of unidirectional IGP...... posed by entomopathogenic fungi through selective oviposition behavior during host foraging. Trybliographa rapae is a larval parasitoid of the cabbage root fly, Delia radicum. Here we evaluated the susceptibility of D. radicum and T. rapae to two species of generalist entomopathogenic fungi, Metarhizium...

  11. Predator interference and stability of predator-prey dynamics.

    Science.gov (United States)

    Přibylová, Lenka; Berec, Luděk

    2015-08-01

    Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.

  12. Preference alters consumptive effects of predators: top-down effects of a native crab on a system of native and introduced prey.

    Directory of Open Access Journals (Sweden)

    Emily W Grason

    Full Text Available Top-down effects of predators in systems depend on the rate at which predators consume prey, and on predator preferences among available prey. In invaded communities, these parameters might be difficult to predict because ecological relationships are typically evolutionarily novel. We examined feeding rates and preferences of a crab native to the Pacific Northwest, Cancer productus, among four prey items: two invasive species of oyster drill (the marine whelks Urosalpinx cinerea and Ocenebra inornata and two species of oyster (Crassostrea gigas and Ostrea lurida that are also consumed by U. cinerea and O. inornata. This system is also characterized by intraguild predation because crabs are predators of drills and compete with them for prey (oysters. When only the oysters were offered, crabs did not express a preference and consumed approximately 9 juvenile oysters crab(-1 day(-1. We then tested whether crabs preferred adult drills of either U. cinerea or O. inornata, or juvenile oysters (C. gigas. While crabs consumed drills and oysters at approximately the same rate when only one type of prey was offered, they expressed a strong preference for juvenile oysters over drills when they were allowed to choose among the three prey items. This preference for oysters might negate the positive indirect effects that crabs have on oysters by crabs consuming drills (trophic cascade because crabs have a large negative direct effect on oysters when crabs, oysters, and drills co-occur.

  13. Effect of downed woody debris on small mammal anti-predator behavior

    Science.gov (United States)

    Travis M. Hinkelman; John L. Orrock; Susan C Loeb

    2011-01-01

    Anti-Predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs, but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used giving-up densities to quantify...

  14. Tests for attraction to prey and predator avoidance by chemical cues in spiders of the beech forest floor

    Directory of Open Access Journals (Sweden)

    Wetter, Melissa B.

    2012-07-01

    Full Text Available Spiders leave draglines, faeces and other secretions behind when traveling through their microhabitat. The presence of these secretions may unintentionally inform other animals, prey as well as predators, about a recent and possible current predation risk or food availability. For a wolf spider, other spiders including smaller conspecifics, form a substantial part of their prey, and larger wolf spiders, again including conspecifics, are potential predators. We tested two hypotheses: that large wolf spiders may locate patches of potential spider prey through the presence of silk threads and/or other secretions; and that prey spiders may use secretions from large wolf spiders to avoid patches with high predation risk. We used large (subadult or adult Pardosa saltans to provide predator cues and mixed dwarf spiders or small (juvenile P. saltans to provide prey cues. Subadult wolf spiders were significantly attracted to litter contaminated by dwarf spiders or small conspecifics after 6 hours but no longer after 24 hours. In contrast, neither dwarf spiders nor small P. saltans showed significant avoidance of substrate contaminated by adult P. saltans. However, small P. saltans showed different activity patterns on the two substrates. The results indicate that wolf spiders are able to increase the efficiency of foraging by searching preferentially in patches with the presence of intraguild prey. The lack of a clear patch selection response of the prey in spite of a modified activity pattern may possibly be associated with the vertical stratification of the beech litter habitat: the reduced volume of spaces in the deeper layers could make downward rather than horizontal movement a fast and safe tactic against a large predator that cannot enter these spaces.

  15. Cumulative human impacts on marine predators

    DEFF Research Database (Denmark)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact...

  16. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...

  17. Factors affecting establishment and recovery of Sasajiscymnus tsugae (Coleoptera: Coccinellidae), an introduced predator of hemlock woolly adelgid (Hemiptera: Adelgidae) on eastern hemlock (Pinales: Pinaceae).

    Science.gov (United States)

    Hakeem, A; Grant, J F; Wiggins, G J; Lambdin, P L; Hale, F A; Buckley, D S; Rhea, J R; Parkman, J P; Taylor, G

    2013-12-01

    To reduce populations of hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), >500,000 Sasajiscymnus tsugae (Sasaji and McClure) (Coleoptera: Coccinellidae) have been released in the Great Smoky Mountains National Park since 2002. To determine factors affecting establishment and recovery of these predatory beetles, 65 single release sites were sampled using beat sheets from 2008 to 2012. Several abiotic and biotic factors were evaluated for their association with establishment and recovery of S. tsugae. Information on predatory beetle releases (location, year of release, number released, and season of release), topographic features (elevation, slope, Beers transformed aspect, and topographic relative moisture index), and temperature data (minimum and maximum temperatures 1 d after release and average minimum and maximum temperatures 7 d after release) were obtained from Great Smoky Mountains National Park personnel. These factors were evaluated using stepwise logistic regression and Pearson correlation. S. tsugae was recovered from 13 sites 2 to 10 yr after release, and the greatest number was recovered from 2002 release sites. Regression indicated establishment and recovery was negatively associated with year of release and positively associated with the average maximum temperature 7 d after release and elevation (generally, recovery increased as temperatures increased). Several significant correlations were found between presence and number of S. tsugae and year of release, season of release, and temperature variables. These results indicate that releases of S. tsugae should be made in warmer (≍10-25°C) temperatures and monitored for at least 5 yr after releases to enhance establishment and recovery efforts.

  18. Top predators negate the effect of mesopredators on prey physiology.

    Science.gov (United States)

    Palacios, Maria M; Killen, Shaun S; Nadler, Lauren E; White, James R; McCormick, Mark I

    2016-07-01

    Predation theory and empirical evidence suggest that top predators benefit the survival of resource prey through the suppression of mesopredators. However, whether such behavioural suppression can also affect the physiology of resource prey has yet to be examined. Using a three-tier reef fish food web and intermittent-flow respirometry, our study examined changes in the metabolic rate of resource prey exposed to combinations of mesopredator and top predator cues. Under experimental conditions, the mesopredator (dottyback, Pseudochromis fuscus) continuously foraged and attacked resource prey (juveniles of the damselfish Pomacentrus amboinensis) triggering an increase in prey O2 uptake by 38 ± 12·9% (mean ± SE). The visual stimulus of a top predator (coral trout, Plectropomus leopardus) restricted the foraging activity of the mesopredator, indirectly allowing resource prey to minimize stress and maintain routine O2 uptake. Although not as strong as the effect of the top predator, the sight of a large non-predator species (thicklip wrasse, Hemigymnus melapterus) also reduced the impact of the mesopredator on prey metabolic rate. We conclude that lower trophic-level species can benefit physiologically from the presence of top predators through the behavioural suppression that top predators impose on mesopredators. By minimizing the energy spent on mesopredator avoidance and the associated stress response to mesopredator attacks, prey may be able to invest more energy in foraging and growth, highlighting the importance of the indirect, non-consumptive effects of top predators in marine food webs.

  19. Cascading effects of defaunation on the coexistence of two specialized insect seed predators.

    Science.gov (United States)

    Peguero, Guille; Muller-Landau, Helene C; Jansen, Patrick A; Wright, S Joseph

    2017-01-01

    Identification of the mechanisms enabling stable coexistence of species with similar resource requirements is a central challenge in ecology. Such coexistence can be facilitated by species at higher trophic levels through complex multi-trophic interactions, a mechanism that could be compromised by ongoing defaunation. We investigated cascading effects of defaunation on Pachymerus cardo and Speciomerus giganteus, the specialized insect seed predators of the Neotropical palm Attalea butyracea, testing the hypothesis that vertebrate frugivores and granivores facilitate their coexistence. Laboratory experiments showed that the two seed parasitoid species differed strongly in their reproductive ecology. Pachymerus produced many small eggs that it deposited exclusively on the fruit exocarp (exterior). Speciomerus produced few large eggs that it deposited exclusively on the endocarp, which is normally exposed only after a vertebrate handles the fruit. When eggs of the two species were deposited on the same fruit, Pachymerus triumphed only when it had a long head start, and the loser always succumbed to intraguild predation. We collected field data on the fates of 6569 Attalea seeds across sites in central Panama with contrasting degrees of defaunation and wide variation in the abundance of vertebrate frugivores and granivores. Speciomerus dominated where vertebrate communities were intact, whereas Pachymerus dominated in defaunated sites. Variation in the relative abundance of Speciomerus across all 84 sampling sites was strongly positively related to the proportion of seeds attacked by rodents, an indicator of local vertebrate abundance.

  20. Inducible defenses in prey intensify predator cannibalism.

    Science.gov (United States)

    Kishida, Osamu; Trussell, Geoffrey C; Nishimura, Kinya; Ohgushi, Takayuki

    2009-11-01

    Trophic cascades are often a potent force in ecological communities, but abiotic and biotic heterogeneity can diffuse their influence. For example, inducible defenses in many species create variation in prey edibility, and size-structured interactions, such as cannibalism, can shift predator diets away from heterospecific prey. Although both factors diffuse cascade strength by adding heterogeneity to trophic interactions, the consequences of their interactioh remain poorly understood. We show that inducible defenses in tadpole prey greatly intensify cannibalism in predatory larval salamanders. The likelihood of cannibalism was also strongly influenced by asymmetries in salamander size that appear to be most important in the presence of defended prey. Hence, variation in prey edibility and the size structure of the predator may synergistically affect predator-prey population dynamics by reducing prey mortality and increasing predator mortality via cannibalism. We also suggest that the indirect effects of prey defenses may shape the evolution of predator traits that determine diet breadth and how trophic dynamics unfold in natural systems.

  1. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Science.gov (United States)

    Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C

    2015-01-01

    Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  2. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Directory of Open Access Journals (Sweden)

    Debora B Lima

    Full Text Available Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae. The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot (Acari: Phytoseiidae. Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  3. Factors influencing the predation rates of Anisops breddini (Hemiptera: Notonectidae feeding on mosquito larvae

    Directory of Open Access Journals (Sweden)

    R. Weterings

    2014-12-01

    Full Text Available Notonectidae are a family of water bugs that are known to be important predators of mosquito larvae and have great potential in the biological control of vector mosquitoes. An experiment was conducted to assess mosquito larvae predation by Anisops breddini, a species common to Southeast Asia. The predation rates were recorded in context of prey density, predator density, predator size and prey type. Predation rates were strongly affected by prey type and less by prey density and predator density. They ranged between 1.2 prey items per day for pupae of Aedes aegeypti and Armigeres moultoni to 5.9 for Ae. aegypti larvae. Compared with studies on other Notonectidae species, the predation rates appear low, which is probably caused by the relative small size of the specimens used in this study. An. breddini is very common in the region and often found in urban areas; therefore, the species has potential as a biological control agent.

  4. Modelling the fear effect in predator-prey interactions.

    Science.gov (United States)

    Wang, Xiaoying; Zanette, Liana; Zou, Xingfu

    2016-11-01

    A recent field manipulation on a terrestrial vertebrate showed that the fear of predators alone altered anti-predator defences to such an extent that it greatly reduced the reproduction of prey. Because fear can evidently affect the populations of terrestrial vertebrates, we proposed a predator-prey model incorporating the cost of fear into prey reproduction. Our mathematical analyses show that high levels of fear (or equivalently strong anti-predator responses) can stabilize the predator-prey system by excluding the existence of periodic solutions. However, relatively low levels of fear can induce multiple limit cycles via subcritical Hopf bifurcations, leading to a bi-stability phenomenon. Compared to classic predator-prey models which ignore the cost of fear where Hopf bifurcations are typically supercritical, Hopf bifurcations in our model can be both supercritical and subcritical by choosing different sets of parameters. We conducted numerical simulations to explore the relationships between fear effects and other biologically related parameters (e.g. birth/death rate of adult prey), which further demonstrate the impact that fear can have in predator-prey interactions. For example, we found that under the conditions of a Hopf bifurcation, an increase in the level of fear may alter the direction of Hopf bifurcation from supercritical to subcritical when the birth rate of prey increases accordingly. Our simulations also show that the prey is less sensitive in perceiving predation risk with increasing birth rate of prey or increasing death rate of predators, but demonstrate that animals will mount stronger anti-predator defences as the attack rate of predators increases.

  5. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    Science.gov (United States)

    Pappas, Maria L; Steppuhn, Anke; Geuss, Daniel; Topalidou, Nikoleta; Zografou, Aliki; Sabelis, Maurice W; Broufas, George D

    2015-01-01

    Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur) on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI), may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood). The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.

  6. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    Directory of Open Access Journals (Sweden)

    Maria L Pappas

    Full Text Available Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI, may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood. The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.

  7. Predator diversity and identity drive interaction strength and trophic cascades in a food web.

    Science.gov (United States)

    Otto, Sonja B; Berlow, Eric L; Rank, Nathan E; Smiley, John; Brose, Ulrich

    2008-01-01

    Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.

  8. Interactive effects of predation risk and conspecific density on the nutrient stoichiometry of prey.

    Science.gov (United States)

    Guariento, Rafael D; Carneiro, Luciana S; Jorge, Jaqueiuto S; Borges, Angélica N; Esteves, Francisco A; Caliman, Adriano

    2015-11-01

    The mere presence of predators (i.e., predation risk) can alter consumer physiology by restricting food intake and inducing stress, which can ultimately affect prey-mediated ecosystem processes such as nutrient cycling. However, many environmental factors, including conspecific density, can mediate the perception of risk by prey. Prey conspecific density has been defined as a fundamental feature that modulates perceived risk. In this study, we tested the effects of predation risk on prey nutrient stoichiometry (body and excretion). Using a constant predation risk, we also tested the effects of varying conspecific densities on prey responses to predation risk. To answer these questions, we conducted a mesocosm experiment using caged predators (Belostoma sp.), and small bullfrog tadpoles (Lithobates catesbeianus) as prey. We found that L. catesbeianus tadpoles adjust their body nutrient stoichiometry in response to predation risk, which is affected by conspecific density. We also found that the prey exhibited strong morphological responses to predation risk (i.e., an increase in tail muscle mass), which were positively correlated to body nitrogen content. Thus, we pose the notion that in risky situations, adaptive phenotypic responses rather than behavioral ones might partially explain why prey might have a higher nitrogen content under predation risk. In addition, the interactive roles of conspecific density and predation risk, which might result in reduced perceived risk and physiological restrictions in prey, also affected how prey stoichiometry responded to the fear of predation.

  9. Low-Reynolds-number predator

    Science.gov (United States)

    Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza

    2015-12-01

    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.

  10. Mesopredator release by an emergent superpredator: a natural experiment of predation in a three level guild.

    Science.gov (United States)

    Chakarov, Nayden; Krüger, Oliver

    2010-12-06

    Intraguild predation (IGP) is widespread but it is often neglected that guilds commonly include many layers of dominance within. This could obscure the effects of IGP making unclear whether the intermediate or the bottom mesopredator will bear higher costs from the emergence of a new top predator. In one of the most extensive datasets of avian IGP, we analyse the impact of recolonization of a superpredator, the eagle owl Bubo bubo on breeding success, territorial dynamics and population densities of two mesopredators, the northern goshawk Accipiter gentilis and its IG prey, the common buzzard Buteo buteo. The data covers more than two decades and encompass three adjacent plots. Eagle owls only recolonized the central plot during the second decade, thereby providing a natural experiment. Both species showed a decrease in standardized reproductive success and an increase in brood failure within 1.5 km of the superpredator. During the second decade, territory dynamics of goshawks was significantly higher in the central plot compared to both other plots. No such pattern existed in buzzards. Goshawk density in the second decade decreased in the central plot, while it increased in both other plots. Buzzard density in the second decade rapidly increased in the north, remained unchanged in the south and increased moderately in the center in a probable case of mesopredator release. Our study finds support for top-down control on the intermediate mesopredator and both top-down and bottom-up control of the bottom mesopredator. In the face of considerable costs of IGP, both species probably compete to breed in predator-free refugia, which get mostly occupied by the dominant raptor. Therefore for mesopredators the outcome of IGP might depend directly on the number of dominance levels which supersede them.

  11. Impact of cannibalism on predator-prey dynamics: size-structured interactions and apparent mutualism.

    Science.gov (United States)

    Rudolf, Volker H W

    2008-06-01

    Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that

  12. Plant-seed predator interactions – ecological and evolutionary aspects

    OpenAIRE

    Östergård, Hannah

    2008-01-01

    Plant-animal interactions are affected by both abundance and distribution of interacting species and the community context in which they occur. However, the relative importance of these factors is poorly known. I examined the effects of predator host range, environmental factors, host plant populations, plant traits and fruit abortion on the intensity of pre-dispersal seed predation in 46 host populations of the perennial herb Lathyrus vernus. I recorded damage by beetle pre-dispersal seed pr...

  13. Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators.

    Science.gov (United States)

    Wilson, Rory P; Griffiths, Iwan W; Mills, Michael G L; Carbone, Chris; Wilson, John W; Scantlebury, David M

    2015-08-07

    The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely.

  14. Bat predation by spiders.

    Directory of Open Access Journals (Sweden)

    Martin Nyffeler

    Full Text Available In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S. Most reports refer to the Neotropics (42% of observed incidences, Asia (28.8%, and Australia-Papua New Guinea (13.5%. Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter. The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64% and Emballonuridae (22% and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death, there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation. This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.

  15. Bat predation by spiders.

    Science.gov (United States)

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.

  16. Aquatic macroinvertebrate responses to native and non-native predators

    Directory of Open Access Journals (Sweden)

    Haddaway N. R.

    2014-01-01

    Full Text Available Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus, sympatric native crayfish (Austropotamobius pallipes, and novel invasive crayfish (Pacifastacus leniusculus. G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P.jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts.

  17. Anti-predator behavioral variation among Physa acuta in response to temporally fluctuating predation risk by Procambarus.

    Science.gov (United States)

    Kain, Morgan P; McCoy, Michael W

    2016-10-28

    Research in behavioral ecology routinely quantifies individual variation in behavior using transitions between discrete environments, for example prey moving from a no predator to predator treatment. This research often ignores behavioral variation in response to temporal fluctuations in environmental conditions around an unchanging mean environment. In this study we evaluate the effects of temporal fluctuations in predation risk (predator cue concentration of Procambarus spp.), without the confounding effects of a changing mean, on among-individual variation in anti-predator behavior in freshwater snails (Physa acuta). We also evaluate how the interaction between environmental and individual variation affects snail survival and reproduction by exposing snails to lethal predators following the behavioral assays. Our analyses revealed a trend towards higher among-individual variation in mean behavior when snails were exposed to intermediate levels of environmental variation compared to highly variable or constant environments. However, because of large uncertainty in estimates of among-individual variation, differences among treatments were indistinguishable from noise for most, but not all behaviors. In the lethal predator trials, snail survival and time to mortality was the lowest in the high variation environment. Also, as environmental variation increased snail egg production decreased and snails laid more of their eggs underneath a provided shelter.

  18. Variation in foraging success among predators and its implications for population dynamics.

    Science.gov (United States)

    Okuyama, Toshinori

    2017-01-01

    The effects of the expected predation rate on population dynamics have been studied intensively, but little is known about the effects of predation rate variability (i.e., predator individuals having variable foraging success) on population dynamics. In this study, variation in foraging success among predators was quantified by observing the predation of the wolf spider Pardosa pseudoannulata on the cricket Gryllus bimaculatus in the laboratory. A population model was then developed, and the effect of foraging variability on predator-prey dynamics was examined by incorporating levels of variation comparable to those quantified in the experiment. The variability in the foraging success among spiders was greater than would be expected by chance (i.e., the random allocation of prey to predators). The foraging variation was density-dependent; it became higher as the predator density increased. A population model that incorporates foraging variation shows that the variation influences population dynamics by affecting the numerical response of predators. In particular, the variation induces negative density-dependent effects among predators and stabilizes predator-prey dynamics.

  19. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    Science.gov (United States)

    Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  20. Predation risk increases immune response in a larval dragonfly (Leucorrhinia intacta).

    Science.gov (United States)

    Duong, Tammy M; McCauley, Shannon J

    2016-06-01

    Predators often negatively affect prey performance through indirect, non-consumptive effects. We investigated the potential relationship between predator-induced stress and prey immune response. To test this, we administered a synthetic immune challenge into dragonfly larvae (Leucorrhinia intacta) and assessed a key immune response (level of encapsulation) in the presence and absence of a caged predator (Anax junius) at two temperatures (22 degrees C and 26 degrees C). We hypothesized that immune response would be lowered when predators were present due to lowered allocation of resources to immune function and leading to reduced encapsulation of the synthetic immune challenge. Contrary to our expectations, larvae exposed to caged predators had encapsulated monofilaments significantly more than larvae not exposed to caged predators. Levels of encapsulation did not differ across temperatures, nor interact with predator exposure. Our results suggest that the previously observed increase in mortality of L. intacta exposed to caged predators is not driven by immune suppression. In situations of increased predation risk, the exposure to predator cues may induce higher levels of melanin production, which could lead to physiological damage and high energetic costs. However, the costs and risks of increased allocations to immune responses and interactions with predation stress remain unknown.

  1. Decoys in Predation and Parasitism

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2003-01-01

    Predator-prey or host-parasite dynamics can be altered by the presence of other species through several mechanisms. One such mechanism is the ‘‘decoy effect,’’ which itself can take a variety of forms. In its simplest form, the third species, which is inedible to the predator, nonetheless interferes

  2. Decoys in Predation and Parasitism

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2003-01-01

    Predator-prey or host-parasite dynamics can be altered by the presence of other species through several mechanisms. One such mechanism is the ‘‘decoy effect,’’ which itself can take a variety of forms. In its simplest form, the third species, which is inedible to the predator, nonetheless interferes

  3. Competition, predation and species responses to environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lin; Kulczychi, A. [Rutgers Univ., Cook College, Dept. of Ecology, Evolution and Natural Resources, New Brunswick, NJ (United States)

    2004-08-01

    Despite much effort over the past decade on the ecological consequences of global warming, ecologists still have little understanding of the importance of interspecific interactions in species responses to environmental change. Models predict that predation should mitigate species responses to environmental change, and that interspecific competition should aggravate species responses to environmental change. To test this prediction, we studied how predation and competition affected the responses of two ciliates, Colpidiumstriatum and Parameciumtetraurelia, to temperature change in laboratory microcosms. We found that neither predation nor competition altered the responses of Colpidiumstratum to temperature change, and that competition but not predation altered the responses of Paramecium tetraurelia to temperature change. Asymmetric interactions and temperature-dependent interactions may have contributed to the disparity between model predictions and experimental results. Our results suggest that models ignoring inherent complexities in ecological communities may be inadequate in forecasting species responses to environmental change. (au)

  4. Predation risk drives social complexity in cooperative breeders.

    Science.gov (United States)

    Groenewoud, Frank; Frommen, Joachim Gerhard; Josi, Dario; Tanaka, Hirokazu; Jungwirth, Arne; Taborsky, Michael

    2016-04-12

    Predation risk is a major ecological factor selecting for group living. It is largely ignored, however, as an evolutionary driver of social complexity and cooperative breeding, which is attributed mainly to a combination of habitat saturation and enhanced relatedness levels. Social cichlids neither suffer from habitat saturation, nor are their groups composed primarily of relatives. This demands alternative ecological explanations for the evolution of advanced social organization. To address this question, we compared the ecology of eight populations of Neolamprologus pulcher, a cichlid fish arguably representing the pinnacle of social evolution in poikilothermic vertebrates. Results show that variation in social organization and behavior of these fish is primarily explained by predation risk and related ecological factors. Remarkably, ecology affects group structure more strongly than group size, with predation inversely affecting small and large group members. High predation and shelter limitation leads to groups containing few small but many large members, which is an effect enhanced at low population densities. Apparently, enhanced safety from predators by cooperative defense and shelter construction are the primary benefits of sociality. This finding suggests that predation risk can be fundamental for the transition toward complex social organization, which is generally undervalued.

  5. Population-level consequences of heterospecific density-dependent movements in predator-prey systems

    OpenAIRE

    2013-01-01

    In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patches depend on the local densities of heterospecifics, giving rise to one reaction norm for each of th...

  6. Seed trait and rodent species determine seed dispersal and predation: evidences from semi-natural enclosures

    OpenAIRE

    Yi X; Wang Z.; Liu C; Liu G.

    2015-01-01

    Seed traits affect seed dispersal by animals. However, the combined role of seeds and dispersers in determining seed dispersal is not well explored. We attempted to test how seed traits and predators determine seed dispersal and predation interaction in a rodent-mediated seed dispersal system. Semi-natural enclosure experiments were conducted to investigate seed dispersal and predation of five sympatric tree species with different seed traits, Juglans mandshurica, Quercus mongolica, Pinus kor...

  7. Predator-induced changes of female mating preferences: innate and experiential effects

    Directory of Open Access Journals (Sweden)

    Indy Jeane

    2011-07-01

    Full Text Available Abstract Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana. Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus. In contrast, predator experienced (wild-caught females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection, and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators.

  8. Interactions between multiple recruitment drivers: post-settlement predation mortality and flow-mediated recruitment.

    Directory of Open Access Journals (Sweden)

    Antony M Knights

    Full Text Available BACKGROUND: Dispersal is a primary driver in shaping the future distribution of species in both terrestrial and marine systems. Physical transport by advection can regulate the distance travelled and rate of propagule supply to a habitat but post-settlement processes such as predation can decouple supply from recruitment. The effect of flow-mediated recruitment and predation on the recruitment success of an intertidal species, the eastern oyster Crassostrea virginica was evaluated in two-replicated field experiments. Two key crab species were manipulated to test predator identity effects on oyster mortality. FINDINGS: Recruitment was ∼58% higher in high flow compared to low flow, but predation masked those differences. Predation mortality was primarily attributed to the blue crab Callinectes sapidus, whilst the mud crab Panopeus herbstii had no effect on recruit mortality. Recruit mortality from predation was high when recruit densities were high, but when recruit density was low, predation effects were not seen. Under high recruitment (supply, predation determined maximum population size and in low flow environments, recruitment success is likely determined by a combination of recruitment and resource limitation but not predation. CONCLUSIONS: Four processes are demonstrated: (1 Increases in flow rate positively affect recruitment success; (2 In high flow (recruitment environments, resource availability is less important than predation; (3 predation is an important source of recruit mortality, but is dependent upon recruit density; and (4 recruitment and/or resource limitation is likely a major driver of population structure and functioning, modifying the interaction between predators and prey. Simultaneous testing of flow-mediated recruitment and predation was required to differentiate between the role of each process in determining population size. Our results reinforce the importance of propagule pressure, predation and post

  9. Landscape-moderated bird nest predation in hedges and forest edges

    Science.gov (United States)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  10. Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles.

    Science.gov (United States)

    Ferrari, Maud C O; Brown, Grant E; Bortolotti, Gary R; Chivers, Douglas P

    2010-07-22

    Hundreds of studies have examined how prey animals assess their risk of predation. These studies work from the basic tennet that prey need to continually balance the conflicting demands of predator avoidance with activities such as foraging and reproduction. The information that animals gain regarding local predation risk is most often learned. Yet, the concept of 'memory' in the context of predation remains virtually unexplored. Here, our goal was (i) to determine if the memory window associated with predator recognition is fixed or flexible and, if it is flexible, (ii) to identify which factors affect the length of this window and in which ways. We performed an experiment on larval wood frogs, Rana sylvatica, to test whether the risk posed by, and the uncertainty associated with, the predator would affect the length of the tadpoles' memory window. We found that as the risk associated with the predator increases, tadpoles retained predator-related information for longer. Moreover, if the uncertainty about predator-related information increases, then prey use this information for a shorter period. We also present a theoretical framework aiming at highlighting both intrinsic and extrinsic factors that could affect the memory window of information use by prey individuals.

  11. Development and application of molecular gut-content analysis to detect aphid and coccinellid predation by Harmonia axyridis (Coleoptera: Coccinellidae) in Italy.

    Science.gov (United States)

    Rondoni, Gabriele; Athey, Kacie J; Harwood, James D; Conti, Eric; Ricci, Carlo; Obrycki, John J

    2015-12-01

    Despite their positive effect in reducing pest populations, exotic generalist predators sometimes become invasive and contribute to the displacement of indigenous species in the same trophic level. Although laboratory experiments have linked intraguild predation (IGP) to these interactions, field evidence and quantification of IGP are still lacking for most systems. The recent establishment of the exotic Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Italy raises concern about the detrimental effect that the ladybird could have on native coccinellids. Here we assessed, under laboratory conditions, the acceptability and suitability of eggs of 2 native ladybirds, Adalia bipunctata L. and Oenopia conglobata (L.), as prey items for H. axyridis larvae. Then we developed primers for molecular gut-content analysis to detect predation by H. axyridis on the 2 ladybirds and on the aphid Eucallipterus tiliae L. Species-specific 16S primers were developed for the 3 species and laboratory feeding trials were conducted to quantify the rate of prey DNA breakdown in the gut of H. axyridis. Moreover, to field evaluate primers, H. axyridis 4th instars (n = 132) were systematically collected from linden trees in northern Italy and screened for the presence of prey DNA. Seventy-three percent and 7% of field collected H. axyridis were positive for aphid and coccinellid DNA, respectively. Predation upon aphid and A. bipunctata was lower than predicted if density dependent consumption was expected, while predation upon O. conglobata was significantly higher. Here, we provided the first evidence of IGP among feral populations of H. axyridis and indigenous ladybird beetles, occurring in Italy. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  12. Turbidity interferes with foraging success of visual but not chemosensory predators

    Directory of Open Access Journals (Sweden)

    Jessica Lunt

    2015-09-01

    Full Text Available Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides and a chemosensory predator (blue crabs, Callinectes sapidus in clear and turbid water (0 and ∼100 nephelometric turbidity units. Feeding assays were conducted with two prey items, mud crabs (Panopeus spp. that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator–prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  13. Predation of Ladybird Beetles (Coleoptera: Coccinellidae by Amphibians

    Directory of Open Access Journals (Sweden)

    John J. Sloggett

    2012-07-01

    Full Text Available Studies of predation of ladybird beetles (Coccinellidae have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura, with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.

  14. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians.

    Science.gov (United States)

    Sloggett, John J

    2012-07-18

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.

  15. Ocean acidification alters predator behaviour and reduces predation rate.

    Science.gov (United States)

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO2) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min(-1)) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  16. Landscape features influence postrelease predation on endangered black-footed ferrets

    Science.gov (United States)

    Poessel, S.A.; Breck, S.W.; Biggins, D.E.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.

    2011-01-01

    Predation can be a critical factor influencing recovery of endangered species. In most recovery efforts lethal and nonlethal influences of predators are not sufficiently understood to allow prediction of predation risk, despite its importance. We investigated whether landscape features could be used to model predation risk from coyotes (Canis latrans) and great horned owls (Bubo virginianus) on the endangered black-footed ferret (Mustela nigripes). We used location data of reintroduced ferrets from 3 sites in South Dakota to determine whether exposure to landscape features typically associated with predators affected survival of ferrets, and whether ferrets considered predation risk when choosing habitat near perches potentially used by owls or near linear features predicted to be used by coyotes. Exposure to areas near likely owl perches reduced ferret survival, but landscape features potentially associated with coyote movements had no appreciable effect on survival. Ferrets were located within 90 m of perches more than expected in 2 study sites that also had higher ferret mortality due to owl predation. Densities of potential coyote travel routes near ferret locations were no different than expected in all 3 sites. Repatriated ferrets might have selected resources based on factors other than predator avoidance. Considering an easily quantified landscape feature (i.e., owl perches) can enhance success of reintroduction efforts for ferrets. Nonetheless, development of predictive models of predation risk and management strategies to mitigate that risk is not necessarily straightforward for more generalist predators such as coyotes. ?? 2011 American Society of Mammalogists.

  17. A parasite's modification of host behavior reduces predation on its host.

    Science.gov (United States)

    Soghigian, John; Valsdottir, Linda R; Livdahl, Todd P

    2017-03-01

    Parasite modification of host behavior is common, and the literature is dominated by demonstrations of enhanced predation on parasitized prey resulting in transmission of parasites to their next host. We present a case in which predation on parasitized prey is reduced. Despite theoretical modeling suggesting that this phenomenon should be common, it has been reported in only a few host-parasite-predator systems. Using a system of gregarine endosymbionts in host mosquitoes, we designed experiments to compare the vulnerability of parasitized and unparasitized mosquito larvae to predation by obligate predatory mosquito larvae and then compared behavioral features known to change in the presence of predatory cues. We exposed Aedes triseriatus larvae to the parasite Ascogregarina barretti and the predator Toxohrynchites rutilus and assessed larval mortality rate under each treatment condition. Further, we assessed behavioral differences in larvae due to infection and predation stimuli by recording larvae and scoring behaviors and positions within microcosms. Infection with gregarines reduced cohort mortality in the presence of the predator, but the parasite did not affect mortality alone. Further, infection by parasites altered behavior such that infected hosts thrashed less frequently than uninfected hosts and were found more frequently on or in a refuge within the microcosm. By reducing predation on their host, gregarines may be acting as mutualists in the presence of predation on their hosts. These results illustrate a higher-order interaction, in which a relationship between a species pair (host-endosymbiont or predator-prey) is altered by the presence of a third species.

  18. Predator control problems in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One of the important wildlife management activities in Alaska is that of predator control. This simple statement requires some explanation. In the course of these...

  19. Waterfowl experts support predator work

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This article is on the need for predator management and trapping to increase waterfowl production in the wake on Conservation Reserve Program land being converted to...

  20. Predator-prey interactions and community structure: chironomids, mosquitoes and copepods in Heliconia imbricata (Musaceae).

    Science.gov (United States)

    Naeem, Shahid

    1988-11-01

    Evidence from both field observations and experimental work indicates that predation by larvae of a midge, Pentaneura n. sp. (Chironomidae), causes the low densities of mosquito larvae (Culicidae) found in the water filled bracts of Heliconia imbricata (Musaceae), microhabitats typically colonized by mosquitoes. This predation affects 2 species of mosquitoes, Wyeomyia pseudopecten, a resident species, and Trichoprosopon digitatum, a non-resident species. Predation keeps resident mosquito densities low while completely excluding the nonresident mosquito from the habitat. Both these effects of predation depend on the presence of an abundant alternative prey, an undescribed species of harpacticoid copepod found in the bracts. These copepod prey sustain chironomids when resident mosquito densities are low, permiting predator densities to remain high enough to exclude the non-resident mosquito. I discuss the evolutionary and ecological implications of predation structuring communities.

  1. Density-dependent prey mortality is determined by the spatial scale of predator foraging.

    Science.gov (United States)

    McCarthy, Erin K; White, J Wilson

    2016-02-01

    Foraging theory predicts which prey patches predators should target. However, in most habitats, what constitutes a 'patch' and how prey density is calculated are subjective concepts and depend on the spatial scale at which the predator (or scientist) is observing. Moreover, the predator's 'foraging scale' affects prey population dynamics: predators should produce directly density-dependent (DDD) prey mortality at the foraging scale, but inversely density-dependent (IDD) mortality (safety-in-numbers) at smaller scales. We performed the first experimental test of these predictions using behavioral assays with guppies (Poecilia reticulata) feeding on bloodworm 'prey' patches. The guppy's foraging scale had already been estimated in a prior study. Our experimental results confirmed theoretical predictions: predation was IDD when prey were aggregated at a scale smaller than the foraging scale, but not when prey were aggregated at larger scales. These results could be used to predict outcomes of predator-prey interactions in continuous, non-discrete habitats in the field.

  2. Nest site selection in a hot desert : Trade-off between microclimate and predation risk?

    NARCIS (Netherlands)

    Tieleman, B. Irene; van Noordwijk, Hendrika J.; Williams, Joseph B.

    2008-01-01

    Nest placement affects the risk of predation on both eggs and incubating parents and determines the microclimate for incubation, two functions that may be in conflict, especially in hot deserts. We studied the roles of microclimate and nest predation on nest site selection by Hoopoe Larks (Alaemon a

  3. Predators of the Whitetail

    Science.gov (United States)

    Fagre, Daniel B.

    1994-01-01

    white-tailed deer have long been important prey for large predators. Before Europeans colonized North America, deer roaming the forested region east of the Great Plains and areas along the Gulf of Mexico were hunted by wolves and mountain lions, and by Native Americans for food and clothing materials. Today, wolves and mountain lions are largely gone from the white-tailed deer range of the eastern United States. Deer still face the threat of wolves in northern Minnesota, Michigan, and Wisconsin, and of mountain lions, to a limited extent, in Texas and south Florida. Relatively small populations of whitetails have expanded westward, showing up in the Great Plains and several areas west of the Continental Divide such as northwestern Montana, northern Idaho, and eastern Washington. More than half the prey killed by recolonizing wolves in northwestern Montana are white-tailed deer. Although it has not been well documented, these western whitetails undoubtedly also are preyed on by mountain lions. Wolves and mountain lions have evolved as effective killers of deer but with very different physical characteristics and hunting behaviors. Of course, for their part, whitetails have found ways to protect themselves.

  4. Pre-dispersal predation effect on seed packaging strategies and seed viability.

    Science.gov (United States)

    DeSoto, Lucía; Tutor, David; Torices, Rubén; Rodríguez-Echeverría, Susana; Nabais, Cristina

    2016-01-01

    An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging.

  5. The stabilizing effects of genetic diversity on predator-prey dynamics.

    Science.gov (United States)

    Steiner, Christopher F; Masse, Jordan

    2013-01-01

    Heterogeneity among prey in their susceptibility to predation is a potentially important stabilizer of predator-prey interactions, reducing the magnitude of population oscillations and enhancing total prey population abundance. When microevolutionary responses of prey populations occur at time scales comparable to population dynamics, adaptive responses in prey defense can, in theory, stabilize predator-prey dynamics and reduce top-down effects on prey abundance. While experiments have tested these predictions, less explored are the consequences of the evolution of prey phenotypes that can persist in both vulnerable and invulnerable classes. We tested this experimentally using a laboratory aquatic system composed of the rotifer Brachionus calyciflorus as a predator and the prey Synura petersenii, a colony-forming alga that exhibits genetic variation in its propensity to form colonies and colony size (larger colonies are a defense against predators). Prey populations of either low initial genetic diversity and low adaptive capacity or high initial genetic diversity and high adaptive capacity were crossed with predator presence and absence. Dynamics measured over the last 127 days of the 167-day experiment revealed no effects of initial prey genetic diversity on the average abundance or temporal variability of predator populations. However, genetic diversity and predator presence/absence interactively affected prey population abundance and stability; diversity of prey had no effects in the absence of predators but stabilized dynamics and increased total prey abundance in the presence of predators. The size structure of the genetically diverse prey populations diverged from single strain populations in the presence of predators, showing increases in colony size and in the relative abundance of cells found in colonies. Our work sheds light on the adaptive value of colony formation and supports the general view that genetic diversity and intraspecific trait variation of

  6. Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S.K.

    2017-01-01

    Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze a p...

  7. Combined food and predator effects on songbird nest survival and annual reproductive success: results from a bi-factorial experiment.

    Science.gov (United States)

    Zanette, Liana; Clinchy, Michael; Smith, James N M

    2006-04-01

    Food and predators have traditionally been viewed as mutually exclusive alternatives when considering factors affecting animal populations. This has led to long controversies such as whether annual reproductive success in songbirds is primarily a function of food-restricted production or predator-induced loss. Recent studies on both birds and mammals suggest many of these controversies may be resolved by considering the combined effects of food and predators. We conducted a 2x2 manipulative food addition plus natural predator reduction experiment on song sparrows (Melospiza melodia) over three consecutive breeding seasons. Food and predators together affected partial clutch or brood loss, nest survival (total clutch or brood loss) and annual reproductive success. When combined, our two treatments reduced partial losses by more than expected if the effects of food and predators were independent and additive. Food and predators also interacted in their effects on nest survival since food addition significantly reduced the rate of nest predation. While annual reproductive success was highly correlated with nest predation (r2=0.71) the strength of this relationship was reinforced by the indirect effects of food addition on nest predation. A stepwise multiple regression showed that the residual variation in annual reproductive success was explained by food effects on the total number of eggs laid over the season and the combined effects of food and predators on partial losses noted above. We conclude that annual reproductive success in song sparrows is a function of both food-restricted production and predator-induced loss and indirect food and predator effects on both clutch and brood loss. We highlight the parallels between our results and those from a comparable bi-factorial experiment on mammals because we suspect combined food and predator effects are likely the norm in both birds and mammals.

  8. Predator-prey interactions and changing environments: who benefits?

    Science.gov (United States)

    Abrahams, Mark V; Mangel, Marc; Hedges, Kevin

    2007-11-29

    While aquatic environments have long been thought to be more moderate environments than their terrestrial cousins, environmental data demonstrate that for some systems this is not so. Numerous important environmental parameters can fluctuate dramatically, notably dissolved oxygen, turbidity and temperature. The roles of dissolved oxygen and turbidity on predator-prey interactions have been discussed in detail elsewhere within this issue and will be considered only briefly here. Here, we will focus primarily on the role of temperature and its potential impact upon predator-prey interactions. Two key properties are of particular note. For temperate aquatic ecosystems, all piscine and invertebrate piscivores and their prey are ectothermic. They will therefore be subject to energetic demands that are significantly affected by environmental temperature. Furthermore, the physical properties of water, particularly its high thermal conductivity, mean that thermal microenvironments will not exist so that fine-scale habitat movements will not be an option for dealing with changing water temperature in lentic environments. Unfortunately, there has been little experimental analysis of the role of temperature on such predator-prey interactions, so we will instead focus on theoretical work, indicating that potential implications associated with thermal change are unlikely to be straightforward and may present a greater threat to predators than to their prey. Specifically, we demonstrate that changes in the thermal environment can result in a net benefit to cold-adapted species through the mechanism of predator-prey interactions.

  9. Predators help protect carbon stocks in blue carbon ecosystems

    Science.gov (United States)

    Atwood, Trisha B.; Connolly, Rod M.; Ritchie, Euan G.; Lovelock, Catherine E.; Heithaus, Michael R.; Hays, Graeme C.; Fourqurean, James W.; Macreadie, Peter I.

    2015-12-01

    Predators continue to be harvested unsustainably throughout most of the Earth's ecosystems. Recent research demonstrates that the functional loss of predators could have far-reaching consequences on carbon cycling and, by implication, our ability to ameliorate climate change impacts. Yet the influence of predators on carbon accumulation and preservation in vegetated coastal habitats (that is, salt marshes, seagrass meadows and mangroves) is poorly understood, despite these being some of the Earth's most vulnerable and carbon-rich ecosystems. Here we discuss potential pathways by which trophic downgrading affects carbon capture, accumulation and preservation in vegetated coastal habitats. We identify an urgent need for further research on the influence of predators on carbon cycling in vegetated coastal habitats, and ultimately the role that these systems play in climate change mitigation. There is, however, sufficient evidence to suggest that intact predator populations are critical to maintaining or growing reserves of 'blue carbon' (carbon stored in coastal or marine ecosystems), and policy and management need to be improved to reflect these realities.

  10. Predation of freshwater fish in environments with elevated carbon dioxide

    Science.gov (United States)

    Midway, Stephen R.; Hasler, Caleb T.; Wagner, Tyler; Suski, Cory D.

    2017-01-01

    Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2(pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10 000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96 P. promelas were consumed (n = 96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.

  11. Effects of predation by Hydra (Cnidaria on cladocerans (Crustacea: Cladocera

    Directory of Open Access Journals (Sweden)

    Ligia Rivera-De la Parra

    2016-03-01

    Full Text Available Planktonic cladocerans have evolved different strategies to avoid predation from vertebrates; these include changes in morphology, behavior, physiology, and/or life-history traits. However, littoral cladocerans are better adapted to avoid invertebrate predation particularly from insect larvae by evolving morphological and physiological adaptations. Nevertheless, this has not been proven for some littoral predators such as Hydra. In this study, we provide quantitative data on how Hydra affects its zooplankton prey. We studied the predation behavior on Alona glabra, Ceridodaphnia dubia, Daphnia pulex, Daphnia cf. mendotae, Diaphanosoma birgei, Macrothrix triserialis, Moina macrocopa, Pleuroxus aduncus, Scapholeberis kingi, Simocephalus vetulus, Elaphoidella grandidieri, Brachionus rubens and Euchlanis dilatata. We also tested the indirect effect of allelochemicals from Hydra on the demography of Daphnia cf. mendotae. Littoral cladocerans are specially adapted to resist nematocyst injection and discharge of toxic substances from Hydra. A significant decrease in the population growth rate from 0.21 to 0.125 d-1 was observed at densities of 2 ind. ml-1. The role of carapace thickness as an adaptive strategy of littoral cladocerans against Hydra predation is discussed.

  12. Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades.

    Science.gov (United States)

    Rudolf, Volker H W

    2007-12-01

    Cannibalistic and asymmetrical behavioral interactions between stages are common within stage-structured predator populations. Such direct interactions between predator stages can result in density- and trait-mediated indirect interactions between a predator and its prey. A set of structured predator-prey models is used to explore how such indirect interactions affect the dynamics and structure of communities. Analyses of the separate and combined effects of stage-structured cannibalism and behavior-mediated avoidance of cannibals under different ecological scenarios show that both cannibalism and behavioral avoidance of cannibalism can result in short- and long-term positive indirect connections between predator stages and the prey, including "apparent mutualism." These positive interactions alter the strength of trophic cascades such that the system's dynamics are determined by the interaction between bottom-up and top-down effects. Contrary to the expectation of simpler models, enrichment increases both predator and prey abundance in systems with cannibalism or behavioral avoidance of cannibalism. The effect of behavioral avoidance of cannibalism, however, depends on how strongly it affects the maturation rate of the predator. Behavioral interactions between predator stages reduce the short-term positive effect of cannibalism on the prey density, but can enhance its positive long-term effects. Both interaction types reduce the destabilizing effect of enrichment. These results suggest that inconsistencies between data and simple models can be resolved by accounting for stage-structured interactions within and among species.

  13. Predators and the public trust.

    Science.gov (United States)

    Treves, Adrian; Chapron, Guillaume; López-Bao, Jose V; Shoemaker, Chase; Goeckner, Apollonia R; Bruskotter, Jeremy T

    2017-02-01

    Many democratic governments recognize a duty to conserve environmental resources, including wild animals, as a public trust for current and future citizens. These public trust principles have informed two centuries of U.S.A. Supreme Court decisions and environmental laws worldwide. Nevertheless numerous populations of large-bodied, mammalian carnivores (predators) were eradicated in the 20th century. Environmental movements and strict legal protections have fostered predator recoveries across the U.S.A. and Europe since the 1970s. Now subnational jurisdictions are regaining management authority from central governments for their predator subpopulations. Will the history of local eradication repeat or will these jurisdictions adopt public trust thinking and their obligation to broad public interests over narrower ones? We review the role of public trust principles in the restoration and preservation of controversial species. In so doing we argue for the essential roles of scientists from many disciplines concerned with biological diversity and its conservation. We look beyond species endangerment to future generations' interests in sustainability, particularly non-consumptive uses. Although our conclusions apply to all wild organisms, we focus on predators because of the particular challenges they pose for government trustees, trust managers, and society. Gray wolves Canis lupus L. deserve particular attention, because detailed information and abundant policy debates across regions have exposed four important challenges for preserving predators in the face of interest group hostility. One challenge is uncertainty and varied interpretations about public trustees' responsibilities for wildlife, which have created a mosaic of policies across jurisdictions. We explore how such mosaics have merits and drawbacks for biodiversity. The other three challenges to conserving wildlife as public trust assets are illuminated by the biology of predators and the interacting

  14. Herbivory, Predation, and Biological Control.

    Science.gov (United States)

    Murphy, Terence M.; And Others

    1992-01-01

    Authors describe a set of controlled ecosystems that can be used to demonstrate the effects of herbivory on the health and growth of a plant population and of predation on the growth of a primary consumer population. The system also shows the effectiveness of biological pest control measures in a dramatic way. The construction of the ecosystems is…

  15. INTERACCIÓN ENTRE DOS ÁCAROS DEPREDADORES DE Tetranychus urticae KOCH (ACARIFORMES: TETRANYCHIDAE EN LABORATORIO Interaction Between Two Predator Mites of Tetranychus urticae Koch (Acariformes: Tetranychidae in Laboratory

    Directory of Open Access Journals (Sweden)

    ANGÉLICA ARGÜELLES R

    2013-04-01

    predators for the control of the pest. Several situations leading to interaction were evaluated: High density of one predator and low density of the other one, being the prey present or absent. The scenario with predators in equal densities and in presence of the prey was also evaluated. When a predator is in higher density and the prey present, the predator with the lower density increases the interference with the comsumption of preys by the predator with higher density. On the other hand, when the comsumption of T. urticae reduces, intraguild predation increases. P. persimilis shows intraguild predation behaviour when T. urticae is absent and N. californicus is present, consuming all developmental stages of its conspecific. Instead, N. californicus only feed on conspecific larvae, when the fitofagous was absent and P. persimilis was present. When the two predators were present in the same assemblage and with the same population density, the quantity of T. urticae consumed by both of them was not higher than the consumed one when each predator was present in separate way.

  16. Hierarchical levels of seed predation variation by introduced beetles on an endemic Mediterranean palm.

    Science.gov (United States)

    Rodríguez, Marta; Delibes, Miguel; Fedriani, José M

    2014-01-01

    Seed predators can limit plant recruitment and thus profoundly impinge the dynamics of plant populations, especially when diverse seed predators (e.g., native and introduced) attack particular plant populations. Surprisingly, however, we know little concerning the potential hierarchy of spatial scales (e.g., region, population, patch) and coupled ecological correlates governing variation in the overall impact that native and introduced seed predators have on plant populations. We investigated several spatial scales and ecological correlates of pre-dispersal seed predation by invasive borer beetles in Chamaerops humilis (Arecaceae), a charismatic endemic palm of the Mediteranean basin. To this end, we considered 13 palm populations (115 palms) within four geographical regions of the Iberian Peninsula. The observed interregional differences in percentages of seed predation by invasive beetles were not significant likely because of considerable variation among populations within regions. Among population variation in seed predation was largely related to level of human impact. In general, levels of seed predation were several folds higher in human-altered populations than in natural populations. Within populations, seed predation declined significantly with the increase in amount of persisting fruit pulp, which acted as a barrier against seed predators. Our results revealed that a native species (a palm) is affected by the introduction of related species because of the concurrent introduction of seed predators that feed on both the introduced and native palms. We also show how the impact of invasive seed predators on plants can vary across a hierarchy of levels ranging from variation among individuals within local populations to large scale regional divergences.

  17. Human shields mediate sexual conflict in a top predator

    Science.gov (United States)

    Pelletier, F.; Kindberg, J.; Brunberg, S.; Swenson, J. E.; Zedrosser, A.

    2016-01-01

    Selecting the right habitat in a risky landscape is crucial for an individual's survival and reproduction. In predator–prey systems, prey often can anticipate the habitat use of their main predator and may use protective associates (i.e. typically an apex predator) as shields against predation. Although never tested, such mechanisms should also evolve in systems in which sexual conflict affects offspring survival. Here, we assessed the relationship between offspring survival and habitat selection, as well as the use of protective associates, in a system in which sexually selected infanticide (SSI), rather than interspecific predation, affects offspring survival. We used the Scandinavian brown bear (Ursus arctos) population with SSI in a human-dominated landscape as our model system. Bears, especially adult males, generally avoid humans in our study system. We used resource selection functions to contrast habitat selection of GPS-collared mothers that were successful (i.e. surviving litters, n = 19) and unsuccessful (i.e. complete litter loss, n = 11) in keeping their young during the mating season (2005–2012). Habitat selection was indeed a predictor of litter survival. Successful mothers were more likely to use humans as protective associates, whereas unsuccessful mothers avoided humans. Our results suggest that principles of predator–prey and fear ecology theory (e.g. non-consumptive and cascading effects) can also be applied to the context of sexual conflict. PMID:27335423

  18. Preference and Prey Switching in a Generalist Predator Attacking Local and Invasive Alien Pests

    Science.gov (United States)

    Jaworski, Coline C.; Bompard, Anaïs; Genies, Laure; Amiens-Desneux, Edwige; Desneux, Nicolas

    2013-01-01

    Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar preference toward T. absoluta eggs and B. tabaci nymphs, but T. absoluta larvae were clearly less attacked. However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M. pygmaeus prey switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous management of B. tabaci and T. absoluta, which very frequently co-occur on tomato. PMID:24312646

  19. Behavioral responses associated with a human-mediated predator shelter.

    Directory of Open Access Journals (Sweden)

    Graeme Shannon

    Full Text Available Human activities in protected areas can affect wildlife populations in a similar manner to predation risk, causing increases in movement and vigilance, shifts in habitat use and changes in group size. Nevertheless, recent evidence indicates that in certain situations ungulate species may actually utilize areas associated with higher levels of human presence as a potential refuge from disturbance-sensitive predators. We now use four-years of behavioral activity budget data collected from pronghorn (Antilocapra americana and elk (Cervus elephus in Grand Teton National Park, USA to test whether predictable patterns of human presence can provide a shelter from predatory risk. Daily behavioral scans were conducted along two parallel sections of road that differed in traffic volume--with the main Teton Park Road experiencing vehicle use that was approximately thirty-fold greater than the River Road. At the busier Teton Park Road, both species of ungulate engaged in higher levels of feeding (27% increase in the proportion of pronghorn feeding and 21% increase for elk, lower levels of alert behavior (18% decrease for pronghorn and 9% decrease for elk and formed smaller groups. These responses are commonly associated with reduced predatory threat. Pronghorn also exhibited a 30% increase in the proportion of individuals moving at the River Road as would be expected under greater exposure to predation risk. Our findings concur with the 'predator shelter hypothesis', suggesting that ungulates in GTNP use human presence as a potential refuge from predation risk, adjusting their behavior accordingly. Human activity has the potential to alter predator-prey interactions and drive trophic-mediated effects that could ultimately impact ecosystem function and biodiversity.

  20. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    Science.gov (United States)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement

  1. From process to pattern: how fluctuating predation risk impacts the stress axis of snowshoe hares during the 10-year cycle.

    Science.gov (United States)

    Sheriff, Michael J; Krebs, Charles J; Boonstra, Rudy

    2011-07-01

    Predation is a central organizing process affecting populations and communities. Traditionally, ecologists have focused on the direct effects of predation--the killing of prey. However, predators also have significant sublethal effects on prey populations. We investigated how fluctuating predation risk affected the stress physiology of a cyclic population of snowshoe hares (Lepus americanus) in the Yukon, finding that they are extremely sensitive to the fluctuating risk of predation. In years of high predator numbers, hares had greater plasma cortisol levels at capture, greater fecal cortisol metabolite levels, a greater plasma cortisol response to a hormone challenge, a greater ability to mobilize energy and poorer body condition. These indices of stress had the same pattern within years, during the winter and over the breeding season when the hare:lynx ratio was lowest and the food availability the worst. Previously we have shown that predator-induced maternal stress lowers reproduction and compromises offspring's stress axis. We propose that predator-induced changes in hare stress physiology affect their demography through negative impacts on reproduction and that the low phase of cyclic populations may be the result of predator-induced maternal stress reducing the fitness of progeny. The hare population cycle has far reaching ramifications on predators, alternate prey, and vegetation. Thus, predation is the predominant organizing process for much of the North American boreal forest community, with its indirect signature--stress in hares--producing a pattern of hormonal changes that provides a sensitive reflection of fluctuating predator pressure that may have long-term demographic consequences.

  2. Effects of subsidized predators, resource variability, and human population density on desert tortoise populations in the Mojave Desert, USA

    Science.gov (United States)

    Esque, Todd C.; Nussear, Kenneth E.; Drake, K. Kristina; Walde, Andrew D.; Berry, Kristin H.; Averill-Murray, Roy C.; Woodman, A. Peter; Boarman, William I.; Medica, Phil A.; Mack, Jeremy S.; Heaton, Jill S.

    2010-01-01

    Understanding predator–prey relationships can be pivotal in the conservation of species. For 2 decades, desert tortoise Gopherus agassizii populations have declined, yet quantitative evidence regarding the causes of declines is scarce. In 2005, Ft. Irwin National Training Center, California, USA, implemented a translocation project including 2 yr of baseline monitoring of desert tortoises. Unusually high predation on tortoises was observed after translocation occurred. We conducted a retrospective analysis of predation and found that translocation did not affect the probability of predation: translocated, resident, and control tortoises all had similar levels of predation. However, predation rates were higher near human population concentrations, at lower elevation sites, and for smaller tortoises and females. Furthermore, high mortality rates were not limited to the National Training Center. In 2008, elevated mortality (as high as 43%) occurred throughout the listed range of the desert tortoise. Although no temporal prey base data are available for analysis from any of the study sites, we hypothesize that low population levels of typical coyote Canis latrans prey (i.e. jackrabbits Lepus californicus and other small animals) due to drought conditions influenced high predation rates in previous years. Predation may have been exacerbated in areas with high levels of subsidized predators. Many historical reports of increased predation, and our observation of a range-wide pattern, may indicate that high predation rates are more common than generally considered and may impact recovery of the desert tortoise throughout its range.

  3. Landscape heterogeneity shapes predation in a newly restored predator-prey system.

    Science.gov (United States)

    Kauffman, Matthew J; Varley, Nathan; Smith, Douglas W; Stahler, Daniel R; MacNulty, Daniel R; Boyce, Mark S

    2007-08-01

    Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator-prey system. We analysed the spatial distribution of wolf (Canis lupus) predation on elk (Cervus elaphus) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator-prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.

  4. Effects of Behavioral Tactics of Predators on Dynamics of a Predator-Prey System

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-01-01

    Full Text Available A predator-prey model incorporating individual behavior is presented, where the predator-prey interaction is described by a classical Lotka-Volterra model with self-limiting prey; predators can use the behavioral tactics of rock-paper-scissors to dispute a prey when they meet. The predator behavioral change is described by replicator equations, a game dynamic model at the fast time scale, whereas predator-prey interactions are assumed acting at a relatively slow time scale. Aggregation approach is applied to combine the two time scales into a single one. The analytical results show that predators have an equal probability to adopt three strategies at the stable state of the predator-prey interaction system. The diversification tactics taking by predator population benefits the survival of the predator population itself, more importantly, it also maintains the stability of the predator-prey system. Explicitly, immediate contest behavior of predators can promote density of the predator population and keep the preys at a lower density. However, a large cost of fighting will cause not only the density of predators to be lower but also preys to be higher, which may even lead to extinction of the predator populations.

  5. Population-level consequences of heterospecific density-dependent movements in predator-prey systems.

    Science.gov (United States)

    Sjödin, Henrik; Brännström, Ke; Söderquist, Mårten; Englund, Göran

    2014-02-07

    In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density-dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patches depend on the local densities of heterospecifics, giving rise to one reaction norm for each of the two species. Movement rates are assumed to be much faster than demographics rates. A spatial structure of predators and prey emerges which affects the global population dynamics. We derive a criterion which reveals how demographic stability depends on the relationships between the per capita covariance and densities of predators and prey. Specifically, we establish that a positive relationship with prey density and a negative relationship with predator density tend to be stabilizing. On a more mechanistic level we show how these relationships are linked to the movement reaction norms of predators and prey. Numerical results show that these findings hold both for local and global movements, i.e., both when migration is biased towards neighbouring patches and when all patches are reached with equal probability. © 2013 Published by Elsevier Ltd. All rights reserved.

  6. Juvenile exposure to predator cues induces a larger egg size in fish

    Science.gov (United States)

    Segers, Francisca H. I. D.; Taborsky, Barbara

    2012-01-01

    When females anticipate a hazardous environment for their offspring, they can increase offspring survival by producing larger young. Early environmental experience determines egg size in different animal taxa. We predicted that a higher perceived predation risk by juveniles would cause an increase in the sizes of eggs that they produce as adults. To test this, we exposed juveniles of the mouthbrooding cichlid Eretmodus cyanostictus in a split-brood experiment either to cues of a natural predator or to a control situation. After maturation, females that had been confronted with predators produced heavier eggs, whereas clutch size itself was not affected by the treatment. This effect cannot be explained by a differential female body size because the predator treatment did not influence growth trajectories. The observed increase of egg mass is likely to be adaptive, as heavier eggs gave rise to larger young and in fish, juvenile predation risk drops sharply with increasing body size. This study provides the first evidence that predator cues perceived by females early in life positively affect egg mass, suggesting that these cues allow her to predict the predation risk for her offspring. PMID:21976689

  7. Pre-dispersal seed predation and abortion in species of Callisthene and Qualea (Vochysiaceae in a Neotropical savanna

    Directory of Open Access Journals (Sweden)

    Luciana Nascimento Custódio

    2014-09-01

    Full Text Available The ability of plants to generate fertile offspring is influenced by morpho-physiological and ecological factors. Hence, reproductive success is directly linked to factors affecting quantity and quality of their progeny. In the Cerrado (savanna of Brazil, the Vochysiaceae is a widely distributed and ecologically important family. Factors affecting pre-dispersal seed predation and abortion were studied for populations of Callisthene fasciculata, C. major, Qualea multiflora and Q. parviflora. To characterize differences between genera, as well as among species, study areas, and individuals, we quantified pre-dispersal seed predation and abortion. Differences of seed abortion among the species were related to intrinsic reproductive features and not to area or other factors. In contrast, seed predation varied not only among species but also among areas and among individuals. Only C. fasciculata showed no seed predation. In Qualea species, insect predators were found inside the seeds; whereas predators of Callisthene species were outside seeds. In both genera, seed abortion correlated negatively with area size, as did pre-dispersal seed predation, which suggest seed abortion may be a counter-measure to avoid predation. Although seed abortion and predation reduced the progenies of the studied species, seed production did not differ from other Cerrado species.

  8. Environmentally driven predator-prey overlaps determine the aggregate diet of the cod Gadus morhua in the Baltic Sea

    DEFF Research Database (Denmark)

    Neuenfeldt, Stefan; Beyer, Jan

    2006-01-01

    Aquatic ecosystems are environmentally heterogeneous with features such as fronts or clines of temperature and salinity. This heterogeneity varies over time and is likely to cause changes in predator-prey overlaps, which will affect the diet composition of the predators. We investigated how inflo...

  9. Background level of risk and the survival of predator-naive prey: can neophobia compensate for predator naivety in juvenile coral reef fishes?

    Science.gov (United States)

    Ferrari, Maud C O; McCormick, Mark I; Meekan, Mark G; Chivers, Douglas P

    2015-01-22

    Neophobia--the generalized fear response to novel stimuli--provides the first potential strategy that predator-naive prey may use to survive initial predator encounters. This phenotype appears to be highly plastic and present in individuals experiencing high-risk environments, but rarer in those experiencing low-risk environments. Despite the appeal of this strategy as a 'solution' for prey naivety, we lack evidence that this strategy provides any fitness benefit to prey. Here, we compare the relative effect of environmental risk (high versus low) and predator-recognition training (predator-naive versus predator-experienced individuals) on the survival of juvenile fish in the wild. We found that juveniles raised in high-risk conditions survived better than those raised in low-risk conditions, providing the first empirical evidence that environmental risk, in the absence of any predator-specific information, affects the way naive prey survive in a novel environment. Both risk level and experience affected survival; however, the two factors did not interact, indicating that the information provided by both factors did not interfere or enhance each other. From a mechanistic viewpoint, this indicates that the combination of the two factors may increase the intensity, and hence efficacy, of prey evasion strategies, or that both factors provide qualitatively separate benefits that would result in an additive survival success.

  10. Coevolution can reverse predator-prey cycles.

    Science.gov (United States)

    Cortez, Michael H; Weitz, Joshua S

    2014-05-20

    A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics.

  11. Indirect effects of prey swamping: differential seed predation during a bamboo masting event.

    Science.gov (United States)

    Kitzberger, Thomas; Chaneton, Enrique J; Caccia, Fernando

    2007-10-01

    Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding

  12. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.

    Science.gov (United States)

    De Block, Marjan; Pauwels, Kevin; Van Den Broeck, Maarten; De Meester, Luc; Stoks, Robby

    2013-03-01

    Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming.

  13. Modelling the attack success of planktonic predators: patterns and mechanisms of prey size selectivity

    DEFF Research Database (Denmark)

    Caparroy, P.; Thygesen, Uffe Høgsbro; Visser, Andre

    2000-01-01

    A mathematical model of the attack success of planktonic predators (fish larvae and carnivorous copepods) is proposed. Based on a geometric representation of attack events, the model considers how the escape reaction characteristics (speed and direction) of copepod prey affect their probability...... of being captured. By combining the attack success model with previously published hydrodynamic models of predator and prey perception, we examine how predator foraging behaviour and prey perceptive ability affect the size spectra of encountered and captured copepod prey. We examine food size spectra of (i...... also acts in modifying the prey escape direction. The model demonstrates that the reorientation of the prey escape path towards the centre of the feeding current's flow field results in increased attack success of the predator. Finally, the model examines how variability in the kinetics of approach...

  14. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.

    Science.gov (United States)

    Higham, Timothy E; Stewart, William J; Wainwright, Peter C

    2015-07-01

    Successful feeding and escape behaviors in fishes emerge from precise integration of locomotion and feeding movements. Fishes inhabit a wide range of habitats, including still ponds, turbulent rivers, and wave-pounded shorelines, and these habitats vary in several physical variables that can strongly impact both predator and prey. Temperature, the conditions of ambient flow, and light regimes all have the potential to affect predator-prey encounters, yet the integration of these factors into our understanding of fish biomechanics is presently limited. We explore existing knowledge of kinematics, muscle function, hydrodynamics, and evolutionary morphology in order to generate a framework for understanding the ecomechanics of predator-prey encounters in fishes. We expect that, in the absence of behavioral compensation, a decrease in temperature below the optimum value will reduce the muscle power available both to predator and prey, thus compromising locomotor performance, suction-feeding mechanics of predators, and the escape responses of prey. Ambient flow, particularly turbulent flow, will also challenge predator and prey, perhaps resulting in faster attacks by predators to minimize mechanical instability, and a reduced responsiveness of prey to predator-generated flow. Reductions in visibility, caused by depth, turbidity, or diel fluctuations in light, will decrease distances at which either predator or prey detect each other, and generally place a greater emphasis on the role of mechanoreception both for predator and prey. We expect attack distances to be shortened when visibility is low. Ultimately, the variation in abiotic features of a fish's environment will affect locomotion and feeding performance of predators, and the ability of the prey to escape. The nature of these effects and how they impact predator-prey encounters stands as a major challenge for future students of the biomechanics of fish during feeding. Just as fishes show adaptations for capturing

  15. Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa.

    Science.gov (United States)

    Onzo, Alexis; Sabelis, Maurice W; Hanna, Rachid

    2014-03-01

    To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus gossypii. These fields also harboured the cassava apex-inhabiting predator Typhlodromalus aripo and either the leaf-inhabiting predator Amblydromalus manihoti or Euseius fustis. We manipulated predator species composition on individual plants to determine their effect on prey and predator densities. In fields with T. aripo plus A. manihoti, M. tanajoa densities were reduced by T. aripo alone or together with A. manihoti, but neither of these predators, alone or together, reduced O. gossypii densities. In fields with T. aripo plus E. fustis, T. aripo alone or together with E. fustis exerted significant control over O. gossypii, but weak control over M. tanajoa. Densities of any of the predator species were not affected by co-occurring predator species, suggesting a minor role for intraguild predation in the field, contrary to earlier experiments on small plants in the laboratory. We conclude that (1) T. aripo is the most effective predator species in suppressing M. tanajoa, (2) two predator species, T. aripo and E. fustis, are needed to suppress O. gossypii, and (3) predator species together on the same plant do not negatively affect each other nor the extent to which they control their prey. We argue that intraguild predation is reduced due to partial niche separation among predator species.

  16. Assessing Potential Vulnerability and Response of Fish to Simulated Avian Predation after Exposure to Psychotropic Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Melanie L. Hedgespeth

    2016-04-01

    Full Text Available Psychotropic pharmaceuticals present in the environment may impact organisms both directly and via interaction strengths with other organisms, including predators; therefore, this study examined the potential effects of pharmaceuticals on behavioral responses of fish to avian predators. Wild-caught juvenile perch (Perca fluviatilis were assayed using a striking bird model after a seven-day exposure to psychotropic pharmaceuticals (the antidepressants fluoxetine or sertraline, or the β-blocker propranolol under the hypotheses that exposure would increase vulnerability to avian predation via increasing the probability of predator encounter as well as degrading evasive behaviors upon encounter. None of the substances significantly affected swimming activity of the fish, nor did they increase vulnerability by affecting encounter probability or evasive endpoints compared to control treatments. Counter to our expectations, fish exposed to 100 μg/L fluoxetine (but no other concentrations or pharmaceuticals were less likely to enter the open area of the arena, i.e., less likely to engage in risky behavior that could lead to predator encounters. Additionally, all fish exposed to environmentally relevant, low concentrations of sertraline (0.12 μg/L and propranolol (0.1 μg/L sought refuge after the simulated attack. Our unexpected results warrant further research as they have interesting implications on how these psychotropic pharmaceuticals may affect predator-prey interactions spanning the terrestrial-aquatic interface.

  17. Species Diversity Enhances Predator Growth Rates

    Directory of Open Access Journals (Sweden)

    Mark H. Olson

    2007-01-01

    Full Text Available Predators can be important top-down regulators of community structure and are known to have both positive and negative effects on species diversity. However, little is known about the reciprocal effects of species diversity on predators. Across a set of 80 lakes in Connecticut, USA, we found a strong positive correlation between prey species diversity (using the Shannon-Weiner Diversity Index and growth rates of largemouth bass (Micropterus salmoides. This correlation was strongest for small predators and decreased with body size. Although the underlying mechanisms are not known, the correlation is not driven by total fish abundance, predator abundance, or productivity.

  18. Learning rate and temperament in a high predation risk environment

    Science.gov (United States)

    DePasquale, C.; Wagner, Tyler; Archard, G.A.; Ferguson, B.; Braithwaite, V.A.

    2014-01-01

    Living in challenging environments can influence the behavior of animals in a number of ways. For instance, populations of prey fish that experience frequent, nonlethal interactions with predators have a high proportion of individuals that express greater reaction to risk and increased activity and exploration—collectively known as temperament traits. Temperament traits are often correlated, such that individuals that are risk-prone also tend to be active and explore more. Spatial learning, which requires the integration of many sensory cues, has also been shown to vary in fish exposed to different levels of predation threat. Fish from areas of low predation risk learn to solve spatial tasks faster than fish from high predation areas. However, it is not yet known whether simpler forms of learning, such as learning associations between two events, are similarly influenced. Simple forms of associative learning are likely to be affected by temperament because a willingness to approach and explore novel situations could provide animals with a learning advantage. However, it is possible that routine-forming and inflexible traits associated with risk-prone and increased exploratory behavior may act in the opposite way and make risk-prone individuals poorer at learning associations. To investigate this, we measured temperament in Panamanian bishop fish (Brachyrhaphis episcopi) sampled from a site known to contain many predators. The B. episcopi were then tested with an associative learning task. Within this population, fish that explored more were faster at learning a cue that predicted access to food, indicating a link between temperament and basic learning abilities.

  19. Learning rate and temperament in a high predation risk environment.

    Science.gov (United States)

    DePasquale, C; Wagner, T; Archard, G A; Ferguson, B; Braithwaite, V A

    2014-11-01

    Living in challenging environments can influence the behavior of animals in a number of ways. For instance, populations of prey fish that experience frequent, nonlethal interactions with predators have a high proportion of individuals that express greater reaction to risk and increased activity and exploration-collectively known as temperament traits. Temperament traits are often correlated, such that individuals that are risk-prone also tend to be active and explore more. Spatial learning, which requires the integration of many sensory cues, has also been shown to vary in fish exposed to different levels of predation threat. Fish from areas of low predation risk learn to solve spatial tasks faster than fish from high predation areas. However, it is not yet known whether simpler forms of learning, such as learning associations between two events, are similarly influenced. Simple forms of associative learning are likely to be affected by temperament because a willingness to approach and explore novel situations could provide animals with a learning advantage. However, it is possible that routine-forming and inflexible traits associated with risk-prone and increased exploratory behavior may act in the opposite way and make risk-prone individuals poorer at learning associations. To investigate this, we measured temperament in Panamanian bishop fish (Brachyrhaphis episcopi) sampled from a site known to contain many predators. The B. episcopi were then tested with an associative learning task. Within this population, fish that explored more were faster at learning a cue that predicted access to food, indicating a link between temperament and basic learning abilities.

  20. Biogeography of top predators - seabirds and cetaceans - along four latitudinal transects in the Atlantic Ocean

    Science.gov (United States)

    Jungblut, Simon; Nachtsheim, Dominik A.; Boos, Karin; Joiris, Claude R.

    2017-07-01

    The distribution, abundance, and species assemblage of top predators - seabirds and cetaceans - can be correlated to water masses as defined by hydrological parameters. In comparison to other oceans, information about the structuring effects of water masses on top predators in the Atlantic Ocean is limited. The present study aims 1) to provide baseline distributional data of top predators for future comparisons, for instance in the course of climate change, and 2) to test how water masses and seasons affect distributional patterns of seabirds and cetaceans in the temperate and tropical Atlantic. During four trans-equatorial expeditions of the RV Polarstern between 2011 and 2014, at-sea observation data of seabirds, cetaceans and other megafauna were collected. Counts of top predators were generally low in the surveyed regions. Statistical analyses for the eight most abundant seabird species and the pooled number of cetaceans revealed water masses and seasons to account for differences in counts and thus also distribution. In most cases, borders between water masses were not very distinct due to gradual changes in surface water properties. Thus, top predator counts were correlated to water masses but, in contrast to polar waters, not strongly linked to borders between water masses. Additional factors, e.g. distance to locally productive areas (upwelling), competition effects, and seabird associations to prey-accumulating subsurface predators may be similarly important in shaping distributional patterns of top predators in the tropical and temperate Atlantic, but could not be specifically tested for here.

  1. Effects of irrigation levels on interactions among Lygus hesperus (Hemiptera: Miridae), insecticides, and predators in cotton.

    Science.gov (United States)

    Asiimwe, Peter; Naranjo, Steven E; Ellsworth, Peter C

    2014-04-01

    Variation in plant quality and natural enemy abundance plays an important role in insect population dynamics. In manipulative field studies, we evaluated the impact of varying irrigation levels and insecticide type on densities of Lygus hesperus Knight and the arthropod predator community in cotton. Three watering levels were established via irrigations timed according to three levels of percent soil water depletion (SWD): 20, 40, or 60, where 40% SWD is considered standard grower practice, 60% represents a deficit condition likely to impose plant productivity losses, and 20% represents surplus conditions with likely consequences on excessive vegetative plant production. The two key L. hesperus insecticides used were the broad-spectrum insecticide acephate and the selective insecticide flonicamid, along with an untreated check. We hypothesized that densities of L. hesperus and its associated predators would be elevated at higher irrigation levels and that insecticides would differentially impact L. hesperus and predator dynamics depending on their selectivity. L. hesperus were more abundant at the higher irrigation level (20% SWD) but the predator densities were unaffected by irrigation levels. Both L. hesperus and its predators were affected by the selectivity of the insecticide with highest L. hesperus densities and lowest predator abundance where the broad spectrum insecticide (acephate) was used. There were no direct interactions between irrigation level and insecticides, indicating that insecticide effects on L. hesperus and its predators were not influenced by the irrigation levels used here. The implications of these findings on the overall ecology of insect-plant dynamics and yield in cotton are discussed.

  2. Stronger biotic resistance in tropics relative to temperate zone: effects of predation on marine invasion dynamics.

    Science.gov (United States)

    Freestone, Amy L; Rutz, Gregory M; Torchin, Mark E

    2013-06-01

    Latitudinal patterns of nonnative species richness suggest fewer successful invasions in the tropics, relative to temperate regions. One main hypothesis for this pattern is that biotic resistance to invasion is stronger in the tropics than at higher latitudes. Biotic resistance can limit the distribution and abundance of nonnative species and, in extreme cases, can prevent establishment. We provide the first experimental test of this hypothesis, comparing the strength of biotic resistance in a tropical and a temperate marine ecosystem. Predation is one mechanism of biotic resistance, and since predation can be stronger at lower latitudes, we predicted that predation will serve to increase biotic resistance more in the tropics than at higher latitude. We conducted predator-exclusion experiments on marine epifaunal communities, a heavily invaded system, focusing on nonnative tunicates as a model fauna. The effect of predation on species richness of nonnative tunicates was more than three times greater at sites in tropical Panama than in temperate Connecticut, consistent with the prediction of stronger biotic resistance in the tropics. In Connecticut, predation reduced the abundance of one nonnative tunicate but did not affect the abundances of any other nonnative tunicate species, and no species were excluded from communities. In contrast, predation resulted in striking reductions in abundance and often exclusion of nonnative tunicates from experimental communities in Panama. If proved to be general, latitudinal differences in the biotic resistance of communities to nonnative species establishment may help explain emerging patterns of global invasions.

  3. Risk assessment and predator learning in a changing world: understanding the impacts of coral reef degradation

    Science.gov (United States)

    Chivers, Douglas P.; McCormick, Mark I.; Allan, Bridie J. M.; Ferrari, Maud C. O.

    2016-09-01

    Habitat degradation is among the top drivers of the loss of global biodiversity. This problem is particularly acute in coral reef system. Here we investigated whether coral degradation influences predator risk assessment and learning for damselfish. When in a live coral environment, Ambon damselfish were able to learn the identity of an unknown predator upon exposure to damselfish alarm cues combined with predator odour and were able to socially transmit this learned recognition to naïve conspecifics. However, in the presence of dead coral water, damselfish failed to learn to recognize the predator through alarm cue conditioning and hence could not transmit the information socially. Unlike alarm cues of Ambon damselfish that appear to be rendered unusable in degraded coral habitats, alarm cues of Nagasaki damselfish remain viable in this same environment. Nagasaki damselfish were able to learn predators through conditioning with alarm cues in degraded habitats and subsequently transmit the information socially to Ambon damselfish. Predator-prey dynamics may be profoundly affected as habitat degradation proceeds; the success of one species that appears to have compromised predation assessment and learning, may find itself reliant on other species that are seemingly unaffected by the same degree of habitat degradation.

  4. Energetic conditions promoting top-down control of prey by predators.

    Directory of Open Access Journals (Sweden)

    Kristin N Marshall

    Full Text Available Humans remove large amounts of biomass from natural ecosystems, and large bodied high trophic level animals are especially sensitive and vulnerable to exploitation. The effects of removing top-predators on food webs are often difficult to predict because of limited information on species interaction strengths. Here we used a three species predator-prey model to explore relationships between energetic properties of trophodynamic linkages and interaction strengths to provide heuristic rules that indicate observable energetic conditions that are most likely to lead to stable and strong top-down control of prey by predator species. We found that strong top-down interaction strengths resulted from low levels of energy flow from prey to predators. Strong interactions are more stable when they are a consequence of low per capita predation and when predators are subsidized by recruitment. Diet composition also affects stability, but the relationship depends on the form of the functional response. Our results imply that for generalist satiating predators, strong top-down control on prey is most likely for prey items that occupy a small portion of the diet and when density dependent recruitment is moderately high.

  5. Higher nest predation risk in association with a top predator: mesopredator attraction?

    Science.gov (United States)

    Morosinotto, Chiara; Thomson, Robert L; Hänninen, Mikko; Korpimäki, Erkki

    2012-10-01

    Breeding close to top predators is a widespread reproductive strategy. Breeding animals may gain indirect benefits if proximity to top predators results in a reduction of predation due to suppression of mesopredators. We tested if passerine birds gain protection from mesopredators by nesting within territories of a top predator, the Ural owl (Strix uralensis). We placed nest boxes for pied flycatchers (Ficedula hypoleuca) in Ural owl nest sites and in control sites (currently unoccupied by owls). The nest boxes were designed so that nest predation risk could be altered (experimentally increased) after flycatcher settlement; we considered predation rate as a proxy of mesopredator abundance. Overall, we found higher nest predation rates in treatment than in control sites. Flycatcher laying date did not differ between sites, but smaller clutches were laid in treatment sites compared to controls, suggesting a response to perceived predation risk. Relative nest predation rate varied between years, being higher in owl nest sites in 2 years but similar in another; this variation might be indirectly influenced by vole abundance. Proximity to Ural owl nests might represent a risky habitat for passerines. High predation rates within owl territories could be because small mesopredators that do not directly threaten owl nests are attracted to owl nest sites. This could be explained if some mesopredators use owl territories to gain protection from their own predators, or if top predators and mesopredators independently seek similar habitats.

  6. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Science.gov (United States)

    W. Andrew Cox; Frank R. III Thompson; John. Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  7. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles.

    Science.gov (United States)

    Hettyey, Attila; Tóth, Zoltán; Thonhauser, Kerstin E; Frommen, Joachim G; Penn, Dustin J; Van Buskirk, Josh

    2015-11-01

    Chemical cues that evoke anti-predator developmental changes have received considerable attention, but it is not known to what extent prey use information from the smell of predators and from cues released through digestion. We conducted an experiment to determine the importance of various types of cues for the adjustment of anti-predator defences. We exposed tadpoles (common frog, Rana temporaria) to water originating from predators (caged dragonfly larvae, Aeshna cyanea) that were fed different types and quantities of prey outside of tadpole-rearing containers. Variation among treatments in the magnitude of morphological and behavioural responses was highly consistent. Our results demonstrate that tadpoles can assess the threat posed by predators through digestion-released, prey-borne cues and continually released predator-borne cues. These cues may play an important role in the fine-tuning of anti-predator responses and significantly affect the outcome of interactions between predators and prey in aquatic ecosystems. There has been much confusion regards terminology used in the literature, and therefore we also propose a more precise and consistent binomial nomenclature based on the timing of chemical cue release (stress-, attack-, capture-, digestion- or continually released cues) and the origin of cues (prey-borne or predator-borne cues). We hope that this new nomenclature will improve comparisons among studies on this topic.

  8. Costs of predator-induced phenotypic plasticity: a graphical model for predicting the contribution of nonconsumptive and consumptive effects of predators on prey.

    Science.gov (United States)

    Peacor, Scott D; Peckarsky, Barbara L; Trussell, Geoffrey C; Vonesh, James R

    2013-01-01

    Defensive modifications in prey traits that reduce predation risk can also have negative effects on prey fitness. Such nonconsumptive effects (NCEs) of predators are common, often quite strong, and can even dominate the net effect of predators. We develop an intuitive graphical model to identify and explore the conditions promoting strong NCEs. The model illustrates two conditions necessary and sufficient for large NCEs: (1) trait change has a large cost, and (2) the benefit of reduced predation outweighs the costs, such as reduced growth rate. A corollary condition is that potential predation in the absence of trait change must be large. In fact, the sum total of the consumptive effects (CEs) and NCEs may be any value bounded by the magnitude of the predation rate in the absence of the trait change. The model further illustrates how, depending on the effect of increased trait change on resulting costs and benefits, any combination of strong and weak NCEs and CEs is possible. The model can also be used to examine how changes in environmental factors (e.g., refuge safety) or variation among predator-prey systems (e.g., different benefits of a prey trait change) affect NCEs. Results indicate that simple rules of thumb may not apply; factors that increase the cost of trait change or that increase the degree to which an animal changes a trait, can actually cause smaller (rather than larger) NCEs. We provide examples of how this graphical model can provide important insights for empirical studies from two natural systems. Implementation of this approach will improve our understanding of how and when NCEs are expected to dominate the total effect of predators. Further, application of the models will likely promote a better linkage between experimental and theoretical studies of NCEs, and foster synthesis across systems.

  9. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Nyindo Mramba

    2011-07-01

    Full Text Available Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P P P P An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

  10. Does sex-selective predation stabilize or destabilize predator-prey dynamics?

    Directory of Open Access Journals (Sweden)

    David S Boukal

    Full Text Available BACKGROUND: Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sex-selective harvesting and trophy hunting on long-term stability of exploited populations. METHODOLOGY AND PRINCIPAL FINDINGS: We review the quantitative evidence for sex-selective predation and study its long-term consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81 predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation on the 'less limiting' prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or monogamous prey requires other stabilizing mechanisms to persist. CONCLUSIONS AND SIGNIFICANCE: Our modelling results suggest that the observed skew towards male-biased predation might reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of harvesting and trophy hunting of sexually dimorphic species.

  11. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Science.gov (United States)

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  12. Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages.

    Science.gov (United States)

    Schuldt, Andreas; Bruelheide, Helge; Durka, Walter; Michalski, Stefan G; Purschke, Oliver; Assmann, Thorsten

    2014-02-01

    The effects of species loss on ecosystems depend on the community's functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators-epigeic spiders-are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD-and here particularly for trait distributions within the overall functional trait space-and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.

  13. The influence of generalist predators in spatially extended predator-prey systems

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu

    2015-01-01

    dynamics of a predator-prey system is investigated by considering two different types of generalist predators. In one case, it is considered that the predator population has an additional food source and can survive in the absence of the prey population. In the other case, the predator population...... the cases. In the presence of generalist predators, the system shows different pattern formations and spatiotemporal chaos which has important implications for ecosystem functioning not only in terms of their predictability, but also in influencing species persistence and ecosystem stability in response...

  14. Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics

    Science.gov (United States)

    Chen, Liujuan; Chen, Fengde; Wang, Yiqin

    2013-11-01

    A Lotka-Volterra predator-prey model incorporating a constant number of prey using refuges and mutual interference for predator species is presented. By applying the divergency criterion and theories on exceptional directions and normal sectors, we show that the interior equilibrium is always globally asymptotically stable and two boundary equilibria are both saddle points. Our results indicate that prey refuge has no influence on the coexistence of predator and prey species of the considered model under the effects of mutual interference for predator species, which differently from the conclusion without predator mutual interference, thus improving some known ones. Numerical simulations are performed to illustrate the validity of our results.

  15. Weed seed predation by granivorous carabids as influenced by carnivorous carabids

    Directory of Open Access Journals (Sweden)

    de Mol, Friederike

    2014-02-01

    Full Text Available Weed seed predation is influenced for both biological and abiotic factors. Knowledge about these factors is necessary to optimize seed predation as a biological weed control measure. Here, we asked whether carnivorous carabid beetles can affect the seed predation. Additionally, the effect of weather on seed predation rate was investigated. For this purpose, 12, 1m² enclosures were installed in a field (block design with four treatments and three replications in northeastern Germany over a period of 23 days. Treatments in the enclosures were 1 without carabids, 2 with a natural density and species composition of carabids, 3 with granivorous carabid beetles (Pseudoophonus rufipes, Harpulus affinis, and 4 as 3 but additionally with carnivorous carabids (Pterostichus melanarius, Poecilus cupreus Seed predation rate was determined daily using seed cards with Poa annua and Stellaria media seeds. Temperature, relative air humidity and daily precipitation were measured as covariables. In the treatment with granivorous carabids seed predation rate was 54.3 (P. annua resp. 14.3 (S. media seeds per enclosure and day. In the treatment with granivorous and carnivorous carabids, seed predation rate was significantly lower for P. annua (46.6 seeds per enclosure and day, paired Wilcoxon-Test, p = 0.04 and equally high for S. media (14.4 seeds per enclosure and day. In enclosures containing non-manipulated carabid densities 9.1 seeds of P. annua and 7.2 seeds of S. media were lost per enclosure and per day, which is significantly higher than from enclosures that were void of carabids. The minimum night temperature was the only weather variable that significantly influenced seed predation rate. This work contributes to a better understanding of the factors influencing seed predation rates in the field.

  16. Outrun or Outmaneuver: Predator-Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context.

    Science.gov (United States)

    Moore, Talia Y; Biewener, Andrew A

    2015-12-01

    Behavioral studies performed in natural habitats provide a context for the development of hypotheses and the design of experiments relevant both to biomechanics and to evolution. In particular, predator-prey interactions are a model system for integrative study because success or failure of predation has a direct effect on fitness and drives the evolution of specialized performance in both predator and prey. Although all predators share the goal of capturing prey, and all prey share the goal of survival, the behavior of predators and prey are diverse in nature. This article presents studies of some predator-prey interactions sharing common predation strategies that reveal general principles governing the behaviors of predator and prey, even in distantly related taxa. Studies of predator-prey interactions also reveal that maximal performance observed in a laboratory setting is not necessarily the performance that determines fitness. Thus, considering locomotion in the context of predation ecology can aid in evolutionarily relevant experimental design. Classification by strategy reveals that displaying unpredictable trajectories is a relevant anti-predator behavior in response to multiple predation strategies. A predator's perception and pursuit of prey can be affected indirectly by divergent locomotion of similar animals that share an ecosystem. Variation in speed and direction of locomotion that directly increases the unpredictability of a prey's trajectory can be increased through genetic mutation that affects locomotor patterns, musculoskeletal changes that affect maneuverability, and physical interactions between an animal and the environment. By considering the interconnectedness of ecology, physical constraints, and the evolutionary history of behavior, studies in biomechanics can be designed to inform each of these fields.

  17. Modeling predator habitat to enhance reintroduction planning

    Science.gov (United States)

    Shiloh M. Halsey; William J. Zielinski; Robert M. Scheller

    2015-01-01

    Context The success of species reintroduction often depends on predation risk and spatial estimates of predator habitat. The fisher (Pekania pennanti) is a species of conservation concern and populations in the western United States have declined substantially in the last century. Reintroduction plans are underway, but the ability...

  18. Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach

    NARCIS (Netherlands)

    Embling, C.B.; Illian, J.; Armstrong, E.; van der Kooij, J.; Sharples, J.; Camphuysen, K.C.J.; Scott, B.E.

    2012-01-01

    1. Spatial management of marine ecosystems requires detailed knowledge of spatio-temporal mechanisms linking physical and biological processes. Tidal currents, the main driver of ecosystem dynamics in temperate coastal ecosystems, influence predator foraging ecology by affecting prey distribution an

  19. Interactions between interactions: predator-prey, parasite-host, and mutualistic interactions.

    Science.gov (United States)

    Møller, Anders Pape

    2008-01-01

    Ecological interactions such as those between predators and prey, parasites and hosts, and pollinators and plants are usually studied on their own while neglecting that one category of interactions can have dramatic effects on another. Such interactions between interactions will have both ecological and evolutionary effects because the actions of one party will influence interactions among other parties, thereby eventually causing feedback on the first party. Examples of such interactions include the effects of predators and parasites on the evolution of host sexual selection, the effects of parasites and predators on the evolution of virulence, and the effects of parasites and predators on the evolution of pollinator mutualisms. Such interactions among interactions will generally prevent simple cases of coevolution, because any single case of interaction between two parties may be affected by an entire range of additional interacting factors. These phenomena will have implications not only for how ecologists and evolutionary biologists empirically study interactions but also on how such interactions are modeled.

  20. Nonlinear dynamic analysis and characteristics diagnosis of seasonally perturbed predator-prey systems

    Science.gov (United States)

    Zhang, Huayong; Huang, Tousheng; Dai, Liming

    2015-05-01

    Predator-prey interaction widely exists in nature and the research on predator-prey systems is an important field in ecology. The nonlinear dynamic characteristics of a seasonally perturbed predator-prey system are studied in this research. To study the nonlinear characteristics affected by a wide variety of system parameters, the PR approach is employed and periodic, quasiperiodic, chaotic behaviors and the behaviors between period and quasiperiod are found in the system. Periodic-quasiperiodic-chaotic region diagrams are generated for analyzing the global characteristics of the predator-prey system with desired ranges of system parameters. The ecological significances of the dynamical characteristics are discussed and compared with the theoretical research results existing in the literature. The approach of this research demonstrates effectiveness and efficiency of PR method in analyzing the complex dynamical characteristics of nonlinear ecological systems.

  1. Predator-driven trait diversification in a dragonfly genus: covariation in behavioral and morphological antipredator defense.

    Science.gov (United States)

    Mikolajewski, Dirk J; De Block, Marjan; Rolff, Jens; Johansson, Frank; Beckerman, Andrew P; Stoks, Robby

    2010-11-01

    Proof for predation as an agent shaping evolutionary trait diversification is accumulating, however, our understanding how multiple antipredator traits covary due to phenotypic differentiation is still scarce. Species of the dragonfly genus Leucorrhinia underwent shifts from lakes with fish as top predators to fishless lakes with large dragonfly predators. This move to fishless lakes was accompanied by a partial loss and reduction of larval spines. Here, we show that Leucorrhinia also reduced burst swimming speed and its associated energy fuelling machinery, arginine kinase activity, when invading fishless lakes. This results in patterns of positive phylogenetic trait covariation between behavioral and morphological antipredator defense (trait cospecialization) and between behavioral antipredator defense and physiological machinery (trait codependence). Across species patterns of trait covariation between spine status, burst swimming speed and arginine kinase activity also matched findings within the phenotypically plastic L. dubia. Our results highlight the importance of predation as a factor affecting patterns of multiple trait covariation during phenotypic diversification.

  2. Mobility of moose-comparing the effects of wolf predation risk, reproductive status, and seasonality.

    Science.gov (United States)

    Wikenros, Camilla; Balogh, Gyöngyvér; Sand, Håkan; Nicholson, Kerry L; Månsson, Johan

    2016-12-01

    In a predator-prey system, prey species may adapt to the presence of predators with behavioral changes such as increased vigilance, shifting habitats, or changes in their mobility. In North America, moose (Alces alces) have shown behavioral adaptations to presence of predators, but such antipredator behavioral responses have not yet been found in Scandinavian moose in response to the recolonization of wolves (Canis lupus). We studied travel speed and direction of movement of GPS-collared female moose (n = 26) in relation to spatiotemporal differences in wolf predation risk, reproductive status, and time of year. Travel speed was highest during the calving (May-July) and postcalving (August-October) seasons and was lower for females with calves than females without calves. Similarly, time of year and reproductive status affected the direction of movement, as more concentrated movement was observed for females with calves at heel, during the calving season. We did not find support for that wolf predation risk was an important factor affecting moose travel speed or direction of movement. Likely causal factors for the weak effect of wolf predation risk on mobility of moose include high moose-to-wolf ratio and intensive hunter harvest of the moose population during the past century.

  3. Multiple predator based capture process on complex networks

    CERN Document Server

    Sharafat, Rajput Ramiz; Pu, Cunlai; Chen, Rongbin

    2016-01-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.

  4. Permanence of Periodic Predator-Prey System with General Nonlinear Functional Response and Stage Structure for Both Predator and Prey

    Directory of Open Access Journals (Sweden)

    Xuming Huang

    2009-01-01

    Full Text Available We study the permanence of periodic predator-prey system with general nonlinear functional responses and stage structure for both predator and prey and obtain that the predator and the prey species are permanent.

  5. Evolution in predator-prey systems

    CERN Document Server

    Durrett, Rick

    2009-01-01

    We study the adaptive dynamics of predator prey systems modeled by a dynamical system in which the characteristics are allowed to evolve by small mutations. When only the prey are allowed to evolve, and the size of the mutational change tends to 0, the system does not exhibit long term prey coexistence and the parameters of the resident prey type converges to the solution of an ODE. When only the predators are allowed to evolve, coexistence of predators occurs. In this case, depending on the parameters being varied we see (i) the number of coexisting predators remains tight and the differences of the parameters from a reference species converge in distribution to a limit, or (ii) the number of coexisting predators tends to infinity, and we conjecture that the differences converge to a deterministic limit.

  6. Antipredator behaviour of hatchling snakes: effects of incubation temperature and simulated predators.

    Science.gov (United States)

    Burger

    1998-09-01

    All animals that are exposed to predators must distinguish dangerous from nondangerous threats and respond correctly. In reptiles, emerging hatchlings are vulnerable to a wide range of predators, particularly if they emerge during daylight. In these experiments I tested the response of pine snake, Pituophis melanoleucus, hatchlings incubated at 22-23, 27-28, or 32-33 degreesC to visual and vibratory stimuli to examine antipredator behaviour. Emerging hatchlings were exposed to one of five conditions: (1) hawk model, (2) white head model with no facial features, (3) white head model with black eyes, (4) a person, or (5) a vibration without a visual stimulus. I tested the null hypotheses of no differences in response as a function of predator type or incubation temperature. Emergence behaviour when undisturbed was affected by incubating temperature, and antipredatory behaviour was affected by both predator type and incubation temperature. Pine snake hatchlings responded more protectively (withdrawal into tunnels) than defensively (striking), responded with less intensity to a vibration compared with visual predator stimuli, and required longer to respond to a head model without eyes than to all other predator types. Given the relatively small size of hatchlings, it is adaptive for them to withdraw into the nest rather than attack a predator. Hatchlings from eggs that were incubated at medium temperatures required less time to emerge from their underground nests when undisturbed, and had stronger protective responses than snakes incubated at other temperatures. These results suggest that hatchlings incubated at medium temperatures are generally less vulnerable to predators than hatchlings incubated at higher or lower temperatures. Copyright 1998 The Association for the Study of Animal Behaviour.

  7. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    Science.gov (United States)

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  8. Predation on dormice in Italy

    Directory of Open Access Journals (Sweden)

    Dino Scaravelli

    1995-05-01

    Full Text Available Abstract The authors analyse available data on the impact of predators on Dormouse populations in Italy. Dormice are found in the diet of 2 snakes (Vipera berus and V. aspis, 2 diurnal birds of prey (Buteo buteo and Aquila chrysaetos, 6 owls (Tyto alba, Strix aluco, Asio otus, Athene noctua, Bubo bubo and Glaucidium passerinum and 9 mammals (Rattus rattus, Ursus arctos, Canis lupus, Vulpes vulpes, Martes martes, M. foina, Meles meles, Felis silvestris and Sus scrofa in a variable percentage of the prey taken. Only Dryomys nitedula was never encountered as a prey item. The most common prey is Muscardinus avellanarius. There are significative regional differences in predation between bioclimatic areas of the Italian peninsula. The contribution of studies on predation to knowledge of Myoxid distribution is discussed. Riassunto Predazione di Mioxidi in Italia - Sono analizzati i dati pubblicati sull'impatto dei predatori sulle popolazioni di Myoxidae in Italia. Myoxidae sono stati riscontrati nelle diete di 2 serpenti (Vipera berus e V. aspis, 2 rapaci diurni (Buteo buteo e Aquila chrysaetos, 6 notturni (Tyto alba, Strix aluco, Asio otus, Athene noctua, Bubo bubo e Glaucidium passerinum e 9 mammiferi (Rattus rattus, Ursus arctos, Canis lupus, Vulpes vulpes, Martes martes, M foina, Meles meles, Felis silvestris e Sus scrofa in percentuale variabile nella comunità di prede. Solo Dryomys nitedula non è mai stato incontrato come preda. La specie piu comunemente predata risulta Muscardinus avellanarius. Sono discusse le

  9. Interspecific differences in susceptibility to competition and predation in a species-pair of larval amphibians

    Science.gov (United States)

    Walls, S.C.; Taylor, D.G.; Wilson, C.M.

    2002-01-01

    Fundamental issues in the study of predator-prey interactions include addressing how prey coexist with their predators and, moreover, whether predators promote coexistence among competing prey. We conducted a series of laboratory experiments with a freshwater assemblage consisting of two predators that differed in their foraging modes (a crayfish, Procambarus sp., and the western mosquitofish, Gambusia affinis) and their prospective anuran prey (tadpoles of the narrow-mouthed toad, Gastrophryne carolinensis, and the squirrel treefrog, Hyla squirella). We examined whether competition occurs within and between these two prey species and, if so, whether the non-lethal presence of predators alters the outcome of competitive interactions. We also asked whether the two species of prey differ in their susceptibility to the two types of predators and whether interspecific differences in predator avoidance behavior might account for this variation. Our results indicated that Gastrophryne was a stronger competitor than Hyla; at high densities, Gastrophryne reduced the body size of both congeners and conspecifics, as well as the proportion of surviving conspecifics that metamorphosed. However, the presence of mosquitofish did not alter the outcome of this competition, nor did either type of predator affect the density-dependent responses of Gastrophryne. In laboratory foraging trials, the number of tadpoles of each prey species that was killed, but not completely consumed by mosquitofish, was similar for Gastrophryne and Hyla. Yet, significantly more individuals of Gastrophryne than of Hyla were the first prey eaten by mosquitofish; there was no difference in the number of individuals of each species eaten by crayfish. Overall, more individuals of Gastrophryne than of Hyla were killed and completely eaten by mosquitofish at the end of the experiment. The two species of prey did not differ in their spatial avoidance of either type of predator, suggesting that this behavior did

  10. Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry.

    Science.gov (United States)

    Janssens, Lizanne; Van Dievel, Marie; Stoks, Robby

    2015-12-01

    While nonconsumptive effects of predators may strongly affect prey populations, little is known how future warming will modulate these effects. Such information would be especially relevant with regard to prey physiology and resulting changes in prey stoichiometry. We investigated in Enallagma cyathigerum damselfly larvae the effects of a 4°C warming (20°C vs. 24°C) and predation risk on growth rate, physiology and body stoichiometry, for the first time including all key mechanisms suggested by the general stress paradigm (GSP) on how stressors shape changes in body stoichiometry. Growth rate and energy storage were higher at 24°C. Based on thermodynamic principles and the growth rate hypothesis, we could demonstrate predictable reductions in body C:P under warming and link these to the increase in P-rich RNA; the associated warming-induced decrease in C:N may be explained by the increased synthesis of N-rich proteins. Yet, under predation risk, growth rate instead decreased with warming and the warming-induced decreases in C:N and C:P disappeared. As predicted by the GSP, larvae increased body C:N and C:P at 24°C under predation risk. Notably, we did not detect the assumed GSP-mechanisms driving these changes: despite an increased metabolic rate there was neither an increase of C-rich biomolecules (instead fat and sugar contents decreased under predation risk), nor a decrease of N-rich proteins. We hypothesize that the higher C:N and N:P under predation risk are caused by a higher investment in morphological defense. This may also explain the stronger predator-induced increase in C:N under warming. The expected higher C:P under predation risk was only present under warming and matched the observed growth reduction and associated reduction in P-rich RNA. Our integrated mechanistic approach unraveled novel pathways of how warming and predation risk shape body stoichiometry. Key findings that (1) warming effects on elemental stoichiometry were predictable and

  11. Predation on rose galls: parasitoids and predators determine gall size through directional selection.

    Directory of Open Access Journals (Sweden)

    Zoltán László

    Full Text Available Both predators and parasitoids can have significant effects on species' life history traits, such as longevity or clutch size. In the case of gall inducers, sporadically there is evidence to suggest that both vertebrate predation and insect parasitoid attack may shape the optimal gall size. While the effects of parasitoids have been studied in detail, the influence of vertebrate predation is less well-investigated. To better understand this aspect of gall size evolution, we studied vertebrate predation on galls of Diplolepis rosae on rose (Rosa canina shrubs. We measured predation frequency, predation incidence, and predation rate in a large-scale observational field study, as well as an experimental field study. Our combined results suggest that, similarly to parasitoids, vertebrate predation makes a considerable contribution to mortality of gall inducer larvae. On the other hand, its influence on gall size is in direct contrast to the effect of parasitoids, as frequency of vertebrate predation increases with gall size. This suggests that the balance between predation and parasitoid attack shapes the optimal size of D. rosae galls.

  12. The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs.

    Science.gov (United States)

    Krivan, Vlastimil

    2007-11-01

    This article studies the effects of adaptive changes in predator and/or prey activities on the Lotka-Volterra predator-prey population dynamics. The model assumes the classical foraging-predation risk trade-offs: increased activity increases population growth rate, but it also increases mortality rate. The model considers three scenarios: prey only are adaptive, predators only are adaptive, and both species are adaptive. Under all these scenarios, the neutral stability of the classical Lotka-Volterra model is partially lost because the amplitude of maximum oscillation in species numbers is bounded, and the bound is independent of the initial population numbers. Moreover, if both prey and predators behave adaptively, the neutral stability can be completely lost, and a globally stable equilibrium would appear. This is because prey and/or predator switching leads to a piecewise constant prey (predator) isocline with a vertical (horizontal) part that limits the amplitude of oscillations in prey and predator numbers, exactly as suggested by Rosenzweig and MacArthur in their seminal work on graphical stability analysis of predator-prey systems. Prey and predator activities in a long-term run are calculated explicitly. This article shows that predictions based on short-term behavioral experiments may not correspond to long-term predictions when population dynamics are considered.

  13. Bald eagle predation on common loon egg

    Science.gov (United States)

    DeStefano, Stephen; McCarthy, Kyle P.; Laskowski, Tom

    2010-01-01

    The Common Loon (Gavia immer) must defend against many potential egg predators during incubation, including corvids, Herring Gulls (Larus argentatus), raccoons (Procyon lotor), striped skunk (Mephitis mephitis), fisher (Martes pennanti), and mink (Neovison vison) (McIntyre 1988, Evers 2004, McCann et al. 2005). Bald Eagles (Haliaeetus leucocephalus) have been documented as predators of both adult Common Loons and their chicks (Vliestra and Paruk 1997, Paruk et al. 1999, Erlandson et al. 2007, Piper et al. 2008). In Wisconsin, where nesting Bald Eagles are abundant (>1200 nesting pairs, >1 young/pair/year), field biologists observed four instances of eagle predation of eggs in loon nests during the period 2002–2004 (M. Meyer pers. comm.). In addition, four cases of eagle predation of incubating adult loons were inferred from evidence found at the loon nest (dozens of plucked adult loon feathers, no carcass remains) and/or loon leg, neck, and skull bones beneath two active eagle nests, including leg bones containing the bands of the nearby (<25 m) incubating adult loon. However, although loon egg predation has been associated with Bald Eagles, predation events have yet to be described in peer-reviewed literature. Here we describe a photographic observation of predation on a Common Loon egg by an immature Bald Eagle as captured by a nest surveillance video camera on Lake Umbagog, a large lake (32 km2) at Umbagog National Wildlife Refuge (UNWR) in Maine.

  14. Management of Large Predators in Alaska

    Directory of Open Access Journals (Sweden)

    Boertje, R.D.

    2005-06-01

    Full Text Available Populations of wolves (Canis lupus, brown bears (Ursus arctos, and black bears (Ursus americanus in Alaska are abundant and highly productive. Their long-term future is secure due to abundant habitat and good wildlife management practices. In many areas of Alaska hunting and trapping regulates wolf numbers and keep them "in balance" with moose populations. However, high predation rates by wolves can severely depress prey populations and then hold them at a very low density many years. This is often referred to as a predator pit. Several moose populations in interior Alaska are in predator pits. In some of these areas, high densities of black and brown bears complicate the situation. Bears generally prey on moose calves for only a few weeks after they are born, but in some areas they kill up to 65% of the calves produced. Moose populations faced with high levels of predation by both wolves and bears will not recover without special management actions to reduce the predation rate. Efforts to regulate predator populations outside of normal hunting and trapping seasons are highly controversial. Many people are very strongly opposed to reducing wolf or bear populations to increase moose populations and provide for a higher harvest by humans. Other people that depend on the moose for food and/or recreation strongly support predator management. It is a clash of values that is generates great controversy in Alaska. We provide a brief history of the controversy over predator management in Alaska and make recommendations on how to manage large predators in Alaska.

  15. Birds as predators in tropical agroforestry systems.

    Science.gov (United States)

    Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S

    2008-04-01

    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.

  16. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions.

    Science.gov (United States)

    Majdi, Nabil; Boiché, Anatole; Traunspurger, Walter; Lecerf, Antoine

    2014-07-01

    Predator effects on ecosystems can extend far beyond their prey and are often not solely lethally transmitted. Change in prey traits in response to predation risk can have important repercussions on community assembly and key ecosystem processes (i.e. trait-mediated indirect effects). In addition, some predators themselves alter habitat structure or nutrient cycling through ecological engineering effects. Tracking these non-trophic pathways is thus an important, yet challenging task to gain a better grasp of the functional role of predators. Multiple lines of evidence suggest that, in detritus-based food webs, non-trophic interactions may prevail over purely trophic interactions in determining predator effects on plant litter decomposition. This hypothesis was tested in a headwater stream by modulating the density of a flatworm predator (Polycelis felina) in enclosures containing oak (Quercus robur) leaf litter exposed to natural colonization by small invertebrates and microbial decomposers. Causal path modelling was used to infer how predator effects propagated through the food web. Flatworms accelerated litter decomposition through positive effects on microbial decomposers. The biomass of prey and non-prey invertebrates was not negatively affected by flatworms, suggesting that net predator effect on litter decomposition was primarily determined by non-trophic interactions. Flatworms enhanced the deposition and retention of fine sediments on leaf surface, thereby improving leaf colonization by invertebrates - most of which having strong affinities with interstitial habitats. This predator-induced improvement of habitat availability was attributed to the sticky nature of the mucus that flatworms secrete in copious amount while foraging. Results of path analyses further indicated that this bottom-up ecological engineering effect was as powerful as the top-down effect on invertebrate prey. Our findings suggest that predators have the potential to affect substantially

  17. Factors affecting livestock predation by lions in Cameroon

    NARCIS (Netherlands)

    Bommel, van L.; Vaate, bij de M.D.; Boer, de W.F.; Iongh, de H.H.

    2007-01-01

    Interviews were carried out in six villages south-west of Waza National Park, Cameroon, to investigate the impact of factors related to the occurrence of livestock raiding by lions. Data were analysed at the village and individual level. Livestock losses (cattle, sheep and/or goats) caused by lions

  18. Factors affecting livestock predation by lions in Cameroon

    NARCIS (Netherlands)

    Bommel, van L.; Vaate, bij de M.D.; Boer, de W.F.; Iongh, de H.H.

    2007-01-01

    Interviews were carried out in six villages south-west of Waza National Park, Cameroon, to investigate the impact of factors related to the occurrence of livestock raiding by lions. Data were analysed at the village and individual level. Livestock losses (cattle, sheep and/or goats) caused by lions

  19. What cues do ungulates use to assess predation risk in dense temperate forests?

    Directory of Open Access Journals (Sweden)

    Dries P J Kuijper

    Full Text Available Anti-predator responses by ungulates can be based on habitat features or on the near-imminent threat of predators. In dense forest, cues that ungulates use to assess predation risk likely differ from half-open landscapes, as scent relative to sight is predicted to be more important. We studied, in the Białowieża Primeval Forest (Poland, whether perceived predation risk in red deer (Cervus elaphus and wild boar (Sus scrofa is related to habitat visibility or olfactory cues of a predator. We used camera traps in two different set-ups to record undisturbed ungulate behavior and fresh wolf (Canis lupus scats as olfactory cue. Habitat visibility at fixed locations in deciduous old growth forest affected neither vigilance levels nor visitation rate and cumulative visitation time of both ungulate species. However, red deer showed a more than two-fold increase of vigilance level from 22% of the time present on control plots to 46% on experimental plots containing one wolf scat. Higher vigilance came at the expense of time spent foraging, which decreased from 32% to 12% while exposed to the wolf scat. These behavioral changes were most pronounced during the first week of the experiment but continuous monitoring of the plots suggested that they might last for several weeks. Wild boar did not show behavioral responses indicating higher perceived predation risk. Visitation rate and cumulative visitation time were not affected by the presence of a wolf scat in both ungulate species. The current study showed that perceived predation risk in red deer and wild boar is not related to habitat visibility in a dense forest ecosystem. However, olfactory cues of wolves affected foraging behavior of their preferred prey species red deer. We showed that odor of wolves in an ecologically equivalent dose is sufficient to create fine-scale risk factors for red deer.

  20. Sea urchins, their predators and prey in SW Portugal

    Directory of Open Access Journals (Sweden)

    Nuno Mamede

    2014-06-01

    Full Text Available Sea urchins play a key role structuring benthic communities of rocky shores through an intense herbivory. The most abundant sea urchin species on shallow rocky subtidal habitats of the SW coast of Portugal is Paracentrotus lividus (Echinodermata: Echinoidea. It is considered a key species in various locations throughout its geographical distribution by affecting the structure of macroalgae communities and may cause the abrupt transformation of habitats dominated by foliose algae to habitats dominated by encrusting algae - the urchin barrens. The removal of P. lividus predators by recreational and commercial fishing is considered a major cause of this phenomenon by affecting the trophic relationships between predators, sea urchins and algae communities. Marine protected areas (MPAs usually lead to the recovery of important predator species that control sea urchin populations and restore habitats dominated by foliose macroalgae. Therefore, MPAs provide a good opportunity to test cascading effects and indirect impacts of fishing at the ecosystem level. The ecological role of P. lividus was studied on rocky subtidal habitats of the SW coast of Portugal (Alentejo considering three trophic levels: population of P. lividus, their predators (fish and shellfish and their prey (macroalgae communities. Several studies were conducted: (1 a non-destructive observational study on the abundance and distribution patterns of P. lividus, their predators and preys, comparing areas with different protection; (2 a manipulative in situ study with cages to assess the role of P. lividus as an herbivore and the influence of predation; (3 a descriptive study of P. lividus predators based on underwater filming; (4 and a study of human perception on these trophic relationships and other issues on sea urchin ecology and fishery, based on surveys made to fishermen and divers. Subtidal studies were performed with SCUBA diving at 3-12 m deep. Results indicate that in the

  1. Protist predation can favour cooperation within bacterial species

    Science.gov (United States)

    Friman, Ville-Petri; Diggle, Stephen P.; Buckling, Angus

    2013-01-01

    Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system. PMID:23945212

  2. Predator evasion by white-tailed deer fawns

    Science.gov (United States)

    Grovenburg, Troy W.; Monteith, Kevin L.; Klaver, Robert W.; Jenks, Jonathan A.

    2012-01-01

    Despite their importance for understanding predator–prey interactions, factors that affect predator evasion behaviours of offspring of large ungulates are poorly understood. Our objective was to characterize the influence of selection and availability of escape cover and maternal presence on predator evasion by white-tailed deer, Odocoileus virginianus, fawns in the northern Great Plains, U.S.A. We observed 45 coyote, Canis latrans, chases of fawns, and we participated in 83 human chases of fawns during 2007–2009, of which, 19 and 42 chases, respectively, ended with capture of the fawn. Evasive techniques used by fawns were similar for human and coyote chases. Likelihood of a white-tailed deer fawn escaping capture, however, was influenced by deer group size and a number of antipredator behaviours, including aggressive defence by females, initial habitat and selection of escape cover, all of which were modified by the presence of parturient females. At the initiation of a chase, fawns in grasslands were more likely to escape, whereas fawns in forested cover, cultivated land or wheat were more likely to be captured by a coyote or human. Fawns fleeing to wetlands and grasslands also were less likely to be captured compared with those choosing forested cover, wheat and cultivated land. Increased probability of capture was associated with greater distance to wetland and grassland habitats and decreased distance to wheat. Use of wetland habitat as a successful antipredator strategy highlights the need for a greater understanding of the importance of habitat complexity in predator avoidance.

  3. Self-made shelters protect spiders from predation

    Science.gov (United States)

    Manicom, Carryn; Schwarzkopf, Lin; Alford, Ross A.; Schoener, Thomas W.

    2008-01-01

    Many animals modify their environments, apparently to reduce predation risk, but the success of such endeavors, and their impact on the density and distribution of populations, are rarely rigorously demonstrated. We staged a manipulative experiment to assess the effectiveness of self-made shelters by web spiders as protection from natural enemies. Scincid lizards were included or excluded from 21 replicated 200-m2 plots, and spiders therein were classified as exposed or sheltered, depending on whether they were uncovered in their web or hidden in cocoons, leaves/debris, or burrows. We found that exposed spiders were greatly affected by the presence of predatory scincid lizards, whereas sheltered spiders were not. More specifically, lizards, which forage close to the ground, reduced the abundance of exposed spiders by two-thirds but had no effect on the abundance of sheltered spiders. Sheltered spiders were able to avoid predation and share space with lizards, suggesting that shelter construction is a mechanism for reducing predation risk and has important population consequences. PMID:18772383

  4. Dynamics of prey moving through a predator field: a model of migrating juvenile salmon

    Science.gov (United States)

    Petersen, J.H.; DeAngelis, D.L.

    2000-01-01

    The migration of a patch of prey through a field of relatively stationary predators is a situation that occurs frequently in nature. Making quantitative predictions concerning such phenomena may be difficult, however, because factors such as the number of the prey in the patch, the spatial length and velocity of the patch, and the feeding rate and satiation of the predators all interact in a complex way. However, such problems are of great practical importance in many management situations; e.g., calculating the mortality of juvenile salmon (smolts) swimming down a river or reservoir containing many predators. Salmon smolts often move downstream in patches short compared with the length of the reservoir. To take into account the spatial dependence of the interaction, we used a spatially-explicit, individual-based modeling approach. We found that the mortality of prey depends strongly on the number of prey in the patch, the downstream velocity of prey in the patch, and the dispersion or spread of the patch in size through time. Some counterintuitive phenomena are predicted, such as predators downstrean capturing more prey per predator than those upstream, even though the number of prey may be greatly depleted by the time the prey patch reaches the downstream predators. Individual-based models may be necessary for complex spatial situations, such as salmonid migration, where processes such as schooling occur at fine scales and affect system predictions. We compare some results to predictions from other salmonid models. (C) 2000 Elsevier Science Inc.

  5. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    Science.gov (United States)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  6. Predation risk determines breeding territory choice in a Mediterranean cavity-nesting bird community.

    Science.gov (United States)

    Parejo, Deseada; Avilés, Jesús M

    2011-01-01

    Non-direct effects of predation can be an important component of the total effect of predation, modulating animal population and community dynamics. The isolated effects of predation risk on the spatial organisation of the breeding bird community, however, remains poorly studied. We investigated whether an experimentally increased predation risk prior to reproduction affected breeding territory selection and subsequent reproductive strategies in three Mediterranean cavity-nesting birds, i.e., the little owl Athene noctua, European roller Coracias garrulus and scops owl Otus scops. We found that territories used the previous year were more likely to be re-occupied when they belonged to the safe treatment rather than to the risky treatment. The first choice of breeders of all three species was for safe territories over risky ones. When all breeding attempts in the season (i.e., final occupation) were considered, breeders also preferred safe to risky sites. In addition, little owls laid larger eggs in risky territories than in safe territories. Our study provides experimental evidence of a rapid preventive response of the three most abundant species in a cavity-nesting bird community to a short-term manipulation of predation risk. This response highlights the key role of the non-direct effects of predation in modulating avian community organisation.

  7. Demographic stochasticity reduces the synchronizing effect of dispersal in predator-prey metapopulations.

    Science.gov (United States)

    Simonis, Joseph L

    2012-07-01

    Dispersal may affect predator-prey metapopulations by rescuing local sink populations from extinction or by synchronizing population dynamics across the metapopulation, increasing the risk of regional extinction. Dispersal is likely influenced by demographic stochasticity, however, particularly because dispersal rates are often very low in metapopulations. Yet the effects of demographic stochasticity on predator-prey metapopulations are not well known. To that end, I constructed three models of a two-patch predator-prey system. The models constitute a hierarchy of complexity, allowing direct comparisons. Two models included demographic stochasticity (pure jump process [PJP] and stochastic differential equations [SDE]), and the third was deterministic (ordinary differential equations [ODE]). One stochastic model (PJP) treated population sizes as discrete, while the other (SDE) allowed population sizes to change continuously. Both stochastic models only produced synchronized predator-prey dynamics when dispersal was high for both trophic levels. Frequent dispersal by only predators or prey in the PJP and SDE spatially decoupled the trophic interaction, reducing synchrony of the non-dispersive species. Conversely, the ODE generated synchronized predator-prey dynamics across all dispersal rates, except when initial conditions produced anti-phase transients. These results indicate that demographic stochasticity strongly reduces the synchronizing effect of dispersal, which is ironic because demographic stochasticity is often invoked post hoc as a driver of extinctions in synchronized metapopulations.

  8. Simulated seed predation reveals a variety of germination responses of neotropical rain forest species.

    Science.gov (United States)

    Vallejo-Marín, Mario; Domínguez, César A; Dirzo, Rodolfo

    2006-03-01

    Seed predation, an omnipresent phenomenon in tropical rain forests, is an important determinant of plant recruitment and forest regeneration. Although seed predation destroys large amounts of the seed crop of numerous tropical species, in many cases individual seed damage is only partial. The extent to which partial seed predation affects the recruitment of new individuals in the population depends on the type and magnitude of alteration of the germination behavior of the damaged seeds. We analyzed the germination dynamics of 11 tropical woody species subject to increasing levels of simulated seed predation (0-10% seed mass removal). Germination response to seed damage varied considerably among species but could be grouped into four distinct types: (1) complete inability to germinate under damage ≥1%, (2) no effect on germination dynamics, (3) reduced germination with increasing damage, and (4) reduced final germination but faster germination with increasing damage. We conclude that partial seed predation is often nonlethal and argue that different responses to predation may represent different proximal mechanisms for coping with partial damage, with potential to shape, in the long run, morphological and physiological adaptations in tropical, large-seeded species.

  9. Clever strategists: Australian Magpies vary mobbing strategies, not intensity, relative to different species of predator.

    Science.gov (United States)

    Koboroff, A; Kaplan, G; Rogers, Lj

    2013-01-01

    Anti-predator behaviour of magpies was investigated, using five species of model predators, at times of raising offspring. We predicted differences in mobbing strategies for each predator presented and also that raising juveniles would affect intensity of the mobbing event. Fourteen permanent resident family groups were tested using 5 different types of predator (avian and reptilian) known to be of varying degrees of risk to magpies and common in their habitat. In all, 210 trials were conducted (across three different stages of juvenile development). We found that the stage of juvenile development did not alter mobbing behaviour significantly, but predator type did. Aerial strategies (such as swooping) were elicited by taxidermic models of raptors, whereas a taxidermic model of a monitor lizard was approached on the ground and a model snake was rarely approached. Swooping patterns also changed according to which of the three raptors was presented. Our results show that, in contrast to findings in other species, magpies vary mobbing strategy depending on the predator rather than varying mobbing intensity.

  10. Clever strategists: Australian Magpies vary mobbing strategies, not intensity, relative to different species of predator

    Directory of Open Access Journals (Sweden)

    A Koboroff

    2013-03-01

    Full Text Available Anti-predator behaviour of magpies was investigated, using five species of model predators, at times of raising offspring. We predicted differences in mobbing strategies for each predator presented and also that raising juveniles would affect intensity of the mobbing event. Fourteen permanent resident family groups were tested using 5 different types of predator (avian and reptilian known to be of varying degrees of risk to magpies and common in their habitat. In all, 210 trials were conducted (across three different stages of juvenile development. We found that the stage of juvenile development did not alter mobbing behaviour significantly, but predator type did. Aerial strategies (such as swooping were elicited by taxidermic models of raptors, whereas a taxidermic model of a monitor lizard was approached on the ground and a model snake was rarely approached. Swooping patterns also changed according to which of the three raptors was presented. Our results show that, in contrast to findings in other species, magpies vary mobbing strategy depending on the predator rather than varying mobbing intensity.

  11. A specific area of olfactory cortex involved in stress hormone responses to predator odors

    Science.gov (United States)

    Kondoh, Kunio; Lu, Zhonghua; Ye, Xiaolan; Olson, David P.; Lowell, Bradford B.; Buck, Linda B.

    2016-01-01

    Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioral changes as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger1,2. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex that induces stress hormone responses to volatile predator odors. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic CRH (corticotropin releasing hormone) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odors. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormone, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odors without affecting a fear behavior. These findings suggest that AmPir, a small area comprising olfactory cortex, plays a key role in the hormonal component of the instinctive fear response to volatile predator scents. PMID:27001694

  12. A specific area of olfactory cortex involved in stress hormone responses to predator odours.

    Science.gov (United States)

    Kondoh, Kunio; Lu, Zhonghua; Ye, Xiaolan; Olson, David P; Lowell, Bradford B; Buck, Linda B

    2016-04-01

    Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioural changes, as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex in mice that induces stress hormone responses to volatile predator odours. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic corticotropin-releasing hormone (CRH) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odours. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormones, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odours without affecting a fear behaviour. These findings suggest that AmPir, a small area comprising olfactory cortex, plays a key part in the hormonal component of the instinctive fear response to volatile predator scents.

  13. System-Wide Significance of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs and Evaluation of Predation Control Measures : Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Gadomski, Dena M.; Petersen, James H.; Poe, Thomas P.

    1993-12-01

    This project had three major goals. The first was to assist the Oregon Department of Fish and Wildlife with predation indexing as part of an effort to estimate the relative magnitude of juvenile salmonid losses to northern squawfish Ptychocheilus oregonensis in reservoirs throughout the Columbia River Basin. The second goal was to evaluate the northern squawfish control program and test critical assumptions about mid-reservoir predation processes. The final goal was to determine mechanisms underlying northern squawfish recruitment and factors affecting year-class strength.

  14. Pastoralist-predator interaction at the roof of the world: Conflict dynamics and implications for conservation

    Directory of Open Access Journals (Sweden)

    Jaffar Ud. Din

    2017-06-01

    Full Text Available Pastoralism and predation are two major concomitantly known facts and matters of concern for conservation biologists worldwide. Pastoralist-predator conflict constitutes a major social-ecological concern in the Pamir mountain range encompassing Afghanistan, Pakistan, and Tajikistan, and affects community attitudes and tolerance toward carnivores. Very few studies have been conducted to understand the dynamics of livestock predation by large carnivores like snow leopards (Panthera uncia and wolves (Canis lupus, owing to the region's remoteness and inaccessibility. This study attempts to assess the intensity of livestock predation (and resulting perceptions by snow leopards and wolves across the Afghani, Pakistani, and Tajik Pamir range during the period January 2008-June 2012. The study found that livestock mortality due to disease is the most serious threat to livestock (an average 3.5 animal heads per household per year and ultimately to the rural economy (an average of US$352 per household per year as compared to predation (1.78 animal heads per household per year, US$191 in the three study sites. Overall, 1419 (315 per year heads of livestock were reportedly killed by snow leopards (47% and wolves (53% in the study sites. People with comparatively smaller landholdings and limited earning options, other than livestock rearing, expressed negative attitudes toward both wolves and snow leopards and vice versa. Education was found to be an effective solution to dilute people's hatred for predators. Low public tolerance of the wolf and snow leopard in general explained the magnitude of the threat facing predators in the Pamirs. This will likely continue unless tangible and informed conservation measures like disease control and predation compensation programs are taken among others.

  15. Vertebrate predator-prey interactions in a seasonal environment

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Berg, Thomas B; Forchhammer, Mads

    2008-01-01

    winters, predation by the only remaining predator, the stoat, is insufficient to regulate the lemming population. In the predator-lemming model, seasonality plays an important role in determining the. growth rate of the lemming population as well as the density of the various lemming predators. We...

  16. Coupled predator-prey oscillations in a chaotic food web

    NARCIS (Netherlands)

    Beninca, E.; Jöhnk, K.; Heerkloss, R.; Huisman, J.

    2009-01-01

    Coupling of several predator-prey oscillations can generate intriguing patterns of synchronization and chaos. Theory predicts that prey species will fluctuate in phase if predator-prey cycles are coupled through generalist predators, whereas they will fluctuate in anti-phase if predator-prey cycles

  17. Coupled predator-prey oscillations in a chaotic food web

    NARCIS (Netherlands)

    Benincà, E.; Johnk, K.D.; Heerkloss, R.; Huisman, J.

    2009-01-01

    Coupling of several predator-prey oscillations can generate intriguing patterns of synchronization and chaos. Theory predicts that prey species will fluctuate in phase if predator-prey cycles are coupled through generalist predators, whereas they will fluctuate in anti-phase if predator-prey cycles

  18. 2012 Fish Springs NWR predator report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report on a 2012 study to determine a relative index of predator populations, primarily coyote, on fish Springs National Wildlife refuge. Scat deposition transects...

  19. Apex Predators Program Age and Growth Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Apex Predators Program staff have collected vertebral centra from sportfishing tournaments, cruises, commercial fishermen and strandings in the Northeast US since...

  20. Apex Predators Program Sportfishing Tournament Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Apex Predators Program staff have collected shark sportfishing tournamant data from the Northeast US since the 1960's. These tournaments offer a unique opportunity...

  1. Predator trapping on Monte Vista NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This letter is summarizing the status of predator trapping on Monte Vista National Wildlife refuge in light of the referendum passes in the State of Colorado banning...

  2. Biodiversity effects of the predation gauntlet

    Science.gov (United States)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  3. Bat predation on nocturnally migrating birds

    OpenAIRE

    Ibáñez, Carlos; Juste, Javier; García-Mudarra, Juan L.; Agirre-Mendi, Pablo T.

    2001-01-01

    Bat predation on birds is a very rare phenomenon in nature. Most documented reports of bird-eating bats refer to tropical bats that occasionally capture resting birds. Millions of small birds concen- trate and cross over the world’s temperate regions during migra- tion, mainly at night, but no nocturnal predators are known to benefit from this enormous food resource. An analysis of 14,000 fecal pellets of the greater noctule bat (Nyctalus lasiopterus) reveals that this species captures a...

  4. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator

    Science.gov (United States)

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-01-01

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791

  5. Vulnerability of young white sturgeon, Acipenser transmontanus, to predation in the presence of alternative prey

    Science.gov (United States)

    Gadomski, D.M.; Parsley, M.J.

    2005-01-01

    We conducted laboratory trials to test the vulnerability of young white sturgeon, Acipenser transmontanus, to predation when an alternative prey was available. In trials with two species of predators, we observed two feeding patterns. When equal numbers of white sturgeon and goldfish, Carassius auratus, were available, prickly sculpins, Cottus asper, ingested more white sturgeon. Conversely, northern pikeminnow, Ptychocheilus oregonensis, ate more juvenile coho salmon, Oncorhynchus kisutch, than white sturgeon in three out of four sets of trials, but ate more white sturgeon in one set of trials. White sturgeon size and the availability of cover did not affect the proportions of prey species ingested. Our results indicate that predation may be affecting survival of white sturgeon larvae and juveniles in the wild and could be one factor limiting recruitment of young-of-the-year white sturgeon in some locations. ?? Springer 2005.

  6. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus, a globally invasive nest predator, by altering vegetation structure.

    Directory of Open Access Journals (Sweden)

    Jay Ruffell

    Full Text Available Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments. This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.

  7. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure.

    Science.gov (United States)

    Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.

  8. Predator-prey molecular ecosystems.

    Science.gov (United States)

    Fujii, Teruo; Rondelez, Yannick

    2013-01-22

    Biological organisms use intricate networks of chemical reactions to control molecular processes and spatiotemporal organization. In turn, these living systems are embedded in self-organized structures of larger scales, for example, ecosystems. Synthetic in vitro efforts have reproduced the architectures and behaviors of simple cellular circuits. However, because all these systems share the same dynamic foundations, a generalized molecular programming strategy should also support complex collective behaviors, as seen, for example, in animal populations. We report here the bottom-up assembly of chemical systems that reproduce in vitro the specific dynamics of ecological communities. We experimentally observed unprecedented molecular behaviors, including predator-prey oscillations, competition-induced chaos, and symbiotic synchronization. These synthetic systems are tailored through a novel, compact, and versatile design strategy, leveraging the programmability of DNA interactions under the precise control of enzymatic catalysis. Such self-organizing assemblies will foster a better appreciation of the molecular origins of biological complexity and may also serve to orchestrate complex collective operations of molecular agents in technological applications.

  9. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    G. Penido

    Full Text Available This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM. The complete model (with effects from edge distance and site and its interaction was significative (F3=4.43; p=0.005. Seeds had a larger predation rates in fragment’s interior in both areas, but in the controlled area (no disturbance this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001. We did not verify predator’s species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  10. Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Nicole A Schneider

    Full Text Available Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe. As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation. No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland. This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i that edge effects depend on edge contrast, (ii that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.

  11. On the density-dependence of seed predation in Dipteryx micrantha, a bat-dispersed rain forest tree.

    Science.gov (United States)

    Romo, Mónica; Tuomisto, Hanna; Loiselle, Bette A

    2004-06-01

    We studied the effect of seed density on seed predation by following the fate of bat-dispersed Dipteryx micrantha (Leguminosae) seeds deposited under bat feeding roosts. The study was conducted in Cocha Cashu biological station, Amazonian Peru, during the fruiting period of Dipteryx. Predation of Dipteryx seeds in the area is mainly by large to medium-sized rodents. Seed deposits beneath bat feeding roosts were monitored for a 13-week period in an 18-ha study area. A total of 210 seed deposits were found, and on average, seed predators encountered 22% of them during any one week. About one-third of the seed deposits escaped predation, and those deposits that had relatively few seeds were more likely to go unnoticed by rodents than were deposits with many seeds. The mean seed destruction rate was 8% per week; deposits with many seeds tended to lose a smaller proportion of their seeds to seed predators than did deposits with few seeds. Regression tests for the weekly data showed that, at the beginning of the observation period, seed predation was not density-dependent. Later, when the total seed crop beneath roosts was high, the number of seeds predated per deposit was positively density-dependent, while the proportion of seeds predated was negatively density-dependent, indicating predator satiation. Seed deposits that had been visited by seed predators once had a higher probability of being revisited the week after, especially if they contained many seeds when first encountered. This indicates that the foraging behavior of rodents may be affected by their remembering the location of seed-rich patches.

  12. Spatiotemporal dynamics of the epidemic transmission in a predator-prey system.

    Science.gov (United States)

    Su, Min; Hui, Cang; Zhang, Yanyu; Li, Zizhen

    2008-11-01

    Epidemic transmission is one of the critical density-dependent mechanisms that affect species viability and dynamics. In a predator-prey system, epidemic transmission can strongly affect the success probability of hunting, especially for social animals. Predators, therefore, will suffer from the positive density-dependence, i.e., Allee effect, due to epidemic transmission in the population. The rate of species contacting the epidemic, especially for those endangered or invasive, has largely increased due to the habitat destruction caused by anthropogenic disturbance. Using ordinary differential equations and cellular automata, we here explored the epidemic transmission in a predator-prey system. Results show that a moderate Allee effect will destabilize the dynamics, but it is not true for the extreme Allee effect (weak or strong). The predator-prey dynamics amazingly stabilize by the extreme Allee effect. Predators suffer the most from the epidemic disease at moderate transmission probability. Counter-intuitively, habitat destruction will benefit the control of the epidemic disease. The demographic stochasticity dramatically influences the spatial distribution of the system. The spatial distribution changes from oil-bubble-like (due to local interaction) to aggregated spatially scattered points (due to local interaction and demographic stochasticity). It indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation.

  13. Competition between apex predators? Brown bears decrease wolf kill rate on two continents.

    Science.gov (United States)

    Tallian, Aimee; Ordiz, Andrés; Metz, Matthew C; Milleret, Cyril; Wikenros, Camilla; Smith, Douglas W; Stahler, Daniel R; Kindberg, Jonas; MacNulty, Daniel R; Wabakken, Petter; Swenson, Jon E; Sand, Håkan

    2017-02-08

    Trophic interactions are a fundamental topic in ecology, but we know little about how competition between apex predators affects predation, the mechanism driving top-down forcing in ecosystems. We used long-term datasets from Scandinavia (Europe) and Yellowstone National Park (North America) to evaluate how grey wolf (Canis lupus) kill rate was affected by a sympatric apex predator, the brown bear (Ursus arctos). We used kill interval (i.e. the number of days between consecutive ungulate kills) as a proxy of kill rate. Although brown bears can monopolize wolf kills, we found no support in either study system for the common assumption that they cause wolves to kill more often. On the contrary, our results showed the opposite effect. In Scandinavia, wolf packs sympatric with brown bears killed less often than allopatric packs during both spring (after bear den emergence) and summer. Similarly, the presence of bears at wolf-killed ungulates was associated with wolves killing less often during summer in Yellowstone. The consistency in results between the two systems suggests that brown bear presence actually reduces wolf kill rate. Our results suggest that the influence of predation on lower trophic levels may depend on the composition of predator communities.

  14. Marine predators and persistent prey in the southeast Bering Sea

    Science.gov (United States)

    Sigler, Michael F.; Kuletz, Kathy J.; Ressler, Patrick H.; Friday, Nancy A.; Wilson, Christopher D.; Zerbini, Alexandre N.

    2012-06-01

    concentrated, and further, often in locations where these concentrations were persistent. Fin whales were associated with locations where age-1 pollock were more likely, similar to black-legged kittiwakes and thick-billed murres, but their association with euphausiids was unclear. Our results suggest that a predator's foraging mode and their restrictions during breeding affect their response to prey persistence.

  15. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    Science.gov (United States)

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  16. Olfactory response of the predator Zetzellia mali to a prey patch occupied by a conspecific predator

    NARCIS (Netherlands)

    Zahedi-Golpayegani, A.; Saboori, A.; Sabelis, M.W.

    2007-01-01

    While searching for food, predators may use volatiles associated with their prey, but also with their competitors for prey. This was tested for the case of Zetzellia mali (Ewing) (Acari: Stigmaeidae), an important predator of the hawthorn spider mite, Amphitetranychus viennensis (Zacher) (Acari: Tet

  17. Global Stability of a Predator-Prey System with Stage Structure for the Predator

    Institute of Scientific and Technical Information of China (English)

    Yan Ni XIAO; Lan Sun CHEN

    2004-01-01

    In this paper, some feasibly sufficient conditions are obtained for the global asymptotic stability of a positive steady state of a predator-prey system with stage structure for the predator by using the theory of competitive systems, compound matrices and stability of periodic orbits, and then the work of Wang [4] is improved.

  18. Predator interference effects on biological control: The "paradox" of the generalist predator revisited

    Science.gov (United States)

    Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar

    2016-10-01

    An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.

  19. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff

    DEFF Research Database (Denmark)

    Steiner, Uli; Van Buskirk, Josh

    2009-01-01

    allocation to defensive structures under predation risk. Here, we tested for a physiological origin of defence costs by measuring oxygen consumption in tadpoles (Rana temporaria) exposed to predation risk over short and long periods of time. The short term reaction was an increase in oxygen consumption...

  20. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  1. Anti-predator defence and the complexity-stability relationship of food webs

    NARCIS (Netherlands)

    Kondoh, M.

    2007-01-01

    The mechanism for maintaining complex food webs has been a central issue in ecology because theory often predicts that complexity (higher the species richness, more the interactions) destabilizes food webs. Although it has been proposed that prey anti-predator defence may affect the stability of pre

  2. Population dynamics of thrips prey and their mite predators in a refuge

    NARCIS (Netherlands)

    Magalhães, S.; Van Rijn, P.C.J.; Montserrat, M.; Pallini, A.; Sabelis, M.W.

    2007-01-01

    Prey refuges are expected to affect population dynamics, but direct experimental tests of this hypothesis are scarce. Larvae of western flower thrips Frankliniella occidentalis use the web produced by spider mites as a refuge from predation by the predatory mite Neoseiulus cucumeris. Thrips incur a

  3. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior

    Science.gov (United States)

    Dean E. Pearson

    2009-01-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa...

  4. Advanced autumn migration of sparrowhawk has increased the predation risk of long-distance migrants in Finland.

    Directory of Open Access Journals (Sweden)

    Aleksi Lehikoinen

    Full Text Available Predation affects life history traits of nearly all organisms and the population consequences of predator avoidance are often larger than predation itself. Climate change has been shown to cause phenological changes. These changes are not necessarily similar between species and may cause mismatches between prey and predator. Eurasian sparrowhawk Accipiter nisus, the main predator of passerines, has advanced its autumn phenology by about ten days in 30 years due to climate change. However, we do not know if sparrowhawk migrate earlier in response to earlier migration by its prey or if earlier sparrowhawk migration results in changes to predation risk on its prey. By using the median departure date of 41 passerine species I was able to show that early migrating passerines tend to advance, and late migrating species delay their departure, but none of the species have advanced their departure times as much as the sparrowhawk. This has lead to a situation of increased predation risk on early migrating long-distance migrants (LDM and decreased the overlap of migration season with later departing short-distance migrants (SDM. Findings highlight the growing list of problems of declining LDM populations caused by climate change. On the other hand it seems that the autumn migration may become safer for SDM whose populations are growing. Results demonstrate that passerines show very conservative response in autumn phenology to climate change, and thus phenological mismatches caused by global warming are not necessarily increasing towards the higher trophic levels.

  5. Resetting predator baselines in coral reef ecosystems

    Science.gov (United States)

    Bradley, Darcy; Conklin, Eric; Papastamatiou, Yannis P.; McCauley, Douglas J.; Pollock, Kydd; Pollock, Amanda; Kendall, Bruce E.; Gaines, Steven D.; Caselle, Jennifer E.

    2017-01-01

    What did coral reef ecosystems look like before human impacts became pervasive? Early efforts to reconstruct baselines resulted in the controversial suggestion that pristine coral reefs have inverted trophic pyramids, with disproportionally large top predator biomass. The validity of the coral reef inverted trophic pyramid has been questioned, but until now, was not resolved empirically. We use data from an eight-year tag-recapture program with spatially explicit, capture-recapture models to re-examine the population size and density of a key top predator at Palmyra atoll, the same location that inspired the idea of inverted trophic biomass pyramids in coral reef ecosystems. Given that animal movement is suspected to have significantly biased early biomass estimates of highly mobile top predators, we focused our reassessment on the most mobile and most abundant predator at Palmyra, the grey reef shark (Carcharhinus amblyrhynchos). We estimated a density of 21.3 (95% CI 17.8, 24.7) grey reef sharks/km2, which is an order of magnitude lower than the estimates that suggested an inverted trophic pyramid. Our results indicate that the trophic structure of an unexploited reef fish community is not inverted, and that even healthy top predator populations may be considerably smaller, and more precarious, than previously thought. PMID:28220895

  6. Invasion and predation in aquatic ecosystems

    Institute of Scientific and Technical Information of China (English)

    Judith S. WEIS

    2011-01-01

    This article reviews biological invasions in which predation (or its absence) plays a major role in the success of the invader.Examples are described in which the invader out-competes native species for the same food,and cases in which the invader consumes valued native species.In many instances,better predator avoidance by the invasive species or the absence of predators in the new habitat contributes to the success of the invaders; in other cases native or introduced predators appear to be able to keep the invasive species in check.A relatively new management approach in the US is the idea of adding another trophic level-to have humans act as the predators and consume the invasive species.This approach is being utilized in Florida and throughout the Caribbean against the lionfish,but could be extended to other fishes,as well as to various invasive crustaceans and mollusks.This idea is controversial,and current regulations prohibiting the possession of individuals of the invasive species (e.g.,mitten crabs or snakefish) would preclude the development of a fishery for them [Current Zoology 57 (5):613-624,2011].

  7. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    Science.gov (United States)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  8. Cool Headed Individuals Are Better Survivors: Non-Consumptive and Consumptive Effects of a Generalist Predator on a Sap Feeding Insect.

    Directory of Open Access Journals (Sweden)

    Orsolya Beleznai

    Full Text Available Non-consumptive effects (NCEs of predators are part of the complex interactions among insect natural enemies and prey. NCEs have been shown to significantly affect prey foraging and feeding. Leafhopper's (Auchenorrhyncha lengthy phloem feeding bouts may play a role in pathogen transmission in vector species and also exposes them to predation risk. However, NCEs on leafhoppers have been scarcely studied, and we lack basic information about how anti-predator behaviour influences foraging and feeding in these species. Here we report a study on non-consumptive and consumptive predator-prey interactions in a naturally co-occurring spider-leafhopper system. In mesocosm arenas we studied movement patterns during foraging and feeding of the leafhopper Psammotettix alienus in the presence of the spider predator Tibellus oblongus. Leafhoppers delayed feeding and fed much less often when the spider was present. Foraging movement pattern changed under predation risk: movements became more frequent and brief. There was considerable individual variation in foraging movement activity. Those individuals that increased movement activity in the presence of predators exposed themselves to higher predation risk. However, surviving individuals exhibited a 'cool headed' reaction to spider presence by moving less than leafhoppers in control trials. No leafhoppers were preyed upon while feeding. We consider delayed feeding as a "paradoxical" antipredator tactic, since it is not necessarily an optimal strategy against a sit-and-wait generalist predator.

  9. Cool Headed Individuals Are Better Survivors: Non-Consumptive and Consumptive Effects of a Generalist Predator on a Sap Feeding Insect.

    Science.gov (United States)

    Beleznai, Orsolya; Tholt, Gergely; Tóth, Zoltán; Horváth, Vivien; Marczali, Zsolt; Samu, Ferenc

    2015-01-01

    Non-consumptive effects (NCEs) of predators are part of the complex interactions among insect natural enemies and prey. NCEs have been shown to significantly affect prey foraging and feeding. Leafhopper's (Auchenorrhyncha) lengthy phloem feeding bouts may play a role in pathogen transmission in vector species and also exposes them to predation risk. However, NCEs on leafhoppers have been scarcely studied, and we lack basic information about how anti-predator behaviour influences foraging and feeding in these species. Here we report a study on non-consumptive and consumptive predator-prey interactions in a naturally co-occurring spider-leafhopper system. In mesocosm arenas we studied movement patterns during foraging and feeding of the leafhopper Psammotettix alienus in the presence of the spider predator Tibellus oblongus. Leafhoppers delayed feeding and fed much less often when the spider was present. Foraging movement pattern changed under predation risk: movements became more frequent and brief. There was considerable individual variation in foraging movement activity. Those individuals that increased movement activity in the presence of predators exposed themselves to higher predation risk. However, surviving individuals exhibited a 'cool headed' reaction to spider presence by moving less than leafhoppers in control trials. No leafhoppers were preyed upon while feeding. We consider delayed feeding as a "paradoxical" antipredator tactic, since it is not necessarily an optimal strategy against a sit-and-wait generalist predator.

  10. Do birds see the forest for the trees? Scale-dependent effects of tree diversity on avian predation of artificial larvae.

    Science.gov (United States)

    Muiruri, Evalyne W; Rainio, Kalle; Koricheva, Julia

    2016-03-01

    The enemies hypothesis states that reduced insect herbivory in mixed-species stands can be attributed to more effective top-down control by predators with increasing plant diversity. Although evidence for this mechanism exists for invertebrate predators, studies on avian predation are comparatively rare and have not explicitly tested the effects of diversity at different spatial scales, even though heterogeneity at macro- and micro-scales can influence bird foraging selection. We studied bird predation in an established forest diversity experiment in SW Finland, using artificial larvae installed on birch, alder and pine trees. Effects of tree species diversity and densities on bird predation were tested at two different scales: between plots and within the neighbourhood around focal trees. At the neighbourhood scale, birds preferentially foraged on focal trees surrounded by a higher diversity of neighbours. However, predation rates did not increase with tree species richness at the plot level and were instead negatively affected by tree height variation within the plot. The highest probability of predation was observed on pine, and rates of predation increased with the density of pine regardless of scale. Strong tree species preferences observed may be due to a combination of innate bird species preferences and opportunistic foraging on profitable-looking artificial prey. This study therefore finds partial support for the enemies hypothesis and highlights the importance of spatial scale and focal tree species in modifying trophic interactions between avian predators and insect herbivores in forest ecosystems.

  11. Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes.

    Science.gov (United States)

    Johnson, Darren W

    2006-05-01

    Density dependence in demographic rates can strongly affect the dynamics of populations. However, the mechanisms generating density dependence (e.g., predation) are also dynamic processes and may be influenced by local conditions. Understanding the manner in which local habitat features affect the occurrence and/or strength of density dependence will increase our understanding of population dynamics in heterogeneous environments. In this study I conducted two separate field experiments to investigate how local predator density and habitat complexity affect the occurrence and form of density-dependent mortality of juvenile rockfishes (Sebastes spp.). I also used yearly censuses of rockfish populations on nearshore reefs throughout central California to evaluate mortality of juvenile rockfish at large spatial scales. Manipulations of predators (juvenile bocaccio, S. paucispinus) and prey (kelp, gopher, and black-and-yellow [KGB] rockfish, Sebastes spp.) demonstrated that increasing the density of predators altered their functional response and thus altered patterns of density dependence in mortality of their prey. At low densities of predators, the number of prey consumed per predator was a decelerating function, and mortality of prey was inversely density dependent. However, at high densities of predators, the number of prey killed per predator became an accelerating response, and prey mortality was directly density dependent. Results of field experiments and large-scale surveys both indicated that the strength of density-dependent mortality may also be affected by the structural complexity of the habitat. In small-scale field experiments, increased habitat complexity increased the strength of density-dependent mortality. However, at large scales, increasing complexity resulted in a decrease in the strength of density dependence. I suggest that these differences resulted from scale-dependent changes in the predatory response that generated mortality. Whether

  12. The stabilizing effects of genetic diversity on predator-prey dynamics [v1; ref status: indexed, http://f1000r.es/9u

    Directory of Open Access Journals (Sweden)

    Christopher F Steiner

    2013-02-01

    Full Text Available Heterogeneity among prey in their susceptibility to predation is a potentially important stabilizer of predator-prey interactions, reducing the magnitude of population oscillations and enhancing total prey population abundance. When microevolutionary responses of prey populations occur at time scales comparable to population dynamics, adaptive responses in prey defense can, in theory, stabilize predator-prey dynamics and reduce top-down effects on prey abundance. While experiments have tested these predictions, less explored are the consequences of the evolution of prey phenotypes that can persist in both vulnerable and invulnerable classes. We tested this experimentally using a laboratory aquatic system composed of the rotifer Brachionus calyciflorus as a predator and the prey Synura petersenii, a colony-forming alga that exhibits genetic variation in its propensity to form colonies and colony size (larger colonies are a defense against predators. Prey populations of either low initial genetic diversity and low adaptive capacity or high initial genetic diversity and high adaptive capacity were crossed with predator presence and absence. Dynamics measured over the last 127 days of the 167-day experiment revealed no effects of initial prey genetic diversity on the average abundance or temporal variability of predator populations. However, genetic diversity and predator presence/absence interactively affected prey population abundance and stability; diversity of prey had no effects in the absence of predators but stabilized dynamics and increased total prey abundance in the presence of predators. The size structure of the genetically diverse prey populations diverged from single strain populations in the presence of predators, showing increases in colony size and in the relative abundance of cells found in colonies. Our work sheds light on the adaptive value of colony formation and supports the general view that genetic diversity and intraspecific

  13. Effects of Endosulfan on Predator-Prey Interactions Between Catfish and Schistosoma Host Snails.

    Science.gov (United States)

    Monde, Concillia; Syampungani, Stephen; Van den Brink, Paul J

    2016-08-01

    The effect of the pesticide endosulfan on predator-prey interactions between catfish and Schistosoma host snails was assessed in static tank experiments. Hybrid catfish (Clarias gariepinus × C. ngamensis) and Bulinus globosus were subjected to various endosulfan concentrations including an untreated control. The 48- and 96-h LC50 values for catfish were 1.0 and snails were 1137 and 810 µg/L. To assess sublethal effects on the feeding of the catfish on B. globosus, endosulfan concentrations between 0.03 and 1.0 µg/L were used. Predation was significantly greater (p snails using fish may be affected in endosulfan-polluted aquatic systems of Southern Africa because it has been found present at concentrations that are indicated to cause lethal effects on the evaluated hybrid catfish and to inhibit the predation of snails by this hybrid catfish.

  14. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?

    Directory of Open Access Journals (Sweden)

    Alexis eMosca

    2016-03-01

    Full Text Available Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.

  15. Change your diet or die: predator-induced shifts in insectivorous lizard feeding ecology.

    Science.gov (United States)

    Hawlena, Dror; Pérez-Mellado, Valentín

    2009-08-01

    Animal feeding ecology and diet are influenced by the fear of predation. While the mechanistic bases for such changes are well understood, technical difficulties often prevent testing how these mechanisms interact to affect a mesopredator's diet in natural environments. Here, we compared the insectivorous lizard Acanthodactylus beershebensis' feeding ecology and diet between high- and low-risk environments, using focal observations, intensive trapping effort and fecal pellet analysis. To create spatial variation in predation risk, we planted "artificial trees" in a scrubland habitat that lacks natural perches, allowing avian predators to hunt for lizards in patches that were previously unavailable to them. Lizards in elevated-risk environments became less mobile but did not change their microhabitat use or temporal activity. These lizards changed their diet, consuming smaller prey and less plant material. We suggest that diet shifts were mainly because lizards from risky environments consumed prey items that required shorter handling time.

  16. Bayesian inference for functional response in a stochastic predator-prey system.

    Science.gov (United States)

    Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio

    2008-02-01

    We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator-prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator-prey system relevant to biological control problems.

  17. Subsidies to predators, apparent competition and the phylogenetic structure of prey communities.

    Science.gov (United States)

    Helmus, Matthew R; Mercado-Silva, Norman; Vander Zanden, M Jake

    2013-11-01

    Ecosystems are fragmented by natural and anthropogenic processes that affect organism movement and ecosystem dynamics. When a fragmentation restricts predator but not prey movement, then the prey produced on one side of an ecosystem edge can subsidize predators on the other side. When prey flux is high, predator density on the receiving side increases above that possible by in situ prey productivity, and when low, the formerly subsidized predators can impose strong top-down control of in situ prey--in situ prey experience apparent competition from the subsidy. If predators feed on some evolutionary clades of in situ prey over others, then subsidy-derived apparent competition will induce phylogenetic structure in prey composition. Dams fragment the serial nature of river ecosystems by prohibiting movement of organisms and restricting flowing water. In the river tailwater just below a large central Mexican dam, fish density was high and fish gorged on reservoir-derived zooplankton. When the dam was closed, water flow and the zooplankton subsidy ceased, densely packed pools of fish formed, fish switched to feed on in situ prey, and the tailwater macroinvertebrate community was phylogenetic structured. We derived expectations of structure from trait-based community assembly models based on macroinvertebrate body size, tolerance to anthropogenic disturbance, and fish-diet selectivity. The diet-selectivity model best fit the observed tailwater phylogenetic structure. Thus, apparent competition from subsidies phylogenetically structures prey communities, and serial variation in phylogenetic community structure can be indicative of fragmentation in formerly continuous ecosystems.

  18. Lesser of Two Evils? Foraging Choices in Response to Threats of Predation and Parasitism

    Science.gov (United States)

    Koprivnikar, Janet; Penalva, Laura

    2015-01-01

    Predators have documented post-encounter (density-mediated) effects on prey but their pre-encounter impacts, including behavioural alterations, can be substantial as well. While it is increasingly evident that this “ecology of fear” is important to understand for natural enemy-victim relationships, fear responses of hosts to the threat of infection by a parasite are relatively unknown. We examined larval amphibian (Lithobates pipiens) foraging choices by experimentally manipulating the presence of cues relating to predator (larval odonate) or parasite (the trematode Ribeiroia ondatrae) threats. Tadpoles avoided foraging where predator or parasite cues were present; however, they did not treat these as equal hazards. When both threats were simultaneously present, tadpoles strongly preferred to forage under the threat of parasitism compared to predation, likely driven by their relative lethality in our study. Our results indicate that altered spatial use is an important anti-parasite behaviour, and demonstrate that parasite avoidance can affect foraging in a manner similar to predators, warranting greater study of the pre-encounter effects of this enemy type. PMID:25635765

  19. Salticid predation as one potential driving force of ant mimicry in jumping spiders.

    Science.gov (United States)

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-05-07

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods.

  20. Ocean acidification affects prey detection by a predatory reef fish.

    Directory of Open Access Journals (Sweden)

    Ingrid L Cripps

    Full Text Available Changes in olfactory-mediated behaviour caused by elevated CO(2 levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2 will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2 and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus. Predators were exposed to either current-day CO(2 levels or one of two elevated CO(2 levels (∼600 µatm or ∼950 µatm that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2 and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2 treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2 treatment and feeding activity was lower for fish in the mid CO(2 treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2 treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2 acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  1. Predation on Daphnia pulex by Lepidurus arcticus

    DEFF Research Database (Denmark)

    Christoffersen, Kirsten Seestern

    2001-01-01

    concentrations and the saturation levels were far above natural prey densities. Small-sized Daphnia (1.6 mm) were removed at significant faster rates (t-test, pLepidurus when offered in combination but not when offered separately. Although the recorded...... predation rates were biased due to the manipulated conditions (e.g. increased encounter rates), Lepidurus appears to be an active and efficient predator on planktonic prey, and its presence in arctic lakes and ponds may consequently have a significant impact on the structure of the planktonic food web...

  2. Predator-prey encounters in turbulent waters

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pécseli, H.L.;

    2002-01-01

    With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous and isot......With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous...

  3. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula

    Science.gov (United States)

    Friedlaender, Ari S.; Johnston, David W.; Fraser, William R.; Burns, Jennifer; Halpin, Patrick N.; Costa, Daniel P.

    2011-07-01

    Adélie penguins ( Pygoscelis adeliae), carabeater seals ( Lobodon carcinophagus), humpback ( Megaptera novaeangliae), and minke whales ( Balaenoptera bonaernsis) are found in the waters surrounding the Western Antarctic Peninsula. Each species relies primarily on Antarctic krill ( Euphausia superba) and has physiological constraints and foraging behaviors that dictate their ecological niches. Understanding the degree of ecological overlap between sympatric krill predators is critical to understanding and predicting the impacts on climate-driven changes to the Antarctic marine ecosystem. To explore ecological relationships amongst sympatric krill predators, we developed ecological niche models using a maximum entropy modeling approach (Maxent) that allows the integration of data collected by a variety of means (e.g. satellite-based locations and visual observations). We created spatially explicit probability distributions for the four krill predators in fall 2001 and 2002 in conjunction with a suite of environmental variables. We find areas within Marguerite Bay with high krill predator occurrence rates or biological hot spots. We find the modeled ecological niches for Adélie penguins and crabeater seals may be affected by their physiological needs to haul-out on substrate. Thus, their distributions may be less dictated by proximity to prey and more so by physical features that over time provide adequate access to prey. Humpback and minke whales, being fully marine and having greater energetic demands, occupy ecological niches more directly proximate to prey. We also find evidence to suggest that the amount of overlap between modeled niches is relatively low, even for species with similar energetic requirements. In a rapidly changing and variable environment, our modeling work shows little indication that krill predators maintain similar ecological niches across years around Marguerite Bay. Given the amount of variability in the marine environment around the

  4. Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral.

    Science.gov (United States)

    Shaver, Elizabeth C; Shantz, Andrew A; McMinds, Ryan; Burkepile, Deron E; Vega Thurber, Rebecca L; Silliman, Brian R

    2017-03-01

    By inflicting damage to prey tissues, consumer species may increase stress in prey hosts and reduce overall fitness (i.e., primary effects, such as growth or reproduction) or cause secondary effects by affecting prey interactions with other species such as microbes. However, little is known about how abiotic conditions affect the outcomes of these biotic interactions. In coral reef communities, both nutrient enrichment and predation have been linked to reduced fitness and disease facilitation in corals, yet no study to date has tested their combined effects on corals or their associated microbial communities (i.e., microbiomes). Here, we assess the effects of grazing by a prevalent coral predator (the short coral snail, Coralliophila abbreviata) and nutrient enrichment on staghorn coral, Acropora cervicornis, and its microbiomes using a factorial experiment and high-throughput DNA sequencing. We found that predation, but not nutrients, significantly reduced coral growth and increased mortality, tissue loss, and turf algae colonization. Partial predation and nutrient enrichment both independently altered coral microbiomes such that one bacterial genus came to dominate the microbial community. Nutrient-enriched corals were associated with significant increases in Rickettsia-like organisms, which are currently one of several microbial groups being investigated as a disease agent in this coral species. However, we found no effects of nutrient enrichment on coral health, disease, or their predators. This research suggests that in the several months following coral transplantation (i.e., restoration) or disturbance (i.e., recovery), Caribbean acroporid corals appear to be highly susceptible to negative effects caused by predators, but not or not yet susceptible to nutrient enrichment despite changes to their microbial communities.

  5. Linking biomechanics and ecology through predator-prey interactions: flight performance of dragonflies and their prey.

    Science.gov (United States)

    Combes, S A; Rundle, D E; Iwasaki, J M; Crall, J D

    2012-03-15

    Aerial predation is a highly complex, three-dimensional flight behavior that affects the individual fitness and population dynamics of both predator and prey. Most studies of predation adopt either an ecological approach in which capture or survival rates are quantified, or a biomechanical approach in which the physical interaction is studied in detail. In the present study, we show that combining these two approaches provides insight into the interaction between hunting dragonflies (Libellula cyanea) and their prey (Drosophila melanogaster) that neither type of study can provide on its own. We performed >2500 predation trials on nine dragonflies housed in an outdoor artificial habitat to identify sources of variability in capture success, and analyzed simultaneous predator-prey flight kinematics from 50 high-speed videos. The ecological approach revealed that capture success is affected by light intensity in some individuals but that prey density explains most of the variability in success rate. The biomechanical approach revealed that fruit flies rarely respond to approaching dragonflies with evasive maneuvers, and are rarely successful when they do. However, flies perform random turns during flight, whose characteristics differ between individuals, and these routine, erratic turns are responsible for more failed predation attempts than evasive maneuvers. By combining the two approaches, we were able to determine that the flies pursued by dragonflies when prey density is low fly more erratically, and that dragonflies are less successful at capturing them. This highlights the importance of considering the behavior of both participants, as well as their biomechanics and ecology, in developing a more integrative understanding of organismal interactions.

  6. Seasonally perturbed prey-predator system with predator-dependent functional response

    Energy Technology Data Exchange (ETDEWEB)

    Gakkhar, Sunita E-mail: sungkfma@iitr.ernet.in; Naji, Raid Kamel E-mail: naj66dma@iitr.ernet.in

    2003-12-01

    The effect of seasonality on the prey-predator model with predator-dependent trophic function is investigated analytically as well as numerically. The effect of periodic variations is considered on two different parameters of the system: the growth rate of prey and the death rate of the predators. The two parameters may not be in the same phase. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that seasonality in two different parameters with or without phase difference can give rise to multiple attractors, including chaos, with variations in critical parameters.

  7. Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities

    DEFF Research Database (Denmark)

    Viitasalo, M; Kiørboe, T; Flinkman, J.;

    1998-01-01

    We investigated the vulnerability of 2 copepod species (Eurytemora affinis and Temora longicornis) to predation by predators with different foraging modes, three-spined stickleback Gasterosteus aculeatus juveniles and mysid shrimps Neomysis integer. Copepods were videofilmed escaping from predators...... of the sticklebacks was higher than that of mysids. In the case of sticklebacks foraging on E. affinis, copepod reaction distance was significantly correlated with stickleback approaching speed; sticklebacks captured a copepod only if they were able to slowly approach to within a strike distance of...

  8. Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Directory of Open Access Journals (Sweden)

    Irene K Voellmy

    Full Text Available Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour, compared with control conditions (playback of recordings from the same harbours without ship noise, affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus and the European minnow (Phoxinus phoxinus, which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.

  9. Rodent seed predation: effects on seed survival, recruitment, abundance, and dispersion of bird-dispersed tropical trees.

    Science.gov (United States)

    Velho, Nandini; Isvaran, Kavita; Datta, Aparajita

    2012-08-01

    Tropical tree species vary widely in their pattern of spatial dispersion. We focus on how seed predation may modify seed deposition patterns and affect the abundance and dispersion of adult trees in a tropical forest in India. Using plots across a range of seed densities, we examined whether seed predation levels by terrestrial rodents varied across six large-seeded, bird-dispersed tree species. Since inter-specific variation in density-dependent seed mortality may have downstream effects on recruitment and adult tree stages, we determined recruitment patterns close to and away from parent trees, along with adult tree abundance and dispersion patterns. Four species (Canarium resiniferum, Dysoxylum binectariferum, Horsfieldia kingii, and Prunus ceylanica) showed high predation levels (78.5-98.7%) and increased mortality with increasing seed density, while two species, Chisocheton cumingianus and Polyalthia simiarum, showed significantly lower seed predation levels and weak density-dependent mortality. The latter two species also had the highest recruitment near parent trees, with most abundant and aggregated adults. The four species that had high seed mortality had low recruitment under parent trees, were rare, and had more spaced adult tree dispersion. Biotic dispersal may be vital for species that suffer density-dependent mortality factors under parent trees. In tropical forests where large vertebrate seed dispersers but not seed predators are hunted, differences in seed vulnerability to rodent seed predation and density-dependent mortality can affect forest structure and composition.

  10. Predation intensity does not cause microevolutionary change in maximum speed or aerobic capacity in trinidadian guppies (Poecilia reticulata Peters).

    Science.gov (United States)

    Chappell, Mark; Odell, Jason

    2004-01-01

    We measured maximal oxygen consumption (VO(2max)) and burst speed in populations of Trinidadian guppies (Poecilia reticulata) from contrasting high- and low-predation habitats but reared in "common garden" conditions. We tested two hypothesis: first, that predation, which causes rapid life-history evolution in guppies, also impacts locomotor physiology, and second, that trade-offs would occur between burst and aerobic performance. VO(2max) was higher than predicted from allometry, and resting VO(2) was lower than predicted. There were small interdrainage differences in male VO(2max), but predation did not affect VO(2max) in either sex. Maximum burst speed was correlated with size; absolute burst speed was higher in females, but size-adjusted speed was greater in males. For both sexes, burst speed conformed to allometric predictions. There were differences in burst speed between drainages in females, but predation regime did not affect burst speed in either sex. We did not find a significant correlation between burst speed and VO(2max), suggesting no trade-off between these traits. These results indicate that predation-mediated evolution of guppy life history does not produce concomitant evolution in aerobic capacity and maximum burst speed. However, other aspects of swimming performance (response latencies or acceleration) might show adaptive divergence in contrasting predation regimes.

  11. Microhabitat preference and vertical use of space by patas monkeys (Erythrocebus patas) in relation to predation risk and habitat structure.

    Science.gov (United States)

    Enstam, Karin L; Isbell, Lynne A

    2004-01-01

    Habitat structure can be important in determining habitat preference of animals because it is often closely linked to factors that affect survival and reproduction, such as food availability and predation risk. Here we examine the ways in which microhabitat structure and predation risk affect the habitat preference of wild patas monkeys (Erythrocebus patas). Patas monkeys in Kenya are typically restricted to Acacia drepanolobium habitat, but within our study group's home range, there are two distinct microhabitats, one with taller trees ('tall microhabitat') and one with apparently perennially shorter trees ('short microhabitat'). Examination of ranging behavior indicates that the patas monkeys preferred the tall microhabitat. In the tall microhabitat, focal animals climbed into trees that were significantly taller than average, indicating that they preferred tall trees. Female patas monkeys spent more time scanning from tall trees than from short trees and detected predators only from taller than average trees, based on alarm call data. Their use of tall trees may have decreased their predation risk by increasing their ability to detect predators. We found no evidence of increased food availability or reduced predator presence in the tall microhabitat that could contribute to the monkeys' preference for the tall microhabitat.

  12. Prey-predator dynamics in communities of culturable soil bacteria and protozoa: differential effects of mercury

    DEFF Research Database (Denmark)

    Holtze, M. S.; Ekelund, F.; Rasmussen, Lasse Dam

    2003-01-01

    We investigated whether the prey-predator dynamics of bacteria and protozoa were affected by inorganic mercury at concentrations of 0, 3.5 and 15 mg Hg(II) kg soil(-1). The amount of bioavailable Hg was estimated using a biosensor-assay based on the mer-lux gene fusion. The numbers of bacterial...... with 1/100 TSB as growth medium were also negatively affected by Hg. The different fractions of protozoa were affected to different degrees suggesting that amoebae were less sensitive than slow-growing flagellates, which again were less sensitive than the fast-growing flagellates. In contrast, Hg did...... not induce any detectable changes in the diversity of flagellate morphotypes. In the treatment with 15 mg Hg kg(-1) a transiently increased number of bacteria was seen at day 6 probably concomitant with a decrease in the numbers of protozoa. This might indicate that Hg affected the prey-predator dynamics...

  13. Immune system evolution among anthropoid primates: parasites, injuries and predators.

    Science.gov (United States)

    Semple, Stuart; Cowlishaw, Guy; Bennett, Peter M

    2002-05-22

    In this study we investigate whether present-day variation in a key component of the immune system (baseline leucocyte concentrations) represents evolutionary adaptation to ecological factors. In particular, we test three hypotheses, namely that leucocyte concentrations will be positively related to one of the following: risk of disease transmission between hosts, which is related to host abundance (hypothesis 1), risk of disease infection from the environment due to parasite viability and abundance (hypothesis 2), and risk of injury and subsequent infection, for example following attacks by predators (hypothesis 3). No support was found for hypothesis 1: neither population density nor group size were associated with variation in leucocyte concentrations. Hypothesis 2 was supported: for both sexes, lymphocyte and phagocyte concentrations were positively correlated with annual rainfall, as predicted if interspecific variation in the immune system is related to parasite prevalence (primates suffer higher rates of parasitism in wetter habitats). Support was also provided for hypothesis 3: for both males and females, platelet concentrations were negatively related to body mass, as predicted if injury risk affects immune system evolution, because animals with larger body mass have a relatively lower surface area available to injury. Additional support was provided for hypothesis 3 by the finding that for males, the sex which plays the active role in troop defence and retaliation against predators, concentration of platelets was positively correlated with rate of predation. In conclusion, our analysis suggests that the risk of disease infection from the environment and the risk of injury have played a key role in immune system evolution among anthropoid primates.

  14. 2005 nest success data : Klettke WPA predator exclosure

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report summarizing nest success at Klettke Waterfowl Production Area predator exclosure on Kulm wetland Management District in 2005. In 2005, the Klettke predator...

  15. Experimental Evidence That Predation Promotes Divergence in Adaptive Radiation

    National Research Council Canada - National Science Library

    Patrik Nosil; Bernard J. Crespi

    2006-01-01

    .... The role and importance of other processes, such as predation, remains controversial. Here we use Timema stick insects to show that adaptive radiation can be driven by divergent selection from visual predators...

  16. Effects Of Predator Exclosures On Nesting Success Of Killdeer

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Nests of shorebirds are often destroyed by predators and in some instances predation may cause severe local declines in breeding success and in size of a breeding...

  17. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  18. Predator personality and prey behavioural predictability jointly determine foraging performance

    Science.gov (United States)

    Chang, Chia-chen; Teo, Huey Yee; Norma-Rashid, Y.; Li, Daiqin

    2017-01-01

    Predator-prey interactions play important roles in ecological communities. Personality, consistent inter-individual differences in behaviour, of predators, prey or both are known to influence inter-specific interactions. An individual may also behave differently under the same situation and the level of such variability may differ between individuals. Such intra-individual variability (IIV) or predictability may be a trait on which selection can also act. A few studies have revealed the joint effect of personality types of both predators and prey on predator foraging performance. However, how personality type and IIV of both predators and prey jointly influence predator foraging performance remains untested empirically. Here, we addressed this using a specialized spider-eating jumping spider, Portia labiata (Salticidae), as the predator, and a jumping spider, Cosmophasis umbratica, as the prey. We examined personality types and IIVs of both P. labiata and C. umbratica and used their inter- and intra-individual behavioural variation as predictors of foraging performance (i.e., number of attempts to capture prey). Personality type and predictability had a joint effect on predator foraging performance. Aggressive predators performed better in capturing unpredictable (high IIV) prey than predictable (low IIV) prey, while docile predators demonstrated better performance when encountering predictable prey. This study highlights the importance of the joint effect of both predator and prey personality types and IIVs on predator-prey interactions. PMID:28094288

  19. A minimal model of predator-swarm interactions.

    Science.gov (United States)

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  20. Evolutionary dynamics of prey exploitation in a metapopulation of predators

    NARCIS (Netherlands)

    Pels, S.H.; de Roos, A.M.; Sabelis, M.W.

    2002-01-01

    In well-mixed populations of predators and prey, natural selection favors predators with high rates of prey consumption and population growth. When spatial structure prevents the populations from being well mixed, such predators may have a selective disadvantage because they do not make full use of

  1. Weed seed predation in organic and conventional fields

    DEFF Research Database (Denmark)

    Navntoft, S; Wratten, S D; Kristensen, K;

    2009-01-01

    Enhanced biological control of weed seeds may improve sustainability of agricultural production. Biological control due to seed predation may be higher in organic fields because organic production generally supports more seed predators. To investigate such a difference, weed seed predation was st...

  2. Harvesting and Conversation in a Predator-Prey System

    NARCIS (Netherlands)

    Hoekstra, Jeljer; Bergh, van den Jeroen C.J.M.

    2001-01-01

    Optimal harvesting of prey in a predator-prey ecosystem is studiedunder the condition that the existence of the predator has value. Predators (birds) and humans (fishers) compete for prey (shellfish). The behavior of the system is studied and conditions for optimal control are deduced. Various optim

  3. Spider mite web mediates anti-predator behaviour

    NARCIS (Netherlands)

    Lemos, F.; de Almeida Sarmento, R.; Pallini, A.; Rosa Dias, C.; Sabelis, M.W.; Janssen, A.

    2010-01-01

    Herbivores suffer significant mortality from predation and are therefore subject to natural selection on traits promoting predator avoidance and resistance. They can employ an array of strategies to reduce predation, for example through changes in behaviour, morphology and life history. So far, the

  4. Levy Walks Suboptimal under Predation Risk.

    Directory of Open Access Journals (Sweden)

    Masato S Abe

    2015-11-01

    Full Text Available A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator's movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field.

  5. Some exclusion cages do not exclude predators

    Directory of Open Access Journals (Sweden)

    Olga M. C. C. Ameixa

    2011-12-01

    Full Text Available Exclusion techniques, such as cages, are the most frequently used means of evaluating the efficiency of natural enemies in suppressing the abundance of their prey. The growth rates and peak densities of aphid populations within cages are usually larger than those in uncaged populations. However, cages change the microenvironment and prevent aphids from emigrating. Attempts were made to avoid the change in the microenvironment by using cages with a large (8 mm mesh. Here we test the hypothesis that because of the large mesh size, predators can easily penetrate into such cages during an experiment. Our results have shown that cages with a large (8 mm mesh size do not prevent predators from entering the cages and therefore cannot be used as “exclusion cages” for measuring the effect of predators on aphid numbers. Other methods of assessing the effectiveness of natural enemies in reducing the abundance of their prey, like removing the predators or direct observations, should be used instead.

  6. Functional responses modified by predator density

    NARCIS (Netherlands)

    Kratina, P.; Vos, M.; Bateman, A.W.; Anholt, B.R.

    2009-01-01

    Realistic functional responses are required for accurate model predictions at the community level. However, controversy remains regarding which types of dependencies need to be included in functional response models. Several studies have shown an effect of very high predator densities on per capita

  7. Predator diversity hotspots in the blue ocean.

    Science.gov (United States)

    Worm, Boris; Lotze, Heike K; Myers, Ransom A

    2003-08-19

    Concentrations of biodiversity, or hotspots, represent conservation priorities in terrestrial ecosystems but remain largely unexplored in marine habitats. In the open ocean, many large predators such as tunas, sharks, billfishes, and sea turtles are of current conservation concern because of their vulnerability to overfishing and ecosystem role. Here we use scientific-observer records from pelagic longline fisheries in the Atlantic and Pacific Oceans to show that oceanic predators concentrate in distinct diversity hotspots. Predator diversity consistently peaks at intermediate latitudes (20-30 degrees N and S), where tropical and temperate species ranges overlap. Individual hotspots are found close to prominent habitat features such as reefs, shelf breaks, or seamounts and often coincide with zooplankton and coral reef hotspots. Closed-area models in the northwest Atlantic predict that protection of hotspots outperforms other area closures in safeguarding threatened pelagic predators from ecological extinction. We conclude that the seemingly monotonous landscape of the open ocean shows rich structure in species diversity and that these features should be used to focus future conservation efforts.

  8. Ants, rodents and seed predation in Proteaceae

    African Journals Online (AJOL)

    Ants may reduce seed predation by rapidly transporting and burying seeds in their .... the size and shape of inverted waste paper baskets or b) by securing a lid 5 ... Mimetes experiment was dry for only 3 h before rain set in. Ant activity ceased ...

  9. Predators, prey, and natural disasters attract ecologists.

    Science.gov (United States)

    Mlot, C

    1993-08-27

    Some 2200 ecologists turned out for the 78th annual meeting of the Ecological Society of America (ESA), held in Madison, Wisconsin, 31 July to 4 August. Among the offerings: reports on the effect of dams and levees on large river ecology, predator-prey interactions, how parasites might control evolution, and the impact of clearcutting on soil organisms.

  10. Carbon fluxes to Antarctic top predators

    NARCIS (Netherlands)

    Franeker, van J.A.; Bathmann, U.V.; Mathot, S.

    1997-01-01

    The role of birds, seals and whales in the overall biological carbon fluxes of the Southern Ocean has been estimated based on census counts of top predator individuals in the region. Using standard routines for conversion to food consumption and respiration rates we demonstrate that at most 0.3-0.6%

  11. Sexually Violent Predators and Civil Commitment Laws

    Science.gov (United States)

    Beyer Kendall, Wanda D.; Cheung, Monit

    2004-01-01

    This article analyzes the civil commitment models for treating sexually violent predators (SVPs) and analyzes recent civil commitment laws. SVPs are commonly defined as sex offenders who are particularly predatory and repetitive in their sexually violent behavior. Data from policy literature, a survey to all states, and a review of law review…

  12. Perceived predation risk as a function of predator dietary cues in terrestrial salamanders.

    Science.gov (United States)

    Murray; Jenkins

    1999-01-01

    Prey often avoid predator chemical cues, and in aquatic systems, prey may even appraise predation risk via cues associated with the predator's diet. However, this relationship has not been shown for terrestrial predator-prey systems, where the proximity of predators and prey, and the intensity of predator chemical cues in the environment, may be less than in aquatic systems. In the laboratory, we tested behavioural responses (avoidance, habituation and activity) of terrestrial red-backed salamanders, Plethodon cinereus, to chemical cues from garter snakes, Thamnophis sirtalis, fed either red-backed salamanders or earthworms (Lumbricus spp.). We placed salamanders in arenas lined with paper towels pretreated with snake chemicals, and monitored salamander movements during 120 min. Salamanders avoided substrates preconditioned by earthworm-fed (avoidanceX+/-SE=91.1+/-2.5%, N=25) and salamander-fed (95.2+/-2.5%, N=25) snakes, when tested against untreated substrate (control). Salamanders avoided cues from salamander-fed snakes more strongly (75.2+/-5.5%, N=25) than earthworm-fed snakes when subjected to both treatments simultaneously, implying that salamanders were sensitive to predator diet. Salamanders tended to avoid snake substrate more strongly during the last 60 min of a trial, but activity patterns were similar between salamanders exposed exclusively to control substrate versus those subject to snake cues. In another experiment, salamanders failed to avoid cues from dead conspecifics, suggesting that the stronger avoidance of salamander-fed snakes in the previous experiment was not directly due to chemical cues emitted by predator-killed salamanders. Salamanders also did not discriminate between cues from a salamander-fed snake versus a salamander-fed snake that was recently switched (i.e. <14 days) to an earthworm diet. Our results imply that terrestrial salamanders are sensitive to perceived predation risk via by-products of predator diet, and that snake

  13. Color plumage polymorphism and predator mimicry in brood parasites.

    Science.gov (United States)

    Trnka, Alfréd; Grim, Tomáš

    2013-05-10

    Plumage polymorphism may evolve during coevolution between brood parasites and their hosts if rare morph(s), by contravening host search image, evade host recognition systems better than common variant(s). Females of the parasitic common cuckoo (Cuculus canorus) are a classic example of discrete color polymorphism: gray females supposedly mimic the sparrowhawk (Accipiter nisus), while rufous females are believed to mimic the kestrel (Falco tinnunculus). Despite many studies on host responses to adult cuckoos comprehensive tests of the "hawk mimicry" and "kestrel mimicry" hypotheses are lacking so far. We tested these hypotheses by examining host responses to stuffed dummies of the sparrowhawk, kestrel, cuckoo and the innocuous turtle dove (Streptopelia turtur) as a control at the nest. Our experimental data from an aggressive cuckoo host, the great reed warbler (Acrocephalus arundinaceus), showed low effectiveness of cuckoo-predator mimicry against more aggressive hosts regardless of the type of model and the degree of perfection of the mimic. Specifically, warblers discriminated gray cuckoos from sparrowhawks but did not discriminate rufous cuckoos from kestrels. However, both gray and rufous cuckoos were attacked vigorously and much more than control doves. The ratio of aggression to gray vs. rufous cuckoo was very similar to the ratio between frequencies of gray vs. rufous cuckoo morphs in our study population. Overall, our data combined with previous results from other localities suggest polymorphism dynamics are not strongly affected by local predator model frequencies. Instead, hosts responses and discrimination abilities are proportional, other things being equal, to the frequency with which hosts encounter various cuckoo morphs near their nests. This suggests that female cuckoo polymorphism is a counter-adaptation to thwart a specific host adaptation, namely an ability to not be fooled by predator mimicry. We hypothesize the dangerousness of a particular

  14. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats.

    Science.gov (United States)

    Otte, Kathrin A; Schrank, Isabella; Fröhlich, Thomas; Arnold, Georg J; Laforsch, Christian

    2015-08-01

    Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator-induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator-free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator-exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high-throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype-dependent manner. Proteins connected to genotype-dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype-dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype-dependent and general molecular processes involved in predator-induced phenotypic plasticity in D. magna. © 2015 John Wiley & Sons Ltd.

  15. Global Stability for a Delayed Predator-Prey System with Stage Structure for the Predator

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2009-01-01

    Full Text Available A delayed predator-prey system with stage structure for the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of equilibria of the system is discussed. The existence of Hopf bifurcation at the positive equilibrium is established. By using an iteration technique and comparison argument, respectively, sufficient conditions are derived for the global stability of the positive equilibrium and two boundary equilibria of the system. Numerical simulations are carried out to illustrate the theoretical results.

  16. Undercover predators: Vegetation mediates foraging, trophic cascades, and biological control by omnivorous weed seed predators

    OpenAIRE

    Blubaugh, Carmen K

    2015-01-01

    Weed pressure is the most costly challenge that vegetable growers face, requiring more labor investment than other production inputs. Vertebrate and invertebrate seed predators destroy a large percentage of weed propagules on the soil surface, and their ecosystem services may ease labor requirements for farmers in herbicide-free systems. Cover provided by living vegetation is an important predictor of seed predator activity, and my dissertation takes a comprehensive approach to understanding ...

  17. Stress triangle: do introduced predators exert indirect costs on native predators and prey?

    Directory of Open Access Journals (Sweden)

    Jennifer R Anson

    Full Text Available Non-consumptive effects of predators on each other and on prey populations often exceed the effects of direct predation. These effects can arise from fear responses elevating glucocorticoid (GC hormone levels (predator stress hypothesis or from increased vigilance that reduces foraging efficiency and body condition (predator sensitive foraging hypothesis; both responses can lead to immunosuppression and increased parasite loads. Non-consumptive effects of invasive predators have been little studied, even though their direct impacts on local species are usually greater than those of their native counterparts. To address this issue, we explored the non-consumptive effects of the invasive red fox Vulpes vulpes on two native species in eastern Australia: a reptilian predator, the lace monitor Varanus varius and a marsupial, the ringtail possum Pseudocheirus peregrinus. In particular, we tested predictions derived from the above two hypotheses by comparing the basal glucocorticoid levels, foraging behaviour, body condition and haemoparasite loads of both native species in areas with and without fox suppression. Lace monitors showed no GC response or differences in haemoparasite loads but were more likely to trade safety for higher food rewards, and had higher body condition, in areas of fox suppression than in areas where foxes remained abundant. In contrast, ringtails showed no physiological or behavioural differences between fox-suppressed and control areas. Predator sensitive foraging is a non-consumptive cost for lace monitors in the presence of the fox and most likely represents a response to competition. The ringtail's lack of response to the fox potentially represents complete naiveté or strong and rapid selection to the invasive predator. We suggest evolutionary responses are often overlooked in interactions between native and introduced species, but must be incorporated if we are to understand the suite of forces that shape community

  18. Cascading effects of predation risk determine how marine predators become terrestrial prey on an oceanic island.

    Science.gov (United States)

    Thomsen, Sarah K; Green, David J

    2016-12-01

    Apex predators can suppress the foraging activity of mesopredators, which may then result in cascading benefits for the prey of those mesopredators. We studied the interactions between a top predator, the Barn Owl (Tyto alba), and their primary prey, an island endemic deer mouse (Peromyscus maniculatus elusus), which in turn consumes the eggs of seabirds nesting on Santa Barbara Island in California. Scripps's Murrelets (Synthliboramphus scrippsi), a threatened nocturnal seabird, arrive annually to breed on this island, and whose first egg is particularly vulnerable to predation by mice. We took advantage of naturally occurring extreme variations in the density of mice and owls on the island over 3 years and predicted that (1) mouse foraging would decrease with increasing predation risk from owls and moonlight and (2) these decreases in foraging would reduce predation on murrelet eggs. We measured the giving up densities of mice with experimental foraging stations and found that mice were sensitive to predation risk and foraged less when owls were more abundant and less during the full moon compared to the new moon. We also monitored the fates of 151 murrelet eggs, and found that murrelet egg predation declined as owl abundance increased, and was lower during the full moon compared to the new moon. Moreover, high owl abundance suppressed egg predation even when mice were extremely abundant. We conclude that there is a behaviorally mediated cascade such that owls on the island had a positive indirect effect on murrelet egg survival. Our study adds to the wider recognition of the strength of risk effects to structure food webs, as well as highlighting the complex ways that marine and terrestrial food webs can intersect. © 2016 by the Ecological Society of America.

  19. Predator-guided sampling reveals biotic structure in the bathypelagic.

    Science.gov (United States)

    Benoit-Bird, Kelly J; Southall, Brandon L; Moline, Mark A

    2016-02-24

    We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column.

  20. Predation of Five Generalist Predators on Brown Planthopper (Nilaparvata lugens Stål

    Directory of Open Access Journals (Sweden)

    Sri Karindah

    2015-09-01

    Full Text Available Two generalist predators of brown planthopper,Metioche vittaticollis and Anaxipha longipennis (Gryllidae have not been much studied in Indonesia. This research was conducted to study and compare the predatory ability of M. vittaticollis, A. longipennis (Gryllidae and three coleopterans, Paederus fuscipes (Staphylinidae, Ophionea sp. (Carabidae,and Micraspis sp. (Coccinellidae against brown planthopper (fourth and fifth instars under laboratory condition. In total, 20 nymphs of N. lugens were exposed for 2 hour to each predator for 5 consecutive days. Prey consumptions by the predatory crickets, M. vittaticollis and A. longipennis were greater than the other predators and followed by A. longipennis, Micraspis sp., P. fuscipes, and Ophionea sp. respectively. Consumption rates of M. vittaticolis and A. longipenis were also higher than other predators. Micraspis sp was more active on predation in the morning,while M. vittaticollis, A. longipennis, P. fuscipes, and Ophionea sp. were more active both in the morning and the night but not in the afternoon. However, all five species of predators were not so active in preying during the afternoon. In conclusion, a major effort should be extended to conserve these predatory crickets especially M. vittaticollis and A. longipennis.

  1. PERMANENCE OF A NONLINEAR PERIODIC PREDATOR-PREY SYSTEM WITH PREY DISPERSAL AND PREDATOR DENSITY-INDEPENDENCE

    Institute of Scientific and Technical Information of China (English)

    Lijuan Chen; Junyan Xu

    2009-01-01

    In this paper,a set of sufficient conditions which ensure the permanence of a nonlinear periodic predator-prey system with prey dispersal and predator density-independence are obtained,where the prey species can disperse among n patches,while the density-independent predator is confined to one of the patches and cannot disperse. Our results generalize some known results.

  2. PERMANENCE OF A NONLINEAR PERIODIC PREDATOR-PREY SYSTEM WITH PREY DISPERSAL AND PREDATOR DENSITY-INDEPENDENCE

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,a set of suffcient conditions which ensure the permanence of a nonlinear periodic predator-prey system with prey dispersal and predator density-independence are obtained,where the prey species can disperse among n patches,while the density-independent predator is confined to one of the patches and cannot disperse. Our results generalize some known results.

  3. Toxicity tests based on predator-prey and competitive interactions between freshwater macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, E.J.; Blockwell, S.J.; Pascoe, D. [Univ. of Wales Coll. of Cardiff (United Kingdom)

    1994-12-31

    Simple multi-species toxicity tests based on the predation of Daphnia magna Straus by Hydra oligactis (Pallas) and competition between Gammarus pulex (L.) and Asellus aquaticus (L.) were used to determine the effects of three reference chemicals. Criteria examined included functional responses; time to first captures; handling times (predator/prey systems) and co-existence and growth. The tests which proved most practicable and sensitive (lowest observed effects 0.1, 21, and 80 {micro}g/l for lindane, copper and 3,4 dichloroaniline, respectively) were: (1) predator-prey tests: determining changes in the size-structure of predated D. magna populations and (2) competition tests: measuring the feeding rate of G. pulex competing with A. aquaticus, using a bioassay based on the time-response analysis of the consumption of Artemia salina eggs. The concentration of a chemical which affected particular response criteria was fond to depend on the test system employed. Results of the tests indicated that effects were often not dose-related and that a given criterion could be variously affected by different test concentrations. The complex pattern of responses may be explained in terms of the differential sensitivity of the interacting species and perhaps subtle alteration in strategies. The sensitivity of the bioassay endpoints is compared to those of a range of single species tests, and their value for predicting the impact pollutants may have upon natural freshwater ecosystems is discussed.

  4. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster.

    Science.gov (United States)

    Culler, Lauren E; Ayres, Matthew P; Virginia, Ross A

    2015-09-22

    Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems.

  5. A non-autonomous stochastic predator-prey model.

    Science.gov (United States)

    Buonocore, Aniello; Caputo, Luigia; Pirozzi, Enrica; Nobile, Amelia G

    2014-04-01

    The aim of this paper is to consider a non-autonomous predator-prey-like system, with a Gompertz growth law for the prey. By introducing random variations in both prey birth and predator death rates, a stochastic model for the predator-prey-like system in a random environment is proposed and investigated. The corresponding Fokker-Planck equation is solved to obtain the joint probability density for the prey and predator populations and the marginal probability densities. The asymptotic behavior of the predator-prey stochastic model is also analyzed.

  6. The smell of success: the amount of prey consumed by predators determines the strength and range of cascading non-consumptive effects

    Directory of Open Access Journals (Sweden)

    Marc Weissburg

    2015-11-01

    Full Text Available We examined whether chemically mediated risk perception by prey and the effects of changes in prey behavior on basal resources vary as a function of the amount of prey biomass consumed by the predator. We studied these issues using a tritrophic system composed of blue crabs, Callinectes sapidus (top predator, mud crabs Panopeus herbstii (intermediate prey, and oysters Crassostrea virginica (basal resource. Working in a well characterized field environment where experiments preserve natural patterns of water flow, we found that biomass consumed by a predator determines the range, intensity and nature of prey aversive responses. Predators that consume large amounts of prey flesh more strongly diminish consumption of basal resources by prey and exert effects over a larger range (in space and time compared to predators that have eaten less. Less well-fed predators produce weaker effects, with the consequence that behaviorally mediated cascades preferentially occur in refuge habitats. Well-fed predators affected prey behavior and increased basal resources up to distances of 1–1.5 m, whereas predators fed restricted diet evoked changes in prey only when they were extremely close, typically 50 cm or less. Thus, consumptive and non-consumptive effects may be coupled; predators that have a greater degree of predatory success will affect prey traits more strongly and non-consumptive and consumptive effects may fluctuate in tandem, with some lag. Moreover, differences among predators in their degree of prey capture will create spatial and temporal variance in risk cue availability in the absence of underlying environmental effects.

  7. The prey's scent - Volatile organic compound mediated interactions between soil bacteria and their protist predators.

    Science.gov (United States)

    Schulz-Bohm, Kristin; Geisen, Stefan; Wubs, E R Jasper; Song, Chunxu; de Boer, Wietse; Garbeva, Paolina

    2017-03-01

    Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil protists and how that relates to direct feeding interactions. We observed that most bacteria affected protist activity by VOCs. However, the response of protists to the VOCs was strongly dependent on both the bacterial and protist interacting partner. Stimulation of protist activity by volatiles and in direct trophic interaction assays often coincided, suggesting that VOCs serve as signals for protists to sense suitable prey. Furthermore, bacterial terpene synthase mutants lost the ability to affect protists, indicating that terpenes represent key components of VOC-mediated communication. Overall, we demonstrate that volatiles are directly involved in protist-bacterial predator-prey interactions.

  8. Quantifying the impact of woodpecker predation on population dynamics of the emerald ash borer (Agrilus planipennis.

    Directory of Open Access Journals (Sweden)

    David E Jennings

    Full Text Available The emerald ash borer (EAB, Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp. since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.

  9. Quantifying the impact of woodpecker predation on population dynamics of the emerald ash borer (Agrilus planipennis).

    Science.gov (United States)

    Jennings, David E; Gould, Juli R; Vandenberg, John D; Duan, Jian J; Shrewsbury, Paula M

    2013-01-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.

  10. Local predation pressure predicts the strength of mobbing responses in tropical birds

    Institute of Scientific and Technical Information of China (English)

    Luis SANDOVAL; David R.WILSON

    2012-01-01

    Many birds join cooperative mobbing aggregations and collectively harass predators.Individuals participating in these ephemeral associations benefit by deterring the predator,but also incur energetic costs and increased risk of predation.Explaining the evolution of mobbing is challenging because individuals could prevail by selfishly seeking safety while allowing others to mob.An important step in understanding the evolution of mobbing is to identify factors affecting its expression.The ecological constraints model suggests that animals are more likely to cooperate under adverse environmental conditions,such as when local predation pressure is high.We tested this prediction by comparing the mobbing responses of several species of birds to the local abundance of their primary predator,the ferruginous pygmy-owl Glaucidium brasilianum.We used acoustic playback to elicit mobbing responses in environments where owls were common,uncommon,or rare.Stimuli were either the song of a ferruginous pygmy-owl or the mobbing calls of three of the owl's common prey species.During each playback,we characterized mobbing responses by noting the number of species and individuals that approached the loudspeaker,as well as the closest approach by any bird.Mobbing responses to both stimuli were strong in locations where Ferruginous Pygmy-owls were common,intermediate where owls were uncommon,and weak where they were rare.This pattern persisted even after controlling for differences in species richness and composition among the three environments.Results support the ecological constraints model and provide strong evidence that intense predation pressure increases the expression of cooperative mobbing in tropical birds.

  11. Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues

    Science.gov (United States)

    Imre, Istvan; Di Rocco, Richard T.; Brown, Grant E.; Johnson, Nicholas

    2016-01-01

    Predation is an unforgiving selective pressure affecting the life history, morphology and behaviour of prey organisms. Selection should favour organisms that have the ability to correctly assess the information content of alarm cues. This study investigated whether adult sea lamprey Petromyzon marinus habituate to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a heterospecific damage-released alarm cue (white sucker Catostomus commersoniiextract), predator cues (Northern water snake Nerodia sipedon washing, human saliva and 2-phenylethylamine hydrochloride (PEA HCl)) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract and human saliva) after they were pre-exposed 4 times or 8 times, respectively, to a given stimulus the previous night. Consistent with our prediction, adult sea lamprey maintained an avoidance response to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a predator cue presented at high relative concentration (PEA HCl) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract plus human saliva), irrespective of previous exposure level. As expected, adult sea lamprey habituated to a sympatric heterospecific damage-released alarm cue (white sucker extract) and a predator cue presented at lower relative concentration (human saliva). Adult sea lamprey did not show any avoidance of the Northern water snake washing and the Amazon sailfin catfish extract (heterospecific control). This study suggests that conspecific damage-released alarm cues and PEA HCl present the best options as natural repellents in an integrated management program aimed at controlling the abundance of sea lamprey in the Laurentian Great Lakes.

  12. Local predation pressure predicts the strength of mobbing responses in tropical birds

    Directory of Open Access Journals (Sweden)

    Luis SANDOVAL, David R. WILSON

    2012-10-01

    Full Text Available Many birds join cooperative mobbing aggregations and collectively harass predators. Individuals participating in these ephemeral associations benefit by deterring the predator, but also incur energetic costs and increased risk of predation. Explaining the evolution of mobbing is challenging because individuals could prevail by selfishly seeking safety while allowing others to mob. An important step in understanding the evolution of mobbing is to identify factors affecting its expression. The ecological constraints model suggests that animals are more likely to cooperate under adverse environmental conditions, such as when local predation pressure is high. We tested this prediction by comparing the mobbing responses of several species of birds to the local abundance of their primary predator, the ferruginous pygmy-owl Glaucidium brasilianum. We used acoustic playback to elicit mobbing responses in environments where owls were common, uncommon, or rare. Stimuli were either the song of a ferruginous pygmy-owl or the mobbing calls of three of the owl’s common prey species. During each playback, we characterized mobbing responses by noting the number of species and individuals that approached the loudspeaker, as well as the closest approach by any bird. Mobbing responses to both stimuli were strong in locations where Ferruginous Pygmy-owls were common, intermediate where owls were uncommon, and weak where they were rare. This pattern persisted even after controlling for differences in species richness and composition among the three environments. Results support the ecological constraints model and provide strong evidence that intense predation pressure increases the expression of cooperative mobbing in tropical birds [Current Zoology 58 (5: 781-790, 2012].

  13. Do Carolina chickadees (Poecile carolinensis) and tufted titmice (Baeolophus bicolor) attend to the head or body orientation of a perched avian predator?

    Science.gov (United States)

    Kyle, Steven C; Freeberg, Todd M

    2016-05-01

    Individuals of many prey species adjust their foraging behavior in response to the presence of a predator. Responding to predators takes time away from searching for and exploiting food resources. To balance between the need to avoid predation and the need to forage, individuals should attend to cues from predators that indicate risk. Two such cues might be the predator's head orientation (where it might be looking) and body orientation (where it might be moving). In the current study, flocks of Carolina chickadees, Poecile carolinensis, and tufted titmice, Baeolophus bicolor, were presented with perched hawk and owl models. Predator model head and body orientation were independently manipulated relative to a feeding station birds were using. Chickadees and titmice avoided the feeders more when the heads of the models were facing toward the feeders compared to facing away from the feeders. Calling behavior of birds was also affected by head orientation of the models. No effect of predator body orientation on chickadee and titmouse behavior was detected. The results indicate that when chickadees and titmice detect a perched avian predator, they assess risk primarily based upon its head orientation. (PsycINFO Database Record

  14. A minimal model of predator-swarm interactions

    CERN Document Server

    Chen, Yuxin

    2014-01-01

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a "weak" predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey are able to escape by "confusing" the predator: the prey forms a ring with the predator at the center. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that as the predator strength is increased, there is a transition (due to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute ...

  15. Alcohol impairs predation risk response and communication in zebrafish.

    Directory of Open Access Journals (Sweden)

    Thiago Acosta Oliveira

    Full Text Available The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.

  16. Presence of Native Prey Does Not Divert Predation on Exotic Pests by Harmonia axyridis in Its Indigenous Range.

    Directory of Open Access Journals (Sweden)

    Gui Fen Zhang

    Full Text Available In China, two invasive pests, Bemisia tabaci MEAM1 (Gennadius and Frankliniella occidentalis (Pergande, often co-occur with the native pest, Aphis gossypii (Glover, on plants of Malvaceae and Cucurbitaceae. All three are preyed on by the native ladybird, Harmonia axyridis (Pallas; however, the native predator might be expected to prefer native prey to the exotic ones due to a shared evolutionary past. In order to clarify whether the presence of native prey affected the consumption of these two invasive species by the native predator, field-cage experiments were conducted. A duplex qPCR was used to simultaneously detect both non-native pests within the gut of the predator. H. axyridis readily accepted both invasive prey species, but preferred B. tabaci. With all three prey species available, H. axyridis consumption of B. tabaci was 39.3±2.2% greater than consumption of F. occidentalis. The presence of A. gossypii reduced (by 59.9% on B. tabaci, and by 60.6% on F. occidentalis, but did not stop predation on the two exotic prey when all three were present. The consumption of B. tabaci was similar whether it was alone or together with A. gossypii. However, the presence of aphids reduced predation on the invasive thrips. Thus, some invasive prey may be incorporated into the prey range of a native generalist predator even in the presence of preferred native prey.

  17. Effects of carbaryl-bran bait on trap catch and seed predation by ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Fielding, Dennis J; DeFoliart, Linda S; Hagerty, Aaron M

    2013-04-01

    Carbaryl-bran bait is effective against grasshoppers without many impacts on nontarget organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species and their consumption of weed seeds have not been previously studied in agricultural settings in Alaska. This study examined the effect of grasshopper bran bait on carabid activity-density, as measured by pitfall trap catches, and subsequent predation by invertebrates of seeds of three species of weed. Data were collected in fallow fields in agricultural landscape in the interior of Alaska, near Delta Junction, in 2008 and 2010. Bait applications reduced ground beetle activity-density by over half in each of 2 yr of bait applications. Seed predation was generally low overall (1-10%/wk) and not strongly affected by the bait application, but predation of lambsquarters (Chenopodium album L.) seed was lower on treated plots in 1 yr (340 seeds recovered versus 317 seeds, on treated versus untreated plots, respectively). Predation of dandelion (Taraxacum officinale G. H. Weber ex Wiggers) seeds was correlated with ground beetle activity-density in 1 yr, and predation of dragonhead mint (Dracocephalum parvifolium Nutt.) seed in the other year. We conclude that applications of carbaryl-bran bait for control of grasshoppers will have only a small, temporary effect on weed seed populations in high-latitude agricultural ecosystems.

  18. Presence of Native Prey Does Not Divert Predation on Exotic Pests by Harmonia axyridis in Its Indigenous Range

    Science.gov (United States)

    Zhang, Gui Fen; Lövei, Gábor L; Wu, Xia; Wan, Fang Hao

    2016-01-01

    In China, two invasive pests, Bemisia tabaci MEAM1 (Gennadius) and Frankliniella occidentalis (Pergande), often co-occur with the native pest, Aphis gossypii (Glover), on plants of Malvaceae and Cucurbitaceae. All three are preyed on by the native ladybird, Harmonia axyridis (Pallas); however, the native predator might be expected to prefer native prey to the exotic ones due to a shared evolutionary past. In order to clarify whether the presence of native prey affected the consumption of these two invasive species by the native predator, field-cage experiments were conducted. A duplex qPCR was used to simultaneously detect both non-native pests within the gut of the predator. H. axyridis readily accepted both invasive prey species, but preferred B. tabaci. With all three prey species available, H. axyridis consumption of B. tabaci was 39.3±2.2% greater than consumption of F. occidentalis. The presence of A. gossypii reduced (by 59.9% on B. tabaci, and by 60.6% on F. occidentalis), but did not stop predation on the two exotic prey when all three were present. The consumption of B. tabaci was similar whether it was alone or together with A. gossypii. However, the presence of aphids reduced predation on the invasive thrips. Thus, some invasive prey may be incorporated into the prey range of a native generalist predator even in the presence of preferred native prey. PMID:27391468

  19. Foraging and predation risk for larval cisco (Coregonus artedi) in Lake Superior: a modelling synthesis of empirical survey data

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Quinlan, Henry R.; Berglund, Eric K.

    2014-01-01

    The relative importance of predation and food availability as contributors to larval cisco (Coregonus artedi) mortality in Lake Superior were investigated using a visual foraging model to evaluate potential predation pressure by rainbow smelt (Osmerus mordax) and a bioenergetic model to evaluate potential starvation risk. The models were informed by observations of rainbow smelt, larval cisco, and zooplankton abundance at three Lake Superior locations during the period of spring larval cisco emergence and surface-oriented foraging. Predation risk was highest at Black Bay, ON, where average rainbow smelt densities in the uppermost 10 m of the water column were >1000 ha−1. Turbid conditions at the Twin Ports, WI-MN, affected larval cisco predation risk because rainbow smelt remained suspended in the upper water column during daylight, placing them alongside larval cisco during both day and night hours. Predation risk was low at Cornucopia, WI, owing to low smelt densities (cisco survival at Black Bay and to a lesser extent at Twin Ports, and that starvation may be a major source of mortality at all three locations. The framework we describe has the potential to further our understanding of the relative importance of starvation and predation on larval fish survivorship, provided information on prey resources available to larvae are measured at sufficiently fine spatial scales and the models provide a realistic depiction of the dynamic processes that the larvae experience.

  20. Predation-related costs and benefits of conspecific attraction in songbirds--an agent-based approach.

    Science.gov (United States)

    Szymkowiak, Jakub; Kuczyński, Lechosław

    2015-01-01

    Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect) or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution). Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds' aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific attraction for

  1. Predation-related costs and benefits of conspecific attraction in songbirds--an agent-based approach.

    Directory of Open Access Journals (Sweden)

    Jakub Szymkowiak

    Full Text Available Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution. Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds' aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific

  2. Predation-Related Costs and Benefits of Conspecific Attraction in Songbirds—An Agent-Based Approach

    Science.gov (United States)

    Szymkowiak, Jakub; Kuczyński, Lechosław

    2015-01-01

    Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect) or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution). Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds’ aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific attraction for

  3. Scale Dependence of Female Ungulate Reproductive Success in Relation to Nutritional Condition, Resource Selection and Multi-Predator Avoidance.

    Directory of Open Access Journals (Sweden)

    Jared F Duquette

    Full Text Available Female ungulate reproductive success is dependent on the survival of their young, and affected by maternal resource selection, predator avoidance, and nutritional condition. However, potential hierarchical effects of these factors on reproductive success are largely unknown, especially in multi-predator landscapes. We expanded on previous research of neonatal white-tailed deer (Odocoileus virginianus daily survival within home ranges to assess if resource use, integrated risk of 4 mammalian predators, maternal nutrition, winter severity, hiding cover, or interactions among these variables best explained landscape scale variation in daily or seasonal survival during the post-partum period. We hypothesized that reproductive success would be limited greater by predation risk at coarser spatiotemporal scales, but habitat use at finer scales. An additive model of daily non-ideal resource use and maternal nutrition explained the most (69% variation in survival; though 65% of this variation was related to maternal nutrition. Strong support of maternal nutrition across spatiotemporal scales did not fully support our hypothesis, but suggested reproductive success was related to dam behaviors directed at increasing nutritional condition. These behaviors were especially important following severe winters, when dams produced smaller fawns with less probability of survival. To increase nutritional condition and decrease wolf (Canis lupus predation risk, dams appeared to place fawns in isolated deciduous forest patches near roads. However, this resource selection represented non-ideal resources for fawns, which had greater predation risk that led to additive mortalities beyond those related to resources alone. Although the reproductive strategy of dams resulted in greater predation of fawns from alternative predators, it likely improved the life-long reproductive success of dams, as many were late-aged (>10 years old and could have produced multiple litters

  4. Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss.

    Science.gov (United States)

    Dey, Cody J; Richardson, Evan; McGeachy, David; Iverson, Samuel A; Gilchrist, Hugh G; Semeniuk, Christina A D

    2017-05-01

    Climate change can influence interspecific interactions by differentially affecting species-specific phenology. In seasonal ice environments, there is evidence that polar bear predation of Arctic bird eggs is increasing because of earlier sea ice breakup, which forces polar bears into nearshore terrestrial environments where Arctic birds are nesting. Because polar bears can consume a large number of nests before becoming satiated, and because they can swim between island colonies, they could have dramatic influences on seabird and sea duck reproductive success. However, it is unclear whether nest foraging can provide an energetic benefit to polar bear populations, especially given the capacity of bird populations to redistribute in response to increasing predation pressure. In this study, we develop a spatially explicit agent-based model of the predator-prey relationship between polar bears and common eiders, a common and culturally important bird species for northern peoples. Our model is composed of two types of agents (polar bear agents and common eider hen agents) whose movements and decision heuristics are based on species-specific bioenergetic and behavioral ecological principles, and are influenced by historical and extrapolated sea ice conditions. Our model reproduces empirical findings that polar bear predation of bird nests is increasing and predicts an accelerating relationship between advancing ice breakup dates and the number of nests depredated. Despite increases in nest predation, our model predicts that polar bear body condition during the ice-free period will continue to decline. Finally, our model predicts that common eider nests will become more dispersed and will move closer to the mainland in response to increasing predation, possibly increasing their exposure to land-based predators and influencing the livelihood of local people that collect eider eggs and down. These results show that predator-prey interactions can have nonlinear responses to

  5. Predation risk suppresses the positive feedback between size structure and cannibalism.

    Science.gov (United States)

    Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya

    2011-11-01

    1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry

  6. Neurobiology of acoustically mediated predator detection.

    Science.gov (United States)

    Pollack, Gerald S

    2015-01-01

    Ultrasound-driven avoidance responses have evolved repeatedly throughout the insecta as defenses against predation by echolocating bats. Although the auditory mechanics of ears and the properties of auditory receptor neurons have been studied in a number of groups, central neural processing of ultrasound stimuli has been examined in only a few cases. In this review, I summarize the neuronal basis for ultrasound detection and predator avoidance in crickets, tettigoniids, moths, and mantises, where central circuits have been studied most thoroughly. Several neuronal attributes, including steep intensity-response functions, high firing rates, and rapid spike conduction emerge as common themes of avoidance circuits. I discuss the functional consequences of these attributes, as well as the increasing complexity with which ultrasound stimuli are represented at successive levels of processing.

  7. The Great White Guppy: Top Predator

    Science.gov (United States)

    Michalski, G. M.

    2011-12-01

    Nitrogen isotopes are often used to trace the trophic level of members of an ecosystem. As part of a stable isotope biogeochemistry and forensics course at Purdue University, students are introduced to this concept by analyzing nitrogen isotopes in sea food purchased from local grocery stores. There is a systematic increase in 15N/14N ratios going from kelp to clams/shrimp, to sardines, to tuna and finally to shark. These enrichments demonstrate how nitrogen is enriched in biomass as predators consume prey. Some of the highest nitrogen isotope enrichments observed, however, are in the common guppy. We investigated a number of aquarium fish foods and find they typically have high nitrogen isotope ratios because they are made form fish meal that is produced primarily from the remains of predator fish such as tuna. From, a isotope perspective, the guppy is the top of the food chain, more ferocious than even the Great White shark.

  8. Bat predation on nocturnally migrating birds.

    Science.gov (United States)

    Ibáñez, C; Juste, J; García-Mudarra, J L; Agirre-Mendi, P T

    2001-08-14

    Bat predation on birds is a very rare phenomenon in nature. Most documented reports of bird-eating bats refer to tropical bats that occasionally capture resting birds. Millions of small birds concentrate and cross over the world's temperate regions during migration, mainly at night, but no nocturnal predators are known to benefit from this enormous food resource. An analysis of 14,000 fecal pellets of the greater noctule bat (Nyctalus lasiopterus) reveals that this species captures and eats large numbers of migrating passerines, making it the only bat species so far known that regularly preys on birds. The echolocation characteristics and wing morphology of this species strongly suggest that it captures birds in flight.

  9. Additive effects of predator cues and dimethoate on different levels of biological organisation in the non-biting midge Chironomus riparius.

    Science.gov (United States)

    Van Praet, Nander; De Jonge, Maarten; Stoks, Robby; Bervoets, Lieven

    2014-10-01

    The combined effects of a pesticide and predation risk on sublethal endpoints in the midge Chironomus riparius were investigated using a combination of predator-release kairomones from common carp (Cyprinus carpio) and alarm substances from conspecifics together with the pesticide dimethoate. Midge larvae were exposed for 30 days to three sublethal dimethoate concentrations (0.01, 0.1 and 0.25 mg L(-1)) in the presence or absence of predator cues. Sublethal endpoints were analysed at different levels of biological organisation. Available energy reserves, enzyme biomarkers, feeding rate and life history endpoints were investigated. Three endpoints were significantly affected by the two highest dimethoate concentrations, i.e. AChE activity, age at emergence and emergence success, with a significant decrease in response after exposure to 0.25, 0.1 and 0.01 mg L(-1) dimethoate, respectively. Four sublethal endpoints were significantly affected by predator stress: Total protein content, GST activity and biomass decreased only in the presence of the predation risk, while AChE activity further decreased significantly in the presence of predation cues and effects on AChE of combined exposure were additive. From this study we can conclude that sublethal life history characteristics should be included in ecotoxicity testing as well as natural environmental stressors such as predator stress, which might act additively with pollutants on fitness related endpoints.

  10. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  11. Top marine predators track Lagrangian coherent structures.

    Science.gov (United States)

    Tew Kai, Emilie; Rossi, Vincent; Sudre, Joel; Weimerskirch, Henri; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marsac, Francis; Garçon, Veronique

    2009-05-19

    Meso- and submesoscales (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behavior and the displacement of marine top predators (tuna, birds, turtles, and cetaceans). In this work we focus on the role of submesoscale structures in the Mozambique Channel in the distribution of a marine predator, the Great Frigatebird. Using a newly developed dynamic concept, the finite-size Lyapunov exponent (FSLE), we identified Lagrangian coherent structures (LCSs) present in the surface flow in the channel over a 2-month observation period (August and September 2003). By comparing seabird satellite positions with LCS locations, we demonstrate that frigatebirds track precisely these structures in the Mozambique Channel, providing the first evidence that a top predator is able to track these FSLE ridges to locate food patches. After comparing bird positions during long and short trips and different parts of these trips, we propose several hypotheses to understand how frigatebirds can follow these LCSs. The birds might use visual and/or olfactory cues and/or atmospheric current changes over the structures to move along these biologic corridors. The birds being often associated with tuna schools around foraging areas, a thorough comprehension of their foraging behavior and movement during the breeding season is crucial not only to seabird ecology but also to an appropriate ecosystemic approach to fisheries in the channel.

  12. The effect of colored noise on spatiotemporal dynamics of biological invasion in a diffusive predator-prey system.

    Science.gov (United States)

    Wang, Wenting; Li, Wenlong; Li, Zizhen; Zhang, Hui

    2011-04-01

    Spatiotemporal dynamics of a predator-prey system is considered under the assumption that the predator is sensitive to colored noise. Mathematically, the model consists of two coupled diffusion-reactions. By means of extensive numerical simulations, the complex invasion pattern formations of the system are identified. The results show that a geographical invasion emerges without regional persistence when the intensity of colored noise is small. Remarkably, as the noise intensity increases, the species spreads via a patchy invasion only when the system is affected by red noise. Meanwhile, the relationship between local stability and global invasion is also considered. The predator, which becomes extinct in the system without diffusion, could invade locally when the system is affected by white noise. However, the local invasion is not followed by geographical spread.

  13. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator.

    Science.gov (United States)

    Hammill, Edd; Johnson, Ellery; Atwood, Trisha B; Harianto, Januar; Hinchliffe, Charles; Calosi, Piero; Byrne, Maria

    2017-08-29

    The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO2 370 μatm) or end-of-the-century OA (pCO2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective. © 2017 John Wiley & Sons

  14. The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    Science.gov (United States)

    Younger, Jane L; Emmerson, Louise M; Miller, Karen J

    2016-02-01

    The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; (i) the availability of ice-free ground for breeding and (ii) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long-term data on species' responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds

  15. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes.

    Science.gov (United States)

    Op De Beeck, Lin; Janssens, Lizanne; Stoks, Robby

    2016-03-01

    The control of vector mosquitoes is one of the biggest challenges facing humankind with the use of chemical pesticides often leading to environmental impact and the evolution of resistance. Although to a lesser extent, this also holds for Bacillus thuringiensis israelensis (Bti), the most widely used biological pesticide to control mosquito populations. This raises the need for the development of integrated pest management strategies that allow the reduction of Bti concentrations without loss of the mosquito control efficiency. To this end, we tested in a laboratory experiment the combined effects of larval exposure to a sublethal Bti concentration and predation risk cues on life history and physiology of larval and adult Culex pipiens mosquitoes. Besides natural predator kairomones and prey alarm cues, we also tested synthetic kairomones of Notonecta predators. Neither Bti nor predation risk cues affected mortality, yet when both stressors were combined mortality increased on average by 133% compared to the treatment with only predation risk cues. This synergistic interaction was also present when Bti was combined with synthetic kairomones. This was further reflected in changes of the composite index of population performance, which suggested lowered per capita growth rates in mosquitoes exposed to Bti but only when Bti was combined with synthetic kairomones. Furthermore, predation risk cues shortened larval development time, reduced mass at metamorphosis in males, and had an immunosuppressive effect in larval and adult mosquitoes which may affect the mosquito vector competence. We provide the first demonstration that synthetic kairomones may generate similar effects on prey as natural kairomones. The identified immunosuppressive effect of synthetic kairomones and the novel lethal synergism type between a biological pesticide and synthetic predator kairomones provide an important proof of principle illustrating the potential of this combination for integrated

  16. A long-term study on crustacean plankton of a shallow tropical lake: the role of invertebrate predation

    Directory of Open Access Journals (Sweden)

    Marlene S. Arcifa

    2015-06-01

    Full Text Available The primary factor that governs the size and species composition of zooplankton is still a controversial issue and temperature is considered the main factor responsible for latitudinal differences. In waters with a narrow temperature range, such as in the tropics, predation may be a more important factor. Nearly three decades of intermittent studies of the crustacean plankton in a shallow tropical lake revealed that the main event that led to their restructuring was the appearance of a second predator, the water mite Krendowskia sp. The new predator and larvae of the dipteran Chaoborus brasiliensis Theobald exerted a combined, although asymmetrical effect on microcrustaceans. The period when the mite was detected was followed by the restructuring of the crustacean plankton community. Predation by these two invertebrates emerged as the factor responsible for community changes, involving an increased contribution of copepods and decreases in the relative abundance of smaller cladoceran species. In the short term, the mite caused a decrease in species richness and the annual mean instantaneous composition of cladocerans, a predominance of large-sized species (Daphnia ambigua Scourfield and Daphnia gessneri Herbst and the virtual disappearance of small species (e.g., Bosmina tubicen Brehm. The long-term impact resulted in increased species richness and the dominance of large and medium-sized cladocerans, such as D. gessneri and Ceriodaphnia richardi Sars. The larger body size of three cladocerans, the two Daphnia species and B. tubicen, in the long term, may be a response to the dominant predator, Chaoborus. The seasonal variation in the predator abundance, mainly Chaoborus larvae, allowed the prey to recover during the cool season. The copepods Tropocyclops prasinus meridionalis (Fischer and Thermocyclops decipiens Kiefer were less affected by predation than the cladocerans; their contribution to the crustacean plankton increased 12-28% after the

  17. Trap Height Affects Capture of Lady Beetles (Coleoptera: Coccinellidae) in Pecan Orchards.

    Science.gov (United States)

    Cottrell, T E

    2017-04-01

    There is scarce information regarding the vertical stratification of predaceous Coccinellidae in tall trees. Although numerous studies have been done in orchards and forests, very few studies have assessed the occurrence of predaceous Coccinellidae high in tree canopies. The objective of this study was to examine the abundance of Coccinellidae at different heights in mature pecan, Carya illinoinensis (Wangenh.) K. Koch, orchards with tall trees. From spring through late fall during 2013 and 2014, yellow pyramidal Tedders traps were suspended in the pecan canopy at 6.1 and 12.2 m, in addition to being placed on the ground (0 m). The exotic species Harmonia axyridis and Coccinella septempunctata accounted for a high percentage of trap capture during this study. Except for Olla v-nigrum, low numbers of native species (Hippodamia convergens, Coleomegilla maculata, Cycloneda munda, Scymnus spp., and Hyperaspis spp.) were captured. However, significantly more were captured in ground traps rather than in canopy traps with the exception of O. v-nigrum. Similar to most native species, significantly more C. septempunctata were captured in ground traps than canopy traps. This contrasts sharply with H. axyridis captured similarly at all trap heights. The ability to exploit resources across vertical strata, unlike many intraguild predators, may be an underestimated factor helping to explain the invasiveness of H. axyridis. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by a US Government employee and is in the public domain in the US.

  18. Olfactory systems and neural circuits that modulate predator odor fear.

    Science.gov (United States)

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  19. Taphonomy for taxonomists: Implications of predation in small mammal studies

    Science.gov (United States)

    Fernández-Jalvo, Yolanda; Andrews, Peter; Denys, Christiane; Sesé, Carmen; Stoetzel, Emmanuelle; Marin-Monfort, Dolores; Pesquero, Dolores

    2016-05-01

    Predation is one of the most recurrent sources of bone accumulations. The influence of predation is widely studied for large mammal sites where humans, acting as predators, produce bone accumulations similar to carnivore accumulations. Similarly, small mammal fossil sites are mainly occupation levels of predators (nests or dens). In both cases, investigations of past events can be compared with present day equivalents or proxies. Chewing marks are sometimes present on large mammal predator accumulations, but digestion traits are the most direct indication of predation, and evidence for this is always present in small mammal (prey) fossil assemblages. Digestion grades and frequency indicates predator type and this is well established since the publication of Andrews (1990). The identification of the predator provides invaluable information for accurate interpretation of the palaeoenvironment. Traditionally, palaeoenvironmental interpretations are obtained from the taxonomic species identified in the site, but rather than providing direct interpretations of the surrounding palaeoenvironment, this procedure actually describes the dietary preferences of the predators and the type of occupation (nests, marking territory, dens, etc). This paper reviews the identification of traits produced by predators on arvicolins, murins and soricids using a method that may be used equally by taxonomists and taphonomists. It aims to provide the "tools" for taxonomists to identify the predator based on their methodology, which is examining the occlusal surfaces of teeth rather than their lateral aspects. This will greatly benefit both the work of taphonomists and taxonomists to recognize signs of predation and the improvement of subsequent palaeoecological interpretations of past organisms and sites by identifying both the prey and the predator.

  20. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  1. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.

    Science.gov (United States)

    Kooi, Bob W; Venturino, Ezio

    2016-04-01

    In this paper we analyse a predator-prey model where the prey population shows group defense and the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig-MacArthur predator-prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group defense leads to a square root dependence in the Holling type II functional for the predator-prey interaction term. The system dynamics is investigated using simulations, classical existence and asymptotic stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and Hopf bifurcations which occur commonly in predator-prey systems will be found. Because of the square root interaction term there is non-uniqueness of the solution and a singularity where the prey population goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability similar to what is found in predator-prey models with a strong Allee effect. For the two-dimensional disease-free (i.e. the purely demographic) system the region in the parameter space where bistability occurs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destructed. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator-prey system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by varying one parameter

  2. Testing the risk of predation hypothesis: the influence of recolonizing wolves on habitat use by moose.

    Science.gov (United States)

    Nicholson, Kerry L; Milleret, Cyril; Månsson, Johan; Sand, Håkan

    2014-09-01

    Considered as absent throughout Scandinavia for >100 years, wolves (Canis lupus) have recently naturally recolonized south-central Sweden. This recolonization has provided an opportunity to study behavioral responses of moose (Alces alces) to wolves. We used satellite telemetry locations from collared moose and wolves to determine whether moose habitat use was affected by predation risk based on wolf use distributions. Moose habitat use was influenced by reproductive status and time of day and showed a different selection pattern between winter and summer, but there was weak evidence that moose habitat use depended on pr