WorldWideScience

Sample records for intrafractional junction shifts

  1. Field-In-Field Technique With Intrafractionally Modulated Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Yom, Sue S.; Frija, Erik K. C.; Mahajan, Anita; Chang, Eric; Klein, Kelli C.; Shiu, Almon; Ohrt, Jared; Woo, Shiao

    2007-01-01

    Purpose: To plan craniospinal irradiation with 'field-in-field' (FIF) homogenization in combination with daily, intrafractional modulation of the field junctions, to minimize the possibility of spinal cord overdose. Methods and Materials: Lateral cranial fields and posterior spinal fields were planned using a forward-planned, step-and-shoot FIF technique. Field junctions were automatically modulated and custom-weighted for maximal homogeneity within each treatment fraction. Dose-volume histogram analyses and film dosimetry were used to assess results. Results: Plan inhomogeneity improved with FIF. Planning with daily modulated junction shifts provided consistent dose delivery during each fraction of treatment across the junctions. Modulation minimized the impact of a 5-mm setup error at the junction. Film dosimetry confirmed that no point in the junction exceeded the anticipated dose. Conclusions: Field-in-field planning and modulated junction shifts improve the homogeneity and consistency of daily dose delivery, simplify treatment, and reduce the impact of setup errors

  2. TH-C-BRD-12: Robust Intensity Modulated Proton Therapy Plan Can Eliminate Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Liao, L; Jiang, S; Li, Y; Wang, X; Li, H; Zhu, X; Sahoo, N; Gillin, M; Mahajan, A; Grosshans, D; Zhang, X; Lim, G

    2014-01-01

    Purpose: The passive scattering proton therapy (PSPT) technique is the commonly used radiotherapy technique for craniospinal irradiation (CSI). However, PSPT involves many numbers of junction shifts applied over the course of treatment to reduce the cold and hot regions caused by field mismatching. In this work, we introduced a robust planning approach to develop an optimal and clinical efficient techniques for CSI using intensity modulated proton therapy (IMPT) so that junction shifts can essentially be eliminated. Methods: The intra-fractional uncertainty, in which two overlapping fields shift in the opposite directions along the craniospinal axis, are incorporated into the robust optimization algorithm. Treatment plans with junction sizes 3,5,10,15,20,25 cm were designed and compared with the plan designed using the non-robust optimization. Robustness of the plans were evaluated based on dose profiles along the craniospinal axis for the plans applying 3 mm intra-fractional shift. The dose intra-fraction variations (DIV) at the junction are used to evaluate the robustness of the plans. Results: The DIVs are 7.9%, 6.3%, 5.0%, 3.8%, 2.8% and 2.2%, for the robustly optimized plans with junction sizes 3,5,10,15,20,25 cm. The DIV are 10% for the non-robustly optimized plans with junction size 25 cm. The dose profiles along the craniospinal axis exhibit gradual and tapered dose distribution. Using DIVs less than 5% as maximum acceptable intrafractional variation, the overlapping region can be reduced to 10 cm, leading to potential reduced number of the fields. The DIVs are less than 5% for 5 mm intra-fractional shifts with junction size 25 cm, leading to potential no-junction-shift for CSI using IMPT. Conclusion: This work is the first report of the robust optimization on CSI based on IMPT. We demonstrate that robust optimization can lead to much efficient carniospinal irradiation by eliminating the junction shifts

  3. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    International Nuclear Information System (INIS)

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans

  4. Clinical Implementation of Intrafraction Cone Beam Computed Tomography Imaging During Lung Tumor Stereotactic Ablative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruijiang; Han, Bin; Meng, Bowen [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G.; Xing, Lei; Koong, Albert C. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian, E-mail: Diehn@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States)

    2013-12-01

    Purpose: To develop and clinically evaluate a volumetric imaging technique for assessing intrafraction geometric and dosimetric accuracy of stereotactic ablative radiation therapy (SABR). Methods and Materials: Twenty patients received SABR for lung tumors using volumetric modulated arc therapy (VMAT). At the beginning of each fraction, pretreatment cone beam computed tomography (CBCT) was used to align the soft-tissue tumor position with that in the planning CT. Concurrent with dose delivery, we acquired fluoroscopic radiograph projections during VMAT using the Varian on-board imaging system. Those kilovolt projections acquired during millivolt beam-on were automatically extracted, and intrafraction CBCT images were reconstructed using the filtered backprojection technique. We determined the time-averaged target shift during VMAT by calculating the center of mass of the tumor target in the intrafraction CBCT relative to the planning CT. To estimate the dosimetric impact of the target shift during treatment, we recalculated the dose to the GTV after shifting the entire patient anatomy according to the time-averaged target shift determined earlier. Results: The mean target shift from intrafraction CBCT to planning CT was 1.6, 1.0, and 1.5 mm; the 95th percentile shift was 5.2, 3.1, 3.6 mm; and the maximum shift was 5.7, 3.6, and 4.9 mm along the anterior-posterior, left-right, and superior-inferior directions. Thus, the time-averaged intrafraction gross tumor volume (GTV) position was always within the planning target volume. We observed some degree of target blurring in the intrafraction CBCT, indicating imperfect breath-hold reproducibility or residual motion of the GTV during treatment. By our estimated dose recalculation, the GTV was consistently covered by the prescription dose (PD), that is, V100% above 0.97 for all patients, and minimum dose to GTV >100% PD for 18 patients and >95% PD for all patients. Conclusions: Intrafraction CBCT during VMAT can provide

  5. Software-controlled, highly automated intrafraction prostate motion correction with intrafraction stereographic targeting: System description and clinical results

    International Nuclear Information System (INIS)

    Mutanga, Theodore F.; Boer, Hans C. J. de; Rajan, Vinayakrishnan; Dirkx, Maarten L. P.; Os, Marjolein J. H. van; Incrocci, Luca; Heijmen, Ben J. M.

    2012-01-01

    Purpose: A new system for software-controlled, highly automated correction of intrafraction prostate motion,'' intrafraction stereographic targeting'' (iSGT), is described and evaluated. Methods: At our institute, daily prostate positioning is routinely performed at the start of treatment beam using stereographic targeting (SGT). iSGT was implemented by extension of the SGT software to facilitate fast and accurate intrafraction motion corrections with minimal user interaction. iSGT entails megavoltage (MV) image acquisitions with the first segment of selected IMRT beams, automatic registration of implanted markers, followed by remote couch repositioning to correct for intrafraction motion above a predefined threshold, prior to delivery of the remaining segments. For a group of 120 patients, iSGT with corrections for two nearly lateral beams was evaluated in terms of workload and impact on effective intrafraction displacements in the sagittal plane. Results: SDs of systematic (Σ) and random (σ) displacements relative to the planning CT measured directly after initial SGT setup correction were eff eff eff eff eff eff < 0.7 mm, requiring corrections in 82.4% of the fractions. Because iSGT is highly automated, the extra time added by iSGT is <30 s if a correction is required. Conclusions: Without increasing imaging dose, iSGT successfully reduces intrafraction prostate motion with minimal workload and increase in fraction time. An action level of 2 mm is recommended.

  6. Inter- and intrafractional localisation errors in cone-beam CT guided stereotactic radiation therapy of tumours in the liver and lung

    International Nuclear Information System (INIS)

    Worm, Esben S.; Hansen, Anders T.; Petersen, Joergen B.; Muren, Ludvig P.; Praestegaard, Lars H.; Hoeyer, Morten

    2010-01-01

    Background. Localisation errors in cone-beam CT (CBCT) guided stereotactic body radiation therapy (SBRT) were evaluated and compared to positioning using the external coordinates of a stereotactic body frame (SBF) alone. Possible correlations to patient- or treatment-specific factors such as body mass index (BMI), planning time, treatment delivery time, and distance between tumour and spinal cord were explored to determine whether they influenced on the benefit of image-guidance. Material and methods. A total of 34 patients received SBRT (3 fractions) for tumours in the liver (15 patients) or the lung (19 patients). Immobilisation and positioning was obtained with a SBF. Pre- and post-treatment CBCT scans were registered with the bony anatomy of the planning CT to find inter- and intrafractional patient positioning errors (PPE). For lung tumour patients, matching was also performed on the tumours to find the tumour positioning errors (TPE) and baseline shifts relative to bony anatomy. Results. The mean inter- and intrafractional 3D vector PPE was 4.5 ± 2.7 mm (average ± SD) and 1.5 ± 0.6 mm, respectively, for the combined group of patients. For lung tumours, the interfractional misalignment was 5.6 ± 1.8 mm. The baseline shift was 3.9 ± 2.0 mm. Intrafractional TPE and baseline shifts were 2.1 ± 0.7 mm and 1.9 ± 0.6 mm, respectively. The magnitude of interfractional baseline shift was closely correlated with the distance between the tumour and the spinal cord. Intrafractional errors were independent of patient BMI, age or gender. Conclusion. Image-guidance reduced setup errors considerably. The study demonstrated the benefit of CBCT-guidance regardless of patient specific factors such as BMI, age or gender. Protection of the spinal cord was facilitated by the correlation between the tumour position relative to the spinal cord and the magnitude of baseline shift.

  7. Feasibility of Electromagnetic Transponder Use to Monitor Inter- and Intrafractional Motion in Locally Advanced Pancreatic Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Eric T., E-mail: eric.t.shinohara@vanderbilt.edu [Department of Radiation Oncology, The Vanderbilt Clinic, Nashville, TN (United States); Kassaee, Alireza [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Mitra, Nandita [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Vapiwala, Neha; Plastaras, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Drebin, Jeff [Department of Surgery, University of Pennsylvania, Philadelphia, PA (United States); Wan, Fei [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Metz, James M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-06-01

    Purpose: The primary objective of this study was to determine the feasibility of electromagnetic transponder implantation in patients with locally advanced unresectable pancreatic cancer. Secondarily, the use of transponders to monitor inter- and intrafractional motion, and the efficacy of breath holding for limiting target motion, were examined. Methods and Materials: During routine screening laparoscopy, 5 patients without metastatic disease were implanted with transponders peri-tumorally. The Calypso System's localization and tracking modes were used to monitor inter- and intrafractional motion, respectively. Intrafractional motion, with and without breath holding, was also examined using Calypso tracking mode. Results: Transponder implantation was well tolerated in all patients, with minimal migration, aside from 1 patient who expulsed a single transponder. Interfractional motion based on mean shifts from setup using tattoos/orthogonal imaging to transponder based localization from 164 treatments was significant in all dimensions. Mean shift (in millimeters), followed by the standard deviation and p value, were as follows: X-axis: 4.5 mm (1.0, p = 0.01); Y axis: 6.4 mm (1.9, p = 0.03); and Z-axis 3.9 mm (0.6, p = 0.002). Mean intrafractional motion was also found to be significant in all directions: superior, 7.2 mm (0.9, p = 0.01); inferior, 11.9 mm (0.9, p < 0.01); anterior: 4.9 mm (0.5, p = 0.01); posterior, 2.9 mm (0.5, p = 0.02); left, 2.2 mm (0.4, p = 0.02); and right, 3.1 mm (0.6, p = 0.04). Breath holding during treatment significantly decreased tumor motion in all directions. Conclusions: Electromagnetic transponder implantation appears to be safe and effective for monitoring inter- and intrafractional motion. Based on these results a larger clinical trial is underway.

  8. Feasibility of Electromagnetic Transponder Use to Monitor Inter- and Intrafractional Motion in Locally Advanced Pancreatic Cancer Patients

    International Nuclear Information System (INIS)

    Shinohara, Eric T.; Kassaee, Alireza; Mitra, Nandita; Vapiwala, Neha; Plastaras, John P.; Drebin, Jeff; Wan, Fei; Metz, James M.

    2012-01-01

    Purpose: The primary objective of this study was to determine the feasibility of electromagnetic transponder implantation in patients with locally advanced unresectable pancreatic cancer. Secondarily, the use of transponders to monitor inter- and intrafractional motion, and the efficacy of breath holding for limiting target motion, were examined. Methods and Materials: During routine screening laparoscopy, 5 patients without metastatic disease were implanted with transponders peri-tumorally. The Calypso System’s localization and tracking modes were used to monitor inter- and intrafractional motion, respectively. Intrafractional motion, with and without breath holding, was also examined using Calypso tracking mode. Results: Transponder implantation was well tolerated in all patients, with minimal migration, aside from 1 patient who expulsed a single transponder. Interfractional motion based on mean shifts from setup using tattoos/orthogonal imaging to transponder based localization from 164 treatments was significant in all dimensions. Mean shift (in millimeters), followed by the standard deviation and p value, were as follows: X-axis: 4.5 mm (1.0, p = 0.01); Y axis: 6.4 mm (1.9, p = 0.03); and Z-axis 3.9 mm (0.6, p = 0.002). Mean intrafractional motion was also found to be significant in all directions: superior, 7.2 mm (0.9, p = 0.01); inferior, 11.9 mm (0.9, p < 0.01); anterior: 4.9 mm (0.5, p = 0.01); posterior, 2.9 mm (0.5, p = 0.02); left, 2.2 mm (0.4, p = 0.02); and right, 3.1 mm (0.6, p = 0.04). Breath holding during treatment significantly decreased tumor motion in all directions. Conclusions: Electromagnetic transponder implantation appears to be safe and effective for monitoring inter- and intrafractional motion. Based on these results a larger clinical trial is underway.

  9. Reduction of prostate intrafraction motion using gas-release rectal balloons

    International Nuclear Information System (INIS)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy

    2012-01-01

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5Σ+ 0.7σ to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior–inferior (SI) and anterior–posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left–right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  10. Reduction of prostate intrafraction motion using gas-release rectal balloons

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  11. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System

    International Nuclear Information System (INIS)

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko; Onimaru, Rikiya; Katoh, Norio; Inoue, Tetsuya; Sutherland, Kenneth Lee; Suzuki, Ryusuke; Shirato, Hiroki; Shimizu, Shinichi

    2016-01-01

    Purpose: To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Methods and Materials: Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch position correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. Results: The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), −1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Conclusions: Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers.

  12. Intra-fraction prostate displacement in radiotherapy estimated from pre- and post-treatment imaging of patients with implanted fiducial markers

    International Nuclear Information System (INIS)

    Kron, Tomas; Thomas, Jessica; Fox, Chris; Thompson, Ann; Owen, Rebecca; Herschtal, Alan; Haworth, Annette; Tai, Keen-Hun; Foroudi, Farshad

    2010-01-01

    Purpose: To determine intra-fraction displacement of the prostate gland from imaging pre- and post-radiotherapy delivery of prostate cancer patients with three implanted fiducial markers. Methods and materials: Data were collected from 184 patients who had two orthogonal X-rays pre- and post-delivery on at least 20 occasions using a Varian On Board kV Imaging system. A total of 5778 image pairs covering time intervals between 3 and 30 min between pre- and post-imaging were evaluated for intra-fraction prostate displacement. Results: The mean three dimensional vector shift between images was 1.7 mm ranging from 0 to 25 mm. No preferential direction of displacement was found; however, there was an increase of prostate displacement with time between images. There was a large variation in typical shifts between patients (range 1 ± 1 to 6 ± 2 mm) with no apparent trends throughout the treatment course. Images acquired in the first five fractions of treatment could be used to predict displacement patterns for individual patients. Conclusion: Intra-fraction motion of the prostate gland appears to be a limiting factor when considering margins for radiotherapy. Given the variation between patients, a uniform set of margins for all patients may not be satisfactory when high target doses are to be delivered.

  13. Supine Craniospinal Irradiation Using Intrafractional Junction Shifts and Field-in-Field Dose Shaping: Early Experience at Methodist Hospital

    International Nuclear Information System (INIS)

    South, Michael C.; Chiu, J. Kam; Teh, Bin S.; Bloch, Charles; Schroeder, Thomas M.; Paulino, Arnold C.

    2008-01-01

    Purpose: To describe our preliminary experience with supine craniospinal irradiation. The advantages of the supine position for craniospinal irradiation include patient comfort, easier access to maintain an airway for anesthesia, and reduced variability of the head tilt in the face mask. Methods and Materials: The cranial fields were treated with near lateral fields and a table angle to match their divergence to the superior edge of the spinal field. The collimator was rotated to match the divergence from the superior spinal field. The spinal fields were treated using a source to surface distance (SSD) technique with the couch top at 100 cm. When a second spinal field was required, the table and collimator were rotated 90 o to allow for the use of the multileaf collimator and so the gantry could be rotated to match the divergence of the superior spinal field. The multileaf collimator was used for daily dynamic featherings and field-in-field dose control. Results: With a median follow-up of 20.2 months, five documented failures and no cases of radiation myelitis occurred in 23 consecutive patients. No failures occurred in the junctions of the spine-spine or brain-spine fields. Two failures occurred in the primary site alone, two in the spinal axis alone, and one primary site failure plus distant metastasis. The median time to recurrence was 17 months. Conclusion: The results of our study have shown that supine approach for delivering craniospinal irradiation is not associated with increased relapses at the field junctions. To date, no cases of radiation myelitis have developed

  14. Six dimensional analysis with daily stereoscopic x-ray imaging of intrafraction patient motion in head and neck treatments using five points fixation masks

    International Nuclear Information System (INIS)

    Linthout, Nadine; Verellen, Dirk; Tournel, Koen; Storme, Guy

    2006-01-01

    The safety margins used to define the Planning Target Volume (PTV) should reflect the accuracy of the target localization during treatment that comprises both the reproducibility of the patient positioning and the positional uncertainty of the target, so both the inter- and intrafraction motion of the target. Our first aim in this study was to determine the intrafraction motion of patients immobilized with a five-point thermoplastic mask for head and neck treatments. The five-point masks have the advantage that the patient's shoulders as well as the cranial part of the patient's head is covered with the thermoplastic material that improves the overall immobilization of the head and neck region of the patient. Thirteen patients were consecutively assigned to use a five-point thermoplastic mask. The patients were positioned by tracking of infrared markers (IR) fixed to the immobilization device and stereoscopic x-ray images were used for daily on-line setup verification. Repositioning was carried out prior to treatment as needed; rotations were not corrected. Movements during treatment were monitored by real-time IR tracking. Intrafraction motion and rotation was supplementary assessed by a six-degree-of-freedom (6-D) fusion of x-ray images, taken before and after all 385 treatments, with DRR images generated from the planning CT data. The latter evaluates the movement of the patient within the thermoplastic mask independent from the mask movement, where IR tracking evaluates the movement of the mask caused by patient movement in the mask. These two movements are not necessarily equal to each other. The maximum intrafraction movement detected by IR tracking showed a shift [mean (SD; range)] of -0.1(0.7; 6.0), 0.1(0.6; 3.6), -0.2(0.8;5.5) mm in the vertical, longitudinal, and lateral direction, respectively, and rotations of 0.0(0.2; 1.6), 0.0(0.2; 1.7) and 0.2(0.2; 2.4) degrees about the vertical, longitudinal, and lateral axis, respectively. The standard deviations

  15. Inter- and Intrafraction Patient Positioning Uncertainties for Intracranial Radiotherapy: A Study of Four Frameless, Thermoplastic Mask-Based Immobilization Strategies Using Daily Cone-Beam CT

    International Nuclear Information System (INIS)

    Tryggestad, Erik; Christian, Matthew; Ford, Eric; Kut, Carmen; Le Yi; Sanguineti, Giuseppe; Song, Danny Y.; Kleinberg, Lawrence

    2011-01-01

    Purpose: To determine whether frameless thermoplastic mask-based immobilization is adequate for image-guided cranial radiosurgery. Methods and Materials: Cone-beam CT localization data from patients with intracranial tumors were studied using daily pre- and posttreatment scans. The systems studied were (1) Type-S IMRT (head only) mask (Civco) with head cushion; (2) Uni-Frame mask (Civco) with head cushion, coupled with a BlueBag body immobilizer (Medical Intelligence); (3) Type-S head and shoulder mask with head and shoulder cushion (Civco); (4) same as previous, coupled with a mouthpiece. The comparative metrics were translational shift magnitude and average rotation angle; systematic inter-, random inter-, and random intrafraction positioning error was computed. For strategies 1-4, respectively, the analysis for interfraction variability included data from 20, 9, 81, and 11 patients, whereas that for intrafraction variability included a subset of 7, 9, 16, and 8 patients. The results were compared for statistical significance using an analysis of variance test. Results: Immobilization system 4 provided the best overall accuracy and stability. The mean interfraction translational shifts (± SD) were 2.3 (± 1.4), 2.2 (± 1.1), 2.7 (± 1.5), and 2.1 (± 1.0) mm whereas intrafraction motion was 1.1 (± 1.2), 1.1 (± 1.1), 0.7 (± 0.9), and 0.7 (± 0.8) mm for devices 1-4, respectively. No significant correlation between intrafraction motion and treatment time was evident, although intrafraction motion was not purely random. Conclusions: We find that all frameless thermoplastic mask systems studied are viable solutions for image-guided intracranial radiosurgery. With daily pretreatment corrections, symmetric PTV margins of 1 mm would likely be adequate if ideal radiation planning and targeting systems were available.

  16. Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT.

    Science.gov (United States)

    Tryggestad, Erik; Christian, Matthew; Ford, Eric; Kut, Carmen; Le, Yi; Sanguineti, Giuseppe; Song, Danny Y; Kleinberg, Lawrence

    2011-05-01

    To determine whether frameless thermoplastic mask-based immobilization is adequate for image-guided cranial radiosurgery. Cone-beam CT localization data from patients with intracranial tumors were studied using daily pre- and posttreatment scans. The systems studied were (1) Type-S IMRT (head only) mask (Civco) with head cushion; (2) Uni-Frame mask (Civco) with head cushion, coupled with a BlueBag body immobilizer (Medical Intelligence); (3) Type-S head and shoulder mask with head and shoulder cushion (Civco); (4) same as previous, coupled with a mouthpiece. The comparative metrics were translational shift magnitude and average rotation angle; systematic inter-, random inter-, and random intrafraction positioning error was computed. For strategies 1-4, respectively, the analysis for interfraction variability included data from 20, 9, 81, and 11 patients, whereas that for intrafraction variability included a subset of 7, 9, 16, and 8 patients. The results were compared for statistical significance using an analysis of variance test. Immobilization system 4 provided the best overall accuracy and stability. The mean interfraction translational shifts (± SD) were 2.3 (± 1.4), 2.2 (± 1.1), 2.7 (± 1.5), and 2.1 (± 1.0) mm whereas intrafraction motion was 1.1 (± 1.2), 1.1 (± 1.1), 0.7 (± 0.9), and 0.7 (± 0.8) mm for devices 1-4, respectively. No significant correlation between intrafraction motion and treatment time was evident, although intrafraction motion was not purely random. We find that all frameless thermoplastic mask systems studied are viable solutions for image-guided intracranial radiosurgery. With daily pretreatment corrections, symmetric PTV margins of 1 mm would likely be adequate if ideal radiation planning and targeting systems were available. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Intra-fraction motion of larynx radiotherapy

    Science.gov (United States)

    Durmus, Ismail Faruk; Tas, Bora

    2018-02-01

    In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.

  18. Influence of Antiflatulent Dietary Advice on Intrafraction Motion for Prostate Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Lips, Irene M.; Kotte, Alexis N.T.J.; Gils, Carla H. van; Leerdam, Monique E. van; Heide, Uulke A. van der; Vulpen, Marco van

    2011-01-01

    Purpose: To evaluate the effect of an antiflatulent dietary advice on the intrafraction prostate motion in patients treated with intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Between February 2002 and December 2009, 977 patients received five-beam IMRT for prostate cancer to a dose of 76 Gy in 35 fractions combined with fiducial markers for position verification. In July 2008, the diet, consisting of dietary guidelines to obtain regular bowel movements and to reduce intestinal gas by avoiding certain foods and air swallowing, was introduced to reduce the prostate motion. The intrafraction prostate movement was determined from the portal images of the first segment of all five beams. Clinically relevant intrafraction motion was defined as ≥50% of the fractions with an intrafraction motion outside a range of 3 mm. Results: A total of 739 patients were treated without the diet and 105 patients were treated with radiotherapy after introduction of the diet. The median and interquartile range of the average intrafraction motion per patient was 2.53 mm (interquartile range, 2.2–3.0) without the diet and 3.00 mm (interquartile range, 2.4–3.5) with the diet (p < .0001). The percentage of patients with clinically relevant intrafraction motion increased statistically significant from 19.1% without diet to 42.9% with a diet (odds ratio, 3.18; 95% confidence interval, 2.07–4.88; p < .0001). Conclusions: The results of the present study suggest that antiflatulent dietary advice for patients undergoing IMRT for prostate cancer does not reduce the intrafraction movement of the prostate. Therefore, antiflatulent dietary advice is not recommended in clinical practice for this purpose.

  19. Spine Stereotactic Body Radiotherapy Utilizing Cone-Beam CT Image-Guidance With a Robotic Couch: Intrafraction Motion Analysis Accounting for all Six Degrees of Freedom

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Derek [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); British Columbia Cancer Agency, The Sindi Hawkins Cancer Centre for the Southern Interior, Kelowna (Canada); Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Sahgal, Arjun, E-mail: Arjun.sahgal@rmp.uhn.on.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto (Canada)

    2012-03-01

    Purpose: To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Methods and Materials: Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1 Degree-Sign tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1 Degree-Sign degree after the first 10 patients. Results: Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1 Degree-Sign . In analyzing the impact of the time interval for verification imaging (10 {+-} 3 min) and subsequent image acquisitions (17 {+-} 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis ({+-} SD) were 0.7 {+-} 0.5 mm and 0.5 {+-} 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1 Degree-Sign correction threshold, the target was localized to within 1.2 mm and 0.9 Degree-Sign with 95% confidence. Conclusion: Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion

  20. INTER- AND INTRAFRACTION MOTION FOR STEREOTACTIC RADIOSURGERY IN DOGS AND CATS USING A MODIFIED BRAINLAB FRAMELESS STEREOTACTIC MASK SYSTEM.

    Science.gov (United States)

    Dieterich, Sonja; Zwingenberger, Allison; Hansen, Katherine; Pfeiffer, Isabella; Théon, Alain; Kent, Michael S

    2015-01-01

    Precise and accurate patient positioning is necessary when doing stereotactic radiosurgery (SRS) to ensure adequate dosing to the tumor and sparing of normal tissues. This prospective cross-sectional study aimed to assess feasibility of a commercially available modified frameless SRS positioning system for use in veterinary radiotherapy patients with brain tumors. Fifty-one dogs and 12 cats were enrolled. Baseline and verification CT images were acquired. The verification CT images from 32 dogs and five cats had sufficient images for fusion to baseline CT images. A rigid box-based fusion was performed to determine interfraction motion. Forty-eight dogs and 11 cats were assessed for intrafraction motion by cine CT. Seventy percent of dogs and 60% of cats had interfraction 3D vector translational shifts >1 mm, with mean values of 1.9 mm in dogs, and 1.8 mm in cats. In dogs muscle wasting was weakly correlated with translational shifts. The maximum angular interfraction motion observed was 6.3° (roll), 3.5° (pitch), and 3.3° (yaw). There was no correlation between angular interfraction motion and weight, brachycephaly, or muscle wasting. Fifty-seven percent of dogs and 50% of cats had respiration-related intrafraction motion. Of these, 4.5% of dogs and 10% of cats had intrafraction motion >1 mm. This study demonstrates the modified Brainlab system is feasible for SRS in dogs and cats. The smaller cranial size and difference in anatomy increases setup uncertainty in some animals beyond limits usually accepted in SRS. Image-guided positioning is recommended to achieve clinically acceptable setup accuracy (<1 mm) for SRS. © 2015 American College of Veterinary Radiology.

  1. Time Dependence of Intrafraction Patient Motion Assessed by Repeat Stereoscopic Imaging

    International Nuclear Information System (INIS)

    Hoogeman, Mischa S.; Nuyttens, Joost J.; Levendag, Peter C.; Heijmen, Ben J.M.

    2008-01-01

    Purpose: To quantify intrafraction patient motion and its time dependence in immobilized intracranial and extracranial patients. The data can be used to optimize the intrafraction imaging frequency and consequent patient setup correction with an image guidance and tracking system, and to establish the required safety margins in the absence of such a system. Method and Materials: The intrafraction motion of 32 intracranial patients, immobilized with a thermoplastic mask, and 11 supine- and 14 prone-treated extracranial spine patients, immobilized with a vacuum bag, were analyzed. The motion was recorded by an X-ray, stereoscopic, image-guidance system. For each group, we calculated separately the systematic (overall mean and SD) and the random displacement as a function of elapsed intrafraction time. Results: The SD of the systematic intrafraction displacements increased linearly over time for all three patient groups. For intracranial-, supine-, and prone-treated patients, the SD increased to 0.8, 1.2, and 2.2 mm, respectively, in a period of 15 min. The random displacements for the prone-treated patients were significantly higher than for the other groups, namely 1.6 mm (1 SD), probably caused by respiratory motion. Conclusions: Despite the applied immobilization devices, patients drift away from their initial position during a treatment fraction. These drifts are in general small if compared with conventional treatment margins, but will significantly contribute to the margin for high-precision radiation treatments with treatment times of 15 min or longer

  2. SU-E-J-57: First Development of Adapting to Intrafraction Relative Motion Between Prostate and Pelvic Lymph Nodes Targets

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Y; Colvill, E; O’Brien, R; Keall, P [Radiation Physics Laboratory, University of Sydney, NSW (Australia); Booth, J [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW (Australia)

    2015-06-15

    Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eye view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs

  3. Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy.

    Science.gov (United States)

    Choi, Youngmin; Kwak, Dong-Won; Lee, Hyung-Sik; Hur, Won-Joo; Cho, Won-Yeol; Sung, Gyung Tak; Kim, Tae-Hyo; Kim, Soo-Dong; Yun, Seong-Guk

    2015-04-01

    Rectal volume and movement are major factors that influence prostate location. The aim of this study was to assess the effect of a rectal enema on intrafraction prostate motion. The data from 12 patients with localised prostate cancer were analysed. Each patient underwent image-guided radiotherapy (RT), receiving a total dose of 70 Gy in 28 fractions. Rectal enemas were administered to all of the patients before each RT fraction. The location of the prostate was determined by implanting three fiducial markers under the guidance of transrectal ultrasound. Each patient underwent preparation for IGRT twice before an RT fraction and in the middle of the fraction. The intrafraction displacement of the prostate was calculated by comparing fiducial marker locations before and in the middle of an RT fraction. The rectal enemas were well tolerated by patients. The mean intrafraction prostate movement in 336 RT fractions was 1.11 ± 0.77 mm (range 0.08-7.20 mm). Intrafraction motions of 1, 2 and 3 mm were observed in 56.0%, 89.0% and 97.6% of all RT fractions, respectively. The intrafraction movements on supero-inferior and anteroposterior axes were larger than on the right-to-left axes (P movement, calculated using the van Herk formula (2.5Σ + 0.7σ), was 1.50 mm. A daily rectal enema before each RT fraction was tolerable and yielded little intrafraction prostate displacement. We think the use of rectal enemas is a feasible method to reduce prostate movement during RT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  4. Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kwak, Dong-Won; Lee, Hyung-Sik; Hur, Won-Jooh; Cho, Won-Yeol; Sung, Gyung Tak; Kim, Tae-Hyo; Kim, Soo-Dong; Yun, Seong-Guk

    2015-01-01

    Rectal volume and movement are major factors that influence prostate location. The aim of this study was to assess the effect of a rectal enema on intrafraction prostate motion. The data from 12 patients with localised prostate cancer were analysed. Each patient underwent image-guided radiotherapy (RT), receiving a total dose of 70 Gy in 28 fractions. Rectal enemas were administered to all of the patients before each RT fraction. The location of the prostate was determined by implanting three fiducial markers under the guidance of transrectal ultrasound. Each patient underwent preparation for IGRT twice before an RT fraction and in the middle of the fraction. The intrafraction displacement of the prostate was calculated by comparing fiducial marker locations before and in the middle of an RT fraction. The rectal enemas were well tolerated by patients. The mean intrafraction prostate movement in 336 RT fractions was 1.11 ± 0.77 mm (range 0.08–7.20 mm). Intrafraction motions of 1, 2 and 3 mm were observed in 56.0%, 89.0% and 97.6% of all RT fractions, respectively. The intrafraction movements on supero-inferior and anteroposterior axes were larger than on the right-to-left axes (P < 0.05). The CTV-to-PTV margin necessary to allow for movement, calculated using the van Herk formula (2.5Σ + 0.7σ), was 1.50 mm. A daily rectal enema before each RT fraction was tolerable and yielded little intrafraction prostate displacement. We think the use of rectal enemas is a feasible method to reduce prostate movement during RT.

  5. Intra-fraction motion of the prostate is a random walk

    Science.gov (United States)

    Ballhausen, H.; Li, M.; Hegemann, N.-S.; Ganswindt, U.; Belka, C.

    2015-01-01

    A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey-Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski-Phillips-Schmidt-Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92  ±  0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski-Phillips-Schmidt-Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r2 = 0.9  ±  0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to drift away from the isocenter during a fraction, and

  6. Intra-fraction motion of the prostate is a random walk

    International Nuclear Information System (INIS)

    Ballhausen, H; Li, M; Hegemann, N-S; Ganswindt, U; Belka, C

    2015-01-01

    A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey–Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski–Phillips–Schmidt–Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92  ±  0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p < 0.001). The Dickey–Fuller test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski–Phillips–Schmidt–Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r 2 = 0.9  ±  0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to

  7. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  8. Intra-fraction motion of the prostate during treatment with helical tomotherapy

    International Nuclear Information System (INIS)

    Thomas, Simon J.; Ashburner, Mark; Tudor, George Samuel J.; Treeby, Jo; Dean, June; Routsis, Donna; Rimmer, Yvonne L.; Russell, Simon G.; Burnet, Neil G.

    2013-01-01

    Background and purpose: To measure the geometric uncertainty resulting from intra-fraction motion and intra-observer image matching, for patients having image-guided prostate radiotherapy on TomoTherapy. Material and methods: All patients had already been selected for prostate radiotherapy on TomoTherapy, with daily MV-CT imaging. The study involved performing an additional MV-CT image at the end of treatment, on 5 occasions during the course of 37 treatments. 54 patients were recruited to the study. A new formula was derived to calculate the PTV margin for intra-fraction motion. Results: The mean values of the intra-fraction differences were 0.0 mm, 0.5 mm, 0.5 mm and 0.0° for LR, SI, AP and roll, respectively. The corresponding standard deviations were 1.1 mm, 0.8 mm, 0.8 mm and 0.6° for systematic uncertainties (Σ), 1.3 mm, 2.0 mm, 2.2 mm and 0.3° for random uncertainties (σ). This intra-fraction motion requires margins of 2.2 mm in LR, 2.1 mm in SI and 2.1 mm in AP directions. Inclusion of estimates of the effect of rotations and matching errors increases these margins to approximately 4 mm in LR and 5 mm in SI and AP directions. Conclusions: A new margin recipe has been developed to calculate margins for intra-fraction motion. This recipe is applicable to any measurement technique that is based on the difference between images taken before and after treatment

  9. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer

    International Nuclear Information System (INIS)

    Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias

    2008-01-01

    To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R 2 = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R 2 = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)

  10. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology

    2008-12-15

    To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R{sup 2} = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R{sup 2} = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)

  11. SU-E-T-41: Analysis of GI Dose Variability Due to Intrafraction Setup Variance

    International Nuclear Information System (INIS)

    Phillips, J; Wolfgang, J

    2014-01-01

    Purpose: Proton SBRT (stereotactic body radiation therapy) can be an effective modality for treatment of gastrointestinal tumors, but limited in practice due to sensitivity with respect to variation in the RPL (radiological path length). Small, intrafractional shifts in patient anatomy can lead to significant changes in the dose distribution. This study describes a tool designed to visualize uncertainties in radiological depth in patient CT's and aid in treatment plan design. Methods: This project utilizes the Shadie toolkit, a GPU-based framework that allows for real-time interactive calculations for volume visualization. Current SBRT simulation practice consists of a serial CT acquisition for the assessment of inter- and intra-fractional motion utilizing patient specific immobilization systems. Shadie was used to visualize potential uncertainties, including RPL variance and changes in gastric content. Input for this procedure consisted of two patient CT sets, contours of the desired organ, and a pre-calculated dose. In this study, we performed rigid registrations between sets of 4DCT's obtained from a patient with varying setup conditions. Custom visualizations are written by the user in Shadie, permitting one to create color-coded displays derived from a calculation along each ray. Results: Serial CT data acquired on subsequent days was analyzed for variation in RPB and gastric content. Specific shaders were created to visualize clinically relevant features, including RPL (radiological path length) integrated up to organs of interest. Using pre-calculated dose distributions and utilizing segmentation masks as additional input allowed us to further refine the display output from Shadie and create tools suitable for clinical usage. Conclusion: We have demonstrated a method to visualize potential uncertainty for intrafractional proton radiotherapy. We believe this software could prove a useful tool to guide those looking to design treatment plans least

  12. An Improvement on the Junction Temperature Measurement of Light-Emitting Diodes by using the Peak Shift Method Compared with the Forward Voltage Method

    International Nuclear Information System (INIS)

    He Su-Ming; Wang Jin-Bin; Luo Xiang-Dong; Zhang Bo; Fu Lei; Cheng Li-Wen; Lu Wei

    2012-01-01

    The junction temperature of red, green and blue high power light emitting diodes (LEDs) is measured by using the emission peak shift method and the forward voltage method. Both the emission peak shift and the forward voltage decrease show a linear relationship relative to junction temperature. The linear coefficients of the red, green and blue LEDs for the peak shift method and the forward voltage method range from 0.03 to 0.15 nm/°C and from 1.33 to 3.59 mV/°C, respectively. Compared with the forward voltage method, the peak shift method is almost independent of bias current and sample difference. The variation of the slopes is less than 2% for the peak shift method and larger than 30% for the forward voltage method, when the LEDs are driven by different bias currents. It is indicated that the peak shift method gives better stability than the forward voltage method under different LED working conditions

  13. Relationship of Imaging Frequency and Planning Margin to Account for Intrafraction Prostate Motion: Analysis Based on Real-Time Monitoring Data

    International Nuclear Information System (INIS)

    Curtis, William; Khan, Mohammad; Magnelli, Anthony; Stephans, Kevin; Tendulkar, Rahul; Xia, Ping

    2013-01-01

    Purpose: Correction for intrafraction prostate motion becomes important for hypofraction treatment of prostate cancer. The purpose of this study was to estimate an ideal planning margin to account for intrafraction prostate motion as a function of imaging and repositioning frequency in the absence of continuous prostate motion monitoring. Methods and Materials: For 31 patients receiving intensity modulated radiation therapy treatment, prostate positions sampled at 10 Hz during treatment using the Calypso system were analyzed. Using these data, we simulated multiple, less frequent imaging protocols, including intervals of every 10, 15, 20, 30, 45, 60, 90, 120, 180, and 240 seconds. For each imaging protocol, the prostate displacement at the imaging time was corrected by subtracting prostate shifts from the subsequent displacements in that fraction. Furthermore, we conducted a principal component analysis to quantify the direction of prostate motion. Results: Averaging histograms of every 240 and 60 seconds for all patients, vector displacements of the prostate were, respectively, within 3 and 2 mm for 95% of the treatment time. A vector margin of 1 mm achieved 91.2% coverage of the prostate with 30 second imaging. The principal component analysis for all fractions showed the largest variance in prostate position in the midsagittal plane at 54° from the anterior direction, indicating that anterosuperior to inferoposterior is the direction of greatest motion. The smallest prostate motion is in the left-right direction. Conclusions: The magnitudes of intrafraction prostate motion along the superior-inferior and anterior-posterior directions are comparable, and the smallest motion is in the left-right direction. In the absence of continuous prostate motion monitoring, and under ideal circumstances, 1-, 2-, and 3-mm vector planning margins require a respective imaging frequency of every 15, 60, and 240 to account for intrafraction prostate motion while achieving

  14. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Winnie; Sahgal, Arjun [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Foote, Matthew [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Millar, Barbara-Ann; Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel, E-mail: Daniel.letourneau@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2012-10-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1-T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins {+-} 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9 Degree-Sign to 1.6 Degree-Sign , respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image

  15. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    Li, Winnie; Sahgal, Arjun; Foote, Matthew; Millar, Barbara-Ann; Jaffray, David A.; Letourneau, Daniel

    2012-01-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1–T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins ± 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9° to 1.6°, respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image guidance, residual setup

  16. Impact of Intrafraction and Residual Interfraction Effect on Prostate Proton Pencil Beam Scanning

    International Nuclear Information System (INIS)

    Tang, Shikui; Deville, Curtiland; Tochner, Zelig; Wang, Ken Kang-Hsin; McDonough, James; Vapiwala, Neha; Both, Stefan

    2014-01-01

    Purpose: To quantitatively evaluate the impact of interplay effect and plan robustness associated with intrafraction and residual interfraction prostate motion for pencil beam scanning proton therapy. Methods and Materials: Ten prostate cancer patients with weekly verification CTs underwent pencil beam scanning with the bilateral single-field uniform dose (SFUD) modality. A typical field had 10-15 energy layers and 500-1000 spots. According to their treatment logs, each layer delivery time was <1 s, with average time to change layers of approximately 8 s. Real-time intrafraction prostate motion was determined from our previously reported prospective study using Calypso beacon transponders. Prostate motion and beam delivering sequence of the worst-case scenario patient were synchronized to calculate the “true” dose received by the prostate. The intrafraction effect was examined by applying the worst-case scenario prostate motion on the planning CT, and the residual interfraction effect was examined on the basis of weekly CT scans. The resultant dose variation of target and critical structures was examined to evaluate the interplay effect. Results: The clinical target volume (CTV) coverage was degraded because of both effects. The CTV D 99 (percentage dose to 99% of the CTV) varied up to 10% relative to the initial plan in individual fractions. However, over the entire course of treatment the total dose degradation of D 99 was 2%-3%, with a standard deviation of <2%. Absolute differences between SFUD, intensity modulate proton therapy, and one-field-per-day SFUD plans were small. The intrafraction effect dominated over the residual interfraction effect for CTV coverage. Mean dose to the anterior rectal wall increased approximately 10% because of combined residual interfraction and intrafraction effects, the interfraction effect being dominant. Conclusions: Both intrafraction and residual interfraction prostate motion degrade CTV coverage within a clinically

  17. Impact of Intrafraction and Residual Interfraction Effect on Prostate Proton Pencil Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shikui, E-mail: shktang@gmail.com [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); ProCure Proton Therapy Center, Somerset, New Jersey (United States); Deville, Curtiland; Tochner, Zelig [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wang, Ken Kang-Hsin [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); McDonough, James; Vapiwala, Neha; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-12-01

    Purpose: To quantitatively evaluate the impact of interplay effect and plan robustness associated with intrafraction and residual interfraction prostate motion for pencil beam scanning proton therapy. Methods and Materials: Ten prostate cancer patients with weekly verification CTs underwent pencil beam scanning with the bilateral single-field uniform dose (SFUD) modality. A typical field had 10-15 energy layers and 500-1000 spots. According to their treatment logs, each layer delivery time was <1 s, with average time to change layers of approximately 8 s. Real-time intrafraction prostate motion was determined from our previously reported prospective study using Calypso beacon transponders. Prostate motion and beam delivering sequence of the worst-case scenario patient were synchronized to calculate the “true” dose received by the prostate. The intrafraction effect was examined by applying the worst-case scenario prostate motion on the planning CT, and the residual interfraction effect was examined on the basis of weekly CT scans. The resultant dose variation of target and critical structures was examined to evaluate the interplay effect. Results: The clinical target volume (CTV) coverage was degraded because of both effects. The CTV D{sub 99} (percentage dose to 99% of the CTV) varied up to 10% relative to the initial plan in individual fractions. However, over the entire course of treatment the total dose degradation of D{sub 99} was 2%-3%, with a standard deviation of <2%. Absolute differences between SFUD, intensity modulate proton therapy, and one-field-per-day SFUD plans were small. The intrafraction effect dominated over the residual interfraction effect for CTV coverage. Mean dose to the anterior rectal wall increased approximately 10% because of combined residual interfraction and intrafraction effects, the interfraction effect being dominant. Conclusions: Both intrafraction and residual interfraction prostate motion degrade CTV coverage within a

  18. Intrafraction Bladder Motion in Radiation Therapy Estimated From Pretreatment and Posttreatment Volumetric Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Foroudi, Farshad, E-mail: farshad.foroudi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Pham, Daniel [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Bressel, Mathias [Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Gill, Suki [Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kron, Tomas [Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)

    2013-05-01

    Purpose: The use of image guidance protocols using soft tissue anatomy identification before treatment can reduce interfractional variation. This makes intrafraction clinical target volume (CTV) to planning target volume (PTV) changes more important, including those resulting from intrafraction bladder filling and motion. The purpose of this study was to investigate the required intrafraction margins for soft tissue image guidance from pretreatment and posttreatment volumetric imaging. Methods and Materials: Fifty patients with muscle-invasive bladder cancer (T2-T4) underwent an adaptive radiation therapy protocol using daily pretreatment cone beam computed tomography (CBCT) with weekly posttreatment CBCT. A total of 235 pairs of pretreatment and posttreatment CBCT images were retrospectively contoured by a single radiation oncologist (CBCT-CTV). The maximum bladder displacement was measured according to the patient's bony pelvis movement during treatment, intrafraction bladder filling, and bladder centroid motion. Results: The mean time between pretreatment and posttreatment CBCT was 13 minutes, 52 seconds (range, 7 min 52 sec to 30 min 56 sec). Taking into account patient motion, bladder centroid motion, and bladder filling, the required margins to cover intrafraction changes from pretreatment to posttreatment in the superior, inferior, right, left, anterior, and posterior were 1.25 cm (range, 1.19-1.50 cm), 0.67 cm (range, 0.58-1.12 cm), 0.74 cm (range, 0.59-0.94 cm), 0.73 cm (range, 0.51-1.00 cm), 1.20 cm (range, 0.85-1.32 cm), and 0.86 cm (range, 0.73-0.99), respectively. Small bladders on pretreatment imaging had relatively the largest increase in pretreatment to posttreatment volume. Conclusion: Intrafraction motion of the bladder based on pretreatment and posttreatment bladder imaging can be significant particularly in the anterior and superior directions. Patient motion, bladder centroid motion, and bladder filling all contribute to changes between

  19. Intrafractional prostate motion during online image guided intensity-modulated radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Budiharto, Tom; Slagmolen, Pieter; Haustermans, Karin; Maes, Frederik; Junius, Sara; Verstraete, Jan; Oyen, Raymond; Hermans, Jeroen; Van den Heuvel, Frank

    2011-01-01

    Introduction: Intrafractional motion consists of two components: (1) the movement between the on-line repositioning procedure and the treatment start and (2) the movement during the treatment delivery. The goal of this study is to estimate this intrafractional movement of the prostate during prostate cancer radiotherapy. Material and methods: Twenty-seven patients with prostate cancer and implanted fiducials underwent a marker match procedure before a five-field IMRT treatment. For all fields, in-treatment images were obtained and then processed to enable automatic marker detection. Combining the subsequent projection images, five positions of each marker were determined using the shortest path approach. The residual set-up error (RSE) after kV-MV based prostate localization, the prostate position as a function of time during a radiotherapy session and the required margins to account for intrafractional motion were determined. Results: The mean RSE and standard deviation in the antero-posterior, cranio-caudal and left-right direction were 2.3 ± 1.5 mm, 0.2 ± 1.1 mm and -0.1 ± 1.1 mm, respectively. Almost all motions occurred in the posterior direction before the first treatment beam as the percentage of excursions >5 mm was reduced significantly when the RSE was not accounted for. The required margins for intrafractional motion increased with prolongation of the treatment. Application of a repositioning protocol after every beam could decrease the 1 cm margin from CTV to PTV by 2 mm. Conclusions: The RSE is the main contributor to intrafractional motion. This RSE after on-line prostate localization and patient repositioning in the posterior direction emphasizes the need to speed up the marker match procedure. Also, a prostate IMRT treatment should be administered as fast as possible, to ensure that the pre-treatment repositioning efforts are not erased by intrafractional prostate motion. This warrants an optimized workflow with the use of faster treatment

  20. Design of a magnetic-tunnel-junction-oriented nonvolatile lookup table circuit with write-operation-minimized data shifting

    Science.gov (United States)

    Suzuki, Daisuke; Hanyu, Takahiro

    2018-04-01

    A magnetic-tunnel-junction (MTJ)-oriented nonvolatile lookup table (LUT) circuit, in which a low-power data-shift function is performed by minimizing the number of write operations in MTJ devices is proposed. The permutation of the configuration memory cell for read/write access is performed as opposed to conventional direct data shifting to minimize the number of write operations, which results in significant write energy savings in the data-shift function. Moreover, the hardware cost of the proposed LUT circuit is small since the selector is shared between read access and write access. In fact, the power consumption in the data-shift function and the transistor count are reduced by 82 and 52%, respectively, compared with those in a conventional static random-access memory-based implementation using a 90 nm CMOS technology.

  1. SU-G-JeP4-07: Evaluation of Intrafraction Motion Using 3D Surface Guided Radiation Therapy in Lung SBRT

    International Nuclear Information System (INIS)

    Jermoumi, M; Cao, D; Mehta, V; Shepard, D

    2016-01-01

    Purpose: Surface guided radiation therapy (SGRT) uses stereoscopic video images in combination with patterns projected onto the patient’s surface to dynamically capture and reconstruct a 3D surface map. In this work, we used a C-RAD Catalyst HD system (C-RAD) to evaluate intrafraction motion in the delivery of lung SBRT. Methods: The surface acquired from the 4DCT images from our preliminary cohort of eight lung cancer patients treated with SBRT were matched to the surface images acquired prior to each treatment. Additionally, a CBCT image set was acquired. A linear regression model was established between the external and internal motion of tumor during pretreatment and used to predict the CBCT deviation during treatment. The shifts determined from CBCT and the shifts from surface map imaging were compared and assessed using Bland-Altman method. For intrafraction motion, we assessed the percentage of mean errors that fell outside of the threshold of 2 mm, 3 mm, and 5 mm along the translational directions. The required PTV margin was quantified over the course of treatment. The correlation between intrafraction treatment time and mean error of 3D displacement was evaluated using the Pearson coefficient, r Results: A total of 7971 data points were analyzed. Deviations of 2mm, 3mm, and 5mm were observed less than 7%, 2 %, and 0 % of the time along the translational direction. CBCT and Catalyst showed close agreement during patient positioning. Furthermore, the calculated PTV margins were less than our clinical tolerance of 5 mm. Using the Pearson coefficient r,the mean error of 3D displacement showed significant correlation with treatment time (r=0.69, p= 0.000002). Conclusion: SGRT can be used to ensure accurate patient positioning during treatment without an additional delivery of dose to the patient. This study shows that importance of treatment time as a consideration during the treatment planning process.

  2. SU-G-JeP4-07: Evaluation of Intrafraction Motion Using 3D Surface Guided Radiation Therapy in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Cao, D; Mehta, V; Shepard, D [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, WA (United States)

    2016-06-15

    Purpose: Surface guided radiation therapy (SGRT) uses stereoscopic video images in combination with patterns projected onto the patient’s surface to dynamically capture and reconstruct a 3D surface map. In this work, we used a C-RAD Catalyst HD system (C-RAD) to evaluate intrafraction motion in the delivery of lung SBRT. Methods: The surface acquired from the 4DCT images from our preliminary cohort of eight lung cancer patients treated with SBRT were matched to the surface images acquired prior to each treatment. Additionally, a CBCT image set was acquired. A linear regression model was established between the external and internal motion of tumor during pretreatment and used to predict the CBCT deviation during treatment. The shifts determined from CBCT and the shifts from surface map imaging were compared and assessed using Bland-Altman method. For intrafraction motion, we assessed the percentage of mean errors that fell outside of the threshold of 2 mm, 3 mm, and 5 mm along the translational directions. The required PTV margin was quantified over the course of treatment. The correlation between intrafraction treatment time and mean error of 3D displacement was evaluated using the Pearson coefficient, r Results: A total of 7971 data points were analyzed. Deviations of 2mm, 3mm, and 5mm were observed less than 7%, 2 %, and 0 % of the time along the translational direction. CBCT and Catalyst showed close agreement during patient positioning. Furthermore, the calculated PTV margins were less than our clinical tolerance of 5 mm. Using the Pearson coefficient r,the mean error of 3D displacement showed significant correlation with treatment time (r=0.69, p= 0.000002). Conclusion: SGRT can be used to ensure accurate patient positioning during treatment without an additional delivery of dose to the patient. This study shows that importance of treatment time as a consideration during the treatment planning process.

  3. Intra-fractional bladder motion and margins in adaptive radiotherapy for urinary bladder cancer

    DEFF Research Database (Denmark)

    Grønborg, Caroline; Vestergaard, Anne; Høyer, Morten

    2015-01-01

    and to estimate population-based and patient-specific intra-fractional margins, also relevant for a future re-optimisation strategy. MATERIAL AND METHODS: Nine patients treated in a clinical phase II ART trial of daily plan selection for bladder cancer were included. In the library plans, 5 mm isotropic margins......BACKGROUND: The bladder is a tumour site well suited for adaptive radiotherapy (ART) due to large inter-fractional changes, but it also displays considerable intra-fractional motion. The aim of this study was to assess target coverage with a clinically applied method for plan selection ART...... were added to account for intra-fractional changes. Pre-treatment and weekly repeat magnetic resonance imaging (MRI) series were acquired in which a full three-dimensional (3D) volume was scanned every second min for 10 min (a total of 366 scans in 61 series). Initially, the bladder clinical target...

  4. A new methodology for inter- and intrafraction plan adaptation for the MR-linac

    International Nuclear Information System (INIS)

    Kontaxis, C; Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    The new era of hybrid MRI and linear accelerator machines, including the MR-linac currently being installed in the University Medical Center Utrecht (Utrecht, The Netherlands), will be able to provide the actual anatomy and real-time anatomy changes of the patient’s target(s) and organ(s) at risk (OARs) during radiation delivery. In order to be able to take advantage of this input, a new generation of treatment planning systems is needed, that will allow plan adaptation to the latest anatomy state in an online regime. In this paper, we present a treatment planning algorithm for intensity-modulated radiotherapy (IMRT), which is able to compensate for patient anatomy changes. The system consists of an iterative sequencing loop open to anatomy updates and an inter- and intrafraction adaptation scheme that enables convergence to the ideal dose distribution without the need of a final segment weight optimization (SWO). The ability of the system to take into account organ motion and adapt the plan to the latest anatomy state is illustrated using artificial baseline shifts created for three different kidney cases. Firstly, for two kidney cases of different target volumes, we show that the system can account for intrafraction motion, delivering the intended dose to the target with minimal dose deposition to the surroundings compared to conventional plans. Secondly, for a third kidney case we show that our algorithm combined with the interfraction scheme can be used to deliver the prescribed dose while adapting to the changing anatomy during multi-fraction treatments without performing a final SWO. (paper)

  5. A new methodology for inter- and intrafraction plan adaptation for the MR-linac

    Science.gov (United States)

    Kontaxis, C.; Bol, G. H.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-10-01

    The new era of hybrid MRI and linear accelerator machines, including the MR-linac currently being installed in the University Medical Center Utrecht (Utrecht, The Netherlands), will be able to provide the actual anatomy and real-time anatomy changes of the patient’s target(s) and organ(s) at risk (OARs) during radiation delivery. In order to be able to take advantage of this input, a new generation of treatment planning systems is needed, that will allow plan adaptation to the latest anatomy state in an online regime. In this paper, we present a treatment planning algorithm for intensity-modulated radiotherapy (IMRT), which is able to compensate for patient anatomy changes. The system consists of an iterative sequencing loop open to anatomy updates and an inter- and intrafraction adaptation scheme that enables convergence to the ideal dose distribution without the need of a final segment weight optimization (SWO). The ability of the system to take into account organ motion and adapt the plan to the latest anatomy state is illustrated using artificial baseline shifts created for three different kidney cases. Firstly, for two kidney cases of different target volumes, we show that the system can account for intrafraction motion, delivering the intended dose to the target with minimal dose deposition to the surroundings compared to conventional plans. Secondly, for a third kidney case we show that our algorithm combined with the interfraction scheme can be used to deliver the prescribed dose while adapting to the changing anatomy during multi-fraction treatments without performing a final SWO.

  6. Radiopaque marker motion during pre-treatment CBCT as a predictor of intra-fractional prostate movement

    International Nuclear Information System (INIS)

    Bernchou, Uffe; Brink, Carsten; Agergaard, Soeren N.

    2013-01-01

    The intra-fractional movement of the prostate constitutes a hindrance for the reduction of the planning target volume margin for prostate cancer patients. Monitoring the movement of the prostate during treatment is a promising but in most centres not feasible solution. However, the projection images of the pre-treatment cone-beam computed tomography (CBCT) provide information about the motion of the target immediately preceding the treatment. This motion information can be extracted from any standard CBCT scan which is available in many institutions. In this study we measure the motion of the prostate during the pre-treatment CBCT and investigate whether this motion is correlated with the intra-fractional movement of the prostate. Material and methods: Pre- and post-treatment CBCT scans were made during a number of the fractions (average 11 range 8-12) for 13 prostate cancer patients during the radiation treatment course. The displacement of the post-treatment CBCT scans relative to the pre-treatment position was used to assess the intra-fractional motion. Automated image analysis was used to track the 2D position of radiopaque markers in the projection images of the scans. The most probable 3D trajectory of the markers during the CBCT scan was estimated based on a probability density function which was established for each individual scan. Results: The accuracy of the tracking algorithm was found satisfactory and the motion of the markers during the CBCT scans was successfully extracted from the projection images. This motion was generally small and uncorrelated with the subsequent intra-fractional movement of the prostate. The correlation coefficients were - 0.05, 0.07, and - 0.05 in the LR, AP, and CC direction, respectively. Conclusion: It is tempting to exploit the pre-treatment CBCT to predict the intra-fractional movement of the prostate but, unfortunately, we have found no correlation between the intra-fractional movement and the motion of the prostate

  7. SU-G-JeP4-14: Assessment of Inter- and Intra-Fractional Motion for Extremity Soft Tissue Sarcoma Patients by Using In-House Real-Time Optical Image-Based Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H [Interdisciplinary Program in Radiation Applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, I [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Ye, S [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: This study aimed to assess inter- and intra-fractional motion for extremity Soft Tissue Sarcoma (STS) patients, by using in-house real-time optical image-based monitoring system (ROIMS) with infra-red (IR) external markers. Methods: Inter- and intra-fractional motions for five extremity (1 upper, 4 lower) STS patients received postoperative 3D conformal radiotherapy (3D-CRT) were measured by registering the image acquired by ROIMS with the planning CT image (REG-ROIMS). To compare with the X-ray image-based monitoring, pre- and post-treatment cone beam computed tomography (CBCT) scans were performed once per week and registered with planning CT image as well (REG-CBCT). If the CBCT scan is not feasible due to the large couch shift, AP and LR on-board imager (OBI) images were acquired. The comparison was done by calculating mutual information (MI) of those registered images. Results: The standard deviation (SD) of the inter-fractional motion was 2.6 mm LR, 2.8 mm SI, and 2.0 mm AP, and the SD of the intra-fractional motion was 1.4 mm, 2.1 mm, and 1.3 mm in each axis, respectively. The SD of rotational inter-fractional motion was 0.6° pitch, 0.9° yaw, and 0.8° roll and the SD of rotational intra-fractional motion was 0.4° pitch, 0.9° yaw, and 0.7° roll. The derived averaged MI values were 0.83, 0.92 for REG-CBCT without rotation and REG-ROIMS with rotation, respectively. Conclusion: The in-house real-time optical image-based monitoring system was implemented clinically and confirmed the feasibility to assess inter- and intra-fractional motion for extremity STS patients while the daily basis and real-time CBCT scan is not feasible in clinic.

  8. SU-G-JeP4-14: Assessment of Inter- and Intra-Fractional Motion for Extremity Soft Tissue Sarcoma Patients by Using In-House Real-Time Optical Image-Based Monitoring System

    International Nuclear Information System (INIS)

    Kim, H; Kim, I; Ye, S

    2016-01-01

    Purpose: This study aimed to assess inter- and intra-fractional motion for extremity Soft Tissue Sarcoma (STS) patients, by using in-house real-time optical image-based monitoring system (ROIMS) with infra-red (IR) external markers. Methods: Inter- and intra-fractional motions for five extremity (1 upper, 4 lower) STS patients received postoperative 3D conformal radiotherapy (3D-CRT) were measured by registering the image acquired by ROIMS with the planning CT image (REG-ROIMS). To compare with the X-ray image-based monitoring, pre- and post-treatment cone beam computed tomography (CBCT) scans were performed once per week and registered with planning CT image as well (REG-CBCT). If the CBCT scan is not feasible due to the large couch shift, AP and LR on-board imager (OBI) images were acquired. The comparison was done by calculating mutual information (MI) of those registered images. Results: The standard deviation (SD) of the inter-fractional motion was 2.6 mm LR, 2.8 mm SI, and 2.0 mm AP, and the SD of the intra-fractional motion was 1.4 mm, 2.1 mm, and 1.3 mm in each axis, respectively. The SD of rotational inter-fractional motion was 0.6° pitch, 0.9° yaw, and 0.8° roll and the SD of rotational intra-fractional motion was 0.4° pitch, 0.9° yaw, and 0.7° roll. The derived averaged MI values were 0.83, 0.92 for REG-CBCT without rotation and REG-ROIMS with rotation, respectively. Conclusion: The in-house real-time optical image-based monitoring system was implemented clinically and confirmed the feasibility to assess inter- and intra-fractional motion for extremity STS patients while the daily basis and real-time CBCT scan is not feasible in clinic.

  9. Measurement of intrafractional prostate motion using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mah, Dennis; Freedman, Gary; Milestone, Bart; Hanlon, Alexandra; Palacio, Elizabeth; Richardson, Theresa; Movsas, Benjamin; Mitra, Raj; Horwitz, Eric; Hanks, Gerald E.

    2002-01-01

    Purpose: To quantify the three-dimensional intrafractional prostate motion over typical treatment time intervals with cine-magnetic resonance imaging (cine MRI) studies. Methods and Materials: Forty-two patients with prostate cancer were scanned supine in an alpha cradle cast using cine MRI. Twenty sequential slices were acquired in the sagittal and axial planes through the center of the prostate. Each scan took ∼9 min. The posterior, lateral, and superior edges of the prostate were tracked on each frame relative to the initial prostate position, and the size and duration of each displacement was recorded. Results: The prostate displacements were (mean ± SD): 0.2 ± 2.9 mm, 0.0 ± 3.4 mm, and 0.0 ± 1.5 mm in the anterior-posterior, superior-inferior, and medial-lateral dimensions respectively. The prostate motion appeared to have been driven by peristalsis in the rectum. Large displacements of the prostate (up to 1.2 cm) moved the prostate both anteriorly and superiorly and in some cases compressed the organ. For such motions, the prostate did not stay displaced, but moved back to its original position. To account for the dosimetric consequences of the motion, we also calculated the time-averaged displacement to be ∼1 mm. Conclusions: Cine MRI can be used to measure intrafractional prostate motion. Although intrafractional prostate motions occur, their effects are negligible compared to interfractional motion and setup error. No adjustment in margin is necessary for three-dimensional conformal or intensity-modulated radiation therapy

  10. SU-F-J-30: Application of Intra-Fractional Imaging for Pretreatment CBCT of Breath-Hold Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D; Jermoumi, M; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2016-06-15

    Purpose: Clinical implementation of gated lung SBRT requires tools to verify the accuracy of the target positioning on a daily basis. This is a particular challenge on Elekta linacs where the XVI imaging system does not interface directly to any commercial gating solution. In this study, we used the Elekta’s intra-fractional imaging functionality to perform the pretreatment CBCT verifications and evaluated both the image quality and gating accuracy. Methods: To use intrafraction imaging tools for pretreatment verifications, we planned a 360-degree arc with 1mmx5mm MLC opening. This beam was designed to drive the gantry during the gated CBCT data collection. A Catphan phantom was used to evaluate the image quality for the intra-fractional CBCT. A CIRS lung phantom with a 3cm sphereinsert and a moving chest plate were programmed with a simulated breathhold breathing pattern was used to check the gating accuracy. A C-Rad CatalystHD surface mapping system was used to provide the gating signal. Results: The total delivery time of the arc was 90 seconds. The uniformity and low contrast resolution for the intra-fractional CBCT was 1.5% and 3.6%, respectively. The values for the regular CBCT were 1.7% and 2.5%, respectively. The spatial resolution was 7 line-pairs/cm and the 3D spatial integrity was less than 1mm for the intra-fractional CBCT. The gated CBCT clearly demonstrated the accuracy of the gating image acquisition. Conclusion: The intra-fraction CBCT capabilities on an Elekta linac can be used to acquire pre-treatment gated images to verify the accuracy patient positioning. This imaging capability should provide for accurate patient alignments for the delivery of lung SBRT. This research was partially supported by Elekta.

  11. Intrafractional Target Motions and Uncertainties of Treatment Setup Reference Systems in Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Yue, Ning J.; Goyal, Sharad; Zhou Jinghao; Khan, Atif J.; Haffty, Bruce G.

    2011-01-01

    Purpose: This study investigated the magnitude of intrafractional motion and level of accuracy of various setup strategies in accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy. Methods and Materials: At lumpectomy, gold fiducial markers were strategically sutured to the surrounding walls of the cavity. Weekly fluoroscopy imaging was conducted at treatment to investigate the respiration-induced target motions. Daily pre- and post-RT kV imaging was performed, and images were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion magnitudes over the course of treatment. The positioning differences of the laser tattoo- and the bony anatomy-based setups compared with those of the marker-based setup (benchmark) were also determined. The study included 21 patients. Results: Although lung exhibited significant motion, the average marker motion amplitude on the fluoroscopic image was about 1 mm. Over a typical treatment time period, average intrafractional motion magnitude was 4.2 mm and 2.6 mm based on the marker and bony anatomy matching, respectively. The bony anatomy- and laser tattoo-based interfractional setup errors, with respect to the fiducial marker-based setup, were 7.1 and 9.0 mm, respectively. Conclusions: Respiration has limited effects on the target motion during APBI. Bony anatomy-based treatment setup improves the accuracy relative to that of the laser tattoo-based setup approach. Since fiducial markers are sutured directly to the surgical cavity, the marker-based approach can further improve the interfractional setup accuracy. On average, a seroma cavity exhibits intrafractional motion of more than 4 mm, a magnitude that is larger than that which is otherwise derived based on bony anatomy matching. A seroma-specific marker-based approach has the potential to improve treatment accuracy by taking the true inter

  12. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2015-03-15

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter

  13. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey

    2015-01-01

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r - Inter =0.52±0

  14. Determining intrafractional prostate motion using four dimensional ultrasound system

    DEFF Research Database (Denmark)

    Baker, Mariwan; Behrens, Claus F.

    2016-01-01

    , LR, and AP directions, respectively. The mean of the maximal intrafractional Euclidean distance (3D vector) was 0.9 +/- 0.6 mm. For 12 % of the fractions the maximal 3D vector displacements were larger than 2.0 mm. At only two fractions (4 %) displacements larger than 3. 0 mm were observed...

  15. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients.

    Science.gov (United States)

    Li, Winnie; Purdie, Thomas G; Taremi, Mojgan; Fung, Sharon; Brade, Anthony; Cho, B C John; Hope, Andrew; Sun, Alexander; Jaffray, David A; Bezjak, Andrea; Bissonnette, Jean-Pierre

    2011-12-01

    To assess intrafractional geometric accuracy of lung stereotactic body radiation therapy (SBRT) patients treated with volumetric image guidance. Treatment setup accuracy was analyzed in 133 SBRT patients treated via research ethics board-approved protocols. For each fraction, a localization cone-beam computed tomography (CBCT) scan was acquired for soft-tissue registration to the internal target volume, followed by a couch adjustment for positional discrepancies greater than 3 mm, verified with a second CBCT scan. CBCT scans were also performed at intrafraction and end fraction. Patient positioning data from 2047 CBCT scans were recorded to determine systematic (Σ) and random (σ) uncertainties, as well as planning target volume margins. Data were further stratified and analyzed by immobilization method (evacuated cushion [n=75], evacuated cushion plus abdominal compression [n=33], or chest board [n=25]) and by patients' Eastern Cooperative Oncology Group performance status (PS): 0 (n=31), 1 (n=70), or 2 (n=32). Using CBCT internal target volume was matched within ±3 mm in 16% of all fractions at localization, 89% at verification, 72% during treatment, and 69% after treatment. Planning target volume margins required to encompass residual setup errors after couch corrections (verification CBCT scans) were 4 mm, and they increased to 5 mm with target intrafraction motion (post-treatment CBCT scans). Small differences (position were observed between the immobilization cohorts in the localization, verification, intrafraction, and post-treatment CBCT scans (pPositional drift varied according to patient PS, with the PS 1 and 2 cohorts drifting out of position by mid treatment more than the PS 0 cohort in the cranial-caudal direction (p=0.04). Image guidance ensures high geometric accuracy for lung SBRT irrespective of immobilization method or PS. A 5-mm setup margin suffices to address intrafraction motion. This setup margin may be further reduced by strategies such as

  16. Effect of Immobilization and Performance Status on Intrafraction Motion for Stereotactic Lung Radiotherapy: Analysis of 133 Patients

    International Nuclear Information System (INIS)

    Li, Winnie; Purdie, Thomas G.; Taremi, Mojgan; Fung, Sharon; Brade, Anthony; Cho, B.C. John; Hope, Andrew; Sun, Alexander; Jaffray, David A.; Bezjak, Andrea; Bissonnette, Jean-Pierre

    2011-01-01

    Purpose: To assess intrafractional geometric accuracy of lung stereotactic body radiation therapy (SBRT) patients treated with volumetric image guidance. Methods and Materials: Treatment setup accuracy was analyzed in 133 SBRT patients treated via research ethics board–approved protocols. For each fraction, a localization cone-beam computed tomography (CBCT) scan was acquired for soft-tissue registration to the internal target volume, followed by a couch adjustment for positional discrepancies greater than 3 mm, verified with a second CBCT scan. CBCT scans were also performed at intrafraction and end fraction. Patient positioning data from 2047 CBCT scans were recorded to determine systematic (Σ) and random (σ) uncertainties, as well as planning target volume margins. Data were further stratified and analyzed by immobilization method (evacuated cushion [n = 75], evacuated cushion plus abdominal compression [n = 33], or chest board [n = 25]) and by patients’ Eastern Cooperative Oncology Group performance status (PS): 0 (n = 31), 1 (n = 70), or 2 (n = 32). Results: Using CBCT internal target volume was matched within ±3 mm in 16% of all fractions at localization, 89% at verification, 72% during treatment, and 69% after treatment. Planning target volume margins required to encompass residual setup errors after couch corrections (verification CBCT scans) were 4 mm, and they increased to 5 mm with target intrafraction motion (post-treatment CBCT scans). Small differences (<1 mm) in the cranial–caudal direction of target position were observed between the immobilization cohorts in the localization, verification, intrafraction, and post-treatment CBCT scans (p < 0.01). Positional drift varied according to patient PS, with the PS 1 and 2 cohorts drifting out of position by mid treatment more than the PS 0 cohort in the cranial-caudal direction (p = 0.04). Conclusions: Image guidance ensures high geometric accuracy for lung SBRT irrespective of immobilization

  17. Vacuum immobilisation reduces tumour excursion and minimises intrafraction error in a cohort study of stereotactic ablative body radiotherapy for pulmonary metastases

    International Nuclear Information System (INIS)

    Siva, Shankar; Devereux, Tomas; Kron, Tomas

    2014-01-01

    The purpose of this study is to assess the impact of a vacuum immobilisation system on reproducibility of patient set-up, interfraction stability and tumour motion amplitude. From February 2010 to February 2012 as part of a prospective clinical trial 12 patients with solitary pulmonary metastases had consecutive four-dimensional computed tomography (4DCT) scans performed with and without vacuum immobilisation. The displacement of the tumour centroid position was recorded in each of the 10 phases of the 4DCT reconstruction. A further six patients with seven metastases underwent single fraction stereotactic ablative body radiotherapy (SABR) during this period (a total of 19 targets) and were included in an analysis of positional reproducibility and intrafraction immobilisation. Couch shifts recorded in the medio-lateral (X), cranio-caudal (Y) and ventero-dorsal (Z) planes. For the 19 treatments delivered, the median (0–90% range) shift required immediately pretreatment was 1mm (0–3) in the X-plane, 2mm (0–6) in the Y-plane and 4mm (0–8) in the Z-plane, respectively. The mean (+/− standard deviation) of mid-treatment shifts were 0.3mm (+/− 0.7), 1.1mm (+/− 2) and 0.8mm (+/− 1.5) in the X, Y and Z planes, respectively. Mid-treatment shifts were <2mm in all directions (P=<0.001). The length of treatment time correlated to the required shifts in the Z plane (r2=0.377, P=0.005), but not in the X or Y planes (P=0.198 and P=0.653, respectively). In the subset of 12 patients who had two 4DCTs, the median (range) amplitude of tumour displacements in the X, Y and Z planes when immobilised were 0.9mm (0.3–2.9), 2.6mm (0.2–10.6) and 1.6mm (0.5–5.5), respectively. Immobilisation reduced the volume of tumour displacement during respiration by a median of 52.6% (P=0.021). Vacuum immobilisation reduces total tumour excursion, facilitates reproducible positioning and provides robust intrafractional immobilisation during SABR treatments for pulmonary metastases.

  18. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Science.gov (United States)

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  19. Adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion

    International Nuclear Information System (INIS)

    Webb, S

    2008-01-01

    This paper presents a technique for coping with variable intrafraction organ motion when delivering intensity-modulated radiation therapy (IMRT). The strategy is an adaptive delivery in which the fluence delivered up to a particular fraction is subtracted from the required total-course planned fluence to create an adapted residual fluence for the next fraction. This requires that the fluence already delivered can be computed, knowing the intrafraction motion during each fraction. If the adaptation is unconstrained, as would be required for perfect delivery of the planned fluence, then the individual fractional fluences would become unphysical, with both negative components and spikes. Hence it is argued that constraints must be applied; first, positivity constraints and second, constraints to limit fluence spikes. Additionally, it is shown to be helpful to constrain other quantities which are explained. The power of the strategy is that it adapts to the (potentially variable) moving geometry during each fraction. It is not a perfect delivery but it is always better than making no adaptation. The fractionated nature of radiation therapy is thus exploited to advantage. The fluence adaptation method does not require re-planning at each fraction but this imposes limitations which are stated. The fuller theory of dose adaptation is also developed for intrafraction motion. The method is complementary to other adaptive strategies recently discussed with respect to interfraction motion

  20. Inter- and Intrafraction Variability in Liver Position in Non-Breath-Hold Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Case, Robert B.; Sonke, Jan-Jakob; Moseley, Douglas J.; Kim, John; Brock, Kristy K.; Dawson, Laura A.

    2009-01-01

    Purpose: The inter- and intrafraction variability of liver position was assessed in patients with liver cancer treated with kilovoltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy. Methods and Materials: A total of 314 CBCT scans obtained in the treatment position immediately before and after each fraction were evaluated from 29 patients undergoing six-fraction, non-breath-hold stereotactic body radiotherapy for unresectable liver cancer. Off-line, the CBCT scans were sorted into 10 bins, according to the phase of respiration. The liver position (relative to the vertebral bodies) was measured using rigid alignment of the exhale CBCT liver with the exhale planning CT liver, following the alignment of the vertebrae. The interfraction liver position change was measured by comparing the pretreatment CBCT scans, and the intrafraction change was measured from the CBCT scans obtained immediately before and after each fraction. Results: The mean amplitude of liver motion for all patients was 1.8 mm (range, 0.1-5.7), 8.0 mm (range, 0.1-18.8), and 4.3 mm (range 0.1-12.1) in the medial-lateral (ML), craniocaudal (CC), and anteroposterior (AP) directions, respectively. The mean absolute ML, CC, and AP interfraction changes in liver position were 2.0 mm (90th percentile, 4.2), 3.5 mm (90th percentile, 7.3), and 2.3 mm (90th percentile, 4.7). The mean absolute intrafraction ML, CC, and AP changes were 1.3 mm (90th percentile, 2.9), 1.6 mm (90th percentile, 3.6), and 1.5 mm (90th percentile, 3.1), respectively. The interfraction changes were significantly larger than the intrafraction changes, with a CC systematic error of 2.9 and 1.1 mm, respectively. The intraobserver reproducibility (σ, n = 29 fractions) was 1.3 mm in the ML, 1.4 mm in the CC, and 1.6 mm in the AP direction. Conclusion: Interfraction liver position changes relative to the vertebral bodies are an important source of geometric uncertainty, providing a rationale for prefraction

  1. Kilovoltage Imaging of Implanted Fiducials to Monitor Intrafraction Motion With Abdominal Compression During Stereotactic Body Radiation Therapy for Gastrointestinal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yorke, Ellen, E-mail: yorke@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Xiong, Ying [Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing (China); Han, Qian [Department of Radiotherapy, Henan Provincial People' s Hospital, Zhengzhou (China); Zhang, Pengpeng; Mageras, Gikas; Lovelock, Michael; Pham, Hai; Xiong, Jian-Ping [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Goodman, Karyn A. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-07-01

    Purpose: To assess intrafraction respiratory motion using a commercial kilovoltage imaging system for abdominal tumor patients with implanted fiducials and breathing constrained by pneumatic compression during stereotactic body radiation therapy (SBRT). Methods and Materials: A pneumatic compression belt limited respiratory motion in 19 patients with radiopaque fiducials in or near their tumor during SBRT for abdominal tumors. Kilovoltage images were acquired at 5- to 6-second intervals during treatment using a commercial system. Intrafractional fiducial displacements were measured using in-house software. The dosimetric effect of the observed displacements was calculated for 3 sessions for each patient. Results: Intrafraction displacement patterns varied between patients and between individual treatment sessions. Averaged over 19 patients, 73 sessions, 7.6% of craniocaudal displacements exceeded 0.5 cm, and 1.2% exceeded 0.75 cm. The calculated single-session dose to 95% of gross tumor volume differed from planned by an average of −1.2% (range, −11.1% to 4.8%) but only for 4 patients was the total 3-session calculated dose to 95% of gross tumor volume more than 3% different from planned. Conclusions: Our pneumatic compression limited intrafractional abdominal target motion, maintained target position established at setup, and was moderately effective in preserving coverage. Commercially available intrafractional imaging is useful for surveillance but can be made more effective and reliable.

  2. Kilovoltage Imaging of Implanted Fiducials to Monitor Intrafraction Motion With Abdominal Compression During Stereotactic Body Radiation Therapy for Gastrointestinal Tumors

    International Nuclear Information System (INIS)

    Yorke, Ellen; Xiong, Ying; Han, Qian; Zhang, Pengpeng; Mageras, Gikas; Lovelock, Michael; Pham, Hai; Xiong, Jian-Ping; Goodman, Karyn A.

    2016-01-01

    Purpose: To assess intrafraction respiratory motion using a commercial kilovoltage imaging system for abdominal tumor patients with implanted fiducials and breathing constrained by pneumatic compression during stereotactic body radiation therapy (SBRT). Methods and Materials: A pneumatic compression belt limited respiratory motion in 19 patients with radiopaque fiducials in or near their tumor during SBRT for abdominal tumors. Kilovoltage images were acquired at 5- to 6-second intervals during treatment using a commercial system. Intrafractional fiducial displacements were measured using in-house software. The dosimetric effect of the observed displacements was calculated for 3 sessions for each patient. Results: Intrafraction displacement patterns varied between patients and between individual treatment sessions. Averaged over 19 patients, 73 sessions, 7.6% of craniocaudal displacements exceeded 0.5 cm, and 1.2% exceeded 0.75 cm. The calculated single-session dose to 95% of gross tumor volume differed from planned by an average of −1.2% (range, −11.1% to 4.8%) but only for 4 patients was the total 3-session calculated dose to 95% of gross tumor volume more than 3% different from planned. Conclusions: Our pneumatic compression limited intrafractional abdominal target motion, maintained target position established at setup, and was moderately effective in preserving coverage. Commercially available intrafractional imaging is useful for surveillance but can be made more effective and reliable.

  3. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  4. Intrafractional baseline drift during free breathing breast cancer radiation therapy.

    Science.gov (United States)

    Jensen, Christer Andre; Acosta Roa, Ana María; Lund, Jo-Åsmund; Frengen, Jomar

    2017-06-01

    Intrafraction motion in breast cancer radiation therapy (BCRT) has not yet been thoroughly described in the literature. It has been observed that baseline drift occurs as part of the intrafraction motion. This study aims to measure baseline drift and its incidence in free-breathing BCRT patients using an in-house developed laser system for tracking the position of the sternum. Baseline drift was monitored in 20 right-sided breast cancer patients receiving free breathing 3D-conformal RT by using an in-house developed laser system which measures one-dimensional distance in the AP direction. A total of 357 patient respiratory traces from treatment sessions were logged and analysed. Baseline drift was compared to patient positioning error measured from in-field portal imaging. The mean overall baseline drift at end of treatment sessions was -1.3 mm for the patient population. Relatively small baseline drift was observed during the first fraction; however it was clearly detected already at the second fraction. Over 90% of the baseline drift occurs during the first 3 min of each treatment session. The baseline drift rate for the population was -0.5 ± 0.2 mm/min in the posterior direction the first minute after localization. Only 4% of the treatment sessions had a 5 mm or larger baseline drift at 5 min, all towards the posterior direction. Mean baseline drift in the posterior direction in free breathing BCRT was observed in 18 of 20 patients over all treatment sessions. This study shows that there is a substantial baseline drift in free breathing BCRT patients. No clear baseline drift was observed during the first treatment session; however, baseline drift was markedly present at the rest of the sessions. Intrafraction motion due to baseline drift should be accounted for in margin calculations.

  5. Effect of Intrafraction Prostate Motion on Proton Pencil Beam Scanning Delivery: A Quantitative Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shikui, E-mail: TangS@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Deville, Curtiland; McDonough, James; Tochner, Zelig [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wang, Ken Kang-Hsin [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland (United States); Vapiwala, Neha; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-10-01

    Purpose: To assess the dosimetric impact caused by the interplay between intrafraction prostate motion and the intermittent delivery of proton pencil beam scanning (PBS). Methods and Materials: A cohort of 10 prostate patients was treated with PBS using a bilateral single-field uniform dose (SFUD) modality. Bilateral intensity-modulated proton therapy (IMPT) plans were generated for comparison. Because beam-on time in PBS was intermittent, the actual beam-on time was determined from treatment logs. Prostate motion was generalized according to real-time Calypso tracking data from our previously reported prospective photon trial. We investigated potential dose deviations by considering the interplay effect resulting from the worst-case scenario motion and the PBS delivery sequence. Results: For both bilateral-field SFUD and IMPT plans, clinical target volume (CTV) D{sub 99}% coverage was degraded <2% owing to prostate intrafraction motion when averaged over the course of treatment, but was >10% for the worst fraction. The standard deviation of CTV D{sub 99}% distribution was approximately 1.2%. The CTV coverage of individual fields in SFUD plans degraded as time elapsed after the initial alignment, owing to prostate drift. Intensity-modulated proton therapy and SFUD demonstrated comparable results when bilateral opposed fields were used. Single-field SFUD plans that were repainted twice, which could reduce half of the treatment time, resulted in similar CTV coverage as bilateral-field plans. Conclusions: Intrafraction prostate motion affects the actual delivered dose to CTV; however, when averaged over the course of treatment, CTV D{sub 99}% coverage degraded only approximately 2% even for the worst-case scenario. The IMPT plan results are comparable to those of the SFUD plan, and similar coverage can be achieved if treated by SFUD 1 lateral field per day when rescanning the field twice to shorten the treatment time and mitigate intrafraction motion.

  6. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lips, Irene M., E-mail: i.m.lips@umcutrecht.nl [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Gils, Carla H. van [Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht (Netherlands); Kotte, Alexis N.T.J. [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Leerdam, Monique E. van [Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam (Netherlands); Franken, Stefan P.G.; Heide, Uulke A. van der; Vulpen, Marco van [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands)

    2012-06-01

    Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondary outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.

  7. Quantifying Appropriate PTV Setup Margins: Analysis of Patient Setup Fidelity and Intrafraction Motion Using Post-Treatment Megavoltage Computed Tomography Scans

    International Nuclear Information System (INIS)

    Drabik, Donata M.; MacKenzie, Marc A.; Fallone, Gino B.

    2007-01-01

    Purpose: To present a technique that can be implemented in-house to evaluate the efficacy of immobilization and image-guided setup of patients with different treatment sites on helical tomotherapy. This technique uses an analysis of alignment shifts between kilovoltage computed tomography and post-treatment megavoltage computed tomography images. The determination of the shifts calculated by the helical tomotherapy software for a given site can then be used to define appropriate planning target volume internal margins. Methods and Materials: Twelve patients underwent post-treatment megavoltage computed tomography scans on a helical tomotherapy machine to assess patient setup fidelity and net intrafraction motion. Shifts were studied for the prostate, head and neck, and glioblastoma multiforme. Analysis of these data was performed using automatic and manual registration of the kilovoltage computed tomography and post-megavoltage computed tomography images. Results: The shifts were largest for the prostate, followed by the head and neck, with glioblastoma multiforme having the smallest shifts in general. It appears that it might be more appropriate to use asymmetric planning target volume margins. Each margin value reported is equal to two standard deviations of the average shift in the given direction. Conclusion: This method could be applied using individual patient post-image scanning and combined with adaptive planning to reduce or increase the margins as appropriate

  8. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    Science.gov (United States)

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Atomic-scaled characterization of graphene PN junctions

    Science.gov (United States)

    Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.

    Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.

  10. SU-E-J-133: Evaluation of Inter- and Intra-Fractional Pancreas Tumor Residual Motions with Abdominal Compression

    International Nuclear Information System (INIS)

    Li, Y; Shi, F; Tian, Z; Jia, X; Meyer, J; Jiang, S; Mao, W

    2014-01-01

    Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motion pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable

  11. Interfractional and intrafractional errors assessed by daily cone-beam computed tomography in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy. A prospective study

    International Nuclear Information System (INIS)

    Lu Heming; Lin Hui; Feng Guosheng

    2012-01-01

    This prospective study was to assess interfractional and intrafractional errors and to estimate appropriate margins for planning target volume (PTV) by using daily cone-beam computed tomography (CBCT) guidance in nasopharyngeal carcinoma (NPC). Daily pretreatment and post-treatment CBCT scans were acquired separately after initial patient setup and after the completion of each treatment fraction in 10 patients treated with intensity-modulated radiation therapy (IMRT). Online corrections were made before treatment if any translational setup error was found. Interfractional and intrafractional errors were recorded in the right-left (RL), superior-inferior (SI) and anterior-posterior (AP) directions. For the translational shifts, interfractional errors >2 mm occurred in 21.7% of measurements in the RL direction, 12.7% in the SI direction and 34.1% in the AP direction, respectively. Online correction resulted in 100% of residual errors ≤2 mm in the RL and SI directions, and 95.5% of residual errors ≤2 mm in the AP direction. No residual errors >3 mm occurred in the three directions. For the rotational shifts, a significant reduction was found in the magnitudes of residual errors compared with those of interfractional errors. A margin of 4.9 mm, 4.0 mm and 6.3 mm was required in the RL, SI and AP directions, respectively, when daily CBCT scans were not performed. With daily CBCT, the margins were reduced to 1.2 mm in all directions. In conclusion, daily CBCT guidance is an effective modality to improve the accuracy of IMRT for NPC. The online correction could result in a 70-81% reduction in margin size. (author)

  12. Combined Inter- and Intrafractional Plan Adaptation Using Fraction Partitioning in Magnetic Resonance-guided Radiotherapy Delivery.

    Science.gov (United States)

    Lagerwaard, Frank; Bohoudi, Omar; Tetar, Shyama; Admiraal, Marjan A; Rosario, Tezontl S; Bruynzeel, Anna

    2018-04-05

    Magnetic resonance-guided radiation therapy (MRgRT) not only allows for superior soft-tissue setup and online MR-guidance during delivery but also for inter-fractional plan re-optimization or adaptation. This plan adaptation involves repeat MR imaging, organs at risk (OARs) re-contouring, plan prediction (i.e., recalculating the baseline plan on the anatomy of that moment), plan re-optimization, and plan quality assurance. In contrast, intrafractional plan adaptation cannot be simply performed by pausing delivery at any given moment, adjusting contours, and re-optimization because of the complex and composite nature of deformable dose accumulation. To overcome this limitation, we applied a practical workaround by partitioning treatment fractions, each with half the original fraction dose. In between successive deliveries, the patient remained in the treatment position and all steps of the initial plan adaptation were repeated. Thus, this second re-optimization served as an intrafractional plan adaptation at 50% of the total delivery. The practical feasibility of this partitioning approach was evaluated in a patient treated with MRgRT for locally advanced pancreatic cancer (LAPC). MRgRT was delivered in 40Gy in 10 fractions, with two fractions scheduled successively on each treatment day. The contoured gross tumor volume (GTV) was expanded by 3 mm, excluding parts of the OARs within this expansion to derive the planning target volume for daily re-optimization (PTV OPT ). The baseline GTVV 95%  achieved in this patient was 80.0% to adhere to the high-dose constraints for the duodenum, stomach, and bowel (V 33 Gy ViewRay Inc, Mountain View, USA) using video-assisted breath-hold in shallow inspiration. The dual plan adaptation resulted, for each partitioned fraction, in the generation of Plan PREDICTED1 , Plan RE-OPTIMIZED1  (inter-fractional adaptation), Plan PREDICTED2 , and Plan RE-OPTIMIZED2  (intrafractional adaptation). An offline analysis was

  13. Dosimetric Impact of Intrafractional Patient Motion in Pediatric Brain Tumor Patients

    International Nuclear Information System (INIS)

    Beltran, Chris; Trussell, John; Merchant, Thomas E.

    2010-01-01

    The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 ± 1.5 treatment fractions; motion data were acquired for a mean of 26 ± 6.2 fractions. The mean age was 15.6 ± 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment.

  14. Intrafraction Motion in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer: Intensity Modulated Radiation Therapy Versus Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Maddalena M.G.; Peulen, Heike M.U.; Belderbos, Josè S.A.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl

    2016-06-01

    Purpose: Stereotactic body radiation therapy (SBRT) for early-stage inoperable non-small cell lung cancer (NSCLC) patients delivers high doses that require high-precision treatment. Typically, image guidance is used to minimize day-to-day target displacement, but intrafraction position variability is often not corrected. Currently, volumetric modulated arc therapy (VMAT) is replacing intensity modulated radiation therapy (IMRT) in many departments because of its shorter delivery time. This study aimed to evaluate whether intrafraction variation in VMAT patients is reduced in comparison with patients treated with IMRT. Methods and Materials: NSCLC patients (197 IMRT and 112 VMAT) treated with a frameless SBRT technique to a prescribed dose of 3 × 18 Gy were evaluated. Image guidance for both techniques was identical: pretreatment cone beam computed tomography (CBCT) (CBCT{sub precorr}) for setup correction followed immediately before treatment by postcorrection CBCT (CBCT{sub postcorr}) for verification. Then, after either a noncoplanar IMRT technique or a VMAT technique, a posttreatment (CBCT{sub postRT}) scan was acquired. The CBCT{sub postRT} and CBCT{sub postcorr} scans were then used to evaluate intrafraction motion. Treatment delivery times, systematic (Σ) and random (σ) intrafraction variations, and associated planning target volume (PTV) margins were calculated. Results: The median treatment delivery time was significantly reduced by 20 minutes (range, 32-12 minutes) using VMAT compared with noncoplanar IMRT. Intrafraction tumor motion was significantly larger for IMRT in all directions up to 0.5 mm systematic (Σ) and 0.7 mm random (σ). The required PTV margins for IMRT and VMAT differed by less than 0.3 mm. Conclusion: VMAT-based SBRT for NSCLC was associated with significantly shorter delivery times and correspondingly smaller intrafraction motion compared with noncoplanar IMRT. However, the impact on the required PTV margin was small.

  15. Patterns of intrafractional motion and uncertainties of treatment setup reference systems in accelerated partial breast irradiation for right- and left-sided breast cancer.

    Science.gov (United States)

    Yue, Ning J; Goyal, Sharad; Kim, Leonard H; Khan, Atif; Haffty, Bruce G

    2014-01-01

    This study investigated the patterns of intrafractional motion and accuracy of treatment setup strategies in 3-dimensional conformal radiation therapy of accelerated partial breast irradiation (APBI) for right- and left-sided breast cancers. Sixteen right-sided and 17 left-sided breast cancer patients were enrolled in an institutional APBI trial in which gold fiducial markers were strategically sutured to the surgical cavity walls. Daily pre- and postradiation therapy kV imaging were performed and were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion. The positioning differences of the laser-tattoo and the bony anatomy-based setups with respect to the marker-based setup (benchmark) were determined to evaluate their accuracy. Statistical differences were found between the right- and left-sided APBI treatments in vector directions of intrafractional motion and treatment setup errors in the reference systems, but less in their overall magnitudes. The directional difference was more pronounced in the lateral direction. It was found that the intrafractional motion and setup reference systems tended to deviate in the right direction for the right-sided breast treatments and in the left direction for the left-sided breast treatments. It appears that the fiducial markers placed in the seroma cavity exhibit side dependent directional intrafractional motion, although additional data may be needed to further validate the conclusion. The bony anatomy-based treatment setup improves the accuracy over laser-tattoo. But it is inadequate to rely on bony anatomy to assess intrafractional target motion in both magnitude and direction. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  16. WE-DE-BRA-01: SCIENCE COUNCIL JUNIOR INVESTIGATOR COMPETITION WINNER: Acceleration of a Limited-Angle Intrafraction Verification (LIVE) System Using Adaptive Prior Knowledge Based Image Estimation

    International Nuclear Information System (INIS)

    Zhang, Y; Yin, F; Ren, L; Zhang, Y

    2016-01-01

    Purpose: To develop an adaptive prior knowledge based image estimation method to reduce the scan angle needed in the LIVE system to reconstruct 4D-CBCT for intrafraction verification. Methods: The LIVE system has been previously proposed to reconstructs 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. This system uses limited-angle beam’s eye view (BEV) MV cine images acquired from the treatment beam together with the orthogonally acquired limited-angle kV projections to reconstruct 4D-CBCT images for target verification during treatment. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the CBCT images. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on projections acquired in limited angle (orthogonal 6°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of patient motion.The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of this technique with LIVE system. A lung patient was simulated with different scenario, including baseline drifts, amplitude change and phase shift. Limited-angle orthogonal kV and beam’s eye view (BEV) MV projections were generated for each scenario. The CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate the reconstruction accuracy. Results: Using orthogonal-view of 6° kV and BEV- MV projections, the VPD/COMS values were 12.7±4.0%/0.7±0.5 mm, 13.0±5.1%/0.8±0.5 mm, and 11.4±5.4%/0.5±0.3 mm for the three scenarios, respectively. Conclusion: The

  17. WE-DE-BRA-01: SCIENCE COUNCIL JUNIOR INVESTIGATOR COMPETITION WINNER: Acceleration of a Limited-Angle Intrafraction Verification (LIVE) System Using Adaptive Prior Knowledge Based Image Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States); Zhang, Y [UT Southwestern Medical Ctr at Dallas, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an adaptive prior knowledge based image estimation method to reduce the scan angle needed in the LIVE system to reconstruct 4D-CBCT for intrafraction verification. Methods: The LIVE system has been previously proposed to reconstructs 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. This system uses limited-angle beam’s eye view (BEV) MV cine images acquired from the treatment beam together with the orthogonally acquired limited-angle kV projections to reconstruct 4D-CBCT images for target verification during treatment. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the CBCT images. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on projections acquired in limited angle (orthogonal 6°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of patient motion.The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of this technique with LIVE system. A lung patient was simulated with different scenario, including baseline drifts, amplitude change and phase shift. Limited-angle orthogonal kV and beam’s eye view (BEV) MV projections were generated for each scenario. The CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate the reconstruction accuracy. Results: Using orthogonal-view of 6° kV and BEV- MV projections, the VPD/COMS values were 12.7±4.0%/0.7±0.5 mm, 13.0±5.1%/0.8±0.5 mm, and 11.4±5.4%/0.5±0.3 mm for the three scenarios, respectively. Conclusion: The

  18. Vortex dynamics in Josephson ladders with II-junctions

    DEFF Research Database (Denmark)

    Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.

    2004-01-01

    Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critica...

  19. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    International Nuclear Information System (INIS)

    Ge, Y; OBrien, R; Shieh, C; Booth, J; Keall, P

    2014-01-01

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor system phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an

  20. A Prospective Study of Intrafraction Prostate Motion in the Prone vs. Supine Position

    International Nuclear Information System (INIS)

    Wilder, Richard B.; Chittenden, Lucy; Mesa, Albert V.; Bunyapanasarn, Jane; Agustin, Jeff; Lizarde, Jessica; Ravera, John; Tokita, Kenneth M.

    2010-01-01

    Purpose: To prospectively analyze prostate intrafraction motion in the prone vs. supine position and to assess patient satisfaction with these two positions. Methods and Materials: Fifteen prostate cancer patients underwent implantation of five fiducial gold seeds in their prostate for localization. Patients were treated with high-dose-rate brachytherapy to 2,200 cGy followed by intensity-modulated radiation therapy (IMRT) to 5,040 cGy. Patients underwent computed tomography simulation and IMRT in the prone position. For the first five IMRT treatments, an electronic portal imaging system was used to acquire anteroposterior (AP) and lateral images pretreatment and posttreatment. We then repositioned each patient supine and repeated the process, resulting in 600 images. Results: Mean ± standard deviation intrafraction prostate motion was 2.1 ± 1.2 mm and 1.7 ± 1.4 mm (AP, p = 0.47), 2.2 ± 2.0 mm and 1.6 ± 1.8 mm (superoinferior, p = 0.16), and 1.0 ± 1.2 mm and 0.6 ± 0.9 mm (left-right, p = 0.03) in the prone and supine positions, respectively. Eighty percent of patients stated that they were more comfortable in the supine position (p = 0.02). Conclusions: Prone and supine positions resulted in a similar magnitude of AP and superoinferior intrafraction prostate motion (2 mm). Because there was no significant difference in the magnitude of AP and superoinferior prostate motion prone vs. supine and patients were more comfortable in the supine position, patients now undergo IMRT to the prostate and seminal vesicles at our center in the supine position.

  1. Image acquisition optimization of a limited-angle intrafraction verification (LIVE) system for lung radiotherapy.

    Science.gov (United States)

    Zhang, Yawei; Deng, Xinchen; Yin, Fang-Fang; Ren, Lei

    2018-01-01

    Limited-angle intrafraction verification (LIVE) has been previously developed for four-dimensional (4D) intrafraction target verification either during arc delivery or between three-dimensional (3D)/IMRT beams. Preliminary studies showed that LIVE can accurately estimate the target volume using kV/MV projections acquired over orthogonal view 30° scan angles. Currently, the LIVE imaging acquisition requires slow gantry rotation and is not clinically optimized. The goal of this study is to optimize the image acquisition parameters of LIVE for different patient respiratory periods and gantry rotation speeds for the effective clinical implementation of the system. Limited-angle intrafraction verification imaging acquisition was optimized using a digital anthropomorphic phantom (XCAT) with simulated respiratory periods varying from 3 s to 6 s and gantry rotation speeds varying from 1°/s to 6°/s. LIVE scanning time was optimized by minimizing the number of respiratory cycles needed for the four-dimensional scan, and imaging dose was optimized by minimizing the number of kV and MV projections needed for four-dimensional estimation. The estimation accuracy was evaluated by calculating both the center-of-mass-shift (COMS) and three-dimensional volume-percentage-difference (VPD) between the tumor in estimated images and the ground truth images. The robustness of LIVE was evaluated with varied respiratory patterns, tumor sizes, and tumor locations in XCAT simulation. A dynamic thoracic phantom (CIRS) was used to further validate the optimized imaging schemes from XCAT study with changes of respiratory patterns, tumor sizes, and imaging scanning directions. Respiratory periods, gantry rotation speeds, number of respiratory cycles scanned and number of kV/MV projections acquired were all positively correlated with the estimation accuracy of LIVE. Faster gantry rotation speed or longer respiratory period allowed less respiratory cycles to be scanned and less kV/MV projections

  2. An assessment of the magnitude of intra-fraction movement of head-and-neck IMRT cases and its implication on the action-level of the imaging protocol

    International Nuclear Information System (INIS)

    Pang, Pei Ping Eric; Hendry, Julie; Cheah, Shie Lee; Soong, Yoke Lim; Fong, Kam Weng; Wee, Tien Seng Joseph; Tan, Wee Kiat Terence; Nei, Wen Long; Wang, Fuqiang; Wong, Ru Xin; Ng, Wee Loon; Chen, John

    2014-01-01

    Background and purpose: A planning margin ⩽3 mm is employed in some head-and-neck IMRT cases due to the proximity of critical structures. This study aims to explore the need to redefine the action-level in the head-and-neck imaging protocol in consideration of the intra-fraction movement. Material and methods: This is a local study of 18 patients treated using the same immobilisation system and setup protocol. Post-treatment orthogonal pair of kilovoltage X-ray images was acquired on the first three days of treatment. 106 sets of pre- and post-treatment kV X-ray images acquired over 53 fractions were analysed against the treatment planning DRR for calculation of intra-fraction movement. Results: Individual mean intra-fraction movement in all directions ranged from −1.8 to 1.1 mm. Population mean (median) intra-fraction movement in the x-, y-, and z-planes were −0.1 mm (0 mm), −0.3 mm (−0.3 mm) and −0.2 mm (−0.2 mm) respectively. Intra-fraction movement in all three dimensions, x-, y- and z-planes were considered statistically significant (p < 0.05). 7 out of 53 fractions (13.2%) were highlighted as the combined magnitude of the intra-fraction motion with the uncorrected pre-treatment setup errors had exceeded the boundaries of given margins. Conclusions: 3 mm-AL was not adequate to account for intra-fraction movement when the CTV–PTV margin was ⩽3 mm and should be excluded from the routine imaging protocol and daily image-guided radiotherapy should be employed. Adjusting the action-level to 2 mm would allow a more confident approach in delivery of the prescribed dose in head-and-neck IMRT cases

  3. Prefraction displacement and intrafraction drift of the prostate due to perineal ultrasound probe pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minglun; Hegemann, Nina-Sophie; Manapov, Farkhad; Kolberg, Anne; Thum, Patrick Dominik; Ganswindt, Ute; Belka, Claus [LMU Munich, Department of Radiation Oncology, Munich (Germany); Ballhausen, Hendrik [LMU Munich, Department of Radiation Oncology, Munich (Germany); University Hospital of LMU Munich, Munich (Germany)

    2017-06-15

    In image-guided EBRT of the prostate, transperineal ultrasound (US) probes exert pressure on the perineum both during planning and treatment. Through tissue deformation and relaxation, this causes target and risk organ displacement and drift. In this study, prefraction shift and intrafraction drift of the prostate are quantified during robotic transperineal 4DUS. The position of the prostate was recorded for different positions of the probe before treatment in 10 patients (16 series of measurements). During treatment (15 patients, 273 fractions), intrafraction motion of the prostate was tracked (total of 27 h and 24 min) with the transperineal probe in place. Per 1 mm shift of the US probe in the cranial direction, a displacement of the prostate by 0.42 ± 0.09 mm in the cranial direction was detected. The relationship was found to be linear (R{sup 2} = 0.97) and highly significant (p < 0.0001). After initial contact of the probe and the perineum (no pressure), a shift of the probe of about 5-10 mm was typically necessary to achieve good image quality, corresponding to a shift of the prostate of about 2-4 mm in the cranial direction. Tissue compression and prostate displacement were well visible. During treatment, the prostate drifted at an average rate of 0.075 mm/min in the cranial direction (p = 0.0014). The pressure applied by a perineal US probe has a quantitatively similar impact on prostate displacement as transabdominal pressure. Shifts are predominantly in the cranial direction (typically 2-4 mm) with some component in the anterior direction (typically <1 mm). Slight probe pressure can improve image quality, but excessive probe pressure can distort the surrounding anatomy and potentially move risk organs closer to the high-dose area. (orig.) [German] In der bildgefuehrten Strahlentherapie der Prostata ueben perineale Ultraschallkoepfe waehrend Planung und Behandlung Druck auf das Perineum aus. Durch Gewebedeformation verursacht dies Verschiebungen von

  4. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods

    International Nuclear Information System (INIS)

    Beltran, Chris; Herman, Michael G.; Davis, Brian J.

    2008-01-01

    Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the four daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction

  5. Six-dimensional correction of intra-fractional prostate motion with CyberKnife stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Sean eCollins

    2011-12-01

    Full Text Available AbstractLarge fraction radiation therapy offers a shorter course of treatment and radiobiological advantages for prostate cancer treatment. The CyberKnife is an attractive technology for delivering large fraction doses based on the ability to deliver highly conformal radiation therapy to moving targets. In addition to intra-fractional translational motion (left-right, superior-inferior and anterior-posterior, prostate rotation (pitch, roll and yaw can increase geographical miss risk. We describe our experience with six-dimensional (6D intrafraction prostate motion correction using CyberKnife stereotactic body radiation therapy (SBRT. Eighty-eight patients were treated by SBRT alone or with supplemental external radiation therapy. Trans-perineal placement of four gold fiducials within the prostate accommodated X-ray guided prostate localization and beam adjustment. Fiducial separation and non-overlapping positioning permitted the orthogonal imaging required for 6D tracking. Fiducial placement accuracy was assessed using the CyberKnife fiducial extraction algorithm. Acute toxicities were assessed using Common Toxicity Criteria (CTC v3. There were no Grade 3, or higher, complications and acute morbidity was minimal. Ninety-eight percent of patients completed treatment employing 6D prostate motion tracking with intrafractional beam correction. Suboptimal fiducial placement limited treatment to 3D tracking in 2 patients. Our experience may guide others in performing 6D correction of prostate motion with CyberKnife SBRT.

  6. Three-Dimensional Intrafractional Motion of Breast During Tangential Breast Irradiation Monitored With High-Sampling Frequency Using a Real-Time Tumor-Tracking Radiotherapy System

    International Nuclear Information System (INIS)

    Kinoshita, Rumiko; Shimizu, Shinichi; Taguchi, Hiroshi; Katoh, Norio; Fujino, Masaharu; Onimaru, Rikiya; Aoyama, Hidefumi; Katoh, Fumi; Omatsu, Tokuhiko; Ishikawa, Masayori; Shirato, Hiroki

    2008-01-01

    Purpose: To evaluate the three-dimensional intrafraction motion of the breast during tangential breast irradiation using a real-time tracking radiotherapy (RT) system with a high-sampling frequency. Methods and Materials: A total of 17 patients with breast cancer who had received breast conservation RT were included in this study. A 2.0-mm gold marker was placed on the skin near the nipple of the breast for RT. A fluoroscopic real-time tumor-tracking RT system was used to monitor the marker. The range of motion of each patient was calculated in three directions. Results: The mean ± standard deviation of the range of respiratory motion was 1.0 ± 0.6 mm (median, 0.9; 95% confidence interval [CI] of the marker position, 0.4-2.6), 1.3 ± 0.5 mm (median, 1.1; 95% CI, 0.5-2.5), and 2.6 ± 1.4 (median, 2.3; 95% CI, 1.0-6.9) for the right-left, craniocaudal, and anteroposterior direction, respectively. No correlation was found between the range of motion and the body mass index or respiratory function. The mean ± standard deviation of the absolute value of the baseline shift in the right-left, craniocaudal, and anteroposterior direction was 0.2 ± 0.2 mm (range, 0.0-0.8 mm), 0.3 ± 0.2 mm (range, 0.0-0.7 mm), and 0.8 ± 0.7 mm (range, 0.1-1.8 mm), respectively. Conclusion: Both the range of motion and the baseline shift were within a few millimeters in each direction. As long as the conventional wedge-pair technique and the proper immobilization are used, the intrafraction three-dimensional change in the breast surface did not much influence the dose distribution

  7. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation.

    Science.gov (United States)

    Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-12-01

    Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.

  8. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    Directory of Open Access Journals (Sweden)

    Ramin Jaberi

    2017-12-01

    Full Text Available Purpose : Intra-fractional organs at risk (OARs deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT. The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods : Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results : A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions : There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool.

  9. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 04: Assessment of intra-fraction motion during lung SABR VMAT using a custom abdominal compression device

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Derek; Robinson, Mark; Araujo, Cynthia; Teke, Tony; Halperin, Ross; Petrik, David; Mou, Benjamin; Mohamed, Islam [BCCA - Centre for the Southern Interior (Canada)

    2016-08-15

    Purpose: Lung SABR patients are treated using Volumetrically Modulated Arc Therapy (VMAT), utilizing 2 arcs with Conebeam CT (CBCT) image-guidance prior to each arc. Intra-fraction imaging can prolong treatment time (up to 20%), and the aim of this study is to determine if it is necessary. Methods: We utilize an in-house abdominal compression device to minimize respiratory motion, 4DCT to define the ITV, a 5 mm PTV margin and a 2–3 mm PRV margin. We treated 23 patients with VMAT, fifteen were treated to 48 Gy in 4 fractions, while eight were treated with up to 60 Gy in 8 fractions. Intrafraction motion was assessed by the translational errors recorded for the second CBCT. Results: There was no significant difference (t-test, p=0.93) in the intra-fraction motion between the patients treated with 4 and 8 fractions, or between the absolute translations in each direction (ANOVA, p=0.17). All 124 intra-fraction CBCT images were analysed and 95% remained localized within the 5 mm PTV margin The mean magnitude of the vector displacement was 1.8 mm. Conclusions: For patients localized with an abdominal compression device, the intrafraction CBCT image may not be necessary, if it is only the tumor coverage that is of concern, as the patients are typically well within the 5 mm PTV margin. On the other hand, if there is a structure with a smaller PRV margin, an intrafraction CBCT is recommended to ensure that the dose limit for the organ at risk is not exceeded.

  10. Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy.

    Science.gov (United States)

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Matsuo, Yukinori; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-08-01

    To explore the effect of sampling interval of training data acquisition on the intrafractional prediction error of surrogate signal-based dynamic tumor-tracking using a gimbal-mounted linac. Twenty pairs of respiratory motions were acquired from 20 patients (ten lung, five liver, and five pancreatic cancer patients) who underwent dynamic tumor-tracking with the Vero4DRT. First, respiratory motions were acquired as training data for an initial construction of the prediction model before the irradiation. Next, additional respiratory motions were acquired for an update of the prediction model due to the change of the respiratory pattern during the irradiation. The time elapsed prior to the second acquisition of the respiratory motion was 12.6 ± 3.1 min. A four-axis moving phantom reproduced patients' three dimensional (3D) target motions and one dimensional surrogate motions. To predict the future internal target motion from the external surrogate motion, prediction models were constructed by minimizing residual prediction errors for training data acquired at 80 and 320 ms sampling intervals for 20 s, and at 500, 1,000, and 2,000 ms sampling intervals for 60 s using orthogonal kV x-ray imaging systems. The accuracies of prediction models trained with various sampling intervals were estimated based on training data with each sampling interval during the training process. The intrafractional prediction errors for various prediction models were then calculated on intrafractional monitoring images taken for 30 s at the constant sampling interval of a 500 ms fairly to evaluate the prediction accuracy for the same motion pattern. In addition, the first respiratory motion was used for the training and the second respiratory motion was used for the evaluation of the intrafractional prediction errors for the changed respiratory motion to evaluate the robustness of the prediction models. The training error of the prediction model was 1.7 ± 0.7 mm in 3D for all sampling

  11. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Price, A; Chang, S; Matney, J; Wang, A; Lian, J [University of North Carolina, Chapel Hill, NC (United States); Chao, E [Accuray Incorporated, Madison, WI (United States)

    2016-06-15

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.

  12. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    International Nuclear Information System (INIS)

    Price, A; Chang, S; Matney, J; Wang, A; Lian, J; Chao, E

    2016-01-01

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.

  13. Exploring the Margin Recipe for Online Adaptive Radiation Therapy for Intermediate-Risk Prostate Cancer: An Intrafractional Seminal Vesicles Motion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Yang, E-mail: Yang.Sheng@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Li, Taoran [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang; Wu, Q. Jackie [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States)

    2017-06-01

    Purpose: To provide a benchmark for seminal vesicle (SV) margin selection to account for intrafractional motion and to investigate the effectiveness of 2 motion surrogates in predicting intrafractional SV coverage. Methods and Materials: Fifteen prostate patients were studied. Each patient had 5 pairs (1 patient had 4 pairs) of pretreatment and posttreatment cone beam CTs (CBCTs). Each pair of CBCTs was registered on the basis of prostate fiducial markers. All pretreatment SVs were expanded with 1-, 2-, 3-, 4-, 5-, and 8-mm isotropic margins to form a series of planning target volumes, and their intrafractional coverage to the posttreatment SV determined the “ground truth” for exact coverage. Two motion surrogates, the center of mass (COM) and the border of contour, were evaluated by the use of Pearson product-moment correlation coefficient and exponential fitting for predicting SV underdosage. Action threshold of each surrogate was calculated. The margin for each surrogate was calculated according to a traditional margin recipe. Results: Ninety-five percent posttreatment SV coverage was achieved in 9%, 53%, 73%, 86%, 95%, and 97% of fractions with 1-, 2-, 3-, 4-, 5-, and 8-mm margins, respectively. The 5-mm margins provided 95% intrafractional SV coverage in over 90% of fractions. The correlation between the COM and border was weak, moderate, and strong in the left-right (L-R), anterior-posterior (A-P), and superior-inferior (S-I) directions, respectively. Exponential fitting gave the underdosage threshold of 4.5 and 7.0 mm for the COM and border. The Van Herk margin recipe recommended 0-, 0.5-, and 0.8-mm margins in the L-R, A-P, and S-I directions based on the COM, and 1.2-, 3.9-, and 2.5-mm margins based on the border. Conclusions: Five-millimeter isotropic margins for the SV constitute the minimum required to mitigate the intrafractional motion. Both the COM and the border are acceptable predictors for SV underdosage with 4.5- and 7.0-mm action threshold

  14. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    International Nuclear Information System (INIS)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

    2004-01-01

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J P ) and valley current (J V ) densities should be greater than the short-circuit current density (J sc ) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J P ) and valley current density (J V ) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios

  15. Conduction gap in graphene strain junctions: direction dependence

    International Nuclear Information System (INIS)

    Nguyen, M Chung; Nguyen, V Hung; Dollfus, P; Nguyen, Huy-Viet

    2014-01-01

    It has been shown in a recent study (Nguyen et al 2014 Nanotechnology 25 165201) that unstrained/strained graphene junctions are promising candidates to improve the performance of graphene transistors which is usually hindered by the gapless nature of graphene. Although the energy bandgap of strained graphene still remains zero, the shift of Dirac points in the k-space due to strain-induced deformation of graphene lattice can lead to the appearance of a finite conduction gap of several hundred meV in strained junctions with a strain of only a few per cent. However, since it depends essentially on the magnitude of the Dirac point shift, this conduction gap strongly depends on the direction of applied strain and the transport direction. In this work, a systematic study of conduction-gap properties with respect to these quantities is presented and the results are carefully analyzed. Our study provides useful information for further investigations to exploit graphene-strained junctions in electronic applications and strain sensors. (paper)

  16. Cone-Beam CT Assessment of Interfraction and Intrafraction Setup Error of Two Head-and-Neck Cancer Thermoplastic Masks

    International Nuclear Information System (INIS)

    Velec, Michael; Waldron, John N.; O'Sullivan, Brian; Bayley, Andrew; Cummings, Bernard; Kim, John J.; Ringash, Jolie; Breen, Stephen L.; Lockwood, Gina A.; Dawson, Laura A.

    2010-01-01

    Purpose: To prospectively compare setup error in standard thermoplastic masks and skin-sparing masks (SSMs) modified with low neck cutouts for head-and-neck intensity-modulated radiation therapy (IMRT) patients. Methods and Materials: Twenty head-and-neck IMRT patients were randomized to be treated in a standard mask (SM) or SSM. Cone-beam computed tomography (CBCT) scans, acquired daily after both initial setup and any repositioning, were used for initial and residual interfraction evaluation, respectively. Weekly, post-IMRT CBCT scans were acquired for intrafraction setup evaluation. The population random (σ) and systematic (Σ) errors were compared for SMs and SSMs. Skin toxicity was recorded weekly by use of Radiation Therapy Oncology Group criteria. Results: We evaluated 762 CBCT scans in 11 patients randomized to the SM and 9 to the SSM. Initial interfraction σ was 1.6 mm or less or 1.1 deg. or less for SM and 2.0 mm or less and 0.8 deg. for SSM. Initial interfraction Σ was 1.0 mm or less or 1.4 deg. or less for SM and 1.1 mm or less or 0.9 deg. or less for SSM. These errors were reduced before IMRT with CBCT image guidance with no significant differences in residual interfraction or intrafraction uncertainties between SMs and SSMs. Intrafraction σ and Σ were less than 1 mm and less than 1 deg. for both masks. Less severe skin reactions were observed in the cutout regions of the SSM compared with non-cutout regions. Conclusions: Interfraction and intrafraction setup error is not significantly different for SSMs and conventional masks in head-and-neck radiation therapy. Mask cutouts should be considered for these patients in an effort to reduce skin toxicity.

  17. Visualizing supercurrents in 0-{pi} ferromagnetic Josephson tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Edward; Guerlich, Christian; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Weides, Martin; Kohlstedt, Hermann [Institute of Solid State Physics, Reserch Center Juelich (Germany)

    2009-07-01

    So-called 0 and {pi} Josephson junctions can be treated as having positive and negative critical currents. This implies that the same phase shift applied to a Josephson junction causes counterflow of supercurrents in 0 and in {pi} junctions connected in parallel provided they are short in comparison with Josephson penetration depth {lambda}{sub J}. We have fabricated several 0, {pi}, 0-{pi}, 0-{pi}-0 and 20 x (0-{pi}-) planar superconductor-insulator-ferromagnet-superconductor Josephson junctions and studied the spatial supercurrent density distribution j{sub s}(x,y) across the junction area using low temperature scanning electron microscopy. At zero magnetic field we clearly see counterflow of the supercurrents in 0 and {pi} regions. The picture also changes consistently in the applied magnetic field.

  18. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

    International Nuclear Information System (INIS)

    Kissick, Michael W.; Boswell, Sarah A.; Jeraj, Robert; Mackie, T. Rockwell

    2005-01-01

    The interplay between a constant scan speed and intrafraction oscillatory motion produces interesting fluence intensity modulations along the axis of motion that are sensitive to the motion function, as originally shown in a classic paper by Yu et al. [Phys. Med. Biol. 43, 91-104 (1998)]. The fluence intensity profiles are explored in this note for an intuitive understanding, then compared with Yu et al., and finally further explored for the effects of low scan speed and random components of both intrafraction and interfraction motion. At slow scan speeds typical of helical tomotherapy, these fluence intensity modulations are only a few percent. With the addition of only a small amount of cycle-to-cycle randomness in frequency and amplitude, the fluence intensity profiles change dramatically. It is further shown that after a typical 30-fraction treatment, the sensitivities displayed in the single fraction fluence intensity profiles greatly diminish

  19. Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy

    Science.gov (United States)

    Zhang, Yawei; Yin, Fang-Fang; Zhang, You; Ren, Lei

    2017-05-01

    The purpose of this study is to develop an adaptive prior knowledge guided image estimation technique to reduce the scan angle needed in the limited-angle intrafraction verification (LIVE) system for 4D-CBCT reconstruction. The LIVE system has been previously developed to reconstruct 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the 4D-CBCT images for faster intrafraction verification. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on kV-MV projections acquired in extremely limited angle (orthogonal 3°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of the respiratory motion. The 4D digital extended-cardiac-torso (XCAT) phantom and a CIRS 008A dynamic thoracic phantom were used to evaluate the effectiveness of this technique. The reconstruction accuracy of the technique was evaluated by calculating both the center-of-mass-shift (COMS) and 3D volume-percentage-difference (VPD) of the tumor in reconstructed images and the true on-board images. The performance of the technique was also assessed with varied breathing signals against scanning angle, lesion size, lesion location, projection sampling interval, and scanning direction. In the XCAT study, using orthogonal-view of 3° kV and portal MV projections, this technique achieved an average tumor COMS/VPD of 0.4  ±  0.1 mm/5.5  ±  2.2%, 0.6  ±  0.3 mm/7.2  ±  2.8%, 0.5  ±  0.2 mm/7.1  ±  2.6%, 0.6  ±  0.2 mm/8.3  ±  2.4%, for baseline drift, amplitude variation, phase shift, and patient breathing signal variation

  20. Real-Time Study of Prostate Intrafraction Motion During External Beam Radiotherapy With Daily Endorectal Balloon

    Energy Technology Data Exchange (ETDEWEB)

    Both, Stefan, E-mail: Stefan.Both@uphs.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Wang, Ken Kang-Hsin; Plastaras, John P.; Deville, Curtiland; Bar Ad, Voika; Tochner, Zelig; Vapiwala, Neha [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2011-12-01

    Purpose: To prospectively investigate intrafraction prostate motion during radiofrequency-guided prostate radiotherapy with implanted electromagnetic transponders when daily endorectal balloon (ERB) is used. Methods and Materials: Intrafraction prostate motion from 24 patients in 787 treatment sessions was evaluated based on three-dimensional (3D), lateral, cranial-caudal (CC), and anterior-posterior (AP) displacements. The mean percentage of time with 3D, lateral, CC, and AP prostate displacements >2, 3, 4, 5, 6, 7, 8, 9, and 10 mm in 1 minute intervals was calculated for up to 6 minutes of treatment time. Correlation between the mean percentage time with 3D prostate displacement >3 mm vs. treatment week was investigated. Results: The percentage of time with 3D prostate movement >2, 3, and 4 mm increased with elapsed treatment time (p < 0.05). Prostate movement >5 mm was independent of elapsed treatment time (p = 0.11). The overall mean time with prostate excursions >3 mm was 5%. Directional analysis showed negligible lateral prostate motion; AP and CC motion were comparable. The fraction of time with 3D prostate movement >3 mm did not depend on treatment week of (p > 0.05) over a 4-minute mean treatment time. Conclusions: Daily endorectal balloon consistently stabilizes the prostate, preventing clinically significant displacement (>5 mm). A 3-mm internal margin may sufficiently account for 95% of intrafraction prostate movement for up to 6 minutes of treatment time. Directional analysis suggests that the lateral internal margin could be further reduced to 2 mm.

  1. Intrafractional tracking accuracy in infrared marker-based hybrid dynamic tumour-tracking irradiation with a gimballed linac

    International Nuclear Information System (INIS)

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Tanabe, Hiroaki; Yano, Shinsuke; Miyabe, Yuki; Ueki, Nami; Kaneko, Shuji; Matsuo, Yukinori; Mizowaki, Takashi; Sawada, Akira; Kokubo, Masaki; Hiraoka, Masahiro

    2014-01-01

    Purpose: To verify the intrafractional tracking accuracy in infrared (IR) marker-based hybrid dynamic tumour tracking irradiation (“IR Tracking”) with the Vero4DRT. Materials and methods: The gimballed X-ray head tracks a moving target by predicting its future position from displacements of IR markers in real-time. Ten lung cancer patients who underwent IR Tracking were enrolled. The 95th percentiles of intrafractional mechanical (iE M 95 ), prediction (iE P 95 ), and overall targeting errors (iE T 95 ) were calculated from orthogonal fluoroscopy images acquired during tracking irradiation and from the synchronously acquired log files. Results: Averaged intrafractional errors were (left–right, cranio-caudal [CC], anterior–posterior [AP]) = (0.1 mm, 0.4 mm, 0.1 mm) for iE M 95 , (1.2 mm, 2.7 mm, 2.1 mm) for iE P 95 , and (1.3 mm, 2.4 mm, 1.4 mm) for iE T 95 . By correcting systematic prediction errors in the previous field, the iE P 95 was reduced significantly, by an average of 0.4 mm in the CC (p < 0.05) and by 0.3 mm in the AP (p < 0.01) directions. Conclusions: Prediction errors were the primary cause of overall targeting errors, whereas mechanical errors were negligible. Furthermore, improvement of the prediction accuracy could be achieved by correcting systematic prediction errors in the previous field

  2. High-efficiency thermal switch based on topological Josephson junctions

    Science.gov (United States)

    Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.

    2017-02-01

    We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.

  3. Analysis of intra-fraction prostate motion and derivation of duration-dependent margins for radiotherapy using real-time 4D ultrasound

    Directory of Open Access Journals (Sweden)

    Eric Pei Ping Pang

    2018-01-01

    Full Text Available Background and purpose: During radiotherapy, prostate motion changes over time. Quantifying and accounting for this motion is essential. This study aimed to assess intra-fraction prostate motion and derive duration-dependent planning margins for two treatment techniques. Material and methods: A four-dimension (4D transperineal ultrasound Clarity® system was used to track prostate motion. We analysed 1913 fractions from 60 patients undergoing volumetric-modulated arc therapy (VMAT to the prostate. The mean VMAT treatment duration was 3.4 min. Extended monitoring was conducted weekly to simulate motion during intensity-modulated radiation therapy (IMRT treatment (an additional seven minutes. A motion-time trend analysis was conducted and the mean intra-fraction motion between VMAT and IMRT treatments compared. Duration-dependent margins were calculated and anisotropic margins for VMAT and IMRT treatments were derived. Results: There were statistically significant differences in the mean intra-fraction motion between VMAT and the simulated IMRT duration in the inferior (0.1 mm versus 0.3 mm and posterior (−0.2 versus −0.4 mm directions respectively (p ≪ 0.01. An intra-fraction motion trend inferiorly and posteriorly was observed. The recommended minimum anisotropic margins are 1.7 mm/2.7 mm (superior/inferior; 0.8 mm (left/right, 1.7 mm/2.9 mm (anterior/posterior for VMAT treatments and 2.9 mm/4.3 mm (superior/inferior, 1.5 mm (left/right, 2.8 mm/4.8 mm (anterior/posterior for IMRT treatments. Smaller anisotropic margins were required for VMAT compared to IMRT (differences ranging from 1.2 to 1.6 mm superiorly/inferiorly, 0.7 mm laterally and 1.1–1.9 mm anteriorly/posteriorly. Conclusions: VMAT treatment is preferred over IMRT as prostate motion increases with time. Larger margins should be employed in the inferior and posterior directions for both treatment durations. Duration-dependent margins should

  4. Evaluation of intrafraction patient movement for CNS and head and neck IMRT

    International Nuclear Information System (INIS)

    Kim, Siyong; Akpati, Hilary C.; Kielbasa, Jerrold E.; Li, Jonathan G.; Liu, Chihray; Amdur, Robert J.; Palta, Jatinder R.

    2004-01-01

    Intrafraction patient motion is much more likely in intensity-modulated radiation therapy (IMRT) than in conventional radiotherapy primarily due to longer beam delivery times in IMRT treatment. In this study, we evaluated the uncertainty of intrafraction patient displacement in CNS and head and neck IMRT patients. Immobilization is performed in three steps: (1) the patient is immobilized with thermoplastic facemask, (2) the patient displacement is monitored using a commercial stereotactic infrared IR camera (ExacTrac, BrainLab) during treatment, and (3) repositioning is carried out as needed. The displacement data were recorded during beam-on time for the entire treatment duration for 5 patients using the camera system. We used the concept of cumulative time versus patient position uncertainty, referred to as an uncertainty time histogram (UTH), to analyze the data. UTH is a plot of the accumulated time during which a patient stays within the corresponding movement uncertainty. The University of Florida immobilization procedure showed an effective immobilization capability for CNS and head and neck IMRT patients by keeping the patient displacement less than 1.5 mm for 95% of treatment time (1.43 mm for 1, and 1.02 mm for 1, and less than 1.0 mm for 3 patients). The maximum displacement was 2.0 mm

  5. High-temperature superconducting shift registers operating at up to 100 GHz

    International Nuclear Information System (INIS)

    Martens, J.S.; Pance, A.; Char, K.

    1994-01-01

    Shift registers have been demonstrated in YBaCuO operating at 77 K using from 64 to over 1,000 junctions. These are some of the larger scale integrated circuits demonstrated to date using YBaCuO Josephson technology. The circuit is a modified rapid single flux quantum design in which a single trigger pulse causes a one bit shift of the entire word of 32--512 b in length. Two different junction technologies, electron-beam defined nanobridges and epitaxial edge junctions, have been used with parameter spreads ranging from 11% to 22%. Correct operation has been verified with low speed random word tests and circulating data tests while pseudo random bit sequence demonstrations are underway. A practical amount of time to shift between cells has been measured to be about 10 ps

  6. TU-AB-303-06: Does Online Adaptive Radiation Therapy Mean Zero Margin for Intermediate-Risk Prostate Cancer? An Intra-Fractional Seminal Vesicles Motion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Y; Li, T; Lee, W; Yin, F; Wu, Q [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To provide benchmark for seminal vesicles (SVs) margin selection to account for intra-fractional motion; and to investigate the effectiveness of two motion surrogates in predicting intra-fractional SV underdosage. Methods: 9 prostate SBRT patients were studied; each has five pairs of pre-treatment and post-treatment cone-beam CTs (CBCTs). Each pair of CBCTs was registered based on fiducial markers in the prostate. To provide “ground truth” for coverage evaluation, all pre-treatment SVs were expanded with isotropic margin of 1,2,3,5 and 8mm, and their overlap with post-treatment SVs were used to quantify intra-fractional coverage. Two commonly used motion surrogates, the center-of-mass (COM) and the border of contour (the most distal points in SI/AP/LR directions) were evaluated using Receiver-Operating Characteristic (ROC) analyses for predicting SV underdosage due to intra-fractional motion. Action threshold of determining underdosage for each surrogate was calculated by selecting the optimal balancing between sensitivity and specificity. For comparison, margin for each surrogate was also calculated based on traditional margin recipe. Results: 90% post-treatment SV coverage can be achieved in 47%, 82%, 91%, 98% and 98% fractions for 1,2,3,5 and 8mm margins. 3mm margin ensured the 90% intra-fractional SV coverage in 90% fractions when prostate was aligned. The ROC analysis indicated the AUC for COM and border were 0.88 and 0.72. The underdosage threshold was 2.9mm for COM and 4.1mm for border. The Van Herk’s margin recipe recommended 0.5, 0 and 1.8mm margin in LR, AP and SI direction based on COM and for border, the corresponding margin was 2.1, 4.5 and 3mm. Conclusion: 3mm isotropic margin is the minimum required to mitigate the intra-fractional SV motion when prostate is aligned. ROC analysis reveals that both COM and border are acceptable predictors for SV underdosage with 2.9mm and 4.1mm action threshold. Traditional margin calculation is less

  7. TU-AB-303-06: Does Online Adaptive Radiation Therapy Mean Zero Margin for Intermediate-Risk Prostate Cancer? An Intra-Fractional Seminal Vesicles Motion Analysis

    International Nuclear Information System (INIS)

    Sheng, Y; Li, T; Lee, W; Yin, F; Wu, Q

    2015-01-01

    Purpose: To provide benchmark for seminal vesicles (SVs) margin selection to account for intra-fractional motion; and to investigate the effectiveness of two motion surrogates in predicting intra-fractional SV underdosage. Methods: 9 prostate SBRT patients were studied; each has five pairs of pre-treatment and post-treatment cone-beam CTs (CBCTs). Each pair of CBCTs was registered based on fiducial markers in the prostate. To provide “ground truth” for coverage evaluation, all pre-treatment SVs were expanded with isotropic margin of 1,2,3,5 and 8mm, and their overlap with post-treatment SVs were used to quantify intra-fractional coverage. Two commonly used motion surrogates, the center-of-mass (COM) and the border of contour (the most distal points in SI/AP/LR directions) were evaluated using Receiver-Operating Characteristic (ROC) analyses for predicting SV underdosage due to intra-fractional motion. Action threshold of determining underdosage for each surrogate was calculated by selecting the optimal balancing between sensitivity and specificity. For comparison, margin for each surrogate was also calculated based on traditional margin recipe. Results: 90% post-treatment SV coverage can be achieved in 47%, 82%, 91%, 98% and 98% fractions for 1,2,3,5 and 8mm margins. 3mm margin ensured the 90% intra-fractional SV coverage in 90% fractions when prostate was aligned. The ROC analysis indicated the AUC for COM and border were 0.88 and 0.72. The underdosage threshold was 2.9mm for COM and 4.1mm for border. The Van Herk’s margin recipe recommended 0.5, 0 and 1.8mm margin in LR, AP and SI direction based on COM and for border, the corresponding margin was 2.1, 4.5 and 3mm. Conclusion: 3mm isotropic margin is the minimum required to mitigate the intra-fractional SV motion when prostate is aligned. ROC analysis reveals that both COM and border are acceptable predictors for SV underdosage with 2.9mm and 4.1mm action threshold. Traditional margin calculation is less

  8. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  9. Evaluation of the geometric accuracy of surrogate-based gated VMAT using intrafraction kilovoltage x-ray images

    International Nuclear Information System (INIS)

    Li Ruijiang; Mok, Edward; Han, Bin; Koong, Albert; Xing Lei

    2012-01-01

    Purpose: To evaluate the geometric accuracy of beam targeting in external surrogate-based gated volumetric modulated arc therapy (VMAT) using kilovoltage (kV) x-ray images acquired during dose delivery. Methods: Gated VMAT treatments were delivered using a Varian TrueBeam STx Linac for both physical phantoms and patients. Multiple gold fiducial markers were implanted near the target. The reference position was created for each implanted marker, representing its correct position at the gating threshold. The gating signal was generated from the RPM system. During the treatment, kV images were acquired immediately before MV beam-on at every breathing cycle, using the on-board imaging system. All implanted markers were detected and their 3D positions were estimated using in-house developed software. The positioning error of a marker is defined as the distance of the marker from its reference position for each frame of the images. The overall error of the system is defined as the average over all markers. For the phantom study, both sinusoidal motion (1D and 3D) and real human respiratory motion was simulated for the target and surrogate. In the baseline case, the two motions were synchronized for the first treatment fraction. To assess the effects of surrogate-target correlation on the geometric accuracy, a phase shift of 5% and 10% between the two motions was introduced. For the patient study, intrafraction kV images of five stereotactic body radiotherapy (SBRT) patients were acquired for one or two fractions. Results: For the phantom study, a high geometric accuracy was achieved in the baseline case (average error: 0.8 mm in the superior-inferior or SI direction). However, the treatment delivery is prone to geometric errors if changes in the target-surrogate relation occur during the treatment: the average error was increased to 2.3 and 4.7 mm for the phase shift of 5% and 10%, respectively. Results obtained with real human respiratory curves show a similar trend

  10. The random walk model of intrafraction movement

    International Nuclear Information System (INIS)

    Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M

    2013-01-01

    The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction Gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-Gaussian corrections from the random walk model. (paper)

  11. The random walk model of intrafraction movement.

    Science.gov (United States)

    Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M

    2013-04-07

    The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-gaussian corrections from the random walk model.

  12. Poster - 46: Intra-fraction tumor position assessment for lung SBRT in patients treated without customized immobilization devices

    International Nuclear Information System (INIS)

    Alamri, Iqbal; Faria, Sergio; Gluszko, Jessica; Patrocinio, Horacio

    2016-01-01

    Purpose: To assess intra-fraction positional stability of lung cancer tumours in patients treated by kilo-voltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy (SBRT) without the use of customized immobilization devices. Material and Methods: Twenty-two patients underwent 4D-CT in the supine position with the arms in a wing board but without customized immobilization. The PTV was the internal target volume based on maximum intensity projections and a 5mm symmetric setup margin. Treatments were planned using 7–9 static fields or two volumetric modulated arcs. At treatment, the patient position was adjusted using pre-treatment CBCT. A post-treatment CBCT was taken immediately after the treatment ended. The 41 CBCT pairs were automatically matched and the transitional shifts between the two CBCTs recorded. The mean values and standard deviations were calculated for these displacements. Results and conclusions: The mean time between CBCTs (treatment time) was 16.5 ± 6 minutes (range: 10 to 34 minutes). In all cases the tumour remained inside the PTV in the post-treatment CBCT. The mean shifts between pre and post-treatment CBCTs were −0.7 ± 1.6 mm (range −5.0 to 3.0 mm) vertically, −0.3 ± 1.7 mm (range −4.8 to 3.0 mm) longitudinally, and −0.4 ± 1.5 mm (range −4.0 to 2.0 mm) laterally. Our results suggest little systematic shifting during treatment, and standard deviations that are consistent with another published report for treatments where customized immobilization was used. This result is encouraging for SBRT programs in clinics with limited resources.

  13. Poster - 46: Intra-fraction tumor position assessment for lung SBRT in patients treated without customized immobilization devices

    Energy Technology Data Exchange (ETDEWEB)

    Alamri, Iqbal; Faria, Sergio; Gluszko, Jessica; Patrocinio, Horacio [McGill University Health Centre (Canada)

    2016-08-15

    Purpose: To assess intra-fraction positional stability of lung cancer tumours in patients treated by kilo-voltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy (SBRT) without the use of customized immobilization devices. Material and Methods: Twenty-two patients underwent 4D-CT in the supine position with the arms in a wing board but without customized immobilization. The PTV was the internal target volume based on maximum intensity projections and a 5mm symmetric setup margin. Treatments were planned using 7–9 static fields or two volumetric modulated arcs. At treatment, the patient position was adjusted using pre-treatment CBCT. A post-treatment CBCT was taken immediately after the treatment ended. The 41 CBCT pairs were automatically matched and the transitional shifts between the two CBCTs recorded. The mean values and standard deviations were calculated for these displacements. Results and conclusions: The mean time between CBCTs (treatment time) was 16.5 ± 6 minutes (range: 10 to 34 minutes). In all cases the tumour remained inside the PTV in the post-treatment CBCT. The mean shifts between pre and post-treatment CBCTs were −0.7 ± 1.6 mm (range −5.0 to 3.0 mm) vertically, −0.3 ± 1.7 mm (range −4.8 to 3.0 mm) longitudinally, and −0.4 ± 1.5 mm (range −4.0 to 2.0 mm) laterally. Our results suggest little systematic shifting during treatment, and standard deviations that are consistent with another published report for treatments where customized immobilization was used. This result is encouraging for SBRT programs in clinics with limited resources.

  14. Intrafractional setup errors in patients undergoing non-invasive fixation using an immobilization system during hypofractionated stereotactic radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Watanabe, Meguru; Onishi, Hiroshi; Kuriyama, Kengo

    2013-01-01

    Intrafractional setup errors during hypofractionated stereotactic radiotherapy (SRT) were investigated on the patient under voluntary breath-holding conditions with non-invasive immobilization on the CT-linac treatment table. A total of 30 patients with primary and metastatic lung tumors were treated with the hypofractionated SRT with a total dose of 48-60 Gy with four treatment fractions. The patient was placed supine and stabilized on the table with non-invasive patient fixation. Intrafractional setup errors in Right/Left (R.L.), Posterior/Anterior (P.A.), and Inferior/Superior (I.S.) dimensions were analyzed with pre- and post-irradiation CT images. The means and one standard deviation of the intrafractional errors were 0.9±0.7 mm (R.L.), 0.9±0.7 mm (P.A.) and 0.5±1.0 mm (I.S.). Setup errors in each session of the treatment demonstrated no statistically significant difference in the mean value between any two sessions. The frequency within 3 mm displacement was 98% in R.L., 98% in P.A. and 97% in I.S. directions. SRT under the non-invasive patient fixation immobilization system with a comparatively loose vacuum pillow demonstrated satisfactory reproducibility of minimal setup errors with voluntary breath-holding conditions that required a small internal margin. (author)

  15. Josephson shift registers

    International Nuclear Information System (INIS)

    Przybysz, J.X.

    1989-01-01

    This paper gives a review of Josephson shift register circuits that were designed, fabricated, or tested, with emphasis on work in the 1980s. Operating speed is most important, since it often limits system performance. Older designs used square-wave clocks, but most modern designs use offset sine waves, with either two or three phases. Operating margins and gate bias uniformity are key concerns. The fastest measured Josephson shift register operated at 2.3 GHz, which compares well with a GaAs shift register that consumes 250 times more power. The difficulties of high-speed testing have prevented many Josephson shift registers from being operated at their highest speeds. Computer simulations suggest that 30-GHz operation is possible with current Nb/Al 2 O 3 /Nb technology. Junctions with critical current densities near 10 kA/cm 2 would make 100-GHz shift registers feasible

  16. Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma

    Science.gov (United States)

    Stemkens, Bjorn; Glitzner, Markus; Kontaxis, Charis; de Senneville, Baudouin Denis; Prins, Fieke M.; Crijns, Sjoerd P. M.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.; Tijssen, Rob H. N.

    2017-09-01

    Stereotactic body radiation therapy (SBRT) has shown great promise in increasing local control rates for renal-cell carcinoma (RCC). Characterized by steep dose gradients and high fraction doses, these hypo-fractionated treatments are, however, prone to dosimetric errors as a result of variations in intra-fraction respiratory-induced motion, such as drifts and amplitude alterations. This may lead to significant variations in the deposited dose. This study aims to develop a method for calculating the accumulated dose for MRI-guided SBRT of RCC in the presence of intra-fraction respiratory variations and determine the effect of such variations on the deposited dose. For this, RCC SBRT treatments were simulated while the underlying anatomy was moving, based on motion information from three motion models with increasing complexity: (1) STATIC, in which static anatomy was assumed, (2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, and (3) PCA, a method that generates 3D volumes with sufficient spatio-temporal resolution to capture respiration and intra-fraction variations. Five RCC patients and two volunteers were included and treatments delivery was simulated, using motion derived from subject-specific MR imaging. Motion was most accurately estimated using the PCA method with root-mean-squared errors of 2.7, 2.4, 1.0 mm for STATIC, AVG-RESP and PCA, respectively. The heterogeneous patient group demonstrated relatively large dosimetric differences between the STATIC and AVG-RESP, and the PCA reconstructed dose maps, with hotspots up to 40% of the D99 and an underdosed GTV in three out of the five patients. This shows the potential importance of including intra-fraction motion variations in dose calculations.

  17. Impact of inter- and intrafraction deviations and residual set-up errors on PTV margins. Different alignment techniques in 3D conformal prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Langsenlehner, T.; Doeller, C.; Winkler, P.; Kapp, K.S.; Galle, G.

    2013-01-01

    The aim of this work was to analyze interfraction and intrafraction deviations and residual set-up errors (RSE) after online repositioning to determine PTV margins for 3 different alignment techniques in prostate cancer radiotherapy. The present prospective study included 44 prostate cancer patients with implanted fiducials treated with three-dimensional (3D) conformal radiotherapy. Daily localization was based on skin marks followed by marker detection using kilovoltage (kV) imaging and subsequent patient repositioning. Additionally, in-treatment megavoltage (MV) images were obtained for each treatment field. In an off-line analysis of 7,273 images, interfraction prostate motion, RSE after marker-based prostate localization, prostate position during each treatment session, and the effect of treatment time on intrafraction deviations were analyzed to evaluate PTV margins. Margins accounting for interfraction deviation, RSE and intrafraction motion were 14.1, 12.9, and 15.1 mm in anterior-posterior (AP), superior-inferior (SI), and left-right (LR) direction for skin mark alignment and 9.6, 8.7, and 2.6 mm for bony structure alignment, respectively. Alignment to implanted markers required margins of 4.6, 2.8, and 2.5 mm. As margins to account for intrafraction motion increased with treatment prolongation PTV margins could be reduced to 3.9, 2.6, and 2.4 mm if treatment time was ≤ 4 min. With daily online correction and repositioning based on implanted fiducials, a significant reduction of PTV margins can be achieved. The use of an optimized workflow with faster treatment techniques such as volumetric modulated arc techniques (VMAT) could allow for a further decrease. (orig.)

  18. A Study to Quantify the Effectiveness of Daily Endorectal Balloon for Prostate Intrafraction Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ken Kang-Hsin, E-mail: wangken@uphs.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Vapiwala, Neha; Deville, Curtiland; Plastaras, John P.; Scheuermann, Ryan; Lin Haibo; Bar Ad, Voika; Tochner, Zelig; Both, Stefan [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2012-07-01

    Purpose: To quantify intrafraction prostate motion between patient groups treated with and without daily endorectal balloon (ERB) employed during prostate radiotherapy and establish the effectiveness of the ERB. Methods: Real-time intrafraction prostate motion from 29 non-ERB (1,061 sessions) and 30 ERB (1,008 sessions) patients was evaluated based on three-dimensional (3D), left, right, cranial, caudal, anterior, and posterior displacements. The average percentage of time with 3D and unidirectional prostate displacements >2, 3, 4, 5, 6, 7, 8, 9, and 10 mm in 1-min intervals was calculated for up to 6 min of treatment time. The Kolmogorov-Smirnov method was used to evaluate the intrafraction prostate motion pattern between both groups. Results: Large 3D motion (up to 1 cm or more) was only observed in the non-ERB group. The motion increased as a function of elapsed time for displacements >2-8 mm for the non-ERB group and >2-4 mm for the ERB group (p < 0.05). The percentage time distributions between the two groups were significantly different for motion >5 mm (p < 0.05). The 3D symmetrical internal margin (IM) can be reduced from 5 to 3 mm (40% reduction), whereas the asymmetrical IM can be reduced from 3 to 2 mm (33% reduction) in cranial, caudal, anterior, and posterior for 6 min of treatment, when ERB is used. Beyond 6 min, the symmetrical 3D and asymmetrical cranial, caudal, anterior, and posterior IMs can be reduced from 9, 4, 7, 7, and 8 to 5, 2, 5, 3, and 4 mm, respectively (up to 57% reduction). Conclusion: The percentage of time that the prostate was displaced in any direction was less in the ERB group for almost all magnitudes of motion considered. The directional analysis shows that the ERB reduced IMs in almost all directions, especially the anterior-posterior direction.

  19. SU-G-JeP4-06: Evaluation of Interfractional and Intrafractional Tumor Motion in Stereotactic Liver Radiotherapy, Based On Four-Dimensional Cone-Beam Computed Tomography Using Fiducial Markers

    International Nuclear Information System (INIS)

    Shimohigashi, Y; Araki, F; Toya, R; Maruyama, M; Nakaguchi, Y

    2016-01-01

    Purpose: The purpose of this study was to evaluate the interfractional and intrafractional motion of liver tumors in stereotactic body radiation therapy (SBRT), based on four-dimensional cone-beam computed tomography using fiducial markers. (4D-CBCT). Methods: Seven patients with liver tumors were treated by SBRT with abdominal compression (AC) in five fractions with image guidance based on 4D-CBCT. The 4D-CBCT studies were performed to determine the individualized internal margin for the planning simulation. The interfractional and intrafractional changes of liver tumor motion for all patients was measured, based on the planning simulation 4D-CBCT, pre-SBRT 4D-CBCT, and post-SBRT 4D-CBCT. The interfractional motion change was calculated from the difference in liver tumor amplitude on pre-SBRT 4D-CBCT relative to that of the planning simulation 4D-CBCT for each fraction. The intrafractional motion change was calculated from the difference between the liver tumor amplitudes of the pre- and post-SBRT 4D-CBCT for each fraction. Significant interfractional and intrafractional changes in liver tumor motion were defined as a change ≥3 mm. Statistical analysis was performed using the Pearson correlation. Results: The values of the mean amplitude of liver tumor, as indicated by planning simulation 4D-CBCT, were 1.6 ± 0.8 mm, 1.6 ± 0.9 mm, and 4.9 ± 2.2 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. Pearson correlation coefficients between the liver tumor amplitudes, based on planning simulation 4D-CBCT, and pre-SBRT 4D-CBCT during fraction treatment in the LR, AP, and SI directions were 0.6, 0.7, and 0.8, respectively. Interfractional and intrafractional motion changes of ≥3 mm occurred in 23% and 3% of treatment fractions, respectively. Conclusion: The interfractional and intrafractional changes of liver tumor motion were small in most patients who received liver SBRT with AC. In addition, planning

  20. SU-G-JeP4-06: Evaluation of Interfractional and Intrafractional Tumor Motion in Stereotactic Liver Radiotherapy, Based On Four-Dimensional Cone-Beam Computed Tomography Using Fiducial Markers

    Energy Technology Data Exchange (ETDEWEB)

    Shimohigashi, Y [Department of Radiological Technology, Kumamoto University Hospital, Department of Graduate School of Health Sciences, Kumamoto University (Japan); Araki, F [Department of Health Sciences, Kumamoto University (Japan); Toya, R [Department of Radiation Oncology, Kumamoto University Hospital (Japan); Department of Human Oncology, University of Wisconsin School of Medicine and Public Health (United States); Maruyama, M; Nakaguchi, Y [Department of Radiological Technology, Kumamoto University Hospital (Japan)

    2016-06-15

    Purpose: The purpose of this study was to evaluate the interfractional and intrafractional motion of liver tumors in stereotactic body radiation therapy (SBRT), based on four-dimensional cone-beam computed tomography using fiducial markers. (4D-CBCT). Methods: Seven patients with liver tumors were treated by SBRT with abdominal compression (AC) in five fractions with image guidance based on 4D-CBCT. The 4D-CBCT studies were performed to determine the individualized internal margin for the planning simulation. The interfractional and intrafractional changes of liver tumor motion for all patients was measured, based on the planning simulation 4D-CBCT, pre-SBRT 4D-CBCT, and post-SBRT 4D-CBCT. The interfractional motion change was calculated from the difference in liver tumor amplitude on pre-SBRT 4D-CBCT relative to that of the planning simulation 4D-CBCT for each fraction. The intrafractional motion change was calculated from the difference between the liver tumor amplitudes of the pre- and post-SBRT 4D-CBCT for each fraction. Significant interfractional and intrafractional changes in liver tumor motion were defined as a change ≥3 mm. Statistical analysis was performed using the Pearson correlation. Results: The values of the mean amplitude of liver tumor, as indicated by planning simulation 4D-CBCT, were 1.6 ± 0.8 mm, 1.6 ± 0.9 mm, and 4.9 ± 2.2 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. Pearson correlation coefficients between the liver tumor amplitudes, based on planning simulation 4D-CBCT, and pre-SBRT 4D-CBCT during fraction treatment in the LR, AP, and SI directions were 0.6, 0.7, and 0.8, respectively. Interfractional and intrafractional motion changes of ≥3 mm occurred in 23% and 3% of treatment fractions, respectively. Conclusion: The interfractional and intrafractional changes of liver tumor motion were small in most patients who received liver SBRT with AC. In addition, planning

  1. Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Nowak, Roland; Moraru, Daniel; Mizuno, Takeshi; Jablonski, Ryszard; Tabe, Michiharu

    2014-01-01

    Nanoscale pn junctions have been investigated by Kelvin probe force microscopy and several particular features were found. Within the depletion region, a localized noise area is observed, induced by temporal fluctuations of dopant states. Electronic potential landscape is significantly affected by dopants with ground-state energies deeper than in bulk. Finally, the effects of light illumination were studied and it was found that the depletion region shifts its position as a function of light intensity. This is ascribed to charge redistribution within the pn junction as a result of photovoltaic effect and due to the impact of deepened-level dopants. - Highlights: • In pn nano-junctions, temporal potential fluctuations are found in depletion layer. • Fluctuations are due to frequent capture and emission of free carriers by dopants. • Depletion layer position shifts as a function of the intensity of irradiated light. • The depletion layer shifts are due to changes of deep-level dopants' charge states

  2. Validation of a computational method for assessing the impact of intra-fraction motion on helical tomotherapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Meeks, Sanford L; Kupelian, Patrick A; Langen, Katja M [Department of Radiation Oncology, M D Anderson Cancer Center Orlando, 1400 South Orange Avenue, Orlando, FL 32806 (United States); Schnarr, Eric [TomoTherapy, Inc., 1240 Deming Way, Madison, WI 53717 (United States)], E-mail: wilfred.ngwa@orlandohealth.com

    2009-11-07

    In this work, a method for direct incorporation of patient motion into tomotherapy dose calculations is developed and validated. This computational method accounts for all treatment dynamics and can incorporate random as well as cyclical motion data. Hence, interplay effects between treatment dynamics and patient motion are taken into account during dose calculation. This allows for a realistic assessment of intra-fraction motion on the dose distribution. The specific approach entails modifying the position and velocity events in the tomotherapy delivery plan to accommodate any known motion. The computational method is verified through phantom and film measurements. Here, measured prostate motion and simulated respiratory motion tracks were incorporated in the dose calculation. The calculated motion-encoded dose profiles showed excellent agreement with the measurements. Gamma analysis using 3 mm and 3% tolerance criteria showed over 97% and 96% average of points passing for the prostate and breathing motion tracks, respectively. The profile and gamma analysis results validate the accuracy of this method for incorporating intra-fraction motion into the dose calculation engine for assessment of dosimetric effects on helical tomotherapy dose deliveries.

  3. Electron Transport through Porphyrin Molecular Junctions

    Science.gov (United States)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  4. Preliminary results on the feasibility of using ultrasound to monitor intrafractional motion during radiation therapy for pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Omari, Eenas A.; Erickson, Beth; Noid, George; Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Ehlers, Christopher; Quiroz, Francisco [Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Cooper, David T.; Lachaine, Martin [Elekta Ltd., Montreal, Québec H3A 2J5 (Canada)

    2016-09-15

    Purpose: Substantial intrafraction organ motion during radiation therapy (RT) for pancreatic cancer is well recognized as a major limiting factor for accurate delivery of RT. The aim of this work is to determine the feasibility of monitoring the intrafractional motion of the pancreas or surrounding structures using ultrasound for RT delivery. Methods: Transabdominal ultrasound (TAUS) and 4DCT data were acquired on ten pancreatic cancer patients during radiation therapy process in a prospective study. In addition, TAUS and MRI were collected for five healthy volunteers. The portal vein (PV) and the head of the pancreas (HP) along with other structures were contoured on these images. Volume changes, distance between the HP and PV, and motion difference between the HP and PV were measured to examine whether PV can be used as a motion surrogate for HP. TAUS images were acquired and processed using a research version of the Clarity autoscan ultrasound system (CAUS). Motion monitoring was performed with the ultrasound probe mounted on an arm fixed to the couch. Video segments of the monitoring sessions were captured. Results: On TAUS, PV is better visualized than HP. The measured mean volume deviation for all patients for the HP and PV was 1.4 and 0.6 ml, respectively. The distance between the HP and PV was close to a constant with 0.22 mm mean deviation throughout the ten breathing phases. The mean of the absolute motion difference for all patients was 1.7 ± 0.8 mm in LR, 1.5 ± 0.5 mm in AP, and 2.3 ± 0.7 mm in SI, suggesting that the PV is a good surrogate for HP motion estimation. By using this surrogate, the HP motion tracking using TAUS was demonstrated. Conclusions: Large intrafractional organ motion due to respiratory and/or bowel motion is a limiting factor in administering curative radiation doses to pancreatic tumors. The authors investigate the use of real-time ultrasound to track pancreas motion. Due to the poor visibility of the pancreas head on an

  5. Preliminary results on the feasibility of using ultrasound to monitor intrafractional motion during radiation therapy for pancreatic cancer

    International Nuclear Information System (INIS)

    Omari, Eenas A.; Erickson, Beth; Noid, George; Li, X. Allen; Ehlers, Christopher; Quiroz, Francisco; Cooper, David T.; Lachaine, Martin

    2016-01-01

    Purpose: Substantial intrafraction organ motion during radiation therapy (RT) for pancreatic cancer is well recognized as a major limiting factor for accurate delivery of RT. The aim of this work is to determine the feasibility of monitoring the intrafractional motion of the pancreas or surrounding structures using ultrasound for RT delivery. Methods: Transabdominal ultrasound (TAUS) and 4DCT data were acquired on ten pancreatic cancer patients during radiation therapy process in a prospective study. In addition, TAUS and MRI were collected for five healthy volunteers. The portal vein (PV) and the head of the pancreas (HP) along with other structures were contoured on these images. Volume changes, distance between the HP and PV, and motion difference between the HP and PV were measured to examine whether PV can be used as a motion surrogate for HP. TAUS images were acquired and processed using a research version of the Clarity autoscan ultrasound system (CAUS). Motion monitoring was performed with the ultrasound probe mounted on an arm fixed to the couch. Video segments of the monitoring sessions were captured. Results: On TAUS, PV is better visualized than HP. The measured mean volume deviation for all patients for the HP and PV was 1.4 and 0.6 ml, respectively. The distance between the HP and PV was close to a constant with 0.22 mm mean deviation throughout the ten breathing phases. The mean of the absolute motion difference for all patients was 1.7 ± 0.8 mm in LR, 1.5 ± 0.5 mm in AP, and 2.3 ± 0.7 mm in SI, suggesting that the PV is a good surrogate for HP motion estimation. By using this surrogate, the HP motion tracking using TAUS was demonstrated. Conclusions: Large intrafractional organ motion due to respiratory and/or bowel motion is a limiting factor in administering curative radiation doses to pancreatic tumors. The authors investigate the use of real-time ultrasound to track pancreas motion. Due to the poor visibility of the pancreas head on an

  6. Management of three-dimensional intrafraction motion through real-time DMLC tracking

    International Nuclear Information System (INIS)

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-01-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion

  7. Volumetric modulated arc therapy for spine SBRT patients to reduce treatment time and intrafractional motion

    Directory of Open Access Journals (Sweden)

    Ahmad Amoush

    2015-01-01

    Full Text Available Volumetric modulated arc therapy (VMAT is an efficient technique to reduce the treatment time and intrafractional motion to treat spine patients presented with severe back pain. Five patients treated with spine stereotactic body radiation therapy (SBRT using 9 beams intensity modulated radiation therapy (IMRT were retrospectively selected for this study. The patients were replanned using two arcs VMAT technique. The average mean dose was 104% ± 1.2% and 104.1% ± 1.0% in IMRT and VMAT, respectively (p = 0.9. Accordingly, the average conformal index (CI was 1.3 ± 0.1 and 1.5 ± 0.3, respectively (p = 0.5. The average dose gradient (DG distance was 1.5 ± 0.1 cm and 1.4 ± 0.1 cm, respectively (p = 0.3. The average spinal cord maximum dose was 11.6 ± 1.0 Gy and 11.8 ± 1.1 Gy (p = 0.8 and V10Gy was 7.4 ± 1.4 cc and 8.6 ± 1.7 cc (p = 0.4 for IMRT and VMAT, respectively. Accordingly, the average number of monitor units (MUs was 6771.7 ± 1323.3 MU and 3978 ± 576.7 MU respectively (p = 0.02. The use of VMAT for spine SBRT patients with severe back pain can reduce the treatment time and intrafractional motion.

  8. Study of Inter- and Intra-fraction Motion in Brain Tumor Patients Undergoing VMAT Treatment

    International Nuclear Information System (INIS)

    Ascencion Ybarra, Y.; Alfonso Laguardia, R.; Yartsev, S.

    2015-01-01

    Conforming dose to the tumor and sparing normal tissue can be challenging for brain tumors with complex shapes in close proximity to critical structures. The goal of this study was to evaluate the inter- and intra-fraction motion in brain tumor patients undergoing volumetric modulated arc therapy (VMAT). The image matching software was found to be very sensitive to the choice of the region of matching. It is recommended to use the same region of interest for comparing the image sets and perform the automatic matching based on bony landmarks in brain tumor cases. (Author)

  9. Spectroscopy of transmission resonances through a C60 junction

    DEFF Research Database (Denmark)

    Schneider, N. L.; Néel, N.; Andersen, Nick Papior

    2015-01-01

    Electron transport through a single C60 molecule on Cu(1 1 1) has been investigated with a scanning tunnelling microscope in tunnelling and contact ranges. Single-C60 junctions have been fabricated by establishing a contact between the molecule and the tip, which is reflected by a down......-shift in the lowest unoccupied molecular orbital resonance. These junctions are stable even at elevated bias voltages enabling conductance measurements at high voltages and nonlinear conductance spectroscopy in tunnelling and contact ranges. Spectroscopy and first principles transport calculations clarify...

  10. Charge Transport Phenomena in Peptide Molecular Junctions

    International Nuclear Information System (INIS)

    Luchini, A.; Petricoin, E.F.; Geho, D.H.; Liotta, L.A.; Long, D.P.; Vaisman, I.I.

    2008-01-01

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  11. TH-A-BRF-04: Intra-Fraction Motion Characterization for Early Stage Rectal Cancer Using Cine-MRI

    International Nuclear Information System (INIS)

    Kleijnen, J; Asselen, B; Burbach, M; Intven, M; Reerink, O; Philippens, M; Lagendijk, J; Raaymakers, B

    2014-01-01

    Purpose: To investigate the intra-fraction motion in patients with early stage rectal cancer using cine-MRI. Methods: Sixteen patient diagnosed with early stage rectal cancer underwent 1.5 T MR imaging prior to each treatment fraction of their short course radiotherapy (n=76). During each scan session, three 2D sagittal cine-MRIs were performed: at the beginning (Start), after 9:30 minutes (Mid), and after 18 minutes (End). Each cine-MRI has a duration of one minute at 2Hz temporal resolution, resulting in a total of 3:48 hours of cine-MRI. Additionally, standard T2-weighted (T2w) imaging was performed. Clinical target volume (CTV) an tumor (GTV) were delineated on the T2w scan and transferred to the first time-point of each cine-MRI scan. Within each cine-MRI, the first frame was registered to the remaining frames of the scan, using a non-rigid B-spline registration. To investigate potential drifts, a similar registration was performed between the first frame of the Start and End scans.To evaluate the motion, the distances by which the edge pixels of the delineations move in anterior-posterior (AP) and cranial-caudal (CC) direction, were determined using the deformation field of the registrations. The distance which incorporated 95% of these edge pixels (dist95%) was determined within each cine-MRI, and between Start- End scans, respectively. Results: Within a cine-MRI, we observed an average dist95% for the CTV of 1.3mm/1.5mm (SD=0.7mm/0.6mm) and for the GTV of 1.2mm/1.5mm (SD=0.8mm/0.9mm), in respectively AP/CC. For the CTV motion between the Start and End scan, an average dist95% of 5.5mm/5.3mm (SD=3.1mm/2.5mm) was found, in respectively AP/CC. For the GTV motion, an average dist95% of 3.6mm/3.9mm (SD=2.2mm/2.5mm) was found in AP/CC, respectively. Conclusion: Although intra-fraction motion within a one minute cine-MRI is limited, substantial intra-fraction motion was observed within the 18 minute time period between the Start and End cine-MRI

  12. The switching characteristics of free layer of patterned magnetic tunnel junction device

    International Nuclear Information System (INIS)

    Chen, C.C.; Wang, Y.R.; Kuo, C.Y.; Wu, J.C.; Horng, Lance; Wu, Teho; Yoshimura, S.; Tsunoda, M.; Takahashi, M.

    2006-01-01

    The free layer switching properties of microstructured magnetic tunnel junctions have been investigated. The M-H loop of nonpatterned film shows ferromagnetic coupling with 10 Oe shifting associated with the interlayer roughness coupling. The MR curve of the patterned element shows stepped minor loop, less loop shifting, and larger coercive field due to shape anisotropy and stray field effects. MFM images of the element show nonuniform domain structures during reversal process

  13. Optimizing monoscopic kV fluoro acquisition for prostate intrafraction motion evaluation

    International Nuclear Information System (INIS)

    Adamson, Justus; Wu Qiuwen

    2009-01-01

    Monoscopic kV imaging during radiotherapy has been recently implemented for prostate intrafraction motion evaluation. However, the accuracy of 3D localization techniques from monoscopic imaging of prostate and the effect of acquisition parameters on the 3D accuracy have not been studied in detail, with imaging dose remaining a concern. In this paper, we investigate methods to optimize the kV acquisition parameters and imaging protocol to achieve improved 3D localization and 2D image registration accuracy for minimal imaging dose. Prostate motion during radiotherapy was simulated using existing cine-MRI measurements, and was used to investigate the accuracy of various 3D localization techniques and the effect of the kV acquisition protocol. We also investigated the relationship between mAs and the accuracy of the 2D image registration for localization of fiducial markers and we measured imaging dose for a 30 cm diameter phantom to evaluate the necessary dose to achieve acceptable image registration accuracy. Simulations showed that the error in assuming the shortest path to localize the prostate in 3D using monoscopic imaging during a typical IMRT fraction will be less than ∼1.5 mm for 95% of localizations, and will also depend on prostate motion distribution, treatment duration and image acquisition and treatment protocol. Most uncertainty cannot be reduced from higher imaging frequency or acquiring during gantry rotation between beams. Measured maximum surface dose to the cylindrical phantom from monoscopic kV intrafraction acquisitions varied between 0.4 and 5.5 mGy, depending on the acquisition protocol, and was lower than the required dose for CBCT (21.1 mGy). Imaging dose can be lowered by ∼15-40% when mAs is optimized with acquisition angle. Images acquired during MV beam delivery require increased mAs to obtain the same level of registration accuracy, with mAs/registration increasing roughly linearly with field size and dose rate.

  14. Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: Detectability and effectiveness of a flexible monitoring system

    International Nuclear Information System (INIS)

    Tachibana, Hidenobu; Kitamura, Nozomi; Ito, Yasushi; Kawai, Daisuke; Nakajima, Masaru; Tsuda, Akihisa; Shiizuka, Hisao

    2011-01-01

    Purpose: In respiratory-gated radiation therapy, a baseline shift decreases the accuracy of target coverage and organs at risk (OAR) sparing. The effectiveness of audio-feedback and audio-visual feedback in correcting the baseline shift in the breathing pattern of the patient has been demonstrated previously. However, the baseline shift derived from the intrafraction motion of the patient's body cannot be corrected by these methods. In the present study, the authors designed and developed a simple and flexible system. Methods: The system consisted of a web camera and a computer running our in-house software. The in-house software was adapted to template matching and also to no preimage processing. The system was capable of monitoring the baseline shift in the intrafraction motion of the patient's body. Another marker box was used to monitor the baseline shift due to the flexible setups required of a marker box for gated signals. The system accuracy was evaluated by employing a respiratory motion phantom and was found to be within AAPM Task Group 142 tolerance (positional accuracy <2 mm and temporal accuracy <100 ms) for respiratory-gated radiation therapy. Additionally, the effectiveness of this flexible and independent system in gated treatment was investigated in healthy volunteers, in terms of the results from the differences in the baseline shift detectable between the marker positions, which the authors evaluated statistically. Results: The movement of the marker on the sternum [1.599 ± 0.622 mm (1 SD)] was substantially decreased as compared with the abdomen [6.547 ± 0.962 mm (1 SD)]. Additionally, in all of the volunteers, the baseline shifts for the sternum [-0.136 ± 0.868 (2 SD)] were in better agreement with the nominal baseline shifts than was the case for the abdomen [-0.722 ± 1.56 mm (2 SD)]. The baseline shifts could be accurately measured and detected using the monitoring system, which could acquire the movement of the marker on the sternum. The

  15. Electron transport in dipyridazine and dipyridimine molecular junctions: a first-principles investigation

    Science.gov (United States)

    Parashar, Sweta

    2018-05-01

    We present density functional theory-nonequilibrium Green’s function method for electron transport of dipyridazine and dipyridimine molecular junctions with gold, copper and nickel electrodes. Our investigation reveals that the junctions formed with gold and copper electrodes bridging dipyridazine molecule through thiol anchoring group enhance current as compared to the junctions in which the molecule and electrode were coupled directly. Further, nickel electrode displays weak decrease of current with increase of voltage at about 1.2 V. The result is fully rationalized by means of the distribution of molecular orbitals as well as shift in molecular energy levels and HOMO-LUMO gap with applied bias voltage. Our findings are compared with theoretical and experimental results available for other molecular junctions. Present results predict potential avenues for changing the transport behavior by not only changing the electrodes, but also the position of nitrogen atom and type of anchoring-atom that connect molecule and electrodes, thus extending applications of dipyridazine and dipyridimine molecule in future integrated circuits.

  16. Strength of Dislocation Junctions in FCC-monocrystals with a [\\overline{1}11] Deformation Axis

    Science.gov (United States)

    Kurinnaya, R. I.; Zgolich, M. V.; Starenchenko, V. A.

    2017-07-01

    The paper examines all dislocation reactions implemented in FCC-monocrystals with axis deformation oriented in the [\\overline{1}11] direction. It identifies the fracture stresses of dislocation junctions depending on intersection geometry of the reacting dislocation loop segments. Estimates are produced for the full spectrum of reacting forest dislocations. The paper presents the statistical data of the research performed and identifies the share of long strong dislocation junctions capable of limiting the zone of dislocation shift.

  17. Effects of strain on Goos-Hänchen shifts of monolayer phosphorene

    Science.gov (United States)

    Li, Kaihui; Cheng, Fang

    2018-03-01

    We investigate the Goos-Hänchen(GH) shift for ballistic electrons (i) reflected from a step-like inhomogeneity of strain, and (ii) transmitted through a monolayer phosphoresce junction consisting of a positive strained region and two normal regions (or a normal region and two negative strained regions). Refraction occurs at the interface between the unstrained/positive-strain(negative-strain/unstrained), in analogy with optical refraction. The critical angle is different for different strengths and directions of the strains. The critical angles for electrons tunneling through unstrained/positive-strain junction can even decrease to zero when the positive strain exceeds a critical value. For the monolayer phosphorene junction consisting of a positive strain region and two normal regions (or a normal region and two negative strain regions), we find that the GH shifts resonantly depends on the middle region width. The resonant values and the plus-minus sign of the displacement can be controlled by the incident angle, incident energy and the strain. These properties will be useful for the applications in phosphorene-based electronic devices.

  18. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  19. Electromagnetic Tracking of Intrafraction Prostate Displacement in Patients Externally Immobilized in the Prone Position

    International Nuclear Information System (INIS)

    Bittner, Nathan; Butler, Wayne M.; Reed, Joshua L.; Murray, Brian C.; Kurko, Brian S.; Wallner, Kent E.; Merrick, Gregory S.

    2010-01-01

    Purpose: To evaluate intrafraction prostate displacement among patients immobilized in the prone position using real-time monitoring of implanted radiofrequency transponders. Methods and Materials: The Calypso localization system was used to track prostate motion in patients receiving external beam radiation therapy (XRT) for prostate cancer. All patients were treated in the prone position and immobilized with a thermoplastic immobilization device. Real-time measurement of prostate displacement was recorded for each treatment fraction. These measurements were used to determine the duration and magnitude of displacement along the three directional axes. Results: The calculated centroid of the implanted transponders was offset from the treatment isocenter by ≥2 mm, ≥3 mm, and ≥4 mm for 38.0%, 13.9%, and 4.5% of the time. In the lateral dimension, the centroid was offset from the treatment isocenter by ≥2 mm, ≥3 mm, and ≥4 mm for 2.7%, 0.4%, and 0.06% of the time. In the superior-inferior dimension, the centroid was offset from the treatment isocenter by ≥2 mm, ≥3 mm, and ≥4 mm for 16.1%, 4.7%, and 1.5% of the time, respectively. In the anterior-posterior dimension, the centroid was offset from the treatment isocenter by ≥2 mm, ≥3 mm, and ≥4 mm for 13.4%, 3.0%, and 0.5% of the time. Conclusions: Intrafraction prostate displacement in the prone position is comparable to that in the supine position. For patients with large girth, in whom the supine position may preclude accurate detection of implanted radiofrequency transponders, treatment in the prone position is a suitable alternative.

  20. Numerical versus analytical Ic(H) patterns in Josephson junctions with periodically alternating critical current density

    International Nuclear Information System (INIS)

    Lazarides, N

    2004-01-01

    An analytical expression for the magnetic-field-dependent critical current I c (H) of Josephson junctions with periodically alternating critical current density J c (x) is derived within the uniform field approximation. Comparison with numerically calculated I c (H) patterns for junctions with identical, thick, periodically arranged defects with the corresponding analytical expression reveals fair agreement for a wide range of parameters, due to increased characteristic length. Based on qualitative arguments, we give the dependence of the new characteristic length on the geometrical parameters of the junction, which is in agreement with self-consistent calculations with the static sine-Gordon equation. The analytical expression captures the observed qualitative features of the I c (H) patterns, while it is practically exact for short junctions or high fields. It also produces the shift of the major peak from the zero-field position of the standard Fraunhofer pattern to another position related to the periodicity of the critical current density in φ-junctions

  1. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    Science.gov (United States)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  2. Quality assurance device for four-dimensional IMRT or SBRT and respiratory gating using patient-specific intrafraction motion kernels.

    Science.gov (United States)

    Nelms, Benjamin E; Ehler, Eric; Bragg, Henry; Tomé, Wolfgang A

    2007-09-17

    Emerging technologies such as four-dimensional computed tomography (4D CT) and implanted beacons are expected to allow clinicians to accurately model intrafraction motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. In the case of intensity-modulated (IMRT) and stereotactic body radiation therapy (SBRT) delivery, clinicians must consider the interplay between the temporal nature of the modulation and the target motion within the ITV. A need exists for a 4D IMRT/SBRT quality assurance (QA) device that can incorporate and analyze customized intrafraction motion as it relates to dose delivery and respiratory gating. We built a 4D IMRT/SBRT prototype device and entered (X, Y, Z)(T) coordinates representing a motion kernel into a software application that 1. transformed the kernel into beam-specific two-dimensional (2D) motion "projections," 2. previewed the motion in real time, and 3. drove a recision X-Y motorized device that had, atop it, a mounted planar IMRT QA measurement device. The detectors that intersected the target in the beam's-eye-view of any single phase of the breathing cycle (a small subset of all the detectors) were defined as "target detectors" to be analyzed for dose uniformity between multiple fractions. Data regarding the use of this device to quantify dose variation fraction-to-fraction resulting from target motion (for several delivery modalities and with and without gating) have been recently published. A combined software and hardware solution for patient-customized 4D IMRT/SBRT QA is an effective tool for assessing IMRT delivery under conditions of intrafraction motion. The 4D IMRT QA device accurately reproduced the projected motion kernels for all beam's-eye-view motion kernels. This device has been proved to, effectively quantify the degradation in dose uniformity resulting from a moving target within a static planning target volume, and, integrate with a commercial

  3. Quality assurance device for four‐dimensional IMRT or SBRT and respiratory gating using patient‐specific intrafraction motion kernels

    Science.gov (United States)

    Ehler, Eric; Bragg, Henry; Tomé, Wolfgang A.

    2007-01-01

    Emerging technologies such as four‐dimensional computed tomography (4D CT) and implanted beacons are expected to allow clinicians to accurately model intrafraction motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. In the case of intensity‐modulated (IMRT) and stereotactic body radiation therapy (SBRT) delivery, clinicians must consider the interplay between the temporal nature of the modulation and the target motion within the ITV. A need exists for a 4D IMRT/SBRT quality assurance (QA) device that can incorporate and analyze customized intrafraction motion as it relates to dose delivery and respiratory gating. We built a 4D IMRT/SBRT prototype device and entered (X, Y, Z)(T) coordinates representing a motion kernel into a software application that transformed the kernel into beam‐specific two‐dimensional (2D) motion “projections,”previewed the motion in real time, anddrove a precision X–Y motorized device that had, atop it, a mounted planar IMRT QA measurement device. The detectors that intersected the target in the beam's‐eye‐view of any single phase of the breathing cycle (a small subset of all the detectors) were defined as “target detectors” to be analyzed for dose uniformity between multiple fractions. Data regarding the use of this device to quantify dose variation fraction‐to‐fraction resulting from target motion (for several delivery modalities and with and without gating) have been recently published. A combined software and hardware solution for patient‐customized 4D IMRT/ SBRT QA is an effective tool for assessing IMRT delivery under conditions of intrafraction motion. The 4D IMRT QA device accurately reproduced the projected motion kernels for all beam's‐eye‐view motion kernels. This device has been proved to • effectively quantify the degradation in dose uniformity resulting from a moving target within a static planning target volume, and • integrate

  4. Origin of the transition voltage in gold–vacuum–gold atomic junctions

    International Nuclear Information System (INIS)

    Wu Kunlin; Bai Meilin; Hou Shimin; Sanvito, Stefano

    2013-01-01

    The origin and the distance dependence of the transition voltage of gold–vacuum–gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold–vacuum–gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold–vacuum–gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. (paper)

  5. Powered supports for T-junctions

    Energy Technology Data Exchange (ETDEWEB)

    von Klinggraeff, G.; Bohnes, K.

    1981-04-23

    The hydraulic self advancing support system first introduced at Niederberg colliery for a T-junction between a thin seam and a roadway with porch set supports included nearly all components for underpinning the roadway support closest to the face and for supporting the face end close to the roadway, including the rib-side. It ensures a fixed cycle of operations without the need for improvisation while providing continuous strata control during displacement of units. This support combination has proved itself in underground use. As a result, accident incidence was reduced, the number of breakdowns reduced, made the work easier and reduced the number of shifts needed.

  6. Intensity Modulated Proton Therapy for Craniospinal Irradiation: Organ-at-Risk Exposure and a Low-Gradient Junctioning Technique

    International Nuclear Information System (INIS)

    Stoker, Joshua B.; Grant, Jonathan; Zhu, X. Ronald; Pidikiti, Rajesh; Mahajan, Anita; Grosshans, David R.

    2014-01-01

    Purpose: To compare field junction robustness and sparing of organs at risk (OARs) during craniospinal irradiation (CSI) using intensity modulated proton therapy (IMPT) to conventional passively scattered proton therapy (PSPT). Methods and Materials: Ten patients, 5 adult and 5 pediatric patients, previously treated with PSPT-based CSI were selected for comparison. Anterior oblique cranial fields, using a superior couch rotation, and posterior spinal fields were used for IMPT planning. To facilitate low-gradient field junctioning along the spine, the inverse-planning IMPT technique was divided into 3 stages. Dose indices describing target coverage and normal tissue dose, in silico error modeling, and film dosimetry were used to assess plan quality. Results: Field junction robustness along the spine was improved using the staged IMPT planning technique, reducing the worst case impact of a 4-mm setup error from 25% in PSPT to <5% of prescription dose. This was verified by film dosimetry for clinical delivery. Exclusive of thyroid dose in adult patients, IMPT plans demonstrated sparing of organs at risk as good or better than PSPT. Coverage of the cribriform plate for pediatric (V95% [percentage of volume of the target receiving at least 95% of the prescribed dose]; 87 ± 11 vs 92 ± 7) and adult (V95%; 94 ± 7 vs 100 ± 1) patients and the clinical target in pediatric (V95%; 98 ± 2 vs 100 ± 1) and adult (V95%; 100 ± 1 vs 100 ± 1) patients for PSPT and IMPT plans, respectively, were comparable or improved. For adult patients, IMPT target dose inhomogeneity was increased, as determined by heterogeneity index (HI) and inhomogeneity coefficient (IC). IMPT lowered maximum spinal cord dose, improved spinal dose homogeneity, and reduced exposure to other OARs. Conclusions: IMPT has the potential to improve CSI plan quality and the homogeneity of intrafractional dose at match lines. The IMPT approach developed may also simplify treatments and reduce

  7. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-01-01

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  8. Realization of φ Josephson junctions with a ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Sickinger, Hanna Sabine

    2014-01-01

    In this thesis, φ Josephson junctions based on 0-π junctions with a ferromagnetic interlayer are studied. Josephson junctions (JJs) with a ferromagnetic interlayer can have a phase drop of 0 or π in the ground state, depending on the thickness of the ferromagnet (0 JJs or π JJs). Also, 0-π JJs can be realized, where one segment of the junction (if taken separately) is in the 0 state, while the other segment is in the π state. One can use these π Josephson junctions as a device in superconducting circuits, where it provides a constant phase shift, i.e., it acts as a π phase battery. A generalization of a π JJ is a φ JJ, which has the phase ±φ in the ground state. The value of φ can be chosen by design and tuned in the interval 0<φ<π. The φ JJs used in this experiment were fabricated as 0-π JJs with asymmetric current densities in the 0 and π facets. This system can be described by an effective current-phase relation which is tunable by an externally applied magnetic field. The first experimental evidence of such a φ JJ is presented in this thesis. In particular it is demonstrated that (a) a φ JJ has two ground states +φ and -φ, (b) the unknown state can be detected (read out) by measuring the critical current I c (I c+ or I c- ), and (c) a particular state can be prepared by applying a magnetic field or a special bias sweep sequence. These properties of a φ JJ can be utilized, for example, as a memory cell (classical bit). Furthermore, a φ Josephson junction can be used as a deterministic ratchet. This is due to the tunable asymmetry of the potential that can be changed by the external magnetic field. Rectification curves are observed for the overdamped and the underdamped case. Moreover, experimental data of the retrapping process of the phase of a φ Josephson junction depending on the temperature is presented.

  9. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  10. A strategy to correct for intrafraction target translation in conformal prostate radiotherapy: Simulation results

    International Nuclear Information System (INIS)

    Keall, P. J.; Lauve, A. D.; Hagan, M. P.; Siebers, J. V.

    2007-01-01

    A strategy is proposed in which intrafraction internal target translation is corrected for by repositioning the multileaf collimator position aperture to conform to the new target pose in the beam projection, and the beam monitor units are adjusted to account for the change in the geometric relationship between the target and the beam. The purpose of this study was to investigate the dosimetric stability of the prostate and critical structures in the presence of internal target translation using the dynamic compensation strategy. Twenty-five previously treated prostate cancer patients were replanned using a four-field conformal technique to deliver 72 Gy to 95% of the planning target volume (PTV). Internal translation was introduced by displacing the prostate PTV (no rotation or deformation was considered). Thirty-six randomly selected isotropic displacements of magnitude 0.5, 1.0, 1.5 and 2.0 cm were sampled for each patient, for a total of 3600 errors. Due to their anatomic relation to the prostate, the rectum and bladder contours were also moved with the same magnitude and direction as the prostate. The dynamic compensation strategy was used to correct each of these errors by conforming the beam apertures to the new target pose and adjusting the monitor units using inverse-square and off-axis factor corrections. The dynamic compensation strategy plans were then compared to the original treatment plans via dose-volume histogram (DVH) analysis. Changes of more than 5% of the prescription dose (3.6 Gy) were deemed clinically significant. Compared to the original treatment plans, the dynamic compensation strategy produced small discrepancies in isodose distributions and DVH analyses for all structures considered apart from the femoral heads. These differences increased with the magnitude of the internal motion. Coverage of the PTV was excellent: D 5 , D 95 , and D mean were not increased or decreased by more than 5% of the prescription dose for any of the 3600

  11. Nature of inhomogeneous states in superconducting junctions

    International Nuclear Information System (INIS)

    Ivlev, B.I.; Kopnin, N.B.

    1982-01-01

    A superconducting structure which arises in a superconducting film under a strong injection of a current through a tunnel junction is considered. If the current density in the film exceeds the critical Ginzburg-Landau value, an inhomogeneous resistive state with phase-slip centers can arise in it. This state is charcterized by the presence of regions with different chemical potentials of the Cooper pairs. These shifts of the pair chemical potential and the nonuniform structure of the order parameter may account for the so-called multigap states which have been observed experimentally

  12. Origin of the transition voltage in gold–vacuum–gold atomic junctions

    KAUST Repository

    Wu, Kunlin

    2012-12-13

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. © 2013 IOP Publishing Ltd.

  13. Search for a correlation between Josephson junctions and gravity

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2000-01-01

    Woodward's transient mass shift (TMS) formula has commonality with Modanese's anomalous coupling theory (ACT) and Woodward's capacitor experiment has commonality with Podkletnov's layered superconductor disk experiment. The TMS formula derives a mass fluctuation from a time-varying energy density. The ACT suggests that the essential ingredient for the gravity phenomenon is the presence of strong variations or fluctuations of the Cooper pair density (a time-varying energy density). Woodward's experiment used a small array of capacitors whose energy density was varied by an applied 11 kHz signal. Podkletnov's superconductor disk contained many Josephson junctions (small capacitive like interfaces), which were radiated with a 3-4 MHz signal. This paper formulates a TMS for superconductor Josephson junctions. The equation was compared to the 2% mass change claimed by Podkletnov in his gravity shielding experiments. The TMS is calculated to be 2% for a 2-kg superconductor with an induced total power to the multiple Josephson junctions of about 3.3-watts. A percent mass change equation is then formulated based on the Cavendish balance equation where the superconductor TMS is used for the delta change in mass. An experiment using a Cavendish balance is then discussed

  14. TU-F-CAMPUS-J-01: Inference of Prostate PTV Margins in VMAT Delivery From Intra-Fraction Prostate Motion During SBRT Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Thind, K; Wong, R; Gerdes, C; Chow, T [Juravinski Cancer Centre, Hamilton, Ontario (Canada); Wong, D [McMaster University, Hamilton, Ontario (Canada)

    2015-06-15

    Purpose: To retrospectively quantify the intra-fraction prostate motion during stereotactic body radiation therapy (SBRT) treatment using CyberKnife’s target tracking system, which may provide insight into expansion margins from GTV to PTV used in gantry-based treatments. CyberKnife is equipped with an active tracking system (InTempo) that tracks the four fiducials placed in the prostate gland. The system acquires intra-fraction orthogonal kV images at 45° and 315° in a sequential fashion. Methods: A total of 38 patients treated with SBRT using CyberKnife between 2011 and 2013 were studied. Dose-regime was 36.25 Gy in 5 fractions (7.25 Gy/fraction, twice per week) as per RTOG 0938 guidelines. The CyberKnife image tracking logs for all SBRT treatments using InTempo were examined. A total of 13663 images were examined for the superior/inferior (SI), anterior/posterior (AP) and left/right (LR) translation as well as roll, pitch and yaw rotations for the target position relative to the last known model position. Results: The mean ± 2 SD of intra-fraction motion was contained within 3 mm for SI and LR and 4.5 mm for AP directions at 5 minutes into the treatment delivery. It was contained within 4 mm for SI and LR and 5 mm for AP at 10 minutes. At 15 minutes into delivery, all translations were contained within 5 mm. The mean ± 2 SD of prostate roll, pitch and yaw increased with time but were contained within 5 degree at 5, 10 and 15 minutes into treatment. Additionally, target translations and rotations were within ± 1 mm and ± 1 degree for 90% and 78% of the time. Conclusion: The organ motion component of PTV margin for 10 minute VMAT delivery is contained within 4 mm in SI and LR direction and within 5 mm in the AP direction.

  15. Magnetic Resonance Image Guided Radiation Therapy for External Beam Accelerated Partial-Breast Irradiation: Evaluation of Delivered Dose and Intrafractional Cavity Motion

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Mazur, Thomas R.; Curcuru, Austen; Sona, Karl; Kashani, Rojano; Green, Olga; Ochoa, Laura; Mutic, Sasa; Zoberi, Imran; Li, H. Harold; Thomas, Maria A., E-mail: mthomas@radonc.wustl.edu

    2016-11-15

    Purpose: To use magnetic resonance image guided radiation therapy (MR-IGRT) for accelerated partial-breast irradiation (APBI) to (1) determine intrafractional motion of the breast surgical cavity; and (2) assess delivered dose versus planned dose. Methods and Materials: Thirty women with breast cancer (stages 0-I) who underwent breast-conserving surgery were enrolled in a prospective registry evaluating APBI using a 0.35-T MR-IGRT system. Clinical target volume was defined as the surgical cavity plus a 1-cm margin (excluding chest wall, pectoral muscles, and 5 mm from skin). No additional margin was added for the planning target volume (PTV). A volumetric MR image was acquired before each fraction, and patients were set up to the surgical cavity as visualized on MR imaging. To determine the delivered dose for each fraction, the electron density map and contours from the computed tomography simulation were transferred to the pretreatment MR image via rigid registration. Intrafractional motion of the surgical cavity was determined by applying a tracking algorithm to the cavity contour as visualized on cine MR. Results: Median PTV volume was reduced by 52% when using no PTV margin compared with a 1-cm PTV margin used conventionally. The mean (± standard deviation) difference between planned and delivered dose to the PTV (V95) was 0.6% ± 0.1%. The mean cavity displacement in the anterior–posterior and superior–inferior directions was 0.6 ± 0.4 mm and 0.6 ± 0.3 mm, respectively. The mean margin required for at least 90% of the cavity to be contained by the margin for 90% of the time was 0.7 mm (5th-95th percentile: 0-2.7 mm). Conclusion: Minimal intrafractional motion was observed, and the mean difference between planned and delivered dose was less than 1%. Assessment of efficacy and cosmesis of this MR-guided APBI approach is under way.

  16. SU-F-J-105: Towards a Novel Treatment Planning Pipeline Delivering Pareto- Optimal Plans While Enabling Inter- and Intrafraction Plan Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Kontaxis, C; Bol, G; Lagendijk, J; Raaymakers, B [University Medical Center Utrecht, Utrecht (Netherlands); Breedveld, S; Sharfo, A; Heijmen, B [Erasmus University Medical Center Rotterdam, Rotterdam (Netherlands)

    2016-06-15

    Purpose: To develop a new IMRT treatment planning methodology suitable for the new generation of MR-linear accelerator machines. The pipeline is able to deliver Pareto-optimal plans and can be utilized for conventional treatments as well as for inter- and intrafraction plan adaptation based on real-time MR-data. Methods: A Pareto-optimal plan is generated using the automated multicriterial optimization approach Erasmus-iCycle. The resulting dose distribution is used as input to the second part of the pipeline, an iterative process which generates deliverable segments that target the latest anatomical state and gradually converges to the prescribed dose. This process continues until a certain percentage of the dose has been delivered. Under a conventional treatment, a Segment Weight Optimization (SWO) is then performed to ensure convergence to the prescribed dose. In the case of inter- and intrafraction adaptation, post-processing steps like SWO cannot be employed due to the changing anatomy. This is instead addressed by transferring the missing/excess dose to the input of the subsequent fraction. In this work, the resulting plans were delivered on a Delta4 phantom as a final Quality Assurance test. Results: A conventional static SWO IMRT plan was generated for two prostate cases. The sequencer faithfully reproduced the input dose for all volumes of interest. For the two cases the mean relative dose difference of the PTV between the ideal input and sequenced dose was 0.1% and −0.02% respectively. Both plans were delivered on a Delta4 phantom and passed the clinical Quality Assurance procedures by achieving 100% pass rate at a 3%/3mm gamma analysis. Conclusion: We have developed a new sequencing methodology capable of online plan adaptation. In this work, we extended the pipeline to support Pareto-optimal input and clinically validated that it can accurately achieve these ideal distributions, while its flexible design enables inter- and intrafraction plan

  17. SU-F-J-105: Towards a Novel Treatment Planning Pipeline Delivering Pareto- Optimal Plans While Enabling Inter- and Intrafraction Plan Adaptation

    International Nuclear Information System (INIS)

    Kontaxis, C; Bol, G; Lagendijk, J; Raaymakers, B; Breedveld, S; Sharfo, A; Heijmen, B

    2016-01-01

    Purpose: To develop a new IMRT treatment planning methodology suitable for the new generation of MR-linear accelerator machines. The pipeline is able to deliver Pareto-optimal plans and can be utilized for conventional treatments as well as for inter- and intrafraction plan adaptation based on real-time MR-data. Methods: A Pareto-optimal plan is generated using the automated multicriterial optimization approach Erasmus-iCycle. The resulting dose distribution is used as input to the second part of the pipeline, an iterative process which generates deliverable segments that target the latest anatomical state and gradually converges to the prescribed dose. This process continues until a certain percentage of the dose has been delivered. Under a conventional treatment, a Segment Weight Optimization (SWO) is then performed to ensure convergence to the prescribed dose. In the case of inter- and intrafraction adaptation, post-processing steps like SWO cannot be employed due to the changing anatomy. This is instead addressed by transferring the missing/excess dose to the input of the subsequent fraction. In this work, the resulting plans were delivered on a Delta4 phantom as a final Quality Assurance test. Results: A conventional static SWO IMRT plan was generated for two prostate cases. The sequencer faithfully reproduced the input dose for all volumes of interest. For the two cases the mean relative dose difference of the PTV between the ideal input and sequenced dose was 0.1% and −0.02% respectively. Both plans were delivered on a Delta4 phantom and passed the clinical Quality Assurance procedures by achieving 100% pass rate at a 3%/3mm gamma analysis. Conclusion: We have developed a new sequencing methodology capable of online plan adaptation. In this work, we extended the pipeline to support Pareto-optimal input and clinically validated that it can accurately achieve these ideal distributions, while its flexible design enables inter- and intrafraction plan

  18. Origin of variation of shift field via annealing at 400°C in a perpendicular-anisotropy magnetic tunnel junction with [Co/Pt]-multilayers based synthetic ferrimagnetic reference layer

    Directory of Open Access Journals (Sweden)

    H. Honjo

    2017-05-01

    Full Text Available We investigated properties of perpendicular-anisotropy magnetic tunnel junctions (p-MTJs with [Co/Pt]-multilayer based synthetic ferrimagnetic reference (SyF layer at elevated annealing temperature Ta from 350°C to 400°C. Shift field HS defined as center field of minor resistance versus magnetic field curve of the MTJs increased with increase of Ta from 350°C to 400°C. The variation of HS is attributed to the variation of saturation magnetic moment in the SyF reference layer. Cross sectional energy dispersive X-ray spectroscopy analysis revealed that Fe element of CoFeB in the reference layer diffuses to Co/Pt multilayers in the SyF reference layer.

  19. Josephson shift register design and layout

    International Nuclear Information System (INIS)

    Przybysz, J.X.; Buttyan, J.; Blaugher, R.D.

    1989-01-01

    Integrated circuit chips were designed and fabricated, based on Josephson shift register circuit that simulated operation at 25 GHz using the SPICE program. The 6.25 mm square chip featured a twelve-gate, four-stage shift register fabricated with Nb/AlO/sub x//Nb Josephson junctions with a design value of 2000 A/cm/sup 2/ critical current density. SUPERCOMPACT, a general program for the design of monolithic microwave integrated circuits, was used to model the effects of layout geometry on the uniformity and phase coherence of logic gate bias currents. Gate bias resistors were treated as resistive transmission lines. A layout geometry for the superconductive transmission lines and thin film bias resistors was developed. The original SPICE-designed circuit was modified as a result of these calculations. Modeling indicated that bias current variations could be limited to 3% for all possible logic states of the shift register, and phase coherence of the gates could be maintained to within 2 degrees of 10 Ghz. The fundamental soundness of the circuit design was demonstrated by the proper operation of fabricated shift registers

  20. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  1. Effect of Body Mass Index on Intrafraction Prostate Displacement Monitored by Real-Time Electromagnetic Tracking

    International Nuclear Information System (INIS)

    Butler, Wayne M.; Morris, Mallory N.; Merrick, Gregory S.; Kurko, Brian S.; Murray, Brian C.

    2012-01-01

    Purpose: To evaluate, using real-time monitoring of implanted radiofrequency transponders, the intrafraction prostate displacement of patients as a function of body mass index (BMI). Methods and Materials: The motions of Beacon radiofrequency transponders (Calypso Medical Technologies, Seattle, WA) implanted in the prostate glands of 66 men were monitored throughout the course of intensity modulated radiation therapy. Data were acquired at 10 Hz from setup to the end of treatment, but only the 1.7 million data points with a “beam on” tag were used in the analysis. There were 21 obese patients, with BMI ≥30 and 45 nonobese patients in the study. Results: Mean displacements were least in the left-right lateral direction (0.56 ± 0.24 mm) and approximately twice that magnitude in the superior-inferior and anterior-posterior directions. The net vector displacement was larger still, 1.95 ± 0.47 mm. Stratified by BMI cohort, the mean displacements per patient in the 3 Cartesian axes as well as the net vector for patients with BMI ≥30 were slightly less (<0.2 mm) but not significantly different than the corresponding values for patients with lower BMIs. As a surrogate for the magnitude of oscillatory noise, the standard deviation for displacements in all measured planes showed no significant differences in the prostate positional variability between the lower and higher BMI groups. Histograms of prostate displacements showed a lower frequency of large displacements in obese patients, and there were no significant differences in short-term and long-term velocity distributions. Conclusions: After patients were positioned accurately using implanted radiofrequency transponders, the intrafractional displacements in the lateral, superior-inferior, and anterior-posterior directions as well as the net vector displacements were smaller, but not significantly so, for obese men than for those with lower BMI.

  2. Direct assessment of p-n junctions in single GaN nanowires by Kelvin probe force microscopy

    Science.gov (United States)

    Minj, Albert; Cros, Ana; Auzelle, Thomas; Pernot, Julien; Daudin, Bruno

    2016-09-01

    Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrinkage of the built-in potential for NWs with small diameter due to surface band bending, in qualitative agreement with the measurements. The photovoltage of the NW/substrate contact is studied by analyzing the response of NW segments with p- and n-type doping under illumination. Our results show that the shifts of the Fermi levels, and not the changes in surface band bending, are the most important effects under above band-gap illumination. The quantitative electrical information obtained here is important for the use of NW p-n junctions as photovoltaic or rectifying devices at the nanoscale, and is especially relevant since the technique does not require the formation of ohmic contacts to the NW junction.

  3. A case report of displaced anterior junction line mimicking pneumothorax and pneumomediastinum

    International Nuclear Information System (INIS)

    Jeon, Yang Hyun; Sung, Dong Wook; Hong, Hyun Pyo; Yoon, Yup; Lee, Eil Seong

    1998-01-01

    On PA chest radiography, the anterior junction line (AJL) is seen to project from the upper right to the lower left of the upper third of the body of the sternum and represents the visceral and parietal pleura of each lung and a small quantity of mediastinal fat. In a patient with volume loss or expansion of a hemithorax, the AJL shows considerable shift and on PA chest radiography may mimic pneumothroax, the AJL shows considerable shift and on PA chest radiography may mimic pneumothorax or pneumomediastimum. In such cases, widening and hyperlucency of the retrosternal space, seen on lateral view, which represents herniated lung with a shift of AJL, may be helpful for differentiation from pneumothorax or pneumomediastinum. (author). 8 refs., 2 figs

  4. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    Science.gov (United States)

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  5. Equivalent Josephson junctions

    International Nuclear Information System (INIS)

    Boyadzhiev, T.L.; ); Semerdzhieva, E.G.; Shukrinov, Yu.M.; Fiziko-Tekhnicheskij Inst., Dushanbe

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt- or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is possible to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flux [ru

  6. Spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor junctions

    International Nuclear Information System (INIS)

    Li Hong; Yang Wei; Yang Xinjian; Qin Minghui; Xu Yihong

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator (FI), the spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions are studied based on an extended Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the sub-energy gap conductance peaks and the spin polarization in the ferromagnetic insulator causes an imbalance of the peak heights. Different from the ferromagnet the spin-filtering effect of the FI cannot cause the reversion of the normalized conductance in NM/FI/NM/SC junctions

  7. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  8. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, NSW 2006 (Australia); Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  9. SU-E-J-258: Inter- and Intra-Fraction Setup Stability and Couch Change Tolerance for Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Teboh, Forbang R; Agee, M; Rowe, L; Creasy, T; Schultz, J; Bell, R; Wong, J; Armour, E

    2014-01-01

    Purpose: Immobilization devices combine rigid patient fixation as well as comfort and play a key role providing the stability required for accurate radiation delivery. In the setup step, couch re-positioning needed to align the patient is derived via registration of acquired versus reference image. For subsequent fractions, replicating the initial setup should yield identical alignment errors when compared to the reference. This is not always the case and further couch re-positioning can be needed. An important quality assurance measure is to set couch tolerances beyond which additional investigations are needed. The purpose of this work was to study the inter-fraction couch changes needed to re-align the patient and the intra-fraction stability of the alignment as a guide to establish the couch tolerances. Methods: Data from twelve patients treated on the Accuray CyberKnife (CK) system for fractionated intracranial radiotherapy and immobilized with Aquaplast RT, U-frame, F-Head-Support (Qfix, PA, USA) was used. Each fraction involved image acquisitions and registration with the reference to re-align the patient. The absolute couch position corresponding to the approved setup alignment was recorded per fraction. Intra-fraction set-up corrections were recorded throughout the treatment. Results: The average approved setup alignment was 0.03±0.28mm, 0.15±0.22mm, 0.06±0.31mm in the L/R, A/P, S/I directions respectively and 0.00±0.35degrees, 0.03±0.32degrees, 0.08±0.45degrees for roll, pitch and yaw respectively. The inter-fraction reproducibility of the couch position was 6.65mm, 10.55mm, and 4.77mm in the L/R, A/P and S/I directions respectively and 0.82degrees, 0.71degrees for roll and pitch respectively. Intra-fraction monitoring showed small average errors of 0.21±0.21mm, 0.00±0.08mm, 0.23±0.22mm in the L/R, A/P, S/I directions respectively and 0.03±0.12degrees, 0.04±0.25degrees, and 0.13±0.15degrees in the roll, pitch and yaw respectively. Conclusion

  10. SU-E-J-258: Inter- and Intra-Fraction Setup Stability and Couch Change Tolerance for Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Teboh, Forbang R; Agee, M; Rowe, L; Creasy, T; Schultz, J; Bell, R; Wong, J; Armour, E [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-01

    Purpose: Immobilization devices combine rigid patient fixation as well as comfort and play a key role providing the stability required for accurate radiation delivery. In the setup step, couch re-positioning needed to align the patient is derived via registration of acquired versus reference image. For subsequent fractions, replicating the initial setup should yield identical alignment errors when compared to the reference. This is not always the case and further couch re-positioning can be needed. An important quality assurance measure is to set couch tolerances beyond which additional investigations are needed. The purpose of this work was to study the inter-fraction couch changes needed to re-align the patient and the intra-fraction stability of the alignment as a guide to establish the couch tolerances. Methods: Data from twelve patients treated on the Accuray CyberKnife (CK) system for fractionated intracranial radiotherapy and immobilized with Aquaplast RT, U-frame, F-Head-Support (Qfix, PA, USA) was used. Each fraction involved image acquisitions and registration with the reference to re-align the patient. The absolute couch position corresponding to the approved setup alignment was recorded per fraction. Intra-fraction set-up corrections were recorded throughout the treatment. Results: The average approved setup alignment was 0.03±0.28mm, 0.15±0.22mm, 0.06±0.31mm in the L/R, A/P, S/I directions respectively and 0.00±0.35degrees, 0.03±0.32degrees, 0.08±0.45degrees for roll, pitch and yaw respectively. The inter-fraction reproducibility of the couch position was 6.65mm, 10.55mm, and 4.77mm in the L/R, A/P and S/I directions respectively and 0.82degrees, 0.71degrees for roll and pitch respectively. Intra-fraction monitoring showed small average errors of 0.21±0.21mm, 0.00±0.08mm, 0.23±0.22mm in the L/R, A/P, S/I directions respectively and 0.03±0.12degrees, 0.04±0.25degrees, and 0.13±0.15degrees in the roll, pitch and yaw respectively. Conclusion

  11. Structure and signaling at hydroid polyp-stolon junctions, revisited

    Directory of Open Access Journals (Sweden)

    Katherine L. Harmata

    2015-09-01

    Full Text Available The gastrovascular system of colonial hydroids is central to homeostasis, yet its functional biology remains poorly understood. A probe (2′,7′-dichlorodihydrofluorescein diacetate for reactive oxygen species (ROS identified fluorescent objects at polyp-stolon junctions that emit high levels of ROS. A nuclear probe (Hoechst 33342 does not co-localize with these objects, while a mitochondrial probe (rhodamine 123 does. We interpret these objects as mitochondrion-rich cells. Confocal microscopy showed that this fluorescence is situated in large columnar cells. Treatment with an uncoupler (2,4-dinitrophenol diminished the ROS levels of these cells relative to background fluorescence, as did removing the stolons connecting to a polyp-stolon junction. These observations support the hypothesis that the ROS emanate from mitochondrion-rich cells, which function by pulling open a valve at the base of the polyp. The open valve allows gastrovascular fluid from the polyp to enter the stolons and vice versa. The uncoupler shifts the mitochondrial redox state in the direction of oxidation, lowering ROS levels. By removing the stolons, the valve is not pulled open, metabolic demand is lowered, and the mitochondrion-rich cells slowly regress. Transmission electron microscopy identified mitochondrion-rich cells adjacent to a thick layer of mesoglea at polyp-stolon junctions. The myonemes of these myoepithelial cells extend from the thickened mesoglea to the rigid perisarc on the outside of the colony. The perisarc thus anchors the myoepithelial cells and allows them to pull against the mesoglea and open the lumen of the polyp-stolon junction, while relaxation of these cells closes the lumen.

  12. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.

    Science.gov (United States)

    Singh, Kunwar Pal

    2016-10-12

    The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.

  13. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes

    DEFF Research Database (Denmark)

    Bjerre, Troels; Crijns, Sjoerd; Rosenschöld, Per Munck af

    2013-01-01

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking...... of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path....... For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm...

  14. SU-G-BRA-16: Target Dose Comparison for Dynamic MLC Tracking and Mid- Ventilation Planning in Lung Radiotherapy Subject to Intrafractional Baseline Drifts

    Energy Technology Data Exchange (ETDEWEB)

    Menten, MJ; Fast, MF; Nill, S; Oelfke, U [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2016-06-15

    Purpose: Lung tumor motion during radiotherapy can be accounted for by expanded treatment margins, for example using a mid-ventilation planning approach, or by localizing the tumor in real-time and adapting the treatment beam with multileaf collimator (MLC) tracking. This study evaluates the effect of intrafractional changes in the average tumor position (baseline drifts) on these two treatment techniques. Methods: Lung stereotactic treatment plans (9-beam IMRT, 54Gy/3 fractions, mean treatment time: 9.63min) were generated for three patients: either for delivery with MLC tracking (isotropic GTV-to-PTV margin: 2.6mm) or planned with a mid-ventilation approach and delivered without online motion compensation (GTV-to-PTV margin: 4.4-6.3mm). Delivery to a breathing patient was simulated using DynaTrack, our in-house tracking and delivery software. Baseline drifts in cranial and posterior direction were simulated at a rate of 0.5, 1.0 or 1.5mm/min. For dose reconstruction, the corresponding 4DCT phase was selected for each time point of the delivery. Baseline drifts were accounted for by rigidly shifting the CT to ensure correct relative beam-to-target positioning. Afterwards, the doses delivered to each 4DCT phase were accumulated deformably on the mid-ventilation phase using research RayStation v4.6 and dose coverage of the GTV was evaluated. Results: When using the mid-ventilation planning approach, dose coverage of the tumor deteriorated substantially in the presence of baseline drifts. The reduction in D98% coverage of the GTV in a single fraction ranged from 0.4-1.2, 0.6-3.3 and 4.5-6.2Gy, respectively, for the different drift rates. With MLC tracking the GTV D98% coverage remained unchanged (+/− 0.1Gy) regardless of drift. Conclusion: Intrafractional baseline drifts reduce the tumor dose in treatments based on mid-ventilation planning. In rare, large target baseline drifts tumor dose coverage may drop below the prescription, potentially affecting clinical

  15. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Science.gov (United States)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  16. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  17. 0-π phase-controllable thermal Josephson junction

    Science.gov (United States)

    Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco

    2017-05-01

    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.

  18. Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions.

    Science.gov (United States)

    Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu

    2017-08-11

    The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.

  19. Effectiveness of a simple and real-time baseline shift monitoring system during stereotactic body radiation therapy of lung tumors.

    Science.gov (United States)

    Uchida, Yukihiro; Tachibana, Hidenobu; Kamei, Yoshiyuki; Kashihara, Kenichi

    2017-11-01

    This study aimed to clinically validate a simple real-time baseline shift monitoring system in a prospective study of consecutive patients undergoing stereotactic body radiation therapy (SBRT) of lung tumors, and to investigate baseline shift due to intrafraction motion of the patient's body during lung SBRT. Ten consecutive patients with peripheral lung tumors were treated by SBRT consisting of four fractions of 12 Gy each, with a total dose of 48 Gy. During treatment, each patient's geometric displacement in the anterior-posterior and left-right directions (the baseline shift) was measured using a real-time monitoring webcam system. Displacement between the start and end of treatment was measured using an X-ray fluoroscopic imaging system. The displacement measurements of the two systems were compared, and the measurements of baseline shift acquired by the monitoring system during treatment were analyzed for all patients. There was no significant deviation between the monitoring system and the X-ray imaging system, with the accuracy of measurement being within 1 mm. Measurements using the monitoring system showed that 7 min of treatment generated displacements of more than 1 mm in 50% of the patients. Baseline shift of a patient's body may be measured accurately in real time, using a monitoring system without X-ray exposure. The manubrium of the sternum is a good location for measuring the baseline shift of a patient's body at all times. The real-time monitoring system may be useful for measuring the baseline shift of a patient's body independently of a gating system. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  1. Dosimetric implications of inter- and intrafractional prostate positioning errors during tomotherapy : Comparison of gold marker-based registrations with native MVCT.

    Science.gov (United States)

    Wust, Peter; Joswig, Marc; Graf, Reinhold; Böhmer, Dirk; Beck, Marcus; Barelkowski, Thomasz; Budach, Volker; Ghadjar, Pirus

    2017-09-01

    For high-dose radiation therapy (RT) of prostate cancer, image-guided (IGRT) and intensity-modulated RT (IMRT) approaches are standard. Less is known regarding comparisons of different IGRT techniques and the resulting residual errors, as well as regarding their influences on dose distributions. A total of 58 patients who received tomotherapy-based RT up to 84 Gy for high-risk prostate cancer underwent IGRT based either on daily megavoltage CT (MVCT) alone (n = 43) or the additional use of gold markers (n = 15) under routine conditions. Planned Adaptive (Accuray Inc., Madison, WI, USA) software was used for elaborated offline analysis to quantify residual interfractional prostate positioning errors, along with systematic and random errors and the resulting safety margins after both IGRT approaches. Dosimetric parameters for clinical target volume (CTV) coverage and exposition of organs at risk (OAR) were also analyzed and compared. Interfractional as well as intrafractional displacements were determined. Particularly in the vertical direction, residual interfractional positioning errors were reduced using the gold marker-based approach, but dosimetric differences were moderate and the clinical relevance relatively small. Intrafractional prostate motion proved to be quite high, with displacements of 1-3 mm; however, these did not result in additional dosimetric impairments. Residual interfractional positioning errors were reduced using gold marker-based IGRT; however, this resulted in only slightly different final dose distributions. Therefore, daily MVCT-based IGRT without markers might be a valid alternative.

  2. Electronic thermometry in tunable tunnel junction

    Science.gov (United States)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  3. Dynamics of Josephson junction arrays

    International Nuclear Information System (INIS)

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  4. A Failure Detection Strategy for Intrafraction Prostate Motion Monitoring With On-Board Imagers for Fixed-Gantry IMRT

    International Nuclear Information System (INIS)

    Liu Wu; Luxton, Gary; Xing Lei

    2010-01-01

    Purpose: To develop methods to monitor prostate intrafraction motion during fixed-gantry intensity-modulated radiotherapy using MV treatment beam imaging together with minimal kV imaging for a failure detection strategy that ensures prompt detection when target displacement exceeds a preset threshold. Methods and Materials: Real-time two-dimensional (2D) marker position in the MV image plane was obtained by analyzing cine-MV images. The marker's in-line movement, and thus its time-varying three-dimensional (3D) position, was estimated by combining the 2D projection data with a previously established correlative relationship between the directional components of prostate motion. A confirmation request for more accurate localization using MV-kV triangulation was triggered when the estimated prostate displacement based on the cine-MV data was greater than 3 mm. An interventional action alert followed on positive MV-kV confirmation. To demonstrate the feasibility and accuracy of the proposed method, simulation studies of conventional-fraction intensity-modulated radiotherapy sessions were done using 536 Calypso-measured prostate trajectories from 17 radiotherapy patients. Results: A technique for intrafraction prostate motion management has been developed. The technique, using 'freely available' cine-MV images and minimum on-board kV imaging (on average 2.5 images/fraction), successfully limited 3D prostate movement to within a range of 3 mm relative to the MV beam for 99.4% of the total treatment time. On average, only approximately one intervention/fraction was needed to achieve this level of accuracy. Conclusion: Instead of seeking to accurately and continuously localize the prostate target as existing motion tracking systems do, the present technique effectively uses cine-MV data to provide a clinically valuable way to minimize kV usage, while maintaining high targeting accuracy.

  5. Tight junctions and human diseases.

    Science.gov (United States)

    Sawada, Norimasa; Murata, Masaki; Kikuchi, Keisuke; Osanai, Makoto; Tobioka, Hirotoshi; Kojima, Takashi; Chiba, Hideki

    2003-09-01

    Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.

  6. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  7. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin

    2007-01-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes....... In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  8. Dynamical photo-induced electronic properties of molecular junctions

    Science.gov (United States)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  9. Junction detection and pathway selection

    Science.gov (United States)

    Peck, Alex N.; Lim, Willie Y.; Breul, Harry T.

    1992-02-01

    The ability to detect junctions and make choices among the possible pathways is important for autonomous navigation. In our script-based navigation approach where a journey is specified as a script of high-level instructions, actions are frequently referenced to junctions, e.g., `turn left at the intersection.' In order for the robot to carry out these kind of instructions, it must be able (1) to detect an intersection (i.e., an intersection of pathways), (2) know that there are several possible pathways it can take, and (3) pick the pathway consistent with the high level instruction. In this paper we describe our implementation of the ability to detect junctions in an indoor environment, such as corners, T-junctions and intersections, using sonar. Our approach uses a combination of partial scan of the local environment and recognition of sonar signatures of certain features of the junctions. In the case where the environment is known, we use additional sensor information (such as compass bearings) to help recognize the specific junction. In general, once a junction is detected and its type known, the number of possible pathways can be deduced and the correct pathway selected. Then the appropriate behavior for negotiating the junction is activated.

  10. Localization Accuracy and Immobilization Effectiveness of a Stereotactic Body Frame for a Variety of Treatment Sites

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Ryan, E-mail: Ryan.Foster@utsouthwestern.edu [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas (United States); Meyer, Jeffrey; Iyengar, Puneeth; Pistenmaa, David; Timmerman, Robert; Choy, Hak [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas (United States); Solberg, Timothy [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-12-01

    Purpose: The purpose of this study was to analyze the pretreatment setup errors and intrafraction motion using cone beam computed tomography (CBCT) for stereotactic body radiation therapy patients immobilized and localized with a stereotactic body frame for a variety of treatment sites. Methods and Materials: Localization errors were recorded for patients receiving SBRT for 141 lung, 29 liver, 48 prostate, and 45 spine tumors representing 1005 total localization sessions. All patients were treated in a stereotactic body frame with a large custom-molded vacuum pillow. Patients were first localized to the frame using tattoos placed during simulation. Subsequently, the frame was aligned to the room lasers according to the stereotactic coordinates determined from the treatment plan. Every patient received a pretreatment and an intrafraction CBCT. Abdominal compression was used for all liver patients and for approximately 40% of the lung patients to reduce tumor motion due to respiration. Results: The mean ± standard deviation pretreatment setup errors from all localizations were −2.44 ± 3.85, 1.31 ± 5.84, and 0.11 ± 3.76 mm in the anteroposterior, superoinferior, and lateral directions, respectively. The mean pretreatment localization results among all treatment sites were not significantly different (F test, P<.05). For all treatment sites, the mean ± standard deviation intrafraction shifts were 0.33 ± 1.34, 0.15 ± 1.45, and −0.02 ± 1.17 mm in the anteroposterior, superoinferior, and lateral directions, respectively. The mean unidimensional intrafraction shifts were statistically different for several of the comparisons (P<.05) as assessed by the Tukey-Kramer test. Conclusions: Despite the varied tumor locations, the pretreatment mean localization errors for all sites were found to be consistent among the treatment sites and not significantly different, indicating that the body frame is a suitable immobilization and localization device for a variety of

  11. Localization Accuracy and Immobilization Effectiveness of a Stereotactic Body Frame for a Variety of Treatment Sites

    International Nuclear Information System (INIS)

    Foster, Ryan; Meyer, Jeffrey; Iyengar, Puneeth; Pistenmaa, David; Timmerman, Robert; Choy, Hak; Solberg, Timothy

    2013-01-01

    Purpose: The purpose of this study was to analyze the pretreatment setup errors and intrafraction motion using cone beam computed tomography (CBCT) for stereotactic body radiation therapy patients immobilized and localized with a stereotactic body frame for a variety of treatment sites. Methods and Materials: Localization errors were recorded for patients receiving SBRT for 141 lung, 29 liver, 48 prostate, and 45 spine tumors representing 1005 total localization sessions. All patients were treated in a stereotactic body frame with a large custom-molded vacuum pillow. Patients were first localized to the frame using tattoos placed during simulation. Subsequently, the frame was aligned to the room lasers according to the stereotactic coordinates determined from the treatment plan. Every patient received a pretreatment and an intrafraction CBCT. Abdominal compression was used for all liver patients and for approximately 40% of the lung patients to reduce tumor motion due to respiration. Results: The mean ± standard deviation pretreatment setup errors from all localizations were −2.44 ± 3.85, 1.31 ± 5.84, and 0.11 ± 3.76 mm in the anteroposterior, superoinferior, and lateral directions, respectively. The mean pretreatment localization results among all treatment sites were not significantly different (F test, P<.05). For all treatment sites, the mean ± standard deviation intrafraction shifts were 0.33 ± 1.34, 0.15 ± 1.45, and −0.02 ± 1.17 mm in the anteroposterior, superoinferior, and lateral directions, respectively. The mean unidimensional intrafraction shifts were statistically different for several of the comparisons (P<.05) as assessed by the Tukey-Kramer test. Conclusions: Despite the varied tumor locations, the pretreatment mean localization errors for all sites were found to be consistent among the treatment sites and not significantly different, indicating that the body frame is a suitable immobilization and localization device for a variety of

  12. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  13. Phase diagrams of particles with dissimilar patches: X-junctions and Y-junctions

    International Nuclear Information System (INIS)

    Tavares, J M; Teixeira, P I C

    2012-01-01

    We use Wertheim’s first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f B patches of type B). A patch of type α = {A,B} can bond to a patch of type β = {A,B} in a volume v αβ , thereby decreasing the internal energy by ε αβ . We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (ε AB AA /2) but entropically favoured (v AB ≫ v αα ), and BB bonds, or X-junctions, are energetically favoured (ε BB > 0). We show that, for low values of ε BB /ε AA , the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X- and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of ε BB /ε AA . The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures. (paper)

  14. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite

    Science.gov (United States)

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.

    2014-01-01

    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  15. Magnetic interference patterns in 0-pi superconductor/insulator/ferromagnet/superconductor Josephson junctions: Effects of asymmetry between 0 and pi regions

    OpenAIRE

    Kemmler, M.; Weides, M.; Goldobin, E.; Weiler, M.; Opel, M.; Goennenwein, S.T.B.; Vasenko, A.S.; Golubov, A.A.; Kohlstedt, H.; Koelle, D.; Kleiner, R.

    2010-01-01

    We present a detailed analysis of the dependence of the critical current I-c on an in-plane magnetic field B of 0, pi, and 0-pi superconductor-insulator-ferromagnet-superconductor Josephson junctions. I-c(B) of the 0 and the pi junction closely follows a Fraunhofer pattern, indicating a homogeneous critical current density j(c)(x). The maximum of I-c(B) is slightly shifted along the field axis, pointing to a small remanent in-plane magnetization of the F-layer along the field axis. I-c(B) of ...

  16. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    International Nuclear Information System (INIS)

    Boyadjiev, T.L.; Semerdjieva, E.G.; Shukrinov, Yu.M.

    2007-01-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one

  17. SU-G-JeP1-02: A New Intra-Fractional Prostate Motion Tracking Method in Volumetric Modulated Arc Therapy (VMAT) Via 2D/3D Registration

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Y; Rezaeian, N Hassan; Hannan, R; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Intra-fractional prostate motion leads uncertainty on delivered dose in radiotherapy and may cause significant dose deviation from the planned dose distribution. This is especially a concern in scenarios with a high dose per fraction and hence a long delivery time, e.g. stereotactic body radiotherapy. Knowledge about intra-fractional prostate motion is valuable to address this problem, e.g. by reconstructing delivered dose and performing adaptation. This study proposes a new approach to determine intra-fractional prostate motion in VMAT via 2D/3D maker registration. Methods: At our institution, each patient has three markers implanted in the prostate. During treatment delivery, kV triggered images were taken every three seconds to acquire 2D projection of 3D anatomy at the direction orthogonal to the therapeutic beam. Projected marker locations were identified on each projection image using template matching with geometric constraints. 3D prostate translation and rotation for each triggered image were obtained by solving an optimization problem, such that the calculated marker locations match the measured ones. Inter-image motion smoothness was employed as a constraint. We tested this method in simulation studies with five realistic prostate motion trajectories acquired via Calypso and in real phantom experiments. Results: For the simulation case, the motion range for these patients was 0.5∼6.0 mm. Root mean square (RMS) error of calculated motion along left-right (LR), anterior-posterior (AP) and cranial-caudal (CC) directions were 0.26mm, 0.36mm, and 0.016mm, respectively. The motion range in the phantom study along LR, AP, and CC directions were 15mm, 20mm and 10mm. The mean RMS errors along these directions were 1.99mm, 1.37mm and 0.22mm. Conclusion: A new prostate motion tracking algorithm based on kV triggered images has been developed and validated. Clinically acceptable accuracy has been achieved.

  18. Behavior of tight-junction, adherens-junction and cell polarity proteins during HNF-4α-induced epithelial polarization

    International Nuclear Information System (INIS)

    Satohisa, Seiro; Chiba, Hideki; Osanai, Makoto; Ohno, Shigeo; Kojima, Takashi; Saito, Tsuyoshi; Sawada, Norimasa

    2005-01-01

    We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4α [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4α triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4α-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4α led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4α provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization

  19. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  20. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect.

    Science.gov (United States)

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-10-03

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

  1. Structure and motion of junctions between coherent and incoherent twin boundaries in copper

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.A. [Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 (United States); Ghoniem, N.M., E-mail: ghoniem@ucla.edu [Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 (United States)

    2009-09-15

    The atomic mechanisms of twin boundary migration in copper under externally applied mechanical loads and during thermal annealing are investigated utilizing molecular dynamics computer simulations. The migration dynamics of the incoherent {Sigma}=3[110](112) twin boundary (ITB), pinned between two {Sigma}=3[110](111) twin boundaries, is determined. A three-dimensional structural model is described for the junction between intersecting coherent and incoherent twin boundaries, and migration velocities are calculated under thermal annealing conditions. It is shown that the coherent twin boundary (CTB)/ITB junction results in breaking the crystal symmetry by creation of either an edge dislocation or a mixed (edge/screw) at the intersection. These two types of defects can lead to pronounced differences in the observed migration (and hence annealing) rates of ICT/CTB junctions. The annealing rate resulting from the migration of ITBs with a mixed dislocation is found to be more than twice that of the edge dislocation. The mechanism of ITB motion is shown to be governed by successive kink-like motion of neighboring atomic columns, each of which is shifted by 1/4[1 1 0], followed by structural relaxation to accommodate boundary motion.

  2. Structure and motion of junctions between coherent and incoherent twin boundaries in copper

    International Nuclear Information System (INIS)

    Brown, J.A.; Ghoniem, N.M.

    2009-01-01

    The atomic mechanisms of twin boundary migration in copper under externally applied mechanical loads and during thermal annealing are investigated utilizing molecular dynamics computer simulations. The migration dynamics of the incoherent Σ=3[110](112) twin boundary (ITB), pinned between two Σ=3[110](111) twin boundaries, is determined. A three-dimensional structural model is described for the junction between intersecting coherent and incoherent twin boundaries, and migration velocities are calculated under thermal annealing conditions. It is shown that the coherent twin boundary (CTB)/ITB junction results in breaking the crystal symmetry by creation of either an edge dislocation or a mixed (edge/screw) at the intersection. These two types of defects can lead to pronounced differences in the observed migration (and hence annealing) rates of ICT/CTB junctions. The annealing rate resulting from the migration of ITBs with a mixed dislocation is found to be more than twice that of the edge dislocation. The mechanism of ITB motion is shown to be governed by successive kink-like motion of neighboring atomic columns, each of which is shifted by 1/4[1 1 0], followed by structural relaxation to accommodate boundary motion.

  3. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  4. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes.

    Science.gov (United States)

    Bjerre, Troels; Crijns, Sjoerd; af Rosenschöld, Per Munck; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-21

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  5. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  6. Oligomeric structure and functional characterization of Caenorhabditis elegans Innexin-6 gap junction protein.

    Science.gov (United States)

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-04-12

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels.

  7. First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate

    International Nuclear Information System (INIS)

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schöller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-01-01

    Purpose: We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Method and Materials: Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. Results: In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume–planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3° (mean of means), standard deviation of means ±4.9°, maximum at 30.7°. Three-dimensional vector translations relative to skin markings were 9.3 ± 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 ± 1.5 min (maximum, 15.1 min) between kV imaging and last beam’s electronic portal images showed further L-R rotations of 2.5° ± 2.3° (maximum, 26.9°), and three-dimensional vector translations of 3.0 ±3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. Conclusion: We demonstrated the clinical feasibility of an online adaptive image-guided, intensity-modulated prostate protocol on a standard

  8. First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate.

    Science.gov (United States)

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schöller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-08-01

    We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume-planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3° (mean of means), standard deviation of means ±4.9°, maximum at 30.7°. Three-dimensional vector translations relative to skin markings were 9.3 ± 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 ± 1.5 min (maximum, 15.1 min) between kV imaging and last beam's electronic portal images showed further L-R rotations of 2.5° ± 2.3° (maximum, 26.9°), and three-dimensional vector translations of 3.0 ±3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. We demonstrated the clinical feasibility of an online adaptive image-guided, intensity-modulated prostate protocol on a standard linear accelerator to correct 6 degrees of freedom of

  9. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  10. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  11. Pentacene-based photodiode with Schottky junction

    International Nuclear Information System (INIS)

    Lee, Jiyoul; Hwang, D.K.; Park, C.H.; Kim, S.S.; Im, Seongil

    2004-01-01

    We have fabricated a metal/organic semiconductor Schottky photodiode based on Al/pentacene junction. Since the energy band gap of thin solid pentacene was determined to be 1.82 eV, as characterized by direct absorption spectroscopy, we measured spectral photoresponses on our Schottky photodiode in the monochromatic light illumination range of 325-650 nm applying a reverse bias of -2 V. The main features of photo-response spectra were found to shift from those of direct absorption spectra toward higher photon energies. It is because the direct absorption spectra mainly show exciton level peaks rather than the true highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps while the photo-response spectra clearly represents the true HOMO-LUMO gap. Our photo-response spectra reveal 1.97 eV as the HOMO-LUMO gap

  12. Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Valli, Lorella [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy); Aluwini, Shafak [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Lanconelli, Nico [Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy); Heijmen, Ben; Hoogeman, Mischa [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands)

    2014-04-01

    Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3

  13. Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

    International Nuclear Information System (INIS)

    Water, Steven van de; Valli, Lorella; Aluwini, Shafak; Lanconelli, Nico; Heijmen, Ben; Hoogeman, Mischa

    2014-01-01

    Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V 100% ) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3-mm

  14. A cinematic magnetic resonance imaging study of milk of magnesia laxative and an antiflatulent diet to reduce intrafraction prostate motion.

    Science.gov (United States)

    Nichol, Alan M; Warde, Padraig R; Lockwood, Gina A; Kirilova, Anna K; Bayley, Andrew; Bristow, Robert; Crook, Juanita; Gospodarowicz, Mary; McLean, Michael; Milosevic, Michael; Rosewall, Tara; Jaffray, David A; Catton, Charles N

    2010-07-15

    To determine the reduction of prostate motion during a typical radiotherapy (RT) fraction from a bowel regimen comprising an antiflatulent diet and daily milk of magnesia. Forty-two patients with T1c-T2c prostate cancer voided the bladder and rectum before three cinematic magnetic resonance imaging scans obtained every 9 s for 9 min in a vacuum immobilization device. The MRIs were at baseline without bowel regimen (MRI-BL), before CT planning with bowel regimen (MRI-CT), and before a randomly assigned RT fraction (1-42) with bowel regimen (MRI-RT). A single observer tracked displacement of the posterior midpoint (PM) of the prostate. The primary endpoints were comparisons of the proportion of time that the PM was displaced >3 mm (PTPM3) from its initial position, and the secondary endpoints were comparisons of the reduction of initial rectal area, with and without the bowel regimen. The mean rectal area was: 13.5 cm(2) at MRI-BL, 12.7 cm(2) at MRI-CT, and 12.3 cm(2) at MRI-RT (MRI-BL vs. MRI-CT, p = 0.11; MRI-BL vs. MRI-CT, p = 0.07). Moving rectal gas alone (56%) and moving gas and stool (18%) caused 74% of intrafraction prostate motion. The PTPM3 was 11.3% at MRI-BL, 4.8% at MRI-CT, and 12.0% at MRI-RT (MRI-BL vs. MRI-CT, p = 0.12; MRI-BL vs. MRI-RT, p = 0.89). For subjects voiding their rectum before imaging, an antiflatulent diet and milk of magnesia laxative did not significantly reduce initial rectal area or intrafraction prostate motion. Copyright 2010 Elsevier Inc. All rights reserved.

  15. A Cinematic Magnetic Resonance Imaging Study of Milk of Magnesia Laxative and an Antiflatulent Diet to Reduce Intrafraction Prostate Motion

    International Nuclear Information System (INIS)

    Nichol, Alan M.; Warde, Padraig R.; Lockwood, Gina A.

    2010-01-01

    Purpose: To determine the reduction of prostate motion during a typical radiotherapy (RT) fraction from a bowel regimen comprising an antiflatulent diet and daily milk of magnesia. Methods and Materials: Forty-two patients with T1c-T2c prostate cancer voided the bladder and rectum before three cinematic magnetic resonance imaging scans obtained every 9 s for 9 min in a vacuum immobilization device. The MRIs were at baseline without bowel regimen (MRI-BL), before CT planning with bowel regimen (MRI-CT), and before a randomly assigned RT fraction (1-42) with bowel regimen (MRI-RT). A single observer tracked displacement of the posterior midpoint (PM) of the prostate. The primary endpoints were comparisons of the proportion of time that the PM was displaced >3 mm (PTPM3) from its initial position, and the secondary endpoints were comparisons of the reduction of initial rectal area, with and without the bowel regimen. Results: The mean rectal area was: 13.5 cm 2 at MRI-BL, 12.7 cm 2 at MRI-CT, and 12.3 cm 2 at MRI-RT (MRI-BL vs. MRI-CT, p = 0.11; MRI-BL vs. MRI-CT, p = 0.07). Moving rectal gas alone (56%) and moving gas and stool (18%) caused 74% of intrafraction prostate motion. The PTPM3 was 11.3% at MRI-BL, 4.8% at MRI-CT, and 12.0% at MRI-RT (MRI-BL vs. MRI-CT, p = 0.12; MRI-BL vs. MRI-RT, p = 0.89). Conclusion: For subjects voiding their rectum before imaging, an antiflatulent diet and milk of magnesia laxative did not significantly reduce initial rectal area or intrafraction prostate motion.

  16. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  17. Theoretical evaluation of two dimensional electron gas characteristics of quaternary AlxInyGa1-x-yN/GaN hetero-junctions

    Science.gov (United States)

    Rahbardar Mojaver, Hassan; Manouchehri, Farzin; Valizadeh, Pouya

    2016-04-01

    The two dimensional electron gas (2DEG) characteristics of gated metal-face wurtzite AlInGaN/GaN hetero-junctions including positions of subband energy levels, fermi energy level, and the 2DEG concentration as functions of physical and compositional properties of the hetero-junction (i.e., barrier thickness and metal mole-fractions) are theoretically evaluated using the variational method. The calculated values of the 2DEG concentration are in good agreement with the sparsely available experimental data reported in the literature. According to our simulation results, a considerable shift in the positive direction of threshold voltage of AlInGaN/GaN hetero-junction field-effect transistors can be achieved by engineering both the spontaneous and the piezoelectric polarizations using a quaternary AlInGaN barrier-layer of appropriate mole-fractions.

  18. Stability of large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, Hylke B.; Kronemeijer, Auke J.; Harkema, Jan; van Hal, Paul A.; Smits, Edsger C. P.; de Leeuw, Dago M.; Blom, Paul W. M.

    The stability of molecular junctions is crucial for any application of molecular electronics. Degradation of molecular junctions when exposed to ambient conditions is regularly observed. In this report the stability of large-area molecular junctions under ambient conditions for more than two years

  19. Superconducting flux qubits with π-junctions

    International Nuclear Information System (INIS)

    Shcherbakova, Anastasia

    2014-01-01

    In this thesis, we present a fabrication technology of Al/AlO x /Al Josephson junctions on Nb pads. The described technology gives the possibility of combining a variety of Nb-based superconducting circuits, like pi-junction phase-shifters with sub-micron Al/AlO x /Al junctions. Using this approach, we fabricated hybrid Nb/Al flux qubits with and without the SFS-junctions and studied dispersive magnetic field response of these qubits as well as their spectroscopy characteristics.

  20. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions

    International Nuclear Information System (INIS)

    Xiao-Lan, Kong; Yong-Jian, Xiong

    2010-01-01

    We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction

  1. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  2. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  3. Oligomeric Structure and Functional Characterization of Caenorhabditis elegans Innexin-6 Gap Junction Protein*

    Science.gov (United States)

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-01-01

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels. PMID:23460640

  4. A study of image-guided radiotherapy of bladder cancer based on lipiodol injection in the bladder wall

    International Nuclear Information System (INIS)

    Soendergaard, Jimmi; Muren, Ludvig Paul; Elstroem, Ulrik Vindelev; Grau, Cai; Hoeyer, Morten; Oerding Olsen, Kasper

    2010-01-01

    Purpose. We have tested a procedure of focal injection of the contrast medium Lipiodol as a fiducial marker for image-guided boost of the tumor in bladder cancer radiotherapy (RT). In this study, we have evaluated the feasibility and the safety of the method as well as the inter- and intra-fraction shift of the bladder tumor. Materials and methods. Five patients with muscle invasive urinary bladder cancer were included in the study. Lipiodol was injected during flexible cystoscopy into the submucosa of the bladder wall at the periphery of the tumor or the post resection tumor-bed. Cone-beam CT (CBCT) scans were acquired daily throughout the course of RT. Results. Lipiodol demarcation of the bladder tumor was feasible and safe with only a minimum of side effects related to the procedure. The Lipiodol spots were visible on CT and CBCT scans for the duration of the RT course. More than half of all the treatment fractions required a geometric shift of 5 mm or more to match on the Lipiodol spots. The mean intra-fraction shift (3D) of the tumor was 3 mm, largest in the anterior-posterior and cranial-caudal directions. Conclusion. This study demonstrates that Lipiodol can be injected into the bladder mucosa and subsequently visualized on CT and CBCT as a fiducial marker. The relatively large inter-fraction shifts in the positions of Lipiodol spots compared to the intra-fraction movement indicates that image-guided RT based on radio-opaque markers is important for RT of the bladder cancer tumor.

  5. Electron optics with ballistic graphene junctions

    Science.gov (United States)

    Chen, Shaowen

    Electrons transmitted across a ballistic semiconductor junction undergo refraction, analogous to light rays across an optical boundary. A pn junction theoretically provides the equivalent of a negative index medium, enabling novel electron optics such as negative refraction and perfect (Veselago) lensing. In graphene, the linear dispersion and zero-gap bandstructure admit highly transparent pn junctions by simple electrostatic gating, which cannot be achieved in conventional semiconductors. Robust demonstration of these effects, however, has not been forthcoming. Here we employ transverse magnetic focusing to probe propagation across an electrostatically defined graphene junction. We find perfect agreement with the predicted Snell's law for electrons, including observation of both positive and negative refraction. Resonant transmission across the pn junction provides a direct measurement of the angle dependent transmission coefficient, and we demonstrate good agreement with theory. Comparing experimental data with simulation reveals the crucial role played by the effective junction width, providing guidance for future device design. Efforts toward sharper pn junction and possibility of zero field Veselago lensing will also be discussed. This work is supported by the Semiconductor Research Corporations NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX).

  6. Junction-type photonic crystal waveguides for notch- and pass-band filtering

    KAUST Repository

    Shahid, Naeem

    2011-01-01

    Evolution of the mode gap and the associated transmission mini stop-band (MSB) as a function of photonic crystal (PhC) waveguide width is theoretically and experimentally investigated. The change of line-defect width is identified to be the most appropriate way since it offers a wide MSB wavelength tuning range. A high transmission narrow-band filter is experimentally demonstrated in a junction-type waveguide composed of two PhC waveguides with slightly different widths. The full width at half maximum is 5.6 nm; the peak transmission is attenuated by only ∼5 dB and is ∼20 dB above the MSBs. Additionally, temperature tuning of the filter were also performed. The results show red-shift of the transmission peak and the MSB edges with a gradient of dλ/dT = 0.1 nm/°C. It is proposed that the transmission MSBs in such junction-type cascaded PhC waveguides can be used to obtain different types of filters. © 2011 Optical Society of America.

  7. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  8. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current depe...

  9. Geodynamical simulation of the RRF triple junction

    Science.gov (United States)

    Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.

    2017-12-01

    Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.

  10. Loss models for long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1984-01-01

    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  11. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  12. Theoretical and experimental investigations on synchronization in many-junction arrays of HTSC Josephson junctions. Final report

    International Nuclear Information System (INIS)

    Seidel, P.; Heinz, E.; Pfuch, A.; Machalett, F.; Krech, W.; Basler, M.

    1996-06-01

    Different many-junction arrays of Josephson junctions were studied theoretically to analyse the mechanisms of synchronization, the influence of internal and external parameters and the maximal allowed spread of parameters for the single junctions. Concepts to realize arrays using standard high-T c superconductor technology were created, e.g. the new arrangement of multijunction superconducting loops (MSL). First experimental results show the relevance of this concept. Intrinsic one-dimensional arrays in thin film technology were prepared as mesas out of Bi or Tl 2212 films. to characterize HTSC Josephson junctions methods based on the analysis of microwave-induced steps were developed. (orig.) [de

  13. Single P-N junction tandem photovoltaic device

    Science.gov (United States)

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  14. Determination of acquisition frequency for intrafractional motion of pancreas in CyberKnife radiotherapy.

    Science.gov (United States)

    Zhang, Huailing; Zhao, Guoru; Djajaputra, David; Xie, Yaoqin

    2014-01-01

    To report the characteristics of pancreas motion as tracked using implanted fiducials during radiotherapy treatments with CyberKnife. Twenty-nine patients with pancreas cancer treated using CyberKnife system were retrospectively selected for this study. During the treatment, the deviation is examined every 3-4 nodes (~45 s interval) and compensated by the robot. The pancreas displacement calculated from X-ray images acquired within the time interval between two consecutive couch motions constitute a data set. A total of 498 data sets and 4302 time stamps of X-ray images were analyzed in this study. The average duration for each data set is 634 s. The location of the pancreas becomes more dispersed as the time elapses. The acquisition frequency depends on the prespecified movement distance threshold of pancreas. If the threshold between two consecutive images is 1 mm, the acquisition frequency should be less than 30 s, while if the threshold is 2 mm, the acquisition frequency can be around 1 min. The pancreas target moves significantly and unpredictably during treatment. Effective means of compensating the intrafractional movement is critical to ensure adequate dose coverage of the tumor target.

  15. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    Science.gov (United States)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as

  16. The anatomical locus of T-junction processing.

    Science.gov (United States)

    Schirillo, James A

    2009-07-01

    Inhomogeneous surrounds can produce either asymmetrical or symmetrical increment/decrement induction by orienting T-junctions to selectively group a test patch with surrounding regions [Melfi, T., & Schirillo, J. (2000). T-junctions in inhomogeneous surrounds. Vision Research, 40, 3735-3741]. The current experiments aimed to determine where T-junctions are processed by presenting each eye with a different image so that T-junctions exist only in the fused percept. Only minor differences were found between retinal and cortical versus cortical-only conditions, indicating that T-junctions are processed cortically.

  17. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.

    1996-01-01

    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  18. Effect of junction configurations on microdroplet formation in a T-junction microchannel

    Science.gov (United States)

    Lih, F. L.; Miao, J. M.

    2015-03-01

    This study investigates the dynamic formation process of water microdroplets in a silicon oil flow in a T-junction microchannel. Segmented water microdroplets are formed at the junction when the water flow is perpendicularly injected into the silicon oil flow in a straight rectangular microchannel. This study further presents the effects of the water flow inlet geometry on hydrodynamic characteristics of water microdroplet formation. A numerical multiphase volume of fluid (VOF) scheme is coupled to solve the unsteady three-dimensional laminar Navier-Stokes equations to depict the droplet formation phenomena at the junction. Predicted results on the length and generated frequency of the microdroplets agree well with experimental results in a T-junction microchannel with straight and flat inlets (the base model) for both fluid flows. Empirical correlations are reported between the volumetric flow ratio and the dimensionless microdroplet length or dimensionless frequency of droplet generation at a fixed capillary number of 4.7 · 10-3. The results of this study indicate a reduction in the droplet length of approximately 21% if the straight inlet for the water flow is modified to a downstream sudden contraction inlet for the water flow.

  19. Poster - Thur Eve - 57: Craniospinal irradiation with jagged-junction IMRT approach without beam edge matching for field junctions.

    Science.gov (United States)

    Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A

    2012-07-01

    Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.

  20. WE-G-BRD-04: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An Integrated Model-Based Intrafractional Organ Motion Tracking Approach with Dynamic MRI in Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Dolly, S; Anastasio, M; Li, H; Wooten, H; Gay, H; Mutic, S; Thorstad, W; Li, H [Washington University School of Medicine, Saint Louis, MO (United States); Victoria, J; Dempsey, J [ViewRay incorporated, Oakwood Village, Ohio (United States); Ruan, S [University of Rouen, QuantIF - EA 4108 LITIS, Rouen (France); Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) was first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first

  1. WE-G-BRD-04: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An Integrated Model-Based Intrafractional Organ Motion Tracking Approach with Dynamic MRI in Head and Neck Radiotherapy

    International Nuclear Information System (INIS)

    Chen, H; Dolly, S; Anastasio, M; Li, H; Wooten, H; Gay, H; Mutic, S; Thorstad, W; Li, H; Victoria, J; Dempsey, J; Ruan, S; Low, D

    2015-01-01

    Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) was first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first

  2. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  3. Method of manufacturing Josephson junction integrated circuits

    International Nuclear Information System (INIS)

    Jillie, D.W. Jr.; Smith, L.N.

    1985-01-01

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

  4. delta-biased Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelet, V.

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...... the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements...

  5. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  6. Simulating intrafraction prostate motion with a random walk model.

    Science.gov (United States)

    Pommer, Tobias; Oh, Jung Hun; Munck Af Rosenschöld, Per; Deasy, Joseph O

    2017-01-01

    Prostate motion during radiation therapy (ie, intrafraction motion) can cause unwanted loss of radiation dose to the prostate and increased dose to the surrounding organs at risk. A compact but general statistical description of this motion could be useful for simulation of radiation therapy delivery or margin calculations. We investigated whether prostate motion could be modeled with a random walk model. Prostate motion recorded during 548 radiation therapy fractions in 17 patients was analyzed and used for input in a random walk prostate motion model. The recorded motion was categorized on the basis of whether any transient excursions (ie, rapid prostate motion in the anterior and superior direction followed by a return) occurred in the trace and transient motion. This was separately modeled as a large step in the anterior/superior direction followed by a returning large step. Random walk simulations were conducted with and without added artificial transient motion using either motion data from all observed traces or only traces without transient excursions as model input, respectively. A general estimate of motion was derived with reasonable agreement between simulated and observed traces, especially during the first 5 minutes of the excursion-free simulations. Simulated and observed diffusion coefficients agreed within 0.03, 0.2 and 0.3 mm 2 /min in the left/right, superior/inferior, and anterior/posterior directions, respectively. A rapid increase in variance at the start of observed traces was difficult to reproduce and seemed to represent the patient's need to adjust before treatment. This could be estimated somewhat using artificial transient motion. Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during

  7. NbN tunnel junctions

    International Nuclear Information System (INIS)

    Villegier, J.C.; Vieux-Rochaz, L.; Goniche, M.; Renard, P.; Vabre, M.

    1984-09-01

    All-niobium nitride Josephon junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled dry reactive ion etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbN counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 250 0 C

  8. Hysteresis development in superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Refai, T.F.; Shehata, L.N.

    1988-09-01

    The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs

  9. Fabrication of Josephson Junction without shadow evaporation

    Science.gov (United States)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  10. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  11. A method for selection of beam angles robust to intra-fractional motion in proton therapy of lung cancer

    DEFF Research Database (Denmark)

    Casares-Magaz, Oscar; Toftegaard, Jakob; Muren, Ludvig P.

    2014-01-01

    that are robust to patient-specific patterns of intra-fractional motion. Material and methods. Using four-dimensional computed tomography (4DCT) images of three lung cancer patients we evaluated the impact of the WEPL changes on target dose coverage for a series of coplanar single-beam plans. The plans were...... reduction was associated with the mean difference between the WEPL and the phase-averaged WEPL computed for all beam rays across all possible gantry-couch angle combinations. Results. The gantry-couch angle maps showed areas of both high and low WEPL variation, with overall quite similar patterns yet...... presented a 4DCT-based method to quantify WEPL changes during the breathing cycle. The method identified proton field gantry-couch angle combinations that were either sensitive or robust to WEPL changes. WEPL variations along the beam path were associated with target under-dosage....

  12. Entropy Flow Through Near-Critical Quantum Junctions

    Science.gov (United States)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  13. Ballistic Josephson junctions based on CVD graphene

    Science.gov (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  14. Positron emission tomography for the dose monitoring of intra-fractionally moving targets in ion beam therapy

    International Nuclear Information System (INIS)

    Stuetzer, Kristin

    2014-01-01

    Ion beam therapy (IBT) is a promising treatment option in radiotherapy. The characteristic physical and biological properties of light ion beams allow for the delivery of highly tumor conformal dose distributions. Related to the sparing of surrounding healthy tissue and nearby organs at risk, it is feasible to escalate the dose in the tumor volume to reach higher tumor control and survival rates. Remarkable clinical outcome was achieved with IBT for radio-resistant, deep-seated, static and well fixated tumor entities. Presumably, more patients could benefit from the advantages of IBT if it would be available for more frequent tumor sites. Those located in the thorax and upper abdominal region are commonly subjected to intra-fractional, respiration related motion. Different motion-compensated dose delivery techniques have been developed for active field shaping with scanned pencil beams and are at least available under experimental conditions at the GSI Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt, Germany. Since minor unexpected anatomical changes e.g. related to patient mispositioning, tumour shrinkage or tissue swelling could already lead to remarkable deviations between planned and delivered dose distribution, a valuable dose monitoring system is desired for IBT. So far, positron emission tomography (PET) is the only in vivo, in situ and non-invasive qualitative dose monitoring method applied under clinical conditions. Conclusions about the delivered dose distribution can be drawn indirectly from a comparison between two β + -activity distributions: the measured one and an expected one generated by a Monte-Carlo simulation. Dedicated phantoms mainly made up of polymethyl methacrylate (PMMA) and a motion table for regular one-dimensional (1D) motion patterns have been designed and manufactured for the experiments. Furthermore, the general applicability of the 4D MLEM algorithm for more complex motion patterns has been demonstrated by the

  15. Determination of Acquisition Frequency for Intrafractional Motion of Pancreas in CyberKnife Radiotherapy

    Directory of Open Access Journals (Sweden)

    Huailing Zhang

    2014-01-01

    Full Text Available Purpose. To report the characteristics of pancreas motion as tracked using implanted fiducials during radiotherapy treatments with CyberKnife. Methods and Materials. Twenty-nine patients with pancreas cancer treated using CyberKnife system were retrospectively selected for this study. During the treatment, the deviation is examined every 3-4 nodes (~45 s interval and compensated by the robot. The pancreas displacement calculated from X-ray images acquired within the time interval between two consecutive couch motions constitute a data set. Results. A total of 498 data sets and 4302 time stamps of X-ray images were analyzed in this study. The average duration for each data set is 634 s. The location of the pancreas becomes more dispersed as the time elapses. The acquisition frequency depends on the prespecified movement distance threshold of pancreas. If the threshold between two consecutive images is 1 mm, the acquisition frequency should be less than 30 s, while if the threshold is 2 mm, the acquisition frequency can be around 1 min. Conclusions. The pancreas target moves significantly and unpredictably during treatment. Effective means of compensating the intrafractional movement is critical to ensure adequate dose coverage of the tumor target.

  16. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  17. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  18. Primary Tunnel Junction Thermometry

    International Nuclear Information System (INIS)

    Pekola, Jukka P.; Holmqvist, Tommy; Meschke, Matthias

    2008-01-01

    We describe the concept and experimental demonstration of primary thermometry based on a four-probe measurement of a single tunnel junction embedded within four arrays of junctions. We show that in this configuration random sample specific and environment-related errors can be avoided. This method relates temperature directly to Boltzmann constant, which will form the basis of the definition of temperature and realization of official temperature scales in the future

  19. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.

  20. The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form.

    Science.gov (United States)

    Thomson, J B; Lilley, D M

    1999-01-01

    In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme. PMID:10024170

  1. Signature of a Crossed Andreev Reflection effect (CARE) in YBaCuO/SrRuO3/YBaCuO junctions

    International Nuclear Information System (INIS)

    Aronov, P.; Gad Koren, G.

    2005-01-01

    Full Text:Magnetic properties of SFS and SF ramp-type junctions with Y Ba 2 Cu 3 O 7 -YBaCuO-δ electrodes (S), and the itinerant ferromagnet SrRuO 3 (SrO - F), were investigated. We looked for a crossed Andreev reflection effect (CARE) in which an electron from one magnetic domain in F is Andreev reflected as a hole into an adjacent, oppositely polarized, domain while a pair is transmitted into S. CARE is possible in SrO since the width of its domain walls is of the order of the YBaCuO coherence length (2-3nm). Our junctions behave as typical magnetic tunneling junctions, as the conductance spectra were always asymmetric, and a few showed bound state peaks at finite bias which shifted with field according to the classical Tedrow and Meservey theory. In many of our SFS junctions with a barrier thickness of 10-20nm, a prominent zero bias conductance peak (ZBCP) has been observed. This peak was found to decrease linearly with magnetic field, as expected for Andreev and CARE scattering. In contrast, in SF junctions, the observed ZBCP was found to decrease versus field almost exponentially, in agreement with the Anderson-Appelbaum theory of scattering by magnetic states in F. Thus, transport in our SFS and SF junctions depends strongly on the size of the F layer. We also found that in both cases, the ZBCP height at zero field decreased with increasing magnetic order of the domains in F, in agreement with the CARE mechanism

  2. Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices

    Science.gov (United States)

    Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin

    2017-04-01

    Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.

  3. Harmonic synchronization in resistively coupled Josephson junctions

    International Nuclear Information System (INIS)

    Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.

    1994-01-01

    The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed

  4. Assessment of a daily online implanted fiducial marker-guided prostate radiotherapy process.

    Science.gov (United States)

    Greer, P B; Dahl, K; Ebert, M A; White, M; Wratten, C; Ostwald, P; Pichler, P; Denham, J W

    2008-10-01

    The aims of this study were to investigate whether intrafraction prostate motion can affect the accuracy of online prostate positioning using implanted fiducial markers and to determine the effect of prostate rotations on the accuracy of the software-predicted set-up correction shifts. Eleven patients were treated with implanted prostate fiducial markers and online set-up corrections. Orthogonal electronic portal images were acquired to determine couch shifts before treatment. Verification images were also acquired during treatment to assess whether intrafraction motion had occurred. A limitation of the online image registration software is that it does not allow for in-plane prostate rotations (evident on lateral portal images) when aligning marker positions. The accuracy of couch shifts was assessed by repeating the registration measurements with separate software that incorporates full in-plane prostate rotations. Additional treatment time required for online positioning was also measured. For the patient group, the overall postalignment systematic prostate errors were less than 1.5 mm (1 standard deviation) in all directions (range 0.2-3.9 mm). The random prostate errors ranged from 0.8 to 3.3 mm (1 standard deviation). One patient exhibited intrafraction prostate motion, resulting in a postalignment prostate set-up error of more than 10 mm for one fraction. In 14 of 35 fractions, the postalignment prostate set-up error was greater than 5 mm in the anterior-posterior direction for this patient. Maximum prostate rotations measured from the lateral images varied from 2 degrees to 20 degrees for the patients. The differences between set-up shifts determined by the online software without in-plane rotations to align markers, and with rotations applied, was less than 1 mm (root mean square), with a maximum difference of 4.1 mm. Intrafraction prostate motion was found to reduce the effectiveness of the online set-up for one of the patients. A larger study is required

  5. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  6. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  7. Molecular Diffusion through Cyanobacterial Septal Junctions.

    Science.gov (United States)

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions

  8. Magnetic-field-controlled negative differential conductance in scanning tunneling spectroscopy of graphene npn junction resonators

    Science.gov (United States)

    Li, Si-Yu; Liu, Haiwen; Qiao, Jia-Bin; Jiang, Hua; He, Lin

    2018-03-01

    Negative differential conductance (NDC), characterized by the decreasing current with increasing voltage, has attracted continuous attention for its various novel applications. The NDC typically exists in a certain range of bias voltages for a selected system and controlling the regions of NDC in curves of current versus voltage (I -V ) is experimentally challenging. Here, we demonstrate a magnetic-field-controlled NDC in scanning tunneling spectroscopy of graphene npn junction resonators. The magnetic field not only can switch on and off the NDC, but also can continuously tune the regions of the NDC in the I -V curves. In the graphene npn junction resonators, magnetic fields generate sharp and pronounced Landau-level peaks with the help of the Klein tunneling of massless Dirac fermions. A tip of scanning tunneling microscope induces a relatively shift of the Landau levels in graphene beneath the tip. Tunneling between the misaligned Landau levels results in the magnetic-field-controlled NDC.

  9. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  10. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  11. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  12. SU-D-18A-02: Towards Real-Time On-Board Volumetric Image Reconstruction for Intrafraction Target Verification in Radiation Therapy

    International Nuclear Information System (INIS)

    Xu, X; Iliopoulos, A; Zhang, Y; Pitsianis, N; Sun, X; Yin, F; Ren, L

    2014-01-01

    Purpose: To expedite on-board volumetric image reconstruction from limited-angle kV—MV projections for intrafraction verification. Methods: A limited-angle intrafraction verification (LIVE) system has recently been developed for real-time volumetric verification of moving targets, using limited-angle kV—MV projections. Currently, it is challenged by the intensive computational load of the prior-knowledge-based reconstruction method. To accelerate LIVE, we restructure the software pipeline to make it adaptable to model and algorithm parameter changes, while enabling efficient utilization of rapidly advancing, modern computer architectures. In particular, an innovative two-level parallelization scheme has been designed: At the macroscopic level, data and operations are adaptively partitioned, taking into account algorithmic parameters and the processing capacity or constraints of underlying hardware. The control and data flows of the pipeline are scheduled in such a way as to maximize operation concurrency and minimize total processing time. At the microscopic level, the partitioned functions act as independent modules, operating on data partitions in parallel. Each module is pre-parallelized and optimized for multi-core processors (CPUs) and graphics processing units (GPUs). Results: We present results from a parallel prototype, where most of the controls and module parallelization are carried out via Matlab and its Parallel Computing Toolbox. The reconstruction is 5 times faster on a data-set of twice the size, compared to recently reported results, without compromising on algorithmic optimization control. Conclusion: The prototype implementation and its results have served to assess the efficacy of our system concept. While a production implementation will yield much higher processing rates by approaching full-capacity utilization of CPUs and GPUs, some mutual constraints between algorithmic flow and architecture specifics remain. Based on a careful analysis

  13. Molecular series-tunneling junctions.

    Science.gov (United States)

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  14. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Effect of gamma-ray irradiation on the surface states of MOS tunnel junctions

    Science.gov (United States)

    Ma, T. P.; Barker, R. C.

    1974-01-01

    Gamma-ray irradiation with doses up to 8 megarad produces no significant change on either the C(V) or the G(V) characteristics of MOS tunnel junctions with intermediate oxide thicknesses (40-60 A), whereas the expected flat-band shift toward negative electrode voltages occurs in control thick oxide capacitors. A simple tunneling model would explain the results if the radiation-generated hole traps are assumed to lie below the valence band of the silicon. The experiments also suggest that the observed radiation-generated interface states in conventional MOS devices are not due to the radiation damage of the silicon surface.

  16. Curved Josephson junction

    International Nuclear Information System (INIS)

    Dobrowolski, Tomasz

    2012-01-01

    The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.

  17. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  18. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  19. A new way of adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion

    International Nuclear Information System (INIS)

    Webb, S; Bortfeld, T

    2008-01-01

    In this paper a technique is presented for adaptive therapy to compensate for variable intrafraction tissue motion. So long as the motion can be measured or deduced for each fraction the technique modifies the fluence profile for the subsequent fractions in a repeatable cyclic way. The fluence modification is based on projecting the dose discrepancies between the cumulative delivered dose after each fraction and the expected planned dose at the same stage. It was shown that, in general, it is best to adapt the fluence profile to moving leaves that also have been modified to 'breathe' according to some regular default motion. However, it is important to point out that, if this regular default motion were to differ too much from the variable motion at each fraction, then the result can be worse than adapting to non-breathing leaves in a dynamic MLC technique. Furthermore, in general it should always be possible to improve results by starting the adaptation process with a constrained deconvolution of the regular default motion

  20. Mechanically Stacked Dual-Junction and Triple-Junction III-V/Si-IBC Cells with Efficiencies Exceeding 31.5% and 35.4%: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte-Huxel, Henning [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienaecker, Michael [Institute for Solar Energy Research Hamelin (ISFH); Merkle, Agnes [Institute for Solar Energy Research Hamelin (ISFH); Kajari-Schroeder, S. [Institute for Solar Energy Research Hamelin (ISFH); Niepelt, Raphael [Institute for Solar Energy Research Hamelin (ISFH); Schmidt, Jan [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Brendel, Rolf [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Peibst, Robby [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover

    2017-10-02

    Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.

  1. Electromagnetic waves in single- and multi-Josephson junctions

    International Nuclear Information System (INIS)

    Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko

    2008-01-01

    The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed

  2. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  3. Scattering theory of superconductive tunneling in quantum junctions

    International Nuclear Information System (INIS)

    Shumeiko, V.S.; Bratus', E.N.

    1997-01-01

    A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and dc quasiparticle transport in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equilibrium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of the properties of sub gap tunnel current and the nature of subharmonic gap structure

  4. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  5. Some chaotic features of intrinsically coupled Josephson junctions

    International Nuclear Information System (INIS)

    Kolahchi, M.R.; Shukrinov, Yu.M.; Hamdipour, M.; Botha, A.E.; Suzuki, M.

    2013-01-01

    Highlights: ► Intrinsically coupled Josephson junctions model a high-T c superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T c resonators which require coherence amongst the junctions

  6. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  7. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  8. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    International Nuclear Information System (INIS)

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  9. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...

  10. Particle detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Jany, P.

    1990-08-01

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.) [de

  11. Effect of solar-cell junction geometry on open-circuit voltage

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  12. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  13. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.

    1990-01-01

    Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional fun......Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...

  14. The critical current of point symmetric Josephson tunnel junctions

    International Nuclear Information System (INIS)

    Monaco, Roberto

    2016-01-01

    Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  15. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  16. Soliton excitations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...... agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency f1 on all ZFS's and (ii) a "symmetric" mode which...... on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...

  17. Motion monitoring during a course of lung radiotherapy with anchored electromagnetic transponders. Quantification of inter- and intrafraction motion and variability of relative transponder positions

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Daniela [German Cancer Research Center (DKFZ), Division of Medical Physics in Radiation Oncology, Heidelberg (Germany); National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg University Hospital, Department of Radiation Oncology, Heidelberg (Germany); Nill, Simeon; Oelfke, Uwe [German Cancer Research Center (DKFZ), Division of Medical Physics in Radiation Oncology, Heidelberg (Germany); National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg (Germany); The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London (United Kingdom); Roeder, Falk [German Cancer Research Center (DKFZ), Clinical Cooperation Unit Molecular Radiooncology, Heidelberg (Germany); University of Munich (LMU), Department of Radiation Oncology, Munich (Germany); Gompelmann, Daniela; Herth, Felix [University of Heidelberg, Pneumology and Critical Care Medicine, Thoraxklinik, Heidelberg (Germany); German Center for Lung Research, Translational Lung Research Center Heidelberg (TLRC), Heidelberg (Germany)

    2017-10-15

    Anchored electromagnetic transponders for tumor motion monitoring during lung radiotherapy were clinically evaluated. First, intrafractional motion patterns were analyzed as well as their interfractional variations. Second, intra- and interfractional changes of the geometric transponder positions were investigated. Intrafractional motion data from 7 patients with an upper or middle lobe tumor and three implanted transponders each was used to calculate breathing amplitudes, overall motion amount and motion midlines in three mutual perpendicular directions and three-dimensionally (3D) for 162 fractions. For 6 patients intra- and interfractional variations in transponder distances and in the size of the triangle defined by the transponder locations over the treatment course were determined. Mean 3D values of all fractions were up to 4.0, 4.6 and 3.4 mm per patient for amplitude, overall motion amount and midline deviation, respectively. Intrafractional transponder distances varied with standard deviations up to 3.2 mm, while a maximal triangle shrinkage of 36.5% over 39 days was observed. Electromagnetic real-time motion monitoring was feasible for all patients. Detected respiratory motion was on average modest in this small cohort without lower lobe tumors, but changes in motion midline were of the same size as the amplitudes and greater midline motion can be observed in some fractions. Intra- and interfractional variations of the geometric transponder positions can be large, so for reliable motion management correlation between transponder and tumor motion needs to be evaluated per patient. (orig.) [German] Verankerte, elektromagnetische Transponder fuer die Bewegungserkennung des Tumors waehrend der Strahlentherapie der Lunge wurden klinisch evaluiert. Dafuer wurden intrafraktionelle Bewegungsmuster und ihre interfraktionellen Variationen analysiert und intra- und interfraktionelle Veraenderungen der geometrischen Transponderpositionen untersucht. Intrafraktionelle

  18. Constructing carbon nanotube junctions by Ar ion beam irradiation

    International Nuclear Information System (INIS)

    Ishaq, Ahmad; Ni Zhichun; Yan Long; Gong Jinlong; Zhu Dezhang

    2010-01-01

    Carbon nanotubes (CNTs) irradiated by Ar ion beams at elevated temperature were studied. The irradiation-induced defects in CNTs are greatly reduced by elevated temperature. Moreover, the two types of CNT junctions, the crossing junction and the parallel junction, were formed. And the CNT networks may be fabricated by the two types of CNT junctions. The formation process and the corresponding mechanism of CNT networks are discussed.

  19. Field modulation of the critical current in magnetic Josephson junctions

    International Nuclear Information System (INIS)

    Blamire, M G; Smiet, C B; Banerjee, N; Robinson, J W A

    2013-01-01

    The dependence of the critical current of a simple Josephson junction on the applied magnetic field is well known and, for a rectangular junction, gives rise to the classic ‘Fraunhofer’ modulation with periodic zeros at the fields that introduce a flux quantum into the junction region. Much recent work has been performed on Josephson junctions that contain magnetic layers. The magnetization of such layers introduces additional flux into the junction and, for large junction areas or strong magnetic materials, can significantly distort the modulation of the critical current and strongly suppress the maximum critical current. The growing interest in junctions that induce odd-frequency triplet pairing in a ferromagnet, and the need to make quantitative comparisons with theory, mean that a full understanding of the role of magnetic barriers in controlling the critical current is necessary. This paper analyses the effect of magnetism and various magnetic configurations on Josephson critical currents; the overall treatment applies to junctions of general shape, but the specific cases of square and rectangular junctions are considered. (paper)

  20. Shunted-Josephson-junction model. II. The nonautonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance....... The mathematical discussion makes use of the phase-space representation of the solutions to the differential equation. The behavior of the trajectories in phase space is described for different characteristic regions in parameter space and the associated features of the junction IV curve to be expected are pointed...... out. The main objective is to provide a qualitative understanding of the junction behavior, to clarify which kinds of properties may be derived from the shunted-junction model, and to specify the relative arrangement of the important domains in the parameter-space decomposition....

  1. Observation of supercurrent in graphene-based Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-01

    Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.

  2. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  3. Phenomenological approach to bistable behavior of Josephson junctions

    International Nuclear Information System (INIS)

    Nishi, K.; Nara, S.; Hamanaka, K.

    1985-01-01

    The interaction of unbiased Josephson junction with external electromagnetic field in the presence of externally applied uniform magnetic field is theoretically examined by means of phenomenological treatment. It is proposed that an irradiated junction with suitably chosen parameters shows a bistable behavior of voltage across the junction as a function of the radiation intensity

  4. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values i...

  5. Anchored PKA as a gatekeeper for gap junctions.

    Science.gov (United States)

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types.

  6. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  7. Interfraction and intrafraction performance of the Gamma Knife Extend system for patient positioning and immobilization.

    Science.gov (United States)

    Schlesinger, David; Xu, Zhiyuan; Taylor, Frances; Yen, Chun-Po; Sheehan, Jason

    2012-12-01

    The Extend system for the Gamma Knife Perfexion makes possible multifractional Gamma Knife treatments. The Extend system consists of a vacuum-monitored immobilization frame and a positioning measurement system used to determine the location of the patient's head within the frame at the time of simulation imaging and before each treatment fraction. The measurement system consists of a repositioning check tool (RCT), which attaches to the Extend frame, and associated digital measuring gauges. The purpose of this study is to evaluate the performance of the Extend system for patient repositioning before each treatment session (fraction) and patient immobilization between (interfraction) and during (intrafraction) each session in the first 10 patients (36 fractional treatments) treated at the University of Virginia. The RCT was used to acquire a set of reference measurements for each patient position at the time of CT simulation. Repositioning measurements were acquired before each fraction, and the patient position was adjusted until the residual radial difference from the reference position measurements was less than 1 mm. After treatment, patient position measurements were acquired, and the difference between those measurements and the ones obtained for patient position before the fraction was calculated as a measure of immobilization capability. Analysis of patient setup and immobilization performance included calculation of the group mean, standard deviation (SD), and distribution of systematic (components affecting all fractions) and random (per fraction) uncertainty components. Across all patients and fractions, the mean radial setup difference from the reference measurements was 0.64 mm, with an SD of 0.24 mm. The distribution of systematic uncertainty (Σ) was 0.17 mm, and the distribution of random uncertainty (σ) was 0.16 mm. The root mean square (RMS) differences for each plate of the RCT were as follows: right = 0.35 mm; left = 0.41 mm; superior = 0.28 mm

  8. Terahertz Responses of Intrinsic Josephson Junctions in High TC Superconductors

    International Nuclear Information System (INIS)

    Wang, H. B.; Wu, P. H.; Yamashita, T.

    2001-01-01

    High frequency responses of intrinsic Josephson junctions up to 2.5THz, including the observation of Shapiro steps under various conditions, are reported and discussed in this Letter. The sample was an array of intrinsic Josephson junctions singled out from inside a high T C superconducting Bi 2 Sr 2 CaCu 2 O 8+x single crystal, with a bow-tie antenna integrated to it. The number of junctions in the array was controllable, the junctions were homogeneous, the distribution of applied irradiation among the junctions was even, and the junctions could synchronously respond to high frequency irradiation

  9. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  10. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.

    2013-03-21

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  11. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  12. Silicon fiber with p-n junction

    International Nuclear Information System (INIS)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-01-01

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  13. Quasiparticle current in superconductor-semiconductor-superconductor junctions

    International Nuclear Information System (INIS)

    Tartakovskij, A.V.; Fistul', M.V.

    1988-01-01

    It is shown that the quasiparticle current in a superconductor-semiconductor-superconductor junction may significantly increase as a result of resonant passage of the quasiparticle along particular trajectories from periodically situated localized centers. A prediction of the theory is that with increasing junction resistance there should be a change from an excessive current to a insufficient current on the current-voltage characteristics (at high voltages). The effect of transparency of the boundaries on resonance tunneling in such junctions is also investigated

  14. Transport properties of molecular junctions

    CERN Document Server

    Zimbovskaya, Natalya A

    2013-01-01

    A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions is presented. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts—a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers ...

  15. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  16. Not only … but also: REM sleep creates and NREM Stage 2 instantiates landmark junctions in cortical memory networks.

    Science.gov (United States)

    Llewellyn, Sue; Hobson, J Allan

    2015-07-01

    This article argues both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep contribute to overnight episodic memory processes but their roles differ. Episodic memory may have evolved from memory for spatial navigation in animals and humans. Equally, mnemonic navigation in world and mental space may rely on fundamentally equivalent processes. Consequently, the basic spatial network characteristics of pathways which meet at omnidirectional nodes or junctions may be conserved in episodic brain networks. A pathway is formally identified with the unidirectional, sequential phases of an episodic memory. In contrast, the function of omnidirectional junctions is not well understood. In evolutionary terms, both animals and early humans undertook tours to a series of landmark junctions, to take advantage of resources (food, water and shelter), whilst trying to avoid predators. Such tours required memory for emotionally significant landmark resource-place-danger associations and the spatial relationships amongst these landmarks. In consequence, these tours may have driven the evolution of both spatial and episodic memory. The environment is dynamic. Resource-place associations are liable to shift and new resource-rich landmarks may be discovered, these changes may require re-wiring in neural networks. To realise these changes, REM may perform an associative, emotional encoding function between memory networks, engendering an omnidirectional landmark junction which is instantiated in the cortex during NREM Stage 2. In sum, REM may preplay associated elements of past episodes (rather than replay individual episodes), to engender an unconscious representation which can be used by the animal on approach to a landmark junction in wake. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  18. Systematic study of shallow junction formation on germanium substrates

    DEFF Research Database (Denmark)

    Hellings, Geert; Rosseel, Erik; Clarysse, Trudo

    2011-01-01

    Published results on Ge junctions are benchmarked systematically using RS–XJ plots. The electrical activation level required to meet the ITRS targets is calculated. Additionally, new results are presented on shallow furnace-annealed B junctions and shallow laser-annealed As junctions. Co-implanting...

  19. Iterative Tensor Voting for Perceptual Grouping of Ill-Defined Curvilinear Structures: Application to Adherens Junctions

    Science.gov (United States)

    Loss, Leandro A.; Bebis, George; Parvin, Bahram

    2012-01-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is applied to delineation of adherens junctions imaged through fluorescence microscopy. This class of membrane-bound macromolecules maintains tissue structural integrity and cell-cell interactions. Visually, it exhibits fibrous patterns that may be diffused, punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates. PMID:21421432

  20. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    Science.gov (United States)

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  1. On simulation of local fluxes in molecular junctions

    Science.gov (United States)

    Cabra, Gabriel; Jensen, Anders; Galperin, Michael

    2018-05-01

    We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.

  2. Shunted-Josephson-junction model. I. The autonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of the junction parameters. The main objective is to provide a qualitative understanding...... current-voltage curves are presented. The case with a time-dependent monochromatic bias current is treated in a similar fashion in the companion paper....

  3. Joint diseases: from connexins to gap junctions.

    Science.gov (United States)

    Donahue, Henry J; Qu, Roy W; Genetos, Damian C

    2017-12-19

    Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.

  4. Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions

    International Nuclear Information System (INIS)

    Zheng, Jue-Ting; Yan, Run-Wen; Tian, Jing-Hua; Liu, Jun-Yang; Pei, Lin-Qi; Wu, De-Yin; Dai, Ke; Yang, Yang; Jin, Shan

    2016-01-01

    Highlights: • I-V characteristics of a series of oligo(phenylene ethynylene)s molecular junctions were measured. • Conductance values were found to be dependent on molecular length and substituent group. • The measured low conductance values were explained by theoretical calculations. • EC-MCBJ is feasible to fabricate and characterize molecular junctions. - Abstract: We demonstrate an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach for current-voltage characteristic (I-V curve) measurements of metal/molecule/metal junctions. A series of oligo(phenylene ethynylene)s compounds (OPEs), including those involving electron withdrawing substituent group and different backbone lengths, had been successfully designed, synthesized, and placed onto the fabricated nanogap to form molecular junctions. The observed evolution in the measured conductances of OPEs indicates that there is a dependence of conductance on molecular length and substituent group. Compared with those extracted from conductance histogram construction, the conductances of OPEs measured from I-V curves are considerably lower. Based on the transmission spectra of OPEs that calculated by density functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) method, this difference was attributed to our distinct experimental operation, which may give rise to a stacking configuration of two OPE molecules.

  5. ALTERNATIVE MATERIALS FOR RAMP-EDGE SNS JUNCTIONS

    International Nuclear Information System (INIS)

    Jia, Q.; Fan, Y.; Gim, Y.

    1999-01-01

    We report on the processing optimization and fabrication of ramp-edge high-temperature superconducting junctions by using alternative materials for both superconductor electrodes and normal-metal barrier. By using Ag-doped YBa 2 Cu 3 O 7-x (Ag:YBCO) as electrodes and a cation-modified compound of (Pr y Gd 0.6-y )Ca 0.4 Ba 1.6 La 0.4 Cu 3 O 7 (y = 0.4, 0.5, and 0.6) as a normal-metal barrier, high-temperature superconducting Josephson junctions have been fabricated in a ramp-edge superconductor/normal-metal/superconductor (SNS) configuration. By using Ag:YBCO as electrodes, we have found that the processing controllability /reproducibility and the stability of the SNS junctions are improved substantially. The junctions fabricated with these alternative materials show well-defined RSJ-like current vs voltage characteristics at liquid nitrogen temperature

  6. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  7. SU-E-J-82: Intra-Fraction Proton Beam-Range Verification with PET Imaging: Feasibility Studies with Monte Carlo Simulations and Statistical Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lou, K [U.T M.D. Anderson Cancer Center, Houston, TX (United States); Rice University, Houston, TX (United States); Mirkovic, D; Sun, X; Zhu, X; Poenisch, F; Grosshans, D; Shao, Y [U.T M.D. Anderson Cancer Center, Houston, TX (United States); Clark, J [Rice University, Houston, TX (United States)

    2014-06-01

    Purpose: To study the feasibility of intra-fraction proton beam-range verification with PET imaging. Methods: Two phantoms homogeneous cylindrical PMMA phantoms (290 mm axial length, 38 mm and 200 mm diameter respectively) were studied using PET imaging: a small phantom using a mouse-sized PET (61 mm diameter field of view (FOV)) and a larger phantom using a human brain-sized PET (300 mm FOV). Monte Carlo (MC) simulations (MCNPX and GATE) were used to simulate 179.2 MeV proton pencil beams irradiating the two phantoms and be imaged by the two PET systems. A total of 50 simulations were conducted to generate 50 positron activity distributions and correspondingly 50 measured activity-ranges. The accuracy and precision of these activity-ranges were calculated under different conditions (including count statistics and other factors, such as crystal cross-section). Separate from the MC simulations, an activity distribution measured from a simulated PET image was modeled as a noiseless positron activity distribution corrupted by Poisson counting noise. The results from these two approaches were compared to assess the impact of count statistics on the accuracy and precision of activity-range calculations. Results: MC Simulations show that the accuracy and precision of an activity-range are dominated by the number (N) of coincidence events of the reconstructed image. They are improved in a manner that is inversely proportional to 1/sqrt(N), which can be understood from the statistical modeling. MC simulations also indicate that the coincidence events acquired within the first 60 seconds with 10{sup 9} protons (small phantom) and 10{sup 10} protons (large phantom) are sufficient to achieve both sub-millimeter accuracy and precision. Conclusion: Under the current MC simulation conditions, the initial study indicates that the accuracy and precision of beam-range verification are dominated by count statistics, and intra-fraction PET image-based beam-range verification is

  8. TH-CD-207A-12: Impacts of Inter- and Intra-Fractional Organ Motion for High-Risk Prostate Cancer Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hassan Rezaeian, N; Chi, Y; Zhou, Y; Tian, Z; Jiang, S; Hannan, R; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: We are conducting a clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer. Doses to three targets, prostate, intra-prostatic lesion, and pelvic lymph node (PLN) region, are escalated to three different levels via simultaneous integrated boost technique. Inter-/intra-fractional organ motions deteriorate planned dose distribution. This study aims at developing a dose reconstruction system to comprehensively understand the impacts of organ motion in our clinical trial. Methods: A 4D dose reconstruction system has been developed for this study. Using a GPU-based Monte-Carlo dose engine and delivery log file, the system is able to reconstruct dose on static or dynamic anatomy. For prostate and intra-prostatic targets, intra-fractional motion is the main concern. Motion trajectory acquired from Calypso in previously treated SBRT patients were used to perform 4D dose reconstructions. For pelvic target, inter-fractional motion is one concern. Eight patients, each with four cone beam CTs, were used to derive fractional motion. The delivered dose was reconstructed on the deformed anatomy. Dosimetric parameters for delivered dose distributions of the three targets were extracted and compared with planned levels. Results: For prostate intra-fractional motion, the mean 3D motion amplitude during beam delivery ranged from 1.5mm to 5.0mm and the average among all patients was 2.61mm. Inter-fractional motion for the PLN target was more significant. The average amplitude among patients was 4mm with the largest amplitude up to 9.6mm. The D95% deviation from planned level for prostate PTVs and GTVs are on average less than<0.1% and this deviation for intra-prostatic lesion PTVs and GTVs were more prominent. The dose at PLN was significantly affected with D{sub 95}% reduced by up to 44%. Conclusion: Intra-/inter-fractional organ motion is a concern for high-risk prostate SBRT, particularly for the PLN target. Our dose reconstruction

  9. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....

  10. A strategy to minimize errors from differential intrafraction organ motion using a single configuration for a 'breathing' multileaf collimator

    International Nuclear Information System (INIS)

    Webb, S; Binnie, D M

    2006-01-01

    Intensity-modulated radiation therapy (IMRT) can be delivered by the 'sliding-leaves' dynamic multileaf collimator (DMLC) technique. Intrafraction organ motion can be accommodated by arranging an identical tracking motion for 'breathing leaves'. However, this is only possible for very specific circumstances such as regular, mathematically parameterizable, rigid-body, density-conserving, one-dimensional translations. In this paper, we investigate what happens when planes of tissue in the line of sight of the MLC have differential motion with respect to the moving leaves. In this situation, there is no solution to the problem and a perfect tracking motion cannot be arranged. However, an iterative minimization-of-errors 'solution' (or strategy) can be found and the technique is presented for this. From this, under certain mathematically simple differential motions it is possible to obtain some elegant algebraic solutions which are presented. In general, however, a lengthy computational minimization is required and results of examples of these are presented

  11. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    International Nuclear Information System (INIS)

    Inagaki-Ohara, Kyoko; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-01-01

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), β-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. γδ IEL showed higher level of these expressions than αβ IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC

  12. Affordance-based individuation of junctions in Open Street Map

    Directory of Open Access Journals (Sweden)

    Simon Scheider

    2012-06-01

    Full Text Available We propose an algorithm that can be used to identify automatically the subset of street segments of a road network map that corresponds to a junction. The main idea is to use turn-compliant locomotion affordances, i.e., restricted patterns of supported movement, in order to specify junctions independently of their data representation, and in order to motivate tractable individuation and classification strategies. We argue that common approaches based solely on geometry or topology of the street segment graph are useful but insufficient proxies. They miss certain turn restrictions essential to junctions. From a computational viewpoint, the main challenge of affordance-based individuation of junctions lies in its complex recursive definition. In this paper, we show how Open Street Map data can be interpreted into locomotion affordances, and how the recursive junction definition can be translated into a deterministic algorithm. We evaluate this algorithm by applying it to small map excerpts in order to delineate the contained junctions.

  13. STIM proteins and the endoplasmic reticulum-plasma membrane junctions.

    Science.gov (United States)

    Carrasco, Silvia; Meyer, Tobias

    2011-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.

  14. Morphological variation of the kidney secondary to junctional parenchyma on ultrasound

    International Nuclear Information System (INIS)

    Lee, Ji Yoon; Park, Byeong Ho; Nam, Kyeong Jin; Choi, Jong Cheol; Koo, Bong Sig; Kim, Jou Yeoun; Ahn, Seung Eon; Lee, Yung Il

    1996-01-01

    To evaluate the prevalance of morphological variation of the kidney secondary to junctional parenchyma, as well as to analyze the ultrasonographic features of junctional parenchyma. Two hundred and eighty two kidneys of 141 patient without clinical or radiologic evidence of renal disease were prospectively analysed using ultrasound. In all patients, ultrasonograms were obtained in sagittal, coronal and transaxial planes. The kidney was considered to have morphological variation if the ultrasonogram demonstrated junctional parenchymal defect of line ; those showing such variation were classified as one of three types : continuous, discontinuous, or junctional parenchymal line or defect without junctional parenchyma. The prevalance and ultrasonographic features of the kidneys were evaluated. Morphological variation was noted in 71 cases(25%). the continuous type accounted for 54% of these, the discontinuous type for 38%, and junctional parenchymal defect or line without junctional parenchyma for 8%. In all cases, junctional parenchyma was located approximately at the junction of the upper and middle third of the kidney, and had the same echogenecity as the renal cortex. An understanding of the morphological variation of the kidney resulting from junctional renal parenchyma would be helpful in differentiating pseudotumor from true renal neoplasm

  15. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Science.gov (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  16. Spin, Vibrations and Radiation in Superconducting Junctions

    NARCIS (Netherlands)

    Padurariu, C.

    2013-01-01

    This thesis presents the theoretical study of superconducting transport in several devices based on superconducting junctions. The important feature of these devices is that the transport properties of the junction are modified by the interaction with another physical system integrated in the

  17. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  18. Spin-dependent quasiparticle tunneling in junction superconductor-isolator-ferromagnetic

    International Nuclear Information System (INIS)

    Shlapak, Yu.V.; Shaternik, V.E.; Rudenko, E.M.

    2001-01-01

    The influence of Andreev reflection of quasiparticles in transparent tunnel junctions of superconductor-isolator-ferromagnetic on electric-current transport is studied within the framework of the Blonder-Tinkham-Klapwijk (BTK) model. It's obtained that current and signal-to-noise ratio can be increased for the memory cell by using in it the double-barrier tunnel junction ferromagnetic-isolator-superconductor-isolator-ferromagnetic instead off the usual tunnel junction ferromagnetic-isolator-ferromagnetic. The evolution of non-linear (tunnel-type) current-voltage characteristics with increasing of the junction transparency is described. (orig.)

  19. Ileocolic junction resection in dogs and cats: 18 cases.

    Science.gov (United States)

    Fernandez, Yordan; Seth, Mayank; Murgia, Daniela; Puig, Jordi

    2017-12-01

    There is limited veterinary literature about dogs or cats with ileocolic junction resection and its long-term follow-up. To evaluate the long-term outcome in a cohort of dogs and cats that underwent resection of the ileocolic junction without extensive (≥50%) small or large bowel resection. Medical records of dogs and cats that had the ileocolic junction resected were reviewed. Follow-up information was obtained either by telephone interview or e-mail correspondence with the referring veterinary surgeons. Nine dogs and nine cats were included. The most common cause of ileocolic junction resection was intussusception in dogs (5/9) and neoplasia in cats (6/9). Two dogs with ileocolic junction lymphoma died postoperatively. Only 2 of 15 animals, for which long-term follow-up information was available, had soft stools. However, three dogs with suspected chronic enteropathy required long-term treatment with hypoallergenic diets alone or in combination with medical treatment to avoid the development of diarrhoea. Four of 6 cats with ileocolic junction neoplasia were euthanised as a consequence of progressive disease. Dogs and cats undergoing ileocolic junction resection and surviving the perioperative period may have a good long-term outcome with mild or absent clinical signs but long-term medical management may be required.

  20. Antireflection coating design for series interconnected multi-junction solar cells

    International Nuclear Information System (INIS)

    Aiken, Daniel J.

    1999-01-01

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub SC)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices

  1. Holographic s-wave and p-wave Josephson junction with backreaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Qiang; Liu, Shuai [Institute of Theoretical Physics, Lanzhou University,Lanzhou 730000, People’s Republic of (China)

    2016-11-22

    In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.

  2. Functional anatomy of the human ureterovesical junction

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; Verbeek, F. J.; Lamers, W. H.

    1996-01-01

    BACKGROUND: The valve function of the ureterovesical-junction (UVJ) is responsible for protection of the low pressure upper urinary tract from the refluxing of urine from the bladder. Controversy about the microanatomy of the human ureterovesical-junction persists. METHODS: Ten (3 male and 7 female)

  3. Double-well potential in annular Josephson junction

    International Nuclear Information System (INIS)

    Shaju, P.D.; Kuriakose, V.C.

    2004-01-01

    A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits

  4. Parametric frequency conversion in long Josephson junctions

    International Nuclear Information System (INIS)

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  5. Fractional Solitons in Excitonic Josephson Junctions

    Science.gov (United States)

    Su, Jung-Jung; Hsu, Ya-Fen

    The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.

  6. Current-induced spin transfer torque in ferromagnet-marginal Fermi liquid double tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zheng Qingrong; Jin Biao; Su Gang

    2005-01-01

    Current-induced spin transfer torque through a marginal Fermi liquid (MFL) which is connected to two noncollinearly aligned ferromagnets via tunnel junctions is discussed in terms of the nonequilibrium Green function method. It is found that in the absence of the spin-flip scattering, the magnitude of the torque increases with the polarization and the coupling constant λ of the MFL, whose maximum increases with λ linearly, showing that the interactions between electrons tend to enhance the spin torque. When the spin-flip scattering is included, an additional spin torque is induced. It is found that the spin-flip scattering enhances the spin torque and gives rise to a nonlinear angular shift

  7. A tri-junction diffusion couple analysis of the Nb-Cr-Ti system at 950{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, D.J. [Los Alamos National Lab., NM (United States); Perepezko, J.H. [Wisconsin Univ., Madison, WI (United States). Dept. of Materials Science and Engineering

    1993-11-01

    With a three-way diffusion couple consisting of a tri-junction between three elements, a whole spectrum of phase development and ternary equilibria is available within a single isothermal sample. Binary equilibria (for the three binary systems) are also available in single sample by analyzing diffusion zones at composition limits outside the field of ternary interaction. The tri-junction approach was employed to evaluate ternary phase formation, ternary solubility limits of binary phases, and diffusion paths in a candidate high-temperature structural system (Nb-Cr-Ti). Ternary phase equilibria and tie lines have been defined at 950C and results confirmed with isothermal anneals of two-phase ternary alloys. The continuous solubility in TiCr{sub 2}-NbCr{sub 2} region is broadened by at least 5 at. % from binary intermetallic phase fields. No new ternary phases were detected in the Nb-CrTi system at 950C. By examining the relative shifts in the diffusion interfaces, a qualitative ranking of interdiffusion suggests that addition of Nb restricts diffusion of Cr into Ti compared to binary (Cr/Ti) behavior.

  8. Gravitation at the Josephson Junction

    Directory of Open Access Journals (Sweden)

    Victor Atanasov

    2018-01-01

    Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  9. The cranial-spinal junction in medulloblastoma: does it matter?

    International Nuclear Information System (INIS)

    Narayana, Ashwatha; Jeswani, Sam; Paulino, Arnold C.

    1999-01-01

    Purpose: Late effects of treatment in children and young adults with medulloblastoma can be influenced by the technique employed in radiating the craniospinal axis. The purpose of this study is to determine whether the placement of the cranial-spinal junction has an impact on dose to the cervical spinal cord and surrounding organs. Methods and Materials: Five patients underwent computed tomography (CT) simulation in the prone position for craniospinal irradiation. A dose of 36 Gy was prescribed to the entire neuraxis. The doses to the cervical spinal cord and surrounding organs were calculated using a cranial-spinal junction at the C1-C2 vertebral interspace (high junction) or at the lowest point in the neck, with exclusion of the shoulders in the lateral cranial fields (low junction).The volume of critical organs at risk, as well as dose to these structures using the cranial and spinal field(s) were outlined and calculated using the CMS FOCUS 3-dimensional treatment planning system. Results: The average dose to the cervical spinal cord was 11.9% higher than the prescribed dose with the low junction, and 6.7% higher with the high junction. However, doses to the thyroid gland, mandible, pharynx, and larynx were increased by an average of 29.6%, 75.8%, 70.6%, and 227.7%, respectively, by the use of the high junction compared to the low junction. Conclusion: A higher dose to the cervical spinal cord can be minimized by using a high junction. However, this would be at the cost of substantially increased doses to surrounding organs such as the thyroid gland, mandible, pharynx, and larynx. This can be critical in children and young adults, where hypothyroidism, mandibular hypoplasia, and development of second malignancies may be a late sequela of radiation therapy

  10. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  11. Junction depth dependence of breakdown in silicon detector diodes

    International Nuclear Information System (INIS)

    Beck, G.A.; Carter, A.A.; Carter, J.R.; Greenwood, N.M.; Lucas, A.D.; Munday, D.J.; Pritchard, T.W.; Robinson, D.; Wilburn, C.D.; Wyllie, K.

    1996-01-01

    The high voltage capability of detector diodes fabricated in the planar process is limited by the high field generated at the edge of the junction.We have fabricated diodes with increased junction depth with respect to our standard process and find a significantly higher breakdown voltage,in reasonable agreement with previous studies of junction breakdown. (orig.)

  12. The fallopian tube-peritoneal junction: a potential site of carcinogenesis.

    Science.gov (United States)

    Seidman, Jeffrey D; Yemelyanova, Anna; Zaino, Richard J; Kurman, Robert J

    2011-01-01

    Junctions between different types of epithelia are hot spots for carcinogenesis, but the junction of the peritoneal mesothelium with the fallopian tubal epithelium, the tubal-peritoneal junction, has not been characterized earlier. A total of 613 junctional foci in 228 fallopian tube specimens from 182 patients who underwent surgery for a variety of indications, including 27 risk-reducing salpingo-oophorectomy specimens, were studied. Edema, congestion, and dilated lymphatic channels were commonly present. Transitional metaplasia was found at the junction in 20% of patients and mesothelial hyperplasia in 17%. Inflammation at the junction was seen predominantly in patients with salpingitis, torsion, or tubal pregnancy. Ovarian-type stroma was found at the junction in 5% of patients, and was found elsewhere in the tubal lamina propria in an additional 27% of patients. Findings in risk-reducing salpingo-oophorectomy specimens in women with BRCA mutations, a personal history of breast cancer, and/or a family history of breast/ovarian cancer were similar to those in controls. Transitional metaplasia specifically localizes to this junction, and is the probable source of Walthard cell nests. The recently highlighted significance of fimbrial tubal epithelium in the origin of serous ovarian carcinomas and a study suggesting that mucinous and Brenner tumors may arise from transitional-type epithelium in this location suggest that the tubal-peritoneal junction may play a role in the development of these tumors. This is the first comprehensive description of a hitherto unrecognized transitional zone in the adnexa.

  13. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    Science.gov (United States)

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  14. Two-dimensional non-volatile programmable p-n junctions

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  15. Thermionic refrigeration at CNT-CNT junctions

    Science.gov (United States)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  16. Response of high Tc superconducting Josephson junction to nuclear radiation

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  17. ‘Gap Junctions and Cancer: Communicating for 50 Years’

    Science.gov (United States)

    Aasen, Trond; Mesnil, Marc; Naus, Christian C.; Lampe, Paul D.; Laird, Dale W.

    2017-01-01

    Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. While many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field. PMID:27782134

  18. Dynamics of fractional vortices in long Josephson junctions

    International Nuclear Information System (INIS)

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  19. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gap junctions-guards of excitability

    DEFF Research Database (Denmark)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus

    2015-01-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...... of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane....

  1. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    LENUS (Irish Health Repository)

    Beddy, P

    2012-02-01

    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  2. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  3. Cavity syncronisation of underdamped Josephson junction arrays

    DEFF Research Database (Denmark)

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  4. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... experiment showed a lower dye diffusion distance of Cx46 V44M cells, ... Studies of connexins show that channel gating and permeability .... have found that connexin assembled into gap junction plaques is not soluble in 1% ..... high glucose reduces gap junction activity in microvascular endothelial cells.

  5. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    International Nuclear Information System (INIS)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK

    2014-01-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT

  6. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.

  7. Spatially resolved detection of mutually locked Josephson junctions in arrays

    International Nuclear Information System (INIS)

    Keck, M.; Doderer, T.; Huebener, R.P.; Traeuble, T.; Dolata, R.; Weimann, T.; Niemeyer, J.

    1997-01-01

    Mutual locking due to the internal coupling in two-dimensional arrays of Josephson junctions was investigated. The appearance of Shapiro steps in the current versus voltage curve of a coupled on-chip detector junction is used to indicate coherent oscillations in the array. A highly coherent state is observed for some range of the array bias current. By scanning the array with a low-power electron beam, mutually locked junctions remain locked while the unlocked junctions generate a beam-induced additional voltage drop at the array. This imaging technique allows the detection of the nonlocked or weakly locked Josephson junctions in a (partially) locked array state. copyright 1997 American Institute of Physics

  8. Two coupled Josephson junctions: dc voltage controlled by biharmonic current

    International Nuclear Information System (INIS)

    Machura, L; Spiechowicz, J; Kostur, M; Łuczka, J

    2012-01-01

    We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa. (paper)

  9. Probing electrical transport in individual carbon nanotubes and junctions

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Wendelken, John F; Li Anping; Du Gaohui; Li Wenzhi

    2008-01-01

    The electrical transport properties of individual carbon nanotubes (CNTs) and multi-terminal junctions of CNTs are investigated with a quadraprobe scanning tunneling microscope. The CNTs used in this study are made of stacked herringbone-type conical graphite sheets with a cone angle of ∼20 deg. to the tube axis, and the CNT junctions have no catalytic particles in the junction areas. The CNTs have a significantly higher resistivity than conventional CNTs with concentric walls. The straight CNTs display linear current-voltage (I-V) characteristics, indicating diffusive transport rather than ballistic transport. The structural deformation in CNTs with bends substantially increases the resistivity in comparison with that for the straight segments on the same CNTs, and the I-V curve departs slightly from linearity in curved segments. The junction area of the CNT junctions behaves like an ohmic-type scattering center with linear I-V characteristics. In addition, a gating effect has not been observed, in contrast to the case for conventional multi-walled CNT junctions. These unusual transport properties can be attributed to the enhanced inter-layer interaction in the herringbone-type CNTs.

  10. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    LIJUAN CHEN

    2017-12-20

    Dec 20, 2017 ... showed a lower dye diffusion distance of Cx46 V44M cells, which indicates that the gap junction intercellular ... permeability could be affected by alterations of charged residues of .... bled into gap junction plaques is not soluble in 1% Triton ..... regulation of connexin 43 expression by high glucose reduces.

  11. Fast temporal fluctuations in single-molecule junctions.

    Science.gov (United States)

    Ochs, Roif; Secker, Daniel; Elbing, Mark; Mayor, Marcel; Weber, Heiko B

    2006-01-01

    The noise within the electrical current through single-molecule junctions is studied cryogenic temperature. The organic sample molecules were contacted with the mechanically controlled break-junction technique. The noise spectra refer to a where only few Lorentzian fluctuators occur in the conductance. The frequency dependence shows qualitative variations from sample to sample.

  12. Axial p-n-junctions in nanowires.

    Science.gov (United States)

    Fernandes, C; Shik, A; Byrne, K; Lynall, D; Blumin, M; Saveliev, I; Ruda, H E

    2015-02-27

    The charge distribution and potential profile of p-n-junctions in thin semiconductor nanowires (NWs) were analyzed. The characteristics of screening in one-dimensional systems result in a specific profile with large electric field at the boundary between the n- and p- regions, and long tails with a logarithmic drop in the potential and charge density. As a result of these tails, the junction properties depend sensitively on the geometry of external contacts and its capacity has an anomalously large value and frequency dispersion. In the presence of an external voltage, electrons and holes in the NWs can not be described by constant quasi-Fermi levels, due to small values of the average electric field, mobility, and lifetime of carriers. Thus, instead of the classical Sah-Noice-Shockley theory, the junction current-voltage characteristic was described by an alternative theory suitable for fast generation-recombination and slow diffusion-drift processes. For the non-uniform electric field in the junction, this theory predicts the forward branch of the characteristic to have a non-ideality factor η several times larger than the values 1 < η < 2 from classical theory. Such values of η have been experimentally observed by a number of researchers, as well as in the present work.

  13. Macroscopic Refrigeration Using Superconducting Tunnel Junctions

    Science.gov (United States)

    Lowell, Peter; O'Neil, Galen; Underwood, Jason; Zhang, Xiaohang; Ullom, Joel

    2014-03-01

    Sub-kelvin temperatures are often a prerequisite for modern scientific experiments, such as quantum information processing, astrophysical missions looking for dark energy signatures and tabletop time resolved x-ray spectroscopy. Existing methods of reaching these temperatures, such as dilution refrigerators, are bulky and costly. In order to increase the accessibility of sub-Kelvin temperatures, we have developed a new method of refrigeration using normal-metal/insulator/superconductor (NIS) tunnel junctions. NIS junctions cool the electrons in the normal metal since the hottest electrons selectively tunnel from the normal metal into the superconductor. By extending the normal metal onto a thermally isolated membrane, the cold electrons can cool the phonons through the electron-phonon coupling. When these junctions are combined with a pumped 3He system, they provide a potentially inexpensive method of reaching these temperatures. Using only three devices, each with a junction area of approximately 3,500 μm2, we have cooled a 2 cm3 Cu plate from 290 mK to 256 mK. We will present these experimental results along with recent modeling predictions that strongly suggest that further refinements will allow cooling from 300 mK to 120 mK. This work is supported by the NASA APRA program.

  14. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  15. Spectrum of resonant plasma oscillations in long Josephson junctions

    International Nuclear Information System (INIS)

    Holst, T.

    1996-01-01

    An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbitrary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing wave plasma resonances is excited, a special feature of long Josephson junctions. copyright 1996 The American Physical Society

  16. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    International Nuclear Information System (INIS)

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  17. Squeezed States in Josephson Junctions.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  18. Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels.

    Directory of Open Access Journals (Sweden)

    Andrzej W Vorbrodt

    2004-07-01

    Full Text Available Immunogold cytochemical procedure was used to study the localization at the ultrastructural level of interendothelial junction-associated protein molecules in the human brain blood microvessels, representing the anatomic site of the blood-brain barrier (BBB. Ultrathin sections of Lowicryl K4M-embedded biopsy specimens of human cerebral cortex obtained during surgical procedures were exposed to specific antibodies, followed by colloidal gold-labeled secondary antibodies. All tight junction-specific integral membrane (transmembrane proteins--occludin, junctional adhesion molecule (JAM-1, and claudin-5--as well as peripheral zonula occludens protein (ZO-1 were highly expressed. Immunoreactivity of the adherens junction-specific transmembrane protein VE-cadherin was of almost similar intensity. Immunolabeling of the adherens junction-associated peripheral proteins--alpha-catenin, beta-catenin, and p120 catenin--although positive, was evidently less intense. The expression of gamma-catenin (plakoglobin was considered questionable because solitary immunosignals (gold particles appeared in only a few microvascular profiles. Double labeling of some sections made possible to observe strict colocalization of the junctional molecules, such as occludin and ZO-1 or JAM-1 and VE-cadherin, in the interendothelial junctions. We found that in human brain microvessels, the interendothelial junctional complexes contain molecular components specific for both tight and adherens junctions. It is assumed that the data obtained can help us find the immunodetectable junctional molecules that can serve as sensitive markers of normal or abnormal function of the BBB.

  19. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  20. Electrical analog of a Josephson junction

    International Nuclear Information System (INIS)

    Goldman, A.M.

    1979-01-01

    It is noted that a mathematical description of the phase-coupling of two oscillators synchronized by a phase-lock-loop under the influence of thermal white noise is analogous to that of the phase coupling of two superconductors in a Josephson junction also under the influence of noise. This analogy may be useful in studying threshold instabilities of the Josephson junction in regimes not restricted to the case of large damping. This is of interest because the behavior of the mean voltage near the threshold current can be characterized by critical exponents which resemble those exhibited by an order parameter of a continuous phase transition. As it is possible to couple a collection of oscillators together in a chain, the oscillator analogy may also be useful in exploring the dynamics and statistical mechanics of coupled junctions

  1. Several alternative approaches to the manufacturing of HTS Josephson junctions

    OpenAIRE

    Villegier , J.; Boucher , H.; Ghis , A.; Levis , M.; Méchin , Laurence; Moriceau , H.; Pourtier , F.; Vabre , M.; Nicoletti , S.; Correra , L.

    1994-01-01

    In this work we describe comparatively the fabrication and the characterization of various types of HTS Josephson junctions manufactured using different processes : grain boundary junctions have been studied both by the way of junctions on bicrystal substrates and of bi-epitaxial junctions. Ramp-edge types have been elaborated and characterized using mainly N-YBaCuO thin film as a barrier while the trilayer approach has been investigated through a-axis structures. YBaCuO or GdBaCuO supercondu...

  2. The role of Rap1 in cell-cell junction formation

    NARCIS (Netherlands)

    Kooistra, M.R.H.

    2008-01-01

    Both epithelial and endothelial cells form cell-cell junctions at the cell-cell contacts to maintain tissue integrity. Proper regulation of cell-cell junctions is required for the organisation of the tissue and to prevent leakage of blood vessels. In endothelial cells, the cell-cell junctions are

  3. What happens in Josephson junctions at high critical current densities

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  4. An ion-beam-assisted process for high-Tc Josephson junctions

    International Nuclear Information System (INIS)

    Huang, M.Q.; Chen, L.; Zhao, Z.X.; Yang, T.; Nie, J.C.; Wu, P.J.; Xiong, X.M.

    1997-01-01

    We have developed a non-ion-etching ion-beam-assisted-deposition (IBAD) process for fabricating high critical-temperature (T c ) grain boundary Josephson junctions through a photoresist liftoff mask. The YBa 2 Cu 3 O 7 (YBCO) junctions fabricated through this process exhibited the resistively-shunted-junction (RSJ)-like I - V characteristics. The well-defined Shapiro steps have been seen on the I - V curves under microwave radiation. The magnetic modulation of critical current of a 4 μm width YBCO junction tallied with the prior simulated Fraunhofer diffraction pattern of a Josephson junction with a spatially homogeneous critical current density. The maximum peak-to-peak modulation voltage across the dc superconducting quantum interference device (SQUID) fabricated by using these junctions reached up to 32 μV at 77 K. The magnetic modulation of the SQUID exhibited periodic behavior with the observed modulation period of 5.0x10 -4 G. copyright 1997 American Institute of Physics

  5. Au nanowire junction breakup through surface atom diffusion

    Science.gov (United States)

    Vigonski, Simon; Jansson, Ville; Vlassov, Sergei; Polyakov, Boris; Baibuz, Ekaterina; Oras, Sven; Aabloo, Alvo; Djurabekova, Flyura; Zadin, Vahur

    2018-01-01

    Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.

  6. Flicker (1/f) noise in tunnel junction DC SQUIDS

    International Nuclear Information System (INIS)

    Koch, R.H.; Clarke, J.; Goubau, W.M.; Martinis, J.M.; Pegrum, C.M.; Van Harlingen, D.J.

    1983-01-01

    We have measured the spectral density of the 1/f voltage noise in current-biased resistively shunted Josephson tunnel junctions and dc SQUIDs. A theory in which fluctuations in the temperature give rise to fluctuations in the critical current and hence in the voltage predicts the magnitude of the noise quite accurately for junctions with areas of about 2 x 10 4 μm 2 , but significantly overestimates the noise for junctions with areas of about 6 μm 2 . DC SQUIDs fabricated from these two types of junctions exhibit substantially more 1/f voltage noise than would be predicted from a model in which the noise arises from critical current fluctuations in the junctions. This result was confirmed by an experiment involving two different bias current and flux modulation schemes, which demonstrated that the predominant 1/f voltage noise arises not from critical current fluctuations, but from some unknown source that can be regarded as an apparent 1/f flux noise. Measurements on five different configurations of dc SQUIDs fabricated with thin-film tunnel junctions and with widely varying areas, inductances, and junction capacitances show that the spectral density of the 1/f equivalent flux noise is roughtly constant, within a factor of three of (10 -10 /f)phi 2 0 Hz -1 . It is emphasized that 1/f flux noise may not be the predominant source of 1/f noise in SQUIDS fabricated with other technologies

  7. Many-junction photovoltaic device performance under non-uniform high-concentration illumination

    Science.gov (United States)

    Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2017-09-01

    A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.

  8. Doping enhanced barrier lowering in graphene-silicon junctions

    Science.gov (United States)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  9. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  10. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  11. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  12. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  13. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  14. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  15. Magnetic properties of slablike Josephson-junction arrays

    International Nuclear Information System (INIS)

    Chen, D.; Sanchez, A.; Hernando, A.

    1994-01-01

    Magnetic properties of infinitely long and wide slablike Josephson-junction arrays (JJA's) consisting of 2N+1 rows of grains are calculated for the dc Josephson effect with gauge-invariant phase differences. When N is large, the intergranular magnetization curve, M J (H), of the JJA's in low fields approaches that of uniform Josephson junctions with lengths equal to the thicknesses of the JJA's, but in a larger field interval, its amplitude is dually modulated with periods determined by the junction and void areas. M J (H) curves for small N are more complicated. The concept of Josephson vortices and the application of the results to high-T c superconductors are discussed

  16. Internal resonances in periodically modulated long Josephson junctions

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.

    1995-01-01

    Current-voltage (I-V) characteristics of long Josephson junctions with a periodic lattice of localized inhomogeneities are studied. The interaction between the moving fluxons and the inhomogeneities causes resonant steps in the IV-curve. Some of these steps are due to a synchronization to resonant...... Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...

  17. Capacitance measurement of Josephson tunnel junctions with microwave-induced dc quasiparticle tunneling currents

    International Nuclear Information System (INIS)

    Hamasaki, K.; Yoshida, K.; Irie, F.; Enpuku, K.

    1982-01-01

    The microwave response of the dc quasiparticle tunneling current in Josephson tunnel junctions, where the Josephson current is suppressed by an external magnetic field, has been studied quantitatively in order to clarify its characteristics as a probe for the measurement of the junction capacitance. Extensive experiments for both small and long junctions are carried out for distinguishing between microwave behaviors of lumped and distributed constant junctions. It is shown that the observed voltage dependence of the dc quasiparticle tunneling current modified by an applied rf field is in good agreement with a theoretical result which takes into account the influence of the microwave circuit connected to the junction. The comparison between theory and experiment gives the magnitude of the internal rf field in the junction. Together with the applied rf field, this internal rf field leads to the junction rf impedance which is dominated by the junction capacitance in our experimental condition. In the case of lumped junctions, this experimental rf impedance is in reasonable agreement with the theoretical one with the junction capacitance estimated from the Fiske step of the distributed junction fabricated on the same substrate; the obtained ratio of the experimental impedance to the theoretical one is approximately 0.6--1.7. In the case of distributed junctions, however, experimental values of their characteristic impedances are approximately 0.2--0.3 of theoretical values calculated by assuming the one-dimensional junction model and taking account of the standing-wave effect in the junction

  18. Manufacturing P-N junctions in germanium bodies

    International Nuclear Information System (INIS)

    Hall, R.N.

    1980-01-01

    A method of producing p-n junctions in Ge so as to facilitate their use as radiation detectors involves forming a body of high purity p-type germanium, diffusing lithium deep into the body, in the absence of electrolytic processes, to form a junction between n-type and p-type germanium greater than 1 mm depth. (UK)

  19. Self-positioned thin Pb-alloy base electrode Josephson junction

    International Nuclear Information System (INIS)

    Kuroda, K.; Sato, K.

    1986-01-01

    A self-positioned thin (SPOT) Pb-alloy base electrode Josephson junction is developed. In this junction, a 50-nm thick Pb-alloy base electrode is restricted within the junction region on an Nb underlayer using a self-alignment technique. The grain size reduction and the base electrode area restriction greatly improve thermal cycling stability, where the thermal cycling tests of 4000 proposed junctions (5 x 5 μm 2 ) showed no failures after 4000 cycles. In addition, the elimination of insulator layer stress on the Pb-alloy base electrode rectifies the problem of size effect on current density. The Nb underlayers also serve to isolate the Pb-alloy base electrodes from the resistors

  20. Phonon spectroscopy with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Grimshaw, J.M.

    1984-02-01

    Superconducting tunnel junctions can be used as generators and detectors of monochromatic phonons of frequency larger than 80 GHz, as was first devised by Eisenmenger and Dayem (1967) and Kinder (1972a, 1973). In this report, we intend to give a general outline of this type of spectroscopy and to present the results obtained so far. The basic physics underlying phonon generation and detection are described in chapter I, a wider approach being given in the references therein. In chapter II, the different types of junctions are considered with respect to their use. Chapter III deals with the evaporation technique for the superconducting junctions. The last part of this report is devoted to the results that we have obtained on γ-irradiated LiF, pure Si and Phosphorous implanted Si. In these chapters, the limitations of the spectrometer are brought out and suggestions for further work are given [fr

  1. Breaking into the epithelial apical-junctional complex--news from pathogen hackers.

    Science.gov (United States)

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2004-02-01

    The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.

  2. Dilute Nitrides For 4-And 6- Junction Space Solar Cells

    Science.gov (United States)

    Essig, S.; Stammler, E.; Ronsch, S.; Oliva, E.; Schachtner, M.; Siefer, G.; Bett, A. W.; Dimroth, F.

    2011-10-01

    According to simulations the efficiency of conventional, lattice-matched GaInP/GaInAs/Ge triple-junction space solar cells can be strongly increased by the incorporation of additional junctions. In this way the existing excess current of the Germanium bottom cell can be reduced and the voltage of the stack can be increased. In particular, the use of 1.0 eV materials like GaInNAs opens the door for solar cells with significantly improved conversion efficiency. We have investigated the material properties of GaInNAs grown by metal organic vapour phase epitaxy (MOVPE) and its impact on the quantum efficiency of solar cells. Furthermore we have developed a GaInNAs subcell with a bandgap energy of 1.0 eV and integrated it into a GaInP/GaInAs/GaInNAs/Ge 4-junction and a AlGaInP/GaInP/AlGaInAs/GaInAs/GaInNAs/Ge 6- junction space solar cell. The material quality of the dilute nitride junction limits the current density of these devices to 9.3 mA/cm2 (AM0). This is not sufficient for a 4-junction cell but may lead to current matched 6- junction devices in the future.

  3. Josephson junctions in high-T/sub c/ superconductors

    Science.gov (United States)

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  4. Modeling Bloch oscillations in ultra-small Josephson junctions

    Science.gov (United States)

    Vora, Heli; Kautz, Richard; Nam, Sae Woo; Aumentado, Jose

    In a seminal paper, Likharev et al. developed a theory for ultra-small Josephson junctions with Josephson coupling energy (Ej) less than the charging energy (Ec) and showed that such junctions demonstrate Bloch oscillations which could be used to make a fundamental current standard that is a dual of the Josephson volt standard. Here, based on the model of Geigenmüller and Schön, we numerically calculate the current-voltage relationship of such an ultra-small junction which includes various error processes present in a nanoscale Josephson junction such as random quasiparticle tunneling events and Zener tunneling between bands. This model allows us to explore the parameter space to see the effect of each process on the width and height of the Bloch step and serves as a guide to determine whether it is possible to build a quantum current standard of a metrological precision using Bloch oscillations.

  5. Majorana splitting from critical currents in Josephson junctions

    Science.gov (United States)

    Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa

    2017-11-01

    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.

  6. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  7. Critical current fluctuation in a microwave-driven Josephson junction

    International Nuclear Information System (INIS)

    Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng

    2007-01-01

    Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations

  8. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.

    Science.gov (United States)

    Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin

    2017-06-01

    With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.

  9. Magnetic field behavior of current steps in long Josephson junctions

    International Nuclear Information System (INIS)

    Costabile, G.; Cucolo, A.M.; Pace, S.; Parmentier, R.D.; Savo, B.; Vaglio, R.

    1980-01-01

    The zero-field steps, or dc current singularities, in the current-voltage characteristics of long Josephson tunnel junctions, first reported by Chen et al., continue to attract research interest both because their study can provide fundamental information on the dynamics of fluxons in such junctions and because they are accompanied by the emission of microwave radiation from the junction, which may be exploitable in practical oscillator applications. The purpose of this paper is to report some experimental observations of the magnetic field behavior of the steps in junctions fabricated in our Laboratory and to offer a qualitative explanation for this behavior. Measurements have been made both for very long (L >> lambdasub(J)) and for slightly long (L approx. >= lambdasub(J)) junctions with a view toward comparing our results with those of other workers. (orig./WRI)

  10. Environmental Audit of the Grand Junction Projects Office

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs.

  11. Environmental Audit of the Grand Junction Projects Office

    International Nuclear Information System (INIS)

    1991-08-01

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs

  12. Absolute migration and the evolution of the Rodriguez triple junction ...

    African Journals Online (AJOL)

    The Rodriguez Triple Junction (RTJ) is a junction connecting three mid-ocean ridges in the Indian Ocean: the Southwest Indian Ridge (SWIR), the Central Indian Ridge (CIR) and the Southeast Indian Ridge (SEIR). The evolution of the RTJ has been studied extensively for the past 10 Ma and the triple junction is believed to ...

  13. Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions.

    Science.gov (United States)

    Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre

    2018-02-08

    Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

  14. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.

    Science.gov (United States)

    Paulus, Geraldine L C; Wang, Qing Hua; Ulissi, Zachary W; McNicholas, Thomas P; Vijayaraghavan, Aravind; Shih, Chih-Jen; Jin, Zhong; Strano, Michael S

    2013-06-10

    Junctions between a single walled carbon nanotube (SWNT) and a monolayer of graphene are fabricated and studied for the first time. A single layer graphene (SLG) sheet grown by chemical vapor deposition (CVD) is transferred onto a SiO₂/Si wafer with aligned CVD-grown SWNTs. Raman spectroscopy is used to identify metallic-SWNT/SLG junctions, and a method for spectroscopic deconvolution of the overlapping G peaks of the SWNT and the SLG is reported, making use of the polarization dependence of the SWNT. A comparison of the Raman peak positions and intensities of the individual SWNT and graphene to those of the SWNT-graphene junction indicates an electron transfer of 1.12 × 10¹³ cm⁻² from the SWNT to the graphene. This direction of charge transfer is in agreement with the work functions of the SWNT and graphene. The compression of the SWNT by the graphene increases the broadening of the radial breathing mode (RBM) peak from 3.6 ± 0.3 to 4.6 ± 0.5 cm⁻¹ and of the G peak from 13 ± 1 to 18 ± 1 cm⁻¹, in reasonable agreement with molecular dynamics simulations. However, the RBM and G peak position shifts are primarily due to charge transfer with minimal contributions from strain. With this method, the ability to dope graphene with nanometer resolution is demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shapiro and parametric resonances in coupled Josephson junctions

    International Nuclear Information System (INIS)

    Gaafar, Ma A; Shukrinov, Yu M; Foda, A

    2012-01-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  16. Towards molecular electronics with large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, HB; Blom, PWM; de Leeuw, DM; de Boer, B

    2006-01-01

    Electronic transport through single molecules has been studied extensively by academic(1-8) and industrial(9,10) research groups. Discrete tunnel junctions, or molecular diodes, have been reported using scanning probes(11,12), break junctions(13,14), metallic crossbars(6) and nanopores(8,15). For

  17. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells

    International Nuclear Information System (INIS)

    Orellana, Juan A.; Palacios-Prado, Nicolas; Saez, Juan C.

    2006-01-01

    In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels

  18. Kilovoltage Intrafraction Monitoring for Prostate Intensity Modulated Arc Therapy: First Clinical Results

    International Nuclear Information System (INIS)

    Ng, Jin Aun; Booth, Jeremy T.; Poulsen, Per R.; Fledelius, Walther; Worm, Esben Schjødt; Eade, Thomas; Hegi, Fiona; Kneebone, Andrew; Kuncic, Zdenka; Keall, Paul J.

    2012-01-01

    Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). Methods and Materials: Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiring kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced ≥3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. Results: KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of ≥3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. Conclusions: KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.

  19. Systematic errors in respiratory gating due to intrafraction deformations of the liver

    International Nuclear Information System (INIS)

    Siebenthal, Martin von; Szekely, Gabor; Lomax, Antony J.; Cattin, Philippe C.

    2007-01-01

    This article shows the limitations of respiratory gating due to intrafraction deformations of the right liver lobe. The variability of organ shape and motion over tens of minutes was taken into account for this evaluation, which closes the gap between short-term analysis of a few regular cycles, as it is possible with 4DCT, and long-term analysis of interfraction motion. Time resolved MR volumes (4D MR sequences) were reconstructed for 12 volunteers and subsequent non-rigid registration provided estimates of the 3D trajectories of points within the liver over time. The full motion during free breathing and its distribution over the liver were quantified and respiratory gating was simulated to determine the gating accuracy for different gating signals, duty cycles, and different intervals between patient setup and treatment. Gating effectively compensated for the respiratory motion within short sequences (3 min), but deformations, mainly in the anterior inferior part (Couinaud segments IVb and V), led to systematic deviations from the setup position of more than 5 mm in 7 of 12 subjects after 20 min. We conclude that measurements over a few breathing cycles should not be used as a proof of accurate reproducibility of motion, not even within the same fraction, if it is longer than a few minutes. Although the diaphragm shows the largest magnitude of motion, it should not be used to assess the gating accuracy over the entire liver because the reproducibility is typically much more limited in inferior parts. Simple gating signals, such as the trajectory of skin motion, can detect the exhalation phase, but do not allow for an absolute localization of the complete liver over longer periods because the drift of these signals does not necessarily correlate with the internal drift

  20. Exotic hadron and string junction model

    International Nuclear Information System (INIS)

    Imachi, Masahiro

    1978-01-01

    Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M 4 , B 5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)

  1. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter

    2012-01-01

    Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position

  2. ACCIDENT PREDICTION MODELS FOR UNSIGNALISED URBAN JUNCTIONS IN GHANA

    OpenAIRE

    Mohammed SALIFU, MSc., PhD, MIHT, MGhIE

    2004-01-01

    The main objective of this study was to provide an improved method for safety appraisal in Ghana through the development and application of suitable accident prediction models for unsignalised urban junctions. A case study was designed comprising 91 junctions selected from the two most cosmopolitan cities in Ghana. A wide range of traffic and road data together with the corresponding accident data for each junction for the three-year period 1996-1998 was utilized in the model development p...

  3. Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions

    Science.gov (United States)

    Wu, B. H.; Cao, J. C.; Timm, C.

    2012-07-01

    We study the interplay of polaronic effect and superconductivity in transport through molecular Josephson junctions. The tunneling rates of electrons are dominated by vibronic replicas of the superconducting gap, which show up as prominent features in the differential conductance for the dc and ac current. For relatively large molecule-lead coupling, a features that appears when the Josephson frequency matches the vibron frequency can be identified with an over-the-gap structure observed by Marchenkov [Nat. Nanotech. 1748-338710.1038/nnano.2007.2182, 481 (2007)]. However, we are more concerned with the weak-coupling limit, where resonant tunneling through the molecular level dominates. We find that certain features involving both Andreev reflection and vibron emission show an unusual shift of the bias voltage V at their maximum with the gate voltage Vg as V˜(2/3)Vg. Moreover, due to the polaronic effect, the ac Josephson current shows a phase shift of π when the bias eV is increased by one vibronic energy quantum ℏωv. This distinctive even-odd effect is explained in terms of the different sign of the coupling to vibrons of electrons and of Andreev-reflected holes.

  4. Droplet Traffic Control at a simple T junction

    Science.gov (United States)

    Panizza, Pascal; Engl, Wilfried; Colin, Annie; Ajdari, Armand

    2006-03-01

    A basic yet essential element of every traffic flow control is the effect of a junction where the flow is separated into several streams. How do pedestrians, vehicles or blood cells divide when they reach a junction? How does the outcome depend on their density? Similar fundamental questions hold for much simpler systems: in this paper, we have studied the behaviour of periodic trains of water droplets flowing in oil through a channel as they reach a simple, locally symmetric, T junction. Depending on their dilution, we observe that the droplets are either alternately partitioned between both outlets or sorted exclusively into the shortest one. We show that this surprising behaviour results from the hydrodynamic feed-back of drops in the two outlets on the selection process occurring at the junction. Our results offer a first guide for the design and modelling of droplet traffic in complex branched networks, a necessary step towards parallelized droplet-based ``lab-on-chip'' devices.

  5. The string-junction picture of multiquark states: an update

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, G.C. [Dipartimento di Fisica, Università di Roma Tor Vergata, INFN, Sezione di Roma 2, Via della Ricerca Scientifica, 00133 Roma (Italy); Centro Fermi, Museo Storico della Fisica,Piazza del Viminale 1, 00184 Roma (Italy); Veneziano, G. [Collège de France,11 place M. Berthelot, 75005 Paris (France); Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica, Università di Roma La Sapienza,Piazzale A. Moro 5, 00185 Roma (Italy)

    2016-06-07

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with “irreducible' gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction J or an anti-junction J̄. For the junction-free sector (ordinary q q̄ mesons and glueballs) the picture is supported by large-N (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with J and/or J̄ constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of J−J̄ annihilation diagrams. Such a rule implies that hadrons with junctions are “mesophobic' and thus unusually narrow if they are below threshold for decaying into as many baryons as their total number of junctions (two for a tetraquark, three for a pentaquark). Experimental support for our claim, based on the observation that narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic) thresholds, will be presented.

  6. Mixing Hot and Cold Water Streams at a T-Junction

    Science.gov (United States)

    Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin

    2008-01-01

    A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…

  7. Optically induced bistable states in metal/tunnel-oxide/semiconductor /MTOS/ junctions

    Science.gov (United States)

    Lai, S. K.; Dressendorfer, P. V.; Ma, T. P.; Barker, R. C.

    1981-01-01

    A new switching phenomenon in metal-oxide semiconductor tunnel junction has been discovered. With a sufficiently large negative bias applied to the electrode, incident visible light of intensity greater than about 1 microW/sq cm causes the reverse-biased junction to switch from a low-current to a high-current state. It is believed that hot-electron-induced impact ionization provides the positive feedback necessary for switching, and causes the junction to remain in its high-current state after the optical excitation is removed. The junction may be switched back to the low-current state electrically. The basic junction characteristics have been measured, and a simple model for the switching phenomenon has been developed.

  8. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions

    International Nuclear Information System (INIS)

    Li, C; Mishchenko, A; Li, Z; Pobelov, I; Wandlowski, Th; Li, X Q; Wuerthner, F; Bagrets, A; Evers, F

    2008-01-01

    We report a scanning tunneling microscopy (STM) experiment in an electrochemical environment which studies a prototype molecular switch. The target molecules were perylene tetracarboxylic acid bisimides modified with pyridine (P-PBI) and methylthiol (T-PBI) linker groups and with bulky tert-butyl-phenoxy substituents in the bay area. At a fixed bias voltage, we can control the transport current through a symmetric molecular wire Au|P-PBI(T-PBI)|Au by variation of the electrochemical 'gate' potential. The current increases by up to two orders of magnitude. The conductances of the P-PBI junctions are typically a factor 3 larger than those of T-PBI. A theoretical analysis explains this effect as a consequence of shifting the lowest unoccupied perylene level (LUMO) in or out of the bias window when tuning the electrochemical gate potential VG. The difference in on/off ratios reflects the variation of hybridization of the LUMO with the electrode states with the anchor groups. I T -E S(T) curves of asymmetric molecular junctions formed between a bare Au STM tip and a T-PBI (P-PBI) modified Au(111) electrode in an aqueous electrolyte exhibit a pronounced maximum in the tunneling current at -0.740, which is close to the formal potential of the surface-confined molecules. The experimental data were explained by a sequential two-step electron transfer process

  9. NbN-AlN-NbN Josephson junctions on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)

    2016-07-01

    Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.

  10. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  11. Marker of cemento-periodontal ligament junction associated with periodontal regeneration.

    Science.gov (United States)

    Hara, Ryohko; Wato, Masahiro; Tanaka, Akio

    2005-06-01

    The purpose of this study was to identify factors promoting formation of the cemento-periodontal ligament junction. Regeneration of the cemento-periodontal ligament junction is an important factor in recovery of the connective tissue attachment to the cementum and it is important to identify all specific substances that promote its formation. To clarify the substances involved in cemento-periodontal ligament junction formation, we produced a monoclonal antibody (mAb) to human cemento-periodontal ligament junction (designated as the anti-TAP mAb) and examined its immunostaining properties and reactive antigen. Hybridomas producing monoclonal antibody against human cemento-periodontal ligament junction antigens were established by fusing P3U1 mouse myeloma cells with spleen cells from BALB/c mice immunized with homogenized human cemento-periodontal ligament junction. The mAb, the anti-TAP mAb for cemento-periodontal ligament junction, was then isolated. The immunoglobulin class and light chain of the mAb were examined using an isotyping kit. Before immunostaining, antigen determination using an enzymatic method or heating was conducted. Human teeth, hard tissue-forming lesions, and animal tissues were immunostained by the anti-TAP mAb. The anti-TAP mAb was positive in human cemento-periodontal ligament junction and predentin but negative in all other human and animal tissues examined. In the cemento-osseous lesions, the anti-TAP mAb was positive in the peripheral area of the cementum and cementum-like hard tissues and not in the bone and bone-like tissues. The anti-TAP mAb showed IgM (kappa) and recognized phosphoprotein. The anti-TAP mAb is potentially useful for developing new agents promoting cementogenesis and periodontal regeneration.

  12. A numerical model of p-n junctions bordering on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Aberle, A.G.; Jianhua Zhao; Aihua Wang; Heiser, G. [University of New South Wales, Sydney (Australia). Centre for Photovolatic Engineering

    2002-10-01

    Many solar cell structures contain regions where the emitter p-n junction borders on the surface. If the surface is not well passivated, a large amount of recombination occurs in such regions. This type of recombination is influenced by the electrostatics of both the p-n junction and the surface, and hence it is different from the commonly described recombination phenomena occurring in the p-n junction within the bulk. We developed a two-dimensional model for the recombination mechanisms occurring in emitter p-n junctions bordering on surfaces. The model is validated by reproducing the experimental I-V curves of specially designed silicon solar cells. It is shown under which circumstances a poor surface passivation, near where the p-n junction borders on the surface, reduces the fill factor and the open-circuit voltage. The model can be applied to many other types of solar cells. (author)

  13. Preparation of CN /Carbon Nanotube Intramolecular Junctions by ...

    African Journals Online (AJOL)

    NICO

    intramolecular junctions composed of CNx with a bamboo-like structure and empty hollow carbon nanotubes were observed, ... and excellent thermal and mechanical properties.1,2 In recent .... tion of hexane, and the other segment with a curved compart- ... by an arrow lies at the interface of the junction between 'b' and.

  14. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  15. Proliferation of sharp kinks on cosmic (super)string loops with junctions

    International Nuclear Information System (INIS)

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2010-01-01

    Motivated by their effect on the gravitational wave signal emitted by cosmic strings, we study the dynamics of kinks on strings of different tensions meeting at junctions. The propagation of a kink through a Y junction leads to the formation of three 'daughter' kinks. Assuming a uniform distribution of the incoming wave vectors at the junction, we find there is a significant region of configuration space in which the sharpness of at least one of the daughter kinks is enhanced relative to the sharpness of the initial kink. For closed loops with junctions we show this leads to an exponential growth in time of very sharp kinks. Using numerical simulations of realistic, evolving cosmic string loops with junctions to calculate the distribution of kink amplitudes as a function of time, we show that loops of this kind typically develop several orders of magnitude of very sharp kinks before the two junctions collide. This collision, or other effects such as gravitational backreaction, may end the proliferation.

  16. Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure.

    Science.gov (United States)

    Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C; Sugiyama, Hiroshi; Takeyasu, Kunio

    2014-06-01

    Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. GaAs nanowire array solar cells with axial p-i-n junctions.

    Science.gov (United States)

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  18. Facial Soft Tissue Measurement in Microgravity-induces Fluid Shifts

    Science.gov (United States)

    Marshburn, Thomas; Cole, Richard; Pavela, James; Garcia, Kathleen; Sargsyan, Ashot

    2014-01-01

    Fluid shifts are a well-known phenomenon in microgravity, and one result is facial edema. Objective measurement of tissue thickness in a standardized location could provide a correlate with the severity of the fluid shift. Previous studies of forehead tissue thickness (TTf) suggest that when exposed to environments that cause fluid shifts, including hypergravity, head-down tilt, and high-altitude/lowpressure, TTf changes in a consistent and measurable fashion. However, the technique in past studies is not well described or standardized. The International Space Station (ISS) houses an ultrasound (US) system capable of accurate sub-millimeter measurements of TTf. We undertook to measure TTf during long-duration space flight using a new accurate, repeatable and transferable technique. Methods: In-flight and post-flight B-mode ultrasound images of a single astronaut's facial soft tissues were obtained using a Vivid-q US system with a 12L-RS high-frequency linear array probe (General Electric, USA). Strictly mid-sagittal images were obtained involving the lower frontal bone, the nasofrontal angle, and the osseo-cartilaginous junction below. Single images were chosen for comparison that contained identical views of the bony landmarks and identical acoustical interface between the probe and skin. Using Gingko CADx DICOM viewing software, soft tissue thickness was measured at a right angle to the most prominent point of the inferior frontal bone to the epidermis. Four independent thickness measurements were made. Conclusions: Forehead tissue thickness measurement by ultrasound in microgravity is feasible, and our data suggest a decrease in tissue thickness upon return from microgravity environment, which is likely related to the cessation of fluid shifts. Further study is warranted to standardize the technique with regard to the individual variability of the local anatomy in this area.

  19. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  20. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    Science.gov (United States)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  1. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    International Nuclear Information System (INIS)

    Xie Yaoqin; Gu Jia; Xing Lei; Liu Wu

    2013-01-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow. (paper)

  2. Proposed differential-frequency-readout system by hysteretic Josephson junctions

    International Nuclear Information System (INIS)

    Wang, L.Z.; Duncan, R.V.

    1992-01-01

    The Josephson relation V=nhν/2e has been verified experimentally to 3 parts in 10 19 [A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)]. Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model [W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)] of Josephson junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 μm [D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)]. The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step

  3. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  4. Large eddy simulation of a wing-body junction flow

    Science.gov (United States)

    Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2014-11-01

    We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)

  5. Mechanical break junctions: enormous information in a nanoscale package.

    Science.gov (United States)

    Natelson, Douglas

    2012-04-24

    Mechanical break junctions, particularly those in which a metal tip is repeatedly moved in and out of contact with a metal film, have provided many insights into electronic conduction at the atomic and molecular scale, most often by averaging over many possible junction configurations. This averaging throws away a great deal of information, and Makk et al. in this issue of ACS Nano demonstrate that, with both simulated and real experimental data, more sophisticated two-dimensional analysis methods can reveal information otherwise obscured in simple histograms. As additional measured quantities come into play in break junction experiments, including thermopower, noise, and optical response, these more sophisticated analytic approaches are likely to become even more powerful. While break junctions are not directly practical for useful electronic devices, they are incredibly valuable tools for unraveling the electronic transport physics relevant for ultrascaled nanoelectronics.

  6. BPS dynamics of the triple (p,q) string junction

    International Nuclear Information System (INIS)

    Rey, S.-J.; Yee, J.-T.

    1998-01-01

    We study the dynamics of the triple junction of (p,q) strings in type IIB string theory. We probe the tension and mass density of (p,q) strings by studying harmonic fluctuations of the triple junction. We show that they agree perfectly with the BPS formula provided a suitable geometric interpretation of the junction is given. We provide a precise statement of the BPS limit and force-balance property. At weak coupling and sufficiently dense limit, we argue that a (p,q) string embedded in the string network is a 'wiggly string', whose low-energy dynamics can be described via a renormalization group evolved, smooth effective non-relativistic string. We also suggest the possibility that, upon type IIB strings being promoted to the M-theory membrane, there can exist 'evanescent' bound-states at the triple junction in the continuum. (orig.)

  7. Symmetry breaking in SNS junctions: edge transport and field asymmetries

    Science.gov (United States)

    Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles

    We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.

  8. Charge splitters and charge transport junctions based on guanine quadruplexes

    Science.gov (United States)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  9. E-cadherin junction formation involves an active kinetic nucleation process

    Science.gov (United States)

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  10. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  11. Breaking gold nano-junctions simulation and analysis

    DEFF Research Database (Denmark)

    Lauritzen, Kasper Primdal

    , to predict the structure of a gold junction just as it breaks. This method is based on artificial neural networks and can be used on experimental data, even when it is trained purely on simulated data. The method is extended to other types of experimental traces, where it is trained without the use......Simulating the movements of individual atoms allows us to look at and investigate the physical processes that happen in an experiment. In this thesis I use simulations to support and improve experimental studies of breaking gold nano-junctions. By using molecular dynamics to study gold nanowires, I...... can investigate their breaking forces under varying conditions, like stretching rate or temperature. This resolves a confusion in the literature, where the breaking forces of two different breaking structures happen to coincide. The correlations between the rupture and reformation of a gold junction...

  12. Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation.

    Science.gov (United States)

    Gardiner, D M; Grey, R D

    1983-04-01

    We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma membrane is associated with junctions) and increase dramatically during progesterone-induced maturation. Junctions in the mature, unactivated egg are two to three times more abundant in the animal hemisphere (25-30 percent of the plasma membrane associated with junction) as compared with the vegetal hemisphere (10-15 percent). Junction density decreases rapidly to values characteristic of immature oocytes in response to egg activation. The plasma membrane-ER junctions of xenopus eggs are strikingly similar in structure to membrane junctions in muscle cells thought to be essential in the triggering of intracellular calcium release from the sarcoplasmic reticulum. In addition, the junctions' distinctive, animal-vegetal polarity of distribution, their dramatic appearance during maturation, and their disapperance during activation are correlated with previously documented patterns of calcium-mediated events in anuran eggs. We discuss several lines of evidence supporting the hypothesis that these junctions in xenopus eggs are sites that transduce extracellular events into intracellular calcium release during fertilization and activation of development.

  13. Stretching of BDT-gold molecular junctions: Thiol or thiolate termination?

    KAUST Repository

    Souza, Amaury De Melo; Rungger, Ivan; Pontes, Renato Borges; Rocha, Alexandre Reily; Da Silva, Antô nio José Roque; Schwingenschlö gl, Udo; Sanvito, S.

    2014-01-01

    It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.

  14. Steady-state properties of Josephson junctions with direct conductivity

    International Nuclear Information System (INIS)

    Zubkov, A.A.; Kupriyanov, M.Y.; Semenov, V.K.

    1981-01-01

    A new criterion for determining the kinetic inductance of Josephson junctions is introduced. The effects of temperature T, the critical temperatures of the superconducting electrodes T/sub c/1 and T/sub c/2, and the weak-link length on the kinetic inductance of ''dirty'' junctions with direct conductivity are analyzed within the framework of the Usadel equations. Numerical calculations show that both a large characteristic voltage and a nearly harmonic dependence of the current on the phase difference of the superconducting-electrode wave functions cannot be obtained by varying the junction parameters

  15. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  16. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  17. Neutron induced permanent damage in Josephson junctions

    International Nuclear Information System (INIS)

    Mueller, G.P.; Rosen, M.

    1982-01-01

    14 MeV neutron induced permanent changes in the critical current density of Josephson junctions due to displacement damage in the junction barrier are estimated using a worst case model and the binary collision simulation code MARLOWE. No likelihood of single event hard upsets is found in this model. It is estimated that a fluence of 10 18 -10 19 neutrons/cm 2 are required to change the critical current density by 5%

  18. Spinal Gap Junction Channels in Neuropathic Pain

    OpenAIRE

    Jeon, Young Hoon; Youn, Dong Ho

    2015-01-01

    Damage to peripheral nerves or the spinal cord is often accompanied by neuropathic pain, which is a complex, chronic pain state. Increasing evidence indicates that alterations in the expression and activity of gap junction channels in the spinal cord are involved in the development of neuropathic pain. Thus, this review briefly summarizes evidence that regulation of the expression, coupling, and activity of spinal gap junction channels modulates pain signals in neuropathic pain states induced...

  19. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy...... of the maximum junction temperature estimation is also proposed. Finally, the validity and effectiveness of the proposed method is confirmed by experimental results.......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  20. Photovoltaic Cells Improvised With Used Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Akintayo, J. A

    2002-01-01

    The understanding of the underlying principle that the solar cell consists of a p-n junction is exploited to adapt the basic NPN or PNP Bipolar Junction Transistors (BJT) to serve as solar cells. In this mode the in improvised solar cell have employed just the emitter and the base sections with an intact emitter/base junction as the active PN area. The improvised devices tested screened and sorted are wired up in strings, blocks and modules. The photovoltaic modules realised tested as close replica of solar cells with output voltage following insolation level. Further work need be done on the modules to make them generate usable levels of output voltage and current

  1. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  2. NbCN Josephson junctions with AlN barriers

    International Nuclear Information System (INIS)

    Thomasson, S.L.; Murduck, J.M.; Chan, H.

    1991-01-01

    This paper reports on niobium carbonitride (NbCN) Josephson circuits which operate over a wider temperature range than either niobium or niobium nitride circuits. Higher operating temperature places NbCN technology more comfortably within the range of closed cycle refrigerators, a key factor in aerospace applications. We have fabricated tunnel junctions from NbCN films with transition temperatures up to 18 Kelvin. High quality NbCN tunnel junction fabrication generally requires low stress films with roughness less than the barrier thickness (∼20 Angstrom). We have developed scanning tunneling microscopy as a tool for measuring and optimizing film smoothness. Junctions formed in situ with AIN tunneling barriers show reproducible I-V characteristics

  3. Measurement of noise in YBCO bi-crystal junctions

    International Nuclear Information System (INIS)

    Kuznik, J.; Hao, L.; Macfarlane, J.C.; Pegrum, C.M.; Fischer, G.M.; Mygind, J.; Pedersen, N.F.; Beck, A.; Gross, R.

    1993-01-01

    This paper describes collaborative work between three institutions as part of an ESPRIT programme to fabricate and characterise grain-boundary junctions. Bi-crystal junctions were fabricated at Tuebingen on SrTiO 3 substrates with a 24 misorientation angle and a-b tilt. 200nm of c-axis YBCO was sputter-deposited using a hollow-cathode magnetron, and the films patterned with optical lithography and Ar ion beam etching (3). For test purposes junctions with a range of sizes were made, with widths between 4 and 20μm. These have been characterised for noise properties at 0.3 - 1kHz and 60kHz at Strathclyde, and at 70GHz at Lyngby. (orig.)

  4. Resistance switch employing a simple metal nanogap junction

    International Nuclear Information System (INIS)

    Naitoh, Yasuhisa; Horikawa, Masayo; Abe, Hidekazu; Shimizu, Tetsuo

    2006-01-01

    In recent years, several researchers have reported the occurrence of reversible resistance switching effects in simple metal nanogap junctions. A large negative resistance is observed in the I-V characteristics of such a junction when high-bias voltages are applied. This phenomenon is characteristic behaviour on the nanometre scale; it only occurs for gap widths slightly under 13 nm. Furthermore, such a junction exhibits a non-volatile resistance hysteresis when the bias voltage is reduced very rapidly from a high level to around 0 V, and when the bias voltage is reduced slowly. This non-volatile resistance change occurs as a result of changes in the gap width between the metal electrodes, brought about by the applied bias voltage

  5. Expertise-related deactivation of the right temporoparietal junction during musical improvisation.

    Science.gov (United States)

    Berkowitz, Aaron L; Ansari, Daniel

    2010-01-01

    Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.

  6. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H.

    2012-01-01

    -performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising

  7. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    Science.gov (United States)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  8. Investigation on Single-Molecule Junctions Based on Current–Voltage Characteristics

    Directory of Open Access Journals (Sweden)

    Yuji Isshiki

    2018-02-01

    Full Text Available The relationship between the current through an electronic device and the voltage across its terminals is a current–voltage characteristic (I–V that determine basic device performance. Currently, I–V measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule I–Vs provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on I–Vs of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on I–Vs and identification of the charged carriers (i.e., electrons or holes are presented. The analysis in the single-molecule I–Vs provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.

  9. Simulations of signal amplification and oscillations using a SNS junction

    International Nuclear Information System (INIS)

    Luiz, A.M.; Soares, V.; Nicolsky, R.

    1998-01-01

    A superconducting - normal metal - superconducting junction (SNS junction) may exhibit a low voltage negative differential resistance (LVNDR) effect over part of its current voltage characteristic (CVC). As the LVNDR effect is stable against a bias voltage at this CVC range, it should be possible to combine a SNS junction with conventional electronic circuits to obtain electronic devices such as mixers, amplifiers and oscillators. Making use of this remarkable effect, we show that an amplifier may be feasible by assembling a simple voltage divider made up of a SNS junction in series with a resistor. The amplifier circuit includes an adjustable DC voltage supply (the bias voltage) and an AC signal source with a given voltage. The SNS junction is connected in series with a resistor R. Choosing values of the load resistance R approximately equal to the module of the negative differential resistance (dV/dI), at the bias voltage, we may obtain large gains in this amplifier device. In order to get an oscillator, the SNS junction should be connected to a RLC tank circuit with a bias voltage adjusted in the range of the LVNDR region of its CVC. A power output of the order of one microwatt may be easily obtained. (orig.)

  10. Superconductor-Insulator transition in a single Josephson junction

    International Nuclear Information System (INIS)

    Sonin, E.B.; PenttilA, J.S.; Parts, O.; Hakonen, P.J.; Paalanen, M.A.

    1999-01-01

    For ultra small Josephson junctions, when quantum effects become important, dissipative phase transition (DPT) has been predicted. The physical origin of this transition is the suppression of macroscopic quantum tunneling of the phase by tile interaction with dissipative quantum-mechanical environment. Macroscopic quantum tunneling destroys superconductivity of a junction, whereas suppression of tunneling restores superconductivity. Hence, this transition is often called a superconductor-insulator transition (SIT). SIT was predicted for various systems, but its detection in a single Josephson junction is of principal importance since it is the simplest system where this transition is expected, without any risk of being masked by other physical processes, as is possible in more complicated systems like regular or' random Josephson junction arrays. In this Letter we present results of our measurements on R = dV/dI vs. I curves, for a variety of single small isolated Josephson junctions, shunted and un shunted, with different values of capacitance C and normal state tunneling resistance RT. We have detected a crossover. between two types of RI-curves with an essentially different behavior at small currents. On the basis of this crossover, we are able to map out the whole phase diagram for a Josephson junction. The position of the observed phase boundary did not agree with that expected from the original theory. However, the theory revised to take into account a finite accuracy of our voltage measurements (viz., the minimum voltage which we are able to detect), explains well the observed phase diagram. Our important conclusion is that the concept of dissipative phase transition (DPT) and superconductor-insulator transition (SIT) are not completely identical as assumed before. Both are accompanied by the sign change of the thermo resistance, which is traditionally considered as a signature of SIT. Thus any DPT is SIT, but not vice versa. We argue that the real signature

  11. MoRe-based and NbN-based tunnel junctions and their characteristics

    International Nuclear Information System (INIS)

    Shaternik, V.E.; Noskov, V.L.; Chubatyy, V.V.; Larkin, S.Yu.; Sizontov, V.M.; Miroshnikov, A.M.; Karmazin, A.A.

    2007-01-01

    Full text: Perspective [1] Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide- normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (∼50-100 nm) MoRe superconducting films are deposited on Al 2 O 3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies [2,3]. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Results of computer simulation of quasiparticles I-V curves of NbN-based junctions are presented and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency , clear Shapiro steps in the measured I-V curves were observed and discussed. (authors)

  12. Reliability of twin-dependent triple junction distributions measured from a section plane

    International Nuclear Information System (INIS)

    Hardy, Graden B.; Field, David P.

    2016-01-01

    Numerous studies indicate polycrystalline triple junctions are independent microstructural features with distinct properties from their constituent grain boundaries. Despite the influence of triple junctions on material properties, it is impractical to characterize triple junctions on a large scale using current three-dimensional methods. This work demonstrates the ability to characterize twin-dependent triple junction distributions from a section plane by adopting a grain boundary plane stereology. The technique is validated through simulated distributions and simulated electron back-scatter diffraction (EBSD) data. Measures of validation and convergence are adopted to demonstrate the quantitative reliability of the technique as well as the convergence behavior of twin-dependent triple junction distributions. This technique expands the characterization power of EBSD and prepares the way for characterizing general triple junction distributions from a section plane. - Graphical abstract: The distribution of planes forming a triple junction with a given twin boundary is shown partially in the stereographic projections below from a given projection. The plot on the left shows the ideal/measured distribution and the plot on the right shows the distribution obtained from the stereological method presented here.

  13. Nonlinearity in superconductivity and Josephson junctions

    International Nuclear Information System (INIS)

    Lazarides, N.

    1995-01-01

    Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U 1-x Th x Be 13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs

  14. Breaking into the epithelial apical–junctional complex — news from pathogen hackers

    Science.gov (United States)

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2012-01-01

    The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310

  15. Charge transport in junctions between d-wave superconductors

    International Nuclear Information System (INIS)

    Barash, Y.S.; Galaktionov, A.V.; Zaikin, A.D.

    1995-01-01

    We develop a microscopic analysis of superconducting and dissipative currents in junctions between superconductors with d-wave symmetry of the order parameter. We study the proximity effect in such superconductors and show that for certain crystal orientations the superconducting order parameter can be essentially suppressed in the vicinity of a nontransparent specularly reflecting boundary. This effect strongly influences the value and the angular dependence of the dc Josephson current j S . At T∼T c it leads to a crossover between j S ∝T c -T and j S ∝(T c -T) 2 respectively for homogeneous and nonhomogeneous distribution of the order parameter in the vicinity of a tunnel junction. We show that at low temperatures the current-phase relation j S (cphi) for superconductor--normal-metal--superconductor junctions and short weak links between d-wave superconductors is essentially nonharmonic and contains a discontinuity at cphi=0. This leads to further interesting features of such systems which can be used for pairing symmetry tests in high-temperature superconductors (HTSC). We also investigated the low-temperature I-V curves of normal-metal--superconductor and superconductor-superconductor tunnel junctions and demonstrated that depending on the junction type and crystal orientation these curves show zero-bias anomalies I∝V 2 , I∝V 2 ln(1/V), and I∝V 3 caused by the gapless behavior of the order parameter in d-wave superconductors. Many of our results agree well with recent experimental findings for HTSC compounds

  16. Towards quantum signatures in a swept-bias Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Losert, Harald; Vogel, Karl; Schleich, Wolfgang P. [Institut fuer Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitaet Ulm, D-89069 Ulm (Germany)

    2016-07-01

    Josephson junctions are one of the best examples for the observation of macroscopic quantum tunneling. The phase difference in a current-biased Josephson junction behaves like the position of a particle in a tilted washboard potential. The escape of this phase-particle corresponds to the voltage switching of the associated junction. Quantum mechanically, the escape from the washboard potential can be explained as tunneling from the ground state, or an excited state. However, it has been shown, that in the case of periodic driving the experimental data for quantum mechanical key features, e.g. Rabi oscillations or energy level quantization, can be reproduced by a completely classical description. Motivated by this discussion, we investigate a swept-bias Josephson junction in the case of a large critical current. In particular, we contrast the switching current distributions resulting from a quantum mechanical and classical description of the time evolution.

  17. Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation

    Directory of Open Access Journals (Sweden)

    Guo Xiao-Mao

    2010-10-01

    Full Text Available Abstract Background The cone beam CT (CBCT guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT guided accelerated partial breast irradiation (APBI. Methods Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels. Results A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR, 3.1 mm and 2.3 mm in the superior-inferior (SI, and 2.3 mm and 2.0 mm in the anterior-posterior (AP directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10

  18. Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Cai, Gang; Hu, Wei-Gang; Chen, Jia-Yi; Yu, Xiao-Li; Pan, Zi-Qiang; Yang, Zhao-Zhi; Guo, Xiao-Mao; Shao, Zhi-Min; Jiang, Guo-Liang

    2010-01-01

    The cone beam CT (CBCT) guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF) errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT) guided accelerated partial breast irradiation (APBI). Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels. A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR), 3.1 mm and 2.3 mm in the superior-inferior (SI), and 2.3 mm and 2.0 mm in the anterior-posterior (AP) directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10.1 mm and 12.7 mm in the AP direction

  19. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes.

    Science.gov (United States)

    Gandhi, Gautam K; Ball, Kelly K; Cruz, Nancy F; Dienel, Gerald A

    2010-03-15

    Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15-25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20-24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  20. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  1. Craniovertebral junction stenosis in Lenz-Majewski syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Mizuguchi, Koichi; Ishigro, Akira [National Center for Child Health and Development, Department of General Pediatrics and Interdisciplinary Medicine, Setagaya-ku, Tokyo (Japan); Miyazaki, Osamu [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Tokyo (Japan)

    2015-09-15

    We report a girl with Lenz-Majewski syndrome associated with craniovertebral junction stenosis that led to communicating hydrocephalus and cervical myelopathy. The life-threatening complication was related to progressive craniovertebral hyperostosis that rapidly exacerbated during early childhood. Despite initial success of surgical intervention at 2 years of age, she developed apneic spells and died suddenly at age 5 years. Close monitoring for craniovertebral junction stenosis is essential to reduce morbidity and mortality in children with Lenz-Majewski syndrome. (orig.)

  2. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    Science.gov (United States)

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  3. Compositional and optical properties of SiO x films and (SiO x /SiO y ) junctions deposited by HFCVD

    Science.gov (United States)

    2014-01-01

    In this work, non-stoichiometric silicon oxide (SiO x ) films and (SiO x /SiO y ) junctions, as-grown and after further annealing, are characterized by different techniques. The SiO x films and (SiO x /SiO y ) junctions are obtained by hot filament chemical vapor deposition technique in the range of temperatures from 900°C to 1,150°C. Transmittance spectra of the SiO x films showed a wavelength shift of the absorption edge thus indicating an increase in the optical energy band gap, when the growth temperature decreases; a similar behavior is observed in the (SiO x /SiO y ) structures, which in turn indicates a decrease in the Si excess, as Fourier transform infrared spectroscopy (FTIR) reveals, so that, the film and junction composition changes with the growth temperature. The analysis of the photoluminescence (PL) results using the quantum confinement model suggests the presence of silicon nanocrystal (Si-nc) embedded in a SiO x matrix. For the case of the as-grown SiO x films, the absorption and emission properties are correlated with quantum effects in Si-nc and defects. For the case of the as-grown (SiO x /SiO y ) junctions, only the emission mechanism related to some kinds of defects was considered, but silicon nanocrystal embedded in a SiO x matrix is present. After thermal annealing, a phase separation into Si and SiO2 occurs, as the FTIR spectra illustrates, which has repercussions in the absorption and emission properties of the films and junctions, as shown by the change in the A and B band positions on the PL spectra. These results lead to good possibilities for proposed novel applications in optoelectronic devices. PACS 61.05.-a; 68.37.Og; 61.05.cp; 78.55.-m; 68.37.Ps; 81.15.Gh PMID:25342935

  4. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions

    International Nuclear Information System (INIS)

    Zou Jianfei; Jin Guojun; Ma Yuqiang

    2009-01-01

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  5. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.

    Science.gov (United States)

    Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang

    2009-03-25

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  6. Gap junction protein connexin-43 interacts directly with microtubules

    NARCIS (Netherlands)

    Giepmans, B N; Verlaan, I; Hengeveld, T; Janssen, H; Calafat, J; Falk, M M; Moolenaar, W H

    2001-01-01

    Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated

  7. Voltage-dependent conductance states of a single-molecule junction

    DEFF Research Database (Denmark)

    Wang, Y F; Néel, N; Kröger, J

    2012-01-01

    Ag–Sn-phthalocyanine–Ag junctions are shown to exhibit three conductance states. While the junctions are conductive at low bias, their impedance drastically increases above a critical bias. Two-level fluctuations occur at intermediate bias. These characteristics may be used to protect a nanoscale...

  8. SU-G-BRA-12: Development of An Intra-Fractional Motion Tracking and Dose Reconstruction System for Adaptive Stereotactic Body Radiation Therapy in High-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, N Hassan; Chi, Y; Tian, Z; Jiang, S; Hannan, R; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: A clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer is undergoing at our institution. In addition to escalating dose to the prostate, we have increased dose to intra-prostatic lesions. Intra-fractional prostate motion deteriorates well planned radiation dose, especially for the small intra-prostatic lesions. To solve this problem, we have developed a motion tracking and 4D dose-reconstruction system to facilitate adaptive re-planning. Methods: Patients in the clinical trial were treated with VMAT using four arcs and 10 FFF beam. KV triggered x-ray projections were taken every 3 sec during delivery to acquire 2D projections of 3D anatomy at the direction orthogonal to the therapeutic beam. Each patient had three implanted prostate markers. Our developed system first determined 2D projection locations of these markers and then 3D prostate translation and rotation via 2D/3D registration of the markers. Using delivery log files, our GPU-based Monte Carlo tool (goMC) reconstructed dose corresponding to each triggered image. The calculated 4D dose distributions were further aggregated to yield the delivered dose. Results: We first tested each module in our system. MC dose engine were commissioned to our treatment planning system with dose difference of <0.5%. For motion tracking, 1789 kV projections from 7 patients were acquired. The 2D marker location error was <1 mm. For 3D motion tracking, root mean square (RMS) errors along LR, AP, and CC directions were 0.26mm, 0.36mm, and 0.01mm respectively in simulation studies and 1.99mm, 1.37mm, and 0.22mm in phantom studies. We also tested the entire system workflow. Our system was able to reconstruct delivered dose. Conclusion: We have developed a functional intra-fractional motion tracking and 4D dose re-construction system to support our clinical trial on adaptive high-risk prostate cancer SBRT. Comprehensive evaluations have shown the capability and accuracy of our system.

  9. Superconducting proximity effect in mesoscopic superconductor/normal-metal junctions

    CERN Document Server

    Takayanagi, H; Toyoda, E

    1999-01-01

    The superconducting proximity effect is discussed in mesoscopic superconductor/normal-metal junctions. The newly-developed theory shows long-range phase-coherent effect which explaines early experimental results of giant magnetoresistance oscillations in an Andreev interferometer. The theory also shows that the proximity correction to the conductance (PCC) has a reentrant behavior as a function of energy. The reentrant behavior is systematically studied in a gated superconductor-semiconductor junction. A negative PCC is observed in the case of a weak coupling between the normal metal and the external reservoir. Phase coherent ac effect is also observed when rf is irradiated to the junction.

  10. Building memristive and radiation hardness TiO{sub 2}-based junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ghenzi, N., E-mail: n.ghenzi@gmail.com [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Rubi, D. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Mangano, E.; Gimenez, G. [Instituto Nacional de Tecnología Industrial (INTI) (Argentina); Lell, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Zelcer, A. [Gerencia Química, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Stoliar, P. [ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); IMN, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes (France); and others

    2014-01-01

    We study micro-scale TiO{sub 2} junctions that are suitable to be used as resistive random-access memory nonvolatile devices with radiation hardness memristive properties. The fabrication and structural and electrical characterization of the junctions are presented. We obtained a retentivity of 10{sup 5} s, an endurance of 10{sup 4} cycles and reliable switching with short electrical pulses (time-width below 10 ns). Additionally, the devices were exposed to 25 MeV oxygen ions. Then, we performed electrical measurements comparing pristine and irradiated devices in order to check the feasibility of using these junctions as memory elements with memristive and radiation hardness properties. - Highlights: • We fabricated radiation hardness memristive metal insulator metal junctions. • We characterized the structural properties of the devices. • We showed the feasibility of the junctions as a non-volatile memory.

  11. Phase regeneration of DPSK signals in a silicon waveguide with reverse-biased p-i-n junction

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Vukovic, Dragana; Gajda, Andrzej

    2014-01-01

    Phase regeneration of differential phase-shift keying (DPSK) signals is demonstrated using a silicon waveguide as nonlinear medium for the first time. A p-i-n junction across the waveguide enables decreasing the nonlinear losses introduced by free-carrier absorption (FCA), thus allowing phase......-sensitive extinction ratios as high as 20 dB to be reached under continuous-wave (CW) pumping operation. Furthermore the regeneration properties are investigated under dynamic operation for a 10-Gb/s DPSK signal degraded by phase noise, showing receiver sensitivity improvements above 14 dB. Different phase noise...... frequencies and amplitudes are examined, resulting in an improvement of the performance of the regenerated signal in all the considered cases....

  12. Microwave oscillator using arrays of long Josephson junctions

    International Nuclear Information System (INIS)

    Pagano, S.; Monaco, R.; Costabile, G.

    1989-01-01

    The authors report on measurements performed on integrated superconducting devices based on arrays of long Josephson tunnel junctions operating in the resonant fluxon oscillation regime (i.e. biased on the Zero Field Steps). The electromagnetic coupling among the junction causes a mutual phase-locking of the fluxon oscillations with a corresponding increase of the emitted power and a decrease of the signal linewidth. This phase-locked state can be controlled by means of an external dc bias current and magnetic field. The effect of the generated microwave signal has been observed on a small Josephson tunnel junction coupled to the array via a microstrip transmission line. The feasibility of the reported devices as local oscillators in an integrated microwave Josephson receiver is discussed

  13. Filtering microfluidic bubble trains at a symmetric junction.

    Science.gov (United States)

    Parthiban, Pravien; Khan, Saif A

    2012-02-07

    We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.

  14. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.

    Science.gov (United States)

    Lee, Woochul; Reddy, Pramod

    2011-12-02

    The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (scanning tunneling microscope that enables the creation of metal-single molecule-metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy-at the single-molecule level-on Au-hexanedithiol-Au, Au-octanedithiol-Au and Au-decanedithiol-Au junctions.

  15. Dosimetric implications of inter- and intrafractional prostate positioning errors during tomotherapy. Comparison of gold marker-based registrations with native MVCT

    Energy Technology Data Exchange (ETDEWEB)

    Wust, Peter; Joswig, Marc; Graf, Reinhold; Boehmer, Dirk; Beck, Marcus; Barelkowski, Thomasz; Budach, Volker; Ghadjar, Pirus [Charite Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany)

    2017-09-15

    For high-dose radiation therapy (RT) of prostate cancer, image-guided (IGRT) and intensity-modulated RT (IMRT) approaches are standard. Less is known regarding comparisons of different IGRT techniques and the resulting residual errors, as well as regarding their influences on dose distributions. A total of 58 patients who received tomotherapy-based RT up to 84 Gy for high-risk prostate cancer underwent IGRT based either on daily megavoltage CT (MVCT) alone (n = 43) or the additional use of gold markers (n = 15) under routine conditions. Planned Adaptive (Accuray Inc., Madison, WI, USA) software was used for elaborated offline analysis to quantify residual interfractional prostate positioning errors, along with systematic and random errors and the resulting safety margins after both IGRT approaches. Dosimetric parameters for clinical target volume (CTV) coverage and exposition of organs at risk (OAR) were also analyzed and compared. Interfractional as well as intrafractional displacements were determined. Particularly in the vertical direction, residual interfractional positioning errors were reduced using the gold marker-based approach, but dosimetric differences were moderate and the clinical relevance relatively small. Intrafractional prostate motion proved to be quite high, with displacements of 1-3 mm; however, these did not result in additional dosimetric impairments. Residual interfractional positioning errors were reduced using gold marker-based IGRT; however, this resulted in only slightly different final dose distributions. Therefore, daily MVCT-based IGRT without markers might be a valid alternative. (orig.) [German] Bei der hochdosierten Bestrahlung des Prostatakarzinoms sind die bildgesteuerte (IGRT) und die intensitaetsmodulierte Bestrahlung (IMRT) Standard. Offene Fragen gibt es beim Vergleich von IGRT-Techniken im Hinblick auf residuelle Fehler und Beeinflussungen der Dosisverteilung. Bei 58 Patienten, deren Hochrisiko-Prostatakarzinom am

  16. 75 FR 76294 - Radio Broadcasting Services: Pacific Junction, IA

    Science.gov (United States)

    2010-12-08

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [DA 10-2236; MB Docket No. 10-108] Radio Broadcasting Services: Pacific Junction, IA AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The staff deletes FM Channel 299C2 at Pacific Junction, Iowa, because the record in this...

  17. P-N semiconductor junctions used as X-ray detectors

    International Nuclear Information System (INIS)

    Pela, C.A.; Bruco, J.L.; Navas, E.A.; Paula, E. de; Guilardi Neto, T.

    1987-01-01

    The current response of some comercial P-N semiconductor junctions in function of X-ray incidency, in 40 to 140 KVp band used in diagnosis was characterized. Some junctions were also exposed to radiation of 80 to 250 KVp used in therapy. (C.G.C.) [pt

  18. Effect of quasi-particle injection on retrapping current of Josephson junction

    OpenAIRE

    Utsunomiya, K.; Yagi, Ryuta

    2006-01-01

    We report that the energy dissipation of Josephson junction can be controlled by quasi-particle injection. We fabricated two Josephson junctions on the narrow aluminum wire and controlled the energy dissipation of one junction by quasi-particle injection from the other. We observed the retrapping current increased as the quasi-particles were injected. We also studied the heating effect of our measurement.

  19. Multicentre dosimetric comparison of photon-junctioning techniques in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Kron, T.

    2003-01-01

    Because many head and neck radiotherapy treatment techniques rely on a junction between X-ray fields, it was the aim of the present study to investigate the use of different junctioning techniques and the affect on the dose across the junction. Techniques in use at nine radiotherapy centres in Australia were investigated using thermoluminescence dosimetry (TLD). The techniques could broadly be divided into two groups: (i) use of the light field to match the fields after moving the patient; and (ii) use of asymmetric collimation to create a single isocentre located in the junction. The mean dose at the junction and its reproducibility was studied in five consecutive treatments in each centre using 25 TLD chips placed throughout the junction in an anthropomorphic phantom. There was a tendency for the mono-isocentric technique to deliver a lower, more accurate mean dose at the junction (Group I: 1.22 Gy (n = 8) vs Group II: 0.96 Gy (n = 5) for 1 Gy planned, some centres contributed to both technique) with greater reproducibility (Group I: 9.6%, Group II: 5.1 % of the mean dose). We conclude that a mono-isocentric treatment technique has the potential to deliver a more accurate and reproducible dose distribution at the field junction of photon beams in head and neck treatment. Copyright (2003) Blackwell Science Pty Ltd

  20. The string-junction picture of multiquark states: an update

    CERN Document Server

    Rossi, Giancarlo

    2016-06-07

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with "irreducible" gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction $J$ or an anti-junction $\\bar{J}$. For the junction-free sector (ordinary $q\\, \\bar{q}$ mesons and glueballs) the picture is supported by large-$N$ (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with $J$ and/or $\\bar{J}$ constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of $J-\\bar{J}$ a...