WorldWideScience

Sample records for intraclonal protein expression

  1. Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2009-09-01

    Full Text Available Abstract Background Mating in Trypanosoma brucei is a non-obligatory event, triggered by the co-occurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. This idea assumes that the trypanosome can recognize self and non-self, although there is as yet no evidence for the existence of mating types in T. brucei. Results We investigated intraclonal mating in T. b. brucei by crossing red and green fluorescent lines of a single strain, so that recombinant progeny can be detected in the fly by yellow fluorescence. For strain 1738, seven flies had both red and green trypanosomes in the salivary glands and, in three, yellow trypanosomes were also observed, although they could not be recovered for subsequent analysis. Nonetheless, both red and non-fluorescent clones from these flies had recombinant genotypes as judged by microsatellite and karyotype analyses, and some also had raised DNA contents, suggesting recombination or genome duplication. Strain J10 produced similar results indicative of intraclonal mating. In contrast, trypanosome clones recovered from other flies showed that genotypes can be transmitted with fidelity. When a yellow hybrid clone expressing both red and green fluorescent protein genes was transmitted, the salivary glands contained a mixture of fluorescent-coloured trypanosomes, but only yellow and red clones were recovered. While loss of the GFP gene in the red clones could have resulted from gene conversion, some of these clones showed loss of heterozygosity and raised DNA contents as in the other single strain transmissions. Our observations suggest

  2. Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB

    Science.gov (United States)

    2013-01-01

    Background Adaptation of Pseudomonas aeruginosa to different living conditions is accompanied by microevolution resulting in genomic diversity between strains of the same clonal lineage. In order to detect the impact of colonized habitats on P. aeruginosa microevolution we determined the genomic diversity between the highly virulent cystic fibrosis (CF) isolate CHA and two temporally and geographically unrelated clonal variants. The outcome was compared with the intraclonal genome diversity between three more closely related isolates of another clonal complex. Results The three clone CHA isolates differed in their core genome in several dozen strain specific nucleotide exchanges and small deletions from each other. Loss of function mutations and non-conservative amino acid replacements affected several habitat- and lifestyle-associated traits, for example, the key regulator GacS of the switch between acute and chronic disease phenotypes was disrupted in strain CHA. Intraclonal genome diversity manifested in an individual composition of the respective accessory genome whereby the highest number of accessory DNA elements was observed for isolate PT22 from a polluted aquatic habitat. Little intraclonal diversity was observed between three spatiotemporally related outbreak isolates of clone TB. Although phenotypically different, only a few individual SNPs and deletions were detected in the clone TB isolates. Their accessory genome mainly differed in prophage-like DNA elements taken up by one of the strains. Conclusions The higher geographical and temporal distance of the clone CHA isolates was associated with an increased intraclonal genome diversity compared to the more closely related clone TB isolates derived from a common source demonstrating the impact of habitat adaptation on the microevolution of P. aeruginosa. However, even short-term habitat differentiation can cause major phenotypic diversification driven by single genomic variation events and uptake of phage

  3. IgV gene intraclonal diversification and clonal evolution in B-cell chronic lymphocytic leukaemia.

    Science.gov (United States)

    Bagnara, Davide; Callea, Vincenzo; Stelitano, Caterina; Morabito, Fortunato; Fabris, Sonia; Neri, Antonino; Zanardi, Sabrina; Ghiotto, Fabio; Ciccone, Ermanno; Grossi, Carlo Enrico; Fais, Franco

    2006-04-01

    Intraclonal diversification of immunoglobulin (Ig) variable (V) genes was evaluated in leukaemic cells from a B-cell chronic lymphocytic leukaemia (B-CLL) case over a 2-year period at four time points. Intraclonal heterogeneity was analysed by sequencing 305 molecular clones derived from polymerase chain reaction amplification of B-CLL cell IgV heavy (H) and light (C) chain gene rearrangements. Sequences were compared with evaluating intraclonal variation and the nature of somatic mutations. Although IgV intraclonal variation was detected at all time points, its level decreased with time and a parallel emergence of two more represented V(H)DJ(H) clones was observed. They differed by nine nucleotide substitutions one of which only caused a conservative replacement aminoacid change. In addition, one V(L)J(L) rearrangement became more represented over time. Analyses of somatic mutations suggest antigen selection and impairment of negative selection of neoplastic cells. In addition, a genealogical tree representing a model of clonal evolution of the neoplastic cells was created. It is of note that, during the period of study, the patient showed clinical progression of disease. We conclude that antigen stimulation and somatic hypermutation may participate in disease progression through the selection and expansion of neoplastic subclone(s).

  4. First evidence of intraclonal genetic exchange in trypanosomatids using two Leishmania infantum fluorescent transgenic clones.

    Directory of Open Access Journals (Sweden)

    Estefanía Calvo-Álvarez

    2014-09-01

    Full Text Available The mode of reproduction in Leishmania spp has been argued to be essentially clonal. However, recent data (genetic analysis of populations and co-infections in sand flies have proposed the existence of a non-obligate sexual cycle in the extracellular stage of the parasite within the sand fly vector. In this article we propose the existence of intraclonal genetic exchange in the natural vector of Leishmania infantum.We have developed transgenic L. infantum lines expressing drug resistance markers linked to green and red fluorescent reporters. We hypothesized whether those cells with identical genotype can recognize each other and mate. Both types of markers were successfully exchanged within the sand fly midgut of the natural vector Phlebotomus perniciosus when individuals from these species were fed with a mixture of parental clones. Using the yellow phenotype and drug resistance markers, we provide evidence for genetic exchange in L. infantum. The hybrid progeny appeared to be triploid based on DNA content analysis. The hybrid clone analyzed was stable throughout the complete parasite life cycle. The progress of infections by the hybrid clone in BALB/c mice caused a reduction in parasite loads in both spleen and liver, and provided weight values similar to those obtained with uninfected mice. Spleen arginase activity was also significantly reduced relative to parental strains.A L. infantum hybrid lineage was obtained from intraclonal genetic exchange within the midgut of the natural vector, suggesting the ability of this parasite to recognize the same genotype and mate. The yellow hybrid progeny is stable throughout the whole parasite life cycle but with a slower virulence, which correlates well with the lower arginase activity detected both in vitro and in vivo infections.

  5. Late post-irradiation phenomena in mammalain cell populations. Pt. 2. Intraclonal recovery in sublines isolated from X-irradiated L5178Y-S cell populations

    International Nuclear Information System (INIS)

    Beer, J.Z.

    1975-01-01

    Clonal analysis of L5178Y-S cell populations irradiated with 300 rads of X-rays indicates occurence of cell sublines with considerably prolonged mean doubling times up to 22 h as compared to 10-11 h for control. Subsequent observations of growth of the handicapped sublines derived from single cells showed capability of all more than 100 studied sublines to recover normal proliferative activity. This process of intraclonal recovery required in many cases longer periods of time, corresponding to many tens, sometimes more than 200, generations. Late intraclonal recovery was further analysed by subcloning. It was found that although cytochemically assayed viability of the handicapped sublines was normal, cloning efficiency strongly depended on the stage of the recovery process. The recovery processes occuring in clones isolated from irradiated cell populations were compared with analogous processes occuring in slowly growing sublines isolated from non-irradiated cell cultures. Marked differences in kinetics of these processes show that either they are different in sublines derived from irradiated and non-irradiated cell populations or that the mechanisms of the late intraclonal recovery are affected by radiation. The results presented allow to conclude that gradual post-irradiation recovery of growth depends primarily on formation, in the developing populations, of cells with higher proliferative activities. Possible nature of the recovery processes is discussed in the light of available information on mammalian somatic cell variants with altered drug or temperature sensitivity, or with nutritional requirements. A sequence is proposed of changes leading from radiation-induced disturbance of the normably existing equilibrium between three basic cell subpopulations to ultimate restoration of this equilibrium. (author)

  6. ERG protein expression over time

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Brasso, Klaus; Thomsen, Frederik Birkebæk

    2015-01-01

    AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed by immunohistochem......AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed...

  7. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    International Nuclear Information System (INIS)

    Tsutsui, Shinichi; Yasuda, Kazuhiro; Suzuki, Kosuke; Takeuchi, Hideya; Nishizaki, Takashi; Higashi, Hidefumi; Era, Shoichi

    2006-01-01

    Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. The Bcl-2 protein expression was found to be decreased in 105 (42%) cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089) associated with a worse disease free survival (DFS), while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer

  8. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  9. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  10. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    International Nuclear Information System (INIS)

    Hayashi, Kokoro; Kojima, Chojiro

    2010-01-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1 H- 15 N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  11. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    Full Text Available 【Abstract】Objectives: Surgical repair of Achilles tendon (AT rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=16 received postoperative cast immobilization; Group B (early motion group, n=16 received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C. The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing twodimensional polyacrylamide gel electrophoresis (2D-PAGE. PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI protein database retrieval and then for bioinformatics analysis. Results: A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1

  12. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  13. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kokoro [Fujifilm Corporation, Analysis Technology Center (Japan); Kojima, Chojiro, E-mail: kojima@protein.osaka-u.ac.j [Nara Institute of Science and Technology (NAIST), Graduate School of Biological Sciences (Japan)

    2010-11-15

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in {sup 1}H-{sup 15}N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  14. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  15. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  16. Predictable tuning of protein expression in bacteria

    DEFF Research Database (Denmark)

    Bonde, Mads; Pedersen, Margit; Klausen, Michael Schantz

    2016-01-01

    We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expressi...

  17. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  18. Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis.

    Science.gov (United States)

    He, Ding; Pengtao, Gong; Ju, Yang; Jianhua, Li; He, Li; Guocai, Zhang; Xichen, Zhang

    2017-04-01

    Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis , we detected 2 strains of T. vaginalis ; the virus-infected (V + ) and uninfected (V - ) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V + compared with V - isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V + isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V + and V - isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

  19. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  20. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  1. Expression of multidrug resistance proteins in retinoblastoma

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307

  2. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    Science.gov (United States)

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  4. TRPM4 protein expression in prostate cancer

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Soldini, Davide; Jung, Maria

    2016-01-01

    BACKGROUND: Transient receptor potential cation channel, subfamily M, member 4 (TRPM4) messenger RNA (mRNA) has been shown to be upregulated in prostate cancer (PCa) and might be a new promising tissue biomarker. We evaluated TRPM4 protein expression and correlated the expression level.......79-2.62; p = 0.01-0.03 for the two observers) when compared to patients with a lower staining intensity. CONCLUSIONS: TRPM4 protein expression is widely expressed in benign and cancerous prostate tissue, with highest staining intensities found in PCa. Overexpression of TRPM4 in PCa (combination of high...

  5. Parts Characterization for Tunable Protein Expression

    DEFF Research Database (Denmark)

    Klausen, Michael Schantz; Sommer, Morten Otto Alexander

    2018-01-01

    Flow-seq combines flexible genome engineering methods with flow cytometry-based cell sorting and deep DNA sequencing to enable comprehensive interrogation of genotype to phenotype relationships. One application is to study the effect of specific regulatory elements on protein expression. Construc......Flow-seq combines flexible genome engineering methods with flow cytometry-based cell sorting and deep DNA sequencing to enable comprehensive interrogation of genotype to phenotype relationships. One application is to study the effect of specific regulatory elements on protein expression...

  6. Differential Protein Expression in Congenital and Acquired Cholesteatomas.

    Directory of Open Access Journals (Sweden)

    Seung-Ho Shin

    Full Text Available Congenital cholesteatomas are epithelial lesions that present as an epithelial pearl behind an intact eardrum. Congenital and acquired cholesteatomas progress quite differently from each other and progress patterns can provide clues about the unique origin and pathogenesis of the abnormality. However, the exact pathogenic mechanisms by which cholesteatomas develop remain unknown. In this study, key proteins that directly affect cholesteatoma pathogenesis are investigated with proteomics and immunohistochemistry. Congenital cholesteatoma matrices and retroauricular skin were harvested during surgery in 4 patients diagnosed with a congenital cholesteatoma. Tissue was also harvested from the retraction pocket in an additional 2 patients during middle ear surgery. We performed 2-dimensional (2D electrophoresis to detect and analyze spots that are expressed only in congenital cholesteatoma and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS to separate proteins by molecular weight. Protein expression was confirmed by immunohistochemical staining. The image analysis of 2D electrophoresis showed that 4 congenital cholesteatoma samples had very similar protein expression patterns and that 127 spots were exclusively expressed in congenital cholesteatomas. Of these 127 spots, 10 major spots revealed the presence of titin, forkhead transcription activator homolog (FKH 5-3, plectin 1, keratin 10, and leucine zipper protein 5 by MALDI-TOF/MS analysis. Immunohistochemical staining showed that FKH 5-3 and titin were expressed in congenital cholesteatoma matrices, but not in acquired cholesteatomas. Our study shows that protein expression patterns are completely different in congenital cholesteatomas, acquired cholesteatomas, and skin. Moreover, non-epithelial proteins, including FKH 5-3 and titin, were unexpectedly expressed in congenital cholesteatoma tissue. Our data indicates that congenital cholesteatoma origins

  7. Evolution, diversification and expression of KNOX proteins in plants

    Directory of Open Access Journals (Sweden)

    Jie eGao

    2015-10-01

    Full Text Available The KNOX (KNOTTED1-like homeobox transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification.

  8. The proteome response to amyloid protein expression in vivo.

    Directory of Open Access Journals (Sweden)

    Ricardo A Gomes

    Full Text Available Protein misfolding disorders such as Alzheimer, Parkinson and transthyretin amyloidosis are characterized by the formation of protein amyloid deposits. Although the nature and location of the aggregated proteins varies between different diseases, they all share similar molecular pathways of protein unfolding, aggregation and amyloid deposition. Most effects of these proteins are likely to occur at the proteome level, a virtually unexplored reality. To investigate the effects of an amyloid protein expression on the cellular proteome, we created a yeast expression system using human transthyretin (TTR as a model amyloidogenic protein. We used Saccharomyces cerevisiae, a living test tube, to express native TTR (non-amyloidogenic and the amyloidogenic TTR variant L55P, the later forming aggregates when expressed in yeast. Differential proteome changes were quantitatively analyzed by 2D-differential in gel electrophoresis (2D-DIGE. We show that the expression of the amyloidogenic TTR-L55P causes a metabolic shift towards energy production, increased superoxide dismutase expression as well as of several molecular chaperones involved in protein refolding. Among these chaperones, members of the HSP70 family and the peptidyl-prolyl-cis-trans isomerase (PPIase were identified. The latter is highly relevant considering that it was previously found to be a TTR interacting partner in the plasma of ATTR patients but not in healthy or asymptomatic subjects. The small ubiquitin-like modifier (SUMO expression is also increased. Our findings suggest that refolding and degradation pathways are activated, causing an increased demand of energetic resources, thus the metabolic shift. Additionally, oxidative stress appears to be a consequence of the amyloidogenic process, posing an enhanced threat to cell survival.

  9. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  10. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  11. Recombinant protein production data after expression in the bacterium Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Enrique Cantu-Bustos

    2016-06-01

    Full Text Available Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]. Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP tagged with CusF, using Ag(I metal affinity chromatography.

  12. Effects of immunosuppressive treatment on protein expression in rat kidney

    Directory of Open Access Journals (Sweden)

    Kędzierska K

    2014-09-01

    Full Text Available Karolina Kędzierska,1 Katarzyna Sporniak-Tutak,2 Krzysztof Sindrewicz,2 Joanna Bober,3 Leszek Domański,1 Mirosław Parafiniuk,4 Elżbieta Urasińska,5 Andrzej Ciechanowicz,6 Maciej Domański,1 Tomasz Smektała,2 Marek Masiuk,5 Wiesław Skrzypczak,6 Małgorzata Ożgo,6 Joanna Kabat-Koperska,1 Kazimierz Ciechanowski1 1Department of Nephrology, Transplantology, and Internal Medicine, 2Department of Dental Surgery, 3Department of Medical Chemistry, 4Department of Forensic Medicine, 5Department of Pathomorphology, Pomeranian Medical University, 6Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland Abstract: The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents' toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins' synthesis. Very slight differences

  13. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not.

    Science.gov (United States)

    Tao, Wen; Evans, Barbara-Graham; Yao, Jing; Cooper, Scott; Cornetta, Kenneth; Ballas, Christopher B; Hangoc, Giao; Broxmeyer, Hal E

    2007-03-01

    Validated gene transfer and expression tracers are essential for elucidating functions of mammalian genes. Here, we have determined the suitability and unintended side effects of enhanced green fluorescent protein (EGFP) and DsRed-Express fluorescent protein as expression tracers in long-term hematopoietic stem cells (HSCs). Retrovirally transduced mouse bone marrow cells expressing either EGFP or DsRed-Express in single or mixed dual-color cell populations were clearly discerned by flow cytometry and fluorescence microscopy. The results from in vivo competitive repopulation assays demonstrated that EGFP-expressing HSCs were maintained nearly throughout the lifespan of the transplanted mice and retained long-term multilineage repopulating potential. All mice assessed at 15 months post-transplantation were EGFP positive, and, on average, 24% total peripheral white blood cells expressed EGFP. Most EGFP-expressing recipient mice lived at least 22 months. In contrast, Discosoma sp. red fluorescent protein (DsRed)-expressing donor cells dramatically declined in transplant-recipient mice over time, particularly in the competitive setting, in which mixed EGFP- and DsRed-expressing cells were cotransplanted. Moreover, under in vitro culture condition favoring preservation of HSCs, purified EGFP-expressing cells grew robustly, whereas DsRed-expressing cells did not. Therefore, EGFP has no detectable deteriorative effects on HSCs, and is nearly an ideal long-term expression tracer for hematopoietic cells; however, DsRed-Express fluorescent protein is not suitable for these cells.

  14. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  15. Overexpression of pucC improves the heterologous protein expression level in a Rhodobacter sphaeroides expression system.

    Science.gov (United States)

    Cheng, L; Chen, G; Ding, G; Zhao, Z; Dong, T; Hu, Z

    2015-04-27

    The Rhodobacter sphaeroides system has been used to express membrane proteins. However, its low yield has substantially limited its application. In order to promote the protein expression capability of this system, the pucC gene, which plays a crucial role in assembling the R. sphaeroides light-harvesting 2 complex (LH2), was overexpressed. To build a pucC overexpression strain, a pucC overexpression vector was constructed and transformed into R. sphaeroides CQU68. The overexpression efficiency was evaluated by quantitative real-time polymerase chain reaction. A well-used reporter β-glucuronidase (GUS) was fusion-expressed with LH2 to evaluate the heterologous protein expression level. As a result, the cell culture and protein in the pucC overexpression strain showed much higher typical spectral absorption peaks at 800 and 850 nm compared with the non-overexpression strain, suggesting a higher expression level of LH2-GUS fusion protein in the pucC overexpression strain. This result was further confirmed by Western blot, which also showed a much higher level of heterologous protein expression in the pucC overexpression strain. We further compared GUS activity in pucC overexpression and non-overexpression strains, the results of which showed that GUS activity in the pucC overexpression strain was approximately ten-fold that in the non-overexpression strain. These results demonstrate that overexpressed pucC can promote heterologous protein expression levels in R. sphaeroides.

  16. Complement inhibitory proteins expression in placentas of thrombophilic women Complement inhibitory proteins expression in placentas of thrombophilic women

    Directory of Open Access Journals (Sweden)

    Przemysław Krzysztof Wirstlein

    2012-10-01

    Full Text Available Factors controlling complement activation appear to exert a protective effect on pregnancy. This is
    particularly important in women with thrombophilia. The aim of this study was to determine the transcript and
    protein levels of complement decay-accelerating factor (DAF and membrane cofactor protein (MCP in the
    placentas of women with acquired and inherited thrombophilia. Also, we assessed immunohistochemistry staining
    of inhibitors of the complement cascade, DAF and MCP proteins, in the placentas of thrombophilic women.
    Placentas were collected from eight women with inherited thrombophilia and ten with acquired thrombophilia.
    The levels of DAF and MCP transcripts were evaluated by qPCR, the protein level was evaluated by Western
    blot. We observed a higher transcript (p < 0.05 and protein (p < 0.001 levels of DAF and MCP in the placentas
    of thrombophilic women than in the control group. DAF and MCP were localized on villous syncytiotrophoblast
    membranes, but the assessment of staining in all groups did not differ. The observed higher expression level of
    proteins that control activation of complement control proteins is only seemingly contradictory to the changes
    observed for example in the antiphospholipid syndrome. However, given the hitherto known biochemical changes
    associated with thrombophilia, a mechanism in which increased expression of DAF and MCP in the placentas is
    an effect of proinflammatory cytokines, which accompanies thrombophilia, is probable.Factors controlling complement activation appear to exert a protective effect on pregnancy. This is
    particularly important in women with thrombophilia. The aim of this study was to determine the transcript and
    protein levels of complement decay-accelerating factor (DAF and membrane cofactor protein (MCP in the
    placentas of women with acquired and inherited thrombophilia. Also, we assessed immunohistochemistry

  17. AR-v7 protein expression is regulated by protein kinase and phosphatase

    Science.gov (United States)

    Li, Yinan; Xie, Ning; Gleave, Martin E.; Rennie, Paul S.; Dong, Xuesen

    2015-01-01

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked. PMID:26378044

  18. Genome-wide screens for expressed hypothetical proteins

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Durhuus, Jon Ambæk; Rasmussen, Lene Juel

    2012-01-01

    A hypothetical protein (HP) is defined as a protein that is predicted to be expressed from an open reading frame, but for which there is no experimental evidence of translation. HPs constitute a substantial fraction of proteomes of human as well as of other organisms. With the general belief that...... that the majority of HPs are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of HPs with a high probability of being expressed....

  19. Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Chen

    2018-01-01

    Full Text Available Proinsulin-transferrin fusion protein (ProINS-Tf has been designed and successfully expressed from the mammalian HEK293 cells (HEK-ProINS-Tf. It was found that HEK-ProINS-Tf could be converted into an activated form in the liver. Furthermore, HEK-ProINS-Tf was demonstrated as an extra-long acting insulin analogue with liver-specific insulin action in streptozotocin (STZ-induced type 1 diabetic mice. However, due to the low production yield from transfected HEK293 cells, there are other interesting features, including the oral bioavailability, which have not been fully explored and characterized. To improve the protein production yield, an alternative protein expression system, ExpressTec using transgenic rice (Oryza sativa L., was used. The intact and active rice-derived ProINS-Tf (ExpressTec-ProINS-Tf was successfully expressed from the transgenic rice expression system. Our results suggested that, although the insulin-like bioactivity of ExpressTec-ProINS-Tf was slightly lower in vitro, its potency of in vivo blood glucose control was considerably stronger than that of HEK-ProINS-Tf. The oral delivery studies in type 1 diabetic mice demonstrated a prolonged control of blood glucose to near-normal levels after oral administration of ExpressTec-ProINS-Tf. Results in this report suggest that ExpressTec-ProINS-Tf is a promising insulin analog with advantages including low cost, prolonged and liver targeting effects, and most importantly, oral bioactivity.

  20. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm

    Directory of Open Access Journals (Sweden)

    Lobstein Julie

    2012-05-01

    Full Text Available Abstract Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using

  1. Protein expression analysis of inflammation-related colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2009-01-01

    Full Text Available Background: Chronic inflammation is a risk factor for colorectal cancer (CRC development. The aim of this study was to determine the differences in protein expression between CRC and the surrounding nontumorous colonic tissues in the mice that received azoxymethane (AOM and dextran sodium sulfate (DSS using a proteomic analysis. Materials and Methods: Male ICR mice were given a single intraperitoneal injection of AOM (10 mg/kg body weight, followed by 2% (w/v DSS in their drinking water for seven days, starting one week after the AOM injection. Colonic adenocarcinoma developed after 20 weeks and a proteomics analysis based on two-dimensional gel electrophoresis and ultraflex TOF/TOF mass spectrometry was conducted in the cancerous and nontumorous tissue specimens. Results: The proteomic analysis revealed 21 differentially expressed proteins in the cancerous tissues in comparison to the nontumorous tissues. There were five markedly increased proteins (beta-tropomyosin, tropomyosin 1 alpha isoform b, S100 calcium binding protein A9, and an unknown protein and 16 markedly decreased proteins (Car1 proteins, selenium-binding protein 1, HMG-CoA synthase, thioredoxin 1, 1 Cys peroxiredoxin protein 2, Fcgbp protein, Cytochrome c oxidase, subunit Va, ETHE1 protein, and 7 unknown proteins. Conclusions: There were 21 differentially expressed proteins in the cancerous tissues of the mice that received AOM and DSS. Their functions include metabolism, the antioxidant system, oxidative stress, mucin production, and inflammation. These findings may provide new insights into the mechanisms of inflammation-related colon carcinogenesis and the establishment of novel therapies and preventative strategies to treat carcinogenesis in the inflamed colon.

  2. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    Science.gov (United States)

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  3. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  4. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    Science.gov (United States)

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  5. Expression of multiple proteins in transgenic plants

    Science.gov (United States)

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  6. High-level transient expression of recombinant protein in lettuce.

    Science.gov (United States)

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  7. Multiplexed expression and screening for recombinant protein production in mammalian cells

    Directory of Open Access Journals (Sweden)

    McCafferty John

    2006-12-01

    Full Text Available Abstract Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell

  8. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    Energy Technology Data Exchange (ETDEWEB)

    Yamakoshi, Takako [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Makino, Teruhiko, E-mail: tmakino@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Ur Rehman, Mati; Yoshihisa, Yoko [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Sugimori, Michiya [Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Shimizu, Tadamichi, E-mail: shimizut@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan)

    2013-03-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes.

  9. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    International Nuclear Information System (INIS)

    Yamakoshi, Takako; Makino, Teruhiko; Ur Rehman, Mati; Yoshihisa, Yoko; Sugimori, Michiya; Shimizu, Tadamichi

    2013-01-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes

  10. Expression of RNA virus proteins by RNA polymerase II dependent expression plasmids is hindered at multiple steps

    Directory of Open Access Journals (Sweden)

    Überla Klaus

    2007-06-01

    Full Text Available Abstract Background Proteins of human and animal viruses are frequently expressed from RNA polymerase II dependent expression cassettes to study protein function and to develop gene-based vaccines. Initial attempts to express the G protein of vesicular stomatitis virus (VSV and the F protein of respiratory syncytial virus (RSV by eukaryotic promoters revealed restrictions at several steps of gene expression. Results Insertion of an intron flanked by exonic sequences 5'-terminal to the open reading frames (ORF of VSV-G and RSV-F led to detectable cytoplasmic mRNA levels of both genes. While the exonic sequences were sufficient to stabilise the VSV-G mRNA, cytoplasmic mRNA levels of RSV-F were dependent on the presence of a functional intron. Cytoplasmic VSV-G mRNA levels led to readily detectable levels of VSV-G protein, whereas RSV-F protein expression remained undetectable. However, RSV-F expression was observed after mutating two of four consensus sites for polyadenylation present in the RSV-F ORF. Expression levels could be further enhanced by codon optimisation. Conclusion Insufficient cytoplasmic mRNA levels and premature polyadenylation prevent expression of RSV-F by RNA polymerase II dependent expression plasmids. Since RSV replicates in the cytoplasm, the presence of premature polyadenylation sites and elements leading to nuclear instability should not interfere with RSV-F expression during virus replication. The molecular mechanisms responsible for the destabilisation of the RSV-F and VSV-G mRNAs and the different requirements for their rescue by insertion of an intron remain to be defined.

  11. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  12. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    Science.gov (United States)

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense

    Directory of Open Access Journals (Sweden)

    Yuki Horiuchi

    2018-01-01

    Full Text Available Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense. We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein “ember” from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 105 M−1·cm−1. The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.

  14. Effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on Akt protein expression is more effective in head and neck cancer cell lineages that retain PTEN protein expression.

    Science.gov (United States)

    Pontes, Flávia Sirotheau C; Pontes, Hélder A R; de Souza, Lucas L; de Jesus, Adriana S; Joaquim, Andrea M C; Miyahara, Ligia A N; Fonseca, Felipe P; Pinto Junior, Décio S

    2018-03-01

    The aim of this study was to evaluate the expression of Akt, PTEN, Mdm2 and p53 proteins in three different head and neck squamous cell carcinoma (HNSCC) cell lines (HN6, HN19 and HN30), all of them treated with epidermal growth factor (EGF) and 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90 protein. Immunofluorescence and western blot were performed in order to analyze the location and quantification, respectively, of proteins under the action 17-AAG and EGF. Treatment with EGF resulted in increased levels of Akt, PTEN and p53 in all cell lineages. The expression of Mdm2 was constant in HN30 and HN6 lineages, while in HN19 showed slightly decreased expression. Under the action 17-AAG, in HN6 and HN19, the expression of PTEN and p53 proteins was suppressed, while Akt and Mdm2 expression was reduced. Finally, in the HN30 cell lineage were absolute absence of expression of Akt, Mdm2 and p53 and decreased expression of PTEN. These data allow us to speculate on the particular utility of 17-AAG for HNSCC treatment through the inhibition of Akt protein expression, especially in the cases that retain the expression of PTEN protein. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    Science.gov (United States)

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  16. A New Strain Collection for Improved Expression of Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Ina Meuskens

    2017-11-01

    Full Text Available Almost all integral membrane proteins found in the outer membranes of Gram-negative bacteria belong to the transmembrane β-barrel family. These proteins are not only important for nutrient uptake and homeostasis, but are also involved in such processes as adhesion, protein secretion, biofilm formation, and virulence. As surface exposed molecules, outer membrane β-barrel proteins are also potential drug and vaccine targets. High production levels of heterologously expressed proteins are desirable for biochemical and especially structural studies, but over-expression and subsequent purification of membrane proteins, including outer membrane proteins, can be challenging. Here, we present a set of deletion mutants derived from E. coli BL21(DE3 designed for the over-expression of recombinant outer membrane proteins. These strains harbor deletions of four genes encoding abundant β-barrel proteins in the outer membrane (OmpA, OmpC, OmpF, and LamB, both single and in all combinations of double, triple, and quadruple knock-outs. The sequences encoding these outer membrane proteins were deleted completely, leaving only a minimal scar sequence, thus preventing the possibility of genetic reversion. Expression tests in the quadruple mutant strain with four test proteins, including a small outer membrane β-barrel protein and variants thereof as well as two virulence-related autotransporters, showed significantly improved expression and better quality of the produced proteins over the parent strain. Differences in growth behavior and aggregation in the presence of high salt were observed, but these phenomena did not negatively influence the expression in the quadruple mutant strain when handled as we recommend. The strains produced in this study can be used for outer membrane protein production and purification, but are also uniquely useful for labeling experiments for biophysical measurements in the native membrane environment.

  17. Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host.

    Science.gov (United States)

    Kim, Mina; Jin, Yerin; An, Hyun-Joo; Kim, Jaehan

    2017-07-28

    The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N -acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

  18. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes.

    Science.gov (United States)

    Mehic, Denis; Bakiri, Latifa; Ghannadan, Minoo; Wagner, Erwin F; Tschachler, Erwin

    2005-01-01

    Activator protein 1 (AP-1) proteins play key roles in the regulation of cell proliferation and differentiation. In this study we investigated the expression of Fos and Jun proteins in different models of terminal differentiation of human keratinocytes and in skin from psoriasis patients. All Jun and Fos proteins, with the exception of FosB, were efficiently expressed in keratinocytes in monolayer cultures. In contrast, in normal epidermis as well as in organotypic epidermal cultures, the expression pattern of AP-1 proteins was dependent on the differentiation stage. Fos proteins were readily detected in nuclei of keratinocytes of basal and suprabasal layers. JunB and JunD were expressed in all layers of normal epidermis. Interestingly, expression of c-Jun started suprabasally, then disappeared and became detectable again in distinct cells of the outermost granular layer directly at the transition zone to the stratum corneum. In psoriatic epidermis, c-Jun expression was prominent in both hyperproliferating basal and suprabasal keratinocytes, whereas c-Fos expression was unchanged. These data indicate that AP-1 proteins are expressed in a highly specific manner during terminal differentiation of keratinocytes and that the enhanced expression of c-Jun in basal and suprabasal keratinocytes might contribute to the pathogenesis of psoriasis.

  19. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    Science.gov (United States)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  20. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Science.gov (United States)

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  1. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    Science.gov (United States)

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant

  2. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  3. Protein expression of Myt272-3 recombinant clone and in silico ...

    African Journals Online (AJOL)

    Purpose: To investigate the expression of Myt272-3 recombinant protein and also to predict a possible protein vaccine candidate against Mycobacterium tuberculosis. Methods: Myt272-3 protein was expressed in pET30a+-Myt272-3 clone. The purity of the protein was determined using Dynabeads® His-Tag Isolation ...

  4. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  5. Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli.

    Science.gov (United States)

    Yue, Chang-Wu; Zhang, Yi-Zheng

    2009-03-01

    A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.

  6. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  7. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed

    Directory of Open Access Journals (Sweden)

    Schininà Maria

    2010-09-01

    Full Text Available Abstract Background Several mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE combined with mass spectrometry. Results In our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible. Conclusions The analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the

  8. Evolved Escherichia coli strains for amplified, functional expression of membrane proteins.

    Science.gov (United States)

    Gul, Nadia; Linares, Daniel M; Ho, Franz Y; Poolman, Bert

    2014-01-09

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins. © 2013.

  9. Rhythmic expression of DEC2 protein in vitro and in vivo.

    Science.gov (United States)

    Sato, Fuyuki; Muragaki, Yasuteru; Kawamoto, Takeshi; Fujimoto, Katsumi; Kato, Yukio; Zhang, Yanping

    2016-06-01

    Basic helix-loop-helix (bHLH) transcription factor DEC2 (bHLHE41/Sharp1) is one of the clock genes that show a circadian rhythm in various tissues. DEC2 regulates differentiation, sleep length, tumor cell invasion and apoptosis. Although studies have been conducted on the rhythmic expression of DEC2 mRNA in various tissues, the precise molecular mechanism of DEC2 expression is poorly understood. In the present study, we examined whether DEC2 protein had a rhythmic expression. Western blot analysis for DEC2 protein revealed a rhythmic expression in mouse liver, lung and muscle and in MCF-7 and U2OS cells. In addition, AMP-activated protein kinase (AMPK) activity (phosphorylation of AMPK) in mouse embryonic fibroblasts (MEFs) exhibited a rhythmic expression under the condition of medium change or glucose-depleted medium. However, the rhythmic expression of DEC2 in MEF gradually decreased in time under these conditions. The medium change affected the levels of DEC2 protein and phosphorylation of AMPK. In addition, the levels of DEC2 protein showed a rhythmic expression in vivo and in MCF-7 and U2OS cells. The results showed that the phosphorylation of AMPK immunoreactivity was strongly detected in the liver and lung of DEC2 knockout mice compared with that of wild-type mice. These results may provide new insights into rhythmic expression and the regulation between DEC2 protein and AMPK activity.

  10. Induction of Ski Protein Expression upon Luteinization in Rat Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Hyun Kim

    2012-05-01

    Full Text Available Ski protein is implicated in proliferation/differentiation in a variety of cells. We had previously reported that Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells; however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to locate Ski protein in the rat ovary during luteinizationto predict the possible role of Ski. In order to examine the expression pattern of Ski protein along with the progress of luteinization, follicular growth was induced by administration of equine chorionic gonadtropin to immature female rats, and luteinization was induced by human chorionic gonadtropin treatment to mimic luteinizing hormone (LH surge. While no Ski-positive granulosa cells were present in preovulatory follicle, Ski protein expression was induced in response to LH surge, and was maintained after the formation of the corpus luteum (CL. Though Ski protein is absent in granulosa cells of preovulatory follicle, its mRNA (c-Ski was expressed and the level was unchanged even after LH surge. Taken together, these results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggests that its expression is regulated post-transcriptionally.

  11. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  12. Genome engineering for improved recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-12-19

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review.

  13. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    Science.gov (United States)

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  15. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.

    Science.gov (United States)

    Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang

    2017-01-01

    Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.

  16. Expression of membrane-associated proteins within single emulsion cell facsimiles.

    Science.gov (United States)

    Chanasakulniyom, Mayuree; Martino, Chiara; Paterson, David; Horsfall, Louise; Rosser, Susan; Cooper, Jonathan M

    2012-07-07

    MreB is a structural membrane-associated protein which is one of the key components of the bacterial cytoskeleton. Although it plays an important role in shape maintenance of rod-like bacteria, the understanding of its mechanism of action is still not fully understood. This study shows how segmented flow and microdroplet technology can be used as a new tool for biological in vitro investigation of this protein. In this paper, we demonstrate cell-free expression in a single emulsion system to express red fluorescence protein (RFP) and MreB linked RFP (MreB-RFP). We follow the aggregation and localisation of the fusion protein MreB-RFP in this artificial cell-like environment. The expression of MreB-RFP in single emulsion droplets leads to the formation of micrometer-scale protein patches distributed at the water/oil interface.

  17. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    International Nuclear Information System (INIS)

    Elgart, Vlad; Jia, Tao; Fenley, Andrew T; Kulkarni, Rahul

    2011-01-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

  18. Parasitization by Scleroderma guani influences protein expression in Tenebrio molitor pupae.

    Science.gov (United States)

    Zhu, Jia-Ying; Wu, Guo-Xing; Ze, Sang-Zi; Stanley, David W; Yang, Bin

    2014-07-01

    Ectoparasitoid wasps deposit their eggs onto the surface and inject venom into their hosts. Venoms are chemically complex and they exert substantial impact on hosts, including permanent or temporary paralysis and developmental arrest. These visible venom effects are due to changes in expression of genes encoding physiologically relevant proteins. While the influence of parasitization on gene expression in several lepidopterans has been reported, the molecular details of parasitoid/beetle relationships remain mostly unknown. This shortcoming led us to pose the hypothesis that envenomation by the ectoparasitic ant-like bethylid wasp Scleroderma guani leads to changes in protein expression in the yellow mealworm beetle Tenebrio molitor. We tested our hypothesis by comparing the proteomes of non-parasitized and parasitized host pupae using iTRAQ-based proteomics. We identified 41 proteins that were differentially expressed (32↑- and 9↓-regulated) in parasitized pupae. We assigned these proteins to functional categories, including immunity, stress and detoxification, energy metabolism, development, cytoskeleton, signaling and others. We recorded parallel changes in mRNA levels and protein abundance in 14 selected proteins following parasitization. Our findings support our hypothesis by documenting changes in protein expression in parasitized hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Major vault protein/lung resistance-related protein (MVP/LRP) expression in nervous system tumors.

    Science.gov (United States)

    Sasaki, Tsutomu; Hankins, Gerald R; Helm, Gregory A

    2002-01-01

    Lung resistance-related protein (LRP) was identified as the major vault protein (MVP), the main component of multimeric vault particles. It functions as a transport-associated protein that can be associated with multidrug resistance. In previous studies, expression of MVP/LRP has been documented in tumors of various types. In general, good correlations have been reported for expression of MVP/LRP and decreased sensitivity to chemotherapy and poor prognosis. MVP/LRP expression has been documented in glioblastomas, but its expression in nervous system tumors in general has not been well characterized. Immunohistochemistry using anti-human MVP/LRP antibody (LRP-56) was performed on formalin-fixed, paraffin-embedded archival tissue from 69 primary central nervous system tumors. Expression of MVP/LRP was observed in 81.2% (56/69) of primary nervous system tumors, including astrocytomas (11/13), oligodendrogliomas (1/2), oligoastrocytomas (5/5), ependymoma (1/1), meningiomas (35/45), schwannomas (2/2), and neurofibroma (1/1). Various degrees and distributions of immunoreactivity to MVP/ LRP were observed. Neither the presence nor the degree of immunoreactivity to MVP/LRP showed any correlation with either tumor grade or the presence of brain invasion.

  20. Transcript and protein expression profile of PF11_0394, a Plasmodium falciparum protein expressed in salivary gland sporozoites

    Directory of Open Access Journals (Sweden)

    Schlarman Maggie S

    2012-03-01

    Full Text Available Abstract Background Plasmodium falciparum malaria is a significant problem around the world today, thus there is still a need for new control methods to be developed. Because the sporozoite displays dual infectivity for both the mosquito salivary glands and vertebrate host tissue, it is a good target for vaccine development. Methods The P. falciparum gene, PF11_0394, was chosen as a candidate for study due to its potential role in the invasion of host tissues. This gene, which was selected using a data mining approach from PlasmoDB, is expressed both at the transcriptional and protein levels in sporozoites and likely encodes a putative surface protein. Using reverse transcription-polymerase chain reaction (RT-PCR and green fluorescent protein (GFP-trafficking studies, a transcript and protein expression profile of PF11_0394 was determined. Results The PF11_0394 protein has orthologs in other Plasmodium species and Apicomplexans, but none outside of the group Apicomplexa. PF11_0394 transcript was found to be present during both the sporozoite and erythrocytic stages of the parasite life cycle, but no transcript was detected during axenic exoerythrocytic stages. Despite the presence of transcript throughout several life cycle stages, the PF11_0394 protein was only detected in salivary gland sporozoites. Conclusions PF11_0394 appears to be a protein uniquely detected in salivary gland sporozoites. Even though a specific function of PF11_0394 has not been determined in P. falciparum biology, it could be another candidate for a new vaccine.

  1. Novel leukocyte protein, Trojan, differentially expressed during thymocyte development.

    Science.gov (United States)

    Petrov, Petar; Motobu, Maki; Salmi, Jussi; Uchida, Tatsuya; Vainio, Olli

    2010-04-01

    "Trojan" is a novel cell surface protein, discovered from chicken embryonic thymocytes on the purpose to identify molecules involved in T cell differentiation. The molecule is predicted as a type I transmembrane protein having a Sushi and two fibronectin type III domains and a pair of intracellular phosphorylation sites. Its transcript expression is specific for lymphoid tissues and the presence of the protein on the surface of recirculating lymphocytes and macrophages was confirmed by immunofluorescence analysis. In thymus, about half of the double negative (CD4(-) CD8(-)) and CD8 single positive and the majority of CD4 single positive cells express Trojan with a relatively high intensity. However, only a minority of the double positive (CD4(+) CD8(+)) cells are positive for Trojan. This expression pattern, similar to that of some proteins with anti-apoptotic and function, like IL-7Ralpha, makes Trojan an attractive candidate of having an anti-apoptotic role. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Bcl-2 Protein Expression in Egyptian Acute Myeloid Leukemia

    International Nuclear Information System (INIS)

    El-Shakankiry, N.; El-Sayed, Gh.M.M.; El-Maghraby, Sh.; Moneer, M.M.

    2009-01-01

    Objective: The primary cause of treatment failure in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. The bcl-2 gene encodes a 26-kDa protein that promotes cell survival by blocking programmed cell death (apoptosis). In the present study, bcl-2 protein expression was evaluated in newly diagnosed AML patients and correlated with the induction of remission and overall survival (OS), in an attempt to define patients who might benefit from modified therapeutic strategies. Patients and methods: Pretreatment cellular bcl-2 protein expression was measured in bone marrow samples obtained from 68 patients of newly diagnosed acute myeloid leukemia and 10 healthy controls by western blotting. Results: The mean bcl-2 protein expression was significantly higher in patients (0.68610.592) compared to controls (0.313±0.016) (p=0.002). The overall survival for patients with mean bcl-2 expression of less, and more than or equal to 0.315, was 67% and 56%, respectively, with no significant difference between the two groups 0»=0.86). Conclusion: Even though we did not observe a significant difference in overall survival between patients with high and low levels of bcl-2, modulation of this protein might still be considered as an option for enhancing the effectiveness of conventional chemotherapy.

  3. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed...... molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target...... for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...

  4. Marker Protein Expression Combined With Expression Heterogeneity is a Powerful Indicator of Malignancy in Acral Lentiginous Melanomas.

    Science.gov (United States)

    Cintra Lopes Carapeto, Fernando; Neves Comodo, Andréia; Germano, Andressa; Pereira Guimarães, Daiane; Barcelos, Denise; Fernandes, Mariana; Landman, Gilles

    2017-02-01

    Samples of acral lentiginous melanomas (ALMs) were obtained from the Department of Pathology at Escola Paulista de Medicina-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil. Demographic, clinical, and follow-up data were obtained from the charts of Hospital São Paulo. From 2 tissue microarrays containing 60 nevi and quadruplicate samples of ≥1.0-mm of 49 ALM, sections were stained to evaluate SCF, KIT, BRAF, CYCLIND1, MYC, and PTEN immunohistochemical protein expression. Nevi and ALM from 2006 to 2010 were reviewed and collected. All specimens were in the vertical growth phase, and histopathological parameters indicated that tumors were at an advanced stage at diagnosis. Average tumor thickness was 6.95 mm, 63% were ulcerated, average mitotic index was 5 mitotic cells per mm, and 43% were at Clark's level V. Compared with nevi, the χ test showed that ALM significantly correlated with SCF protein expression (P = 0.001) and expression heterogeneity (P < 0.000). Similar findings were observed for KIT (P = 0.005, P = 0.003, respectively), MYC (P < 0.000, P < 0.000), and PTEN (P = 0.005, P < 0.000). Malignancy did not correlate with BRAF and CYCLIN D1 expression (P = 0.053 and P = 0.259, respectively), but it did significantly correlate with their heterogeneous expression (P < 0.000, P = 0.024, respectively). Combined protein expression had an odds ratio of greater malignancy when BRAF and MYC were positive and/or heterogeneously expressed (OR of 78 and 95, respectively). We show that marker protein expression, when combined with heterogeneous expression as shown by immunohistochemistry, is a powerful indicator of malignancy in ALMs, especially, when protein pairs are combined.

  5. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  6. Calcium affecting protein expression in longan under simulated acid rain stress.

    Science.gov (United States)

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang

    2015-08-01

    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.

  7. Heterogeneity of proteins expressed by Brazilian Sporothrix schenckii isolates.

    Science.gov (United States)

    Fernandes, Geisa Ferreira; Do Amaral, Cristiane Candida; Sasaki, Alexandre; Godoy, Patrício Martinez; De Camargo, Zoilo Pires

    2009-12-01

    The profiles of proteins present in the exoantigens of Brazilian Sporothrix schenckii isolates were studied and compared by electrophoresis (SDS-PAGE). Thirteen isolates from five different regions of Brazil (1,000 to 2,000 km apart) and ten from a more limited region (200 to 400 km apart within the state of São Paulo) were cultured in Sabouraud, M199 and minimum (MM) media. Qualitative and quantitative differences in the expression of proteins, which varied according to the medium and the isolate, were observed. Fractions with the same MW but varying in intensity were detected, as well as fractions present in 1 isolate but absent in others. Dendrograms were constructed and isolates grouped based on the fractions obtained, irrespective of the intensity. The results showed that Brazilian S. schenckii isolates express different protein profiles, a feature also present in isolates from a more restricted region. The exoantigens were found to have a maximum of 15 protein fractions, ranging in MW from 19-220 KDaltons depending on the medium used for the cultures. These data show the great heterogeneity of Brazilian S. schenckii protein expression.

  8. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    Science.gov (United States)

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  9. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  10. Cloning, expression, purification and characterization of Leishmania tropica PDI-2 protein

    Directory of Open Access Journals (Sweden)

    Ali Dina

    2016-01-01

    Full Text Available In Leishmania species, protein disulfide isomerase (PDI is an essential enzyme that catalyzes thiol-disulfide interchange. The present work describes the isolation, cloning, sequencing and expression of the pdI-2 gene. Initially, the gene was amplified from L. tropica genomic DNA by PCR using specific primers before cloning into the expression vector pET-15b. The construct pET/pdI-2 was transformed into BL21(DE3 cells and induced for the protein expression. SDS-PAGE and western blot analysis showed that the expressed protein is about 51 kDa. Cloned gene sequence analysis revealed that the deduced amino acid sequence showed significant homology with those of several parasites PDIs. Finally, recombinant protein was purified with a metal-chelating affinity column. The putative protein was confirmed as a thiol - disulfide oxidoreductase by detecting its activity in an oxidoreductase assay. Assay result of assay suggested that the PDI-2 protein is required for both oxidation and reduction of disulfide bonds in vitro. Antibodies reactive with this 51 kDa protein were detected by Western blot analysis in sera from human infected with L. tropica. This work describes for the first time the enzymatic activity of recombinant L. tropica PDI-2 protein and suggests a role for this protein as an antigen for the detection of leishmaniasis infection.

  11. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate...... MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact...

  13. Fragile X mental retardation protein expression in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Abigail J Renoux

    2014-10-01

    Full Text Available The FMR1 protein product, FMRP, is an mRNA binding protein associated with translational inhibition of target transcripts. One FMRP target is the amyloid precursor protein (APP mRNA, and APP levels are elevated in Fmr1 KO mice. Given that elevated APP protein expression can elicit Alzheimer’s disease (AD in patients and model systems, we evaluated whether FMRP expression might be altered in Alzheimer’s autopsy brain samples and mouse models compared to controls. In a double transgenic mouse model of AD (APP/PS1, we found no difference in FMRP expression in aged AD model mice compared to littermate controls. FMRP expression was also similar in AD and control patient frontal cortex and cerebellum samples. Fragile X-associated tremor/ataxia syndrome (FXTAS is an age related neurodegenerative disorder caused by expanded CGG repeats in the 5’UTR of the FMR1 gene. Patients experience cognitive impairment and dementia in addition to motor symptoms. In parallel studies, we measured FMRP expression in cortex and cerebellum from three FXTAS patients and found reduced expression compared to both controls and Alzheimer’s patient brains, consistent with animal models. We also find increased APP levels in cerebellar, but not cortical, samples of FXTAS patients compared to controls. Taken together, these data suggest that a decrease in FMRP expression is unlikely to be a primary contributor to Alzheimer’s disease pathogenesis.

  14. Improved means and methods for expressing recombinant proteins

    NARCIS (Netherlands)

    Poolman, Berend; Martinez Linares, Daniel; Gul, Nadia

    2014-01-01

    The invention relates to the field of genetic engineering and the production of recombinant proteins in microbial host cells. Provided is a method for enhanced expression of a recombinant protein of interest in a microbial host cell, comprising providing a microbial host cell wherein the function of

  15. In vitro protein expression: an emerging alternative to cell-based approaches.

    Science.gov (United States)

    He, Mingyue

    2011-04-30

    Protein expression remains a bottleneck in the production of proteins. Owing to several advantages, cell-free translation is emerging as an alternative to cell-based methods for the generation of proteins. Recent advances have led to many novel applications of cell-free systems in biotechnology, proteomics and fundamental biological research. This special issue of New Biotechnology describes recent advances in cell-free protein expression systems and their applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Machine learning in computational biology to accelerate high-throughput protein expression.

    Science.gov (United States)

    Sastry, Anand; Monk, Jonathan; Tegel, Hanna; Uhlen, Mathias; Palsson, Bernhard O; Rockberg, Johan; Brunk, Elizabeth

    2017-08-15

    The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. ebrunk@ucsd.edu or johanr@biotech.kth.se. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Ethylene-induced senescence-related gene expression requires protein synthesis

    International Nuclear Information System (INIS)

    Lawton, K.A.; Raghothama, K.G.; Woodson, W.R.

    1990-01-01

    We have investigated the effects of inhibiting protein synthesis on the ethylene-induced expression of 3 carnation senescence-related genes, pSR5, pSR8, and pSR12. Treatment of preclimacteric carnation petal discs with 1μg/ml of cycloheximide, a cytoplasmic protein synthesis inhibitor, for 3h inhibited protein synthesis by >80% as quantitated by the incorporation of [35S]methionine into protein. Pre-treatment of petal discs with cycloheximide prevented ethylene-induced SR transcript accumulation. Cycloheximide treatment of petal discs held in air did not result in increased levels of SR mRNA. These results indicate that ethylene does not interact with pre-formed factors but rather that the activation of SR gene expression by ethylene is mediated by labile protein factor(s) synthesized on cytoplasmic ribosomes. Experiments are currently underway to determine if cycloheximide exerts its effect at the transcriptional or post-transcriptional level

  18. Identification of differentially expressed proteins in response to Pb ...

    African Journals Online (AJOL)

    In response to Pb, a total of 76 proteins, out of the 95 differentially expressed proteins, were subjected to MALDI-TOF-MS Of these, 46 identities were identified by PMF and 19 identities were identified by microsequencing. Basic metabolisms such as photosynthesis, photorespiration and protein biosynthesis in C. roseus ...

  19. The effect of HCV Core protein on the expression of miR-150

    Directory of Open Access Journals (Sweden)

    Sayad Khanizadeh

    2016-09-01

    Full Text Available Background : Hepatitis C virus (HCV is considered as one of the major pathogenic agents of chronic liver diseases. Previous studies have shown that HCV proteins can interaction with gene regulatory networks such as microRNAs. The aim of this study was to investigate the effect of HCV core protein on the expression of miR-150 in a cell culture model. Materials and Methods: Plasmids expressing full HCV core protein was transfected into Huh7 cell lines while a GFP expressing plasmid employed as negative control. Subsequently, total RNA extracted and Real-Time PCR performed to measure the expression level of miR-150 expression. Moreover, trypan blue exclusion assay was performed to investigate the effect of core protein on cell viability. Results: The gene expression analysis of miR-150 in Huh7 cells showed that endogenous HCV core protein could significantly down regulation of miR-150 when compared to GFP control plasmid and normal cells (P<0.01. Beside, core protein induced no significant proliferative or cytotoxic effects on hepatic cells as determined by trypan blue exclusion assay (P<0.05. Conclusion: Our study suggests that HCV core protein can led to down regulation of miR-150 expression. This data revealed that HCV protein interactions with cell regulatory machinery may contribute to pathogenesis of chronic liver diseases.

  20. Optimization of translation profiles enhances protein expression and solubility.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Hess

    Full Text Available mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  1. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant

  2. Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins

    Science.gov (United States)

    Rodriguez-Mesa, Evelyn; Abreu-Blanco, Maria Teresa; Rosales-Nieves, Alicia E.; Parkhurst, Susan M.

    2012-01-01

    Background Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. Results We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. Conclusion All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics. PMID:22275148

  3. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene.

    Science.gov (United States)

    Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G

    2009-09-01

    Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.

  4. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  5. Hippocampal expression of a virus-derived protein impairs memory in mice.

    Science.gov (United States)

    Bétourné, Alexandre; Szelechowski, Marion; Thouard, Anne; Abrial, Erika; Jean, Arnaud; Zaidi, Falek; Foret, Charlotte; Bonnaud, Emilie M; Charlier, Caroline M; Suberbielle, Elsa; Malnou, Cécile E; Granon, Sylvie; Rampon, Claire; Gonzalez-Dunia, Daniel

    2018-02-13

    The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.

  6. BAX protein expression and clinical outcome in epithelial ovarian cancer.

    Science.gov (United States)

    Tai, Y T; Lee, S; Niloff, E; Weisman, C; Strobel, T; Cannistra, S A

    1998-08-01

    Expression of the pro-apoptotic protein BAX sensitizes ovarian cancer cell lines to paclitaxel in vitro by enhancing the pathway of programmed cell death. The present study was performed to determine the relationship between BAX expression and clinical outcome in 45 patients with newly diagnosed ovarian cancer. BAX protein expression was analyzed by immunohistochemistry, and its relationship with clinical outcome was determined. Assessment of BAX mRNA transcript levels and mutational analysis of the BAX coding region were also performed. BAX protein was expressed at high levels (defined as > or = 50% of tumor cells positive) in tumor tissue from 60% of newly diagnosed patients. All patients whose tumors expressed high levels of BAX achieved a complete response (CR) to first-line chemotherapy that contained paclitaxel plus a platinum analogue, compared with 57% of patients in the low-BAX group (P = .036). After a median follow-up of 1.9 years, the median disease-free survival (DFS) of patients in the high-BAX group has not been reached, compared with a median DFS of 1.1 years for low-BAX expressors (P = .0061). BAX retained independent prognostic significance in multivariate analysis when corrected for stage and histology. BAX mRNA transcripts were easily detected in samples with low BAX protein expression, and no BAX mutations were identified. The correlation between high BAX levels and improved clinical outcome suggests that an intact apoptotic pathway is an important determinant of chemoresponsiveness in ovarian cancer patients who receive paclitaxel.

  7. Screening of genetic parameters for soluble protein expression in Escherichia coli

    DEFF Research Database (Denmark)

    Vernet, Erik; Kotzsch, Alexander; Voldborg, Bjørn

    2011-01-01

    Soluble expression of proteins in a relevant form for functional and structural investigations still often remains a challenge. Although many biochemical factors are known to affect solubility, a thorough investigation of yield-limiting factors is normally not feasible in high-throughput efforts....... Here we present a screening strategy for expression of biomedically relevant proteins in Escherichia coli using a panel of six different genetic variations. These include engineered strains for rare codon supplementation, increased disulfide bond formation in the cytoplasm and novel vectors...... for secretion to the periplasm or culture medium. Combining these variants with expression construct truncations design, we report on parallel cloning and expression of more than 300 constructs representing 24 selected proteins; including full-length variants of human growth factors, interleukins and growth...

  8. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Protein expression dynamics observed in Experiment, Synchronous and. Asynchronous simulation. .... molecular basis for T cell suppression by IL-10: CD28-asso- ciated IL-10 receptor inhibits CD28 tyrosine ...

  9. Changes in HSP gene and protein expression in natural scrapie with brain damage

    Science.gov (United States)

    2011-01-01

    Heat shock proteins (Hsp) perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease. PMID:21314976

  10. Changes in HSP gene and protein expression in natural scrapie with brain damage

    Directory of Open Access Journals (Sweden)

    Serrano Carmen

    2011-01-01

    Full Text Available Abstract Heat shock proteins (Hsp perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease.

  11. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    Directory of Open Access Journals (Sweden)

    Walchli John

    2009-04-01

    Full Text Available Abstract Background With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. Results In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38α, viral polymerase (HCV NS5B, and bacterial structural protein (FtsZ were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. Conclusion The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  12. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    OpenAIRE

    Somayeh Kadkhodayan; Shiva Irani; Seyed Mehdi Sadat; Fatemeh Fotouhi; Azam Bolhassani

    2016-01-01

    Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa) could act as a cell penetrating peptide (CPP). In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confi...

  13. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  15. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats.

    Science.gov (United States)

    Bassi, Daniela; Bueno, Patricia de Godoy; Nonaka, Keico Okino; Selistre-Araujo, Heloisa Sobreiro; Leal, Angela Merice de Oliveira

    2015-04-01

    The aim of this study was to analyze the effect of exercise on the pattern of muscle myostatin (MSTN) protein expression in two important metabolic disorders, i.e., obesity and diabetes mellitus. MSTN, is a negative regulator of skeletal muscle mass. We evaluated the effect of exercise on MSTN protein expression in diabetes mellitus and high fat diet-induced obesity. MSTN protein expression in gastrocnemius muscle was analyzed by Western Blot. P sedentary or exercised obese animals. Diabetes reduced gastrocnemius muscle weight in sedentary animals. However, gastrocnemius muscle weight increased in diabetic exercised animals. Both the precursor and processed forms of muscle MSTN protein were significantly higher in sedentary diabetic rats than in control rats. The precursor form was significantly lower in diabetic exercised animals than in diabetic sedentary animals. However, the processed form did not change. These results demonstrate that exercise can modulate the muscle expression of MSTN protein in diabetic rats and suggest that MSTN may be involved in energy homeostasis.

  16. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots

    Directory of Open Access Journals (Sweden)

    LUCIA KUSUMAWATI

    2013-09-01

    Full Text Available Subtilisin-like serine protease (MtSBT, serine carboxypeptidase (MtSCP, MtN5, non-specific lipid transfer protein (MtnsLTP, early nodulin2-like protein (MtENOD2-like, FAD-binding domain containing protein (MtFAD-BP1, and rhicadhesin receptor protein (MtRHRE1 were among 34 proteins found in the supernatant of M. truncatula 2HA and sickle cell suspension cultures. This study investigated the expression of genes encoding those proteins in roots and developing nodules. Two methods were used: quantitative real time RT-PCR and gene expression analysis (with promoter:GUS fusion in roots. Those proteins are predicted as secreted proteins which is indirectly supported by the findings that promoter:GUS fusions of six of the seven genes encoding secreted proteins were strongly expressed in the vascular bundle of transgenic hairy roots. All six genes have expressed in 14-day old nodule. The expression levels of the selected seven genes were quantified in Sinorhizobium-inoculated and control plants using quantitative real time RT-PCR. In conclusion, among seven genes encoding secreted proteins analyzed, the expression level of only one gene, MtN5, was up-regulated significantly in inoculated root segments compared to controls. The expression of MtSBT1, MtSCP1, MtnsLTP, MtFAD-BP1, MtRHRE1 and MtN5 were higher in root tip than in other tissues examined.

  17. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  18. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Declan J., E-mail: dj.mckenna@ulster.ac.uk [Biomedical Sciences Research Institute, University of Ulster, Coleraine, Co. Derry BT52 1SA (United Kingdom); Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); Patel, Daksha, E-mail: d.patel@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); McCance, Dennis J., E-mail: d.mccance@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom)

    2014-01-05

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.

  19. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    International Nuclear Information System (INIS)

    McKenna, Declan J.; Patel, Daksha; McCance, Dennis J.

    2014-01-01

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes

  20. Efficient Expression of Acetylcholine-Binding Protein from Aplysia californica in Bac-to-Bac System

    Directory of Open Access Journals (Sweden)

    Bo Lin

    2014-01-01

    Full Text Available The Bac-to-Bac baculovirus expression system can efficiently produce recombinant proteins, but the system may have to be optimized to achieve high-level expression for different candidate proteins. We reported here the efficient expression of acetylcholine-binding proteins from sea hares Aplysia californica (Ac-AChBP and a convenient method to monitor protein expression level in this expression system. Three key factors affecting expression of Ac-AChBP were optimized for maximizing the yield, which included the cell density, volume of the infecting baculovirus inoculums, and the culturing time of postinfection. We have found it to reach a high yield of ∼5 mg/L, which needs 55 h incubation after infection at the cell density of 2 × 106 cells/mL with an inoculum volume ratio of 1 : 100. The optimized expression system in this study was also applied for expressing another protein Ls-AChBP from Lymnaea stagnalis successfully. Therefore, this established method is helpful to produce high yields of AChBP proteins for X-ray crystallographic structural and functional studies.

  1. Pulmonary heat shock protein expression after exposure to a metabolically activated Clara cell toxicant: relationship to protein adduct formation

    International Nuclear Information System (INIS)

    Williams, Kurt J.; Cruikshank, Michael K.; Plopper, Charles G.

    2003-01-01

    Heat shock proteins/stress proteins (Hsps) participate in regulation of protein synthesis and degradation and serve as general cytoprotectants, yet their role in lethal Clara cell injury is not clear. To define the pattern of Hsp expression in acute lethal Clara cell injury, mice were treated with the Clara cell-specific toxicant naphthalene (NA), and patterns of expression compared to electrophilic protein adduction and previously established organellar degradation and gluathione (GSH) depletion. In sites of lethal injury (distal bronchiole), prior to organellar degradation (1 h post-NA), protein adduction is detectable and ubiquitin, Hsp 25, Hsp 72, and heme-oxygenase 1 (HO-1) are increased. Maximal Hsp expression, protein adduction, and GSH depletion occur simultaneous (by 2-3 h) with early organelle disruption. Hsp expression is higher later (6-24 h), only in exfoliating cells. In airway sites (proximal bronchiole) with nonlethal Clara cell injury elevation of Hsp 25, 72, and HO-1 expression follows significant GSH depletion (greater than 50% 2 h post-NA). This data build upon our previous studies and we conclude that (1) in lethal (terminal bronchiole) and nonlethal (proximal bronchiole) Clara cell injury, Hsp induction is associated with the loss of GSH and increased protein adduction, and (2) in these same sites, organelle disruption is not a prerequisite for Hsp induction

  2. Generation and evaluation of mammalian secreted and membrane protein expression libraries for high-throughput target discovery.

    Science.gov (United States)

    Panavas, Tadas; Lu, Jin; Liu, Xuesong; Winkis, Ann-Marie; Powers, Gordon; Naso, Michael F; Amegadzie, Bernard

    2011-09-01

    Expressed protein libraries are becoming a critical tool for new target discovery in the pharmaceutical industry. In order to get the most meaningful and comprehensive results from protein library screens, it is essential to have library proteins in their native conformation with proper post-translation modifications. This goal is achieved by expressing untagged human proteins in a human cell background. We optimized the transfection and cell culture conditions to maximize protein expression in a 96-well format so that the expression levels were comparable with the levels observed in shake flasks. For detection purposes, we engineered a 'tag after stop codon' system. Depending on the expression conditions, it was possible to express either native or tagged proteins from the same expression vector set. We created a human secretion protein library of 1432 candidates and a small plasma membrane protein set of about 500 candidates. Utilizing the optimized expression conditions, we expressed and analyzed both libraries by SDS-PAGE gel electrophoresis and Western blotting. Two thirds of secreted proteins could be detected by Western-blot analyses; almost half of them were visible on Coomassie stained gels. In this paper, we describe protein expression libraries that can be easily produced in mammalian expression systems in a 96-well format, with one protein expressed per well. The libraries and methods described allow for the development of robust, high-throughput functional screens designed to assay for protein specific functions associated with a relevant disease-specific activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees.

    Science.gov (United States)

    Bauernfeind, Amy L; Soderblom, Erik J; Turner, Meredith E; Moseley, M Arthur; Ely, John J; Hof, Patrick R; Sherwood, Chet C; Wray, Gregory A; Babbitt, Courtney C

    2015-07-10

    Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular

  4. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  5. Roles of HMGA proteins in cancer: Expression, pathways, and redundancies

    Directory of Open Access Journals (Sweden)

    Giancotti V

    2016-10-01

    Full Text Available The expression of the High Mobility Group A (HMGA proteins, their participation in cancer signalling pathways, and their redundant functions have been reviewed in seven types of cancer: breast, colorectal, prostate, lung, ovarian, thyroid, and brain. The analysis of cell lines and tumours revealed an elevated level of their expression in all fully transformed cancer systems, which represents a step of the main cancer signalling pathways. In breast, colorectal, prostate, and lung cancers Wnt/β-catenin pathway is a master inducer of cell transformation in which are deeply involved HMG A1 and A2 proteins. On the other hand, IL-6/Stat3 pathway is responsible for cancer transformation in breast, lung, and prostate. The expression of HMGA1 in lung and ovarian cancers is due to an active PI3K/Akt pathway. The let-7 family of microRNA represses the expression of HMGA showing specificity by its different forms: the let-7b form is able to inhibit both proteins A1 and A2, the last also inhibited by a, c, d, and g forms. Moreover, both proteins are down-regulated by the repressor couple p53/microRNA-34a. The protein A1 and A2 participate to the Epithelial-Mesenchymal Transition cooperating with the three couples of factors Twist1/2, Snai1/2, and Zeb1/2. Through a combination of pathways, there is the simultaneous presence of high levels of both A1 and A2 together with the expression of other factors: a high co-operating efficiency is reached that supplies the tumour cells with properties of self-renewal, resistance, and invasiveness.

  6. Skeletal muscle morphology, protein synthesis and gene expression in Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Nygaard, Rie H; Jensen, Jacob K; Voermans, Nicol C

    2017-01-01

    skeletal muscle biopsies in patients with classic EDS (cEDS, n=5 (Denmark)+ 8 (The Netherlands)) and vascular EDS (vEDS, n=3) and analyzed muscle fiber morphology and content (Western blotting and muscle fiber type/area distributions) and muscle mRNA expression and protein synthesis rate (RT-PCR and stable...... isotope technique). RESULTS: The cEDS patients did not differ from healthy controls (n = 7-11) with regard to muscle fiber type/area, myosin/α-actin ratio, muscle protein synthesis rate or mRNA expression. In contrast, the vEDS patients demonstrated higher expression of matrix proteins compared to c......EDS patients (fibronectin and MMP-2). DISCUSSION: The cEDS patients had surprisingly normal muscle morphology and protein synthesis, whereas vEDS patients demonstrated higher mRNA expression for extracellular matrix remodeling in skeletal musculature compared to cEDS patients....

  7. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma.

    Science.gov (United States)

    Zhao, Q; He, Y; Wang, X-L; Zhang, Y-X; Wu, Y-M

    2015-08-01

    To explore the differentially expressed proteins in normal cervix, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) tissues by differential proteomics technique. Cervical tissues (including normal cervix, CIN and CSCC) were collected in Department of Gynecologic Oncology of Beijing Obstetrics and Gynecology Hospital. Two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) and DeCyder software were used to detect the differentially expressed proteins. Matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to identify the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were performed to validate the expressions of selected proteins among normal cervix, CIN and CSCC. 2-D DIGE images with high resolution and good repeatability were obtained. Forty-six differentially expressed proteins (27 up-regulated and 19 down-regulated) were differentially expressed among the normal cervix, CIN and CSCC. 26 proteins were successfully identified by MALDI-TOF/TOF MS. S100A9 (S100 calcium-binding protein A9) was the most significantly up-regulated protein. Eukaryotic elongation factor 1-alpha-1 (eEF1A1) was the most significantly down-regulated protein. Pyruvate kinase isozymes M2 (PKM2) was both up-regulated and down-regulated. The results of WB showed that with the increase in the severity of cervical lesions, the expression of S100A9 protein was significantly increased among the three groups (P = 0.010). The expression of eEF1A1 was reduced but without significant difference (P = 0.861). The expression of PKM2 was significantly reduced (P = 0.000). IHC showed that protein S100A9 was mainly expressed in the cytoplasm, and its positive expression rate was 20.0 % in normal cervix, 70.0 % in CIN and 100.0 % in CSCC, with a significant difference among them (P = 0.006). eEF1A1 was mainly expressed in the cell plasma, and its

  8. Human trabecular meshwork cells express BMP antagonist mRNAs and proteins.

    Science.gov (United States)

    Tovar-Vidales, Tara; Fitzgerald, Ashley M; Clark, Abbot F

    2016-06-01

    Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-β2). TGF-β2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-β2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-β signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-β2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-β2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-β2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-β2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy

    Science.gov (United States)

    Wang, Xiaoxin X.; Levi, Jonathan; Luo, Yuhuan; Myakala, Komuraiah; Herman-Edelstein, Michal; Qiu, Liru; Wang, Dong; Peng, Yingqiong; Grenz, Almut; Lucia, Scott; Dobrinskikh, Evgenia; D'Agati, Vivette D.; Koepsell, Hermann; Kopp, Jeffrey B.; Rosenberg, Avi Z.; Levi, Moshe

    2017-01-01

    There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice. PMID:28196866

  10. Cell-free expression and stable isotope labelling strategies for membrane proteins

    International Nuclear Information System (INIS)

    Sobhanifar, Solmaz; Reckel, Sina; Junge, Friederike; Schwarz, Daniel; Kai, Lei; Karbyshev, Mikhail; Loehr, Frank; Bernhard, Frank; Doetsch, Volker

    2010-01-01

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  11. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    Directory of Open Access Journals (Sweden)

    Qian Pei-Yuan

    2011-09-01

    Full Text Available Abstract Background The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles. Results Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles. Conclusion It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes.

  12. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development

    Directory of Open Access Journals (Sweden)

    Yawei Gao

    2017-12-01

    Full Text Available Pre-implantation embryo development is an intricate and precisely regulated process orchestrated by maternally inherited proteins and newly synthesized proteins following zygotic genome activation. Although genomic and transcriptomic studies have enriched our understanding of the genetic programs underlying this process, the protein expression landscape remains unexplored. Using quantitative mass spectrometry, we identified nearly 5,000 proteins from 8,000 mouse embryos of each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst. We found that protein expression in zygotes, morulas, and blastocysts is distinct from 2- to 8-cell embryos. Analysis of protein phosphorylation identified critical kinases and signal transduction pathways. We highlight key factors and their important roles in embryo development. Combined analysis of transcriptomic and proteomic data reveals coordinated control of RNA degradation, transcription, and translation and identifies previously undefined exon-junction-derived peptides. Our study provides an invaluable resource for further mechanistic studies and suggests core factors regulating pre-implantation embryo development.

  13. The E4 protein; structure, function and patterns of expression

    Energy Technology Data Exchange (ETDEWEB)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  14. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  15. Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs encoding glycine-rich proteins (GRPs

    Directory of Open Access Journals (Sweden)

    Fusaro Adriana

    2001-01-01

    Full Text Available Since the isolation of the first glycine-rich proteins (GRPs in plants a wealth of new GRPs have been identified. The highly specific but diverse expression pattern of grp genes, taken together with the distinct sub-cellular localization of some GRP groups, clearly indicate that these proteins are involved in several independent physiological processes. Notwithstanding the absence of a clear definition of the role of GRPs in plant cells, studies conducted with these proteins have provided new and interesting insights into the molecular biology and cell biology of plants. Complexly regulated promoters and distinct mechanisms for the regulation of gene expression have been demonstrated and new protein targeting pathways, as well as the exportation of GRPs from different cell types have been discovered. These data show that GRPs can be useful as markers and/or models to understand distinct aspects of plant biology. In this paper, the structural and functional features of these proteins in sugarcane (Saccharum officinarum L. are summarized. Since this is the first description of GRPs in sugarcane, special emphasis has been given to the expression pattern of these GRP genes by studying their abundance and prevalence in the different cDNA-libraries of the Sugarcane Expressed Sequence Tag (SUCEST project . The comparison of sugarcane GRPs with GRPs from other species is also discussed.

  16. Heterogeneity mapping of protein expression in tumors using quantitative immunofluorescence.

    Science.gov (United States)

    Faratian, Dana; Christiansen, Jason; Gustavson, Mark; Jones, Christine; Scott, Christopher; Um, InHwa; Harrison, David J

    2011-10-25

    Morphologic heterogeneity within an individual tumor is well-recognized by histopathologists in surgical practice. While this often takes the form of areas of distinct differentiation into recognized histological subtypes, or different pathological grade, often there are more subtle differences in phenotype which defy accurate classification (Figure 1). Ultimately, since morphology is dictated by the underlying molecular phenotype, areas with visible differences are likely to be accompanied by differences in the expression of proteins which orchestrate cellular function and behavior, and therefore, appearance. The significance of visible and invisible (molecular) heterogeneity for prognosis is unknown, but recent evidence suggests that, at least at the genetic level, heterogeneity exists in the primary tumor(1,2), and some of these sub-clones give rise to metastatic (and therefore lethal) disease. Moreover, some proteins are measured as biomarkers because they are the targets of therapy (for instance ER and HER2 for tamoxifen and trastuzumab (Herceptin), respectively). If these proteins show variable expression within a tumor then therapeutic responses may also be variable. The widely used histopathologic scoring schemes for immunohistochemistry either ignore, or numerically homogenize the quantification of protein expression. Similarly, in destructive techniques, where the tumor samples are homogenized (such as gene expression profiling), quantitative information can be elucidated, but spatial information is lost. Genetic heterogeneity mapping approaches in pancreatic cancer have relied either on generation of a single cell suspension(3), or on macrodissection(4). A recent study has used quantum dots in order to map morphologic and molecular heterogeneity in prostate cancer tissue(5), providing proof of principle that morphology and molecular mapping is feasible, but falling short of quantifying the heterogeneity. Since immunohistochemistry is, at best, only semi

  17. Heterologous Protein Expression in Pichia pastoris: Latest Research Progress and Applications.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2018-01-04

    Pichia pastoris is a well-known platform strain for heterologous protein expression. Over the past five years, different strategies to improve the efficiency of recombinant protein expression by this yeast strain have been developed; these include a patent-free protein expression kit, construction of the P. pastoris CBS7435Ku70 platform strain with its high efficiency in site-specific recombination of plasmid DNA into the genomic DNA, the design of synthetic promoters and their variants by combining different core promoters with multiple putative transcription factors, the generation of mutant GAP promoter variants with various promoter strengths, codon optimization, engineering the α-factor signal sequence by replacing the native glutamic acid at the Kex2 cleavage site with the other 19 natural amino acids and the addition of mammalian signal sequence to the yeast signal sequence, and the co-expression of single chaperones, multiple chaperones or helper proteins that aid in recombinant protein folding. Publically available high-quality genome data from multiple strains of P. pastoris GS115, DSMZ 70382, and CBS7435 and the continuous development of yeast expression kits have successfully promoted the metabolic engineering of this strain to produce carotenoids, xanthophylls, nootkatone, ricinoleic acid, dammarenediol-II, and hyaluronic acid. The cell-surface display of enzymes has obviously increased enzyme stability, and high-level intracellular expression of acyl-CoA and ethanol O-acyltransferase, lipase and d-amino acid oxidase has opened up applications in whole-cell biocatalysis for producing flavor molecules and biodiesel, as well as the deracemization of racemic amino acids. High-level expression of various food-grade enzymes, cellulases, and hemicellulases for applications in the food, feed and biorefinery industries is in its infancy and needs strengthening. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    Science.gov (United States)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  19. Kiss-1/GPR54 protein expression in breast cancer.

    Science.gov (United States)

    Papaoiconomou, Eleni; Lymperi, Maria; Petraki, Constantina; Philippou, Anastassios; Msaouel, Pavlos; Michalopoulou, Fani; Kafiri, Georgia; Vassilakos, George; Zografos, Georgios; Koutsilieris, Michael

    2014-03-01

    Numerous studies have shown that the Kiss-1 gene countervails the metastatic aptitude of several cancer cell lines and solid-tumor neoplasias. However, there still remains ambiguity regarding its role in breast cancer and literature has arisen asserting that Kiss-1 expression may be linked to an aggressive phenotype and malignant progression. Herein, we investigated the protein expression of Kiss-1 and its receptor GPR54 in breast cancer tissues compared to non-cancerous mammary tissues. Paraffin-fixed cancer tissues from 43 women with resected breast adenocarcinomas and 11 specimens derived from women suffering from fibrocystic disease, serving as controls, were immunostained with Kiss-1 and GPR54 antibodies. Kiss-1 and GPR54 protein expression levels were significantly higher in breast cancer compared to fibrocystic tissues (pbreast cancer and fibrocystic disease specimens. Kiss-1/GPR54 expression was found to be significantly higher in breast cancer compared to non-malignant mammary tissues.

  20. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression

    DEFF Research Database (Denmark)

    Ozanne, SE; Jensen, CB; Tingey, KJ

    2005-01-01

    muscle in a human cohort and a rat model. METHODS: We recruited 20 young men with low birthweight (mean birthweight 2702+/-202 g) and 20 age-matched control subjects (mean birthweight 3801+/-99 g). Biopsies were obtained from the vastus lateralis muscle and protein expression of selected insulin......-signalling proteins was determined. Rats used for this study were male offspring born to dams fed a standard (20%) protein diet or a low (8%) protein diet during pregnancy and lactation. Protein expression was determined in soleus muscle from adult offspring. RESULTS: Low-birthweight subjects showed reduced muscle...... expression of protein kinase C (PKC)zeta, p85alpha, p110beta and GLUT4. PKCzeta, GLUT4 and p85 were also reduced in the muscle of rats fed a low-protein diet. Other proteins studied were unchanged in low-birthweight humans and in rats fed a low-protein diet when compared with control groups. CONCLUSIONS...

  1. Expression and Location of Glucose-regulated Protein 78 in Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    W Wang

    2014-04-01

    Full Text Available Objective: To know the role of glucose-regulated protein 78 (GRP78/BiP/HSPA5 in spermatogenesis and its expression and location in the testis and epididymis. Methods: Immunohistochemistry and Western blot were used to detect GRP78 location and expression in the testis and epididymis. Results: Glucose-regulated protein 78 was observed in spermatocytes, round spermatids and interstitial cells of the testis and in principal cells of the epididymis. Glucose-regulated protein 78 was first detected in the rat testis at postnatal day 14. Thereafter, the protein level increased gradually with age and was maintained at a high and stable state after postnatal day 28. In the rat, GRP78 was expressed in the principal cells but not in clear cells of the epididymis. Conclusion: Glucose-regulated protein 78 participates in the process of spermatogenesis.

  2. CURCUMIN DECREASES SPECIFICITY PROTEIN (Sp) EXPRESSION IN BLADDER CANCER CELLS

    OpenAIRE

    Chadalapaka, Gayathri; Jutooru, Indira; Chintharlapalli, Sudhakar; Papineni, Sabitha; Smith, Roger; Li, Xiangrong; Safe, Stephen

    2008-01-01

    Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 – 25 µM curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Since expression of...

  3. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  4. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  5. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2011-09-03

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  6. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Soo, Lisa; Qian, Pei-Yuan

    2011-01-01

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  7. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  8. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  9. The protein expression landscape of mitosis and meiosis in diploid budding yeast.

    Science.gov (United States)

    Becker, Emmanuelle; Com, Emmanuelle; Lavigne, Régis; Guilleux, Marie-Hélène; Evrard, Bertrand; Pineau, Charles; Primig, Michael

    2017-03-06

    Saccharomyces cerevisiae is an established model organism for the molecular analysis of fundamental biological processes. The genomes of numerous strains have been sequenced, and the transcriptome and proteome ofmajor phases during the haploid and diploid yeast life cycle have been determined. However, much less is known about dynamic changes of the proteome when cells switch from mitotic growth to meiotic development. We report a quantitative protein profiling analysis of yeast cell division and differentiation based on mass spectrometry. Information about protein levels was integrated with strand-specific tiling array expression data. We identified a total of 2366 proteins in at least one condition, including 175 proteins showing a statistically significant>5-fold change across the sample set, and 136 proteins detectable in sporulating but not respiring cells. We correlate protein expression patterns with biological processes and molecular function by Gene Ontology term enrichment, chemoprofiling, transcription interference and the formation of double stranded RNAs by overlapping sense/antisense transcripts. Our work provides initial quantitative insight into protein expression in diploid respiring and differentiating yeast cells. Critically, it associates developmentally regulated induction of antisense long noncoding RNAs and double stranded RNAs with fluctuating protein concentrations during growth and development. This integrated genomics analysis helps better understand how the transcriptome and the proteome correlate in diploid yeast cells undergoing mitotic growth in the presence of acetate (respiration) versus meiotic differentiation (Meiosis I and II). The study (i) provides quantitative expression data for 2366 proteins and their cognate mRNAs in at least one sample, (ii) shows strongly fluctuating protein levels during growth and differentiation for 175 cases, and (iii) identifies 136 proteins absent in mitotic but present in meiotic yeast cells. We

  10. Efficient expression of SRK intracellular domain by a modeling-based protein engineering.

    Science.gov (United States)

    Murase, Kohji; Hirano, Yoshinori; Takayama, Seiji; Hakoshima, Toshio

    2017-03-01

    S-locus protein kinase (SRK) is a receptor kinase that plays a critical role in self-recognition in the Brassicaceae self-incompatibility (SI) response. SRK is activated by binding of its ligand S-locus protein 11 (SP11) and subsequently induced phosphorylation of the intracellular kinase domain. However, a detailed activation mechanism of SRK is still largely unknown because of the difficulty in stably expressing SRK recombinant proteins. Here, we performed modeling-based protein engineering of the SRK kinase domain for stable expression in Escherichia coli. The engineered SRK intracellular domain was expressed about 54-fold higher production than wild type SRK, without loss of the kinase activity, suggesting it could be useful for further biochemical and structural studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  12. Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Boqun, Xu; Xiaonan, Dai; Yugui, Cui; Lingling, Gao; Xue, Dai; Gao, Chao; Feiyang, Diao; Jiayin, Liu; Gao, Li; Li, Mei; Zhang, Yuan; Ma, Xiang

    2013-01-01

    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and surgical treatment with the signed consent form. The cellular localization of SET protein was observed by immunohistochemistry. The expression levels of SET protein were analyzed by Western Blot. Result. SET protein was expressed predominantly in the theca cells and oocytes of human ovarian follicles in both PCOS ovarian tissues and normal ovarian tissues. The level of SET protein expression in polycystic ovaries was triple higher than that in normal ovaries (P polycystic ovaries more than that in normal ovaries. Combined with its localization in theca cells, SET may participate in regulating ovarian androgen biosynthesis and the pathophysiology of hyperandrogenism in PCOS.

  13. Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis.

    Science.gov (United States)

    Somogyi-Ganss, Eszter; Nakayama, Yohei; Iwasaki, Kengo; Nakano, Yukiko; Stolf, Daiana; McKee, Marc D; Ganss, Bernhard

    2012-01-01

    Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define the spatiotemporal expression profile of AMTN during tooth development in comparison with other known enamel proteins. A peptide antibody against AMTN was raised in rabbits, affinity purified and used for immunohistochemical analyses on sagittal and transverse paraffin sections of decalcified mouse hemimandibles. The localization of AMTN was compared to that of known enamel proteins amelogenin, ameloblastin, enamelin, odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4. Three-dimensional images of AMTN localization in molars at selected ages were reconstructed from serial stained sections, and transmission electron microscopy was used for ultrastructural localization of AMTN. AMTN was detected in ameloblasts of molars in a transient fashion, declining at the time of tooth eruption. Prominent expression in maturation stage ameloblasts of the continuously erupting incisor persisted into adulthood. In contrast, amelogenin, ameloblastin and enamelin were predominantly found during the early secretory stage, while odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4 expression in maturation stage ameloblasts paralleled that of AMTN. Secreted AMTN was detected at the interface between ameloblasts and the mineralized enamel. Recombinant AMTN protein did not mediate cell attachment in vitro. These results suggest a primary role for AMTN in the late stages of enamel mineralization. Copyright © 2011 S. Karger AG, Basel.

  14. CIP2A protein expression in high-grade, high-stage bladder cancer

    International Nuclear Information System (INIS)

    Huang, Lisa P; Savoly, Diana; Sidi, Abraham A; Adelson, Martin E; Mordechai, Eli; Trama, Jason P

    2012-01-01

    Bladder cancer is one of the most common cancers in the United States. Numerous markers have been evaluated for suitability of bladder cancer detection and surveillance. However, few of them are acceptable as a routine tool. Therefore, there exists a continuing need for an assay that detects the presence of bladder cancer in humans. It would be advantageous to develop an assay with a protein that is associated with the development of bladder cancer. We have identified the cancerous inhibitor of PP2A (CIP2A) protein as a novel bladder cancer biomarker. In this study, Western blot analysis was used to assess the expression level of CIP2A protein in bladder cancer cell lines and bladder cancer patient tissues (n = 43). Our studies indicated CIP2A protein was abundantly expressed in bladder cancer cell lines but not in nontumor epithelial cell lines. Furthermore, CIP2A was specifically expressed in transitional cell carcinoma (TCC) of the bladder tumor tissues but not in adjacent nontumor bladder tissue. Our data showed that CIP2A protein detection in high-grade TCC tissues had a sensitivity of 65%, which is 3.4-fold higher than that seen in low-grade TCC tissues (19%). The level of CIP2A protein expression increased with the stage of disease (12%, 27%, 67%, and 100% for pTa, pT1, pT2, and pT3 tumor, respectively). In conclusion, our studies suggest that CIP2A protein is specifically expressed in human bladder tumors. CIP2A is preferentially expressed in high-grade and high-stage TCC tumors, which are high-risk and invasive tumors. Our studies reported here support the role of CIP2A in bladder cancer progression and its usefulness for the surveillance of recurrence or progression of human bladder cancer

  15. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    Science.gov (United States)

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  16. Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Singh Upinder

    2009-02-01

    Full Text Available Abstract Background Entamoeba histolytica is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in Entamoeba histolytica. Results An episomal vector-based system, using the E. histolytica U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in E. histolytica. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%. Conclusion Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in Entamoeba histolytica, providing a useful tool for the study of this parasite.

  17. Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica.

    Science.gov (United States)

    Linford, Alicia S; Moreno, Heriberto; Good, Katelyn R; Zhang, Hanbang; Singh, Upinder; Petri, William A

    2009-02-17

    Entamoeba histolytica is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in Entamoeba histolytica. An episomal vector-based system, using the E. histolytica U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in E. histolytica. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%. Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in Entamoeba histolytica, providing a useful tool for the study of this parasite.

  18. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    International Nuclear Information System (INIS)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João

    2013-01-01

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag + presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag + (10 μg L −1 ) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag + . Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag + , with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in

  19. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João, E-mail: mbebian@ualg.pt

    2013-07-15

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag{sup +} presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag{sup +} (10 μg L{sup −1}) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag{sup +}. Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag{sup +}, with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one

  20. Evolved Escherichia coli Strains for Amplified, Functional Expression of Membrane Proteins

    NARCIS (Netherlands)

    Gul, Nadia; Linares, Daniel M.; Ho, Franz Y.; Poolman, Bert

    2014-01-01

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several

  1. Differential protein expression in alligator leukocytes in response to bacterial lipopolysaccharide injection.

    Science.gov (United States)

    Merchant, Mark; Kinney, Clint; Sanders, Paige

    2009-12-01

    Blood was collected from three juvenile alligators (Alligator mississippiensis) before, and again 24h after, injection with bacterial lipopolysaccharide (LPS). The leukocytes were collected from both samples, and the proteins were extracted. Each group of proteins was labeled with a different fluorescent dye and the differences in protein expression were analyzed by two dimensional differential in-gel expressions (2D-DIGE). The proteins which appeared to be increased or decreased by treatment with LPS were selected and analyzed by MALDI-TOF to determine mass and LC-MS/MS to acquire the partial protein sequences. The peptide sequences were compared to the NCBI protein sequence database to determine homology with other sequences from other species. Several proteins of interest appeared to be increased upon LPS stimulation. Proteins with homology to human transgelin-2, fish glucose-6-phosphate dehydrogenase, amphibian α-enolase, alligator lactate dehydrogenase, fish ubiquitin-activating enzyme, and fungal β-tubulin were also increased after LPS injection. Proteins with homology to fish vimentin 4, murine heterogeneous nuclear ribonucleoprotein A3, and avian calreticulin were found to be decreased in response to LPS. In addition, five proteins, four of which were up-regulated (827, 560, 512, and 650%) and one that exhibited repressed expression (307%), did not show homology to any protein in the database, and thus may represent newly discovered proteins. We are using this biochemical approach to isolate and characterize alligator proteins with potential relevant immune function.

  2. Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16.

    Science.gov (United States)

    Zhang, Yunfang; Schernthaner, Johann; Labbé, Natalie; Hefford, Mary A; Zhao, Jiping; Simmonds, Daina H

    2014-06-01

    To improve soybean [Glycine max (L.) Merrill] seed nutritional quality, a synthetic gene, MB-16 was introduced into the soybean genome to boost seed methionine content. MB-16, an 11 kDa de novo protein enriched in the essential amino acids (EAAs) methionine, threonine, lysine and leucine, was originally developed for expression in rumen bacteria. For efficient seed expression, constructs were designed using the soybean codon bias, with and without the KDEL ER retention sequence, and β-conglycinin or cruciferin seed specific protein storage promoters. Homozygous lines, with single locus integrations, were identified for several transgenic events. Transgene transmission and MB-16 protein expression were confirmed to the T5 and T7 generations, respectively. Quantitative RT-PCR analysis of developing seed showed that the transcript peaked in growing seed, 5-6 mm long, remained at this peak level to the full-sized green seed and then was significantly reduced in maturing yellow seed. Transformed events carrying constructs with the rumen bacteria codon preference showed the same transcription pattern as those with the soybean codon preference, but the transcript levels were lower at each developmental stage. MB-16 protein levels, as determined by immunoblots, were highest in full-sized green seed but the protein virtually disappeared in mature seed. However, amino acid analysis of mature seed, in the best transgenic line, showed a significant increase of 16.2 and 65.9 % in methionine and cysteine, respectively, as compared to the parent. This indicates that MB-16 elevated the sulfur amino acids, improved the EAA seed profile and confirms that a de novo synthetic gene can enhance the nutritional quality of soybean.

  3. High SRPX2 protein expression predicts unfavorable clinical outcome in patients with prostate cancer

    Science.gov (United States)

    Zhang, Meng; Li, Xiaoli; Fan, Zhirui; Zhao, Jing; Liu, Shuzheng; Zhang, Mingzhi; Li, Huixiang; Goscinski, Mariusz Adam; Fan, Huijie; Suo, Zhenhe

    2018-01-01

    Background Sushi repeat-containing protein X-linked 2 (SRPX2) is overexpressed in a variety of different tumor tissues and correlated with poor prognosis in patients. Little research focuses on the role of SRPX2 expression in prostate cancer (PCa), and the clinicopathological significance of the protein expression in this tumor is relatively unknown. However, our previous transcriptome data from those cancer stem-like cells indicated the role of SRPX2 in PCa. Materials and methods In this study, RT-PCR and Western blotting were firstly used to examine the SRPX2 expression in three PCa cell lines including LNCaP, DU145, and PC3, and then SRPX2 protein expression was immunohistochemically investigated and statistically analyzed in a series of 106 paraffin-embedded PCa tissue specimens. Results Significantly lower levels of SRPX2 expression were verified in the LNCaP cells, compared with the expression in the aggressive DU145 and PC3 cells, in both mRNA and protein levels. Immunohistochemically, there were variable SRPX2 protein expressions in the clinical samples. Moreover, high levels of SRPX2 expression in the PCa tissues were significantly associated with Gleason score (P=0.008), lymph node metastasis (P=0.009), and distant metastasis (P=0.021). Furthermore, higher levels of SRPX2 expression in the PCa tissues were significantly associated with shorter overall survival (OS) (P<0.001). Conclusion Our results demonstrate that SRPX2 is highly expressed in aggressive PCa cells in vitro, and its protein expression in PCa is significantly associated with malignant clinical features and shorter OS, strongly indicating its prognostic value in prostate cancers. PMID:29881288

  4. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications.

    Science.gov (United States)

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2016-12-01

    Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.

  5. Expression of livin protein in lung cancer and its relation with the expression of pro-caspase3 protein

    Directory of Open Access Journals (Sweden)

    Hongru LI

    2008-10-01

    Full Text Available Background and objective Livin is a novel inhibitor of apoptosis protein (IAP, recent studies showed it overexpresses in a variety of carcinomas including lung cancer and contributes much to the cancerous development. The objective of this study is to explore the expression of livin in tissues of lung cancer and its relationshipwith histological types, chemotherapy, Lymph node metastasis and to study its correlation with the expression of pro-caspase3 as well. Methods Expressions of Livin and caspase3 were detected by Western blot assay in lung cancer tissues as well as in controls. Results Livin was expressed in 15 of 27 lung cancer, significantly more than those in lung para-cancerous (1/5 or benign disease lung tissues (2/12 (P 0.05. Conclusion Livin are differently expressed in different histological types of lung cancer; High levels of livin expression do not relate to chemotherapy, lymph node metastasis (P >0.05. The levels of livin tends to be positively associated with those of accordingly pro-caspase3, it is presumed that livin could bind pro-caspase3 and suppress its activation.

  6. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  7. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma.

    Science.gov (United States)

    Bozdogan, Onder; Yulug, Isik G; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer

    2015-08-01

    Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors. © 2014 The International Society of Dermatology.

  8. Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.

    Science.gov (United States)

    Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L

    2015-01-01

    The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

  9. Immunohistochemical expression of latent membrane protein 1 ...

    African Journals Online (AJOL)

    Methods: Archival formalin-fixed, paraffin-embedded NPC biopsies were evaluated in 23 Moroccan patients for the presence of LMP1 and p53 using immunohistochemistry (IHC). Results: No LMP1 expression was observed whereas 8 of 23 cases (34. 7%) had detectable p53 protein in the nuclei of tumor cells.

  10. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells

    International Nuclear Information System (INIS)

    Hung, C.-F.; Cheng, T.-L.; Wu, R.-H.; Teng, C.-F.; Chang, W.-T.

    2006-01-01

    RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells

  11. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding.

    Science.gov (United States)

    Mamipour, Mina; Yousefi, Mohammadreza; Hasanzadeh, Mohammad

    2017-09-01

    The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Altered protein expression in serum from endometrial hyperplasia and carcinoma patients

    Directory of Open Access Journals (Sweden)

    Cong Qing

    2011-04-01

    Full Text Available Abstract Background Endometrial carcinoma is one of the most common gynecological malignancies in women. The diagnosis of the disease at early or premalignant stages is crucial for the patient's prognosis. To date, diagnosis and follow-up of endometrial carcinoma and hyperplasia require invasive procedures. Therefore, there is considerable demand for the identification of biomarkers to allow non-invasive detection of these conditions. Methods In this study, we performed a quantitative proteomics analysis on serum samples from simple endometrial hyperplasia, complex endometrial hyperplasia, atypical endometrial hyperplasia, and endometrial carcinoma patients, as well as healthy women. Serum samples were first depleted of high-abundance proteins, labeled with isobaric tags (iTRAQ™, and then analyzed via two-dimensional liquid chromatography and tandem mass spectrometry. Protein identification and quantitation information were acquired by comparing the mass spectrometry data against the International Protein Index Database using ProteinPilot software. Bioinformatics annotation of identified proteins was performed by searching against the PANTHER database. Results In total, 74 proteins were identified and quantified in serum samples from endometrial lesion patients and healthy women. Using a 1.6-fold change as the benchmark, 12 proteins showed significantly altered expression levels in at least one disease group compared with healthy women. Among them, 7 proteins were found, for the first time, to be differentially expressed in atypical endometrial hyperplasia. These proteins are orosomucoid 1, haptoglobin, SERPINC 1, alpha-1-antichymotrypsin, apolipoprotein A-IV, inter-alpha-trypsin inhibitor heavy chain H4, and histidine-rich glycoprotein. Conclusions The differentially expressed proteins we discovered in this study may serve as biomarkers in the diagnosis and follow-up of endometrial hyperplasia and endometrial carcinoma.

  13. Expression of green fluorescent protein (GFPuv) in Escherichia coli ...

    African Journals Online (AJOL)

    Administrator

    The recombinant green fluorescent protein (GFPuv) was expressed by transformed cells of Escherichia coli DH5-α grown in LB/amp broth at 37oC, for 8 h and 24 h. To evaluate the effectiveness of different parameters to improve the expression of GFPuv by E. coli, four variable culturing conditions were set up for assays by ...

  14. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    Science.gov (United States)

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  15. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis

    Directory of Open Access Journals (Sweden)

    Schlegel Brigitte

    2004-03-01

    Full Text Available Abstract Background High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination. Results 88 different E. coli expression constructs for 17 human protein domains were analysed using high-throughput cloning, purification and folding analysis to obtain candidates suitable for structural analysis. After 96 deep-well microplate expression and automated protein purification, protein domains were directly analysed using 1D 1H-NMR spectroscopy. In addition, analytical hydrophobic interaction chromatography (HIC was used to detect natively folded protein. With these two analytical methods, six constructs (representing two domains were quickly identified as being well folded and suitable for structural analysis. Conclusion The described approach facilitates high-throughput structural analysis. Clones expressing natively folded proteins suitable for NMR structure determination were quickly identified upon small scale expression screening using 1D 1H-NMR and/or analytical HIC. This procedure is especially effective as a fast and inexpensive screen for the 'low hanging fruits' in structural genomics.

  16. Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems.

    Science.gov (United States)

    Gagoski, Dejan; Mureev, Sergey; Giles, Nichole; Johnston, Wayne; Dahmer-Heath, Mareike; Škalamera, Dubravka; Gonda, Thomas J; Alexandrov, Kirill

    2015-02-10

    Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Oyang Yen-Jen

    2010-10-01

    Full Text Available Abstract Background Molecular networks represent the backbone of molecular activity within cells and provide opportunities for understanding the mechanism of diseases. While protein-protein interaction data constitute static network maps, integration of condition-specific co-expression information provides clues to the dynamic features of these networks. Dilated cardiomyopathy is a leading cause of heart failure. Although previous studies have identified putative biomarkers or therapeutic targets for heart failure, the underlying molecular mechanism of dilated cardiomyopathy remains unclear. Results We developed a network-based comparative analysis approach that integrates protein-protein interactions with gene expression profiles and biological function annotations to reveal dynamic functional modules under different biological states. We found that hub proteins in condition-specific co-expressed protein interaction networks tended to be differentially expressed between biological states. Applying this method to a cohort of heart failure patients, we identified two functional modules that significantly emerged from the interaction networks. The dynamics of these modules between normal and disease states further suggest a potential molecular model of dilated cardiomyopathy. Conclusions We propose a novel framework to analyze the interaction networks in different biological states. It successfully reveals network modules closely related to heart failure; more importantly, these network dynamics provide new insights into the cause of dilated cardiomyopathy. The revealed molecular modules might be used as potential drug targets and provide new directions for heart failure therapy.

  18. Analysis of disease-associated protein expression using quantitative proteomics—fibulin-5 is expressed in association with hepatic fibrosis.

    Science.gov (United States)

    Bracht, Thilo; Schweinsberg, Vincent; Trippler, Martin; Kohl, Michael; Ahrens, Maike; Padden, Juliet; Naboulsi, Wael; Barkovits, Katalin; Megger, Dominik A; Eisenacher, Martin; Borchers, Christoph H; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2015-05-01

    Hepatic fibrosis and cirrhosis are major health problems worldwide. Until now, highly invasive biopsy remains the diagnostic gold standard despite many disadvantages. To develop noninvasive diagnostic assays for the assessment of liver fibrosis, it is urgently necessary to identify molecules that are robustly expressed in association with the disease. We analyzed biopsied tissue samples from 95 patients with HBV/HCV-associated hepatic fibrosis using three different quantification methods. We performed a label-free proteomics discovery study to identify novel disease-associated proteins using a subset of the cohort (n = 27). Subsequently, gene expression data from all available clinical samples were analyzed (n = 77). Finally, we performed a targeted proteomics approach, multiple reaction monitoring (MRM), to verify the disease-associated expression in samples independent from the discovery approach (n = 68). We identified fibulin-5 (FBLN5) as a novel protein expressed in relation to hepatic fibrosis. Furthermore, we confirmed the altered expression of microfibril-associated glycoprotein 4 (MFAP4), lumican (LUM), and collagen alpha-1(XIV) chain (COL14A1) in association to hepatic fibrosis. To our knowledge, no tissue-based quantitative proteomics study for hepatic fibrosis has been performed using a cohort of comparable size. By this means, we add substantial evidence for the disease-related expression of the proteins examined in this study.

  19. Expression of the Major Vault Protein (MVP) and Cellular Vault Particles in Fish.

    Science.gov (United States)

    Margiotta, Alyssa L; Bain, Lisa J; Rice, Charles D

    2017-11-01

    Cellular vaults are ubiquitous 13 mega Da multi-subunit ribonuceloprotein particles that may have a role in nucleocytoplasmic transport. Seventy percent of the vault's mass consists of a ≈100 kDa protein, the major vault protein (MVP). In humans, a drug resistance-associated protein, originally identified as lung resistance protein in metastatic lung cancer, was ultimately shown to be the previously described MVP. In this study, a partial MVP sequence was cloned from channel catfish. Recombinant MVP (rMVP) was used to generate a monoclonal antibody that recognizes full length protein in distantly related fish species, as well as mice. MVP is expressed in fish spleen, liver, anterior kidney, renal kidney, and gills, with a consistent expression in epithelial cells, macrophages, or endothelium at the interface of the tissue and environment or vasculature. We show that vaults are distributed throughout cells of fish lymphoid cells, with nuclear and plasma membrane aggregations in some cells. Protein expression studies were extended to liver neoplastic lesions in Atlantic killifish collected in situ at the Atlantic Wood USA-EPA superfund site on the southern branch of the Elizabeth River, VA. MVP is highly expressed in these lesions, with intense staining at the nuclear membrane, similar to what is known about MVP expression in human liver neoplasia. Additionally, MVP mRNA expression was quantified in channel catfish ovarian cell line following treatment with different classes of pharmacological agents. Notably, mRNA expression is induced by ethidium bromide, which damages DNA. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1981-1992, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  1. Benzoate-mediated changes on expression profile of soluble proteins in Serratia sp. DS001.

    Science.gov (United States)

    Pandeeti, E V P; Chinnaboina, M R; Siddavattam, D

    2009-05-01

    To assess differences in protein expression profile associated with shift in carbon source from succinate to benzoate in Serratia sp. DS001 using a proteomics approach. A basic proteome map was generated for the soluble proteins extracted from Serratia sp. DS001 grown in succinate and benzoate. The differently and differentially expressed proteins were identified using ImageMaster 2D Platinum software (GE Healthcare). The identity of the proteins was determined by employing MS or MS/MS. Important enzymes such as Catechol 1,2 dioxygenase and transcriptional regulators that belong to the LysR superfamily were identified. Nearly 70 proteins were found to be differentially expressed when benzoate was used as carbon source. Based on the protein identity and degradation products generated from benzoate it is found that ortho pathway is operational in Serratia sp. DS001. Expression profile of the soluble proteins associated with shift in carbon source was mapped. The study also elucidates degradation pathway of benzoate in Serratia sp. DS001 by correlating the proteomics data with the catabolites of benzoate.

  2. Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis.

    Science.gov (United States)

    Oldereid, N B; Angelis, P D; Wiger, R; Clausen, O P

    2001-05-01

    We investigated the frequency of spontaneous apoptosis and expression of the Bcl-2 family of proteins during normal spermatogenesis in man. Testicular tissue with both normal morphology and DNA content was obtained from necro-donors and fixed in Bouin's solution. A TdT-mediated dUTP end-labelling method (TUNEL) was used for the detection of apoptotic cells. Expression of apoptosis regulatory Bcl-2 family proteins and of p53 and p21(Waf1) was assessed by immunohistochemistry. Germ cell apoptosis was detected in all testes and was mainly seen in primary spermatocytes and spermatids and in a few spermatogonia. Bcl-2 and Bak were preferentially expressed in the compartments of spermatocytes and differentiating spermatids, while Bcl-x was preferentially expressed in spermatogonia. Bax showed a preferential expression in nuclei of round spermatids, whereas Bad was only seen in the acrosome region of various stages of spermatids. Mcl-1 staining was weak without a particular pattern, whereas expression of Bcl-w, p53 and p21(Waf1) proteins was not detected by immunohistochemistry. The results show that spontaneous apoptosis occurs in all male germ cell compartments in humans. Bcl-2 family proteins are distributed preferentially within distinct germ cell compartments suggesting a specific role for these proteins in the processes of differentiation and maturation during human spermatogenesis.

  3. In silico modelling and validation of differential expressed proteins in lung cancer

    Directory of Open Access Journals (Sweden)

    Bhagavathi S

    2012-05-01

    Full Text Available Objective: The present study aims predict the three dimensional structure of three major proteins responsible for causing Lung cancer. Methods: These are the differentially expressed proteins in lung cancer dataset. Initially, the structural template for these proteins is identified from structural database using homology search and perform homology modelling approach to predict its native 3D structure. Three-dimensional model obtained was validated using Ramachandran plot analysis to find the reliability of the model. Results: Four proteins were differentially expressed and were significant proteins in causing lung cancer. Among the four proteins, Matrixmetallo proteinase (P39900 had a known 3D structure and hence was not considered for modelling. The remaining proteins Polo like kinase I Q58A51, Trophinin B1AKF1, Thrombomodulin P07204 were modelled and validated. Conclusions: The three dimensional structure of proteins provides insights about the functional aspect and regulatory aspect of the protein. Thus, this study will be a breakthrough for further lung cancer related studies.

  4. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days. Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease.

  5. Protein Expression Profiling of Giant Cell Tumors of Bone Treated with Denosumab.

    Directory of Open Access Journals (Sweden)

    Kenta Mukaihara

    Full Text Available Giant cell tumors of bone (GCTB are locally aggressive osteolytic bone tumors. Recently, some clinical trials have shown that denosumab is a novel and effective therapeutic option for aggressive and recurrent GCTB. This study was performed to investigate the molecular mechanism underlying the therapeutic effect of denosumab. Comparative proteomic analyses were performed using GCTB samples which were taken before and after denosumab treatment. Each expression profile was analyzed using the software program to further understand the affected biological network. One of identified proteins was further evaluated by gelatin zymography and an immunohistochemical analysis. We identified 13 consistently upregulated proteins and 19 consistently downregulated proteins in the pre- and post-denosumab samples. Using these profiles, the software program identified molecular interactions between the differentially expressed proteins that were indirectly involved in the RANK/RANKL pathway and in several non-canonical subpathways including the Matrix metalloproteinase pathway. The data analysis also suggested that the identified proteins play a critical functional role in the osteolytic process of GCTB. Among the most downregulated proteins, the activity of MMP-9 was significantly decreased in the denosumab-treated samples, although the residual stromal cells were found to express MMP-9 by an immunohistochemical analysis. The expression level of MMP-9 in the primary GCTB samples was not correlated with any clinicopathological factors, including patient outcomes. Although the replacement of tumors by fibro-osseous tissue or the diminishment of osteoclast-like giant cells have been shown as therapeutic effects of denosumab, the residual tumor after denosumab treatment, which is composed of only stromal cells, might be capable of causing bone destruction; thus the therapeutic application of denosumab would be still necessary for these lesions. We believe that the

  6. GroEL-GroES assisted folding of multiple recombinant proteins simultaneously over-expressed in Escherichia coli.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K

    2015-07-01

    Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL-ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL-GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL-ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL-ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Nociceptive DRG neurons express muscle lim protein upon axonal injury.

    Science.gov (United States)

    Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar

    2017-04-04

    Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.

  8. Expression of Insoluble Influenza Neuraminidase Type 1 (NA1 Protein in Tobacco

    Directory of Open Access Journals (Sweden)

    Teen Lee Pua

    2012-12-01

    Full Text Available The avian influenza virus, particularly H5N1 strain, is highly virulent to poultry and mankind. Several expression systems, like yeast, baculovirus and mammalian cells, have been adopted to produce vaccine candidate for this lethal disease. The present research aimed at developing a recombinant vaccine candidate, neuraminidase type 1 (NA1, for the Malaysia isolate of H5N1 in Nicotiana benthamiana. The NA1 gene was fused directly in-frame in cowpea mosaic virus (CPMV-based pEAQ-HT vector with C-terminal polyhistidine-tag incorporated to ease the subsequent purification step. The expression of the NA1 gene in tobacco was confirmed at RNA and protein levels at 6 days post-infiltration (Dpi. From the insoluble fraction of the protein, a recombinant glycosylated NA1 protein with a molecular weight of ~56 kDa was immunogenically detected by a specific anti-NA polyclonal antibody. We report for the first time the insolubility of the plant-made NA1 protein where a native sequence was used for its expression. This study signifies the necessity of the use of optimised sequences for expression work and provides great opportunity for the exploration of plant-manufactured NA1 protein as vaccine candidate.

  9. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression, function

  10. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins.

    Science.gov (United States)

    Rozov, S M; Permyakova, N V; Deineko, E V

    2018-03-01

    Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.

  11. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N.

    2006-01-01

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  12. Diversity of Histologic Patterns and Expression of Cytoskeletal Proteins in Canine Skeletal Osteosarcoma.

    Science.gov (United States)

    Nagamine, E; Hirayama, K; Matsuda, K; Okamoto, M; Ohmachi, T; Kadosawa, T; Taniyama, H

    2015-09-01

    Osteosarcoma (OS), the most common bone tumor, includes OS of the head (OSH) and appendicular OS (OSA). In dogs, it is classified into 6 histologic subtypes: osteoblastic, chondroblastic, fibroblastic, telangiectatic, giant cell, and poorly differentiated. This study investigated the significance of the histologic classification relevant to clinical outcome and the histologic and immunohistochemical relationships between pleomorphism and expression of cytoskeletal proteins in 60 cases each of OSH and OSA. Most neoplasms exhibited histologic diversity, and 64% of OS contained multiple subtypes. In addition to the above 6 subtypes, myxoid, round cell, and epithelioid subtypes were observed. Although the epithelioid subtypes were observed in only OSH, no significant difference in the frequency of other subtypes was observed. Also, no significant relevance was observed between the clinical outcome and histologic subtypes. Cytokeratin (CK) was expressed in both epithelioid and sarcomatoid tumor cells in various subtypes, and all CK-positive tumor cells also expressed vimentin. Vimentin and α-smooth muscle actin (SMA) were expressed in all subtypes. A few SMA-positive spindle-shaped tumor cells exhibited desmin expression. Glial fibrillary acidic protein-positive tumor cells were observed in many subtypes, and some of these cells showed neurofilament expression. Although OSH exhibited significantly stronger immunoreactivity for SMA than OSA, no significant difference in other cytoskeletal proteins was observed. Some tumor cells had cytoskeletal protein expression compatible with the corresponding histologic subtypes, such as CK in the epithelioid subtype and SMA in the fibroblastic subtype. Thus, canine skeletal OS is composed of pleomorphic and heterogenous tumor cells as is reflected in the diversity of histologic patterns and expression of cytoskeletal proteins. © The Author(s) 2015.

  13. Different Cells Make Different Proteins: A Laboratory Exercise Illustrating Tissue-Specific Protein Expression in Animals

    Science.gov (United States)

    Ibarguren, Izaskun; Villamarín, Antonio

    2017-01-01

    All the cells of higher organisms have the same DNA but not the same proteins. Each type of specialised cell that forms a tissue has its own pattern of gene expression and, consequently, it contains a particular set of proteins that determine its function. Here, we describe a laboratory exercise addressed to undergraduate students that aims to…

  14. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    Science.gov (United States)

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  15. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee

    2016-07-19

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  16. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee; Wong, Aloysius Tze; Esau, Luke; Lemtiri-Chlieh, Fouad; Gehring, Christoph A

    2016-01-01

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  17. Xylosylation of proteins by expression of human xylosyltransferase 2 in plants.

    Science.gov (United States)

    Matsuo, Kouki; Atsumi, Go

    2018-04-12

    Through the years, the post-translational modification of plant-made recombinant proteins has been a considerable problem. Protein glycosylation is arguably the most important post-translational modification; thus, for the humanization of protein glycosylation in plants, the introduction, repression, and knockout of many glycosylation-related genes has been carried out. In addition, plants lack mammalian-type protein O-glycosylation pathways; thus, for the synthesis of mammalian O-glycans in plants, the construction of these pathways is necessary. In this study, we successfully xylosylated the recombinant human proteoglycan core protein, serglycin, by transient expression of human xylosyltransferase 2 in Nicotiana benthamiana plants. When human serglycin was co-expressed with human xylosyltransferase 2 in plants, multiple serine residues of eight xylosylation candidates were xylosylated. From the results of carbohydrate assays for total soluble proteins, some endogenous plant proteins also appeared to be xylosylated, likely through the actions of xylosyltransferase 2. The xylosylation of core proteins is the initial step of the glycosaminoglycan part of the synthesis of proteoglycans. In the future, these novel findings may lead to whole mammalian proteoglycan synthesis in plants. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    Directory of Open Access Journals (Sweden)

    Sanjukta Chakrabarti

    2016-06-01

    Full Text Available Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  19. Effect of polysaccharides from Angelica sinensis on Bcl-2 and Bax protein expression of irradiated liver cells

    International Nuclear Information System (INIS)

    Sun Yuanlin; Tang Jian; Gu Xiaohong; Li Deyuan

    2009-01-01

    Objective: To investigate the effect of polysaccharides from Angelica sinensis (ASP3) on Bcl-2 and Bax protein expression of irradiated liver cells from mice. Methods: Bcl-2 and Bax protein expression of liver cells in vitro exposed to 2.0 Gy rays were examined by using immunohistochemistry method. Results: The expression of apoptosis-accelerating protein Bax in the irradiation group was enhanced obviously (70.83%), while apoptosis inhibiting protein Bcl-2 tended to decline (55.60%), with the statistically significant difference (P <0.01) compared with that of the control. ASP3 pretreatment could regulate Bcl-2 and Bax protein expression of liver cells, inhibiting Bax protein expression(64.14/58.37%) and increasing Bcl-2 protein expression(59.21%/ 67.45%). The differences between the high dosage (100 mg/L of ASP3) and the irradiation group were statistically significant (P<0.05). Conclusions: ASP3 pretreatment could prohibit the apoptosis of radiation- damaged liver cells due to abnormal expression of Bcl-2 and Bax, and reduce the cell apoptosis by increasing Bcl-2/Bax protein expression so as to enhance the radiation endurance of liver cells. (authors)

  20. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy

    Directory of Open Access Journals (Sweden)

    Natalia M. Bottasso Arias

    2015-01-01

    Full Text Available Celiac disease (CD is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs: intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs’ expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa.

  1. Novel approach for transient protein expression in primary cultures of human dental pulp-derived cells.

    Science.gov (United States)

    Suguro, Hisashi; Mikami, Yoshikazu; Koshi, Rieko; Ogiso, Bunnai; Watanabe, Eri; Watanabe, Nobukazu; Honda, Masaki J; Asano, Masatake; Komiyama, Kazuo

    2011-08-01

    Transfection is a powerful method for investigating variable biological functions of desired genes. However, the efficiency of transfection into primary cultures of dental pulp-derived cells (DPDC) is low. Therefore, using a recombinant vaccinia virus (vTF7-3), which contains T7 RNA polymerase, we have established a transient protein expression system in DPDCs. In this study, we used the human polymeric immunoglobulin receptor (pIgR) cDNA as a model gene. pIgR expression by the vTF7-3 expression system was confirmed by flow cytometry analysis and Western blotting. Furthermore, exogenous pIgR protein localized at the cell surface in DPDCs and formed a secretory component (SC). This suggests that exogenous pIgR protein expressed by the vTF7-3 expression system acts like endogenous pIgR protein. These results indicate the applicability of the method for cells outgrown from dental pulp tissue. In addition, as protein expression could be detected shortly after transfection (approximately 5h), this experimental system has been used intensely for experiments examining very early steps in protein exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  3. Expression of a fatty acid-binding protein in yeast

    International Nuclear Information System (INIS)

    Scholz, H.

    1991-06-01

    The unicellular eukaryotic microorganism, Saccharomyces cerevisiae, transformed with a plasmid containing a cDNA fragment encoding bovine heart fatty acid-binding protein (H-FABP C ) under the control of the inducible yeast GAL10 promoter, expressed FABP during growth on galactose. The maximum level of immunoreactive FABP, identical in size and isoelectric point to native protein, was reached after approximately 16 hours of induction. In contrast, transcription of the gene was induced within half an hour. Both, protein and mRNA were unstable and degraded within 1 h after repression of transcription. Analysis of subcellular fractions showed that FABP was exclusively associated with the cytosol. FABP expressed in yeast cells was functional as was demonstrated by its capacity to bind long chain fatty acids in an in vitro assay. Growth of all transformants on galactose as the carbon source showed no phenotype at temperatures up to 37 deg C, but the growth of FABP-expressing cells at 37 deg C was significantly retarded. Among the biochemical effects of FABP expression on lipid metabolism is a marked reduction of chain elongation and desaturation of exogenously added 14 C-palmitic acid. This effect is most pronounced in triacylglycerols and phospholipids when cells grow at 30 deg C and 37 deg C, respectively. In an in vitro assay determining the desaturation of palmitoyl CoA by microsomal membranes cytosol with or without exo- or endogenous FABP showed the same stimulation of the reaction. The desaturation of exogenously added 14 C-stearic acid, the pattern of unlabelled fatty acids (saturated vs. unsaturated) and the distribution of exogenously added radioactive fatty acids (palmitic, stearic or oleic acid) among lipid classes was not significantly affected. Using high concentrations (1 mM) the uptake of fatty acids was first stimulated and then inhibited when FABP was expressed. (author)

  4. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    Science.gov (United States)

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  5. Once for All: A Novel Robust System for Co-expression of Multiple Chimeric Fluorescent Fusion Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Guitao Zhong

    2017-06-01

    Full Text Available Chimeric fluorescent fusion proteins have been employed as a powerful tool to reveal the subcellular localizations and dynamics of proteins in living cells. Co-expression of a fluorescent fusion protein with well-known organelle markers in the same cell is especially useful in revealing its spatial and temporal functions of the protein in question. However, the conventional methods for co-expressing multiple fluorescent tagged proteins in plants have the drawbacks of low expression efficiency, variations in the expression level and time-consuming genetic crossing. Here, we have developed a novel robust system that allows for high-efficient co-expression of multiple chimeric fluorescent fusion proteins in plants in a time-saving fashion. This system takes advantage of employing a single expression vector which consists of multiple semi-independent expressing cassettes for the protein co-expression thereby overcoming the limitations of using multiple independent expressing plasmids. In addition, it is a highly manipulable DNA assembly system, in which modification and recombination of DNA molecules are easily achieved through an optimized one-step assembly reaction. By employing this effective system, we demonstrated that co-expression of two chimeric fluorescent fusion reporter proteins of vacuolar sorting receptor and secretory carrier membrane protein gave rise to their perspective subcellular localizations in plants via both transient expression and stable transformation. Thus, we believed that this technical advance represents a promising approach for multi-color-protein co-expression in plant cells.

  6. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C

    NARCIS (Netherlands)

    Hackeng, T. M.; Hessing, M.; van 't Veer, C.; Meijer-Huizinga, F.; Meijers, J. C.; de Groot, P. G.; van Mourik, J. A.; Bouma, B. N.

    1993-01-01

    An important feedback mechanism in blood coagulation is supplied by the protein C/protein S anticoagulant pathway. In this study we demonstrate that the binding of human protein S to cultured human umbilical vein endothelial cells (HUVECs) is required for the expression of cofactor activity of

  7. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Science.gov (United States)

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L

  8. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Directory of Open Access Journals (Sweden)

    Miranda Lo

    Full Text Available BACKGROUND: Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. METHODOLOGY/PRINCIPAL FINDINGS: To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS. We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. CONCLUSIONS/SIGNIFICANCE: This is the first study to compare transcriptional and translational responses to temperature

  9. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  10. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta

    Directory of Open Access Journals (Sweden)

    IA Pérez-Legaspi

    Full Text Available AbstractThe organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE, by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.

  11. Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors

    Directory of Open Access Journals (Sweden)

    Kawe Martin

    2009-01-01

    Full Text Available Abstract Background Overexpression of proteins in Escherichia coli is considered routine today, at least when the protein is soluble and not otherwise toxic for the host. We report here that the massive overproduction of even such "benign" proteins can cause surprisingly efficient promoter deletions in the expression plasmid, leading to the growth of only non-producers, when expression is not well repressed in the newly transformed bacterial cell. Because deletion is so facile, it might impact on high-throughput protein production, e.g. for structural genomics, where not every expression parameter will be monitored. Results We studied the high-level expression of several robust non-toxic proteins using a T5 promoter under lac operator control. Full induction leads to no significant growth retardation. We compared expression from almost identical plasmids with or without the lacI gene together in strains expressing different levels of LacI. Any combination without net overexpression of LacI led to an efficient promoter deletion in the plasmid, although the number of growing colonies and even the plasmid size – all antibiotic-resistant non-producers – was almost normal, and thus the problem not immediately recognizable. However, by assuring sufficient repression during the initial establishment phase of the plasmid, deletion was completely prevented. Conclusion The deletions in the insufficiently repressed system are caused entirely by the burden of high-level translation. Since the E. coli Dps protein, known to protect DNA against stress in the stationary phase, is accumulated in the deletion mutants, the mutation may have taken place during a transient stationary phase. The cause of the deletion is thus distinct from the well known interference of high-level transcription with plasmid replication. The deletion can be entirely prevented by overexpressing LacI, a useful precaution even without any signs of stress caused by the protein.

  12. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    Science.gov (United States)

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression.

    Science.gov (United States)

    Shives, Katherine D; Massey, Aaron R; May, Nicholas A; Morrison, Thomas E; Beckham, J David

    2016-10-18

    West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7 GpppN m 5' cap with 2'- O -methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  14. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression

    Directory of Open Access Journals (Sweden)

    Katherine D. Shives

    2016-10-01

    Full Text Available West Nile virus (WNV is a (+ sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1 for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K and eukaryotic translation initiation factor 4E-binding protein (4EBP pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E interaction and eukaryotic initiation factor 4F (eIF4F complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6 and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  15. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa ( Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and

  16. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    Science.gov (United States)

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  17. Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family.

    Directory of Open Access Journals (Sweden)

    Jacqueline Schmuckli-Maurer

    Full Text Available The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm.We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals.Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic

  18. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.

    2012-04-19

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein\\'s associated spectral peaks. However, typical MS-based proteomics datasets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. RESULTS: We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of \\'presence/absence,\\' we enable the selection of proteins not typically amenable to quantitative analysis; e.g. \\'one-state\\' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/absence analysis of a given dataset in a principled way, resulting in a single list of selected proteins with a single-associated false discovery rate. AVAILABILITY: All R code available here: http://www.stat.tamu.edu/~adabney/share/xuan_code.zip.

  19. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    Energy Technology Data Exchange (ETDEWEB)

    Assenberg, René [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Delmas, Olivier [UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris CEDEX 15 (France); Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J. [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Bourhy, Hervé [UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris CEDEX 15 (France); Grimes, Jonathan M., E-mail: jonathan@strubi.ox.ac.uk [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

  20. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    International Nuclear Information System (INIS)

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-01-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6 1 22 or P6 5 22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress

  1. Changes in protein expression in p53 deleted spontaneous thymic lymphomas

    DEFF Research Database (Denmark)

    Honoré, Bent; Vorum, Henrik; Pedersen, Anders Elm

    2004-01-01

    with the protein expression in p53+/+ and p53-/- thymocytes. Only a minority (13 proteins) of the quantitatively changed proteins were common for the two thymic lymphoma cell lines, suggesting that the p53 deficiency mainly results in genetic dysfunctions which are individual for a given tumor. Two of the detected...... structure containing motifs of the glyoxalase-bleomycin resistance protein family (MDR) as deduced from the cDNA....

  2. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    Science.gov (United States)

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  3. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

    Science.gov (United States)

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H; Michel, Jennifer Carlisle; Claxton, Derek P; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K Christopher; Gouaux, Eric

    2014-11-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

  4. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    Science.gov (United States)

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  5. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    Science.gov (United States)

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations. © 2016 The Authors. International Journal of Experimental Pathology © 2016

  6. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-01-01

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination

  7. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Kittipong Rattanaporn

    2011-08-01

    Full Text Available Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin, CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA domain of human capillary morphogenesis 2 (CMG2, an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG. We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS: p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI, with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  8. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    Science.gov (United States)

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  9. Protein Kinase CK2 Expression Predicts Relapse Survival in ERα Dependent Breast Cancer, and Modulates ERα Expression in Vitro

    Directory of Open Access Journals (Sweden)

    Marlon D. Williams

    2015-12-01

    Full Text Available The heterotetrameric protein kinase CK2 has been associated with oncogenic transformation, and our previous studies have shown that it may affect estrogenic signaling. Here, we investigate the role of the protein kinase CK2 in regulating ERα (estrogen receptor α signaling in breast cancer. We determined the correlation of CK2α expression with relapse free breast cancer patient survival utilizing Kaplan Meier Plotter (kmplot.com/analysis/ to mine breast cancer microarrays repositories. Patients were stratified according to ERα status, histological grade, and hormonal therapy. Luciferase reporter assays and flow cytometry were implemented to determine the impact of CK2 inhibition on ERE-mediated gene expression and expression of ERα protein. CK2α expression is associated with shorter relapse free survival among ERα (+ patients with grade 1 or 2 tumors, as well as among those patients receiving hormonal therapy. Biochemical inhibition of CK2 activity results in increased ER-transactivation as well as increased expression among ERα (+ and ERα (− breast cancer cell lines. These findings suggest that CK2 may contribute to estrogen-independent cell proliferation and breast tumor progression, and may potentially serve as a biomarker and pharmacological target in breast cancer.

  10. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein

    OpenAIRE

    Soleimani, Meysam; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    Background: Chimeric proteins consisting of a targeting moiety and a cytotoxic moiety are now under intense research focus for targeted therapy of cancer. Here, we report cloning, expression, and purification of such a targeted chimeric protein made up of p28 peptide as both targeting and anticancer moiety fused to NRC peptide as a cytotoxic moiety. However, since the antimicrobial activity of the NRC peptide would intervene expression of the chimeric protein in Escherichia coli, we evaluated...

  11. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  12. Expression of proteinase inhibitor II proteins during floral development in Solanum americanum.

    Science.gov (United States)

    Sin, Suk-Fong; Chye, Mee-Len

    2004-10-01

    The heterologous expression of serine proteinase inhibitor II (PIN2) proteins confers insect resistance in transgenic plants, but little is known of their endogenous roles. We have cloned two cDNAs encoding Solanum americanum PIN2 proteins, SaPIN2a and SaPIN2b. SaPIN2a is highly expressed in stem, particularly in the phloem, suggesting it could possibly regulate proteolysis in the sieve elements. When SaPIN2a was expressed in transgenic lettuce, we observed an inhibition of endogenous trypsin- and chymotrypsin-like activities. Here, we demonstrate that both SaPIN2a and SaPIN2b are expressed in floral tissues that are destined to undergo developmental programmed cell death (PCD), suggesting possible endogenous roles in inhibiting trypsin- and chymotrypsin-like activities during flower development. Northern and western blot analyses revealed that SaPIN2a and SaPIN2b mRNAs and proteins show highest expression early in floral development. In situ hybridization analysis and immunolocalization on floral sections, localized SaPIN2a and SaPIN2b mRNAs and their proteins to tissues that would apparently undergo PCD: the ovules, the stylar transmitting tissue, the stigma and the vascular bundles. Detection of PCD in floral sections was achieved using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. Examination of the mid-style before, and 1 day after, pollination revealed that high expression of SaPIN2a and SaPIN2b in the style was inversely correlated with PCD.

  13. Methylation status and protein expression of RASSF1A in breast cancer patients.

    Science.gov (United States)

    Hagrass, Hoda A; Pasha, Heba F; Shaheen, Mohamed A; Abdel Bary, Eman H; Kassem, Rasha

    2014-01-01

    Recently genetics and epigenetics alterations have been found to be characteristic of malignancy and hence can be used as targets for detection of neoplasia. RAS association domain family protein 1A (RASSF1A) gene hypermethylation has been a subject of interest in recent researches on cancer breast patients. The aim of the present study was to evaluate whether RASSF1A methylation status and RASSF1A protein expression are associated with the major clinico-pathological parameters. One hundred and twenty breast cancer Egyptian patients and 100-control subjects diagnosed with benign lesions of the breast were enrolled in this study. We evaluated RASSF1A methylation status in tissue and serum samples using Methyl specific PCR together with RASSF1A protein expression in tissues by immunohistochemistry. Results were studied in relation to known prognostic clinicopathological features in breast cancer. Frequency of RASSF1A methylation in tissues and serum were 70 and 63.3 % respectively and RASSF1A protein expression showed frequency of 46.7 %. There was an association between RASSF1A methylation in tissues, serum and loss of protein expression in tissues with invasive carcinoma, advanced stage breast cancer, L.N. metastasis, ER/PR and HER2 negativity. RASSF1A methylation in serum showed high degree of concordance with methylation in tissues (Kappa = 0.851, P < 0.001). RASSF1A hypermethylation in tissues and serum and its protein expression may be a valid, reliable and sensitive tool for detection and follow up of breast cancer patients.

  14. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation.

    Science.gov (United States)

    Krawczenko, Agnieszka; Bielawska-Pohl, Aleksandra; Wojtowicz, Karolina; Jura, Roksana; Paprocka, Maria; Wojdat, Elżbieta; Kozłowska, Urszula; Klimczak, Aleksandra; Grillon, Catherine; Kieda, Claudine; Duś, Danuta

    2017-01-01

    Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.

  15. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    Science.gov (United States)

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  16. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    International Nuclear Information System (INIS)

    Clark, Lindsay; Zahm, Jacob A.; Ali, Rustam; Kukula, Maciej; Bian, Liangqiao; Patrie, Steven M.; Gardner, Kevin H.; Rosen, Michael K.; Rosenbaum, Daniel M.

    2015-01-01

    13 C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13 C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13 C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets

  17. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.

    Science.gov (United States)

    Scotter, Andrew J; Kuntz, Douglas A; Saul, Michelle; Graham, Laurie A; Davies, Peter L; Rose, David R

    2006-06-01

    We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.

  18. Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10

    International Nuclear Information System (INIS)

    Pereira, Larissa Miranda

    2009-01-01

    The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm's tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribosomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813 Q M at 25 degree C or 30 degree C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by β- sheet feature. (author)

  19. WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome

    International Nuclear Information System (INIS)

    Nunez, María I; Mills, Gordon B; Aldaz, C Marcelo; Rosen, Daniel G; Ludes-Meyers, John H; Abba, Martín C; Kil, Hyunsuk; Page, Robert; Klein-Szanto, Andres JP; Godwin, Andrew K; Liu, Jinsong

    2005-01-01

    The putative tumor suppressor WWOX gene spans the common chromosomal fragile site 16D (FRA16D) at chromosome area 16q23.3-24.1. This region is a frequent target for loss of heterozygosity and chromosomal rearrangement in ovarian, breast, hepatocellular, prostate carcinomas and other neoplasias. The goal of these studies was to evaluate WWOX protein expression levels in ovarian carcinomas to determine if they correlated with clinico-pathological parameters, thus providing additional support for WWOX functioning as a tumor suppressor. We performed WWOX protein expression analyses by means of immunobloting and immunohistochemistry on normal ovaries and specific human ovarian carcinoma Tissue Microarrays (n = 444). Univariate analysis of clinical-pathological parameters based on WWOX staining was determined by χ 2 test with Yates' correction. The basic significance level was fixed at p < 0.05. Immunoblotting analysis from normal ovarian samples demonstrated consistently strong WWOX expression while 37% ovarian carcinomas showed reduced or undetectable WWOX protein expression levels. The immunohistochemistry of normal human ovarian tissue sections confirmed strong WWOX expression in ovarian surface epithelial cells and in epithelial inclusion cysts within the cortex. Out of 444 ovarian carcinoma samples analyzed 30% of tumors showed lack of or barely detectable WWOX expression. The remaining ovarian carcinomas (70%) stained moderately to strongly positive for this protein. The two histotypes showing significant loss of WWOX expression were of the Mucinous (70%) and Clear Cell (42%) types. Reduced WWOX expression demonstrated a significant association with clinical Stage IV (FIGO) (p = 0.007), negative Progesterone Receptor (PR) status (p = 0.008) and shorter overall survival (p = 0.03). These data indicate that WWOX protein expression is highly variable among ovarian carcinoma histotypes. It was also observed that subsets of ovarian tumors demonstrated loss of

  20. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    Science.gov (United States)

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  1. Expression and purification of PprI protein from D.radiodurans R1 in escherichia coli

    International Nuclear Information System (INIS)

    Zhang Yongqin; Zhou Hui; Chen Jie; Yang Zhanshan

    2011-01-01

    In order to express and purify PprI protein from D.radiodurans R1 in E. coli, the full length of pprI gene was gained by PCR amplification using pCMV-HA-pprI as a template. The gene segment was inserted into vector pET-28a after digested by two restriction endonucleases Nco I and EcoR I. Then the recombinant vector pET-28a-His-pprI was transfected into E. coli BL21(DE3) RP. The PprI protein expression was induced by IPTG and the fusion protein was confirmed by SDS-PAGE and Western blotting. The expressive conditions of the protein such as E. coli' A 600 , concentration of IPTG, time and temperature of culture, were optimized. Finally the fusion protein was purified by Ni-NTA His Bind Resins and molecule boult. The experimental results show the fusion protein confirmed by Western blotting is 6 x His-PprI and its molecular weight is 37 kDa. The ladders of PprI protein at molecular weight 37 kDa were different due to difference of the PprI protein expression conditions if E. coli. The PprI protein exists both in supernatant and precipitation. The concentration of purified protein is about 0.15 mg/mL which was measured by BCA method. It is concluded that the recombinant plasmid pET-28a-His-pprI is constructed and the PprI fusion protein is expressed and purified. The results lay a solid foundation for studying the radio-resistance and immunity of PprI protein. (authors)

  2. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  3. Re-partitioning of Cu and Zn isotopes by modified protein expression

    Directory of Open Access Journals (Sweden)

    Ragnarsdottir K Vala

    2008-10-01

    Full Text Available Abstract Cu and Zn have naturally occurring non radioactive isotopes, and their isotopic systematics in a biological context are poorly understood. In this study we used double focussing mass spectroscopy to determine the ratios for these isotopes for the first time in mouse brain. The Cu and Zn isotope ratios for four strains of wild-type mice showed no significant difference (δ65Cu -0.12 to -0.78 permil; δ66Zn -0.23 to -0.48 permil. We also looked at how altering the expression of a single copper binding protein, the prion protein (PrP, alters the isotope ratios. Both knockout and overexpression of PrP had no significant effect on the ratio of Cu isotopes. Mice brains expressing mutant PrP lacking the known metal binding domain have δ65Cu isotope values of on average 0.57 permil higher than wild-type mouse brains. This implies that loss of the copper binding domain of PrP increases the level of 65Cu in the brain. δ66Zn isotope values of the transgenic mouse brains are enriched for 66Zn to the wild-type mouse brains. Here we show for the first time that the expression of a single protein can alter the partitioning of metal isotopes in mouse brains. The results imply that the expression of the prion protein can alter cellular Cu isotope content.

  4. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Wu Wei [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Li Haiyan [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000 (China); Zhang Guanglin [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Zhejiang-California International Nanosystems Institute, Hangzhou, Zhejiang 310029 (China)

    2010-04-01

    Benzo[a]pyrene (BaP) is a potent pro-carcinogen generated from the combustion of fossil fuel and cigarette smoke. Previously, using a proteomic approach, we have shown that BaP can induce changes in the expression of many cellular proteins, including transcription regulators. In the present study, using a similar approach, we examined the nuclear protein response to BaP in HeLa cells and found that BaP treatment caused expression changes in many nuclear proteins. Twenty-four of these proteins were successfully identified, several of which are involved in the alternative splicing of mRNA, DNA replication, recombination, and repair. The changed expression levels were further confirmed by immunoblot analysis using specific antibodies for two proteins, Lamin A and mitotic checkpoint protein Bub3. The nuclear localization of these two proteins was also confirmed by confocal microscopy. To determine whether alternative splicing was activated following BaP treatment, we examined Fas and CD44, two genes previously shown to be targets of alternative splicing in respond to DNA damage. While no significant activation of alternative splicing was observed for Fas, CD44 splicing variants were found after BaP treatment. Together, these data show that DNA damage induces dramatic changes in nuclear protein expression, and that alternative splicing might be involved in the cellular response to DNA damage.

  5. Identification and prognostic value of anterior gradient protein 2 expression in breast cancer based on tissue microarray.

    Science.gov (United States)

    Guo, Jilong; Gong, Guohua; Zhang, Bin

    2017-07-01

    Breast cancer has attracted substantial attention as one of the major cancers causing death in women. It is crucial to find potential biomarkers of prognostic value in breast cancer. In this study, the expression pattern of anterior gradient protein 2 in breast cancer was identified based on the main molecular subgroups. Through analysis of 69 samples from the Gene Expression Omnibus database, we found that anterior gradient protein 2 expression was significantly higher in non-triple-negative breast cancer tissues compared with normal tissues and triple-negative breast cancer tissues (p gradient protein 2 expression pattern. Furthermore, we performed immunohistochemical analysis. The quantification results revealed that anterior gradient protein 2 is highly expressed in non-triple-negative breast cancer (grade 3 excluded) and grade 1 + 2 (triple-negative breast cancer excluded) tumours compared with normal tissues. Anterior gradient protein 2 was significantly highly expressed in non-triple-negative breast cancer (grade 3 excluded) and non-triple-negative breast cancer tissues compared with triple-negative breast cancer tissues (p gradient protein 2 was significantly highly expressed in grade 1 + 2 (triple-negative breast cancer excluded) and grade 1 + 2 tissues compared with grade 3 tissues (p gradient protein 2 expression was significantly associated with histologic type, histological grade, oestrogen status and progesterone status. Univariate analysis of clinicopathological variables showed that anterior gradient protein 2 expression, tumour size and lymph node status were significantly correlated with overall survival in patients with grade 1 and 2 tumours. Cox multivariate analysis revealed anterior gradient protein 2 as a putative independent indicator of unfavourable outcomes (p = 0.031). All these data clearly showed that anterior gradient protein 2 is highly expressed in breast cancer and can be regarded as a putative biomarker for

  6. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  7. Differences in IGF-axis protein expression and survival among multiethnic breast cancer patients

    International Nuclear Information System (INIS)

    Hernandez, Brenda Y; Wilkens, Lynne R; Le Marchand, Loïc; Horio, David; Chong, Clayton D; Loo, Lenora W M

    2015-01-01

    There is limited knowledge about the biological basis of racial/ethnic disparities in breast cancer outcomes. Aberrations in IGF signaling induced by obesity and other factors may contribute to these disparities. This study examines the expression profiles of the insulin-like growth factor (IGF)-axis proteins and the association with breast cancer survival across a multiethnic population. We examined the expression profiles of the IGF1, IGF1R, IGFBP2 (IGF-binding proteins), and IGFBP3 proteins in breast tumor tissue and their relationships with all-cause and breast cancer-specific survival up to 17 years postdiagnosis in a multiethnic series of 358 patients in Hawaii, USA. Native Hawaiians, Caucasians, and Japanese were compared. Covariates included demographic and clinical factors and ER/PR/HER2 (estrogen receptor/progesterone receptor/human epidermal growth factor receptor-2) status. In Native Hawaiian patients, IGFBP2 and IGFBP3 expression were each independently associated with overall and breast cancer mortality (IGFB2: HR mort = 10.96, 95% CI: 2.18–55.19 and HR mort = 35.75, 95% CI: 3.64–350.95, respectively; IGFBP3: HR mort = 5.16, 95% CI: 1.27–20.94 and HR mort = 8.60, 95% CI: 1.84–40.15, respectively). IGF1R expression was also positively associated with all-cause mortality in Native Hawaiians. No association of IGF-axis protein expression and survival was observed in Japanese or Caucasian patients. The interaction of race/ethnicity and IGFBP3 expression on mortality risk was significant. IGF-axis proteins may have variable influence on breast cancer progression across different racial/ethnic groups. Expression of binding proteins and receptors in breast tumors may influence survival in breast cancer patients by inducing aberrations in IGF signaling and/or through IGF-independent mechanisms. Additional studies to evaluate the role of the IGF-axis in breast cancer are critical to improve targeted breast cancer treatment strategies

  8. Prokineticin 1 protein expression is a useful new prognostic factor for human sporadic colorectal cancer.

    Science.gov (United States)

    Nakazawa, Toshiyuki; Goi, Takanori; Hirono, Yasuo; Yamaguchi, Akio

    2015-05-01

    Hematogenous metastasis, regarded as closely related to angiogenic growth factors, is associated with colorectal cancer prognosis. The angiogenic growth factor prokineticin 1 (PROK1) has been cloned from endocrine cells. However, its protein expression in human malignant tumors has not been studied. The current study established the anti-PROK1 monoclonal antibody (mAb) and examined the relationship between the expression of PROK1 protein and human colorectal cancer. The expression of PROK1 protein was assessed in 620 resected sporadic colorectal cancer tissue samples by immunohistochemical staining with in-house-developed human PROK1 mAb to investigate the relationship of PROK1 expression to clinicopathologic factors, recurrence, and survival rate and to evaluate its prognostic significance. The expression of PROK1 protein was detected in 36 % (223/620) of human primary colorectal cancer lesions but no in the healthy mucosa adjacent to the colorectal cancer lesions. According to the clinicopathologic examinations, the frequency of positive PROK1 expression was significantly higher in cases with serosal invasion, lymphatic invasion, venous invasion, lymph node metastasis, liver metastasis, hematogenous metastasis, and higher stage disease. The recurrence rate and prognosis for patients with PROK1 expression-positive lesions were significantly worse. In the Cox proportional hazard model, PROK1 expression was an independent prognostic factor. The expression of PROK1 protein was identified for the first time as a new prognostic factor in colorectal cancer.

  9. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    Science.gov (United States)

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-15

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.

  10. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Cobos Everardo

    2005-01-01

    Full Text Available Abstract Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20 with three members (FAM20A, FAM20B and FAM20C in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating

  11. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  12. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  13. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  14. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Magistrado, Pamela; Hermsen, Cornelus C

    2005-01-01

    -encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration...... in immunologically naive individuals and high effective multiplication rates. METHODS: var gene transcription was analysed using real time PCR and PfEMP1 expression by western blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers shortly after infection with NF54...... compared to parasites expressing other var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis. In addition, serological typing showed that immune sera more often recognized second and third generation parasites than first generation parasites. CONCLUSION...

  15. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  16. Germ Cell Proteins in Melanoma: Prognosis, Diagnosis, Treatment, and Theories on Expression

    International Nuclear Information System (INIS)

    Rosa, A. M.; Dabas, N.; Byrnes, D. M.; Eller, M. S.; Grichnik, J. M.; Grichnik, J M.; Grichnik, J M.

    2012-01-01

    Germ cell protein expression in melanoma has been shown to correlate with malignancy, severity of disease and to serve as an immunologic target for therapy. However, very little is known about the role that germ cell proteins play in cancer development. Unique germ cell pathways include those involved in immortalization, genetic evolution, and energy metabolism. There is an ever increasing recognition that within tumors there is a subpopulation of cells with stem-cell-like characteristics that play a role in driving tumor genesis. Stem cell and germ cell biology is intertwined. Given the enormous potential and known expression of germ cell proteins in melanoma, it is possible that they represent a largely untapped resource that may play a fundamental role in tumor development and progression. The purpose of this paper is to provide an update on the current value of germ cell protein expression in melanoma diagnosis, prognosis, and therapy, as well as to review critical germ cell pathways and discuss the potential roles these pathways may play in malignant transformation

  17. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins.

    Directory of Open Access Journals (Sweden)

    Annie Frelet-Barrand

    Full Text Available BACKGROUND: Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system. CONCLUSIONS/SIGNIFICANCE: Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.

  18. C-fos protein expression in central nervous system. Effects of acute whole-body irradiation

    International Nuclear Information System (INIS)

    Martin, C.; Chollat, S.; Mahfoudi, H.; Lambert, F.; Baille Le Crom, V.; Fatome, M.

    1995-01-01

    Study of c-Fos protein expression in the rat striatum after gamma or (neutron-gamma) irradiation was carried on. c-Fos protein is expressed one hour after gamma exposure at the dose of 15 Gy but specificity of the response must be verified. (author)

  19. Chapter 15. transforming lepidopteran insect cells for continuous recombinant protein expression

    Science.gov (United States)

    The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant proteins. However, yields of extracellular and membrane-bound proteins obtained with this system often are very low, possibly due to the adverse effects of baculovirus infection on the host ins...

  20. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  1. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Science.gov (United States)

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  2. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  3. Heat Shock Protein 90 (Hsp90 Expression and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christos A. Papadimitriou

    2012-09-01

    Full Text Available Hsp90 is an abundant protein in mammalian cells. It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation. It interacts with a variety of proteins that play key roles in breast neoplasia including estrogen receptors, tumor suppressor p53 protein, angiogenesis transcription factor HIF-1alpha, antiapoptotic kinase Akt, Raf-1 MAP kinase and a variety of receptor tyrosine kinases of the erbB family. Elevated Hsp90 expression has been documented in breast ductal carcinomas contributing to the proliferative activity of breast cancer cells; whilst a significantly decreased Hsp90 expression has been shown in infiltrative lobular carcinomas and lobular neoplasia. Hsp90 overexpression has been proposed as a component of a mechanism through which breast cancer cells become resistant to various stress stimuli. Therefore, pharmacological inhibition of HSPs can provide therapeutic opportunities in the field of cancer treatment. 17-allylamino,17-demethoxygeldanamycin is the first Hsp90 inhibitor that has clinically been investigated in phase II trial, yielding promising results in patients with HER2-overexpressing metastatic breast cancer, whilst other Hsp90 inhibitors (retaspimycin HCL, NVP-AUY922, NVP-BEP800, CNF2024/BIIB021, SNX-5422, STA-9090, etc. are currently under evaluation.

  4. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture.

    Science.gov (United States)

    Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U

    2017-05-01

    Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.

  5. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Ignacio M Larrayoz

    Full Text Available Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP, including RNA-binding motif protein 3 (RBM3 and cold inducible RNA-binding protein (CIRP, but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C. Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina.

  6. An efficient tag derived from the common epitope of tospoviral NSs proteins for monitoring recombinant proteins expressed in both bacterial and plant systems.

    Science.gov (United States)

    Cheng, Hao-Wen; Chen, Kuan-Chun; Raja, Joseph A J; Li, Jian-Xian; Yeh, Shyi-Dong

    2013-04-15

    NSscon (23 aa), a common epitope in the gene silencing suppressor NSs proteins of the members of the Watermelon silver mottle virus (WSMoV) serogroup, was previously identified. In this investigation, we expressed different green fluorescent protein (GFP)-fused deletions of NSscon in bacteria and reacted with NSscon monoclonal antibody (MAb). Our results indicated that the core 9 amino acids, "(109)KFTMHNQIF(117)", denoted as "nss", retain the reactivity of NSscon. In bacterial pET system, four different recombinant proteins labeled with nss, either at N- or C-extremes, were readily detectable without position effects, with sensitivity superior to that for the polyhistidine-tag. When the nss-tagged Zucchini yellow mosaic virus (ZYMV) helper component-protease (HC-Pro) and WSMoV nucleocapsid protein were transiently expressed by agroinfiltration in tobacco, they were readily detectable and the tag's possible efficacy for gene silencing suppression was not noticed. Co-immunoprecipitation of nss-tagged and non-tagged proteins expressed from bacteria confirmed the interaction of potyviral HC-Pro and coat protein. Thus, we conclude that this novel nss sequence is highly valuable for tagging recombinant proteins in both bacterial and plant expression systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L. flower development

    Directory of Open Access Journals (Sweden)

    Lingling Chen

    2016-10-01

    Full Text Available Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L. seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1, pollination (S2, and the post-pollination senescence period (S3. Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD. Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs, carbonic anhydrase (CA, and NADPH: quinone oxidoreductase-like protein (NQOLs. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower

  8. Long interspersed element-1 protein expression is a hallmark of many human cancers.

    Science.gov (United States)

    Rodić, Nemanja; Sharma, Reema; Sharma, Rajni; Zampella, John; Dai, Lixin; Taylor, Martin S; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Maitra, Anirban; Torbenson, Michael S; Goggins, Michael; Shih, Ie-Ming; Duffield, Amy S; Montgomery, Elizabeth A; Gabrielson, Edward; Netto, George J; Lotan, Tamara L; De Marzo, Angelo M; Westra, William; Binder, Zev A; Orr, Brent A; Gallia, Gary L; Eberhart, Charles G; Boeke, Jef D; Harris, Chris R; Burns, Kathleen H

    2014-05-01

    Cancers comprise a heterogeneous group of human diseases. Unifying characteristics include unchecked abilities of tumor cells to proliferate and spread anatomically, and the presence of clonal advantageous genetic changes. However, universal and highly specific tumor markers are unknown. Herein, we report widespread long interspersed element-1 (LINE-1) repeat expression in human cancers. We show that nearly half of all human cancers are immunoreactive for a LINE-1-encoded protein. LINE-1 protein expression is a common feature of many types of high-grade malignant cancers, is rarely detected in early stages of tumorigenesis, and is absent from normal somatic tissues. Studies have shown that LINE-1 contributes to genetic changes in cancers, with somatic LINE-1 insertions seen in selected types of human cancers, particularly colon cancer. We sought to correlate this observation with expression of the LINE-1-encoded protein, open reading frame 1 protein, and found that LINE-1 open reading frame 1 protein is a surprisingly broad, yet highly tumor-specific, antigen. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies

    OpenAIRE

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H.; Michel, Jennifer Carlisle; Claxton, Derek P.; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K. Christopher; Gouaux, Eric

    2014-01-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in over-expression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient productio...

  10. Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis.

    Science.gov (United States)

    Yang, Mengdi; Sun, Yi; Sun, Jing; Wang, Zhiyu; Zhou, Yiyi; Yao, Guangyu; Gu, Yifeng; Zhang, Huizhen; Zhao, Hui

    2018-04-01

    Despite recent advances in targeted and immune-based therapies, the poor prognosis of lung adenocarcinoma (LUAD) with bone metastasis (BM) remains a challenge. First, two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in LUAD with BM, and then matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was used to identify these proteins. Second, the Cancer Genome Atlas (TCGA) was used to identify mutations in these differentially expressed proteins and Kaplan-Meier plotter (KM Plotter) was used to generate survival curves for the analyzed cases. Immunohistochemistry (IHC) was used to check the expression of proteins in 28 patients with BM and nine patients with LUAD. Lastly, the results were analyzed with respect to clinical features and patient's follow-up. We identified a number of matched proteins from 2-DE. High expression of enolase 1 (ENO1) (HR = 1.67, logrank P = 1.9E-05), ribosomal protein lateral stalk subunit P2 (RPLP2) (HR = 1.77, logrank P = 2.9e-06), and NME/NM23 nucleoside diphosphate kinase 2 (NME1-NME2) (HR = 2.65, logrank P = 3.9E-15) was all significantly associated with poor survival (P < 0.05). Further, ENO1 was upregulated (P = 0.0004) and calcyphosine (CAPS1) was downregulated (P = 5.34E-07) in TCGA LUAD RNA-seq expression data. IHC revealed that prominent ENO1 staining (OR = 7.5, P = 0.034) and low levels of CAPS1 (OR = 0.01, P < 0.0001) staining were associated with BM incidence. Finally, we found that LUAD patients with high expression of ENO1 and RPLP2 had worse overall survival. This is the first instance where the genes ENO1, RPLP2, NME1-NME2 and CAPS1 were associated with disease severity and progression in LUAD patients with BM. Thus, with this study, we have identified potential biomarkers and therapeutic targets for this disease. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  12. A novel protein expression system-PichiaPink™- and a protocol for ...

    African Journals Online (AJOL)

    Pichia pastoris is a eukaryote and has many of the advantages of higher eukaryotic expression systems, such as protein processing, protein folding, and the availability of posttranslational modifications. It is as easy to manipulate as Escherichia coli or Saccharomyces cerevisiae. However, some serious and unavoidable ...

  13. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma.

    Science.gov (United States)

    Cha, Yoon Jin; Kim, Hye Min; Koo, Ja Seung

    2017-01-23

    We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) of the breast. A total of 584 breast cancers (108 ILC and 476 IDC) were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL), perilipin A, fatty acid binding protein (FABP)4, carnitine palmitoyltransferase (CPT)-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN). HSL, perilipin A, and FABP4 expression (all p invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC ( p cancers, HSL and FABP4 were more highly expressed in ILC ( p < 0.001). Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity ( p = 0.004) and acyl-CoA oxidase 1 positivity ( p = 0.032) and of shorter overall survival with acyl-CoA oxidase 1 positivity ( p = 0.027). In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  14. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  15. Expression of cytoskeleton regulatory protein Mena in human hepatocellular carcinoma and its prognostic significance.

    Science.gov (United States)

    Hu, Kunpeng; Wang, Jiani; Yao, Zhicheng; Liu, Bo; Lin, Yuan; Liu, Lei; Xu, Lihua

    2014-05-01

    The molecular mechanisms of the development and progression of hepatocellular carcinoma (HCC) are poorly understood. The main objective of this study was to analyze the expression of Enabled [mammalian Ena (Mena)] protein and its clinical significance in human HCC. The Mena expression was examined at mRNA and protein levels by real-time quantitative polymerase chain reaction and Western blotting analysis in ten paired HCC tissues and the adjacent normal tissues. The expression of Mena protein in 81 specimens of HCC tissues was determined by immunohistochemistry. Associations of Mena expression with the clinicopathological features were analyzed, and prognosis of HCC patients was evaluated. The result shows the expression of Mena mRNA and protein was higher in HCC than in the adjacent normal tissues in ten paired samples. Mena was mainly accumulated in the cytoplasm of tumor cells and over-expressed in 40.74% (33/81) patients by immunohistochemical staining. Over-expression of Mena was significantly associated with poor cellular differentiation (P = 0.025), advanced tumor stage (P = 0.003) and worse disease-free survival (DFS, P Mena is an independent prognostic factor for DFS in multivariate analysis (HR 2.309, 95% CI 1.104-4.828; P = 0.026). Mena is up-regulated in HCC and associated with tumor differentiation and clinical stage. Mena may be an independent prognostic marker for DFS of HCC patients.

  16. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants.

    Science.gov (United States)

    Jutras, Philippe V; D'Aoust, Marc-André; Couture, Manon M-J; Vézina, Louis-Philippe; Goulet, Marie-Claire; Michaud, Dominique; Sainsbury, Frank

    2015-09-01

    Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a.

    OpenAIRE

    Alexander, D; Goodman, R M; Gut-Rella, M; Glascock, C; Weymann, K; Friedrich, L; Maddox, D; Ahl-Goy, P; Luntz, T; Ward, E

    1993-01-01

    Expression of pathogenesis-related protein 1a (PR-1a), a protein of unknown biochemical function, is induced to high levels in tobacco in response to pathogen infection. The induction of PR-1a expression is tightly correlated with the onset of systemic acquired resistance (SAR), a defense response effective against a variety of fungal, viral, and bacterial pathogens. While PR-1a has been postulated to be involved in SAR, and is the most highly expressed of the PR proteins, evidence for its ro...

  18. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression...... to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high...... levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  19. Identification of differentially expressed proteins in vitamin B 12

    Directory of Open Access Journals (Sweden)

    Swati Varshney

    2015-01-01

    Full Text Available Background: Vitamin B 12 (cobalamin is a water-soluble vitamin generally synthesized by microorganisms. Mammals cannot synthesize this vitamin but have evolved processes for absorption, transport and cellular uptake of this vitamin. Only about 30% of vitamin B 12 , which is bound to the protein transcobalamin (TC (Holo-TC [HoloTC] enters into the cell and hence is referred to as the biologically active form of vitamin B 12 . Vitamin B 12 deficiency leads to several complex disorders, including neurological disorders and anemia. We had earlier shown that vitamin B 12 deficiency is associated with coronary artery disease (CAD in Indian population. In the current study, using a proteomics approach we identified proteins that are differentially expressed in the plasma of individuals with low HoloTC levels. Materials and Methods: We used isobaric-tagging method of relative and absolute quantitation to identify proteins that are differently expressed in individuals with low HoloTC levels when compared to those with normal HoloTC level. Results: In two replicate isobaric tags for relative and absolute quantitation experiments several proteins involved in lipid metabolism, blood coagulation, cholesterol metabolic process, and lipoprotein metabolic process were found to be altered in individuals having low HoloTC levels. Conclusions: Our study indicates that low HoloTc levels could be a risk factor in the development of CAD.

  20. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    Science.gov (United States)

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  1. Primary Screening for Proteins Differentially Expressed in the Myocardium of a Rat Model of Acute Methamphetamine Intoxication

    Directory of Open Access Journals (Sweden)

    Guoqiang Qu

    2016-01-01

    Full Text Available The mechanism of myocardial injury induced by the cardiovascular toxicity of methamphetamine (MA has been shown to depend on alterations in myocardial proteins caused by MA. Primary screening of the expression of myocardial proteins in a rat model of MA intoxication was achieved by combining two-dimensional electrophoresis and mass spectrometry analyses, which revealed a total of 100 differentially expressed proteins. Of these, 13 displayed significantly altered expression. Moreover, Western blotting and real-time reverse transcription quantitative polymerase chain reaction analyses of several relative proteins demonstrated that acute MA intoxication lowers protein expression and mRNA transcription of aldehyde dehydrogenase-2 and NADH dehydrogenase (ubiquinone 1 alpha subcomplex subunit 10. In contrast, MA intoxication elevated the protein expression and mRNA transcription of heat shock protein family B (small member 1. By combining behavioral assessments of experimental rat models with the histological and pathological changes evident in cardiomyocytes, a mechanism accounting for MA myocardial toxicity was suggested. MA alters the regulation of gene transcription and the subsequent expression of certain proteins that participate in myocardial respiration and in responding to oxidative stress, resulting in myocardial dysfunction and structural changes that affect the functioning of the cardiovascular system.

  2. Expression and characterization of insulin growth factor-I-enhanced green fluorescent protein fused protein as a tracer for immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shi Ruina [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Huang Yong [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang Dan [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zhao Meiping [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Yuanzong [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)]. E-mail: yzli@pku.edu.cn

    2006-09-25

    The insulin-like growth factor-I (IGF-I) is an important polypeptide hormone under investigation for body metabolism study and for doping detection. Here, we describe for the first time the expression of a recombinant fusion protein of IGF-I and the enhanced green fluorescent protein (EGFP). The genetic fusion approach enables preparation of conjugates with 1:1 stoichiometry and homogeneous structure. The fused protein (EGFP-IGF-I) was expressed as a soluble protein in cytoplasm of Escherichia coli and its fluorescence and immunoreaction properties were thoroughly characterized. Finally, we demonstrated the utility of the EGFP-IGF-I fusion protein for the fluorescence immunoassay of IGF-1. The linear range of the assay is 1.6 x 10{sup -8} to 2.0 x 10{sup -6} M with a detection limit of 1.6 x 10{sup -8} M. To our knowledge, this is the first time that EGFP has been used as a quantitative label in a fusion protein to develop a quantitative assay for IGF-I. Furthermore, the use of genetically engineered fusion proteins, which combine peptide hormones with fluorescent protein, can lead to a new labeling approach to a number of bioanalytical applications.

  3. Expression and characterization of insulin growth factor-I-enhanced green fluorescent protein fused protein as a tracer for immunoassay

    International Nuclear Information System (INIS)

    Shi Ruina; Huang Yong; Wang Dan; Zhao Meiping; Li Yuanzong

    2006-01-01

    The insulin-like growth factor-I (IGF-I) is an important polypeptide hormone under investigation for body metabolism study and for doping detection. Here, we describe for the first time the expression of a recombinant fusion protein of IGF-I and the enhanced green fluorescent protein (EGFP). The genetic fusion approach enables preparation of conjugates with 1:1 stoichiometry and homogeneous structure. The fused protein (EGFP-IGF-I) was expressed as a soluble protein in cytoplasm of Escherichia coli and its fluorescence and immunoreaction properties were thoroughly characterized. Finally, we demonstrated the utility of the EGFP-IGF-I fusion protein for the fluorescence immunoassay of IGF-1. The linear range of the assay is 1.6 x 10 -8 to 2.0 x 10 -6 M with a detection limit of 1.6 x 10 -8 M. To our knowledge, this is the first time that EGFP has been used as a quantitative label in a fusion protein to develop a quantitative assay for IGF-I. Furthermore, the use of genetically engineered fusion proteins, which combine peptide hormones with fluorescent protein, can lead to a new labeling approach to a number of bioanalytical applications

  4. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    Science.gov (United States)

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  5. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  6. Monitoring the effects of toxic chemicals on protein expression

    International Nuclear Information System (INIS)

    Giometti, C.S.; Taylor, J.

    1987-01-01

    Two-dimensional gel electrophoresis coupled with computer-assisted image and data analysis was used to monitor protein populations for both qualitative and quantitative changes induced by exposure to chemicals. For mutagenesis studies designed to screen for heritable mutations, a computer-assisted search of the optical density data from 2DE patterns was used to look for (a) new protein spots, (b) missing protein spots and/or (c) altered expression of normal protein spots. Using this approach, 320 mice were screened for mutations induced by treatment of sires with 150 mg/kg body weight of ethylnitrosourea (ENU) and four different mutations were identified. Protein patterns from 105 offspring from untreated male mice (controls) and 369 offspring from irradiated male mice (3 Gy gamma) were also screened. No heritable mutations were found in those data sets, however. In addition, protein changes were observed in livers of animals exposed to the hepatocellular peroxisomal proliferation agents (and carcinogens) Wy-14,643 and DEHP. The de novo synthesis of a new protein by these agents was demonstrated and quantitated

  7. Production of Polyclonal Antibody against Grapevine fanleaf virus Movement Protein Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Davoud Koolivand

    2016-10-01

    Full Text Available The genomic region of Grapevine fanleaf virus (GFLV encoding the movement protein (MP was cloned into pET21a and transformed into Escherichia coli strain BL21 (DE3 to express the protein. Induction was made with a wide range of isopropyl-β-D-thiogalactopyranoside (IPTG concentrations (1, 1.5, and 2 mM each for duration of 4, 6, or 16 h. However, the highest expression level was achieved with 1 mM IPTG for 4 h. Identity of the expressed protein was confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE followed by Western blotting. The expressed 41 kDa protein was purified under denaturing condition by affinity chromatography, reconfirmed by Western blotting and plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA before being used as a recombinant antigen to raise polyclonal antibodies in rabbits. Purified anti-GFLV MP immunoglobulines (IgGs and conjugated IgGs detected the expressed MP and GFLV virions in infected grapevines when used in PTA-ELISA, double antibody sandwich-ELISA, and Western blotting. This is the first report on the production of anti-GFLV MP polyclonal antibodies and application for the virus detection.

  8. [Construction and expression of fusion protein TRX-hJagged1 in E.coli BL21].

    Science.gov (United States)

    Li, Guo-Hui; Fan, Yu-Zhen; Huang, Si-Yong; Liu, Qiang; Yin, Dan-Dan; Liu, Li; Chen, Ren-An; Hao, Miao-Wang; Liang, Ying-Min

    2014-06-01

    This study was purposed to construct prokaryotic expression vector and to investigate the expression of Notch ligand Jagged1 in E.coli. An expression vector pET-hJagged1 was constructed, which can be inserted in Jagged1 with different lengths, but the DSL domain of human Jagged1 should be contained. Then the recombinant plasmids were transformed into the competent cell of E.coli BL21, and the expression of the fusion protein was induced by IPTG. Fusion protein was purified from the supernatant of cell lysates via the Nickel affinity chromatography. The results showed that prokaryotic expression vectors pET-hJagged1 (Bgl II), pET-hJagged1 (Hind I) and pET-hJagged1 (Stu I) were successfully constructed, but only pET-hJagged1 (Stu I) could express the soluble TRX-hJagged1. The purified TRX-Jagged1 protein could be obtained via the Nickel affinity chromatography, and then confirmed by Western Blot. It is concluded that prokaryotic expression vector pET-hJagged1 is successfully constructed, but only pET-hJagged1 (Stu I) can express the soluble TRX-hJagged1 and the TRX-Jagged1 fusion protein is obtained through the prokaryotic expression system, which laid a solid foundation for further to explore the effects of Jagged1 in hematopoietic and lymphoid system.

  9. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia.

    Science.gov (United States)

    Wulff, Tune; Jokumsen, Alfred; Højrup, Peter; Jessen, Flemming

    2012-04-18

    Adaptation to hypoxia is a complex process, and individual proteins will be up- or down-regulated in order to address the main challenges at any given time. To investigate the dynamics of the adaptation, rainbow trout (Oncorhynchus mykiss) was exposed to 30% of normal oxygen tension for 1, 2, 5 and 24 h respectively, after which muscle samples were taken. The successful investigation of numerous proteins in a single study was achieved by selectively separating the sarcoplasmic proteins using 2-DE. In total 46 protein spots were identified as changing in abundance in response to hypoxia using one-way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one time point. The cellular response to hypoxia included regulation of proteins involved in maintaining iron homeostasis, energy levels and muscle structure. In conclusion, this proteome-based study presents a comprehensive investigation of the expression profiles of numerous proteins at four different time points. This increases our understanding of timed changes in protein expression in rainbow trout muscle following hypoxia. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Glucose-regulated protein 78 regulates the expression of mitochondrial genesis proteins in HBV-related hepatocellular carcinoma: a clinical analysis

    Directory of Open Access Journals (Sweden)

    LI Yaping

    2017-10-01

    Full Text Available ObjectiveTo investigate the expression of glucose-regulated protein 78 (GRP78 in HBV-related hepatocellular carcinoma (HBV-HCC and its association with clinicopathological features, as well as its regulatory effect on mitochondrial genesis proteins in hepatoma cells, and to provide a basis for new strategies for the prevention and treatment of HCC. MethodsTissue samples were collected from 54 patients with HBV-HCC, and immunohistochemistry and Western blot were used to measure the expression of GRP78, Lon, TFAM, and cytochrome C oxidase Ⅳ (COXⅣ. The expression of GRP78 in hepatoma cells was interfered by siRNA, and then the expression of GRP78, Lon, mitochondrial transcription factor A (TFAM, and COX Ⅳ was measured. Quantitative real-time PCR was used to measure the level of mitochondrial DNA (mtDNA in clinical specimens and HCC cells after GRP78 expression was interfered with. A statistical analysis was performed for clinical and experimental data. The t-test was used for comparison of continuous data between groups, the Fisher′s exact test was used for comparison of categorical data between groups, and the Kaplan-Meier method was used for survival analysis. Results Compared with the adjacent tissues, HBV-HCC tissues had significantly higher expression of GRP78 and Lon (t=9.135 and 5523, both P<0.0001 and significantly lower expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level (t=2.765, 4260, and 12.280, P=0.011, <0.001, and <0.001. There were significant increases in the expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level after the interference with GRP78 expression in hepatoma cells (all P<0.05. There were significant differences in the expression of GRP78 between patients with different numbers of tumors, patients with and without portal vein tumor thrombus, and patients with different tumor stages (P=0.016, 0.003, and 0.045. The patients with low GRP78

  11. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan.

    Science.gov (United States)

    Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo

    2017-11-01

    Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.

  12. Inhibition of interleukin-6 expression by the V protein of parainfluenza virus 5

    International Nuclear Information System (INIS)

    Lin Yuan; Sun Minghao; Fuentes, Sandra M.; Keim, Celia D.; Rothermel, Terri; He Biao

    2007-01-01

    The V protein of parainfluenza virus 5 (PIV5) plays an important role in the evasion of host immune responses. The V protein blocks interferon (IFN) signaling in human cells by causing degradation of the STAT1 protein, a key component of IFN signaling, and blocks IFN-β production by preventing nuclear translocation of IRF3, a key transcription factor for activating IFN-β promoter. Interleukin-6 (IL-6), along with tumor necrosis factor (TNF)-α and IL-1β, is a major proinflammatory cytokine that plays important roles in clearing virus infection through inflammatory responses. Many viruses have developed strategies to block IL-6 expression. Wild-type PIV5 infection induces little, if any, expression of cytokines such as IL-6 or TNF-α, whereas infection by a mutant PIV5 lacking the conserved C-terminal cysteine rich domain (rPIV5VΔC) induced high levels of IL-6 expression. Examination of mRNA levels of IL-6 indicated that the transcription activation of IL-6 played an important role in the increased IL-6 expression. Co-infection with wild-type PIV5 prevented the activation of IL-6 transcription by rPIV5VΔC, and a plasmid encoding the full-length PIV5 V protein prevented the activation of IL-6 promoter-driven reporter gene expression by rPIV5VΔC, indicating that the V protein played a role in inhibiting IL-6 transcription. The activation of IL-6 was independent of IFN-β even though rPIV5VΔC-infected cells produced IFN-β. Using reporter gene assays and chromatin immunoprecipitation (ChIP), it was found that NF-κB played an important role in activating expression of IL-6. We have proposed a model of activating and inhibiting IL-6 transcription by PIV5

  13. G-protein α-subunit expression, myristoylation, and membrane association in COS cells

    International Nuclear Information System (INIS)

    Mumby, S.M.; Gilman, A.G.; Heukeroth, R.O.; Gordon, J.I.

    1990-01-01

    Myristolyation of seven different α subunits of guanine nucleotide-binding regulatory proteins (G proteins) was examined by expressing these proteins in monkey kidney COS cells. Metabolic labeling studies of cells transfected with cytomegalovirus-based expression vectors indicated that [ 3 H]myristate was incorporated into α i1 , α i2 , α i3 , α 0 , and α 1 , and α z but not α s subunits. The role of myristoylation in the association of α subunits with membranes was analyzed by site-directed mutagenesis and by substitution of myristate with a less hydrophobic analog, 10-(propoxy)decanoate (11-oxamyristate). Myristoylation of α 0 was blocked when an alanine residue was substituted for its amino-terminal glycine, as was association of the protein with membranes. Substitution of the myristoyl group with 11-oxamyristate affected the cellular distribution of a subset of acylated α subunits. The results are consistent with a model wherein the hydrophobic interaction of myristate with the bilayer permits continued association of the protein with the plasma membrane when G-protein α subunits dissociated from βγ

  14. Altered protein expression in gestational diabetes mellitus placentas provides insight into insulin resistance and coagulation/fibrinolysis pathways.

    Directory of Open Access Journals (Sweden)

    Bin Liu

    Full Text Available OBJECTIVE: To investigate the placental proteome differences between pregnant women complicated with gestational diabetes mellitus (GDM and those with normal glucose tolerance (NGT. METHODS: We used two-dimensional electrophoresis (2DE to separate and compare placental protein levels from GDM and NGT groups. Differentially expressed proteins between the two groups were identified by MALDI-TOF/TOF mass spectrometry and further confirmed by Western blotting. The mRNA levels of related proteins were measured by realtime RT-PCR. Immunohistochemistry (IHC was performed to examine the cellular location of the proteins expressed in placenta villi. RESULTS: Twenty-one protein spots were differentially expressed between GDM and NGT placenta villi in the tested samples, fifteen of which were successfully identified by mass spectrometry. The molecular functions of these differentially expressed proteins include blood coagulation, signal transduction, anti-apoptosis, ATP binding, phospholipid binding, calcium ion binding, platelet activation, and tryptophan-tRNA ligase activity. Both protein and mRNA levels of Annexin A2, Annexin A5 and 14-3-3 protein ζ/δ were up-regulated, while the expression of the Ras-related protein Rap1A was down-regulated in the GDM placenta group. CONCLUSION: Placenta villi derived from GDM pregnant women exhibit significant proteome differences compared to those of NGT mothers. The identified differentially expressed proteins are mainly associated with the development of insulin resistance, transplacental transportation of glucose, hyperglucose-mediated coagulation and fibrinolysis disorders in the GDM placenta villi.

  15. Expression of β-catenin protein in hepatocellular carcinoma and its relationship with alpha-fetoprotein.

    Science.gov (United States)

    Ren, Ya-Jun; Huang, Tao; Yu, Hong-Lu; Zhang, Li; He, Qian-Jin; Xiong, Zhi-Fan; Peng, Hua

    2016-12-01

    This study aimed to investigate the expression of β-catenin in hepatocellular carcinoma (HCC) tissues and its relationship with α-fetoprotein (AFP) in HCC. Immunohistochemistry was used to determine the expression of β-catenin in normal liver tissues (n=10), liver cirrhosis tissues (n=20), and primary HCC tissues (n=60). The relationship between β-catenin expression and clinical parameters of HCC was investigated. Real-time PCR and Western blotting were used to detect the mRNA and protein expression levels of β-catenin in the liver cancer cell line SMMC-7721 transfected with a plasmid encoding AFP, and also the mRNA and protein expression levels of β-catenin were measured in the liver cancer cell line Huh7 before and after the transfection with AFP shRNA plasmids. The results showed that β-catenin was only expressed on the cell membrane in normal liver tissues. Its localization to the cytoplasm and nucleus of cells was observed in a small proportion of cirrhotic tissues or adjacent HCC tissues, and such ectopic expression of β-catenin was predominant in HCC tissues. The abnormal expression of β-catenin was correlated with serum AFP levels, cancer cell differentiation and vascular invasion (P<0.05). Additionally, the increased expression of AFP resulted in the upregulation of β-catenin mRNA and protein levels, while knockdown of AFP with AFP shRNA led to significantly decreased β-catenin mRNA and protein levels (P<0.05). It was suggested that the abnormal expression of β-catenin is implicated in hepatic carcinogenesis and development. AFP can lead to increased expression of β-catenin, which may account for the poor prognosis of AFP-associated HCC patients.

  16. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    Science.gov (United States)

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  17. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    Science.gov (United States)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth

  18. CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene.

    Science.gov (United States)

    Christenson, L K; Johnson, P F; McAllister, J M; Strauss, J F

    1999-09-10

    Two putative CCAAT/enhancer-binding protein (C/EBP) response elements were identified in the proximal promoter of the human steroidogenic acute regulatory protein (StAR) gene, which encodes a key protein-regulating steroid hormone synthesis. Expression of C/EBPalpha and -beta increased StAR promoter activity in COS-1 and HepG2 cells. Cotransfection of C/EBPalpha or -beta and steroidogenic factor 1, a transcription factor required for cAMP regulation of StAR expression, into COS-1 augmented 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP)-stimulated promoter activity. When the putative C/EBP response elements were mutated, individually or together, a pronounced decline in basal StAR promoter activity in human granulosa-lutein cells resulted, but the fold stimulation of promoter activity by 8-Br-cAMP was unaffected. Recombinant C/EBPalpha and -beta bound to the two identified sequences but not the mutated elements. Human granulosa-lutein cell nuclear extracts also bound these elements but not the mutated sequences. An antibody to C/EBPbeta, but not C/EBPalpha, supershifted the nuclear protein complex associated with the more distal element. The complex formed by nuclear extracts with the proximal element was not supershifted by either antibody. Western blot analysis revealed the presence of C/EBPalpha and C/EBPbeta in human granulosa-lutein cell nuclear extracts. C/EBPbeta levels were up-regulated 3-fold by 8-Br-cAMP treatment. Our studies demonstrate a role for C/EBPbeta as well as yet to be identified proteins, which can bind to C/EBP response elements, in the regulation of StAR gene expression and suggest a mechanism by which C/EBPbeta participates in the cAMP regulation of StAR gene transcription.

  19. Pathology-Dependent Effects Linked to Small Heat Shock Proteins Expression: An Update

    Directory of Open Access Journals (Sweden)

    A.-P. Arrigo

    2012-01-01

    Full Text Available Small heat shock proteins (small Hsps are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.

  20. Expression of extracellular matrix proteins: tenascin-C, fibronectin and galectin-3 in prostatic adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Monika Ulamec

    2015-12-01

    Full Text Available Introduction: The interchanged stromal-epithelial relations and altered expression profiles of various extracellular matrix (ECM proteins creates a suitable microenvironment for cancer development and growth. We support the opinion that remodeling of the extracellular matrix (ECM plays an important role in the cancer progression. The aim of this study was to examine the expression of ECM proteins tenascin-C, fibronectin and galectin-3 in prostatic adenocarcinoma. Methods: Glands and surrounding stroma were analyzed in randomly selected specimens from 52 patients with prostate cancer and 28 patients with benign prostatic hyperplasia (BHP. To evaluate the intensity of tenascin-C, fibronectin and galectin-3 expression the percentage of positively immunostained stromal cells was examined.Results: Compared to BPH, stroma of prostatic adenocarcinoma showed statistically significant increase in tenascin-C expression (p<0.001, predominantly around neoplastic glands, while fibronectin (p=0.001 and galectin-3 (p<0.001 expression in the same area was decreased.Conclusions: Our study confirms changes in the expression of ECM proteins of prostate cancer which may have important role in the cancer development.

  1. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    International Nuclear Information System (INIS)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  2. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  3. Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Niebla, Olivia; Sardiñas, Gretel; Vivar, Isbel; Perera, Yasser; García, Darien; Delgado, Maité; Cobas, Karem

    2006-04-01

    In the post-genomic era, every aspect of the production of proteins must be accelerated. In this way, several vectors are currently exploited for rapid production of recombinant proteins in Escherichia coli. N-terminal fusions to the first 47 amino acids of the LpdA (dihydrolipoamide dehydrogenase A) protein of Neisseria meningitidis have been shown to increase the expression of recombinant proteins. Consequently, we have constructed a modified N-terminal LpdA fusion vector, introducing the blue/white colony selection by exploiting a bicistronic gene organization. In the new vector, the sequence encoding the first 47 amino acids of meningococcal LpdA and the alpha-peptide sequence of beta-galactosidase were connected via a ribosome-binding site, and two MCSs (multiple cloning sites) were located surrounding the latter, allowing efficient cloning by colour selection of recombinants. The vector was also improved with the addition of a C-terminal polyhistidine tag, and an EKS (enterokinase recognition sequence) immediately after the LpdA fusion sequence. The new plasmid was employed in the expression and purification of six different bacterial polypeptides. One of these recombinant proteins, P6 protein from Haemophilus influenzae, was used as a model and its N-terminal fusion sequence was totally removed from the recombinant version after incubation with the enterokinase protease, while the polyhistidine tail successfully allowed the purification of the unfused protein from the protease reaction. Two completely new neisserial vaccine candidates, NMB0088 and NMB1126 proteins, were cloned, expressed and purified using this system. To our knowledge, this constitutes the first report of the cloning and expression of these proteins in E. coli.

  4. Determination of Six Transmembrane Protein of Prostate 2 Gene Expression and Intracellular Localization in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Bora İrer

    2017-12-01

    Full Text Available Objective: In this study, we aimed to determine the relationship between the RNA and protein expression profile of six transmembrane protein of prostate 2 (STAMP2 gene and androgen and the intracellular localization of STAMP2. Materials and Methods: RNA and protein were obtained from androgen treated lymph node carcinoma of the prostate (LNCaP cells, untreated LNCaP cells, DU145 cells with no androgen receptor, and STAMP2 transfected COS-7 cells. The expression profile of STAMP2 gene and the effect of androgenes on the expression was shown in RNA and protein levels by using Northern and Western blotting methods. In addition, intracellular localization of the naturally synthesized STAMP2 protein and the transfected STAMP2 protein in COS-7 cells after androgen administration in both LNCaP cells was determined by immunofluorescence microscopy. Results: We found that the RNA and protein expression of STAMP2 gene in LNCaP cells are regulated by androgenes, the power of expression is increased with the duration of androgen treatment and there is no STAMP2 expression in DU145 cells which has no androgen receptor. As a result of the immunofluorescence microscopy study we observed that STAMP2 protein was localized at golgi complex and cell membrane. Conclusion: In conclusion, we have demonstrated that STAMP2 may play an important role in the pathogenesis of the prostate cancer and in the androgen-dependent androgen-independent staging of prostate cancer. In addition, STAMP2 protein, which is localized in the intracellular golgi complex and cell membrane, may be a new target molecule for prostate cancer diagnosis and treatment.

  5. Coffee induces breast cancer resistance protein expression in Caco-2 cells.

    Science.gov (United States)

    Isshiki, Marina; Umezawa, Kazuo; Tamura, Hiroomi

    2011-01-01

    Coffee is a beverage that is consumed world-wide on a daily basis and is known to induce a series of metabolic and pharmacological effects, especially in the digestive tract. However, little is known concerning the effects of coffee on transporters in the gastrointestinal tract. To elucidate the effect of coffee on intestinal transporters, we investigated its effect on expression of the breast cancer resistance protein (BCRP/ABCG2) in a human colorectal cancer cell line, Caco-2. Coffee induced BCRP gene expression in Caco-2 cells in a coffee-dose dependent manner. Coffee treatment of Caco-2 cells also increased the level of BCRP protein, which corresponded to induction of gene expression, and also increased cellular efflux activity, as judged by Hoechst33342 accumulation. None of the major constituents of coffee tested could induce BCRP gene expression. The constituent of coffee that mediated this induction was extractable with ethyl acetate and was produced during the roasting process. Dehydromethylepoxyquinomicin (DHMEQ), an inhibitor of nuclear factor (NF)-κB, inhibited coffee-mediated induction of BCRP gene expression, suggesting involvement of NF-κB in this induction. Our data suggest that daily consumption of coffee might induce BCRP expression in the gastrointestinal tract and may affect the bioavailability of BCRP substrates.

  6. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    Science.gov (United States)

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  7. Effect of crude oil petroleum hydrocarbons on protein expression of the prawn Macrobrachium borellii.

    Science.gov (United States)

    Pasquevich, M Y; Dreon, M S; Gutierrez Rivera, J N; Vázquez Boucard, C; Heras, H

    2013-05-01

    Hydrocarbon pollution is a major environmental threat to ecosystems in marine and freshwater environments, but its toxicological effect on aquatic organisms remains little studied. A proteomic approach was used to analyze the effect of a freshwater oil spill on the prawn Macrobrachium borellii. To this aim, proteins were extracted from midgut gland (hepatopancreas) of male and female prawns exposed 7 days to a sublethal concentration (0.6 ppm) of water-soluble fraction of crude oil (WSF). Exposure to WSF induced responses at the protein expression level. Two-dimensional gel electrophoresis (2-DE) revealed 10 protein spots that were differentially expressed by WSF exposure. Seven proteins were identified using MS/MS and de novo sequencing. Nm23 oncoprotein, arginine methyltransferase, fatty aldehyde dehydrogenase and glutathione S-transferase were down-regulated, whereas two glyceraldehyde-3-phosphate dehydrogenase isoforms and a lipocalin-like crustacyanin (CTC) were up-regulated after WSF exposure. CTC mRNA levels were further analyzed by quantitative real-time PCR showing an increased expression after WSF exposure. The proteins identified are involved in carbohydrate and amino acid metabolism, detoxification, transport of hydrophobic molecules and cellular homeostasis among others. These results provide evidence for better understanding the toxic mechanisms of hydrocarbons. Moreover, some of these differentially expressed proteins would be employed as potential novel biomarkers. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Machine learning in computational biology to accelerate high-throughput protein expression

    DEFF Research Database (Denmark)

    Sastry, Anand; Monk, Jonathan M.; Tegel, Hanna

    2017-01-01

    and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide...... the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. Availability and implementation: We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template...

  9. Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Yokota, Jun-Ichi; Shiro, Daisuke; Tanaka, Mizuki; Onozaki, Yasumichi; Mizutani, Osamu; Kakizono, Dararat; Ichinose, Sakurako; Shintani, Tomoko; Gomi, Katsuya; Shintani, Takahiro

    2017-03-01

    Filamentous fungi are often used as cell factories for recombinant protein production because of their ability to secrete large quantities of hydrolytic enzymes. However, even using strong transcriptional promoters, yields of nonfungal proteins are generally much lower than those of fungal proteins. Recent analyses revealed that expression of certain nonfungal secretory proteins induced the unfolded protein response (UPR), suggesting that they are recognized as proteins with folding defects in filamentous fungi. More recently, however, even highly expressed endogenous secretory proteins were found to evoke the UPR. These findings raise the question of whether the unfolded or misfolded state of proteins is selectively recognized by quality control mechanisms in filamentous fungi. In this study, a fungal secretory protein (1,2-α-D-mannosidase; MsdS) with a mutation that decreases its thermostability was expressed at different levels in Aspergillus oryzae. We found that, at moderate expression levels, wild-type MsdS was secreted to the medium, while the mutant was not. In the strain with a deletion for the hrdA gene, which is involved in the endoplasmic reticulum-associated degradation pathway, mutant MsdS had specifically increased levels in the intracellular fraction but was not secreted. When overexpressed, the mutant protein was secreted to the medium to a similar extent as the wild-type protein; however, the mutant underwent hyperglycosylation and induced the UPR. Deletion of α-amylase (the most abundant secretory protein in A. oryzae) alleviated the UPR induction by mutant MsdS overexpression. These findings suggest that misfolded MsdS and unfolded species of α-amylase might act synergistically for UPR induction.

  10. Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors

    Directory of Open Access Journals (Sweden)

    Maria R. Mendoza

    2017-11-01

    Full Text Available Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on Tomato bushy stunt virus (TBSV referred to as TG, and Tobacco mosaic virus (TMV annotated as TRBO-G. TG expressed GFP in Nicotiana benthamiana, tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in N. benthamiana and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

  11. Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Sarah Inwood

    2018-01-01

    Full Text Available The ability to produce recombinant proteins by utilizing different “cell factories” revolutionized the biotherapeutic and pharmaceutical industry. Chinese hamster ovary (CHO cells are the dominant industrial producer, especially for antibodies. Human embryonic kidney cells (HEK, while not being as widely used as CHO cells, are used where CHO cells are unable to meet the needs for expression, such as growth factors. Therefore, improving recombinant protein expression from mammalian cells is a priority, and continuing effort is being devoted to this topic. Non-coding RNAs are RNA segments that are not translated into a protein and often have a regulatory role. Since their discovery, major progress has been made towards understanding their functions. Non-coding RNA has been investigated extensively in relation to disease, especially cancer, and recently they have also been used as a method for engineering cells to improve their protein expression capability. In this review, we provide information about methods used to identify non-coding RNAs with the potential of improving recombinant protein expression in mammalian cell lines.

  12. S100A10 protein expression is associated with oxaliplatin sensitivity in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Suzuki Sayo

    2011-12-01

    Full Text Available Abstract Background Individual responses to oxaliplatin (L-OHP-based chemotherapy remain unpredictable. The objective of our study was to find candidate protein markers for tumor sensitivity to L-OHP from intracellular proteins of human colorectal cancer (CRC cell lines. We performed expression difference mapping (EDM analysis of whole cell lysates from 11 human CRC cell lines with different sensitivities to L-OHP by using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS, and identified a candidate protein by liquid chromatography/mass spectrometry ion trap time-of-flight (LCMS-IT-TOF. Results Of the qualified mass peaks obtained by EDM analysis, 41 proteins were differentially expressed in 11 human colorectal cancer cell lines. Among these proteins, the peak intensity of 11.1 kDa protein was strongly correlated with the L-OHP sensitivity (50% inhibitory concentrations (P R2 = 0.80. We identified this protein as Protein S100-A10 (S100A10 by MS/MS ion search using LCMS-IT-TOF. We verified its differential expression and the correlation between S100A10 protein expression levels in drug-untreated CRC cells and their L-OHP sensitivities by Western blot analyses. In addition, S100A10 protein expression levels were not correlated with sensitivity to 5-fluorouracil, suggesting that S100A10 is more specific to L-OHP than to 5-fluorouracil in CRC cells. S100A10 was detected in cell culture supernatant, suggesting secretion out of cells. Conclusions By proteomic approaches including SELDI technology, we have demonstrated that intracellular S100A10 protein expression levels in drug-untreated CRC cells differ according to cell lines and are significantly correlated with sensitivity of CRC cells to L-OHP exposure. Our findings provide a new clue to searching predictive markers of the response to L-OHP, suggesting that S100A10 is expected to be one of the candidate protein markers.

  13. Multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP and lung resistance protein (LRP gene expression in childhood acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Elvis Terci Valera

    Full Text Available CONTEXT: Despite the advances in the cure rate for acute lymphoblastic leukemia, approximately 25% of affected children suffer relapses. Expression of genes for the multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP, and lung resistance protein (LRP may confer the phenotype of resistance to the treatment of neoplasias. OBJECTIVE: To analyze the expression of the MDR-1, MRP and LRP genes in children with a diagnosis of acute lymphoblastic leukemia via the semiquantitative reverse transcription polymerase chain reaction (RT-PCR, and to determine the correlation between expression and event-free survival and clinical and laboratory variables. DESIGN: A retrospective clinical study. SETTING: Laboratory of Pediatric Oncology, Department of Pediatrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil. METHODS: Bone marrow aspirates from 30 children with a diagnosis of acute lymphoblastic leukemia were assessed for the expression of messenger RNA for the MDR-1, MRP and LRP genes by semi-quantitative RT-PCR. RESULTS: In the three groups studied, only the increased expression of LRP was related to worsened event-free survival (p = 0.005. The presence of the common acute lymphoblastic leukemia antigen (CALLA was correlated with increased LRP expression (p = 0.009 and increased risk of relapse or death (p = 0.05. The relative risk of relapse or death was six times higher among children with high LRP expression upon diagnosis (p = 0.05, as confirmed by multivariate analysis of the three genes studied (p = 0.035. DISCUSSION: Cell resistance to drugs is a determinant of the response to chemotherapy and its detection via RT-PCR may be of clinical importance. CONCLUSIONS: Evaluation of the expression of genes for resistance to antineoplastic drugs in childhood acute lymphoblastic leukemia upon diagnosis, and particularly the expression of the LRP gene, may be of clinical relevance, and should be the

  14. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    International Nuclear Information System (INIS)

    Zhang, Nawei; Zhang, Zhenyu; Feng, Shan; Wang, Qingtao; Malamud, Daniel; Deng, Haiteng

    2013-01-01

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity

  15. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nawei; Zhang, Zhenyu [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Feng, Shan [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China); Wang, Qingtao [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Malamud, Daniel [NYU College of Dentistry, 345 East 24th Street, New York, NY 10010 (United States); Deng, Haiteng, E-mail: dht@mail.tsinghua.edu.cn [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China)

    2013-04-24

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity.

  16. Identification of α(1,6)fucosylated proteins differentially expressed in human colorectal cancer

    International Nuclear Information System (INIS)

    Muinelo-Romay, Laura; Villar-Portela, Susana; Cuevas, Elisa; Gil-Martín, Emilio; Fernández-Briera, Almudena

    2011-01-01

    A universal hallmark of cancer cells is the change in their glycosylation phenotype. One of the most frequent alterations in the normal glycosylation pattern observed during carcinogenesis is the enhancement of α(1,6)linked fucose residues of glycoproteins, due to the up-regulation of the α(1,6)fucosyltransferase activity. Our previous results demonstrated the specific alteration of this enzyme activity and expression in colorectal cancer, suggesting its implication in tumour development and progression. In the current work we combined a LCA-affinity chromatography with SDS-PAGE and mass spectrometry in order to identify α(1,6)fucosylated proteins differentially expressed in colorectal cancer. This strategy allowed the identification of a group of α(1,6)fucosylated proteins candidates to be involved in CRC malignancy. The majority of the identified proteins take part in cell signaling and interaction processes as well as in modulation of the immunological response. Likewise, we confirmed the increased expression of GRP94 in colorectal cancer tissue and the significant down-regulation of the IgGFcBP expression in tumour cells. All these results validate the importance of core-fucosylated proteins profile analysis to understand the mechanisms which promote cancer onset and progression and to discover new tumour markers or therapeutic targets

  17. Expression of uncoupling protein 1 in bovine muscle cells.

    Science.gov (United States)

    Abd Eldaim, M A; Hashimoto, O; Ohtsuki, H; Yamada, T; Murakami, M; Onda, K; Sato, R; Kanamori, Y; Qiao, Y; Tomonaga, S; Matsui, T; Funaba, M

    2016-12-01

    Uncoupling protein 1 (Ucp1) is predominantly expressed in brown/beige adipocytes in mammals. Although myogenic cells have been suggested to commit to a brown adipocyte lineage through the induction of Prdm16 expression, Prdm16 is also expressed in skeletal muscle. Thus, we examined expression of Ucp1 in bovine myogenic cells. Considering that Ucp1 is a principle molecule that induces energy expenditure in brown/beige adipocytes, expression of Ucp1 is not preferable in beef cattle because of potential decrease in energy (fattening) efficiency. The RT-PCR analyses revealed the expression of Ucp1 in the skeletal muscle of cattle; expression levels were markedly lower than those in the brown fat of calves. Immunohistochemical analyses showed that Ucp1 surrounded muscle fibers, but not adipocytes residing in skeletal muscle. Myosatellite cells cultured in myogenic medium showed an increase in the expression levels of myogenic regulatory factors ( levels were greater in cells after myogenic culture for 12 d than in those after myogenic culture for 6 d ( bovine skeletal muscle, which suggests the necessity for further studies on Ucp1-mediated energy expenditure in bovine skeletal muscle.

  18. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2011-01-01

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  19. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  20. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy

    DEFF Research Database (Denmark)

    Hulstrøm, Veronica; Prats Gavalda, Clara; Vinten, Jørgen

    2013-01-01

    Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1 and caveo......Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1...

  1. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*

    Science.gov (United States)

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert

    2016-01-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  2. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation.

    Science.gov (United States)

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert; Michaelevski, Izhak

    2016-02-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  3. N-Lauroylation during the Expression of Recombinant N-Myristoylated Proteins: Implications and Solutions.

    Science.gov (United States)

    Flamm, Andrea Gabriele; Le Roux, Anabel-Lise; Mateos, Borja; Díaz-Lobo, Mireia; Storch, Barbara; Breuker, Kathrin; Konrat, Robert; Pons, Miquel; Coudevylle, Nicolas

    2016-01-01

    Incorporation of myristic acid onto the N terminus of a protein is a crucial modification that promotes membrane binding and correct localization of important components of signaling pathways. Recombinant expression of N-myristoylated proteins in Escherichia coli can be achieved by co-expressing yeast N-myristoyltransferase and supplementing the growth medium with myristic acid. However, undesired incorporation of the 12-carbon fatty acid lauric acid can also occur (leading to heterogeneous samples), especially when the available carbon sources are scarce, as it is the case in minimal medium for the expression of isotopically enriched samples. By applying this method to the brain acid soluble protein 1 and the 1-185 N-terminal region of c-Src, we show the significant, and protein-specific, differences in the membrane binding properties of lauroylated and myristoylated forms. We also present a robust strategy for obtaining lauryl-free samples of myristoylated proteins in both rich and minimal media. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. A novel typing method for Streptococcus pneumoniae using selected surface proteins

    Directory of Open Access Journals (Sweden)

    Arnau eDomenech

    2016-03-01

    Full Text Available The diverse pneumococcal diseases are associated with different pneumococcal lineages, or clonal complexes. Nevertheless, intra-clonal genomic variability, which influences pathogenicity, has been reported for surface virulence factors. These factors constitute the communication interface between the pathogen and its host and their corresponding genes are subjected to strong selective pressures affecting functionality and immunogenicity. First, the presence and allelic dispersion of 97 outer protein families were screened in 19 complete pneumococcal genomes. Seventeen families were deemed variable and were then examined in 216 draft genomes. This procedure allowed the generation of binary vectors with 17 positions and the classification of strains into surfotypes. They represent the outer protein subsets with the highest inter-strain discriminative power. A total of 116 non-redundant surfotypes were identified. Those sharing a critical number of common protein features were hierarchically clustered into 18 surfogroups. Most clonal complexes with comparable epidemiological characteristics belonged to the same or similar surfogroups. However, the very large CC156 clonal complex was dispersed over several surfogroups. In order to establish a relationship between surfogroup and pathogenicity, the surfotypes of 95 clinical isolates with different serogroup/serotype combinations were analysed. We found a significant correlation between surfogroup and type of pathogenic behaviour (primary invasive, opportunistic invasive and non-invasive. We conclude that the virulent behaviour of S. pneumoniae is related to the activity of collections of, rather than individual, surface virulence factors. Since surfotypes evolve faster than MLSTs and directly reflect virulence potential, this novel typing protocol is appropriate for the identification of emerging clones.

  5. Expression and Production of SH2 Domain Proteins.

    Science.gov (United States)

    Liu, Bernard A; Ogiue-Ikeda, Mari; Machida, Kazuya

    2017-01-01

    The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.

  6. Tuning protein expression using synonymous codon libraries targeted to the 5' mRNA coding region

    DEFF Research Database (Denmark)

    Goltermann, Lise; Borch Jensen, Martin; Bentin, Thomas

    2011-01-01

    intermediate expression levels of green fluorescent protein in Escherichia coli. At least in one case, no apparent effect on protein stability was observed, pointing to RNA level effects as the principal reason for the observed expression differences. Targeting a synonymous codon library to the 5' coding...

  7. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice.

    Science.gov (United States)

    Zheng, Nuoyan; Xia, Ran; Yang, Cuiping; Yin, Bojiao; Li, Yin; Duan, Chengguo; Liang, Liming; Guo, Huishan; Xie, Qi

    2009-08-06

    Vaccines produced in plant systems are safe and economical; however, the extensive application of plant-based vaccines is mainly hindered by low expression levels of heterologous proteins in plant systems. Here, we demonstrated that the post-transcriptional gene silencing suppressor p19 protein from tomato bushy stunt virus substantially enhanced the transient expression of recombinant SARS-CoV nucleocapsid (rN) protein in Nicotiana benthamiana. The rN protein in the agrobacteria-infiltrated plant leaf accumulated up to a concentration of 79 microg per g fresh leaf weight at 3 days post infiltration. BALB/c mice were intraperitoneally vaccinated with pre-treated plant extract emulsified in Freund's adjuvant. The rN protein-specific IgG in the mouse sera attained a titer about 1:1,800 following three doses of immunization, which suggested effective B-cell maturation and differentiation in mice. Antibodies of the subclasses IgG1 and IgG2a were abundantly present in the mouse sera. During vaccination of rN protein, the expression of IFN-gamma and IL-10 was evidently up-regulated in splenocytes at different time points, while the expression of IL-2 and IL-4 was not. Up to now, this is the first study that plant-expressed recombinant SARS-CoV N protein can induce strong humoral and cellular responses in mice.

  8. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    Directory of Open Access Journals (Sweden)

    Bottomley Stephen P

    2006-03-01

    Full Text Available Abstract Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high

  9. [Expression of Ki-67 and P53 protein in oral squamous cell carcinoma and its clinical significance].

    Science.gov (United States)

    He, Wei; Xiao, Yan; Chen, Wei-min

    2015-04-01

    To investigate the clinical and pathological features and its relationship with the expression of Ki-67 and p53 protein in oral squamous cell carcinoma. Immunohistochemical SP staining method was used to quantify the protein expression levels of Ki-67 and p53 protein in 10 cases of normal oral mucosa, 16 cases of oral leukoplakia (OLK) tissue, and 48 cases of oral squamous cell carcinoma. The relationship of the expression of Ki-67 and p53 protein to clinical and pathological data was analyzed, and SPSS17.0 software package was used for statistical analysis. The positive expression rate of Ki-67 protein in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma was 30%, 56.3% and 79.2%, respectively; The positive expression rate of p53 was 0%, 43.8%, and 70.8%, respectively; Ki-67 and p53 expression had significant difference among normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma (Poral squamous cell carcinoma (Poral squamous cell carcinoma tissues may play an important role in the development of oral squamous cell carcinoma.

  10. Low dose radiation induced protein and its effect on expression of CD25 molecule in lymphocytes

    International Nuclear Information System (INIS)

    Lu Duicai; Su Liaoyuan

    2001-01-01

    Objective: To find the substantial basis for effects of low dose radiation, on development, extraction, and the biogical activity of the low-dose radiation-induced proteins, and the effects of LDR induced proteins on CD25 molecule expression of human lymphocytes. Methods: 1. Healthy Kumning male mice exposed to radiation of 226 Ra γ-rays at 5, 10 and 15 cGy respectively. The mice were killed 2 hours after exposure, the spleen cells were broken with ultrasonic energy and then ultra-centrifugalized at low temperature (4 degree C). The LDR-induced proteins were obtained in the supernatant solution. Then the changes of CD25 molecule was measured by flow cytometry (FCM) with immunofluorescence technique, which was used to reflect the effect of LDR induced proteins on CD25 molecule expression of human lymphocytes. Results: LDR induced proteins were obtained from spleen cells in mice exposed to 5-15 cGy whole body radiation. Conclusion: The expression of CD25 molecule of lymphocytes was increased significantly after use of LDR induced proteins. LDR induced proteins can enhance expression of CD25 molecule of lymphocytes slightly

  11. Prokaryotic expression of chicken interferon-γ fusion protein and its effect on expression of poultry heat shock protein 70 under heat stress.

    Science.gov (United States)

    Sun, Jinhua; Chen, Yinglin; Qin, Feiyue; Guan, Xueting; Xu, Wei; Xu, Liangmei

    2017-06-01

    Interferons have attracted considerable attention due to their vital roles in the host immune response and low induction of antibiotic resistance. In this study, total RNA was extracted from spleen cells of chicken embryos inoculated with Newcastle disease vaccine, and the full-length chicken interferon-γ (ChIFN-γ) gene was amplified by RT-PCR. The full complementary DNA sequence of the ChIFN-γ gene was 495 bp long and was cloned into the prokaryotic expression vector pProEX™HT b . The plasmid was transformed into Escherichia coli DH5α and the expression of ChIFN-γ was induced by isopropyl β-D-1-thiogalactopyranoside. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and Western blot results showed the expressed fusion protein had a molecular weight of approximately 18 kDa and was recognized by an anti-His mAb. Moreover, ChIFN-γ was found to demonstrate anti-viral activity in vitro. To test the in vivo function of ChIFN-γ in broilers under heat stress, a total of 100 broilers were randomly assigned to either a control group or a treated group, in which they were hypodermically injected with recombinant ChIFN-γ. Results demonstrated ChIFN-γ affects the messenger RNA expression levels of heat shock protein 70 (HSP70) in the heart and lung tissues, and decreases the concentration of HSP70 in serum. Therefore, we conclude recombinant ChIFN-γ can reduce heat stress to some extent in vivo. © 2016 Japanese Society of Animal Science.

  12. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    International Nuclear Information System (INIS)

    Cavalcanti, M.B.; Fernandes, T.S.; Melo, J.A.; Neves, M.A.B.; Machado, C.G.F

    2005-01-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of peripheral blood from healthy individuals were irradiated with known doses. Lymphocytes were separated on ficoll gradient by centrifugation and re-suspended at 1x 10 6 /mL in RPMI medium enriched with fetal calf serum. Hence, lymphocytes were incubated in 5% CO 2 at 37 deg C prior to the methodology of flow cytometry, using intranuclear antigens for the quantification of p53. In this report, the methodology performed and the results obtained

  13. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, M.B.; Fernandes, T.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Amaral, A. [Universite Paris XII (UPXII) (France); Melo, J.A. [Centro de Radioterapia de Pernambuco (CERAPE), PE (Brazil); Neves, M.A.B.; Machado, C.G.F, E-mail: maribrayner@yahoo.com.br [Fundacao de Hematologia e Hemoterapia de Pernambuco, PE (Brazil)

    2005-07-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of peripheral blood from healthy individuals were irradiated with known doses. Lymphocytes were separated on ficoll gradient by centrifugation and re-suspended at 1x 10{sub 6}/mL in RPMI medium enriched with fetal calf serum. Hence, lymphocytes were incubated in 5% CO{sub 2} at 37 deg C prior to the methodology of flow cytometry, using intranuclear antigens for the quantification of p53. In this report, the methodology performed and the results

  14. Decreased expression of G-protein coupled receptor kinase 2 in cold thyroid nodules.

    Science.gov (United States)

    Voigt, C; Holzapfel, H-P; Paschke, R

    2005-02-01

    G-protein coupled receptor kinases (GRKs) have been shown to regulate the homologous desensitization of different G-protein coupled receptors. We have previously demonstrated that the expression of GRK 3 and 4 is increased in hyperfunctioning thyroid nodules (HTNs) and that GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. Since cold thyroid nodules (CTNs) and HTNs show different molecular and functional properties, different expression patterns of GRKs in these nodules can be expected. The comparison of GRK expression between CTNs and HTNs could give additional insight into the regulation mechanisms of these nodules. We therefore examined the expression of GRKs in CTNs and analyzed the differences to HTNs. The expression of the different GRKs in CTNs was measured by Western blot followed by chemiluminescence imaging. We found a decreased expression of GRK 2 in CTNs compared to their surrounding tissues and an increased expression of GRK 3 and 4 in CTNs, which is similar to HTNs. The decreased GRK 2 expression most likely results from reduced cAMP stimulation in CTNs. However, the increased GRK 3 and 4 expression in CTNs remains unclear and requires further investigations.

  15. Expression and characterization of the UL31 protein from duck enteritis virus

    Directory of Open Access Journals (Sweden)

    Zhu Dekang

    2009-02-01

    Full Text Available Abstract Background Previous studies indicate that the UL31 protein and its homology play similar roles in nuclear egress of all herpesviruses. However, there is no report on the UL31 gene product of DEV. In this study, we expressed and presented the basic properties of the DEV UL31 product. Results The entire ORF of the UL31 was cloned into pET 32a (+ prokaryotic expression vector. Escherichia coli BL21(DE3 competent cells were transformed with the construct followed by the induction of protein expression by the addition of IPTG. Band corresponding to the predicted sizes (55 kDa was produced on the SDS-PAGE. Over expressed 6×His-UL31 fusion protein was purified by nickel affinity chromatography. The DEV UL31 gene product has been identified by using a rabbit polyclonal antiserum raised against the purified protein. A protein of approximate 35 kDa that reacted with the antiserum was detected in immunoblots of DEV-infected cellular lysates, suggesting that the 35 kDa protein was the primary translation product of the UL31 gene. RT-PCR analyses revealed that the UL31 gene was transcribed most abundantly during the late phase of replication. Subsequently, Immunofluorescence analysis revealed that the protein was widespread speckled structures in the nuclei of infected cells. Western blotting of purified virion preparations showed that UL31 was a component of intracellular virions but was absent from mature extracellular virions. Finally, an Immunofluorescence assay was established to study the distribution of the UL31 antigen in tissues of artificially DEV infected ducks. The results showed that the UL31 antigen was primarily located in the cells of digestive organs and immunological organs. Conclusion In this work, we present the basic properties of the DEV UL31 product. The results indicate that DEV UL31 shares many similarities with its HSV or PRV homolog UL31 and suggest that functional cross-complementation is possible between members of the

  16. Polyclonal antibodies against the recombinantly expressed coat protein of the Citrus psorosis virus

    Directory of Open Access Journals (Sweden)

    Reda Salem

    2018-05-01

    Full Text Available Psorosis is a damaging disease of citrus that is widespread in many parts of the world. Citrus psorosis virus (CPsV, the type species of the genus Ophiovirus, is the putative causal agent of psorosis. Detection of CPsV by laboratory methods, serology in particular is a primary requirement for large-scale surveys but their production has been impaired by the difficulty of obtaining sufficient clean antigen for immunization. Specific PAbs against coat protein were produced in E. coli using recombinant DNA approach. The full length CP gene fragment was amplified by RT-PCR using total RNA extracted from CPsV infected citrus leaves and CP specific primers. The obtained product (1320bp was cloned, sequenced and sub-cloned into pET-30(+ expression vector. Expression was induced and screened in different bacterial clones by the presence of the expressed protein (48kDa and optimized in one clone. Expressed CP was purified using batch chromatography under denaturing conditions. Specificity of expressed protein was demonstrated by ELISA before used as antigen for raising PAbs in mice. Specificity of the raised PAbs to CPsV was verified by ELISA and western blotting. The raised PAbs were showed highly effectiveness in screening by ELISA comparing with the commercial antibodies purchased from Agritest, Valanzano, Italy.The expression of CPsV CP gene in E. coli, production of PAbs using recombinant protein as an antigen, the suitability of these antibodies for use in immunodiagnostics against the CPsV Egyptian isolate have been accomplished in this work. Keywords: CPsV, CP, PAbs, RT-PCR, ELISA, Western blotting

  17. Optimized expression in Pichia pastoris eliminates common protein contaminants from subsequent His-tag purification.

    Science.gov (United States)

    Chen, Yong; Li, Yang; Liu, Peng; Sun, Qun; Liu, Zhu

    2014-04-01

    A weakness of using immobilized metal affinity chromatography (IMAC) to purify recombinant proteins expressed in Pichia pastoris is the co-purification of native proteins that exhibit high affinities for Ni-IMAC. We have determined the elution profiles of P. pastoris proteins and have examined the native proteins that co-purify when eluting with 100 mM imidazole. Four major contaminants were identified: mitochondrial alcohol dehydrogenase isozyme III (mADH), nucleotide excision repair endonuclease, and the hypothetical proteins TPHA_0L01390 and TDEL_0B02190 which are homologous proteins derived from Tetrapisispora phaffii and Torulaspora delbrueckii, respectively. A new P. pastoris expression strain was engineered that eliminated the predominant contaminant, mADH, by gene disruption. The total amount of protein contaminants was reduced by 55 % without effecting cell growth. The present study demonstrates the feasibility of using a proteomic approach to facilitate bioprocess optimization.

  18. Expression and significance of Bax protein in model of radiation injury in mouse skin

    International Nuclear Information System (INIS)

    Feng Yizhong; Mo Yahong

    2002-01-01

    Objective: The study is to find some valuable criteria for diagnosis and treatment of radiation injury in skin. Methods: The expression of Bax protein was studied by SP immunohistochemistry in 40 cases of model of radiation injury in mouse skin. Their relationship relating to radiation dose was also investigated. Results: The expression rates of Bax were 30%, 30%, 70%, 70% in 5 Gy group, 15 Gy group, 30 Gy group, 45 Gy group respectively. There was no significant correlation between the expression of Bax and radiation groups. Conclusions: The experiment shows that radiation can increase the expression of Bax protein which might be related to poor healing in radiation skin injury

  19. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    Science.gov (United States)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  20. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    Science.gov (United States)

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  1. Immunohistochemical Expression of P53 Protein in Cutaneous Basal Cell Carcinoma: A Clinicopathological Study of 66 Cases

    Directory of Open Access Journals (Sweden)

    Vladim and iacute;r Barto and scaron;

    2016-12-01

    Full Text Available Objective: Nuclear expression of p53 protein is associated with a biological behavior in a variety of human malignancies. In cutaneous basal cell carcinoma (BCC, however, many studies have provided conflicting results in this regard. We aimed to determine whether there is relationship between p53 expression and different histologic subtypes of BCC, and whether it may indicate tumor aggressiveness. Materials and Methods: Biopsy samples from 66 cutaneous BCCs from 57 patients were collected. P53 expression was demonstrated by immunohistochemical staining using the anti-p53 antibody. Among them, 52 cases were also evaluated for Ki-67 antigen. Results: Immunoreactivity of p53 protein varied in the range of 0 to 100% of total tumor tissue (mean value 46.0%. The expression exceeding 5% of cancer tissue (positive staining was found in 54 BCCs (81.8%. Within this group, there were 25 cases (37.9% with low and 29 cases (43.9% with high expression. In superficial, superficial-nodular, nodular, nodular-infiltrative and infiltrative BCCs, p53 protein positivity was found in 100% (8/8, 80% (8/10, 70.4% (19/27, 88.2% (15/17 and 100% (4/4, respectively. We did not reveal a significant correlation between the extent of p53 protein expression and BCC subtypes except for nodular BCC, in which a number of negative cases (8/27, 29.6% were just above the threshold of statistical significance (P = 0.04. After merging cancers into non-aggressive and aggressive growth phenotype, no association with expression of p53 protein was found. There was no relationship between p53 protein expression and topographical sites after they have been gathered into sun-exposed and sun-protected locations. We did not observe any association between expression of p53 protein and Ki-67 antigen. Conclusion: In cutaneous BCC, the expression of p53 protein does not seem to reflect a biological behavior and tumor aggressiveness. Therefore, in a routine dermatopathological practice

  2. Estrogen decreases tight junction protein ZO-1 expression in human primary gut tissues.

    Science.gov (United States)

    Zhou, Zejun; Zhang, Lumin; Ding, Miao; Luo, Zhenwu; Yuan, Shao; Bansal, Meena B; Gilkeson, Gary; Lang, Ren; Jiang, Wei

    2017-10-01

    Females have a higher prevalence of most autoimmune diseases; however, the mechanism is unknown. In this study, we examined the expression of tight junction protein zonula occludens 1 (ZO-1) and estrogen receptor (ER)-α/β in human primary gut tissues by immunohistochemistry, immunofluorescence and qPCR. The expression of ZO-1 and ER-β but not ER-α was present in both male and female gut tissues. There was no sex difference in ER-β expression, but ZO-1 expression was decreased in females compared to males. In vitro, estrogen treatment decreased ZO-1 mRNA and protein expression, ZO-1 promoter activity, IL-6 production, and NF-κB activation in human primary gut tissues or the Caco-2 cells, but increased the ER-β expression in Caco-2 cells. Consistently, plasma IL-6 levels in females were reduced relative to males in vivo. Our finding indicates that estrogen may play a role in gut tight junction expression and permeability. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    Directory of Open Access Journals (Sweden)

    Valentina Guzmán-Pérez

    Full Text Available Nasturtium (Tropaeolum majus L. contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1. FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i the insulin-signaling pathway, ii the intracellular localization of FOXO1 and, iii the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived-like2 (NRF2 and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1. The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance.

  4. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells.

    Science.gov (United States)

    Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G

    2016-08-01

    Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein

  5. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are projections of the arachnoid membrane into the dural venous sinuses. They function, along with the extracranial lymphatics, to circulate the cerebrospinal fluid (CSF to the systemic venous circulation. Disruption of normal CSF dynamics may result in increased intracranial pressures causing many problems including headaches and visual loss, as in idiopathic intracranial hypertension and hydrocephalus. To study the role of AGs in CSF egress, we have grown cells from human AG tissue in vitro and have characterized their expression of those cytoskeletal and junctional proteins that may function in the regulation of CSF outflow. Methods Human AG tissue was obtained at autopsy, and explanted to cell culture dishes coated with fibronectin. Typically, cells migrated from the explanted tissue after 7–10 days in vitro. Second or third passage cells were seeded onto fibronectin-coated coverslips at confluent densities and grown to confluency for 7–10 days. Arachnoidal cells were tested using immunocytochemical methods for the expression of several common cytoskeletal and junctional proteins. Second and third passage cultures were also labeled with the common endothelial markers CD-31 or VE-cadherin (CD144 and their expression was quantified using flow cytometry analysis. Results Confluent cultures of arachnoidal cells expressed the intermediate filament protein vimentin. Cytokeratin intermediate filaments were expressed variably in a subpopulation of cells. The cultures also expressed the junctional proteins connexin43, desmoplakin 1 and 2, E-cadherin, and zonula occludens-1. Flow cytometry analysis indicated that second and third passage cultures failed to express the endothelial cell markers CD31 or VE-cadherin in significant quantities, thereby showing that these cultures did not consist of endothelial cells from the venous sinus wall. Conclusion To our knowledge, this is the first report of

  6. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean...... body mass), or a non-caloric control after heavy resistance exercise on protein turnover and mRNA expressions of forkhead homeobox type O (FOXO) isoforms, muscle RING finger 1 (MuRF1), and Atrogin1 in young healthy males. Methods Protein turnover was determined by stable isotope-labeled leucine...

  7. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride.

    Science.gov (United States)

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-09-01

    Acute fluoride (F - ) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F - induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F - -intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F - for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F - -intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F - -treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F - -induced heart failure.

  8. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    Science.gov (United States)

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  10. Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors

    Directory of Open Access Journals (Sweden)

    Sara Pizzamiglio

    2017-02-01

    Full Text Available We have previously reported hepcidin and ferritin increases in the plasma of breast cancer patients, but not in patients with benign breast disease. We hypothesized that these differences in systemic iron homeostasis may reflect alterations in different iron-related proteins also play a key biochemical and regulatory role in breast cancer. Thus, here we explored the expression of a bundle of molecules involved in both iron homeostasis and tumorigenesis in tissue samples. Enzyme-linked immunosorbent assay (ELISA or reverse-phase protein array (RPPA, were used to measure the expression of 20 proteins linked to iron processes in 24 non-cancerous, and 56 cancerous, breast tumors. We found that cancerous tissues had higher level of hepcidin than benign lesions (p = 0.012. The univariate analysis of RPPA data highlighted the following seven proteins differentially expressed between non-cancerous and cancerous breast tissue: signal transducer and transcriptional activator 5 (STAT5, signal transducer and activator of transcription 3 (STAT3, bone morphogenetic protein 6 (BMP6, cluster of differentiation 74 (CD74, transferrin receptor (TFRC, inhibin alpha (INHA, and STAT5_pY694. These findings were confirmed for STAT5, STAT3, BMP6, CD74 and INHA when adjusting for age. The multivariate statistical analysis indicated an iron-related 10-protein panel effective in separating non-cancerous from cancerous lesions including STAT5, STAT5_pY694, myeloid differentiation factor 88 (MYD88, CD74, iron exporter ferroportin (FPN, high mobility group box 1 (HMGB1, STAT3_pS727, TFRC, ferritin heavy chain (FTH, and ferritin light chain (FTL. Our results showed an association between some iron-related proteins and the type of tumor tissue, which may provide insight in strategies for using iron chelators to treat breast cancer.

  11. StAR protein and steroidogenic enzyme expressions in the rat Harderian gland.

    Science.gov (United States)

    Falvo, Sara; Chieffi Baccaria, Gabriella; Spaziano, Giuseppe; Rosati, Luigi; Venditti, Massimo; Di Fiore, Maria Maddalena; Santillo, Alessandra

    2018-03-01

    The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  12. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives.

    Directory of Open Access Journals (Sweden)

    Lena Thoring

    Full Text Available Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called "difficult-to-express" proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of "difficult-to-express" proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called "cell-free" protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various "difficult-to-express" proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.

  13. Lipid transfer proteins from fruit: cloning, expression and quantification

    NARCIS (Netherlands)

    Zuidmeer, Laurian; van Leeuwen, W. Astrid; Budde, Ilona Kleine; Cornelissen, Jessica; Bulder, Ingrid; Rafalska, Ilona; Besolí, Noèlia Telléz; Akkerdaas, Jaap H.; Asero, Riccardo; Fernandez Rivas, Montserrat; Rivas, Montserrat Fernandez; Gonzalez Mancebo, Eloina; Mancebo, Eloina Gonzalez; van Ree, Ronald

    2005-01-01

    BACKGROUND: Lipid transfer proteins (LTP) are stable, potentially life-threatening allergens in fruits and many other vegetable foods. The aim of this study was to clone and express recombinant apple LTP (Mal d 3), as has previously been done for peach LTP (Pru p 3) and set up quantitative tests for

  14. Geminivirus vectors for high-level expression of foreign proteins in plant cells.

    Science.gov (United States)

    Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S

    2003-02-20

    Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.

  15. Identification of CEA-interacting proteins in colon cancer cells and their changes in expression after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byong Chul [Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang (Korea, Republic of); Yeo, Seung Gu [Dept. of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan (Korea, Republic of)

    2017-09-15

    The serum carcinoembryonic antigen (CEA) level has been recognized as a prognostic factor in colorectal cancer, and associated with response of rectal cancer to radiotherapy. This study aimed to identify CEA-interacting proteins in colon cancer cells and observe post-irradiation changes in their expression. CEA expression in colon cancer cells was examined by Western blot analysis. Using an anti-CEA antibody or IgG as a negative control, immunoprecipitation was performed in colon cancer cell lysates. CEA and IgG immunoprecipitates were used for liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Proteins identified in the CEA immunoprecipitates but not in the IgG immunoprecipitates were selected as CEA-interacting proteins. After radiation treatment, changes in expression of CEA-interacting proteins were monitored by Western blot analysis. CEA expression was higher in SNU-81 cells compared with LoVo cells. The membrane localization of CEA limited the immunoprecipitation results and thus the number of CEA-interacting proteins identified. Only the Ras-related protein Rab-6B and lysozyme C were identified as CEA-interacting proteins in LoVo and SNU-81 cells, respectively. Lysozyme C was detected only in SNU-81, and CEA expression was differently regulated in two cell lines; it was down-regulated in LoVo but up-regulated in SNU-81 in radiation dosage-dependent manner. CEA-mediated radiation response appears to vary, depending on the characteristics of individual cancer cells. The lysozyme C and Rab subfamily proteins may play a role in the link between CEA and tumor response to radiation, although further studies are needed to clarify functional roles of the identified proteins.

  16. Identification of CEA-interacting proteins in colon cancer cells and their changes in expression after irradiation

    International Nuclear Information System (INIS)

    Yoo, Byong Chul; Yeo, Seung Gu

    2017-01-01

    The serum carcinoembryonic antigen (CEA) level has been recognized as a prognostic factor in colorectal cancer, and associated with response of rectal cancer to radiotherapy. This study aimed to identify CEA-interacting proteins in colon cancer cells and observe post-irradiation changes in their expression. CEA expression in colon cancer cells was examined by Western blot analysis. Using an anti-CEA antibody or IgG as a negative control, immunoprecipitation was performed in colon cancer cell lysates. CEA and IgG immunoprecipitates were used for liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Proteins identified in the CEA immunoprecipitates but not in the IgG immunoprecipitates were selected as CEA-interacting proteins. After radiation treatment, changes in expression of CEA-interacting proteins were monitored by Western blot analysis. CEA expression was higher in SNU-81 cells compared with LoVo cells. The membrane localization of CEA limited the immunoprecipitation results and thus the number of CEA-interacting proteins identified. Only the Ras-related protein Rab-6B and lysozyme C were identified as CEA-interacting proteins in LoVo and SNU-81 cells, respectively. Lysozyme C was detected only in SNU-81, and CEA expression was differently regulated in two cell lines; it was down-regulated in LoVo but up-regulated in SNU-81 in radiation dosage-dependent manner. CEA-mediated radiation response appears to vary, depending on the characteristics of individual cancer cells. The lysozyme C and Rab subfamily proteins may play a role in the link between CEA and tumor response to radiation, although further studies are needed to clarify functional roles of the identified proteins

  17. Expression and Purification of Z Protein from Junín Virus

    Directory of Open Access Journals (Sweden)

    S. E. Goñi

    2010-01-01

    Full Text Available Arenaviridae comprises 23 recognized virus species with a bipartite ssRNA genome and an ambisense coding strategy. The virions are enveloped and include nonequimolar amounts of each genomic RNA species, designated L and S, coding for four ORFs (N, GPC, L, and Z. The arenavirus Junín (JUNV is the etiological agent of Argentine Hemorrhagic Fever, an acute disease with high mortality rate. It has been proposed that Z is the functional counterpart of the matrix proteins found in other negative-stranded enveloped RNA viruses. Here we report the optimized expression of a synthetic gene of Z protein, using three expression systems (two bacterial and a baculoviral one. One of these recombinant proteins was used to generate antibodies. A bioinformatic analysis was made where Z was subdivided into three domains. The data presented contributes methodologies for Z recombinant production and provides the basis for the development of new experiments to test its function.

  18. Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.

    Science.gov (United States)

    Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta

    2018-05-17

    Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.

  19. Endosialin and Associated Protein Expression in Soft Tissue Sarcomas: A Potential Target for Anti-Endosialin Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Daniel J. O’Shannessy

    2016-01-01

    Full Text Available Endosialin (CD248, TEM-1 is expressed in pericytes, tumor vasculature, tumor fibroblasts, and some tumor cells, including sarcomas, with limited normal tissue expression, and appears to play a key role in tumor-stromal interactions, including angiogenesis. Monoclonal antibodies targeting endosialin have entered clinical trials, including soft tissue sarcomas. We evaluated a cohort of 94 soft tissue sarcoma samples to assess the correlation between gene expression and protein expression by immunohistochemistry for endosialin and PDGFR-β, a reported interacting protein, across available diagnoses. Correlations between the expression of endosialin and 13 other genes of interest were also examined. Within cohorts of soft tissue diagnoses assembled by tissue type (liposarcoma, leiomyosarcoma, undifferentiated sarcoma, and other, endosialin expression was significantly correlated with a better outcome. Endosialin expression was highest in liposarcomas and lowest in leiomyosarcomas. A robust correlation between protein and gene expression data for both endosialin and PDGFR-β was observed. Endosialin expression positively correlated with PDGFR-β and heparin sulphate proteoglycan 2 and negatively correlated with carbonic anhydrase IX. Endosialin likely interacts with a network of extracellular and hypoxia activated proteins in sarcomas and other tumor types. Since expression does vary across histologic groups, endosialin may represent a selective target in soft tissue sarcomas.

  20. Evaluation of the Expression of Amine Oxidase Proteins in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Woo Young Sun

    2017-12-01

    Full Text Available We aimed to evaluate the expression of amine oxidase proteins in breast cancer and their clinical implications. We performed immunohistochemical staining of amine oxidase proteins (LOX, lysyl oxidase, AOC3, amine oxidase, MAOA, monoamine oxidase A, MAOB, monoamine oxidase B. Based on their hormone receptors, such as estrogen receptor (ER and progesterone receptor (PR, human epidermal growth factor receptor 2 (HER-2, and Ki-67 immunohistochemical staining, breast cancer was divided into four molecular subtypes: luminal A, luminal B, HER-2 type, and triple-negative breast cancer (TNBC. Luminal A was observed in 380 cases (49.4%, luminal B in 224 (29.1%, HER-2 type in 68 (8.8%, and TNBC in 98 (12.7%. Stromal AOC3, MAO-A, and MAO-B expression varied according to molecular subtypes. Stromal AOC3 expression was high in luminal B and HER-2 type and MAO-A expression was high in luminal A and luminal B (p < 0.001. MAO-B expression was higher in TNBC than in other subtypes (p = 0.020. LOX positivity was associated with high histological grade (p < 0.001 and high Ki-67 labeling index (LI (p = 0.009, and stromal AOC3 positivity was associated with high histological grade (p = 0.001, high Ki-67 LI (p < 0.001, and HER-2 positivity (p = 0.002. MAO-A positivity was related to low histological grade (p < 0.001, ER positivity, PR positivity (p < 0.001, and low Ki-67 LI (p < 0.001. In univariate analysis, MAO-A positivity was related to short disease-free survival in HER-2 type (p = 0.013, AOC3 negativity was related to short disease-free survival and overall survival in ER-positive breast cancer, PR-positive breast cancer, HER-2-negative breast cancer, and lymph node metastasis. In conclusion, the expression of amine oxidase proteins varies depending on the molecular subtype of breast cancer. Stromal AOC3 expression was high in luminal B and HER-2 type, and MAO-A expression was high in luminal A and luminal B.

  1. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder

    Science.gov (United States)

    Bychkov, ER; Ahmed, MR; Gurevich, VV; Benovic, JL; Gurevich, EV

    2011-01-01

    Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. Reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder. PMID:21784156

  2. Expression, Localization of SUMO-1, and Analyses of Potential SUMOylated Proteins in Bubalus bubalis Spermatozoa.

    Science.gov (United States)

    Brohi, Rahim Dad; Wang, Li; Hassine, Najla Ben; Cao, Jing; Talpur, Hira Sajjad; Wu, Di; Huang, Chun-Jie; Rehman, Zia-Ur; Bhattarai, Dinesh; Huo, Li-Jun

    2017-01-01

    Mature spermatozoa have highly condensed DNA that is essentially silent both transcriptionally and translationally. Therefore, post translational modifications are very important for regulating sperm motility, morphology, and for male fertility in general. Protein sumoylation was recently demonstrated in human and rodent spermatozoa, with potential consequences for sperm motility and DNA integrity. We examined the expression and localization of small ubiquitin-related modifier-1 (SUMO-1) in the sperm of water buffalo ( Bubalus bubalis ) using immunofluorescence analysis. We confirmed the expression of SUMO-1 in the acrosome. We further found that SUMO-1 was lost if the acrosome reaction was induced by calcium ionophore A23187. Proteins modified or conjugated by SUMO-1 in water buffalo sperm were pulled down and analyzed by mass spectrometry. Sixty proteins were identified, including proteins important for sperm morphology and motility, such as relaxin receptors and cytoskeletal proteins, including tubulin chains, actins, and dyneins. Forty-six proteins were predicted as potential sumoylation targets. The expression of SUMO-1 in the acrosome region of water buffalo sperm and the identification of potentially SUMOylated proteins important for sperm function implicates sumoylation as a crucial PTM related to sperm function.

  3. Expression, Localization of SUMO-1, and Analyses of Potential SUMOylated Proteins in Bubalus bubalis Spermatozoa

    Directory of Open Access Journals (Sweden)

    Rahim Dad Brohi

    2017-06-01

    Full Text Available Mature spermatozoa have highly condensed DNA that is essentially silent both transcriptionally and translationally. Therefore, post translational modifications are very important for regulating sperm motility, morphology, and for male fertility in general. Protein sumoylation was recently demonstrated in human and rodent spermatozoa, with potential consequences for sperm motility and DNA integrity. We examined the expression and localization of small ubiquitin-related modifier-1 (SUMO-1 in the sperm of water buffalo (Bubalus bubalis using immunofluorescence analysis. We confirmed the expression of SUMO-1 in the acrosome. We further found that SUMO-1 was lost if the acrosome reaction was induced by calcium ionophore A23187. Proteins modified or conjugated by SUMO-1 in water buffalo sperm were pulled down and analyzed by mass spectrometry. Sixty proteins were identified, including proteins important for sperm morphology and motility, such as relaxin receptors and cytoskeletal proteins, including tubulin chains, actins, and dyneins. Forty-six proteins were predicted as potential sumoylation targets. The expression of SUMO-1 in the acrosome region of water buffalo sperm and the identification of potentially SUMOylated proteins important for sperm function implicates sumoylation as a crucial PTM related to sperm function.

  4. Protein kinase A and Epac activation by cAMP regulates the expression of glial fibrillary acidic protein in glial cells

    Directory of Open Access Journals (Sweden)

    Sugimoto Naotoshi

    2016-01-01

    Full Text Available Cyclic adenosine monophosphate (cAMP controls differentiation in several types of cells during brain development. However, the molecular mechanism of cAMP-controlled differentiation is not fully understood. We investigated the role of protein kinase A (PKA and exchange protein directly activated by cAMP (Epac on cAMP-induced glial fibrillary acidic protein (GFAP, an astrocyte marker, in cultured glial cells. B92 glial cells were treated with cAMP-elevating drugs, an activator of adenylate cyclase, phosphodiesterase inhibitor and a ß adrenal receptor agonist. These cAMP-elevating agents induced dramatic morphological changes and expression of GFAP. A cAMP analog, 8-Br-cAMP, which activates Epac as well as PKA, induced GFAP expression and morphological changes, while another cAMP analog, 8-CPT-cAMP, which activates Epac with greater efficacy when compared to PKA, induced GFAP expression but very weak morphological changes. Most importantly, the treatment with a PKA inhibitor partially reduced cAMP-induced GFAP expression. Taken together, these results indicate that cAMP-elevating drugs lead to the induction of GFAP via PKA and/or Epac activation in B92 glial cells.

  5. Optimization of expression JTAT protein with emphasis on transformation efficiency and IPTG concentration

    Directory of Open Access Journals (Sweden)

    Endang Tri Margawati

    2017-12-01

    Full Text Available One of small accessory genes between pol and env is tat gene encoding TAT protein. This research was aimed to optimize the expression of Jembrana TAT (JTAT protein with preparing Escherichia coli (E. coli in advance using adopted methods of M1 (MgCl2 + CaCl2 and M2 (CaCl2 + Glycerol. The best transformation efficiency resulting from a better transformation method was used to subsequent expression of JTAT protein. A synthetic tat gene encoding protein JTAT was previously cloned into pBT-hisC. Concentration of 200; 400; 600 µM IPTG was induced to a small volume culture (200 ml; OD600 = 4, incubated for 3 h. Pellets were harvested by centrifugation (4000 rpm; 4 °C; 15 min. Buffer B (10 mM Immidazole was added into pellets, lysed by freeze-thaw followed by sonication. Supernatant was collected by centrifugation (10,000 rpm; 4 °C; 20 min and purified using Ni-NTA Agarose resin, released by elution buffer (E containing 400 mM Immidazole to collect purified protein twice (E1, E2. The protein was characterized by SDS-PAGE and Western Blot (WB, quantified (at λ595 nm with BSA standard method in prior. The result showed that transformation efficiency was better in M2 (2.53 × 106 than M1 (3.10 × 105. The JTAT protein was expressed at a right size of 11.8 kDa. Concentration of 200 µM IPTG produced a significantly better protein yield (1.500 ± 0.089 mg/ml; P < 0.05 than 600 µM IPTG (0.896 ± 0.052 mg/ml and not different to 400 µM IPTG (1.298 ± 0.080 mg/ml. This research indicated that transformation efficiency needs to be taken account in prior of optimization of the protein expression.

  6. Manipulating heat shock protein expression in laboratory animals.

    Science.gov (United States)

    Tolson, J Keith; Roberts, Stephen M

    2005-02-01

    Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.

  7. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    Science.gov (United States)

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Expression of a hantavirus N protein and its efficacy as antigen in immune assays

    Directory of Open Access Journals (Sweden)

    L.T.M. Figueiredo

    2008-07-01

    Full Text Available Hantavirus cardiopulmonary syndrome (HCPS has been recognized as an important public heath problem. Five hantaviruses associated with HCPS are currently known in Brazil: Juquitiba, Araraquara, Laguna Negra-like, Castelo dos Sonhos, and Anajatuba viruses. The laboratory diagnosis of HCPS is routinely carried out by the detection of anti-hantavirus IgM and/or IgG antibodies. The present study describes the expression of the N protein of a hantavirus detected in the blood sample of an HCPS patient. The entire S segment of the virus was amplified and found to be 1858 nucleotides long, with an open reading frame of 1287 nucleotides that encodes a protein of 429 amino acids. The nucleotide sequence described here showed a high identity with the N protein gene of Araraquara virus. The entire N protein was expressed using the vector pET200D and the Escherichia coli BL21 strain. The expression of the recombinant protein was confirmed by the detection of a 52-kDa protein by Western blot using a pool of human sera obtained from HCPS patients, and by specific IgG detection in five serum samples of HCPS patients tested by ELISA. These results suggest that the recombinant N protein could be used as an antigen for the serological screening of hantavirus infection.

  9. Protein expression in the midgut of sugar-fed Aedes albopictus females

    Directory of Open Access Journals (Sweden)

    Saboia-Vahia Leonardo

    2012-12-01

    Full Text Available Abstract Background Aedes albopictus is a vector for several fatal arboviruses in tropical and sub-tropical regions of the world. The midgut of the mosquito is the first barrier that pathogens must overcome to establish infection and represents one of the main immunologically active sites of the insect. Nevertheless, little is known about the proteins involved in the defense against pathogens, and even in the processing of food, and the detoxification of metabolites. The identification of proteins exclusively expressed in the midgut is the first step in understanding the complex physiology of this tissue and can provide insight into the mechanisms of pathogen-vector interaction. However, identification of the locally expressed proteins presents a challenge because the Ae. albopictus genome has not been sequenced. Methods In this study, two-dimensional electrophoresis (2DE was combined with liquid chromatography in line with tandem mass spectrometry (LC-MS/MS and data mining to identify the major proteins in the midgut of sugar-fed Ae. albopictus females. Results Fifty-six proteins were identified by sequence similarity to entries from the Ae. aegypti genome. In addition, two hypothetical proteins were experimentally confirmed. According to the gene ontology analysis, the identified proteins were classified into 16 clusters of biological processes. Use of the STRING database to investigate protein functional associations revealed five functional networks among the identified proteins, including a network for carbohydrate and amino acid metabolism, a group associated with ATP production and a network of proteins that interact during detoxification of toxic free radicals, among others. This analysis allowed the assignment of a potential role for proteins with unknown function based on their functional association with other characterized proteins. Conclusion Our findings represent the first proteome map of the Ae. albopictus midgut and denotes the

  10. Two different protein expression profiles of oral squamous cell carcinoma analyzed by immunoprecipitation high-performance liquid chromatography.

    Science.gov (United States)

    Kim, Soung Min; Jeong, Dasul; Kim, Min Keun; Lee, Sang Shin; Lee, Suk Keun

    2017-08-08

    Oral squamous cell carcinoma (OSCC) is one of the most dangerous cancers in the body, producing serious complications with individual behaviors. Many different pathogenetic factors are involved in the carcinogenesis of OSCC. Cancer cells derived from oral keratinocytes can produce different carcinogenic signaling pathways through differences in protein expression, but their protein expression profiles cannot be easily explored with ordinary detection methods. The present study compared the protein expression profiles between two different types of OSCCs, which were analyzed through immunoprecipitation high-performance liquid chromatography (IP-HPLC). Two types of squamous cell carcinoma (SCC) occurred in a mandibular (SCC-1) and maxillary gingiva (SCC-2), but their clinical features and progression were quite different from each other. SCC-1 showed a large gingival ulceration with severe halitosis and extensive bony destruction, while SCC-2 showed a relatively small papillary gingival swelling but rapidly grew to form a large submucosal mass, followed by early cervical lymph node metastasis. In the histological observation, SCC-1 was relatively well differentiated with a severe inflammatory reaction, while SCC-2 showed severely infiltrative growth of each cancer islets accompanied with a mild inflammatory reaction. IP-HPLC analysis revealed contrary protein expression profiles analyzed by 72 different oncogenic proteins. SCC-1 showed more cellular apoptosis and invasive growth than SCC-2 through increased expression of caspases, MMPs, p53 signaling, FAS signaling, TGF-β1 signaling, and angiogenesis factors, while SCC-2 showed more cellular growth and survival than SCC-1 through the increased expression of proliferating factors, RAS signaling, eIF5A signaling, WNT signaling, and survivin. The increased trends of cellular apoptosis and invasiveness in the protein expression profiles of SCC-1 were implicative of its extensive gingival ulceration and bony destruction

  11. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide.

    Science.gov (United States)

    Cui, Yanbing; Meng, Yiwei; Zhang, Juan; Cheng, Bin; Yin, Huijia; Gao, Chao; Xu, Ping; Yang, Chunyu

    2017-01-01

    In well-established heterologous hosts, such as Escherichia coli, recombinant proteins are usually intracellular and frequently found as inclusion bodies-especially proteins possessing high rare codon content. In this study, successful secretory expression of three hydrolases, in a constructed inducible or constitutive system, was achieved by fusion with a novel signal peptide (Kp-SP) from an actinomycete. The signal peptide efficiently enabled extracellular protein secretion and also contributed to the active expression of the intracellular recombinant proteins. The thermophilic α-amylase gene of Bacillus licheniformis was fused with Kp-SP. Both recombinants, carrying inducible and constitutive plasmids, showed remarkable increases in extracellular and intracellular amylolytic activity. Amylase activity was observed to be > 10-fold in recombinant cultures with the constitutive plasmid, pBSPPc, compared to that in recombinants lacking Kp-SP. Further, the signal peptide enabled efficient secretion of a thermophilic cellulase into the culture medium, as demonstrated by larger halo zones and increased enzymatic activities detected in both constructs from different plasmids. For heterologous proteins with a high proportion of rare codons, it is difficult to obtain high expression in E. coli owing to the codon bias. Here, the fusion of an archaeal homologue of the amylase encoding gene, FSA, with Kp-SP resulted in > 5-fold higher extracellular activity. The successful extracellular expression of the amylase indicated that the signal peptide also contributed significantly to its active expression and signified the potential value of this novel and versatile signal peptide in recombinant protein production. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  13. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    Science.gov (United States)

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  14. Use of expression constructs to dissect the functional domains of the CHS/beige protein: identification of multiple phenotypes.

    Science.gov (United States)

    Ward, Diane McVey; Shiflett, Shelly L; Huynh, Dinh; Vaughn, Michael B; Prestwich, Glenn; Kaplan, Jerry

    2003-06-01

    The Chediak-Higashi Syndrome (CHS) and the orthologous murine disorder beige are characterized at the cellular level by the presence of giant lysosomes. The CHS1/Beige protein is a 3787 amino acid protein of unknown function. To determine functional domains of the CHS1/Beige protein, we generated truncated constructs of the gene/protein. These truncated proteins were transiently expressed in Cos-7 or HeLa cells and their effect on membrane trafficking was examined. Beige is apparently a cytosolic protein, as are most transiently expressed truncated Beige constructs. Expression of the Beige construct FM (amino acids 1-2037) in wild-type cells led to enlarged lysosomes. Similarly, expression of a 5.5-kb region (amino acids 2035-3787) of the carboxyl terminal of Beige (22B) also resulted in enlarged lysosomes. Expression of FM solely affected lysosome size, whereas expression of 22B led to alterations in lysosome size, changes in the Golgi and eventually cell death. The two constructs could be used to further dissect phenotypes resulting from loss of the Beige protein. CHS or beigej fibroblasts show an absence of nuclear staining using a monoclonal antibody directed against phosphatidylinositol 4,5 bisphosphate [PtdIns(4,5) P2]. Transformation of beige j fibroblasts with a YAC containing the full-length Beige gene resulted in the normalization of lysosome size and nuclear PtdIns(4,5)P2 staining. Expression of the carboxyl dominant negative construct 22B led to loss of nuclear PtdIns(4,5)P2 staining. Expression of the FM dominant negative clone did not alter nuclear PtdIns(4,5) P2 localization. These results suggest that the Beige protein interacts with at least two different partners and that the Beige protein affects cellular events, such as nuclear PtdIns(4,5)P2 localization, in addition to lysosome size.

  15. Expression of GIMAP1, a GTPase of the immunity-associated protein family, is not up-regulated in malaria

    Directory of Open Access Journals (Sweden)

    Carter Christine

    2009-04-01

    Full Text Available Abstract Background GIMAP (GTPase of the immunity-associated protein family proteins are a family of putative GTPases believed to be regulators of cell death in lymphomyeloid cells. GIMAP1 was the first reported member of this gene family, identified as a gene up-regulated at the RNA level in the spleens of mice infected with the malarial parasite, Plasmodium chabaudi. Methods A monoclonal antibody against mouse GIMAP1 was developed and was used to analyse the expression of the endogenous protein in tissues of normal mice and in defined sub-populations of cells prepared from lymphoid tissues using flow cytometry. It was also used to assess the expression of GIMAP1 protein after infection and/or immunization of mice with P. chabaudi. Real-time PCR analysis was employed to measure the expression of GIMAP1 for comparison with the protein level analysis. Results GIMAP1 protein expression was detected in all lineages of lymphocytes (T, B, NK, in F4/80+ splenic macrophages and in some lymphoid cell lines. Additional evidence is presented suggesting that the strong expression by mature B cells of GIMAP1 and other GIMAP genes and proteins seen in mice may be a species-dependent characteristic. Unexpectedly, no increase was found in the expression of GIMAP1 in P. chabaudi infected mice at either the mRNA or protein level, and this remained so despite applying a number of variations to the protocol. Conclusion The model of up-regulation of GIMAP1 in response to infection/immunization with P. chabaudi is not a robustly reproducible experimental system. The GIMAP1 protein is widely expressed in lymphoid cells, with an interesting increase in expression in the later stages of B cell development. Alternative approaches will be required to define the functional role of this GTPase in immune cells.

  16. Cloning and expression analysis of a blue copperbinding protein ...

    African Journals Online (AJOL)

    Adifferentially expressed fragment EST145 was isolated by suppression subtractive hybridization (SSH) method. Using EST145 as the probe, a blue copper-binding protein gene designated as DvBCB was screened from Dasypyrum villosum cDNA Library. The DvBCB gene was 845 bp in length with an open reading frame ...

  17. Correlation of human epidermal growth factor receptor protein expression and colorectal cancer.

    Science.gov (United States)

    Yang, Wen-Juan; Shen, Xing-Jie; Ma, Xiao-Xia; Tan, Zhi-Gang; Song, Yan; Guo, Yi-Tong; Yuan, Mei

    2015-07-28

    To investigate the correlation between human epidermal growth factor receptor (HER-2) protein expression and colorectal cancer (CRC) using a case-control study and meta-analysis. Tumor tissue specimens from 162 CRC patients were selected for the case group. Fifty cases were randomly selected, and normal CRC tissue at least 10 cm away from the tumor margins of these cases was used to generate the control group. The expression of the HER-2 protein in the 162 CRC tissue samples and the 50 adjacent normal mucosa tissue samples was detected via immunohistochemistry. The experimental data were analyzed using SPSS 18.0 software, and R software version 3.1.0 was utilized for further verification. The expression of HER-2 protein in the 162 CRC tissue samples was significantly higher than in the normal tissue specimens. The data showed that the expression of HER-2 in CRC was related to the Dukes' stage, the depth of invasion and lymph node metastasis. The HER-2-positive patients had lower 3- and 5-year OS rates than the HER-2-negative patients, but there was no significant difference. However, there was a statistically significant difference in the 3- and 5-year disease-free survival (DFS) rates of HER-2-positive and HER-2-negative patients. The results of the meta-analysis showed that the expression of HER-2 in CRC patients was statistically significantly increased over that of healthy people. The 3-year DFS rate in HER-2-positive patients was markedly lower than that in HER-2-negative patients. Down-regulation of HER-2 expression might be a dependable strategy for CRC therapy.

  18. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  19. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data.

    Directory of Open Access Journals (Sweden)

    Shubhada R Hegde

    2008-11-01

    Full Text Available Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein:protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein:protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data.

  20. Protein expression in the nucleus accumbens of rats exposed to developmental vitamin D deficiency.

    Directory of Open Access Journals (Sweden)

    John McGrath

    Full Text Available INTRODUCTION: Developmental vitamin D (DVD deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficiency METHODS: Female Sprague Dawley rats were maintained on a vitamin D deficient diet for 6 weeks, mated and allowed to give birth, after which a diet containing vitamin D was reintroduced. Male adult offspring (n = 8 were compared to control male (n = 8. 2-D gel electrophoresis-based proteomics and mass spectroscopy were used to investigate differential protein expression. RESULTS: There were 35 spots, mapped to 33 unique proteins, which were significantly different between the two groups. Of these, 22 were down-regulated and 13 up-regulated. The fold changes were uniformly small, with the largest FC being -1.67. Within the significantly different spots, three calcium binding proteins (calbindin1, calbindin2 and hippocalcin were altered. Other proteins associated with DVD deficiency related to mitochondrial function, and the dynamin-like proteins. CONCLUSIONS: Developmental vitamin D deficiency was associated with subtle changes in protein expression in the nucleus accumbens. Disruptions in pathways related to calcium-binding proteins and mitochondrial function may underlie some of the behavioural features associated with animal models of developmental vitamin D deficiency.

  1. Sperm protein 17 is expressed in the sperm fibrous sheath

    Directory of Open Access Journals (Sweden)

    Albani Elena

    2009-07-01

    Full Text Available Abstract Background Sperm protein 17 (Sp17 is a highly conserved mammalian protein characterized in rabbit, mouse, monkey, baboon, macaque, human testis and spermatozoa. mRNA encoding Sp17 has been detected in a range of murine and human somatic tissues. It was also recognized in two myeloma cell lines and in neoplastic cells from patients with multiple myeloma and ovarian carcinoma. These data all indicate that Sp17 is widely distributed in humans, expressed not only in germinal cells and in a variety of somatic tissues, but also in neoplastic cells of unrelated origin. Methods Sp17 expression was analyzed by immunocytochemistry and transmission electron microscopy on spermatozoa. Results Here, we demonstrate the ultrastructural localization of human Sp17 throughout the spermatozoa flagellar fibrous sheath, and its presence in spermatozoa during in vitro states from their ejaculation to the oocyte fertilization. Conclusion These findings suggest a possible role of Sp17 in regulating sperm maturation, capacitation, acrosomal reaction and interactions with the oocyte zona pellucida during the fertilization process. Further, the high degree of sequence conservation throughout its N-terminal half, and the presence of an A-kinase anchoring protein (AKAP-binding motif within this region, suggest that Sp17 might play a regulatory role in a protein kinase A-independent AKAP complex in both germinal and somatic cells.

  2. Expression of XPG protein in the development, progression and prognosis of gastric cancer.

    Directory of Open Access Journals (Sweden)

    Na Deng

    Full Text Available BACKGROUND: Xeroderma pigmentosum group G (XPG plays a critical role in preventing cells from oxidative DNA damage. This study aimed to investigate XPG protein expression in different gastric tissues and in patients with diverse prognoses, thus providing insights into its role in the development, progression and prognosis of gastric cancer (GC. METHODS: A total of 176 GC, 131 adjacent non-tumour tissues, 53 atrophic gastritis (AG and 49 superficial gastritis (SG samples were included. Immunohistochemical staining was used to detect XPG protein expression. RESULTS: XPG expression was significantly higher in GC tissues compared with adjacent non-tumour tissues. In the progressive disease sequence SG→AG→GC, XPG expression was significantly higher in AG and GC compared with SG. Analysis of clinicopathological parameters and survival in GC patients demonstrated a significant association between XPG expression level and depth of tumour invasion, macroscopic type, Lauren's classification, smoking, Helicobacter pylori infection and family history. Cox multivariate survival analysis indicated that patients with positive XPG expression had significantly longer overall survival (P = 0.020, HR = 0.394, 95%CI 0.179-0.866, especially in aged younger than 60 years (P = 0.027, HR = 0.361, 95%CI 0.147-0.888 and male patients (P = 0.002, HR = 0.209, 95%CI 0.077-0.571. CONCLUSIONS: This study demonstrated that XPG protein expression was related to the development, progression and prognosis of GC, and might thus serve as a potential biomarker for its diagnosis and prognosis.

  3. Expression and Purification of Soluble STAT5b/STAT3 Proteins for SH2 Domain Binding Assay.

    Science.gov (United States)

    Asai, Akira; Takakuma, Kazuyuki

    2017-01-01

    When a large hydrophobic full-length protein is expressed in bacteria, it is often challenging to obtain recombinant proteins in the soluble fraction. One way to overcome this challenge is expression of deletion mutants that have improved solubility while maintaining biological activity. In this chapter, we describe a protocol for expression of truncated forms of STAT5b and STAT3 proteins that are soluble and retain SH2-mediated activity for phospho-Tyr peptide recognition.

  4. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration.

    Science.gov (United States)

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Athanasakis, Emmanouil; Aloisio, Michelangelo; Monasta, Lorenzo; Ricci, Giuseppe

    2016-05-01

    Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.

  5. Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris.

    Science.gov (United States)

    Vogl, Thomas; Gebbie, Leigh; Palfreyman, Robin W; Speight, Robert

    2018-03-15

    Pichia pastoris (syn. Komagataella phaffii ) is one of the most common eukaryotic expression systems for heterologous protein production. Expression cassettes are typically integrated in the genome to obtain stable expression strains. In contrast to Saccharomyces cerevisiae , where short overhangs are sufficient to target highly specific integration, long overhangs are more efficient in P. pastoris and ectopic integration of foreign DNA can occur. Here, we aimed to elucidate the influence of ectopic integration by high-throughput screening of >700 transformants and whole-genome sequencing of 27 transformants. Different vector designs and linearization approaches were used to mimic the most common integration events targeted in P. pastoris Fluorescence of an enhanced green fluorescent protein (eGFP) reporter protein was highly uniform among transformants when the expression cassettes were correctly integrated in the targeted locus. Surprisingly, most nonspecifically integrated transformants showed highly uniform expression that was comparable to specific integration, suggesting that nonspecific integration does not necessarily influence expression. However, a few clones (integrated cassettes showed a greater variation spanning a 25-fold range, surpassing specifically integrated reference strains up to 6-fold. High-expression strains showed a correlation between increased gene copy numbers and high reporter protein fluorescence levels. Our results suggest that for comparing expression levels between strains, the integration locus can be neglected as long as a sufficient numbers of transformed strains are compared. For expression optimization of highly expressible proteins, increasing copy number appears to be the dominant positive influence rather than the integration locus, genomic rearrangements, deletions, or single-nucleotide polymorphisms (SNPs). IMPORTANCE Yeasts are commonly used as biotechnological production hosts for proteins and metabolites. In the yeast

  6. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  7. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    Science.gov (United States)

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. Potential biological process of X-linked inhibitor of apoptosis protein in renal cell carcinoma based upon differential protein expression analysis.

    Science.gov (United States)

    Chen, Chao; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the IAP family and is a potent inhibitor of the caspase/apoptosis pathway. It has also been revealed that XIAP has additional biological functions that rely on its direct inhibition of apoptosis. In the present study, stably transfected Caki-1 cells with XIAP-knockdown were generated, and an isobaric tag for relative and absolute quantitation-based proteomics approach was employed to investigate the regulatory mechanism of XIAP in renal cell carcinoma (RCC). The results demonstrate that the sensitivity of the RCC cell line to apoptotic stimulation increased markedly with XIAP-knockdown. A number of differentially expressed proteins were detected between the original Caki-1 cell line and the XIAP-knockdown Caki-1 cell line; 87 at 0 h (prior to etoposide treatment), 178 at 0.5 h and 169 at 3 h, while no differentially expressed proteins were detected (ratio >1.5 or <0.5; P<0.05) at 12 h after etoposide treatment. Through analysis of the differentially expressed proteins, it was revealed that XIAP may participate in the tumor protein p53 pathway, the Wnt signaling pathway, glucose metabolism, endoplasmic reticulum stress, cytoskeletal regulation and DNA repair. These results indicate that XIAP may have a number of biological functions and may provide an insight into the biomedical significance of XIAP overexpression in RCC.

  9. Functional modules by relating protein interaction networks and gene expression.

    Science.gov (United States)

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  10. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma

    Directory of Open Access Journals (Sweden)

    Yoon Jin Cha

    2017-01-01

    Full Text Available We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC and invasive ductal carcinoma (IDC of the breast. A total of 584 breast cancers (108 ILC and 476 IDC were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL, perilipin A, fatty acid binding protein (FABP4, carnitine palmitoyltransferase (CPT-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN. HSL, perilipin A, and FABP4 expression (all p < 0.001 differed significantly: HSL and FABP4 were more frequently present in ILC, whereas perilipin A was more frequently detected in IDC. Among all invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC (p < 0.001 and perilipin A in luminal A-type IDC (p = 0.007. Among luminal B-type cancers, HSL and FABP4 were more highly expressed in ILC (p < 0.001. Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity (p = 0.004 and acyl-CoA oxidase 1 positivity (p = 0.032 and of shorter overall survival with acyl-CoA oxidase 1 positivity (p = 0.027. In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  11. HEAT INDUCIBLE EXPRESSION OF ANTIFREEZE PROTEIN GENES FROM THE BEETLES Tenebrio molitor AND Microdera punctipennis.

    Science.gov (United States)

    Li, Jieqiong; Ma, Wenjing; Ma, Ji

    2016-01-01

    Antifreeze proteins (AFPs) play important roles in protecting poikilothermic organisms from cold damage. The expression of AFP genes (afps) is induced by low temperature. However, it is reported that heat can influence the expression of afps in the desert beetle Microdera punctipennis. To further detect whether heat also induce the expression of afps in other insects, and to determine the expression profiling of insect afps at different temperatures. The expression of antifreeze protein genes in the two beetles, Microdera punctipennis and Tenebrio molitor that have quite different living environment, under different temperatures were studied by using real-time quantitative PCR. Mild low temperatures (5~15 degree C), high temperature (38~47 degree C for M. punctipennis, or 37~42 degree C for T. molitor) and temperature difference (10~30 degree C) all stimulated strongly to the expression of AFP genes (Mpafps) in M. punctipennis which lives in the wild filed in desert. The mRNA level of Mpafps after M. punctipennis were exposed to these temperatures for 1h~5h was at least 30-fold of the control at 25 degree C. For T. molitor which is breeding in door with wheat bran all these temperatures stimulated significantly to the expression of Tmafps, while the extent and degree of the temperature stimulation on Tmafps expression were much lower than on Mpafps. After T. molitor were exposed to 5 degree C and 15 degree C for 1h~5h, the mRNA level of Tmafps was over 6-fold and 45-fold of the control at 25 degree C. High temperature (37~42 degree C) for 1h~3h treatments increased Tmafps mRNA level 4.8-fold of the control. Temperature difference of 10 degree C was effective in stimulating Tmafps expression. The expression of insect antifreeze protein genes both in M. punctipennis and T. molitor was induced by heat, suggesting that this phenomenon may be common in insects; the extent and degree of the influence differ in species that have different living conditions. The heat

  12. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  13. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, M; Angelo, K

    2002-01-01

    Both Xenopus laevis oocytes and mammalian cells are widely used for heterologous expression of several classes of proteins, and membrane proteins especially, such as ion channels or receptors, have been extensively investigated in both cell types. A full characterization of a specific protein wil...

  14. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus

    International Nuclear Information System (INIS)

    Iki, Shigeo; Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Nagata, Kyosuke; Fujii, Nobuhiro

    2005-01-01

    The rate of propagation of influenza virus in human adenocarcinoma Caco-2 cells was found to negatively correlate with the concentration of fetal bovine serum (FBS) in the culture medium. Virus replicated more rapidly at lower FBS concentrations (0 or 2%) than at higher concentrations (10 or 20%) during an early stage of infection. Basal and interferon (IFN)-induced levels of typical IFN-inducible anti-viral proteins, such as 2',5'-oligoadenylate synthetase, dsRNA-activated protein kinase and MxA, were unaffected by variation in FBS concentrations. But promyelocytic leukemia protein (PML) was expressed in a serum-dependent manner. In particular, the 65 to 70 kDa isoform of PML was markedly upregulated following the addition of serum. In contrast, other isoforms were induced by IFN treatment, and weakly induced by FBS concentrations. Immunofluorescence microscopy indicated that PML was mainly formed nuclear bodies in Caco-2 cells at various FBS concentrations, and the levels of the PML-nuclear bodies were upregulated by FBS. Overexpression of PML isoform consisting of 560 or 633 amino acid residues by transfection of expression plasmid results in significantly delayed viral replication rate in Caco-2 cells. On the other hand, downregulation of PML expression by RNAi enhanced viral replication. These results indicate that PML isoforms which are expressed in a serum-dependent manner suppress the propagation of influenza virus at an early stage of infection

  15. Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.

    Science.gov (United States)

    Su, S; Bird, R C

    1995-09-15

    A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed

  16. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression

    Directory of Open Access Journals (Sweden)

    Vandepoele Klaas

    2009-06-01

    Full Text Available Abstract Background Large-scale identification of the interrelationships between different components of the cell, such as the interactions between proteins, has recently gained great interest. However, unraveling large-scale protein-protein interaction maps is laborious and expensive. Moreover, assessing the reliability of the interactions can be cumbersome. Results In this study, we have developed a computational method that exploits the existing knowledge on protein-protein interactions in diverse species through orthologous relations on the one hand, and functional association data on the other hand to predict and filter protein-protein interactions in Arabidopsis thaliana. A highly reliable set of protein-protein interactions is predicted through this integrative approach making use of existing protein-protein interaction data from yeast, human, C. elegans and D. melanogaster. Localization, biological process, and co-expression data are used as powerful indicators for protein-protein interactions. The functional repertoire of the identified interactome reveals interactions between proteins functioning in well-conserved as well as plant-specific biological processes. We observe that although common mechanisms (e.g. actin polymerization and components (e.g. ARPs, actin-related proteins exist between different lineages, they are active in specific processes such as growth, cancer metastasis and trichome development in yeast, human and Arabidopsis, respectively. Conclusion We conclude that the integration of orthology with functional association data is adequate to predict protein-protein interactions. Through this approach, a high number of novel protein-protein interactions with diverse biological roles is discovered. Overall, we have predicted a reliable set of protein-protein interactions suitable for further computational as well as experimental analyses.

  17. Bcl-2 protein expression in mucoepidermoid carcinoma of salivary glands: a single institution experience.

    Science.gov (United States)

    Janjua, Omer Sefvan; Qureshi, Sana Mehmood; Khan, Tariq Sarfraz; Alamgir, Wajiha

    2012-01-01

    Mucoepidermoid carcinoma is the most common salivary gland tumor with varying behavior among different histopathological grades. The objective of this study was to determine the expression of Bcl-2 protein in mucoepidermoid carcinoma (MEC) and to correlate with histological grades. The records of 40 cases of MEC were collected from the histopathology department. Fresh slides were prepared and fresh diagnoses were made using the grading criteria for MEC. Immunohistochemical markers for Bcl-2 were applied and the results analyzed using the chi-square test. Of 40 cases, 20 were males and 20 were females. The range in age of the patients was 6 to 67 years mean (SD) was 42.6 (1.85) years. Twenty-two were low grade (55%), 11 high grade (27.5%) and 7 (17.5%) were intermediate grade MEC. Among these 40 cases, Bcl-2 expression was positive in 24 cases and negative in 16 cases. In 22 cases of low-grade MEC, 19 were positive while only 3 were negative. In high-grade tumors, all 11 cases were found to have a negative expression of Bcl-2 protein. In intermediate-grade MEC, 5 cases showed positive expression while only 2 cases showed negative expression. Bcl-2 protein expression showed positive expression in low-grade and negative expression in high-grade MEC. Intermediate grade showed more than 50% positive results for Bcl-2. Correlation between grades of MEC and expression of Bcl-2 is statistically significant and can be used for the depicting the prognosis of MEC along with other prognostic and clinico-pathological parameters.

  18. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    Science.gov (United States)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  19. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion...... exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells....

  20. Expression of a novel stress-inducible protein, sestrin 2, in rat glomerular parietal epithelial cells

    Science.gov (United States)

    Hamatani, Hiroko; Sakairi, Toru; Takahashi, Satoshi; Watanabe, Mitsuharu; Maeshima, Akito; Ohse, Takamoto; Pippin, Jeffery W.; Shankland, Stuart J.; Nojima, Yoshihisa

    2014-01-01

    Sestrin 2, initially identified as a p53 target protein, accumulates in cells exposed to stress and inhibits mammalian target of rapamycin (mTOR) signaling. In normal rat kidneys, sestrin 2 was selectively expressed in parietal epithelial cells (PECs), identified by the marker protein gene product 9.5. In adriamycin nephropathy, sestrin 2 expression decreased in PECs on day 14, together with increased expression of phosphorylated S6 ribosomal protein (P-S6RP), a downstream target of mTOR. Sestrin 2 expression was markedly decreased on day 42, coinciding with glomerulosclerosis and severe periglomerular fibrosis. In puromycin aminonucleoside nephropathy, decreased sestrin 2 expression, increased P-S6RP expression, and periglomerular fibrosis were observed on day 9, when massive proteinuria developed. These changes were transient and nearly normalized by day 28. In crescentic glomerulonephritis, sestrin 2 expression was not detected in cellular crescents, whereas P-S6RP increased. In conditionally immortalized cultured PECs, the forced downregulation of sestrin 2 by short hairpin RNA resulted in increased expression of P-S6RP and increased apoptosis. These data suggest that sestrin 2 is involved in PEC homeostasis by regulating the activity of mTOR. In addition, sestrin 2 could be a novel marker of PECs, and decreased expression of sestrin 2 might be a marker of PEC injury. PMID:25056347

  1. Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum.

    Science.gov (United States)

    Raynal, José Tadeu; Bastos, Bruno Lopes; Vilas-Boas, Priscilla Carolinne Bagano; Sousa, Thiago de Jesus; Costa-Silva, Marcos; de Sá, Maria da Conceição Aquino; Portela, Ricardo Wagner; Moura-Costa, Lília Ferreira; Azevedo, Vasco; Meyer, Roberto

    2018-01-25

    Previous works defining antigens that might be used as vaccine targets against Corynebacterium pseudotuberculosis, which is the causative agent of sheep and goat caseous lymphadenitis, have focused on secreted proteins produced in a chemically defined culture media. Considering that such antigens might not reflect the repertoire of proteins expressed during infection conditions, this experiment aimed to investigate the membrane-associated proteins with pathogenic potential expressed by C. pseudotuberculosis grown directly in animal serum. Its membrane-associated proteins have been extracted using an organic solvent enrichment methodology, followed by LC-MS/MS and bioinformatics analysis for protein identification and classification. The results revealed 22 membrane-associated proteins characterized as potentially pathogenic. An interaction network analysis indicated that the four potentially pathogenic proteins ciuA, fagA, OppA4 and OppCD were biologically connected within two distinct network pathways, which were both associated with the ABC Transporters KEGG pathway. These results suggest that C. pseudotuberculosis pathogenesis might be associated with the transport and uptake of nutrients; other seven identified potentially pathogenic membrane proteins also suggest that pathogenesis might involve events of bacterial resistance and adhesion. The proteins herein reported potentially reflect part of the protein repertoire expressed during real infection conditions and might be tested as vaccine antigens.

  2. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  3. Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) roots-bacteria interaction revealed using proteomics.

    Science.gov (United States)

    Ferrari, Cibele Santos; Amaral, Fernanda Plucani; Bueno, Jessica Cavalheiro Ferreira; Scariot, Mirella Christine; Valentim-Neto, Pedro Alexandre; Arisi, Ana Carolina Maisonnave

    2014-11-01

    Several molecular tools have been used to clarify the basis of plant-bacteria interaction; however, the mechanism behind the association is still unclear. In this study, we used a proteomic approach to investigate the root proteome of Zea mays (cv. DKB240) inoculated with Herbaspirillum seropedicae strain SmR1 grown in vitro and harvested 7 days after inoculation. Eighteen differentially accumulated proteins were observed in root samples, ten of which were identified by MALDI-TOF mass spectrometry peptide mass fingerprint. Among the identified proteins, we observed three proteins present exclusively in inoculated root samples and six upregulated proteins and one downregulated protein relative to control. Differentially expressed maize proteins were identified as hypothetical protein ZEAMMB73_483204, hypothetical protein ZEAMMB73_269466, and tubulin beta-7 chain. The following were identified as H. seropedicae proteins: peroxiredoxin protein, EF-Tu elongation factor protein, cation transport ATPase, NADPH:quinone oxidoreductase, dinitrogenase reductase, and type III secretion ATP synthase. Our results presented the first evidence of type III secretion ATP synthase expression during H. seropedicae-maize root interaction.

  4. G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions.

    Science.gov (United States)

    Bouchard, Caroline; Pagé, Julie; Bédard, Andréanne; Tremblay, Pierrot; Vallières, Luc

    2007-06-01

    G protein-coupled receptor 84 (GPR84) is a recently discovered member of the seven transmembrane receptor superfamily whose function and regulation are unknown. Here, we report that in mice suffering from endotoxemia, microglia express GPR84 in a strong and sustained manner. This property is shared by subpopulations of peripheral macrophages and, to a much lesser extent, monocytes. The induction of GPR84 expression by endotoxin is mediated, at least in part, by proinflammatory cytokines, notably tumor necrosis factor (TNF) and interleukin-1 (IL-1), because mice lacking either one or both of these molecules have fewer GPR84-expressing cells in their cerebral cortex than wild-type mice during the early phase of endotoxemia. Moreover, when injected intracerebrally or added to microglial cultures, recombinant TNF stimulates GPR84 expression through a dexamethasone-insensitive mechanism. Finally, we show that microglia produce GPR84 not only during endotoxemia, but also during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In conclusion, this study reports the identification of a new sensitive marker of microglial activation, which may play an important regulatory role in neuroimmunological processes, acting downstream to the effects of proinflammatory mediators.

  5. Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae.

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrahim

    Full Text Available Outer membrane (OM proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.

  6. Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae.

    Science.gov (United States)

    Ibrahim, Muhammad; Shi, Yu; Qiu, Hui; Li, Bin; Jabeen, Amara; Li, Liping; Liu, He; Kube, Michael; Xie, Guanlin; Wang, Yanli; Blondel, Carlos; Santiviago, Carlos A; Contreras, Ines; Sun, Guochang

    2012-01-01

    Outer membrane (OM) proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.

  7. Stromal Expression of Hypoxia Regulated Proteins Is an Adverse Prognostic Factor in Colorectal Carcinomas

    Directory of Open Access Journals (Sweden)

    Arjen H. G. Cleven

    2007-01-01

    Full Text Available Background: Hypoxia modifies the phenotype of tumors in a way that promotes tumor aggressiveness and resistance towards chemotherapy and radiotherapy. However, the expression and influence of hypoxia-regulated proteins on tumor biology are not well characterized in colorectal tumors. We studied the role of protein expression of hypoxia-inducible factor (HIF-1α, HIF-2α, carbonic anhydrase 9 (CA9 and glucose transporter 1 (GLUT1 in patients with colorectal adenocarcinomas. Methods: Expression of HIF-1α, HIF-2α, CA9 and GLUT1 was quantified by immunohistochemistry in 133 colorectal adenocarcinomas. The expression of hypoxia markers was correlated with clinicopathological variables and overall patient survival. Results: Expression of these hypoxia markers was detected in the epithelial compartment of the tumor cells as well as in tumor-associated stromal cells. Although tumor cells frequently showed expression of one or more of the investigated hypoxia markers, no correlation among these markers or with clinical response was found. However, within the tumor stroma, positive correlations between the hypoxia markers HIF-2α, CA9 and GLUT1 were observed. Furthermore expression of HIF-2α and CA9 in tumor-associated stroma were both associated with a significantly reduced overall survival. In the Cox proportional hazard model, stromal HIF-2α expression was an independent prognostic factor for survival. Conclusion: These observations show, that expression of hypoxia regulated proteins in tumor-associated stromal cells, as opposed to their expression in epithelial tumor cells, is associated with poor outcome in colorectal cancer. This study suggests that tumor hypoxia may influence tumor-associated stromal cells in a way that ultimately contributes to patient prognosis.

  8. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    Directory of Open Access Journals (Sweden)

    Dani M. Long

    2018-01-01

    Full Text Available Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain.

  9. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  10. Expression of Tight Junction Protein Claudin-1 in Human Crescentic Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Ryo Koda

    2014-01-01

    Full Text Available The origin of crescent forming cells in human glomerulonephritis (GN remains unknown. Some animal studies demonstrated that parietal epithelial cells of Bowman’s capsule (PECs were the main component of proliferating cells and PEC-specific tight junction protein claudin-1 was expressed in crescentic lesions. We investigated the expression of claudin-1 in human GN. Immunohistochemistry for claudin-1 was performed on 17 kidney biopsy samples with crescent formation. Colocalization of claudin-1 with intracellular tight junction protein ZO-1 was also evaluated by immunofluorescence double staining. Claudin-1 is expressed mainly at the cell to cell contact site of proliferating cells in cellular crescentic lesions in patients with these forms of human GN. Small numbers of crescent forming cells showed extrajunctional localization of claudin-1. Colocalization of claudin-1 with ZO-1 was found at cell to cell contact sites of adjacent proliferating cells. In control samples, staining of claudin-1 was positive in PECs, but not in podocytes. Our findings suggest that claudin-1 contributes to crescent formation as a component of the tight junction protein complex that includes ZO-1. Co-localization of claudin-1 with ZO-1 implies the formation of functional tight junction complexes in crescentic lesions to prevent the interstitial damage caused by penetration of filtered molecules from Bowman’s space.

  11. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach

    Directory of Open Access Journals (Sweden)

    De Marco Federico

    2010-03-01

    Full Text Available Abstract Background The UVB component of solar ultraviolet irradiation is one of the major risk factors for the development of skin cancer in humans. UVB exposure elicits an increased generation of reactive oxygen species (ROS, which are responsible for oxidative damage to proteins, DNA, RNA and lipids. In order to examine the biological impact of UVB irradiation on skin cells, we used a parallel proteomics approach to analyze the protein expression profile and to identify oxidatively modified proteins in normal human epithelial keratinocytes. Results The expression levels of fifteen proteins - involved in maintaining the cytoskeleton integrity, removal of damaged proteins and heat shock response - were differentially regulated in UVB-exposed cells, indicating that an appropriate response is developed in order to counteract/neutralize the toxic effects of UVB-raised ROS. On the other side, the redox proteomics approach revealed that seven proteins - involved in cellular adhesion, cell-cell interaction and protein folding - were selectively oxidized. Conclusions Despite a wide and well orchestrated cellular response, a relevant oxidation of specific proteins concomitantly occurs in UVB-irradiated human epithelial Keratinocytes. These modified (i.e. likely dysfunctional proteins might result in cell homeostasis impairment and therefore eventually promote cellular degeneration, senescence or carcinogenesis.

  12. Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System.

    Science.gov (United States)

    Shi, Changhua; Han, Tzu-Chiang; Wood, David W

    2017-01-01

    Fusions of elastin-like peptide (ELP) purification tags and self-cleaving inteins provide a powerful platform for purifying tagless recombinant proteins without the need for conventional packed-bed columns. A drawback to this method has been premature cleaving of the ELP tag during expression, before the purification procedure can take place. Here we demonstrate a split-intein method, where the self-cleaving intein is divided into two inactive segments during expression and purification. Spontaneous assembly of the purified intein segments then restores self-cleaving activity to deliver the tagless target protein.

  13. Altered expressions of endothelial junction protein of placental capillaries in premature infants with intraventricular hemorrhage

    Directory of Open Access Journals (Sweden)

    Maria Ekawati

    2016-10-01

    Full Text Available Background: Placental hypoxia may lead to oxidative stress, which inflicts damage to capillary protein junction. The aim of this study was to evaluate altered expression of endothelial junction protein of capillaries in hypoxia condition and to observe its correlation with the incidence of  intraventricular hemorrhage in premature infants.Methods: A cross-sectional study was conducted by using placental tissues of premature infants as amodel of capillary integrity (29 hypoxic and 29 non-hypoxic. Hypoxia inducible factor (HIF-1α was measured to define placental tissue response to hypoxia; malondialdehyde (MDA and glutathione (GSH served as markers of oxidative stress. The expressions of junctional proteins, N-cadherin and occludin were analyzed by immunohistochemistry. Intraventricular hemorrhage (IVH was detected by cranial ultrasound at the third day. Unpaired t test, Mann-Whitney, and Chi-square tests were used to analyze the data.Results: The HIF-1α and MDA levels were slightly, but not significantly, higher in hypoxia group {13.64±8.70 pg/mg protein and 10.31 pmol/mg tissue (ranged 1.92–93.61, respectively}  compared to non- hypoxia group {10.65±5.35 pg/mg protein and 9.77 pmol/mg tissue (ranged 2.42–93.31}. GSH levels were not different in both groups (38.14 (ranged 9.44–118.91 and  38.47(ranged 16.49–126.76 ng/mg protein, respectively. mRNA expression of N-cadherin (0.13 and occludin (0.096 were significantly lower in hypoxia comparedto non-hypoxia group (p=0,001, while protein expression of  N-cadherin (3.4; 75.9; 6.9; 13.8% and occludin  (20.7; 3.4; 69.0; 3.4; 6.9%  in hypoxia group was not associated with IVH (p=0.783 and p=0.743.Conclusion: Hypoxia altered expression of endothelial junction protein in placental capillaries, but no association with intraventricular hemorrhage was observed.

  14. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    Directory of Open Access Journals (Sweden)

    Brian A Chow

    Full Text Available Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.

  15. Characterization and chondrocyte differentiation stage-specific expression of KRAB zinc-finger protein gene ZNF470

    International Nuclear Information System (INIS)

    Hering, Thomas M.; Kazmi, Najam H.; Huynh, Tru D.; Kollar, John; Xu, Laura; Hunyady, Aaron B.; Johnstone, Brian

    2004-01-01

    As part of a study to identify novel transcriptional regulators of chondrogenesis-related gene expression, we have cloned and characterized cDNA for zinc-finger protein 470 (ZNF470), the human ortholog of which encodes a 717 amino acid residue protein containing 17 Cys 2 His 2 zinc-finger domains, as well as KRAB-A and KRAB-B motifs. The cDNA library used to isolate the initial ZNF470 clone was prepared from human bone marrow-derived mesenchymal progenitor cells at an intermediate stage of chondrogenic differentiation. We have determined the intron-exon structure of the human ZNF470 gene, which has been mapped to a zinc-finger cluster in a known imprinted region of human chromosome 19q13.4. ZNF470 is expressed at high levels in human testis and is expressed at low or undetectible levels in other adult tissues. Human ZNF470 expressed in mammalian cells as an EGFP fusion protein localizes predominantly to the nucleus, consistent with a role in transcriptional regulation. ZNF470, analyzed by quantitative real time PCR, was transiently expressed before the maximal expression of COL2A1 during chondrogenic differentiation in vitro. We have also characterized the bovine ortholog of human ZNF470, which encodes a 508 amino acid residue protein having 10 zinc-finger domains. A bovine ZNF470 cDNA clone was used to examine expression of ZNF470 in bovine articular chondrocytes treated with retinoic acid to stimulate dedifferentiation. Bovine ZNF470 expression was undetectable in freshly isolated bovine articular chondrocytes, but was dramatically upregulated in dedifferentiated retinoic acid-treated chondrocytes. These results, in two model systems, suggest a possible role for ZNF470 in the regulation of chondrogenesis-specific gene expression

  16. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana; Rozieres, Sohela de; Elder, John H.

    2008-01-01

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  17. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    Science.gov (United States)

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers

    International Nuclear Information System (INIS)

    Miyake, Makito; Lawton, Adrienne; Goodison, Steve; Urquidi, Virginia; Gomes-Giacoia, Evan; Zhang, Ge; Ross, Shanti; Kim, Jeongsoon; Rosser, Charles J

    2013-01-01

    Chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), may regulate tumor epithelial-stromal interactions that facilitate tumor growth and invasion. Studies have linked CXCL1 expression to gastric, colon and skin cancers, but limited studies to date have described CXCL1 protein expression in human bladder cancer (BCa). CXCL1 protein expression was examined in 152 bladder tissue specimens (142 BCa) by immunohistochemical staining. The expression of CXCL1 was scored by assigning a combined score based on the proportion of cells staining and intensity of staining. CXCL1 expression patterns were correlated with clinicopathological features and follow-up data. CXCL1 protein expression was present in cancerous tissues, but was entirely absent in benign tissue. CXCL1 combined immunostaining score was significantly higher in high-grade tumors relative to low-grade tumors (p = 0.012). Similarly, CXCL1 combined immunostaining score was higher in high stage tumors (T2-T4) than in low stage tumors (Ta-T1) (p < 0.0001). An increase in the combined immunostaining score of CXCL1 was also associated with reduced disease-specific survival. To date, this is the largest study describing increased CXCL1 protein expression in more aggressive phenotypes in human BCa. Further studies are warranted to define the role CXCL1 plays in bladder carcinogenesis and progression

  19. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    Science.gov (United States)

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries.

  20. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    Science.gov (United States)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  1. From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data.

    Science.gov (United States)

    Vella, Danila; Zoppis, Italo; Mauri, Giancarlo; Mauri, Pierluigi; Di Silvestre, Dario

    2017-12-01

    The reductionist approach of dissecting biological systems into their constituents has been successful in the first stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped biologists to understand the complexity of the biological systems evidencing that most biological functions do not arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be explained or be predicted by investigating individual molecules without taking into consideration their relations. Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular relationships, even more studies are evaluating the biological systems through approaches based on graph theory. Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease modules. On the other hand, co-expression networks represent a complementary procedure that give the opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises, we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a special attention will be devoted to the topological and module analysis.

  2. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2011-09-01

    Full Text Available Abstract Background Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function. However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns. Results In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein. Conclusions The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their function.

  3. Aspirin augments the expression of Adenomatous Polyposis Coli protein by suppression of IKKβ

    International Nuclear Information System (INIS)

    Ashida, Noboru; Kishihata, Masako; Tien, Dat Nguyen; Kamei, Kaeko; Kimura, Takeshi; Yokode, Masayuki

    2014-01-01

    Highlights: • Clinical studies revealed aspirin inhibits cancer, but the mechanism is not known. • Adenomatous Polyposis Coli (APC) is a well-known tumor-suppressing gene. • We found aspirin up-regulates the protein of APC. • Aspirin suppressed the expression of IKKβ, an essential kinase in NFκB activation. • The deletion of IKKβ significantly increases the expression of APC protein. - Abstract: Aspirin has been widely used as analgesic, antipyretic and anti-inflammatory medicine for long. In addition to these traditional effects, clinical studies suggest that aspirin can protect against cancer, but its mechanism has not been explored. To unveil it, we identified the proteins up- or down-regulated after incubation with aspirin by using proteomics analysis with Nano-flow LC/MALDI-TOF system. Interestingly, the analysis identified the protein of Adenomatous Polyposis Coli (APC) as one of the most up-regulated protein. APC regulates cell proliferation or angiogenesis, and is widely known as a tumor-suppressing gene which can cause colorectal cancer when it is mutated. Western blots confirmed this result, and real-time PCR indicated it is transcriptionally regulated. We further tried to elucidate the molecular mechanism with focusing on IKKβ. IKKβ is the essential kinase in activation of nuclear factor-kappa B (NF-κB), major transcriptional factors that regulate genes responsible for inflammation or immune response. Previous reports indicated that aspirin specifically inhibits IKKβ activity, and constitutively active form of IKKβ accelerates APC loss. We found that aspirin suppressed the expression of IKKβ, and the deletion of IKKβ by siRNA increases the expression of APC in HEK294 cells. Finally, we observed similar effects of aspirin in human umbilical vein endothelial cells. Taken together, these results reveal that aspirin up-regulates the expression of APC via the suppression of IKKβ. This can be a mechanism how aspirin prevents cancer at

  4. Aspirin augments the expression of Adenomatous Polyposis Coli protein by suppression of IKKβ

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Noboru, E-mail: nashida@kuhp.kyoto-u.ac.jp [Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Faculty of Medicine, Kyoto University, Kyoto (Japan); Kishihata, Masako [Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Faculty of Medicine, Kyoto University, Kyoto (Japan); Tien, Dat Nguyen [Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Faculty of Medicine, Kyoto University, Kyoto (Japan); Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto (Japan); Kamei, Kaeko [Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto (Japan); Kimura, Takeshi [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Yokode, Masayuki [Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Faculty of Medicine, Kyoto University, Kyoto (Japan)

    2014-04-04

    Highlights: • Clinical studies revealed aspirin inhibits cancer, but the mechanism is not known. • Adenomatous Polyposis Coli (APC) is a well-known tumor-suppressing gene. • We found aspirin up-regulates the protein of APC. • Aspirin suppressed the expression of IKKβ, an essential kinase in NFκB activation. • The deletion of IKKβ significantly increases the expression of APC protein. - Abstract: Aspirin has been widely used as analgesic, antipyretic and anti-inflammatory medicine for long. In addition to these traditional effects, clinical studies suggest that aspirin can protect against cancer, but its mechanism has not been explored. To unveil it, we identified the proteins up- or down-regulated after incubation with aspirin by using proteomics analysis with Nano-flow LC/MALDI-TOF system. Interestingly, the analysis identified the protein of Adenomatous Polyposis Coli (APC) as one of the most up-regulated protein. APC regulates cell proliferation or angiogenesis, and is widely known as a tumor-suppressing gene which can cause colorectal cancer when it is mutated. Western blots confirmed this result, and real-time PCR indicated it is transcriptionally regulated. We further tried to elucidate the molecular mechanism with focusing on IKKβ. IKKβ is the essential kinase in activation of nuclear factor-kappa B (NF-κB), major transcriptional factors that regulate genes responsible for inflammation or immune response. Previous reports indicated that aspirin specifically inhibits IKKβ activity, and constitutively active form of IKKβ accelerates APC loss. We found that aspirin suppressed the expression of IKKβ, and the deletion of IKKβ by siRNA increases the expression of APC in HEK294 cells. Finally, we observed similar effects of aspirin in human umbilical vein endothelial cells. Taken together, these results reveal that aspirin up-regulates the expression of APC via the suppression of IKKβ. This can be a mechanism how aspirin prevents cancer at

  5. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei

    Science.gov (United States)

    Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P

    2012-01-01

    Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051

  6. Glycoprofiling of N-linked glycans of erythropoietin therapeutic protein expressed in Yarrowia lipolytica

    CSIR Research Space (South Africa)

    Kahari, D

    2008-11-01

    Full Text Available profiling techniques. The gene encoding Lip2 was cloned as a C-terminally His-tagged protein, expressed in Yarrowia lipolytica (Madzak, C et al;2004) and the glycan composition of the purified protein was analysed by HPLC and MALDITOF. The HPLC techniques...

  7. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    Directory of Open Access Journals (Sweden)

    Haohan Wang

    2016-03-01

    Full Text Available Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

  8. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    Science.gov (United States)

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  9. Acute Heat Stress Changes Protein Expression in the Testes of a Broiler-Type Strain of Taiwan Country Chickens.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chan, Hong-Lin; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2018-03-19

    Heat stress leads to decreased fertility in roosters. This study investigated the global protein expression in response to acute heat stress in the testes of a broiler-type strain of Taiwan country chickens (TCCs). Twelve 45-week-old roosters were randomly allocated to the control group maintained at 25°C, and three groups subjected to acute heat stress at 38°C for 4 h, with 0, 2, and 6 h of recovery, respectively. Testis samples were collected for hematoxylin and eosin staining, apoptosis assay, and protein analysis. The results revealed 101 protein spots that differed significantly from the control following exposure to acute heat stress. The proteins that were differentially expressed participated mainly in protein metabolism and other metabolic processes, responses to stimuli, apoptosis, cellular organization, and spermatogenesis. Proteins that negatively regulate apoptosis were downregulated and proteins involved in autophagy and major heat shock proteins (HSP90α, HSPA5, and HSPA8) were upregulated in the testes of heat-stressed chickens. In conclusion, acute heat stress causes a change in protein expression in the testes of broiler-type B strain TCCs and may thus impair cell morphology, spermatogenesis, and apoptosis. The expression of heat shock proteins increased to attenuate the testicular injury induced by acute heat stress.

  10. Expression of tomato yellow leaf curl virus coat protein using baculovirus expression system and evaluation of its utility as a viral antigen.

    Science.gov (United States)

    Elgaied, Lamiaa; Salem, Reda; Elmenofy, Wael

    2017-08-01

    DNA encoding the coat protein (CP) of an Egyptian isolate of tomato yellow leaf curl virus (TYLCV) was inserted into the genome of Autographa californica nucleopolyhedrovirus (AcNPV) under the control of polyhedrin promoter. The generated recombinant baculovirus construct harboring the coat protein gene was characterized using PCR analysis. The recombinant coat protein expressed in infected insect cells was used as a coating antigen in an indirect Enzyme-linked immunosorbent assay (ELISA) and dot blot to test its utility for the detection of antibody generated against TYLCV virus particles. The results of ELISA and dot blot showed that the TYLCV-antibodies reacted positively with extracts of infected cells using the recombinant virus as a coating antigen with strong signals as well as the TYLCV infected tomato and beat plant extracts as positive samples. Scanning electron microscope examination showed that the expressed TYLCV coat protein was self-assembled into virus-like particles (VLPs) similar in size and morphology to TYLCV virus particles. These results concluded that, the expressed coat protein of TYLCV using baculovirus vector system is a reliable candidate for generation of anti-CP antibody for inexpensive detection of TYLCV-infected plants using indirect CP-ELISA or dot blot with high specificity.

  11. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers.

    Science.gov (United States)

    Linhoff, Michael W; Laurén, Juha; Cassidy, Robert M; Dobie, Frederick A; Takahashi, Hideto; Nygaard, Haakon B; Airaksinen, Matti S; Strittmatter, Stephen M; Craig, Ann Marie

    2009-03-12

    Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.

  12. Correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer

    International Nuclear Information System (INIS)

    Zhang Yili; Du Hongwen; Zhang Yun; Zhang Yuelang; Kuang Fangjun; Guo Zuomin

    2004-01-01

    Objective: To discuss the correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer for early diagnosis and forecast of its prognoses. Methods: Fifty-four breast cancers and 26 benign diseases were proved by pathologic methods and all cases underwent mammography. Immunohistochemical technique was used to measure the expression of bcl-2 and bax proteins in these tissues. The correlation of imaging signs with the expression of bcl-2 and bax proteins in breast cancer and benign lesion was analyzed. Results: The expression of bcl-2 or bax protein in the breast cancer was higher than that in breast benign diseases (χ 2 =15.116, 11.361, P 2 =10.358, 12.818, P 2 =10.996, 10.667, P 2 =10.405, P 2 =6.841, P<0.05). Conclusion: Some imaging signs of breast cancer were closely related to the expression of bcl-2 and bax proteins and these signs could reflect the biological behavior of tumor cells and prognoses. Therefore it could be helpful to the early diagnosis and treatment of breast cancer. (authors)

  13. Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats

    Science.gov (United States)

    Song, Shangxin; Hooiveld, Guido J.; Li, Mengjie; Zhao, Fan; Zhang, Wei; Xu, Xinglian; Muller, Michael; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets. PMID:26857845

  14. Analysis of the Sarcocystis neurona microneme protein SnMIC10: protein characteristics and expression during intracellular development.

    Science.gov (United States)

    Hoane, Jessica S; Carruthers, Vernon B; Striepen, Boris; Morrison, David P; Entzeroth, Rolf; Howe, Daniel K

    2003-07-01

    Sarcocystis neurona, an apicomplexan parasite, is the primary causative agent of equine protozoal myeloencephalitis. Like other members of the Apicomplexa, S. neurona zoites possess secretory organelles that contain proteins necessary for host cell invasion and intracellular survival. From a collection of S. neurona expressed sequence tags, we identified a sequence encoding a putative microneme protein based on similarity to Toxoplasma gondii MIC10 (TgMIC10). Pairwise sequence alignments of SnMIC10 to TgMIC10 and NcMIC10 from Neospora caninum revealed approximately 33% identity to both orthologues. The open reading frame of the S. neurona gene encodes a 255 amino acid protein with a predicted 39-residue signal peptide. Like TgMIC10 and NcMIC10, SnMIC10 is predicted to be hydrophilic, highly alpha-helical in structure, and devoid of identifiable adhesive domains. Antibodies raised against recombinant SnMIC10 recognised a protein band with an apparent molecular weight of 24 kDa in Western blots of S. neurona merozoites, consistent with the size predicted for SnMIC10. In vitro secretion assays demonstrated that this protein is secreted by extracellular merozoites in a temperature-dependent manner. Indirect immunofluorescence analysis of SnMIC10 showed a polar labelling pattern, which is consistent with the apical position of the micronemes, and immunoelectron microscopy provided definitive localisation of the protein to these secretory organelles. Further analysis of SnMIC10 in intracellular parasites revealed that expression of this protein is temporally regulated during endopolygeny, supporting the view that micronemes are only needed during host cell invasion. Collectively, the data indicate that SnMIC10 is a microneme protein that is part of the excreted/secreted antigen fraction of S. neurona. Identification and characterisation of additional S. neurona microneme antigens and comparisons to orthologues in other Apicomplexa could provide further insight into the

  15. Expression analysis on 14-3-3 proteins in regenerative liver following partial hepatectomy

    Directory of Open Access Journals (Sweden)

    Deming Xue

    2017-11-01

    Full Text Available Abstract 14-3-3 proteins play a vital part in the regulation of cell cycle and apoptosis as signaling integration points. During liver regeneration, the quiescent hepatocytes go through hypertrophy and proliferation to restore liver weight. Therefore, we speculated that 14-3-3 proteins regulate the progression of liver regeneration. In this study, we analyzed the expression patterns of 14-3-3 proteins during liver regeneration of rat to provide an insight into the regenerative mechanism using western blotting. Only four isoforms (γ, ε, σ and τ/θ of the 14-3-3 proteins were expressed in regenerative liver after partial hepatectomy (PH. The dual effects, the significant down-regulation of 14-3-3ε and the significant up-regulation of 14-3-3τ/θ at 2 h after PH, might play particularly important roles in S-phase entry. The significant peaks of 14-3-3σ at 30 h and of ε and τ/θ at 24 h might be closely related not only to the G2/M transition but also to the size of hepatocytes. Possibly, the peak of 14-3-3ε expression seen at 168 h plays critical roles in the termination of liver regeneration by inhibiting cellular proliferation.

  16. Plant bioreactors for the antigenic hook-associated flgK protein expression

    Directory of Open Access Journals (Sweden)

    Luciana Rossi

    2014-01-01

    Full Text Available Plants engineered with genes encoding for the antigenic proteins of various microorganisms have shown to correctly express the proteins that elicit the production of antibodies in mammalian hosts. In livestock, plant-based vaccines could represent an innovative strategy for oral vaccination, especially to prevent infection by enteric pathogens. The aim of this study was to evaluate tobacco plants as a seedspecific expression system for the production of the flgK flagellar hook-associated protein from a wild type Salmonella typhimurium strain, as a model of an edible vaccine. The flgK gene is the principal component of bacterial flagella and is recognised as virulence factor by the innate immune system. It was isolated from the Salmonella typhimurium strain by PCR. The encoding sequence of flgK was transferred into a pBI binary vector, under control of soybean basic 7S globulin promoter for the seed-specific. Plant transformation was carried out using recombinant EHA 105 Agrobacterium tumefaciens. A transgenic population was obtained made up of independently kanamycin-resistant transgenic plants, which had a similar morphological appearance to the wild-type plants. Molecular analyses of seeds confirmed the integration of the gene and the average expression level of flgK was estimated to be about 0.6 mg per gram of seeds, corresponding to 0.33% of the total amount of soluble protein in tobacco seeds. This study showed that the foreign flgK gene could be stably incorporated into the tobacco plant genome by transcription through the nuclear apparatus of the plant, and that these genes are inherited by the next generation.

  17. Isolation, expression analysis and characterization of EgNDL, a NDR-like protein in oil palm (Elaeis guineensis Jacq.

    Directory of Open Access Journals (Sweden)

    Kedsirin Ruttajorn

    2016-06-01

    Full Text Available A novel cDNA of a SF21-like protein or NDR-like protein (EgNDL from Elaeis guineensis Jacq. is 1,044 bp in length and encodes a putative protein with a 347-amino-acid open reading frame. The EgNDL showed 93% identity to the pollenspecific SF21-like protein of Phoenix dactylifera and also showed 79% identity to the NDL protein of Theobroma cacao. Expression analysis of the EgNDL gene in various tissues showed that EgNDL was expressed in the anthers, pistils, mesocarp and leaves. The high expression of EgNDL among three oil palm varieties was significantly expressed in Pisifera (P<0.05, which is commonly used as a male parent in crosses. Computational tools were used to predict the protein and concluded that EgNDL is a putative membrane protein that may function in a signal transduction pathway during pollen development. In this context, knowledge regarding EgNDL and its potential role in plant developmental processes will benefit oil palm breeding programs.

  18. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    Science.gov (United States)

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  19. Low expression of c-Myc protein predicts poor outcomes in patients with hepatocellular carcinoma after resection.

    Science.gov (United States)

    Ji, Fei; Zhang, Zhi-Heng; Zhang, Yi; Shen, Shun-Li; Cao, Qing-Hua; Zhang, Long-Juan; Li, Shao-Qiang; Peng, Bao-Gang; Liang, Li-Jian; Hua, Yun-Peng

    2018-04-24

    Embryonic Liver Fodrin (ELF) is an adaptor protein of transforming growth factor (TGF-β) signaling cascade. Disruption of ELF results in mislocalization of Smad3 and Smad4, leading to compromised TGF-β signaling. c-Myc is an important oncogenic transcription factor, and the disruption of TGF-β signaling promotes c-Myc-induced hepatocellular carcinoma (HCC) carcinogenesis. However, the prognostic significance of c-Myc in HCC is less understood METHODS: The expression of c-Myc protein and mRNA were measured by immunohistochemistry (IHC) and qRT- PCR, respectively. IHC was performed to detect TGF-β1 and ELF expression in HCC tissues. Their relationship with clinicopathological factors and overall survival (OS) and disease free survival (DFS) were examined. The expression of c-Myc protein and mRNA in HCC tissues were significantly higher in HCC area than those in normal liver tissues. However, the expression were low compared with those adjacent to HCC area. c-Myc protein was independently predictive of DFS and OS, and it was negatively correlated with tumor size (P = 0.031), tumor number (P = 0.038), and recurrence (P = 0.001). Low c-Myc expression was associated with short-term recurrence and poor prognosis. The predictive value of c-Myc combined with TGF-β1 or/and ELF was higher than that of any other single marker. Low c-Myc, high TGF-β1 or/and low ELF expression was associated with the worst DFS and OS. Low expression of c-Myc protein predicts poor outcomes in patients with HCC with hepatectomy. The combination of the expression of c-Myc, TGF-β1, and ELF can be used to accurately predict outcomes of patients with HCC.

  20. Effects of low dose radiation on differential expression of serum protein in mice

    International Nuclear Information System (INIS)

    Chen Wei; He Ying; Shen Xianrong

    2014-01-01

    The aim is to find out the key proteins related with low dose radiation (Ld) by parametric technology, which provided the theory foundation for LDR protection Two-dimensional electrophoresis (2-DE) was performed on serum protein Differential expression proteins were identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and database analysis Compared with the control group, 7 altered proteins was definite in terms of apolipoprotein C-Ⅲ, beta-globin parotid secretory protein alpha-2-macroglobulin precursor, mouse transthyretin, C1qc protein and clusterin. Some proteins related with LDR are found. It may provide some new explanations for the mechanism of LDR. (authors)

  1. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  2. Quantification of endogenous and exogenous protein expressions of Na,K-ATPase with super-resolution PALM/STORM imaging.

    Science.gov (United States)

    Bernhem, Kristoffer; Blom, Hans; Brismar, Hjalmar

    2018-01-01

    Transient transfection of fluorescent fusion proteins is a key enabling technology in fluorescent microscopy to spatio-temporally map cellular protein distributions. Transient transfection of proteins may however bypass normal regulation of expression, leading to overexpression artefacts like misallocations and excess amounts. In this study we investigate the use of STORM and PALM microscopy to quantitatively monitor endogenous and exogenous protein expression. Through incorporation of an N-terminal hemagglutinin epitope to a mMaple3 fused Na,K-ATPase (α1 isoform), we analyze the spatial and quantitative changes of plasma membrane Na,K-ATPase localization during competitive transient expression. Quantification of plasma membrane protein density revealed a time dependent increase of Na,K-ATPase, but no increase in size of protein clusters. Results show that after 41h transfection, the total plasma membrane density of Na,K-ATPase increased by 63% while the endogenous contribution was reduced by 16%.

  3. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C.; Guzman E, L.J.; Garcia T, M.

    2004-01-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a 137 Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  4. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: emanz@cantera.reduaz.mx; Guzman E, L.J. [Unidad Academica de Biologia Experimental, Guadalupe, Zacatecas (Mexico); Garcia T, M. [LIBRA, Centro I and D, Campus Miguel Delibes, Valladolid 47011 (Spain)

    2004-07-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a {sup 137} Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  5. Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels.

    Science.gov (United States)

    Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David

    2006-02-01

    The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.

  6. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    International Nuclear Information System (INIS)

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-01-01

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E 2 ), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression

  7. Expression and divalent cation binding properties of the novel chemotactic inflammatory protein psoriasin

    DEFF Research Database (Denmark)

    Vorum, H; Madsen, Peder; Rasmussen, H H

    1996-01-01

    Psoriasin is a novel chemotactic inflammatory protein that possesses weak similarity to the S100 family members of Ca(2+)-binding proteins, and that is highly up-regulated in hyperproliferative psoriatic keratinocytes. Here we have used the psoriasin cDNA to express recombinant human (rh) psorias...

  8. Expression of Colocasia esculenta tuber agglutinin in Indian mustard provides resistance against Lipaphis erysimi and the expressed protein is non-allergenic.

    Science.gov (United States)

    Das, Ayan; Ghosh, Prithwi; Das, Sampa

    2018-06-01

    Transgenic Brassica juncea plants expressing Colocasia esculenta tuber agglutinin (CEA) shows the non-allergenic nature of the expressed protein leading to enhanced mortality and reduced fecundity of mustard aphid-Lipaphis erysimi. Lipaphis erysimi (common name: mustard aphid) is the most devastating sucking insect pest of Indian mustard (Brassica juncea L.). Colocasia esculenta tuber agglutinin (CEA), a GNA (Galanthus nivalis agglutinin)-related lectin has previously been reported by the present group to be effective against a wide array of hemipteran insects in artificial diet-based bioassays. In the present study, efficacy of CEA in controlling L. erysimi has been established through the development of transgenic B. juncea expressing this novel lectin. Southern hybridization of the transgenic plants confirmed stable integration of cea gene. Expression of CEA in T 0 , T 1 and T 2 transgenic plants was confirmed through western blot analysis. Level of expression of CEA in the T 2 transgenic B. juncea ranged from 0.2 to 0.47% of the total soluble protein. In the in planta insect bioassays, the CEA expressing B. juncea lines exhibited enhanced insect mortality of 70-81.67%, whereas fecundity of L. erysimi was reduced by 49.35-62.11% compared to the control plants. Biosafety assessment of the transgenic B. juncea protein containing CEA was carried out by weight of evidence approach following the recommendations by FAO/WHO (Evaluation of the allergenicity of genetically modified foods: report of a joint FAO/WHO expert consultation, 22-25 Jan, Rome, http://www.fao.org/docrep/007/y0820e/y0820e00.HTM , 2001), Codex (Codex principles and guidelines on foods derived from biotechnology, Food and Agriculture Organization of the United Nations, Rome; Codex, Codex principles and guidelines on foods derived from biotechnology, Food and Agriculture Organization of the United Nations, Rome, 2003) and ICMR (Indian Council of Medical Research, guidelines for safety assessment of

  9. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    Science.gov (United States)

    2012-01-01

    Background Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min. Results Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the “LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter. Conclusions The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available

  10. [Screening differentially expressed plasma proteins in cold stress rats based on iTRAQ combined with mass spectrometry technology].

    Science.gov (United States)

    Liu, Yan-zhi; Guo, Jing-ru; Peng, Meng-ling; Ma, Li; Zhen, Li; Ji, Hong; Yang, Huan-min

    2015-09-01

    Isobaric tags for relative and absolute quantitation (iTRAQ) combined with mass spectrometry were used to screen differentially expressed plasma proteins in cold stress rats. Thirty health SPF Wistar rats were randomly divided into cold stress group A and control group B, then A and B were randomly divided into 3 groups (n = 5): A1, A2, A3 and B1, B2, B3. The temperature of room raising was (24.0 +/- 0.1) degrees C, and the cold stress temperature was (4.0 +/- 0.1) degrees C. The rats were treated with different temperatures until 12 h. The abdominal aortic blood was collected with heparin anticoagulation suction tube. Then, the plasma was separated for protein extraction, quantitative, enzymolysis, iTHAQ labeling, scx fractionation and mass spectrometry analysis. Totally, 1085 proteins were identified in the test, 39 differentially expressed proteins were screened, including 29 up-regulated proteins and 10 down-regulated proteins. Three important differentially expressed proteins related to cold stress were screened by bioinfonnatics analysis (Minor histocompatihility protein HA-1, Has-related protein Rap-1b, Integrin beta-1). In the experiment, the differentially expressed plasma proteins were successfully screened in cold stress rats. iTRAQ technology provided a good platform to screen protein diaguostic markers on cold stress rats, and laid a good foundation for further. study on animal cold stress mechanism.

  11. Differential expression of pancreatitis-associated protein and thrombospondins in arterial versus venous tissues.

    Science.gov (United States)

    Szasz, Theodora; Eddy, Susan; Paulauskis, Joseph; Burnett, Robert; Ellekilde, Merete; Iovanna, Juan L; Watts, Stephanie W

    2009-01-01

    Arteries and veins modulate cardiovascular homeostasis and contribute to hypertension pathogenesis. Functional differences between arteries and veins are based upon differences in gene expression. To better characterize these expression patterns, and to identify candidate genes that could be manipulated selectively in the venous system, we performed whole genome expression profiling of arteries and veins. We used the CodeLink platform and the major artery (thoracic aorta) and vein (caudal vena cava) of the rat. The most prominent difference was pancreatitis-associated protein (PAP1), expressed 64-fold higher in vena cava versus aorta. Expression of mRNA for thrombospondins (TSP-1, TSP-4) was greater than 5-fold higher in veins versus arteries. Higher mRNA expression of TSP-1, TSP-2, TSP-4 and PAP1 in vena cava versus aorta was confirmed by PCR. Immunohistochemical analysis of tissue sections qualitatively confirmed a higher expression of these proteins in vena cava versus aorta. This is the first gene array study of adult rat arterial and venous tissues, and also the first study to report differences in inflammatory genes between arteries and veins. Data from these studies may provide novel insights into the genetic basis for functional differences between arteries and veins in health and disease. Copyright 2009 S. Karger AG, Basel.

  12. Differential expression of pancreatitis associated protein and thrombospondins in arterial vs venous tissues

    Science.gov (United States)

    Szasz, Theodora; Eddy, Susan; Paulauskis, Joseph; Burnett, Robert; Ellekilde, Merete; Iovanna, Juan L.; Watts, Stephanie W.

    2015-01-01

    BACKGROUND/AIMS Arteries and veins modulate cardiovascular homeostasis and contribute to hypertension pathogenesis. Functional differences between arteries and veins are based upon differences in gene expression. To better characterize these expression patterns, and to identify candidate genes that could be manipulated selectively in the venous system, we performed whole genome expression profiling of arteries and veins. METHODS We used the CodeLink platform and the major artery (thoracic aorta) and vein (caudal vena cava) of the rat. RESULTS The most prominent difference was pancreatitis associated protein (PAP1), expressed 64-fold higher in vena cava vs aorta. Expression of mRNA for thrombospondins (TSP-1, TSP-4) was greater than 5-fold higher in veins vs arteries. Higher mRNA expression of thrombospondins (TSP-1, 2, 4) and PAP1 in vena cava vs aorta was confirmed by PCR. Immunohistochemical analysis of tissue sections qualitatively confirmed a higher expression of these proteins in vena cava vs aorta. CONCLUSION This is the first gene array study of adult rat arterial and venous tissues, and also the first study to report differences in inflammatory genes between arteries and veins. Data from these studies may provide novel insights into the genetic basis for functional differences between arteries and veins in health and disease. PMID:19571575

  13. Constructs for the expression of repeating triple-helical protein domains

    International Nuclear Information System (INIS)

    Peng, Yong Y; Werkmeister, Jerome A; Vaughan, Paul R; Ramshaw, John A M

    2009-01-01

    The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.

  14. Constructs for the expression of repeating triple-helical protein domains

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yong Y; Werkmeister, Jerome A; Vaughan, Paul R; Ramshaw, John A M, E-mail: jerome.werkmeister@csiro.a [CSIRO Molecular and Health Technologies, Bag 10, Clayton South, VIC 3169 (Australia)

    2009-02-15

    The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.

  15. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    Science.gov (United States)

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  16. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    Science.gov (United States)

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  17. Fiscal 1999 achievement report on research and development project on intellectual infrastructure creation and utilization technologies. Development of efficient protein expression system (Development of efficient protein expression system utilizing protein folding mechanism of hyperthermophilic bacteria); 1999 nendo kokoritsu tanpakushitsu hatsugen system no kaihatsu seika hokokusho. Chokonetsukin no tanpakushitsu oritatami kiko wo riyoshita kokoritsu tanpakushitsu hatsugen system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Efforts were exerted to achieve efficient expression of proteins of hyperthermophilic bacteria, hyperthermophilic archaeabacteria in particular, using a heterogene expression system in which Escherichia coli was the host. In an effort to search for genes related to protein folding and to elucidate the mechanism of folding, chaperonin and prefoldin subunit genes, out of various factors participating in protein folding in hyperthermophilic archaeabacteria, were cloned, and expressed in Escherichia coli. As a system for analyzing protein folding reaction, an experimental system was established on a substrate comprising isopropyl malate dehydrogenase, citrate synthase, glucose dehydrogenase, and a green fluorescent protein. Studies were further conducted to elucidate the mechanism of expression of enzyme genes in Escherichia coli for the establishment of a mass production method for useful enzymes. Also carried out was the research and development of an element technology evaluation system involving protein expression. (NEDO)

  18. A Breast Tissue Protein Expression Profile Contributing to Early Parity-Induced Protection Against Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christina Marie Gutierrez

    2015-11-01

    Full Text Available Background/Aims: Early parity reduces breast cancer risk, whereas, late parity and nulliparity increase breast cancer risk. Despite substantial efforts to understand the protective effects of early parity, the precise molecular circuitry responsible for these changes is not yet fully defined. Methods: Here, we have conducted the first study assessing protein expression profiles in normal breast tissue of healthy early parous, late parous, and nulliparous women. Breast tissue biopsies were obtained from 132 healthy parous and nulliparous volunteers. These samples were subjected to global protein expression profiling and immunohistochemistry. GeneSpring and MetaCore bioinformatics analysis software were used to identify protein expression profiles associated with early parity (low risk versus late/nulliparity (high risk. Results: Early parity reduces expression of key proteins involved in mitogenic signaling pathways in breast tissue through down regulation of EGFR1/3, ESR1, AKT1, ATF, Fos, and SRC. Early parity is also characterized by greater genomic stability and reduced tissue inflammation based on differential expression of aurora kinases, p53, RAD52, BRCA1, MAPKAPK-2, ATF-1, ICAM1, and NF-kappaB compared to late and nulli parity. Conclusions: Early parity reduces basal cell proliferation in breast tissue, which translates to enhanced genomic stability, reduced cellular stress/inflammation, and thus reduced breast cancer risk.

  19. Distinct patterns of gene and protein expression elicited by organophosphorus pesticides in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Dennis William E

    2009-04-01

    Full Text Available Abstract Background The wide use of organophosphorus (OP pesticides makes them an important public health concern. Persistent effects of exposure and the mechanism of neuronal degeneration are continuing issues in OP toxicology. To elucidate early steps in the mechanisms of OP toxicity, we studied alterations in global gene and protein expression in Caenorhabditis elegans exposed to OPs using microarrays and mass spectrometry. We tested two structurally distinct OPs (dichlorvos and fenamiphos and employed a mechanistically different third neurotoxicant, mefloquine, as an out-group for analysis. Treatment levels used concentrations of chemical sufficient to prevent the development of 10%, 50% or 90% of mid-vulval L4 larvae into early gravid adults (EGA at 24 h after exposure in a defined, bacteria-free medium. Results After 8 h of exposure, the expression of 87 genes responded specifically to OP treatment. The abundance of 34 proteins also changed in OP-exposed worms. Many of the genes and proteins affected by the OPs are expressed in neuronal and muscle tissues and are involved in lipid metabolism, cell adhesion, apoptosis/cell death, and detoxification. Twenty-two genes were differentially affected by the two OPs; a large proportion of these genes encode cytochrome P450s, UDP-glucuronosyl/UDP-glucosyltransferases, or P-glycoproteins. The abundance of transcripts and the proteins they encode were well correlated. Conclusion Exposure to OPs elicits a pattern of changes in gene expression in exposed worms distinct from that of the unrelated neurotoxicant, mefloquine. The functional roles and the tissue location of the genes and proteins whose expression is modulated in response to exposure is consistent with the known effects of OPs, including damage to muscle due to persistent hypercontraction, neuronal cell death, and phase I and phase II detoxification. Further, the two different OPs evoked distinguishable changes in gene expression; about half

  20. Developmental expression of a cell surface protein involved in sea urchin skeleton formation

    International Nuclear Information System (INIS)

    Farach, M.C.; Valdizan, M.; Park, H.R.; Decker, G.L.; Lennarz, W.J.

    1986-01-01

    The authors have previously used a monoclonal antibody (1223) to identify a 130 Kd cell surface protein involved in skeleton formation is sea urchin embryos. In the current study the authors have examined the expression of the 1223 antigen over the course of development of embryos of two species, Strongylocentrotus purpuratus and Lytechinus pictus. The 130 Kd protein is detected in S. purp eggs on immunoblots. Labeling with [ 3 H] leucine and immunoaffinity chromatography show that it also is synthesized shortly after fertilization. Immunofluroescence reveals that at this early stage the 1223 antigen is uniformly distributed on all of the cells. Synthesis decreases to a minimum by the time of hatching (18 h), as does the total amount of antigen present in the embryo. A second period of synthesis commences at the mesenchyme blastula stage, when the spicule-forming primary mesenchyme cells (PMCs) have appeared. During this later stage, synthesis and cell surface expression are restricted to the PMCs. In contrast to S. purp., in L. pictus the 130 Kd protein does not appear until the PMCs are formed. Hybrid embryos demonstrate a pattern of expression of the maternal species. These results suggest that early expression of 1223 antigen in S. purp. is due to utilization of maternal transcripts present in the egg. In both species later expression in PMCs appears to be the result of cell-type specific synthesis, perhaps encoded by embryonic transcripts

  1. Intrathecal injection of naked plasmid DNA provides long-term expression of secreted proteins.

    Science.gov (United States)

    Hughes, Travis S; Langer, Stephen J; Johnson, Kirk W; Chavez, Raymond A; Watkins, Linda R; Milligan, Erin D; Leinwand, Leslie A

    2009-01-01

    Therapeutic benefit has been reported to result from intrathecal (i.t.) injection of transgene vectors, including naked DNA. However, most studies using naked DNA have measured only the transgene expression of intracellular proteins. Here we demonstrate that i.t. injection of naked DNA can result in long-term expression of secreted proteins. Plasmids expressing either secreted alkaline phosphatase (SEAP) or human interleukin-10 (hIL-10) were injected into the i.t. space in rats, and transgene products were repeatedly measured in the cerebrospinal fluid (CSF). Both SEAP and hIL-10 were maximal at 1 and 2 days after the injection and still detectable at 4 months. The utilization of a plasmid having two features that are hypothesized to increase gene expression (matrix attachment regions (MARs) and lack of CpG dinucleotides) resulted in a significant increase in gene expression. Reinjection of SEAP or hIL-10 plasmids after 4 months significantly increased protein levels at 1 and 14 days after the reinjection. SEAP was uniformly distributed between the DNA delivery site (approximately vertebral level T13) and the lumbar puncture site (L5/L6 inter-vertebral space), was reduced at the cisterna magna, and was detectable, though at much lower levels, in serum. These data suggest that naked DNA has the potential to be used as a therapeutic tool for applications that require long-term release of transgenes into the CSF.

  2. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    Science.gov (United States)

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  3. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein.

    Science.gov (United States)

    Wu, Yun-Li; Peng, Xian-E; Zhu, Yi-Bing; Yan, Xiao-Li; Chen, Wan-Nan; Lin, Xu

    2016-02-15

    Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV

  4. ESPRIT: an automated, library-based method for mapping and soluble expression of protein domains from challenging targets.

    Science.gov (United States)

    Yumerefendi, Hayretin; Tarendeau, Franck; Mas, Philippe J; Hart, Darren J

    2010-10-01

    Expression of sufficient quantities of soluble protein for structural biology and other applications is often a very difficult task, especially when multimilligram quantities are required. In order to improve yield, solubility or crystallisability of a protein, it is common to subclone shorter genetic constructs corresponding to single- or multi-domain fragments. However, it is not always clear where domain boundaries are located, especially when working on novel targets with little or no sequence similarity to other proteins. Several methods have been described employing aspects of directed evolution to the recombinant expression of challenging proteins. These combine the construction of a random library of genetic constructs of a target with a screening or selection process to identify solubly expressing protein fragments. Here we review several datasets from the ESPRIT (Expression of Soluble Proteins by Random Incremental Truncation) technology to provide a view on its capabilities. Firstly, we demonstrate how it functions using the well-characterised NF-kappaB p50 transcription factor as a model system. Secondly, application of ESPRIT to the challenging PB2 subunit of influenza polymerase has led to several novel atomic resolution structures; here we present an overview of the screening phase of that project. Thirdly, analysis of the human kinase TBK1 is presented to show how the ESPRIT technology rapidly addresses the compatibility of challenging targets with the Escherichia coli expression system.

  5. RNA-binding protein VICKZ is expressed in a germinal center associated pattern among lymphoma subtypes

    DEFF Research Database (Denmark)

    Natkunam, Y.; Vainer, G.; Zhao, S.C.

    2005-01-01

    and tumorigenesis/metastasis. We generated an antibody that recognizes all three isoforms of VICKZ protein and characterized its expression in normal lymphoid tissue and in lymphoma subtypes. In normal tonsils, VICKZ protein showed a germinal center-specific pattern of expression with staining localized...... to the cytoplasm. Among 868 non-Hodgkin and Hodgkin lymphomas tested by immunohistochemistry on tissue microarrays, staining for VICKZ protein was present in 76% (126/165) of follicular lymphoma, 78% (155/200) of DLBCL, 90% (9/10) of mediastinal large B-cell lymphoma, and 100% (2/2) of Burkitt lymphoma. A subset...... protein in lymphoma subtypes suggests a potential utility for VICKZ in the identification of subgroups of DLBCL associated with different prognoses....

  6. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Leffers, H

    1992-01-01

    termed PA-FABP (psoriasis-associated fatty acid-binding protein). The deduced sequence predicted a protein with molecular weight of 15,164 daltons and a calculated pI of 6.96, values that are close to those recorded in the keratinocyte 2D gel protein database. The protein comigrated with PA......-FABP as determined by 2D gel analysis of [35S]-methionine-labeled proteins expressed by transformed human amnion (AMA) cells transfected with clone 1592 using the vaccinia virus expression system and reacted with a rabbit polyclonal antibody raised against 2D gel purified PA-FABP. Structural analysis of the amino...... with epidermal growth factor (EGF), pituitary extract, and 10% fetal calf serum] revealed a strong up-regulation of PA-FABP, psoriasin, calgranulins A and B, and a few other proteins that are highly expressed in psoriatic skin. The levels of these proteins exceeded by far those observed in non-cultured normal...

  7. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1.

    Science.gov (United States)

    Bakari, Sana; Lembrouk, Mehdi; Sourd, Laura; Ousalem, Fares; André, François; Orlowski, Stéphane; Delaforge, Marcel; Frelet-Barrand, Annie

    2016-04-01

    Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.

  8. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  9. Expression, purification and activity determination of the beetle tenebrio molitor antifreeze protein afp84c in escherichia coli

    International Nuclear Information System (INIS)

    Yang, Q.; Feng, H.

    2013-01-01

    Summary: A cDNA encoding antifreeze protein (AFP84c) was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 252 bp encodes a protein of 84 amino acid residues and was fused to the expression vectors pMAL-c2X and pMAL-p2X. The expression plasmids pMAL-c2X-afp84c and pMAL-p2X-afp84c were constructed and transformed into Escherischia coli strains TBI, respectively. Strategy of optimization of induction conditions were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in pMALTM expression system. The target fusion protein was released from the cytoplasm and periplasm by sonication and cold osmotic shock procedure respectively. Recombinant AFP84c was purified by amylose affinity column. The purified target protein displayed a single band in SDS-PAGE. Expressed AFP84c exhibits to increase low temperature resistance of bacteria. (author)

  10. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    Science.gov (United States)

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  11. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    Science.gov (United States)

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  12. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    Directory of Open Access Journals (Sweden)

    Athanasios Niarchos

    Full Text Available During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  13. HER 2/neu protein expression in colorectal cancer

    International Nuclear Information System (INIS)

    Schuell, B; Gruenberger, T; Scheithauer, W; Zielinski, Ch; Wrba, F

    2006-01-01

    Conflicting data exist about the prevalence of HER-2/neu overexpression in colorectal cancer ranging from 0 to 83 %. In our study we tried to clarify the extent of expression and its relationship to clinicopathological parameters. This study involved 77 specimens of malignant colorectal cancer lesions of surgically resected patients. HER-2/neu immunohistochemistry was performed using the Hercep-Test Kit. Out of 77 specimens, 56 were Her-2/neu negative (70%), 20 (26%) showed a barely immunostaining (1+), only 1 (1%) was moderately (2+) and 2 (3%) were strongly positive (3+). Her-2/neu staining (moderately and strongly positive) was only detected in primary tumours of patients with confirmed metastases. No relationship was found between membranous HER-2 expression and patients' gender or differentiation. The median survival time of patients with positive HER-2/neu immunostaining was 21 versus 39 months in patients without HER-2/neu expression (p = 0.088). The c-erbB protein expression was observed in colorectal cancer but rarely in the therapeutic range (2+ and 3+). There was no significant association with tumour grade, gender, localization of the primary tumour or survival. These data indicate that c-erbB-2 is unlikely to play a major role in the therapeutic management of colorectal cancer

  14. Expression of the cytoskeleton regulatory protein Mena in human gastric carcinoma and its prognostic significance.

    Science.gov (United States)

    Xu, Lihua; Tan, Huo; Liu, Ruiming; Huang, Qungai; Zhang, Nana; Li, Xi; Wang, Jiani

    2017-11-01

    The cytoskeleton regulatory protein Mena is reportedly overexpressed in breast cancer; however, data regarding its expression level and clinical significance in gastric carcinoma (GC) is limited. The aim of the present study was to investigate Mena expression levels and prognostic significance in GC. Mena mRNA expression level was determined by reverse transcription-quantitative polymerase chain reaction in 10 paired GC and adjacent normal tissues. The Mena protein expression level was analyzed in paraffin-embedded GC samples and adjacent normal tissues by immunohistochemistry. Statistical analyses were also performed to evaluate the clinicopathological significance of Mena. The results revealed that the mRNA expression level of Mena was significantly higher in G Ct issues compared with in adjacent normal tissues from10 paired samples. In the paraffin-embedded tissue samples, the protein expression level of Mena was higher in G Ct issues compared with in adjacent normal tissues. Compared with adjacent normal tissues, Mena overexpression was observed in 52.83% (56/106) of patients. The overexpression of Mena was significantly associated with the T stage (P=0.033), tumor-node-metastasis (TNM) stage (PMena expression level was an independent prognostic factor for overall survival time. In conclusion, Mena wasoverexpressed in G C tissues and significantly associated with the T stage, TNM stage and overall survival time. Mena may therefore be suitable as a prognostic indicator for patients with GC.

  15. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    International Nuclear Information System (INIS)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-01-01

    Highlights: → Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. → Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. → Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  16. GRP78 Protein Expression as Prognostic Values in Neoadjuvant Chemoradiotherapy and Laparoscopic Surgery for Locally Advanced Rectal Cancer.

    Science.gov (United States)

    Lee, Hee Yeon; Jung, Ji-Han; Cho, Hyun-Min; Kim, Sung Hwan; Lee, Kang-Moon; Kim, Hyung-Jin; Lee, Jong Hoon; Shim, Byoung Yong

    2015-10-01

    We investigated the relationships between biomarkers related to endoplasmic reticulum stress proteins (glucose-regulated protein of molecular mass 78 [GRP78] and Cripto-1 [teratocarcinoma-derived growth factor 1 protein]), pathologic response, and prognosis in locally advanced rectal cancer. All clinical stage II and III rectal cancer patients received 50.4 Gy over 5.5 weeks, plus 5-fluorouracil (400 mg/m(2)/day) and leucovorin (20 mg/m(2)/day) bolus on days 1 to 5 and 29 to 33, and surgery was performed at 7 to 10 weeks after completion of all therapies. Expression of GRP78 and Cripto-1 proteins was determined by immunohistochemistry and was assessed in 101 patients with rectal cancer treated with neoadjuvant chemoradiotherapy (CRT). High expression of GRP78 and Cripto-1 proteins was observed in 86 patients (85.1%) and 49 patients (48.5%), respectively. Low expression of GRP78 protein was associated with a significantly high rate of down staging (80.0% vs. 52.3%, respectively; p=0.046) and a significantly low rate of recurrence (0% vs. 33.7%, respectively; p=0.008) compared with high expression of GRP78 protein. Mean recurrence-free survival according to GRP78 expression could not be estimated because the low expression group did not develop recurrence events but showed a significant correlation with time to recurrence, based on the log rank method (p=0.007). GRP78 also showed correlation with overall survival, based on the log rank method (p=0.045). GRP78 expression is a predictive and prognostic factor for down staging, recurrence, and survival in rectal cancer patients treated with 5-fluorouracil and leucovorin neoadjuvant CRT.

  17. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C

    1998-01-01

    to demonstrate the expression of ns4b in HCV-229E-infected cells using flow cytometry. Given a previously reported contiguous five amino acid shared region between ns4b and myelin basic protein, a purified recombinant histidine-tagged ns4b protein and (or) human myelin basic protein were injected into mice......Sequencing of complementary DNAs prepared from various coronaviruses has revealed open reading frames encoding putative proteins that are yet to be characterized and are so far only described as nonstructural (ns). As a first step in the elucidation of its function, we characterized the expression...... and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...

  18. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors.

    Directory of Open Access Journals (Sweden)

    Esther D Quakkelaar

    Full Text Available Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs, RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.

  19. A rapid screening method to monitor expression of various recombinant proteins from prokaryotic and eukaryotic expression systems using MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Jebanathirajah, J.A.; Andersen, S.; Blagoev, B.

    2002-01-01

    Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive...

  20. Effect of low dose radiation on cytochrome c and caspase-3 protein expressions in spermatogenic cells of mouse testis

    International Nuclear Information System (INIS)

    Wang Zhicheng; Zhao Hongguang; Piao Chunnan; Liu Guangwei; Liu Shuchun; Lv Zhe; Gong Shouliang

    2006-01-01

    Objective: To investigate the effect of low dose radiation on the expressions of cytochrome e (Cyt c) and caspase-3 proteins in spermatogenic cells of mouse testis. Methods: The relationships of dose- and time-effect of Cyt c and caspase-3 protein expressions with different dose of X-rays were observed in the spermatogenic cells of mouse testis with immunohistochemical technique (SABC). Results: After irradiation with 0, 0.025, 0.05, 0.075, 0.1 and 0.2 Gy, Cyt c and caspase-3 proteins expressed differently in all kinds of spermatogenic cells, and principally in spermatogonia and spermatocytes, and less in spermatids and spermatozoa. And the expressions increased with the increasing of irradiation dose. The expressions of both proteins after irradiation with 0.075 Gy increased with the lapse of time and reached to the peak at 12 h, and then decreased. Conclusion: Dose-and time-effect exists on the low-dose irradiation induced expressions of Cyt e and caspase-3 proteins in spermatogenic cells of mouse testis. (authors)

  1. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  2. Bcmimp1, a Botrytis cinerea gene transiently expressed in planta, encodes a mitochondrial protein

    Directory of Open Access Journals (Sweden)

    David eBenito-Pescador

    2016-02-01

    Full Text Available Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of ROS, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor.

  3. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  4. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  5. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  6. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  7. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  8. [Relationship and interaction between folate and expression of methyl-CpG-binding protein 2 in cervical cancerization].

    Science.gov (United States)

    Li, Q L; Ding, L; Nan, J; Liu, C L; Yang, Z K; Chen, F; Liang, Y L; Wang, J T

    2016-07-01

    To explore the interaction between folate and the expression of methyl-CpG-binding protein 2(MeCP2)in cervical cancerization. Forty one patients diagnosed with cervical squamous cell carcinoma(SCC), 71 patients diagnosed with cervical intraepithelial neoplasm(CIN1, n=34; CIN2 +, n=37)and 61 women with normal cervix(NC)were recruited in this study. Microbiological assay was conducted to detect the levels of serum folate and RBC folate, Western blot assay and real-time PCR were performed to detect the expression levels of MeCP2 protein and mRNA, respectively. The data were analyzed by Kruskal-Wallis H test, χ(2) test, trend χ(2) test and Spearman correlation with SPSS statistical software(version 20.0), and the interaction were evaluated by using generalized multifactor dimensionality reduction(GMDR)model. The levels of serum folate(H=44.71, Pfolate(H=5.28, Pfolate level and RBC folate level(r=0.270, Pfolate level and the expression level of MeCP2 protein(serum folate: r=-0.226, P=0.003; RBC folate: r=-0.164, P=0.004). Moreover, the results by GMDR model revealed there were interaction among serum folate deficiency, RBC folate deficiency, MeCP2 protein high expression and MeCP2 mRNA high expression in SCC and CIN2 + patients. Folate deficiency and high expression of MeCP2 gene might increase the risk of cervical cancer and its precancerous lesions through interaction among serum folate deficiency, RBC folate deficiency, MeCP2 protein high expression and mRNA high expression in the progression of cervical cancerization.

  9. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity.

    Science.gov (United States)

    Lindinger, Peter W; Christe, Martine; Eberle, Alex N; Kern, Beatrice; Peterli, Ralph; Peters, Thomas; Jayawardene, Kamburapola J I; Fearnley, Ian M; Walker, John E

    2015-09-01

    Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  10. A cDNA Cloning of a Novel Alpha-Class Tyrosinase of Pinctada fucata: Its Expression Analysis and Characterization of the Expressed Protein

    Directory of Open Access Journals (Sweden)

    Ryousuke Takgi

    2014-01-01

    Full Text Available Tyrosinase plays an important role in the formation of the shell matrix and melanin synthesis in mollusks shells. A cDNA clone encoding a 47 kDa protein was isolated from the pearl oyster Pinctada fucata. The cDNA was 1,957 base pairs long and encodes a 417 residue protein that has extensive sequence identity with tyrosinase (polyphenol oxidase: EC 1.14.18.1. This tyrosinase-like protein, termed PfTy, contains an N-terminal signal sequence and the two copper-binding domain signatures (CuA and CuB, suggesting that PfTy belongs to the α-subclass of type-3 copper proteins. Enzyme activity of PfTy was examined by a spectrophotometric method using the translation product derived from an S30 T7 high-yield protein expression system. Tyrosinase activity was seen in this recombinant product. RT-PCR analysis showed that PfTy mRNA was expressed in the mantle pallial, but not in the mantle edge. Therefore, PfTy may participate in insoluble shell matrix formation of the nacreous layer. PfTy expression was also observed in the foot, liver, and adductor muscle, suggesting that PfTy participates in the synthesis of melanins, which are effective scavengers of free radicals formed in multiple intracellular oxidative processes. This is the first report of a novel α-class tyrosinase from the pearl oyster P. fucata.

  11. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Afshan; Shaikh, Afshan S.; Tang, Yinjie; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2008-06-27

    {sup 13}C-based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly-expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism E. coli expressing a plasmid-borne, his-tagged Green Fluorescent Protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities.

  12. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    Science.gov (United States)

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could

  13. [Expression, purification and antibody preparation of recombinat SARS-CoV X5 protein].

    Science.gov (United States)

    Wang, Li-Na; Kong, Jian-Qiang; Zhu, Ping; Du, Guan-Hua; Wang, Wei; Cheng, Ke-Di

    2008-11-01

    X5 protein is one of the putative unknown proteins of SARS-CoV. The recombinant protein has been successfully expressed in E. coli in the form of insoluble inclusion body. The inclusion body was dissolved in high concentration of urea. Affinity Chromatography was preformed to purify the denatured protein, and then the product was refolded in a series of gradient solutions of urea. The purified protein was obtained with the purity of > 95% and the yield of 93.3 mg x L(-1). Polyclonal antibody of this protein was obtained, and Western blotting assay indicated that the X5 protein has the strong property of antigen. Sixty-eight percent of the recombinant protein sequence was confirmed by LC-ESI-MS/MS analysis.

  14. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    Science.gov (United States)

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains.

    Science.gov (United States)

    Martínez-Betancur, Viviana; Marín-Villa, Marcel; Martínez-Gutierrez, Marlén

    2014-08-01

    Dengue virus (DENV) is the causative agent of dengue and severe dengue. To understand better the dengue virus-host interaction, it is important to determine how the expression of cellular proteins is modified due to infection. Therefore, a comparison of protein expression was conducted in Vero cells infected with two different DENV strains, both serotype 2: DENV-2/NG (associated with dengue) and DENV-2/16681 (associated with severe dengue). The viability of the infected cells was determined, and neither strain induced cell death at 48 hr. In addition, the viral genomes and infectious viral particles were quantified, and the genome of the DENV-2/16681 strain was determined to have a higher replication rate compared with the DENV-2/NG strain. Finally, the proteins from infected and uninfected cultures were separated using two-dimensional gel electrophoresis, and the differentially expressed proteins were identified by mass spectrometry. Compared with the uninfected controls, the DENV-2/NG- and DENV-2/16681-infected cultures had five and six differentially expressed proteins, respectively. The most important results were observed when the infected cultures were compared to each other (DENV-2/NG vs. DENV-2/16681), and 18 differentially expressed proteins were identified. Based on their cellular functions, many of these proteins were linked to the increase in the replication efficiency of DENV. Among the proteins were calreticulin, acetyl coenzyme A, acetyl transferase, and fatty acid-binding protein. It was concluded that the infection of Vero cells with DENV-2/NG or DENV-2/16681 differentially modifies the expression of certain proteins, which can, in turn, facilitate infection. © 2013 Wiley Periodicals, Inc.

  16. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayashi

    2010-01-01

    Full Text Available Protein S (PS, mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC. PS activity is regulated by C4b-binding protein (C4BP, structurally composed of seven α-chains (C4BPα and a β-chain (C4BPβ. In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs, and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.

  17. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.

    Science.gov (United States)

    Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.

  18. A comparative study of cell cycle mediator protein expression patterns in anaplastic and papillary thyroid carcinoma.

    Science.gov (United States)

    Evans, Juanita J; Crist, Henry S; Durvesh, Saima; Bruggeman, Richard D; Goldenberg, David

    2012-07-01

    Anaplastic thyroid carcinoma (ATC) is an extremely aggressive and rapidly fatal neoplasm. The aim of this study was to identify a limited cell cycle associated protein expression pattern unique to ATC and to correlate that pattern with clinical outcome. This represents one of the largest tissue micro-array projects comparing the cell cycle protein expression data of ATC to other well-differentiated tumors in the literature. Tissue microarrays were created from 21 patients with ATC and an age and gender matched cohort of patients with papillary thyroid carcinoma (PTC). Expression of epidermal growth factor receptor, cyclin D1, cyclin E, p53, p21, p16, aurora kinase A, opioid growth factor (OGF), OGF-receptor, thyroglobulin and Ki-67 was evaluated in a semi-quantitative fashion. Differences in protein expression between the cohorts were evaluated using chi-square tests with Bonferroni adjustments. Survival time and presence of metastasis at presentation were collected. The ATC cohort showed a statistically significant decrease (p cycle with aberrant expression of multiple protein markers suggesting increased proliferative activity and loss of control of cell cycle progression to G₁ phase. These findings support the assertion that ATC may represent the furthest end of a continuum of thyroid carcinoma dedifferentiation.

  19. Stimulation of Protein Expression Through the Harmonic Resonance of Frequency-Specific Music.

    Science.gov (United States)

    Orhan, Ibrahim Y; Gulbahar, Burak A

    2016-12-01

    The use of specific frequencies for specific individual amino acids may increase the potential energy of protein molecules in the medium [1]. The resonance would also increase the movement of particles in the cytosol, increasing the collisions necessary for the conduction of protein expression. The clash of two waves that share frequencies will exhibit an increase in energy through an increase in amplitude [2]. The increase in energy would in turn increase the number of collisions forming the tRNA-amino acid, increasing the amino acid acquiry for ribosomes to improve intracellular efficiency in gene expression. To test the hypothesis, Red Fluorescent Protein (RFP) in transformated BL-21 strains of E. coli and p53 protein of MCF-7 were examined after exposure to sounds of specific frequencies. Through the exposure of the experimental systems to a sequence of sounds that match the frequencies of specific amino acids, the levels of RFP exhibition respective to the control groups in the bacterial medium increased two-fold in terms of RFU. The experiments that targeted the p53 protein with the 'music' showed a decrease in the cell prevalence in the MCF-7 type breast cancer cells by 28%, by decreasing the speed of tumour formation. Exposure to 'music' that was designed through assigning a musical note for every single one of the twenty unique amino acids, produced both an analytical and a visible shift in protein synthesis, making it as potential tool for reducing procedural time uptake.

  20. Expression of measles virus nucleoprotein induces apoptosis and modulates diverse functional proteins in cultured mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ashima Bhaskar

    Full Text Available BACKGROUND: Measles virus nucleoprotein (N encapsidates the viral RNA, protects it from endonucleases and forms a virus specific template for transcription and replication. It is the most abundant protein during viral infection. Its C-terminal domain is intrinsically disordered imparting it the flexibility to interact with several cellular and viral partners. PRINCIPAL FINDINGS: In this study, we demonstrate that expression of N within mammalian cells resulted in morphological transitions, nuclear condensation, DNA fragmentation and activation of Caspase 3 eventuating into apoptosis. The rapid generation of intracellular reactive oxygen species (ROS was involved in the mechanism of cell death. Addition of ascorbic acid (AA or inhibitor of caspase-3 in the extracellular medium partially reversed N induced apoptosis. We also studied the protein profile of cells expressing N protein. MS analysis revealed the differential expression of 25 proteins out of which 11 proteins were up regulated while 14 show signs of down regulation upon N expression. 2DE results were validated by real time and semi quantitative RT-PCR analysis. CONCLUSION: These results show the pro-apoptotic effects of N indicating its possible development as an apoptogenic tool. Our 2DE results present prima facie evidence that the MV nucleoprotein interacts with or causes differential expression of a wide range of cellular factors. At this stage it is not clear as to what the adaptive response of the host cell is and what reflects a strategic modulation exerted by the virus.