WorldWideScience

Sample records for intracerebroventricular ethanol administration

  1. Intracerebroventricular administration of taurine impairs learning and memory in rats.

    Science.gov (United States)

    Ito, Koichi; Arko, Matevž; Kawaguchi, Tomohiro; Kikusui, Takefumi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-03-01

    Taurine is a semi-essential amino acid widely distributed in the body and we take in it from a wide range of nutritive-tonic drinks to improve health. To date, we have elucidated that oral supplementation of taurine does not affect learning and memory in the rat. However, there are few studies concerning the direct effects of taurine in the brain at the behavior level. In this study, we intracerebroventricularly administered taurine to rats and aimed to elucidate the acute effects on learning and memory using the Morris water maze method. Escape latency, swim distance, and distance to zone, which is the integral of the distance between the rats and the platform for every 0.16 seconds, were adopted as parameters of the ability of learning and memory. We also tried to evaluate the effect of intraperitoneal taurine administration. Escape latency, swim distance, and distance to zone were significantly longer in the intracerebroventricularly taurine-administered rats than in the saline-administered rats. Mean swimming velocity was comparable between these two groups, although the physical performance was improved by taurine administration. Probe trials showed that the manner of the rats in finding the platform was comparable. In contrast, no significant differences were found between the intraperitoneally taurine-administered rats and the saline-administered rats. These results indicate that taurine administered directly into the brain ventricle suppresses and delays the ability of learning and memory in rats. In contrast, it is implied that taurine administered peripherally was not involved in learning and memory.

  2. Decreased BDNF levels in amygdala and hippocampus after intracerebroventricular administration of ouabain

    Directory of Open Access Journals (Sweden)

    Luciano K. Jornada

    2012-01-01

    Full Text Available OBJECTIVE: The present study aims to investigate the effects of ouabain intracerebroventricular injection on BDNF levels in the amygdala and hippocampus of Wistar rats. METHODS: Animals received a single intracerebroventricular injection of ouabain (10-3 and 10-2 M or artificial cerebrospinal fluid and immediately, 1h, 24h, or seven days after injection, BDNF levels were measured in the rat's amygdala and hippocampus by sandwich-ELISA (n = 8 animals per group. RESULTS: When evaluated immediately, 3h, or 24h after injection, ouabain in doses of 10-2 and 10-3 M does not alter BDNF levels in the amygdala and hippocampus. However, when evaluated seven days after injection, ouabain in 10-2 and 10-3 M, showed a significant reduction in BDNF levels in both brain regions evaluated. DISCUSSION: In conclusion, we propose that the ouabain decreased BDNF levels in the hippocampus and amygdala when assessed seven days after administration, supporting the Na/K ATPase hypothesis for bipolar illness.

  3. Decreased BDNF levels in amygdala and hippocampus after intracerebroventricular administration of ouabain

    OpenAIRE

    Jornada, Luciano K.; Valvassori, Samira S.; Resende, Wilson R.; Moretti, Morgana; Ferreira, Camila L.; Fries, Gabriel R.; Kapczinski, Flavio; Quevedo, João

    2012-01-01

    OBJECTIVE: The present study aims to investigate the effects of ouabain intracerebroventricular injection on BDNF levels in the amygdala and hippocampus of Wistar rats. METHODS: Animals received a single intracerebroventricular injection of ouabain (10-3 and 10-2 M) or artificial cerebrospinal fluid and immediately, 1h, 24h, or seven days after injection, BDNF levels were measured in the rat's amygdala and hippocampus by sandwich-ELISA (n = 8 animals per group). RESULTS: When evaluated immedi...

  4. Intracerebroventricular administration of adiponectin attenuates streptozotocin-induced memory impairment in rats.

    Science.gov (United States)

    Mazrooie, R; Rohampour, K; Zamani, M; Hosseinmardi, N; Zeraati, M

    2017-06-01

    Alzheimer's disease (AD) has been reported to be linked with diabetes mellitus and insulin resistance. Adiponectin (ADN), an adipocytokine secreted from adipose tissue, is involved in the regulation of insulin sensitivity, energy homeostasis, and mitochondrial dysfunction. In this study, we examined the effect of ADN on passive avoidance memory in animal model of sporadic AD (sAD). On days 1 and 3 after cannulation, rats received intracerebroventricular (icv) injection of streptozotocin (STZ) (3 mg/kg). Thirty minutes before the learning process, animals received saline or ADN in different doses (6, 60, and 600 µg). The step-through latency (STL) and total time spent in the dark compartment (TDC) were recorded and analyzed. In STZ-treated rats, STL was significantly decreased, whereas TDC showed a dramatic increase. In ADN-treated rats, STL was significantly increased (P ADN (P ADN is useful to improve the STZ-induced memory impairment. This study showed, for the first time, that icv administration of ADN could improve the memory acquisition in animal model of sAD.

  5. Chronic intracerebroventricular infusion of nociceptin/orphanin FQ increases food and ethanol intake in alcohol-preferring rats.

    Science.gov (United States)

    Cifani, Carlo; Guerrini, Remo; Massi, Maurizio; Polidori, Carlo

    2006-11-01

    Central administration of low doses of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, have been shown to reduce ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behavior in alcohol preferring rats. The present study evaluated the effect of continuous (7 days) lateral brain ventricle infusions of N/OFQ (0, 0.25, 1, 4, and 8 microg/h), by means of osmotic mini-pumps, on 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats provided 2h or 24h access to it. N/OFQ dose-dependently increased food intake in msP rats. On the other hand, in contrast to previous studies with acute injections, continuous lateral brain ventricle infusion of high doses of N/OFQ increased ethanol consumption when the ethanol solution was available for 24h/day or 2h/day. The present study demonstrates that continuous activation of the opioidergic N/OFQ receptor does not blunt the reinforcing effects of ethanol. Moreover, the data suggest that continuous activation of the opioidergic N/OFQ receptor is not a suitable way to reduce alcohol abuse.

  6. Operant ethanol self-administration in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus.

    Science.gov (United States)

    Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G

    2003-10-10

    The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.

  9. Comparative in Vivo Investigation of Intrathecal and Intracerebroventricular Administration with Melanocortin Ligands MTII and AGRP into Mice.

    Science.gov (United States)

    Adank, Danielle N; Lunzer, Mary M; Lensing, Cody J; Wilber, Stacey L; Gancarz, Amy M; Haskell-Luevano, Carrie

    2018-02-21

    Central administration of melanocortin ligands has been used as a critical technique to study energy homeostasis. While intracerebroventricular (ICV) injection is the most commonly used method during these investigations, intrathecal (IT) injection can be equally efficacious for the central delivery of ligands. Importantly, intrathecal administration can optimize exploration of melanocortin receptors in the spinal cord. Herein, we investigate comparative IT and ICV administration of two melanocortin ligands, the synthetic MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH 2 ) MC4R agonist and agouti-related peptide [AGRP(87-132)] MC4R inverse agonist/antagonist, on the same batch of age-matched mice in TSE metabolic cages undergoing a nocturnal satiated paradigm. To our knowledge, this is the first study to test how central administration of these ligands directly to the spinal cord affects energy homeostasis. Results showed, as expected, that MTII IT administration caused a decrease in food and water intake and an overall negative energy balance without affecting activity. As anticipated, IT administration of AGRP caused weight gain, increase of food/water intake, and increase respiratory exchange ratio (RER). Unexpectantly, the prolonged activity of AGRP was notably shorter (2 days) compared to mice given ICV injections of the same concentrations in previous studies (7 days or more).1-4 It appears that IT administration results in a more sensitive response that may be a good approach for testing synthetic compound potency values ranging in nanomolar to high micromolar in vitro EC 50 values. Indeed, our investigation reveals that the spine influences a different melanocortin response compared to the brain for the AGRP ligand. This study indicates that IT administration can be a useful technique for future metabolic studies using melanocortin ligands and highlights the importance of exploring the role of melanocortin receptors in the spinal cord.

  10. New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration.

    Science.gov (United States)

    Berthet, Carole; Castillo, Ximena; Magistretti, Pierre J; Hirt, Lorenz

    2012-01-01

    Lactate protects mice against the ischaemic damage resulting from transient middle cerebral artery occlusion (MCAO) when administered intracerebroventricularly at reperfusion, yielding smaller lesion sizes and a better neurological outcome 48 h after ischaemia. We have now tested whether the beneficial effect of lactate is long-lasting and if lactate can be administered intravenously. Male ICR-CD1 mice were subjected to 15-min suture MCAO under xylazine + ketamine anaesthesia. Na L-lactate (2 µl of 100 mmol/l) or vehicle was administered intracerebroventricularly at reperfusion. The neurological deficit was evaluated using a composite deficit score based on the neurological score, the rotarod test and the beam walking test. Mice were sacrificed at 14 days. In a second set of experiments, Na L-lactate (1 µmol/g body weight) was administered intravenously into the tail vein at reperfusion. The neurological deficit and the lesion volume were measured at 48 h. Intracerebroventricularly injected lactate induced sustained neuroprotection shown by smaller neurological deficits at 7 days (median = 0, min = 0, max = 3, n = 7 vs. median = 2, min = 1, max = 4.5, n = 5, p mouse brain against ischaemic damage when supplied intracerebroventricularly during reperfusion with behavioural and histological benefits persisting 2 weeks after ischaemia. Importantly, lactate also protects after systemic intravenous administration, a more suitable route of administration in a clinical emergency setting. These findings provide further steps to bring this physiological, commonly available and inexpensive neuroprotectant closer to clinical translation for stroke. Copyright © 2012 S. Karger AG, Basel.

  11. Rapid intracerebroventricular delivery of Cu-DOTA-etanercept after peripheral administration demonstrated by PET imaging

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyuan

    2009-02-01

    Full Text Available Abstract Background The cytokines interleukin-1 and tumor necrosis factor (TNF, and the cytokine blocker interleukin-1 receptor antagonist, all have been demonstrated to enter the cerebrospinal fluid (CSF following peripheral administration. Recent reports of rapid clinical improvement in patients with Alzheimer's disease and related forms of dementia following perispinal administration of etanercept, a TNF antagonist, suggest that etanercept also has the ability to reach the brain CSF. To investigate, etanercept was labeled with a positron emitter to enable visualization of its intracranial distribution following peripheral administration by PET in an animal model. Findings Radiolabeling of etanercept with the PET emitter 64Cu was performed by DOTA (1,4,7,10-tetraazadodecane-N,N',N",N"'-tetraacetic acid conjugation of etanercept, followed by column purification and 64Cu labeling. MicroPET imaging revealed accumulation of 64Cu-DOTA-etanercept within the lateral and third cerebral ventricles within minutes of peripheral perispinal administration in a normal rat anesthesized with isoflurane anesthesia, with concentration within the choroid plexus and into the CSF. Conclusion Synthesis of 64Cu-DOTA-etanercept enabled visualization of its intracranial distribution by microPET imaging. MicroPET imaging documented rapid accumulation of 64Cu-DOTA-etanercept within the choroid plexus and the cerebrospinal fluid within the cerebral ventricles of a living rat after peripheral administration. Further study of the effects of etanercept and TNF at the level of the choroid plexus may yield valuable insights into the pathogenesis of Alzheimer's disease.

  12. The effects of intraperitoneal and intracerebroventricular administration of the GABAB receptor antagonist CGP 35348 on food intake in rats.

    Science.gov (United States)

    Patel, Sunit M; Ebenezer, Ivor S

    2004-10-25

    In order to test the hypothesis that endogenous gamma-aminobutyric acid (GABA), acting at central GABAB receptors, plays a physiological role in the control of feeding behaviour, it was reasoned that blocking these receptors with a centrally active GABAB receptor antagonist should reduce food intake in hungry rats. In the present study, experiments were carried out to test this possibility using the GABAB receptor antagonist 3-aminopropyl-diethoxy-methyl-phosphinic acid (CGP 35348), which is water-soluble and can penetrate the blood-brain barrier from the systemic circulation. CGP 35348 (50 and 100 mg/kg, i.p.) had no effect on food intake in 22-h fasted rats, but a higher dose (i.e. 500 mg/kg., i.p.) significantly reduced cumulative food consumption. These findings are consistent with previous observations that high systemic doses of CGP 35348 are needed to block central GABAB receptors. However, to eliminate the possibility that the 500 mg/kg dose of CGP 35348 decreased food intake by a peripheral, rather than a central mode of action, further experiments were undertaken where the drug was given directly into the brain by the intracerebroventricular (i.c.v.) route. I.c.v. administration of CGP 35348 (5 and 10 microg) significantly decreased cumulative food intake food intake in rats that had been fasted for 22 h. By contrast, i.c.v. administration of CGP 35348 (10 microg) had no effect on water intake in 16-h water-deprived rats. The results indicate that CGP 35348 reduces food consumption in hungry rats by blocking central GABAB receptors in a behaviourally specific manner. These findings suggest that endogenous GABA acting at central GABAB receptors plays a physiological role in the regulation of feeding behaviour.

  13. Effects of Agmatine on Depressive-Like Behavior Induced by Intracerebroventricular Administration of 1-Methyl-4-phenylpyridinium (MPP(+)).

    Science.gov (United States)

    Moretti, Morgana; Neis, Vivian Binder; Matheus, Filipe Carvalho; Cunha, Mauricio Peña; Rosa, Priscila Batista; Ribeiro, Camille Mertins; Rodrigues, Ana Lúcia S; Prediger, Rui Daniel

    2015-10-01

    Considering that depression is a common non-motor comorbidity of Parkinson's disease and that agmatine is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system disorders, this study investigated the antidepressant-like effect of agmatine in mice intracerebroventricularly (i.c.v.) injected with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)). Male C57BL6 mice were treated with agmatine (0.0001, 0.1 or 1 mg/kg) and 60 min later the animals received an i.c.v. injection of MPP(+) (1.8 µg/site). Twenty-four hours after MPP(+) administration, immobility time, anhedonic behavior, and locomotor activity were evaluated in the tail suspension test (TST), splash test, and open field test, respectively. Using Western blot analysis, we investigated the putative modulation of MPP(+) and agmatine on striatal and frontal cortex levels of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). MPP(+) increased the immobility time of mice in the TST, as well as induced an anhedonic-like behavior in the splash test, effects which were prevented by pre-treatment with agmatine at the three tested doses. Neither drug, alone or in combination, altered the locomotor activity of mice. I.c.v. administration of MPP(+) increased the striatal immunocontent of TH, an effect prevented by the three tested doses of agmatine. MPP(+) and agmatine did not alter the immunocontent of BDNF in striatum and frontal cortex. These results demonstrate for the first time the antidepressant-like effects of agmatine in an animal model of depressive-like behavior induced by the dopaminergic neurotoxin MPP(+).

  14. Intracerebroventricular Administration of Amyloid β-protein Oligomers Selectively Increases Dorsal Hippocampal Dialysate Glutamate Levels in the Awake Rat

    Directory of Open Access Journals (Sweden)

    Sean D. O’Shea

    2008-11-01

    Full Text Available Extensive evidence supports an important role for soluble oligomers of the amyloid β-protein (Aβ in Alzheimer’s Disease pathogenesis. In the present study we combined intracerebroventricular (icv injections with brain microdialysis technology in the fully conscious rat to assess the effects of icv administered SDS-stable low-n Aβ oligomers (principally dimers and trimers on excitatory and inhibitory amino acid transmission in the ipsilateral dorsal hippocampus. Microdialysis was employed to assess the effect of icv administration of Aβ monomers and Aβ oligomers on dialysate glutamate, aspartate and GABA levels in the dorsal hippocampus. Administration of Aβ oligomers was associated with a +183% increase (p<0.0001 vs. Aβ monomer-injected control in dorsal hippocampal glutamate levels which was still increasing at the end of the experiment (260 min, whereas aspartate and GABA levels were unaffected throughout. These findings demonstrate that icv administration and microdialysis technology can be successfully combined in the awake rat and suggests that altered dorsal hippocampal glutamate transmission may be a useful target for pharmacological intervention in Alzheimer’s Disease.

  15. Pavlovian conditioning with ethanol: sign-tracking (autoshaping), conditioned incentive, and ethanol self-administration.

    Science.gov (United States)

    Krank, Marvin D

    2003-10-01

    Conditioned incentive theories of addictive behavior propose that cues signaling a drug's reinforcing effects activate a central motivational state. Incentive motivation enhances drug-taking and drug-seeking behavior. We investigated the behavioral response to cues associated with ethanol and their interaction with operant self-administration of ethanol. In two experiments, rats received operant training to press a lever for a sweetened ethanol solution. After operant training, the animals were given Pavlovian pairings of a brief and localized cue light with the sweetened ethanol solution (no lever present). Lever pressing for ethanol was then re-established, and the behavioral effects of the cue light were tested during an ethanol self-administration session. The conditioned responses resulting from pairing cue lights with the opportunity to ingest ethanol had three main effects: (1) induction of operant behavior reinforced by ethanol, (2) stimulation of ethanol-seeking behavior (magazine entries), and (3) signal-directed behavior (i.e., autoshaping, or sign-tracking). Signal-directed behavior interacted with the other two effects in a manner predicted by the location of the cue light. These conditioned responses interact with operant responding for ethanol reinforcement. These findings demonstrate the importance of Pavlovian conditioning effects on ethanol self-administration and are consistent with conditioned incentive theories of addictive behavior.

  16. Developmental lead exposure induces opposite effects on ethanol intake and locomotion in response to central vs. systemic cyanamide administration.

    Science.gov (United States)

    Mattalloni, Mara Soledad; Deza-Ponzio, Romina; Albrecht, Paula Alejandra; Cancela, Liliana Marina; Virgolini, Miriam Beatriz

    2017-02-01

    Lead (Pb) is a developmental neurotoxicant that elicits differential responses to drugs of abuse. Particularly, ethanol consumption has been demonstrated to be increased as a consequence of environmental Pb exposure, with catalase (CAT) and brain acetaldehyde (ACD, the first metabolite of ethanol) playing a role. The present study sought to interfere with ethanol metabolism by inhibiting ALDH2 (mitochondrial aldehyde dehydrogenase) activity in both liver and brain from control and Pb-exposed rats as a strategy to accumulate ACD, a substance that plays a major role in the drug's reinforcing and/or aversive effects. To evaluate the impact on a 2-h chronic voluntary ethanol intake test, developmentally Pb-exposed and control rats were administered with cyanamide (CY, an ALDH inhibitor) either systemically or intracerebroventricularly (i.c.v.) on the last 4 sessions of the experiment. Furthermore, on the last session and after locomotor activity was assessed, all animals were sacrificed to obtain brain and liver samples for ALDH2 and CAT activity determination. Systemic CY administration reduced the elevated ethanol intake already reported in the Pb-exposed animals (but not in the controls) accompanied by liver (but not brain) ALDH2 inactivation. On the other hand, a 0.3 mg i.c.v. CY administration enhanced both ethanol intake and locomotor activity accompanied by brain ALDH2 inactivation in control animals, while an increase in ethanol consumption was also observed in the Pb-exposed group, although in the absence of brain ALDH2 blockade. No changes were observed in CAT activity as a consequence of CY administration. These results support the participation of liver and brain ACD in ethanol intake and locomotor activity, responses that are modulated by developmental Pb exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of intrathecal or intracerebroventricular administration of nonsteroidal anti-inflammatory drugs on a C-fiber reflex in rats.

    Science.gov (United States)

    Bustamante, D; Paeile, C; Willer, J C; Le Bars, D

    1997-06-01

    A C-fiber reflex elicited by electrical stimulation within the territory of the sural nerve was recorded from the ipsilateral biceps femoris muscle in anesthetized rats. The temporal evolution of the response was studied using a constant stimulus intensity (3 times threshold), and recruitment curves were built by varying the stimulus intensity from 0 to 7 times threshold. The intrathecal (i.t.) but not i.c.v. administration of aspirin, indomethacin, ketoprofen and lysine clonixinate resulted in dose-dependent depressions of the C-fiber reflex. In contrast, saline was ineffective. Regardless of the route of administration, the drugs never produced disturbances in heart rate and/or acid-base equilibrium. When a constant level of stimulation was used, 500 microg of aspirin i.t. induced a blockade of the reflex immediately after the injection, followed by a partial recovery. Indomethacin produced a stable depression, which reached 80 to 90% with an i.t. dose of 500 microg. Ketoprofen and lysine clonixinate produced a more stable effect; the highest doses (500 microg) produced a steady-state depression of approximately 50% for approximately 30 min. When the recruitment curves were built with a range of nociceptive stimulus intensities, all of the drugs except for indomethacin produced a dose-dependent decrease in the slopes and the areas under the recruitment curves without major modifications in the thresholds; indomethacin also induced a significant dose-related increase in the threshold. The orders of potency for both stimulation paradigms with the i.t. route were the same, namely aspirin > indomethacin > lysine clonixinate > or = ketoprofen. It is concluded that nonsteroidal anti-inflammatory drugs elicit significant antinociceptive effects at a spinal level, which do not depend on the existence of a hyperalgesic or inflammatory state. Such effects were not seen after injections within the lateral ventricle.

  18. Effects of intracerebroventricular administration of 2-hydroxypropyl-β-cyclodextrin in a patient with Niemann–Pick Type C disease

    Directory of Open Access Journals (Sweden)

    Muneaki Matsuo

    2014-01-01

    Full Text Available Niemann–Pick Type C disease (NPC is an autosomal recessive lysosomal storage disorder characterized by progressive neurological deterioration. Previously, we reported that intravenous administration of 2-hydroxypropyl-β-cyclodextrin (HPB-CD in two patients with NPC had only partial and transient beneficial effects on neurological function. The most likely reason for HPB-CD not significantly improving the neurological deficits of NPC is its inability to cross the blood–brain barrier. Herein, we describe the effects of intrathecal HPB-CD in an eight-year-old patient with a perinatal onset of NPC, administered initially at a dose of 10 mg/kg every other week and increased up to 10 mg/kg twice a week. Clinically, the patient maintained residual neurological functions for two years, at which time nuclear magnetic resonance spectroscopy showed a decreased choline to creatine ratio and increased N-acetylaspartate to creatine ratio, and positron emission tomography revealed increased standardized uptake values. Total-tau in the cerebrospinal fluid (CSF was also decreased after two years. No adverse effects were observed over the course of treatment. The CSF concentrations of HPB-CD during the distribution phase after the injections were comparable with those at which HPB-CD could normalize cellular cholesterol abnormality in vitro. Further studies are necessary to elucidate the mechanisms of action of HPB-CD in NPC, and to determine the optimal dose and intervals of HPB-CD injection.

  19. Hepatic protein synthetic activity in vivo after ethanol administration

    International Nuclear Information System (INIS)

    Donohue, T.M. Jr.; Sorrell, M.F.; Tuma, D.J.

    1987-01-01

    Hepatic protein synthetic activity in vivo was measured by the incorporation of [ 3 H]puromycin into elongating nascent polypeptides of rat liver to form peptidyl-[ 3 H]puromycin. Our initial experiments showed that saturating doses of [ 3 H]puromycin were achieved at 3-6 mumol/100 g body weight, and that maximum labeling of nascent polypeptides was obtained 30 min after injection of the labeled precursor. Labeled puromycin was found to be suitable for measuring changes in the status of protein synthesis, since the formation of the peptidyl-[ 3 H]puromycin was decreased in fasted animals and was increased in rats pretreated with L-tryptophan. [ 3 H]Puromycin incorporation into polypeptides was then measured after acute ethanol administration as well as after prolonged consumption of ethanol which was administered as part of a liquid diet for 31 days. Acute alcohol treatment caused no significant change in [ 3 H]puromycin incorporation into liver polypeptides. In rats exposed to chronic ethanol feeding, peptidyl-[3H]puromycin formation, when expressed per mg of protein, was slightly lower compared to pair-fed controls, but was unchanged compared to chow-fed animals. When the data were expressed per mg of DNA or per 100 g body wt, no differences in protein synthetic activity were observed among the three groups. These findings indicate that neither acute nor chronic alcohol administration significantly affects protein synthetic activity in rat liver. They further suggest that accumulation of protein in the liver, usually seen after prolonged ethanol consumption, is apparently not reflected by an alteration of hepatic protein synthesis

  20. Pharmacokinetics of methotrexate in the cerebrospinal fluid after intracerebroventricular administration in patients with meningeal carcinomatosis and altered cerebrospinal fluid flow dynamics

    International Nuclear Information System (INIS)

    Miller, K.T.; Wilkinson, D.S.

    1989-01-01

    Pharmacokinetic parameters of the distribution and elimination of intracerebroventricularly administered methotrexate (MTX) were evaluated in three patients with meningeal carcinomatosis. Abnormal cerebrospinal fluid (CSF) flow dynamics, which were not otherwise clinically evident, were diagnosed by 111In-diethylenetriaminepentaacetate radionuclide imaging. Alterations in CSF flow resulted in large changes in MTX distribution. Reduced cortical convexity (type III), spinal subarachnoid (type II), or ventricular (type I) CSF flow resulted in a prolongation of the single-pass mean residence time of MTX in the peripheral compartment by as much as eightfold and a reduction in intercompartmental clearance by 94-99%. Leptomeningeal carcinomatosis can affect both CSF MTX distribution and elimination, each to a different extent, within the same patient. Total MTX clearance from the CSF was reduced by 79-93% in the patients studied. A two-compartment pharmacokinetic model, with elimination occurring from the peripheral compartment, gave values for the distribution rate constant from the central to the peripheral compartment (k12), which decreased with the extent of CSF flow abnormality. However, the elimination rate constant from the peripheral compartment (k20) was reduced to an extent apparently independent of CSF flow abnormality (percentage reduction in k12 and k20, respectively: type III, 18 and 66; type II, 67 and 86; type I, 78 and 48). Inadequate distribution and locally high concentrations of MTX within the CSF may contribute to therapeutic failure and neurotoxicity. Monitoring of MTX levels in the CSF may be deceiving when samples are drawn from the site of injection, since the distribution kinetics are altered by abnormal CSF flow dynamics

  1. Intracerebroventricular tempol administration in older rats reduces oxidative stress in the hypothalamus but does not change STAT3 signalling or SIRT1/AMPK pathway.

    Science.gov (United States)

    Toklu, Hale Z; Scarpace, Philip J; Sakarya, Yasemin; Kirichenko, Nataliya; Matheny, Michael; Bruce, Erin B; Carter, Christy S; Morgan, Drake; Tümer, Nihal

    2017-01-01

    Hypothalamic inflammation and increased oxidative stress are believed to be mechanisms that contribute to obesity. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol), a free radical scavenger, has been shown to reduce inflammation and oxidative stress. We hypothesized that brain infusion of tempol would reduce oxidative stress, and thus would reduce food intake and body weight and improve body composition in rats with age-related obesity and known elevated oxidative stress. Furthermore, we predicted an associated increase in markers of leptin signalling, including the silent mating type information regulator 2 homolog 1 (SIRT1)/5'AMP-activated protein kinase (AMPK) pathway and the signal transducer and activator of transcription 3 (STAT3) pathway. For this purpose, osmotic minipumps were placed in the intracerebroventricular region of young (3 months) and aged (23 months) male Fischer 344 x Brown Norway rats for the continuous infusion of tempol or vehicle for 2 weeks. Tempol significantly decreased (p < 0.01) nicotinamide adenine dinucleotide phosphate oxidase activity in the hypothalamus but failed to reduce food intake or weight gain and did not alter body composition. SIRT1 activity and Acetyl p53 were decreased and phosphorylation of AMPK was increased with age, but they were unchanged with tempol. Basal phosphorylation of STAT3 was unchanged with age or tempol. These results indicate that tempol decreases oxidative stress but fails to alter feeding behaviour, body weight, or body composition. Moreover, tempol does not modulate the SIRT1/AMPK/p53 pathway and does not change leptin signalling. Thus, a reduction in hypothalamic oxidative stress is not sufficient to reverse age-related obesity.

  2. Long-term continuous administration of a hydro-ethanolic extract of ...

    African Journals Online (AJOL)

    Long-term continuous administration of a hydro-ethanolic extract of Synedrella ... Ghana, P.O Box LG 43, Legon, Accra, Ghana 2Department of Animal Experimentation, Noguchi Memorial. Institute for ..... short-or long-term administration.

  3. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  4. Regulation of operant oral ethanol self-administration: a dose-response curve study in rats.

    Science.gov (United States)

    Carnicella, Sebastien; Yowell, Quinn V; Ron, Dorit

    2011-01-01

    Oral ethanol self-administration procedures in rats are useful preclinical tools for the evaluation of potential new pharmacotherapies as well as for the investigation into the etiology of alcohol abuse disorders and addiction. Determination of the effects of a potential treatment on a full ethanol dose-response curve should be essential to predict its clinical efficacy. Unfortunately, this approach has not been fully explored because of the aversive taste reaction to moderate to high doses of ethanol, which may interfere with consumption. In this study, we set out to determine whether a meaningful dose-response curve for oral ethanol self-administration can be obtained in rats. Long-Evans rats were trained to self-administer a 20% ethanol solution in an operant procedure following a history of excessive voluntary ethanol intake. After stabilization of ethanol self-administration, the concentration of the solution was varied from 2.5 to 60% (v/v), and operant and drinking behaviors, as well as blood ethanol concentration (BEC), were evaluated following the self-administration of a 20, 40, and 60% ethanol solution. Varying the concentration of ethanol from 2.5 to 60% after the development of excessive ethanol consumption led to a typical inverted U-shaped dose-response curve. Importantly, rats adapted their level and pattern of responding to changes in ethanol concentration to obtain a constant level of intake and BEC, suggesting that their operant behavior is mainly driven by the motivation to obtain a specific pharmacological effect of ethanol. This procedure can be a useful and straightforward tool for the evaluation of the effects of new potential pharmacotherapies for the treatment of alcohol abuse disorders. Copyright © 2010 by the Research Society on Alcoholism.

  5. Acute ethanol administration reduces the antidote effect of N-acetylcysteine after acetaminophen overdose in mice

    DEFF Research Database (Denmark)

    Dalhoff, K; Hansen, P B; Ott, P

    1991-01-01

    given ethanol or saline alone only 7% and 3%, respectively, survived 96 h. 4. The data suggest that the protective effect of N-acetylcysteine on acetaminophen-induced toxicity in fed mice is reduced by concomitant administration of ethanol. This may explain the clinical observation that ingestion...

  6. Effect of subchronic administration of ethanolic leaf extract of croton ...

    African Journals Online (AJOL)

    The biochemical effcts of ethanolic leaf extract of Croton zambesicus on serum alkaline phosphatase(SAP),aspartate aminotransferase (AST) ,alanine aminotransferase(ALT),serum total protein and albumin were studied.The levels of these enzymes and that of total protein and albumin in the extract treated rats were not ...

  7. Ethanol self-administration in serotonin transporter knockout mice: unconstrained demand and elasticity.

    Science.gov (United States)

    Lamb, R J; Daws, L C

    2013-10-01

    Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self-administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Modulation of ethanol-intake by morphine: Evidence for a central site of action

    Energy Technology Data Exchange (ETDEWEB)

    Wild, K.D.; Reid, L.D. (Rensselaer Polytechnic Institute, Troy, NY (USA))

    1990-01-01

    Previous studies have shown that subcutaneous administration of low doses of morphine increase, while subcutaneous naloxone decreases, ethanol-intake in rats. However, the site of action of morphine modulation of ethanol-intake remains unclear. In an attempt to elucidate this issue, seven graded doses of morphine were given intracerebroventricularly to rats 15 min prior to an opportunity to consume water and sweetened alcoholic beverage for 2 hr. Two lower doses of intracerebroventricular morphine reliably increased ethanol-intake, while higher doses decreased intake of water. Preference ratios were reliably increased by morphine doses of 1 {mu}g and higher. The present data provide support for a central site of morphine modulation of ethanol-intake.

  9. Effects of chronic ethanol administration on hepatic glycoprotein secretion in the rat

    International Nuclear Information System (INIS)

    Sorrell, M.F.; Nauss, J.M.; Donohue, T.M. Jr.; Tuma, D.J.

    1983-01-01

    The effects of chronic ethanol feeding on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Liver slices from rats fed ethanol for 4-5 wk showed a decreased ability to incorporate [ 14 C]glucosamine into medium trichloracetic acid-precipitable proteins when compared to the pair-fed controls; however, the labeling of hepatocellular glycoproteins was unaffected by chronic ethanol treatment. Immunoprecipitation of radiolabeled secretory (serum) glycoproteins with antiserum against rat serum proteins showed a similar marked inhibition in the appearance of glucosamine-labeled proteins in the medium of slices from ethanol-fed rats. Minimal effects, however, were noted in the labeling of intracellular secretory glycoproteins. Protein synthesis, as determined by measuring [ 14 C]leucine incorporation into medium and liver proteins, was decreased in liver slices from ethanol-fed rats as compared to the pair-fed controls. This was the case for both total proteins as well as immunoprecipitable secretory proteins, although the labeling of secretory proteins retained in the liver slices was reduced to a lesser extent than total radiolabeled hepatic proteins. When the terminal sugar, [ 14 C]fucose, was employed as a precursor in order to more closely focus on the final steps of hepatic glycoprotein secretion, liver slices obtained from chronic ethanol-fed rats exhibited impaired secretion of fucose-labeled proteins into the medium. When ethanol (5 or 10 mM) was added to the incubation medium containing liver slices from the ethanol-fed rats, the alterations in protein and glycoprotein synthesis and secretion caused by the chronic ethanol treatment were further potentiated. The results of this study indicate that liver slices prepared from chronic ethanol-fed rats exhibit both impaired synthesis and secretion of proteins and glycoproteins, and these defects are further potentiated by acute ethanol administration

  10. Lesions of the lateral habenula increase voluntary ethanol consumption and operant self-administration, block yohimbine-induced reinstatement of ethanol seeking, and attenuate ethanol-induced conditioned taste aversion.

    Directory of Open Access Journals (Sweden)

    Andrew K Haack

    Full Text Available The lateral habenula (LHb plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.

  11. Role of cannabinoidergic mechanisms in ethanol self-administration and ethanol seeking in rat adult offspring following perinatal exposure to Δ9-tetrahydrocannabinol

    International Nuclear Information System (INIS)

    Economidou, Daina; Mattioli, Laura; Ubaldi, Massimo; Lourdusamy, Anbarasu; Soverchia, Laura; Hardiman, Gary; Campolongo, Patrizia; Cuomo, Vincenzo; Ciccocioppo, Roberto

    2007-01-01

    The present study evaluated the consequences of perinatal Δ 9 -tetrahydrocannabinol (Δ 9 -THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB 1 receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with Δ 9 -tetrahydrocannabinol, ethanol or their combination causes long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, Δ 9 -THC, or EtOH + Δ 9 -THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to Δ 9 -THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB 1 receptor antagonists may represent interesting agents for the pharmacotherapy of alcoholism

  12. Mechanical Stimulation of the HT7 Acupuncture Point to Reduce Ethanol Self-Administration in Rats

    Directory of Open Access Journals (Sweden)

    Suk-Yun Kang

    2017-01-01

    Full Text Available Background. Alcoholism, which is a disabling addiction disorder, is a major public health problem worldwide. The present study was designed to determine whether the application of acupuncture at the Shenmen (HT7 point suppresses voluntary alcohol consumption in addicted rats and whether this suppressive effect is potentiated by the administration of naltrexone. Methods. Rats were initially trained to self-administer a sucrose solution by operating a lever. A mechanical acupuncture instrument (MAI for objective mechanical stimulation was used on rats whose baseline response had been determined. In addition, the effect of HT7 acupuncture on beta-endorphin concentration and ethanol intake via naltrexone were investigated in different groups. Results. We found that ethanol intake and beta-endorphin level in rats being treated with the MAI at the HT7 point reduced significantly. The treatment of naltrexone at high doses reduced the ethanol intake and low-dose injection of naltrexone in conjunction with the MAI also suppressed ethanol intake. Conclusions. The results of the current study indicate that using the MAI at the HT7 point effectively reduces ethanol consumption in rats. Furthermore, the coadministration of the MAI and a low dose of naltrexone can produce some more potent reducing effect of ethanol intake than can acupuncture alone.

  13. Taste-aversion-prone (TAP) rats and taste-aversion-resistant (TAR) rats differ in ethanol self-administration, but not in ethanol clearance or general consumption.

    Science.gov (United States)

    Orr, T Edward; Whitford-Stoddard, Jennifer L; Elkins, Ralph L

    2004-05-01

    Taste-aversion (TA)-prone (TAP) rats and TA-resistant (TAR) rats have been developed by means of bidirectional selective breeding on the basis of their behavioral responses to a TA conditioning paradigm. The TA conditioning involved the pairing of an emetic-class agent (cyclophosphamide) with a novel saccharin solution as the conditioned stimulus. Despite the absence of ethanol in the selective breeding process, these rat lines differ widely in ethanol self-administration. In the current study, blood alcohol concentrations (BACs) were determined after 9 days of limited (2 h per day) access to a simultaneous, two-bottle choice of a 10% ethanol in water solution [volume/volume (vol./vol.)] or plain water. The BACs correlated highly with ethanol intake among TAR rats, but an insufficient number of TAP rats yielded measurable BACs to make the same comparison within this rat line. The same rats were subsequently exposed to 24-h access of a two-bottle choice (10% ethanol or plain water) for 8 days. Ethanol consumption during the 24-h access period correlated highly with that seen during limited access. Subsequent TA conditioning with these rats yielded line-typical differences in saccharin preferences. In a separate group of rats, ethanol clearance was determined by measuring BACs at 1, 4, and 7 h after injection of a 2.5-g/kg dose of ethanol. Ethanol clearance was not different between the two lines. Furthermore, the lines did not differ with respect to food and water consumption. Therefore, the TAP rat-TAR rat differences in ethanol consumption cannot be attributed to line differences in ethanol metabolism or in general consummatory behavior. The findings support our contention that the line differences in ethanol consumption are mediated by differences in TA-related mechanisms. The findings are discussed with respect to genetically based differences in the subjective experience of ethanol.

  14. Effect of subchronic administration of nutmeg (Myristica fragrans Houtt) ethanolic extract to hematological parameters in rat

    Science.gov (United States)

    Bachri, M. S.; Yuliani, S.; Sari, A. K.

    2017-11-01

    Nutmeg is dried kernel of broadly ovoid seed of Myristica fragrans Houtt. It has been mentioned in ethnomedical literature as aphrodisiac, stomachic, carminative, tonic, and nervous stimulant. In order to establish the safety of nutmeg, the effect of the repeated administration of nutmeg is needed. The study was aimed to determine the toxic effect of subchronic administration of nutmeg ethanolic extract to hematological parameters in rat. A total of 28 male adult Wistar rats divided into 4 groups. Group I as control was given by 0.5% CMC-suspension, group II, III, and IV were given by 50, 100, and 200 mg/kg bw, respectively, of nutmeg ethanolic extract. The treatments were administered daily for 31 days. On day 31 bloods were taken from orbital sinus. The hematological parameter consisted of the numbers of erythrocyte and leukocyte as well as hemoglobin and total protein levels were measured. The data were statistically analyzed by one way Anova followed by LSD test. All of observed hematological parameters in rats showed that there were no significant difference between the nutmeg ethanolic extract treated groups and control group. The result indicated that the subchronic administration of 50, 100, and 200 mg/kg bw of nutmeg ethanolic extract did not cause the change of hematological parameters in rat.

  15. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

    Science.gov (United States)

    Spronk, D B; Dumont, G J H; Verkes, R J; De Bruijn, E R A

    2014-07-01

    Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring. The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates. Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design. Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed. A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

  16. Effect of chronic ethanol administration on iron metabolism in the rat

    International Nuclear Information System (INIS)

    Sanchez, J.; Casas, M.; Rama, R.

    1988-01-01

    This study shows that the ingestion of ethanol provokes alterations in iron metabolism which may lead to iron overload. Impaired release of reticuloendothelial iron was shown by a decrease of the maximum red blood cell utilization when radioactive iron was supplied as colloidal iron. An impairment in the erythropoietic activity of ethanoltreated animals was also observed, as can be seen from the reduced plasma iron turnover and red blood cell utilization within 24 h of iron administration. A rise in marrow transit time was also observed. In ethanol-treated rats there was an increase in the amount of iron retained both in the liver and the spleen. This was observed in both sexes and also in the offspring from ethanol-treated mothers. (author)

  17. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2011-02-01

    Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders. Copyright © 2010 by the Research Society on Alcoholism.

  18. The Effect of Acute Ethanol and Gabapentin Administration on Spatial Learning and Memory

    Directory of Open Access Journals (Sweden)

    Fahimeh Yeganeh

    2011-09-01

    Full Text Available  Introduction: Patients with epilepsy can have impaired cognitive abilities. Many factors contribute to this impairment, including the adverse effects of antiepileptic drugs like Gabapentin (GBP. Apart from anti-epilectic action, Gabapentin is used to relieve ethanol withdrawal syndrome. Because both GBP and ethanol act on GABA ergic system, the purpose of this study was to evaluate their effect and interaction on spatial learning and memory. Material and Methods: Male Sprague-Dawley rats were trained in the Morris water maze for 5 consecutive days. On the sixth day, a probe test was performed to assess the retention phase or spatial rats’ memory ability. Ethanol (1.5 g/kg i.p. and GBP (30 mg/kg i.p. was administered each day 30 and 40 minutes before testing respectively. Results: Acute ethanol administration selectively impaired spatial memory (p<0.05, yet it failed to impair the acquisition phase (learning. Contradictorily GBP selectively impaired learning on second and forth days. Conclusion: These findings demonstrate that GBP and acute ethanol impair different phases of learning probably by modifying different neuronal pathways in cognitive areas of the brain.

  19. Is catalase involved in the effects of systemic and pVTA administration of 4-methylpyrazole on ethanol self-administration?

    Science.gov (United States)

    Peana, Alessandra T; Pintus, Francesca A; Bennardini, Federico; Rocchitta, Gaia; Bazzu, Gianfranco; Serra, Pier Andrea; Porru, Simona; Rosas, Michela; Acquas, Elio

    2017-09-01

    The oxidative metabolism of ethanol into acetaldehyde involves several enzymes, including alcohol dehydrogenase (ADH) and catalase-hydrogen peroxide (H 2 O 2 ). In this regard, while it is well known that 4-methylpyrazole (4-MP) acts by inhibiting ADH in the liver, little attention has been placed on its ability to interfere with fatty acid oxidation-mediated generation of H 2 O 2 , a mechanism that may indirectly affect catalase whose enzymatic activity requires H 2 O 2 . The aim of our investigation was twofold: 1) to evaluate the effect of systemic (i.p. [intraperitoneal]) and local (into the posterior ventral tegmental area, pVTA) administration of 4-MP on oral ethanol self-administration, and 2) to assess ex vivo whether or not systemic 4-MP affects liver and brain H 2 O 2 availability. The results show that systemic 4-MP reduced ethanol but not acetaldehyde or saccharin self-administration, and decreased the ethanol deprivation effect. Moreover, local intra-pVTA administration of 4-MP reduced ethanol but not saccharin self-administration. In addition, although unable to affect basal catalase activity, systemic administration of 4-MP decreased H 2 O 2 availability both in liver and in brain. Overall, these results indicate that 4-MP interferes with ethanol self-administration and suggest that its behavioral effects could be due to a decline in catalase-H 2 O 2 system activity as a result of a reduction of H 2 O 2 availability, thus highlighting the role of central catalase-mediated metabolism of ethanol and further supporting the key role of acetaldehyde in the reinforcing properties of ethanol. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Intracerebroventricular Delivery in Mice for Motor Neuron Diseases.

    Science.gov (United States)

    Nizzardo, M; Rizzuti, M

    2017-01-01

    The use of antisense oligonucleotides to target specific mRNA sequences represents a promising therapeutic strategy for neurological disorders. Recent advances in antisense technology enclose the development of phosphorodiamidate morpholino oligomers (MO), which is one of the best candidates for molecular therapies due to MO's excellent pharmacological profile.Nevertheless, the route of administration of antisense compounds represents a critical issue in the neurological field. Particularly, as regards motor neuron diseases, intracerebroventricular (ICV) injection is undoubtedly the most efficient procedure to directly deliver therapeutic molecules in the central nervous system (CNS). Indeed, we recently demonstrated the outstanding efficacy of the MO antisense approach by its direct administration to CNS of the transgenic mouse models of Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS).Here, we describe methods to perform the ICV delivery of MO in neonatal SMA mice and in adult ALS mice.

  1. Changes in Dopamine Transmission in the Nucleus Accumbens Shell and Core during Ethanol and Sucrose Self-Administration

    Directory of Open Access Journals (Sweden)

    Valentina Bassareo

    2017-05-01

    Full Text Available Ethanol, like other substances of abuse, preferentially increases dopamine (DA transmission in the rat nucleus accumbens (NAc following passive administration. It remains unclear, however, whether ethanol also increases NAc DA transmission following operant oral self-administration (SA. The NAc is made-up of a ventro-medial compartment, the shell and a dorso-lateral one, the core, where DA transmission responds differentially following exposure to drugs of abuse. Previous studies from our laboratory investigated changes in dialysate DA in the NAc shell and core of rats responding for sucrose pellets and for drugs of abuse. As a follow up to these studies, we recently investigated the changes in NAc shell and core DA transmission associated to oral SA of a 10% ethanol solution. For the purpose of comparison with literature studies utilizing sucrose + ethanol solutions, we also investigated the changes in dialysate DA associated to SA of 20% sucrose and 10% ethanol + 20% sucrose solutions. Rats were trained to acquire oral SA of the solutions under a Fixed Ratio 1 (FR1 schedule of nose-poking. After training, rats were monitored by microdialysis on three consecutive days under response contingent (active, reward omission (extinction trial and response non-contingent (passive presentation of ethanol, sucrose or ethanol + sucrose solutions. Active and passive ethanol administration produced a similar increase in dialysate DA in the two NAc subdivisions, while under extinction trial DA increased preferentially in the shell compared to the core. Conversely, under sucrose SA and extinction DA increased exclusively in the shell. These observations provide unequivocal evidence that oral SA of 10% ethanol increases dialysate DA in the NAc, and also suggest that stimuli conditioned to ethanol exposure contribute to the increase of dialysate DA observed in the NAc following ethanol SA. Comparison between the pattern of DA changes detected in the NAc

  2. The combination of atorvastatin and ethanol is not more hepatotoxic to rats than the administration of each drug alone

    Directory of Open Access Journals (Sweden)

    D.T. Ito

    2007-03-01

    Full Text Available Animal studies and premarketing clinical trials have revealed hepatotoxicity of statins, primarily minor elevations in serum alanine aminotransferase levels. The combined chronic use of medicines and eventual ethanol abuse are common and may present a synergistic action regarding liver injury. Our objective was to study the effect of the chronic use of atorvastatin associated with acute ethanol administration on the liver in a rat model. One group of rats was treated daily for 5 days a week for 2 months with 0.8 mg/kg atorvastatin by gavage. At the end of the treatment the livers were perfused with 72 mM ethanol for 60 min. Control groups (at least 4 animals in each group consisted of a group of 2-month-old male Wistar EPM-1 rats exposed to 10% ethanol (v/v ad libitum replacing water for 2 months, followed by perfusion of the liver with 61 nM atorvastatin for 60 min, and a group of animals without chronic ethanol treatment whose livers were perfused with atorvastatin and/or ethanol. The combination of atorvastatin with ethanol did not increase the release of injury marker enzymes (alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase from the liver and no change in liver function markers (bromosulfophthalein clearance, and oxygen consumption was observed. Our results suggest that the combination of atorvastatin with ethanol is not more hepatotoxic than the separate use of each substance.

  3. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    International Nuclear Information System (INIS)

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-01-01

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14 C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation

  4. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomoki, E-mail: s13220@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Morita, Akihito, E-mail: moritaa@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Mori, Nobuko, E-mail: morin@b.s.osakafu-u.ac.jp [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); Miura, Shinji, E-mail: miura@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  5. Neuropeptide Y administration into the third ventricle does not increase sucrose or ethanol self-administration but does affect the cortical EEG and increases food intake.

    Science.gov (United States)

    Katner, S N; Slawecki, C J; Ehlers, C L

    2002-03-01

    Several studies have provided indirect evidence that neuropeptide Y (NPY) may play a role in the regulation of ethanol consumption. However, the direct effects of central NPY administration on ethanol drinking are unclear. This study examined the effects of NPY on ethanol, sucrose, and food consumption as well as its concomitant effects on the cortical EEG. Wistar rats were implanted with cortical recording electrodes and a cannula in the third ventricle after using a sucrose substitution procedure to establish ethanol self-administration. NPY (0-15 microg/3.0 microl) was infused into the third ventricle prior to drinking sessions, when 10% ethanol (10E), 2% sucrose (2S), 0.5% sucrose (0.5S), or food were available. Behavior and cortical EEG were monitored during the sessions. NPY had no effect on the intake of 10E, 2S, or 0.5S, but NPY (15 microg/3.0 microl) significantly increased food intake. Under baseline drinking conditions, EEG power in the 6-8 Hz range was significantly greater when 2S was consumed compared to 10E. NPY decreased power in the 8-16 Hz range, decreased peak frequency in the 6-8 Hz range, and increased peak frequency in the 32-50 Hz range when 10E or 2S was available. These data suggest that NPY administration into the third ventricle preferentially regulates feeding compared to ethanol or sucrose drinking. In addition, since NPY significantly altered the cortical EEG in the absence of effects on ethanol and sucrose consumption, these data may indicate that NPY's cortical EEG effects are more related to its sedative or anxiolytic properties, rather than any effect on consumption.

  6. Postnatal Administration of Allopregnanolone Modifies Glutamate Release but Not BDNF Content in Striatum Samples of Rats Prenatally Exposed to Ethanol

    Directory of Open Access Journals (Sweden)

    Roberto Yunes

    2015-01-01

    Full Text Available Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 μg/kg, s.c. administered to juvenile male rats (day 21 of age on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8. Prenatal ethanol administration decreased the K+-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.

  7. Chronic ethanol administration increases the binding of 3H Ro-15-4513 in primary cultured spinal cord neurons

    International Nuclear Information System (INIS)

    Mlatre, M.; Ticku, M.K.

    1989-01-01

    Ro 15-4513 (ethyl-8-azido-5, 6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5α], [1,4] benzodiazepine-3-carboxylate) is reported to be a selective ethanol antagonist in biochemical and behavioral studies. The effect of chronic ethanol treatment on the binding of [ 3 H]Ro 15-4513 was investigated in cultured spinal cord neurons, which are shown to possess all the elements of GABA benzodiazepine receptor complex. Chronic ethanol treatment (50 mM for 6 hr, 12 hr, 18 hr, 3 days, and 5 3 days) produced an increase in the specific binding of [ 3 H]Ro 15-4513. The increase in binding in these neurons was due to an increase in the number (B max ) of receptor sites. This effect was specific for Ro 15-4513, since identical ethanol treatment did not alter the binding of benzodiazepine antagonist [ 3 H]Ro 15-1788 or agonist [ 3 H]flunitrazepam or inverse agonist [ 3 H]methyl-β-carboline-3-carboxylate. Similar results have been reported following chronic ethanol treatment to rats. These results suggest that the Ro 15-4513 binding sites on the oligomeric GABA receptor complex are altered following chronic ethanol administration, and support the notion of a unique role of Ro 15-4513 as an ethanol antagonist

  8. Ethanol and phencyclidine interact with respect to nucleus accumbens dopamine release: differential effects of administration order and pretreatment protocol

    Directory of Open Access Journals (Sweden)

    Chris Pickering

    2010-06-01

    Full Text Available Executive dysfunction is a common symptom among alcohol-dependent individuals. Phencyclidine (PCP injection induces dysfunction in the prefrontal cortex of animals but little is known about how PCP affects the response to ethanol. Using the in vivo microdialysis technique in male Wistar rats, we investigated how systemic injection of 5 mg/kg PCP would affect the dopamine release induced by local infusion of 300 mM ethanol into the nucleus accumbens. PCP given 60 min before ethanol entirely blocked ethanol-induced dopamine release. However, when ethanol was administered 60 min before PCP, both drugs induced dopamine release and PCP’s effect was potentiated by ethanol (180% increase vs 150%. To test the role of prefrontal cortex dysfunction in ethanol reinforcement, animals were pre-treated for 5 days with 2.58 mg/kg PCP according to previously used ‘PFC hypofunction protocols’. This, however, did not change the relative response to PCP or ethanol compared to saline-treated controls. qPCR illustrated that this PCP dose did not significantly change expression of glucose transporters Glut1 (SLC2A1 or Glut3 (SLC2A3, monocarboxylate transporter MCT2 (SLC16A7, glutamate transporters GLT-1 (SLC1A2 or GLAST (SLC1A3, the immediate early gene Arc (Arg3.1 or GABAergic neuron markers GAT-1 (SLC6A1 and parvalbumin. Therefore, we concluded that PCP at a dose of 2.58 mg/kg for 5 days did not induce hypofunction in Wistar rats. However, PCP and ethanol do have overlapping mechanisms of action and these drugs differentially affect mesolimbic dopaminergic transmission depending on the order of administration.

  9. Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration.

    Science.gov (United States)

    Grant, Kathleen A; Leng, Xiaoyan; Green, Heather L; Szeliga, Kendall T; Rogers, Laura S M; Gonzales, Steven W

    2008-10-01

    We have developed an animal model of alcohol self-administration that initially employs schedule-induced polydipsia (SIP) to establish reliable ethanol consumption under open access (22 h/d) conditions with food and water concurrently available. SIP is an adjunctive behavior that is generated by constraining access to an important commodity (e.g., flavored food). The induction schedule and ethanol polydipsia generated under these conditions affords the opportunity to investigate the development of drinking typologies that lead to chronic, excessive alcohol consumption. Adult male cynomolgus monkeys (Macaca fascicularis) were induced to drink water and 4% (w/v in water) ethanol by a Fixed-Time 300 seconds (FT-300 seconds) schedule of banana-flavored pellet delivery. The FT-300 seconds schedule was in effect for 120 consecutive sessions, with daily induction doses increasing from 0.0 to 0.5 g/kg to 1.0 g/kg to 1.5 g/kg every 30 days. Following induction, the monkeys were allowed concurrent access to 4% (w/v) ethanol and water for 22 h/day for 12 months. Drinking typographies during the induction of drinking 1.5 g/kg ethanol emerged that were highly predictive of the daily ethanol intake over the next 12 months. Specifically, the frequency in which monkeys ingested 1.5 g/kg ethanol without a 5-minute lapse in drinking (defined as a bout of drinking) during induction strongly predicted (correlation 0.91) subsequent ethanol intake over the next 12 months of open access to ethanol. Blood ethanol during induction were highly correlated with intake and with drinking typography and ranged from 100 to 160 mg% when the monkeys drank their 1.5 g/kg dose in a single bout. Forty percent of the population became heavy drinkers (mean daily intakes >3.0 g/kg for 12 months) characterized by frequent "spree" drinking (intakes >4.0 g/kg/d). This model of ethanol self-administration identifies early alcohol drinking typographies (gulping the equivalent of 6 drinks) that evolve into

  10. The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration.

    Directory of Open Access Journals (Sweden)

    Subhashini Srinivasan

    Full Text Available Recent studies have implicated the hypocretin/orexinergic system in reward-seeking behavior. Almorexant, a dual orexin/hypocretin R(1 and R(2 receptor antagonist, has proven effective in preclinical studies in promoting sleep in animal models and was in Phase III clinical trials for sleep disorders. The present study combines behavioral assays with in vitro biochemical and electrophysiological techniques to elucidate the role of almorexant in ethanol and sucrose intake. Using an operant self-administration paradigm, we demonstrate that systemic administration of almorexant decreased operant self-administration of both 20% ethanol and 5% sucrose. We further demonstrate that intra-ventral tegmental area (VTA infusions, but not intra-substantia nigra infusions, of almorexant reduced ethanol self-administration. Extracellular recordings performed in VTA neurons revealed that orexin-A increased firing and this enhancement of firing was blocked by almorexant. The results demonstrate that orexin/hypocretin receptors in distinct brain regions regulate ethanol and sucrose mediated behaviors.

  11. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques

    Science.gov (United States)

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.

    2016-01-01

    Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380

  12. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques.

    Science.gov (United States)

    Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T; Lovinger, David M; Mateo, Yolanda; Jimenez, Vanessa A; Helms, Christa M; Grant, Kathleen A; Jones, Sara R

    2016-04-01

    Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are not fully understood. Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Female rhesus macaques completed 1 year of daily (22 h/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa opioid receptor agonist) induced inhibition of dopamine release. Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa opioid receptors, which both act as negative regulators of presynaptic dopamine release, was moderately and robustly enhanced in ethanol drinkers. Greater uptake rates and sensitivity to D2-type autoreceptor and kappa opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system and suggest that the dopamine and dynorphin/kappa opioid receptor systems may be efficacious pharmacotherapeutic targets in the treatment of alcohol use disorders.

  13. Prenatal exposure to ethanol during late gestation facilitates operant self-administration of the drug in 5-day-old rats.

    Science.gov (United States)

    Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E; Spear, Norman E

    2014-02-01

    Prenatal ethanol exposure modifies postnatal affinity to the drug, increasing the probability of ethanol use and abuse. The present study tested developing rats (5-day-old) in a novel operant technique to assess the degree of ethanol self-administration as a result of prenatal exposure to low ethanol doses during late gestation. On a single occasion during each of gestational days 17-20, pregnant rats were intragastrically administered ethanol 1 g/kg, or water (vehicle). On postnatal day 5, pups were tested on a novel operant conditioning procedure in which they learned to touch a sensor to obtain 0.1% saccharin, 3% ethanol, or 5% ethanol. Immediately after a 15-min training session, a 6-min extinction session was given in which operant behavior had no consequence. Pups were positioned on a smooth surface and had access to a touch-sensitive sensor. Physical contact with the sensor activated an infusion pump, which served to deliver an intraoral solution as reinforcement (Paired group). A Yoked control animal evaluated at the same time received the reinforcer when its corresponding Paired pup touched the sensor. Operant behavior to gain access to 3% ethanol was facilitated by prenatal exposure to ethanol during late gestation. In contrast, operant learning reflecting ethanol reinforcement did not occur in control animals prenatally exposed to water only. Similarly, saccharin reinforcement was not affected by prenatal ethanol exposure. These results suggest that in 5-day-old rats, prenatal exposure to a low ethanol dose facilitates operant learning reinforced by intraoral administration of a low-concentration ethanol solution. This emphasizes the importance of intrauterine experiences with ethanol in later susceptibility to drug reinforcement. The present operant conditioning technique represents an alternative tool to assess self-administration and seeking behavior during early stages of development. Published by Elsevier Inc.

  14. Strain differences in ethanol preference and reinforced behaviour: a comparison of two-bottle choice and operant self-administration paradigms.

    Science.gov (United States)

    Wilson, A W; Neill, J C; Costall, B

    1997-02-01

    An animal's volitional consumption of ethanol may be influenced by both genetic and environmental factors. In addition, genetic control of ethanol intake may depend on the test paradigm used. In the present study, performance for, and intake of ethanol in a limited access oral operant paradigm, and preference for ethanol in a two-bottle free choice test in the home-cage were compared in female rats of the heterogeneous Sprague Dawley (SD) and inbred Lewis strains. A smaller proportion of SD rats reached criterion on the self-administration task (four of 10 SD vs eight of 10 Lewis), but those SD rats that did achieve criterion maintained higher levels of responding and greater ethanol intake, relative to the Lewis strain, in the operant self-administration paradigm. Additionally, SD but not Lewis rats exhibited increased locomotor activity and an increase in performance for ethanol compared with water. In marked contrast, Lewis rats exhibited a greater preference for 10% ethanol over water in the two-bottle choice test compared with the SD strain, which preferred water to ethanol. These results suggest that both genotype and test paradigm are involved in the extent to which ethanol serves as a positive reinforcer and that unlike two-bottle choice preference tests, self-administration studies are more highly predictive of the reinforcing properties of ethanol.

  15. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration

    Directory of Open Access Journals (Sweden)

    Shubha Ghosh Dastidar

    2018-01-01

    Full Text Available Both chronic and acute (binge alcohol drinking are important health and economic concerns worldwide and prominent risk factors for the development of alcoholic liver disease (ALD. There are no FDA-approved medications to prevent or to treat any stage of ALD. Therefore, discovery of novel therapeutic strategies remains a critical need for patients with ALD. Relevant experimental animal models that simulate human drinking patterns and mimic the spectrum and severity of alcohol-induced liver pathology in humans are critical to our ability to identify new mechanisms and therapeutic targets. There are several animal models currently in use, including the most widely utilized chronic ad libitum ethanol (EtOH feeding (Lieber–DeCarli liquid diet model, chronic intragastric EtOH administration (Tsukamoto–French model, and chronic-plus-binge EtOH challenge (Bin Gao—National Institute on Alcohol Abuse and Alcoholism (NIAAA model. This review provides an overview of recent advances in rodent models of binge EtOH administration which help to recapitulate different features and etiologies of progressive ALD. These models include EtOH binge alone, and EtOH binge coupled with chronic EtOH intake, a high fat diet, or endotoxin challenge. We analyze the strengths, limitations, and translational relevance of these models, as well as summarize the liver injury outcomes and mechanistic insights. We further discuss the application(s of binge EtOH models in examining alcohol-induced multi-organ pathology, sex- and age-related differences, as well as circadian rhythm disruption.

  16. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    Science.gov (United States)

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Short-term and long-term ethanol administration inhibits the placental uptake and transport of valine in rats

    International Nuclear Information System (INIS)

    Patwardhan, R.V.; Schenker, S.; Henderson, G.I.; Abou-Mourad, N.N.; Hoyumpa, A.M. Jr.

    1981-01-01

    Ethanol ingestion during pregnancy causes a pattern of fetal/neonatal dysfunction called the FAS. The effects of short- and long-term ethanol ingestion on the placental uptake and maternal-fetal transfer of valine were studied in rats. The in vivo placental uptake and fetal uptake were estimated after injection of 0.04 micromol of /sub 14/C-valine intravenously on day 20 of gestation in Sprague-Dawley rats. Short-term ethanol ingestion (4 gm/kg) caused a significant reduction in the placental uptake of /sub 14/C-valine by 33%, 60%, and 30%, and 31% at 2.5, 5, 10, and 15 min after valine administration, respectively (p less than 0.01), and a similar significant reduction occurred in the fetal uptake of /sub 14/C-valine (p less than 0.01). Long-term ethanol ingestion prior to and throughout gestation resulted in a 47% reduction in placental valine uptake (p less than 0.01) and a 46% reduction in fetal valine uptake (p less than 0.01). Long-term ethanol feeding from day 4 to day 20 of gestation caused a 32% reduction in placental valine uptake (p less than 0.01) and a 26% reduction in fetal valine uptake (p less than 0.01). We conclude that both short- and long-term ingestion of ethanol inhibit the placental uptake and maternal-fetal transfer of an essential amino acid--valine. An alteration of placental function may contribute to the pathogenesis of the FAS

  18. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  19. Acute psychomotor effects of MDMA and ethanol (co-) administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G J H; Schoemaker, R C; Touw, D J; Sweep, F C G J; Buitelaar, J K; van Gerven, J M A; Verkes, R J

    In Western societies, a considerable percentage of young people use 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'). The use of alcohol (ethanol) in combination with ecstasy is common. The aim of the present study was to assess the acute psychomotor and subjective effects of (co-)

  20. Analysis of hepatic gene expression during fatty liver change due to chronic ethanol administration in mice

    International Nuclear Information System (INIS)

    Yin, H.-Q.; Je, Young-Tae; Kim, Mingoo; Kim, Ju-Han; Kong, Gu; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-IL; Lee, Mi-Ock; Lee, Byung-Hoon

    2009-01-01

    Chronic consumption of ethanol can cause cumulative liver damage that can ultimately lead to cirrhosis. To explore the mechanisms of alcoholic steatosis, we investigated the global intrahepatic gene expression profiles of livers from mice administered alcohol. Ethanol was administered by feeding the standard Lieber-DeCarli diet, of which 36% (high dose) and 3.6% (low dose) of the total calories were supplied from ethanol for 1, 2, or 4 weeks. Histopathological evaluation of the liver samples revealed fatty changes and punctate necrosis in the high-dose group and ballooning degeneration in the low-dose group. In total, 292 genes were identified as ethanol responsive, and several of these differed significantly in expression compared to those of control mice (two-way ANOVA; p < 0.05). Specifically, the expression levels of genes involved in hepatic lipid transport and metabolism were examined. An overall net increase in gene expression was observed for genes involved in (i) glucose transport and glycolysis, (ii) fatty acid influx and de novo synthesis, (iii) fatty acid esterification to triglycerides, and (iv) cholesterol transport, de novo cholesterol synthesis, and bile acid synthesis. Collectively, these data provide useful information concerning the global gene expression changes that occur due to alcohol intake and provide important insights into the comprehensive mechanisms of chronic alcoholic steatosis

  1. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats.

    Science.gov (United States)

    Reeta, K H; Singh, Devendra; Gupta, Yogendra K

    2017-04-01

    Alzheimer's disease is a major cause of dementia worldwide. Edaravone, a potent free radical scavenger, is reported to be neuroprotective. The present study was designed to investigate the effect of chronic edaravone administration on intracerebroventricular-streptozotocin (ICV-STZ) induced cognitive impairment in male Wistar rats. Cognitive impairment was developed by single ICV-STZ (3 mg/kg) injection bilaterally on day 1. Edaravone (1, 3 and 10 mg/kg, orally, once daily) was administered for 28 days. Morris water maze and passive avoidance tests were used to assess cognitive functions at baseline and on days 14 and 28. ICV-STZ caused cognitive impairment as evidenced by increased escape latency and decreased time spent in target quadrant in the Morris water maze test and reduced retention latency in the passive avoidance test. STZ caused increase in oxidative stress, cholinesterases, inflammatory cytokines and protein expression of ROCK-II and decrease in protein expression of ChAT. Edaravone ameliorated the STZ-induced cognitive impairment. STZ-induced increase in oxidative stress and increased levels of pro-inflammatory cytokines (TNF-α, IL-1β) were mitigated by edaravone. Edaravone also prevented STZ-induced increased protein expression of ROCK-II. Moreover, edaravone significantly prevented STZ-induced increased activity of cholinesterases in the cortex and hippocampus. The decreased expression of ChAT caused by STZ was brought towards normal by edaravone in the hippocampus. The results thus show that edaravone is protective against STZ-induced cognitive impairment, oxidative stress, cholinergic dysfunction and altered protein expressions. This study thus suggests the potential of edaravone as an adjuvant in the treatment of Alzheimer's disease. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Roux-en-Y gastric bypass increases intravenous ethanol self-administration in dietary obese rats.

    Directory of Open Access Journals (Sweden)

    James E Polston

    Full Text Available Roux-en-Y gastric bypass surgery (RYGB is an effective treatment for severe obesity. Clinical studies however have reported susceptibility to increased alcohol use after RYGB, and preclinical studies have shown increased alcohol intake in obese rats after RYGB. This could reflect a direct enhancement of alcohol's rewarding effects in the brain or an indirect effect due to increased alcohol absorption after RGYB. To rule out the contribution that changes in alcohol absorption have on its rewarding effects, here we assessed the effects of RYGB on intravenously (IV administered ethanol (1%. For this purpose, high fat (60% kcal from fat diet-induced obese male Sprague Dawley rats were tested ~2 months after RYGB or sham surgery (SHAM using both fixed and progressive ratio schedules of reinforcement to evaluate if RGYB modified the reinforcing effects of IV ethanol. Compared to SHAM, RYGB rats made significantly more active spout responses to earn IV ethanol during the fixed ratio schedule, and achieved higher breakpoints during the progressive ratio schedule. Although additional studies are needed, our results provide preliminary evidence that RYGB increases the rewarding effects of alcohol independent of its effects on alcohol absorption.

  3. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice.

    Science.gov (United States)

    McCool, Brian A; Chappell, Ann M

    2015-03-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist ORG 34517 reduces the severity of ethanol withdrawal and related hypothalamic-pituitary-adrenal axis activation.

    Science.gov (United States)

    Reynolds, Anna R; Saunders, Meredith A; Brewton, Honoree' W; Winchester, Sydney R; Elgumati, Ibrahim S; Prendergast, Mark A

    2015-09-01

    The development of ethanol dependence is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis and activation of type II glucocorticoid receptors (GR). These effects may contribute to withdrawal-associated anxiety, craving and relapse to drinking. The present studies examined acute and oral administration of the novel, selective and competitive GR antagonist ORG 34517 on the severity of ethanol withdrawal. Adult, male Sprague-Dawley rats were administered ethanol (4g/kg/i.g.) twice daily for 5 days followed by 2 days of withdrawal for 1, 2 or 3 consecutive cycles. Blood ethanol levels (BELs) were determined at 0930 on Day 4 of each week, while blood corticosterone levels (BCLs) were obtained at 11:00hours on the first day of each ethanol withdrawal. During early withdrawal, subjects received oral administration of ORG 345617 (60mg/kg/i.g.) or a placebo and withdrawal was monitored. Peak BELs of 225.52mg/dl were observed during the third week. Withdrawal from three cycles of the regimen produced marked behavioral abnormalities (e.g., aggression, rigidity, and hypoactivity) and significant increases in BCLs of ethanol-dependent subjects. Acute, oral administration of ORG 34517 during early withdrawal significantly reduced both the severity of ethanol withdrawal, as reflected in reduced rigidity, aggression, and hypoactivity, and elevations in BCL without producing any sedative-like effects. The present findings demonstrate that repeated ethanol exposure and withdrawal is associated with significant behavioral abnormalities and dysregulation of HPA axis activation. Further these data suggest that selective GR antagonists should be further considered as putative pharmacotherapies for treatment of ethanol dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Amelioration of alcohol-induced hepatotoxicity by the administration of ethanolic extract of Sida cordifolia Linn.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2012-10-01

    Sida cordifolia Linn. (Malvaceae) is a plant used in folk medicine for the treatment of the inflammation of oral mucosa, asthmatic bronchitis, nasal congestion and rheumatism. We studied the hepatoprotective activity of 50 % ethanolic extract of S. cordifolia Linn. against alcohol intoxication. The duration of the experiment was 90 d. The substantially elevated levels of toxicity markers such as alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase due to the alcohol treatment were significantly lowered in the extract-treated groups. The activity of antioxidant enzymes and glutathione content, which was lowered due to alcohol toxicity, was increased to a near-normal level in the co-administered group. Lipid peroxidation products, protein carbonyls, total collagen and hydroxyproline, which were increased in the alcohol-treated group, were reduced in the co-administered group. The mRNA levels of cytochrome P450 2E1, NF-κB, TNF-α and transforming growth factor-β1 were found to be increased in the alcohol-treated rats, and their expressions were found to be decreased in the co-administered group. These observations were reinforced by histopathological analysis. Thus, the present study clearly indicates that 50 % ethanolic extract of the roots of S. cordifolia Linn. has a potent hepatoprotective action against alcohol-induced toxicity, which was mediated by lowering oxidative stress and by down-regulating the transcription factors.

  6. The novelty-seeking phenotype modulates the long-lasting effects of intermittent ethanol administration during adolescence.

    Directory of Open Access Journals (Sweden)

    Sandra Montagud-Romero

    Full Text Available The aim of the present study was to investigate if a novelty-seeking phenotype mediates the long-lasting consequences of intermittent EtOH intoxication during adolescence. The hole board test was employed to classify adolescent mice as High- or Low-Novelty Seekers. Subsequently, animals were administered ethanol (1.25 or 2.5 g/kg on two consecutive days at 48-h intervals over a 14-day period. Anxiety levels--measured using the elevated plus maze- spontaneous motor activity and social interaction test were studied 3 weeks later. A different set of mice underwent the same procedure, but received only the 2.5 g/kg dose of ethanol. Three weeks later, in order to induce CPP, the same animals were administered 1 or 6 mg/kg of cocaine or 1 or 2.5 mg/kg MDMA. The results revealed a decrease in aggressive behaviors and an anxiolytic profile in HNS mice and longer latency to explore the novel object by LNS mice. Ethanol exposure enhanced the reinforcing effects of cocaine and MDMA in both groups when CPP was induced with a sub-threshold dose of the drugs. The extinguished cocaine-induced CPP (1 and 6 mg/kg was reinstated after a priming dose in HNS animals only. Our results confirm that intermittent EtOH administration during adolescence induces long-lasting effects that are manifested in adult life, and that there is an association between these effects and the novelty-seeking phenotype.

  7. The ethanol metabolite acetaldehyde inhibits the induction of long-term potentiation in the rat dentate gyrus in vivo

    Science.gov (United States)

    Abe, Kazuho; Yamaguchi, Shinichi; Sugiura, Minoru; Saito, Hiroshi

    1999-01-01

    Ethanol has been reported to inhibit the induction of long-term potentiation (LTP) in the hippocampus. However, the correlation between the effects of ethanol in vivo and in vitro remained unclear. In addition, previous works have little considered the possibility that the effect of ethanol is mediated by its metabolites. To solve these problems, we investigated the effects of ethanol and acetaldehyde, the first metabolite in the metabolism of ethanol, on the induction of LTP at medial perforant path-granule cell synapses in the dentate gyrus of anaesthetized rats in vivo.Oral administration of 1 g kg−1 ethanol significantly inhibited the induction of LTP, confirming the effectiveness of ethanol in vivo.A lower dose of ethanol (0.5 g kg−1) failed to inhibit the induction of LTP in intact rats, but significantly inhibited LTP in rats treated with disulfiram, an inhibitor of aldehyde dehydrogenase, demonstrating that LTP is inhibited by acetaldehyde accumulation following ethanol administration.Intravenous injection of acetaldehyde (0.06 g kg−1) significantly inhibited the induction of LTP.The inhibitory effect of acetaldehyde on LTP induction was also observed when it was injected into the cerebroventricules, suggesting that acetaldehyde has a direct effect on the brain. The intracerebroventricular dose of acetaldehyde effective in inhibiting LTP induction (0.1–0.15 mg brain−1) was approximately 10 fold lower than that of ethanol (1.0–1.5 mg brain−1).It is possible that acetaldehyde is partly responsible for memory impairments induced by ethanol intoxication. PMID:10482910

  8. Biochemical changes in the kidney and liver of rats following administration of ethanolic extract of Psidium guajava leaves.

    Science.gov (United States)

    Adeyemi, O S; Akanji, M A

    2011-09-01

    Furtherance to a previous report on the anti-trypanosomal properties of Psidium guajava aqueous leaf extract in rats experimentally infected with Trypanosoma brucei brucei, we have evaluated the effects of the daily intraperitoneal administration of P. guajava leaf extract to rats on the activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and acid phosphatase (ACP) in the kidney, liver and serum. The results obtained revealed that the administration of the extract produced significant increase in the serum activities of AST, ALT, ALP and ACP when compared with the control (p < 0.05). Also AST, ALT and ALP and ACP activities in the tissues of animals administered the extract revealed inconsistent changes (p < 0.05) relative to control. The increase in the serum activity of ALP may be an indicator that there was a likely compromise to the integrity of the plasma membrane as a result of the ethanolic extract administration. This could have caused leakages of the other enzymes investigated, which may explain the corresponding increases in the serum activities of AST, ALT and ACP observed.

  9. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  10. Ethanol self-administration in free-flying honeybees (Apis mellifera L.) in an operant conditioning protocol.

    Science.gov (United States)

    Sokolowski, Michel B C; Abramson, Charles I; Craig, David Philip Arthur

    2012-09-01

    This study examines the effect of ethanol (EtOH) on continuous reinforcement schedules in the free-flying honeybee (Apis mellifera L.). As fermented nectars may be encountered naturally in the environment, we designed an experiment combining the tools of laboratory research with minimal disturbance to the natural life of honeybees. Twenty-five honeybees were trained to fly from their colonies to a fully automated operant chamber with head poking as the operant response. Load size, intervisit interval, and interresponse times (IRTs) served as the dependent variables and were monitored over the course of a daily training session consisting of many visits. Experimental bees were tested using an ABA design in which sucrose only was administered during condition A and a 5% EtOH sucrose solution was administered during condition B. Control bees received sucrose solution only. Most bees continued to forage after EtOH introduction. EtOH significantly reduced the load size and the intervisit interval with no significant effect on IRTs. However, a look on individual data shows large individual differences suggesting the existence of different kinds of behavioral phenotypes linked to EtOH consumption and effects. Our results contribute to the study of EtOH consumption as a normal phenomenon in an ecological context and open the door to schedule-controlled drug self-administration studies in honeybees. Copyright © 2012 by the Research Society on Alcoholism.

  11. Differential regulation of proopiomelanocortin (POMC mRNA expression in hypothalamus and anterior pituitary following repeated cyanamide with ethanol administration

    Directory of Open Access Journals (Sweden)

    Kinoshita Hiroshi

    2005-01-01

    Full Text Available Background/Aim. We have investigated proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of the hypothalamus (ARC and the anterior lobe of the pituitary (AL following repeated cyanamide-ethanol reaction (CER. Methods. Adult male Sprague -Dawley rats (250 −290 gr were housed in a temperature and humidity controlled environment with free access to food and water. Four experimental groups were used as follows: saline (as control, cyanamide alone, ethanol alone and ethanol with cyanamide. The animals received daily intraperitoneal injections (i.p. of cyanamide (10mg/kg, 60 min before ethanol dosing with or without ethanol (1g/kg for 5 consecutive days, and were sacrificed 60 min after the last dosing of ethanol. The results were presented as the mean ± SEM for each group. All groups within each data set were compared by one-way ANOVA followed by Fisher PLSD test for multiple comparisons. A value of p<0.05 was considered significant. Results. The POMC mRNA levels in ARC were significantly decreased with cyanamide compared to the control and ethanol alone (p<0.05 and p<0.05 respectively, but increased in AL following repeated CER. Conclusion. We speculate that this differential regulation of POMC mRNA expression may be partially involved in the preventive effects on alcohol intake in response to CER.

  12. Retinol and retinyl esters in parenchymal and nonparenchymal rat liver cell fractions after long-term administration of ethanol

    International Nuclear Information System (INIS)

    Rasmussen, M.; Blomhoff, R.; Helgerud, P.; Solberg, L.A.; Berg, T.; Norum, K.R.

    1985-01-01

    Chronic ethanol consumption reduces the liver retinoid store in man and rat. We have studied the effect of ethanol on some aspects of retinoid metabolism in parenchymal and nonparenchymal liver cells. Rats fed 36% of total energy intake as ethanol for 5-6 weeks had the liver retinoid concentration reduced to about one-third, as compared to pair-fed controls. The reduction in liver retinoid affected both the parenchymal and the nonparenchymal cell fractions. Plasma retinol level was normal. Liver uptake of injected chylomicron [3H]retinyl ester was similar in the experimental and control group. The transport of retinoid from the parenchymal to the nonparenchymal cells was not found to be significantly retarded in the ethanol-fed rats. Despite the reduction in total retinoid level in liver, the concentrations of unesterified retinol and retinyl oleate were increased in the ethanol fed rats. Hepatic retinol esterification was not significantly affected in the ethanol-fed rats. Since our study has demonstrated that liver uptake of chylomicron retinyl ester is not impaired in the ethanol-fed rat, we suggest that liver retinoid metabolism may be increased

  13. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    Science.gov (United States)

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  14. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage

    Science.gov (United States)

    Vázquez-Ramírez, Ricardo; Olguín-Martínez, Marisela; Kubli-Garfias, Carlos; Hernández-Muñoz, Rolando

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5’-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5’-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage. PMID:16865772

  15. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage.

    Science.gov (United States)

    Vázquez-Ramírez, Ricardo; Olguín-Martínez, Marisela; Kubli-Garfias, Carlos; Hernández-Muñoz, Rolando

    2006-07-21

    To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5'-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5'-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.

  16. Ethanol activation of protein kinase A regulates GABA-A receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis

    Directory of Open Access Journals (Sweden)

    Sandeep eKumar

    2012-04-01

    Full Text Available Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking and synaptic excitability. Both protein kinase C (PKC and A (PKA are involved in regulation of γ-aminobutyric acid type A (GABA-A receptors through phosphorylation. However, the role of PKA in regulating GABA-A receptors following acute ethanol exposure is not known. The present study investigated the role of PKA in ethanol effects on GABA-A receptor α1 subunit expression in the P2 synaptosomal fraction of the rat cerebral cortex. Additionally, GABA-related behaviors were also examined. Rats were administered ethanol (2.0 – 3.5 g/kg or saline and PKC, PKA and GABA-A receptor α1 subunit levels were measured by Western blot analysis. Ethanol (3.5 g/kg transiently increased GABA-A receptor α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, the moderate ethanol dose (2.0g/kg had no effect on GABA-A α1 subunit levels although PKA RIIα and RIIβ were increased at 10 and 60 minutes, when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA-A α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA-A receptor α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex duration. This effect appears to be mediated in part by GABA-A receptors as increasing PKA activity also increased the duration of muscimol-induced loss of righting reflex. Overall these data suggest that PKA mediates ethanol-induced GABA-A receptor expression and contributes to ethanol behavioral effects involving GABA-A receptors.

  17. Dansyl-PQRamide, a putative antagonist of NPFF receptors, reduces anxiety-like behavior of ethanol withdrawal in a plus-maze test in rats.

    Science.gov (United States)

    Kotlinska, Jolanta; Pachuta, Agnieszka; Bochenski, Marcin; Silberring, Jerzy

    2009-06-01

    Much evidence indicates that endogenous opioid peptides are involved in effects caused by ethanol. The aim of the present study was to determine whether dansyl-PQR amide, a putative antagonist of receptors for an anti-opioid peptide-neuropeptide FF (NPFF) could affect anxiety-like behavior measured during withdrawal from acute-, and chronic ethanol administration in the elevated plus maze test in rats. Our study indicated that intracerebroventricular (i.c.v.) administration of dansyl-PQRamide (2.4 and 4.8 nmol) reversed anxiety-like behavior measured as a percent time spent in the open arms, and a percent open arm entries onto the open arms in the elevated plus-maze test in rats. These effects were inhibited by NPFF (10 and/or 20 nmol, i.c.v.) in the experiments performed during withdrawal from acute- and chronic ethanol administration. During withdrawal from acute ethanol, naloxone (1mg/kg, i.p.), a nonselective opioid receptor antagonist, attenuated only an increased percent time spent in the open arms induced by dansyl-PQR amide (4.8 nmol). Dansyl-PQR amide, NPFF and naloxone given alone to naive rats did not have influence on spontaneous locomotor activity of animals. Furthermore, NPFF potentiated anxiety-like behavior during withdrawal from chronic, but not acute, ethanol administration in rats. Our data suggest that NPFF system is involved in regulation of affective symptoms of ethanol withdrawal. It seems that involvement of the NPFF system in ethanol withdrawal anxiety-like behavior is associated with regulation of the opioid system activity.

  18. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  19. The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol

    Science.gov (United States)

    Versaggi, Cassandra L.; King, Christopher P.; Meyer, Paul J.

    2016-01-01

    Rationale Some individuals are particularly responsive to reward-associated stimuli (“cues”), including the effects of these cues on craving and relapse to drug-seeking behavior. In the cases of nicotine and alcohol, cues may acquire these abilities via the incentive-enhancing properties of the drug. Objectives To determine the interaction between cue-responsivity and nicotine reinforcement, we studied the patterns of nicotine self-administration in rats categorized based on their tendency to approach a food predictive cue (“sign-trackers”) or a reward-delivery location (“goal-trackers”). In a second experiment, we determined whether nicotine and ethanol altered the incentive value of a food cue. Methods Rats were classified as sign- or goal-trackers during a Pavlovian conditioned approach paradigm. Rats then self-administered intravenous nicotine (0.03 mg/kg infusions) followed by extinction and cue induced reinstatement tests. We also tested the effects of nicotine (0.4 mg/kg base s.c.) or ethanol (0.7 g/kg i.p.) on the approach to, and reinforcing efficacy of, a food cue. Results Sign-trackers showed greater reinstatement in response to a nicotine cue. Further, nicotine enhanced sign-tracking but not goal-tracking to a food cue, and also enhanced responding for the food cue during the conditioned reinforcement test. Conversely, ethanol reduced sign-tracking and increased goal-tracking, but had no effect on conditioned reinforcement. Conclusions Our studies demonstrate that the tendency to attribute incentive value to a food cue predicts enhanced cue-induced reinstatement. Additionally, the incentive value of food cues is differentially modulated by nicotine and ethanol, which may be related to the reinforcing effects of these drugs. PMID:27282365

  20. The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol.

    Science.gov (United States)

    Versaggi, Cassandra L; King, Christopher P; Meyer, Paul J

    2016-08-01

    Some individuals are particularly responsive to reward-associated stimuli ("cues"), including the effects of these cues on craving and relapse to drug-seeking behavior. In the cases of nicotine and alcohol, cues may acquire these abilities via the incentive-enhancing properties of the drug. To determine the interaction between cue-responsivity and nicotine reinforcement, we studied the patterns of nicotine self-administration in rats categorized based on their tendency to approach a food-predictive cue ("sign-trackers") or a reward-delivery location ("goal-trackers"). In a second experiment, we determined whether nicotine and ethanol altered the incentive value of a food cue. Rats were classified as sign- or goal-trackers during a Pavlovian conditioned approach paradigm. Rats then self-administered intravenous nicotine (0.03 mg/kg infusions) followed by extinction and cue-induced reinstatement tests. We also tested the effects of nicotine (0.4 mg/kg base s.c.) or ethanol (0.7 g/kg i.p.) on the approach to, and reinforcing efficacy of, a food cue. Sign-trackers showed greater reinstatement in response to a nicotine cue. Further, nicotine enhanced sign-tracking but not goal-tracking to a food cue and also enhanced responding for the food cue during the conditioned reinforcement test. Conversely, ethanol reduced sign-tracking and increased goal-tracking, but had no effect on conditioned reinforcement. Our studies demonstrate that the tendency to attribute incentive value to a food cue predicts enhanced cue-induced reinstatement. Additionally, the incentive value of food cues is differentially modulated by nicotine and ethanol, which may be related to the reinforcing effects of these drugs.

  1. Tetramethylpyrazine reverses intracerebroventricular streptozotocin-induced memory deficits by inhibiting GSK-3β.

    Science.gov (United States)

    Lu, Fen; Li, Xu; Li, Wei; Wei, Ke; Yao, Yong; Zhang, Qianlin; Liang, Xinliang; Zhang, Jiewen

    2017-08-01

    Brain dysfunction, especially cognitive impairment, is one of the main complications in Alzheimer's disease (AD), which threatens the health of 46.8 million people worldwide. At present, the pathogenesis of cognitive dysfunction is only partially understood, and effective therapies for memory loss in AD remain elusive. Tetramethylpyrazine (TMP) is one of the major bioactive compounds purified from Chuanxiong, a Chinese herb used for the treatment of neurovascular and cardiovascular diseases. The neuroprotective properties of TMP are evident in some neurodegenerative diseases, including Parkinson's disease. However, whether TMP plays a neuroprotective role in AD is still unknown. Here, we report that 2-week treatment with TMP rescued both short-term and long-term fear memory impairment induced by intracerebroventricular injection of streptozotocin in a well-known AD rat model. Administration of TMP also restored spatial learning and memory retention abilities in streptozotocin-injected rats. Furthermore, TMP inhibited the activity of GSK-3β, an important kinase that mediates hippocampal synaptic and memory disorders in diabetes mellitus. Finally, we found that TMP treatment restored the function of cholinergic neurons. Our data suggest that dietary uptake of TMP can provide protection against memory loss in AD, and the inhibition of GSK-3β may play an important role in this protective effect. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The effect of genistein on intracerebroventricular streptozotocin-induced cognitive deficits in male rat

    Directory of Open Access Journals (Sweden)

    Tourandokht Balouchnejadmojarad

    2009-01-01

    Full Text Available Abstract  Introduction: Intracerebroventricular (ICV injection of streptozotocin (STZ causes cognitive impairment in rats. The beneficial effect of genistein (GEN was investigated on ICV STZ-induced learning, memory, and cognitive impairment in male rats. Methods: For this purpose, rats were injected with ICV STZ bilaterally, on days 1 and 3 (3 mg/kg. The STZ-injected rats received GEN (1 mg/kg/day, p.o. starting one day pre-surgery for two weeks. The learning and memory performance was assessed using passive avoidance paradigm, and for spatial cognition evaluation, radial eight-arm maze (RAM task was used.  Results: It was found out that GEN-treated STZ-injected rats show higher correct choices and lower errors in RAM than vehicle-treated STZ-injected rats. In addition, GEN administration significantly attenuated learning and memory impairment in treated STZ-injected group in passive avoidance test.Discussion: These results demonstrate the effectiveness of GEN in preventing the cognitive deficits caused by ICV STZ in rats and its potential in the treatment of neurodegenerative diseases such as Alzheimer's disease (AD.

  3. The effect of genistein on intracerebroventricular streptozotocin-induced cognitive deficits in male rat

    Directory of Open Access Journals (Sweden)

    Tourandokht Balouchnejadmojarad

    2009-01-01

    Full Text Available   Abstract  Introduction: Intracerebroventricular (ICV injection of streptozotocin (STZ causes cognitive impairment in rats. The beneficial effect of genistein (GEN was investigated on ICV STZ-induced learning, memory, and cognitive impairment in male rats. Methods: For this purpose, rats were injected with ICV STZ bilaterally, on days 1 and 3 (3 mg/kg. The STZ-injected rats received GEN (1 mg/kg/day, p.o. starting one day pre-surgery for two weeks. The learning and memory performance was assessed using passive avoidance paradigm, and for spatial cognition evaluation, radial eight-arm maze (RAM task was used.  Results: It was found out that GEN-treated STZ-injected rats show higher correct choices and lower errors in RAM than vehicle-treated STZ-injected rats. In addition, GEN administration significantly attenuated learning and memory impairment in treated STZ-injected group in passive avoidance test.Discussion: These results demonstrate the effectiveness of GEN in preventing the cognitive deficits caused by ICV STZ in rats and its potential in the treatment of neurodegenerative diseases such as Alzheimer's disease (AD.  

  4. Peningkatan Produktivitas Ayam Petelur Melalui Pemberian Ekstrak Etanol Daun Kemangi (INCREASED LAYING HENS PRODUCTIVITY THROUGH THE ADMINISTRATION OF ETHANOL EXTRACT OF KEMANGI LEAVES

    Directory of Open Access Journals (Sweden)

    Andriyanto .

    2014-08-01

    Full Text Available Empirically, kemangi leaves reported to increase health quality in human and livestock. Thepreliminary study was designed to explore the potency of ethanol extract of kemangi leaves to increaselaying hens performance. Sixteen laying hens (pullet were divided into 4 groups and repeated 4 times.Control group was laying hen administered aquadest orally, treated group was laying hen administeredextract of kemangi leaves orally at a dose of 1, 2, and 3 mg/kg BW, respectively. Every day, the experimentallaying hens were fed for 3 times and drinking water was provided ad libitum. Variables observed were thenumber of eggs, egg weight, time of first laying, egg laying intervals, egg quality ( water content, crudeprotein, and crude fat, and liver function (SGPT and SGOT values . Results of this research showed thatadministration of kemangi leaves extract at a dose of 3 mg/kg BW significantly increased the number ofegg production and egg weight (p<0.05. Time of first laying and laying interval did not show any significantdifference among treatments. Examination of moisture, crude protein, and crude fat content of the eggindicated that the administration of kemangi leaves extract did not affect egg quality. Extract of kemangileaves decreased SGPT and SGOT values that indicated improvement of liver function. It was concludedthat administration of ethanol extract of kemangi leaves could increase laying hens productivity byimprovement of liver function that is critical in vitellogenesis.

  5. A 5-month toxicity study of the ethanol extract of the leaves of Heliotropium indicum in Sprague Dawley rats after oral administration.

    Science.gov (United States)

    Owolabi, M A; Oribayo, O O; Ukpo, G E; Mbaka, G O; Akindehin, O E

    2015-01-01

    Heliotropium indicum Linn. (Boraginaceae) is used in Nigerian traditional medicine to treat tuberculosis with treatment lasting for 3 months; however, information on its toxicity is scarce. This study investigated the safety of the leaves of Heliotropium indicum after a 5 month oral administration. The leaves of H. indicum were dried; extracted in 70% ethanol and concentrated to dryness. Swiss mice were administered orally with single doses of the extract (0.5 to 12.0 g/kg b.wt /day); mortality was examined for up to 14 days. In another study, the plant material (0.5 to 2.0 g/kg b.wt /day) were administered daily by oral gavage to Sprague Dawley rats. Body weight was monitored weekly, hematological, biochemical and organ parameters were determined at the end of the 1st, 2nd and 5th months of extract administration. The oral administration of the ethanol extract of H. indicum caused dose-dependent mortality. The LD50 was 9.78 g/kg b.wt for the Swiss mice; no harmful effect was observed on the liver and kidney except the testes which exhibited considerable inflammatory changes at the highest dose of 2.0 g/kg b.wt./day after the 5th month treatment. No significant difference (P>0.05) was shown in the enzyme study, marginal increase occurred in some haematological parameters. The increase in body weight of the treated rats after its initial reduction was consistent and significantly different (P<0.05) from their initial body weight. Prolonged administration of the crude leaf extract of H. indicum is considered to be safe and nontoxic at the doses studied. However, there is a probability of a negative effect on the testes at a higher dose of the extract.

  6. Administration

    DEFF Research Database (Denmark)

    Bogen handler om den praksis, vi kalder administration. Vi er i den offentlige sektor i Danmark hos kontorfolkene med deres sagsmapper, computere, telefoner,, lovsamlinger,, retningslinier og regneark. I bogen udfoldes en mangfoldighed af konkrete historier om det administrative arbejde fra...... forskellige områder i den offentlige sektor. Hensigten er at forstå den praksis og faglighed der knytter sig til det administrative arbejde...

  7. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    Science.gov (United States)

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  8. Neuroprotective effect of ebselen against intracerebroventricular streptozotocin-induced neuronal apoptosis and oxidative stress in rats.

    Science.gov (United States)

    Unsal, Cuneyt; Oran, Mustafa; Albayrak, Yakup; Aktas, Cevat; Erboga, Mustafa; Topcu, Birol; Uygur, Ramazan; Tulubas, Feti; Yanartas, Omer; Ates, Ozkan; Ozen, Oguz Aslan

    2016-04-01

    The goal of this study was to examine the neuroprotective effect of ebselen against intracerebroventricular streptozotocin (ICV-STZ)-induced oxidative stress and neuronal apoptosis in rat brain. A total of 30 adult male Sprague-Dawley rats were randomly divided into 3 groups of 10 animals each: control, ICV-STZ, and ICV-STZ treated with ebselen. The ICV-STZ group rats were injected bilaterally with ICV-STZ (3 mg/kg) on days 1 and 3, and ebselen (10 mg/kg/day) was administered for 14 days starting from 1st day of ICV-STZ injection to day 14. Rats were killed at the end of the study and brain tissues were removed for biochemical and histopathological investigation. Our results demonstrated, for the first time, the neuroprotective effect of ebselen on Alzheimer's disease (AD) model in rats. Our present study, in ICV-STZ group, showed significant increase in tissue malondialdehyde levels and significant decrease in enzymatic antioxidants superoxide dismutase and glutathione peroxidase in the frontal cortex tissue. The histopathological studies in the brain of rats also supported that ebselen markedly reduced the ICV-STZ-induced histopathological changes and well preserved the normal histological architecture of the frontal cortex tissue. The number of apoptotic neurons was increased in frontal cortex tissue after ICV-STZ administration. Treatment of ebselen markedly reduced the number of degenerating apoptotic neurons. The study demonstrates the effectiveness of ebselen, as a powerful antioxidant, in preventing the oxidative damage and morphological changes caused by ICV-STZ in rats. Thus, ebselen may have a therapeutic value for the treatment of AD. © The Author(s) 2013.

  9. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde.

    Directory of Open Access Journals (Sweden)

    Kristen N. Segovia

    2013-05-01

    Full Text Available Considerable evidence indicates that the metabolite of ethanol (EtOH, acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase, and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV and peripheral (intraperitoneal, IP administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg or acetaldehyde (0.1 or 0.5 g/kg or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 µmoles. IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg, while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration.

  10. Intracerebroventricular delivery of glucocerebrosidase reduces substrates and increases lifespan in a mouse model of neuronopathic Gaucher disease.

    Science.gov (United States)

    Cabrera-Salazar, M A; Bercury, S D; Ziegler, R J; Marshall, J; Hodges, B L; Chuang, W-L; Pacheco, J; Li, L; Cheng, S H; Scheule, R K

    2010-10-01

    Gaucher disease is caused by a deficit in the enzyme glucocerebrosidase. As a consequence, degradation of the glycolipids glucosylceramide (GluCer) and glucosylsphingosine (GluSph) is impaired, and their subsequent buildup can lead to significant pathology and early death. Type 1 Gaucher patients can be treated successfully with intravenous replacement enzyme, but this enzyme does not reach the CNS and thus does not ameliorate the neurological involvement in types 2 and 3 Gaucher disease. As one potential approach to treating these latter patients, we have evaluated intracerebroventricular (ICV) administration of recombinant human glucocerebrosidase (rhGC) in a mouse model of neuronopathic Gaucher disease. ICV administration resulted in enzyme distribution throughout the brain and alleviated neuropathology in multiple brain regions of this mouse model. Treatment also resulted in dose-dependent decreases in GluCer and GluSph and significantly extended survival. To evaluate the potential of continuous enzyme delivery, a group of animals was treated ICV with an adeno-associated viral vector encoding hGC and resulted in a further extension of survival. These data suggest that ICV administration of rhGC may represent a potential therapeutic approach for type 2/3 Gaucher patients. Preclinical evaluation in larger animals will be needed to ascertain the translatability of this approach to the clinic. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. An ultrastructural analysis of the effects of ethanol self-administration on the hypothalamic paraventricular nucleus in rhesus macaques

    Directory of Open Access Journals (Sweden)

    Vanessa Anne Jimenez

    2015-07-01

    Full Text Available A bidirectional relationship between stress and alcohol exists whereby stressful events are comorbid with problematic alcohol use and prolonged alcohol exposure results in adaptations of the physiological stress response. Endocrine response to stress is initiated in the hypothalamic paraventricular nucleus (PVN with the synthesis and release of corticotropin-releasing hormone (CRH and arginine-vasopressin (AVP. Alterations in CRH and AVP following long-term alcohol exposure in rodents is well demonstrated, however little is known about the response to alcohol in primates or the mechanisms of adaptation. We hypothesized that long-term alcohol self-administration in nonhuman primates would lead to ultrastructural changes in the PVN underlying adaptation to chronic alcohol. Double-label immunogold electron microscopy was used to measure presynaptic GABA and glutamate density within synaptic terminals contacting CRH- and AVP-immunoreactive dendrites. Additionally, pituitary-adrenal hormones (ACTH, cortisol, DHEA-s and aldosterone under two conditions (low and mild stress were compared before and after self-administration. All hormones were elevated in response to the mild stressor independent of alcohol consumption. The presynaptic glutamate density in recurrent (i.e., intra-hypothalamic CRH terminals was highly related to alcohol intake, and may be a permissive factor in increased drinking due to stress. Conversely, glutamate density within recurrent AVP terminals showed a trend-level increase following alcohol, but was not related to average daily consumption. Glutamate density in non-recurrent AVP terminals was related to aldosterone under the low stress condition while GABAergic density in this terminal population was related to water consumption. The results reveal distinct populations of presynaptic terminals whose glutamatergic or GABAergic density were uniquely related to water and alcohol consumption and circulating hormones.

  12. Chronic intracerebroventricular administration of dimethyl sulfoxide attenuates streptozotocin-iduced memory loss in rats

    Directory of Open Access Journals (Sweden)

    Esmaeil Akbari

    2013-02-01

    Conclusion: Taken together, the results suggest that DMSO may be appropriate as adjuvant therapies for the prevention of memory impairment in the experimental models of AD. Therefore, use of DMSO as a solvent in AD animal studies should be considered having beneficial effects on cognitive function.

  13. Liver, plasma and erythrocyte levels of thiamine and its phosphate esters in rats with acute ethanol intoxication: a comparison of thiamine and benfotiamine administration.

    Science.gov (United States)

    Portari, Guilherme Vannucchi; Vannucchi, Helio; Jordao, Alceu Afonso

    2013-03-12

    Thiamine and benfotiamine are vitamin B1 and pro-vitamin B1 substances, respectively. Vitamin B1 plays an essential role in energy metabolism, and its deficiency leads to neurologic and cardiovascular pathologies, as seen in alcoholics. This study presents new data about the effects of thiamine hydrochloride or benfotiamine treatment given to rats with acute alcohol intoxication, on the distribution of thiamine and its phosphate esters in liver, plasma and erythrocytes. The treatments were effective in increasing thiamine levels in plasma, erythrocytes and liver cells. The benfotiamine-treated group had its total plasma thiamine increased by 100%. In erythrocytes, thiamine levels were 4- and 25-fold higher in the groups treated with thiamine and benfotiamine, respectively, compared with the untreated groups. Liver thiamine was increased by 60% in the treated groups compared with the untreated groups. Thus, we verified the high bioavailability especially of benfotiamine within 6h of ethanol administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Induction of hypocalcemia by intracerebroventricular injection of calcitonin: evidence for control of blood calcium by the nervous system.

    Science.gov (United States)

    Goltzman, D; Tannenbaum, G S

    1987-07-21

    Calcitonin (CT), when administered peripherally, is a potent hypocalcemic agent. This peptide can also exert a variety of profound effects through brain receptors after central injection. We examined the capacity of CT to alter plasma calcium of freely moving conscious rats after intracerebroventricular (i.c.v.) injection. A dose-dependent decrease in plasma calcium was seen after administration of 25 ng, 250 ng or 2500 ng of salmon calcitonin (sCT). The extent and duration of hypocalcemia after central injection was equal to, or greater than, that seen after giving the same doses of peptide intravenously (i.v.). Calcitonin gene-related peptide (CGRP), when administered centrally at a 50-fold molar excess, produced only a transient decrease in plasma calcium. No increase in plasma levels of sCT could be detected by RIA after i.c.v. injection, although measurable levels were obtained by i.v. injection. Centrally administered sCT did not appear to produce hypocalcemia by enhancing the release of endogenous rat CT. In contrast to the rise in rat immunoreactive parathyroid hormone (PTH) seen after i.v. injection of sCT, no significant elevation occurred after central administration of the peptide despite induction of comparable levels of hypocalcemia. Consequently, reduced PTH release may contribute to the central hypocalcemic action of CT. The results indicate that peptides acting through the brain CT receptor may modulate peripheral blood calcium.

  15. Chronic administration of ethanol with high vitamin A supplementation in a liquid diet to rats does not cause liver fibrosis. 2. Biochemical observations

    NARCIS (Netherlands)

    Seifert, W. F.; Bosma, A.; Hendriks, H. F.; Blaner, W. S.; van Leeuwen, R. E.; van Thiel-de Ruiter, G. C.; Wilson, J. H.; Knook, D. L.; Brouwer, A.

    1991-01-01

    The inability of the 'ethanol/high vitamin A Lieber-DeCarli diet' to induce liver fibrosis in two different rat strains was further evaluated by determining changes in parameters of liver cell damage and of retinoid and lipid metabolism. In the ethanol/vitamin A-treated group, slight but constant

  16. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  17. Spirulina maxima Extract Ameliorates Learning and Memory Impairments via Inhibiting GSK-3β Phosphorylation Induced by Intracerebroventricular Injection of Amyloid-β 1-42 in Mice.

    Science.gov (United States)

    Koh, Eun-Jeong; Kim, Kui-Jin; Song, Ji-Hyeon; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Heo, Ho Jin; Lee, Boo-Yong

    2017-11-13

    Spirulina maxima , a microalga containing high levels of protein and many polyphenols, including chlorophyll a and C-phycocyanin, has antioxidant and anti-inflammatory therapeutic effects. However, the mechanisms where by Spirulina maxima ameliorates cognitive disorders induced by amyloid-β 1-42 (Aβ 1-42 ) are not fully understood. In this study, we investigated whether a 70% ethanol extract of Spirulina maxima (SM70EE) ameliorated cognitive impairments induced by an intracerebroventricular injection of Aβ 1-42 in mice. SM70EE increased the step-through latency time in the passive avoidance test and decreased the escape latency time in the Morris water maze test in Aβ 1-42 -injected mice. SM70EE reduced hippocampal Aβ 1-42 levels and inhibited amyloid precursor protein processing-associated factors in Aβ 1-42 -injected mice. Additionally, acetylcholinesterase activity was suppressed by SM70EE in Aβ 1-42 -injected mice. Hippocampal glutathione levels were examined to determine the effects of SM70EE on oxidative stress in Aβ 1-42 -injected mice. SM70EE increased the levels of glutathione and its associated factors that were reduced in Aβ 1-42 -injected mice. SM70EE also promoted activation of the brain-derived neurotrophic factor/phosphatidylinositol-3 kinase/serine/threonine protein kinase signaling pathway and inhibited glycogen synthase kinase-3β phosphorylation. These findings suggested that SM70EE ameliorated Aβ 1-42 -induced cognitive impairments by inhibiting the increased phosphorylation of glycogen synthase kinase-3β caused by intracerebroventricular injection of Aβ 1-42 in mice.

  18. Neuroprotective effects of edaravone on cognitive deficit, oxidative stress and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats.

    Science.gov (United States)

    Zhou, Shanshan; Yu, Guichun; Chi, Lijun; Zhu, Jiwei; Zhang, Wei; Zhang, Yan; Zhang, Liming

    2013-09-01

    Oxidative stress is implicated as an important factor in the development of Alzheimer's disease (AD). In the present study, we have investigated the effects of edaravone (9mg/kg, 3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, in a streptozotocin (STZ-3mg/kg) induced rat model of sporadic AD (sAD). Treatment with edaravone significantly improved STZ-induced cognitive damage as evaluated in Morris water maze and step-down tests and markedly restored changes in malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE) adducts, hydroxyl radical (OH), hydrogen peroxide (H2O2), total superoxide dismutase (T-SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and protein carbonyl (PC) levels. In addition, histomorphological observations confirmed the protective effect of edaravone on neuronal degeneration. Moreover, hyperphosphorylation of tau resulting from intracerebroventricular streptozotocin (ICV-STZ) injection was decreased by the administration of edaravone. These results provide experimental evidence demonstrating preventive effects of edaravone on cognitive dysfunction, oxidative stress and hyperphosphorylation of tau in ICV-STZ rats. Since edaravone has been used for treatment of patients with stroke, it represents a safe and established therapeutic intervention that has the potential for a novel application in the treatment of age-related neurodegenerative disorders associated with cognitive decline, such as AD. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    Science.gov (United States)

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  20. Modifications in adrenal hormones response to ethanol by prior ethanol dependence.

    Science.gov (United States)

    Guaza, C; Borrell, S

    1985-03-01

    Ethanol was administered to rats by means of a liquid diet for 16 days; after an ethanol-free interval of four weeks, animals received a test (IP) dose of ethanol (2 g/kg), and the adrenocortical and adrenomedullary responses were evaluated. Chronically ethanol-exposed animals showed tolerance to the stimulatory effect of ethanol in the pituitary-adrenal axis. Likewise, previously dependent rats showed tolerance to the increase in the activity of the adrenomedullary function induced by acute administration of the drug. Our results indicate that chronic ethanol ingestion can induce persistent changes after complete alcohol abstinence.

  1. Intracerebroventricular metformin attenuates salt-induced hypertension in spontaneously hypertensive rats

    DEFF Research Database (Denmark)

    Petersen, J S; Andersen, D; Muntzel, M S

    2001-01-01

    The aim of this study was to examine the effects of long-term continuous intracerebroventricular (icv) infusion of metformin on blood pressure (BP) in spontaneously hypertensive rats (SHR). To accelerate the development of hypertension, SHR were fed a 8% NaCl diet during the 3-week study period...... to hexamethonium was attenuated by all doses of metformin suggesting that chronic icv metformin decreased central sympathetic outflow. The highest doses of metformin (100 and 200 microg/day) also prevented development of hypertension, but these doses were highly neurotoxic as demonstrated by histologic evaluation...... doses of metformin attenuates hypertension and decreases the hypotensive responses to ganglionic blockade in SHR, suggesting a centrally elicited sympathoinhibitory action....

  2. Intracerebroventricular morphine for refractory cancer pain: transitioning to the home setting.

    Science.gov (United States)

    Adolph, Michael D; Stretanski, Michael F; McGregor, John M; Rawn, Bonnie L; Ross, Patrick M; Benedetti, Costantino

    2010-08-01

    Refractory cancer pain may be effectively controlled by titrating intracerebroventricular (ICV) preservative-free opioid. In this case report, a continuous infusion of ICV morphine permitted our patient with lung cancer and painful spinal metastases to be discharged to home hospice with family. The approach exploits the high potency of morphine injected into cerebrospinal fluid (CSF). Sterile, injectable, preservative-free morphine is directly infused into CSF through a subcutaneous Ommaya reservoir placed under the scalp by a neurosurgeon, with an attached catheter passed through a burr hole in the skull with its tip in a cerebral ventricle. Although investigators have described home care of patients receiving intraspinal analgesics, no report describes the process of transitioning the patient receiving continuous ICV morphine infusion to the home setting.

  3. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    Science.gov (United States)

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  4. Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Hong-Die Cai

    2016-11-01

    Full Text Available Salvia miltiorrhiza, one of the major traditional Chinese medicines, is commonly used and the main active ingredients—tanshinones—possess the ability to improve renal function. In this paper, the UPLC-TQ/MS method of simultaneously determining four tanshinones—tanshinone IIA, dihydrotanshinone I, tanshinone I, and cryptotanshinone—was established and applied to assess the pharmacokinetics in normal and chronic renal failure (CRF rat plasma. The pharmacokinetics of tanshinones in rats were studied after separately intragastric administration of Salvia miltiorrhiza ethanol extract (SMEE (0.65 g/kg, SMEE (0.65 g/kg combined with Salvia miltiorrhiza water extract (SMWE (1.55 g/kg. The results showed Cmax and AUC0–t of tanshinone IIA, tanshinone I, cryptotanshinone reduced by 50%~80% and CLz/F increased by 2~4 times (p < 0.05 in model group after administrated with SMEE. Nevertheless, after intragastric administration of a combination of SMWE and SMEE, the Cmax and AUC0–t of four tanshinones were upregulated and CLz/F was downregulated, which undulated similarity from the model group to the normal group with compatibility of SMEE and SMWE. These results hinted that SMWE could improve the bioavailability of tanshinones in CRF rats, which provides scientific information for further exploration the mechanism of the combination of SMWE and SMEE and offers a reference for clinical administration of Salvia miltiorrhiza.

  5. Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease.

    Science.gov (United States)

    Gómez-Pinedo, U; Galán, L; Yañez, M; Matias-Guiu, J; Valencia, C; Guerrero-Sola, A; Lopez-Sosa, F; Brin, J R; Benito-Martin, M S; Leon-Espinosa, G; Vela-Souto, A; Lendinez, C; Guillamon-Vivancos, T; Matias-Guiu, J A; Arranz-Tagarro, J A; Barcia, J A; Garcia, A G

    2018-05-01

    Cerebrospinal fluid (CSF) from amyotrophic lateral sclerosis (ALS) patients induces cytotoxic effects in in vitro cultured motor neurons. We selected CSF with previously reported cytotoxic effects from 32 ALS patients. Twenty-eight adult male rats were intracerebroventricularly implanted with osmotic mini-pumps and divided into 3 groups: 9 rats injected with CSF from non-ALS patients, 15 rats injected with cytotoxic ALS-CSF, and 4 rats injected with a physiological saline solution. CSF was intracerebroventricularly and continuously infused for periods of 20 or 43days after implantation. We conducted clinical assessments and electromyographic examinations, and histological analyses were conducted in rats euthanised 20, 45, and 82days after surgery. Immunohistochemical studies revealed tissue damage with similar characteristics to those found in the sporadic forms of ALS, such as overexpression of cystatinC, transferrin, and TDP-43 protein in the cytoplasm. The earliest changes observed seemed to play a protective role due to the overexpression of peripherin, AKTpan, AKTphospho, and metallothioneins; this expression had diminished by the time we analysed rats euthanised on day 82, when an increase in apoptosis was observed. The first cellular changes identified were activated microglia followed by astrogliosis and overexpression of GFAP and S100B proteins. Our data suggest that ALS could spread through CSF and that intracerebroventricular administration of cytotoxic ALS-CSF provokes changes similar to those found in sporadic forms of the disease. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    Science.gov (United States)

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Comparative analysis of acid sphingomyelinase distribution in the CNS of rats and mice following intracerebroventricular delivery.

    Directory of Open Access Journals (Sweden)

    Christopher M Treleaven

    Full Text Available Niemann-Pick A (NPA disease is a lysosomal storage disorder (LSD caused by a deficiency in acid sphingomyelinase (ASM activity. Previously, we reported that biochemical and functional abnormalities observed in ASM knockout (ASMKO mice could be partially alleviated by intracerebroventricular (ICV infusion of hASM. We now show that this route of delivery also results in widespread enzyme distribution throughout the rat brain and spinal cord. However, enzyme diffusion into CNS parenchyma did not occur in a linear dose-dependent fashion. Moreover, although the levels of hASM detected in the rat CNS were determined to be within the range shown to be therapeutic in ASMKO mice, the absolute amounts represented less than 1% of the total dose administered. Finally, our results also showed that similar levels of enzyme distribution are achieved across rodent species when the dose is normalized to CNS weight as opposed to whole body weight. Collectively, these data suggest that the efficacy observed following ICV delivery of hASM in ASMKO mice could be scaled to CNS of the rat.

  8. Intracerebroventricular ghrelin treatment affects lipid metabolism in liver of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Velasco, Cristina; Librán-Pérez, Marta; Otero-Rodiño, Cristina; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2016-03-01

    We aimed to elucidate in rainbow trout (Oncorhynchus mykiss) the effects of central ghrelin (GHRL) treatment on the regulation of liver lipid metabolism, and the possible modulatory effect of central GHRL treatment on the simultaneous effects of raised levels of oleate. Thus, we injected intracerebroventricularly (ICV) rainbow trout GHRL in the presence or absence of oleate and evaluated in liver variables related to lipid metabolism. Oleate treatment elicited in liver of rainbow trout decreased lipogenesis and increased oxidative capacity in agreement with previous studies. Moreover, as demonstrated for the first time in fish in the present study, GHRL also acts centrally modulating lipid metabolism in liver, resulting in increased potential for lipogenesis and decreased potential for fatty acid oxidation, i.e. the converse effects to those elicited by central oleate treatment. The simultaneous treatment of GHRL and oleate confirmed these counteractive effects. Thus, the nutrient sensing mechanisms present in hypothalamus, particularly those involved in sensing of fatty acid, are involved in the control of liver energy metabolism in fish, and this control is modulated by the central action of GHRL. These results give support to the notion of hypothalamus as an integrative place for the regulation of peripheral energy metabolism in fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Intracerebroventricular C75 decreases meal frequency and reduces AgRP gene expression in rats.

    Science.gov (United States)

    Aja, Susan; Bi, Sheng; Knipp, Susan B; McFadden, Jill M; Ronnett, Gabriele V; Kuhajda, Francis P; Moran, Timothy H

    2006-07-01

    3-Carboxy-4-alkyl-2-methylenebutyrolactone (C75), an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyltransferase-1, reduces food intake and body weight in rodents when given systemically or centrally. Intracellular molecular mechanisms involving changes in cellular energy status are proposed to initiate the feeding and body weight reductions. However, effectors that lie downstream of these initial steps are not yet fully identified. Present experiments characterize the time courses of hypophagia and weight loss after single injections of C75 into the lateral cerebroventicle in rats and go on to identify specific meal pattern changes and coinciding alterations in gene expression for feeding-related hypothalamic neuropeptides. C75 reduced chow intake and body weight dose dependently. Although the principal effects occurred on the first day, weight losses relative to vehicle control were maintained over multiple days. C75 did not affect generalized locomotor activity. C75 began to reduce feeding after a 6-h delay. The hypophagia was due primarily to decreased meal number during 6-12 h without a significant effect on meal size, suggesting that central C75 reduced the drive to initiate meals. C75 prevented the anticipated hypophagia-induced increases in mRNA for AgRP in the arcuate nucleus at 22 h and at 6 h when C75 begins to suppress feeding. Overall, the data suggest that gene expression changes leading to altered melanocortin signaling are important for the hypophagic response to intracerebroventricular C75.

  10. The depressor response to intracerebroventricular hypotonic saline is sensitive to TRPV4 antagonist RN1734

    Directory of Open Access Journals (Sweden)

    Claire H Feetham

    2015-04-01

    Full Text Available Several reports have shown that the periventricular region of the brain, including the paraventricular nucleus (PVN, is critical to sensing and responding to changes in plasma osmolality. Further studies also implicate the transient receptor potential ion channel, type V4 (TRPV4 channel in this homeostatic behaviour. In previous work we have shown that TRPV4 ion channels couple to calcium-activated potassium channels in the PVN to decrease action potential firing frequency in response to hypotonicity. In the present study we investigated whether, similarly, intracerebroventricular (ICV application of hypotonic solutions modulated cardiovascular parameters, and if so whether this was sensitive to a TRPV4 channel inhibitor. We found that ICV injection of 270mOsmol artificial cerebrospinal fluid (ACSF decreased mean blood pressure, but not heart rate, compared to naïve mice or mice injected with 300mOsmol ACSF. This effect was abolished by treatment with the TRPV4 inhibitor RN1734. These data suggest that periventricular targets within the brain are capable of generating depressor action in response to TRPV4 ion channel activation. Potentially, in the future, the TRPV4 channel, or the TRPV4–KCa coupling mechanism, may serve as a therapeutic target for treatment of cardiovascular disease.

  11. Intracerebroventricular Infusion of the (Pro)renin Receptor Antagonist PRO20 Attenuates Deoxycorticosterone Acetate-Salt–Induced Hypertension

    Science.gov (United States)

    Li, Wencheng; Sullivan, Michelle N.; Zhang, Sheng; Worker, Caleb J.; Xiong, Zhenggang; Speth, Robert C.; Feng, Yumei

    2016-01-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT1 receptor–dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. PMID:25421983

  12. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension.

    Science.gov (United States)

    Li, Wencheng; Sullivan, Michelle N; Zhang, Sheng; Worker, Caleb J; Xiong, Zhenggang; Speth, Robert C; Feng, Yumei

    2015-02-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT(1) receptor-dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. © 2014 American Heart Association, Inc.

  13. Ethanol dehydration

    OpenAIRE

    Ana María Uyazán; Iván Dario Gil; J L Aguilar; Gerardo Rodríguez Niño; Luis Alfonso Caicedo

    2004-01-01

    This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the op...

  14. Ethanol dehydration

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2004-09-01

    Full Text Available This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the operational, energy consumption and industrial services points of view.

  15. Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats.

    Science.gov (United States)

    Schalla, Martha; Prinz, Philip; Friedrich, Tiemo; Scharner, Sophie; Kobelt, Peter; Goebel-Stengel, Miriam; Rose, Matthias; Stengel, Andreas

    2017-10-01

    Phoenixin, a recently discovered 20-amino acid peptide was implicated in reproduction. However, the expression in food intake-regulatory nuclei such as the paraventricular nucleus, the arcuate nucleus and the nucleus of the solitary tract suggests an implication of phoenixin in food intake regulation. Therefore, we investigated the effects of phoenixin-14, the shorter form of phoenixin, on food intake following intracerebroventricular (icv) and intraperitoneal (ip) injection in ad libitum fed male Sprague-Dawley rats. Phoenixin-14 injected icv (0.2, 1.7 or 15nmol/rat) during the light phase induced a dose-dependent increase of light phase food intake reaching significance at a minimum dose of 1.7 nmol/rat (+72%, pfood intake microstructure showed an icv phoenixin-14-induced increase in meal size (+51%), meal duration (+157%), time spent in meals (+182%) and eating rate (+123%), while inter-meal intervals (-42%) and the satiety ratio (-64%) were decreased compared to vehicle (pfood intake was observed (p>0.05). The light phase icv phoenixin-14-induced increase of water intake did not reach statistical significance compared to vehicle (+136%, p>0.05). The increase of food intake following icv phoenixin-14 was not associated with a significant alteration of grooming behavior (0.4-fold, p=0.377) or locomotion (6-fold, p=0.066) compared to vehicle. When injected ip at higher doses (0.6, 5nmol/kg or 45nmol/kg body weight) during the light phase, phoenixin-14 did not affect food intake (p>0.05). In summary, phoenixin-14 exerts a centrally-mediated orexigenic effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Chronic treatment with taurine after intracerebroventricular streptozotocin injection improves cognitive dysfunction in rats by modulating oxidative stress, cholinergic functions and neuroinflammation.

    Science.gov (United States)

    Reeta, K H; Singh, Devendra; Gupta, Y K

    2017-09-01

    The present study investigated the neuroprotective effects of taurine, an essential amino acid for growth and development of central nervous system. Intracerebroventricular streptozotocin (ICV-STZ) model of cognitive impairment was used in male Wistar rats (270 ± 20 g). Morris water maze, elevated plus maze and passive avoidance paradigm were used to assess cognitive performance. Taurine (40, 60 and 120 mg/kg) was administered orally for 28 days following STZ administration on day 1. Oxidative stress parameters (malondialdehyde, glutathione, nitric oxide and superoxide dismutase) and cholinesterases (acetylcholinesterase and butyrylcholinesterase) activity were measured at end of the study in the cortex and hippocampus. Levels of TNF-α, IL-1β, expression of rho kinase-II (ROCK-II), glycogen synthase kinase-3β (GSK-3β) and choline acetyltransferase (ChAT) were studied in cortex and hippocampus. STZ caused significant cognitive impairment as compared to normal control. Chronic administration of taurine attenuated STZ-induced cognitive impairment. Increased oxidative stress and increased levels of TNF-α, IL-1β induced by STZ were also significantly attenuated by taurine. Taurine significantly (p taurine. STZ decreased the expression of ChAT in hippocampus which was significantly (p taurine. However, GSK-3β expression was not altered by either STZ or taurine. The present study indicates that taurine exerts a neuroprotective role against STZ-induced cognitive impairment in rats. This effect is probably mediated by modulating oxidative stress, cholinesterases, inflammatory cytokines and expression of ROCK-II. Thus, this study suggests a potential of chronic taurine administration in cognitive impairment of Alzheimer's type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kolleurp, F; Daugulis, A J

    1985-05-01

    Extractive fermentation is a technique that can be used to reduce the effect of end-product inhibition through the use of a water-immiscible phase which removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation, and have developed a computer model predicting the productivity enhancement possible with this technique. The model predicts an ethanol productivity of 82.6 g/L-h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a dilution rate of 5.0 h . This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. In light of this, a systematic approach to extractive fermentation has been undertaken involving the screening of more than 1,000 solvents for their extractive properties. UNIFAC and UNIQUAC estimates of distribution coefficients and selectivities were compiled and ranked in a database, together with other important physical properties, such as density, surface tension and viscosity. Preliminary shake-flask and chemostat biocompatibility studies on the most promising solvents have been undertaken. The previous predictive, data base and experimental results are discussed.

  18. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    Directory of Open Access Journals (Sweden)

    G. Morais-Silva

    2016-01-01

    Full Text Available Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol, but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  19. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    Science.gov (United States)

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  20. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.......5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could...... be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher...

  1. Chronic intracerebroventricular morphine and lactation in rats: dependence and tolerance in relation to oxytocin neurones.

    Science.gov (United States)

    Rayner, V C; Robinson, I C; Russell, J A

    1988-02-01

    1. Acutely, opioids inhibit oxytocin secretion. To study the responses of oxytocin neurones during chronic opioid exposure, forty-five lactating rats were infused continuously from a subcutaneous osmotically driven mini-pump via a lateral cerebral ventricle with morphine sulphate solution from day 2 post-partum for 5-7 days; the infusion rate was increased 2- or 2.5-fold each 40 h from 10 micrograms/h initially up to 50 micrograms/h; controls were infused with vehicle (1 microliter/h, twenty-eight rats) or were untreated (eight rats). 2. Maternal behaviour was disrupted in 27% of the morphine-treated rats; in rats that remained maternal morphine did not affect body weight or water intake but increased rectal temperature by 0.82 +/- 0.14 degrees C (mean +/- S.E.M.) across the first 4 days. 3. Weight gain of the litters of maternal morphine-treated rats was reduced by 32% during 7 days, predominantly in the first day of treatment when milk transfer was also reduced. Observation of pup behaviour during suckling showed decreased frequency of milk ejections on only the second day of morphine treatment. Plasma concentration of prolactin after 6 days was similar in maternal morphine-treated and control rats, but reduced by 90% in non-maternal morphine-treated rats, indicating normal control of prolactin secretion by suckling in morphine-treated rats. 4. Oxytocin and vasopressin contents, measured by radioimmunoassay, in the supraoptic and paraventricular nuclei and in the neurohypophysis were similar between fourteen maternal morphine-treated, twelve vehicle-treated and eight untreated lactating rats; thus exposure to morphine did not involve increased production and storage of oxytocin. 5. Distribution of [3H]morphine infused intracerebroventricularly into six virgin female rats for 6 days was measured by scintillation counting of tissue extracts. Morphine concentration in the hypothalamus and neurohypophysis was 2.7 and 12.8 micrograms/g, respectively, and in blood

  2. Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats.

    Science.gov (United States)

    Deehan, Gerald A; Hauser, Sheketha R; Waeiss, R Aaron; Knight, Christopher P; Toalston, Jamie E; Truitt, William A; McBride, William J; Rodd, Zachary A

    2015-12-01

    The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 μM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 μM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 μM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC.

  3. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of Sitagliptin with no significant effect in retinopathy in a diabetic rat model.

    Science.gov (United States)

    Olurishe, Comfort; Kwanashie, Helen; Zezi, Abdulkadiri; Danjuma, Nuhu; Mohammed, Bisalla

    2016-12-24

    Moringa oleifera Lam. (Moringaceae) has gained awareness for its antidiabetic effect, and is used as alternative therapy or concurrently with orthodox medicines such as sitagliptin in diabetes mellitus. This is without ascertaining the possibility of drug-herb interactions, which could either lead to enhanced antidiabetic efficacy, increased toxicity, or compromised glycaemic control with negative consequence in diabetic retinopathy. To investigate the effect, of sitagliptin (50mg/kg), Moringa oleifera (300mg/kg) leaf extract, and a combination of both on glycaemic control parameters, lenticular opacity and changes in retinal microvasculature in alloxan (150mg/kg i.p) induced diabetic rat model. Seven groups of eight rats per group were used, with groups I, II and VII as normal (NC), diabetic (DC) and post-prandial controls (PPC). Groups III to VI were diabetic rats on sitagliptin (III), M. oleifera (IV), sitagliptin and M. oleifera (SM) (V), for 42 days with 2 weeks delayed treatment in a post-prandial hyperglycaemic group (PPSM) (VI). Glycaemic control parameters, insulin levels, body weights, and effects of retinal microvasculature on lenticular opacity/morphology were investigated. A significant decrease in fasting blood glucose (FBG) levels was displayed in SM group from day 14(60%) (p<0.01) to day 28 (38%) (p<0.01) of treatment, compared to day 1. Thereafter, a steady increase of up to 57% on day 42 compared to day 28 was observed. A significant decrease in random blood glucose (RBG) levels, were demonstrated on day 42 (24%) (p<0.001), compared to day 1. No significant difference was seen in mean serum levels of insulin across groups. No significant changes in body weights. Evidence of mild lenticular opacity was observed, with no significant effect in pathologic lesions in the retina. The chronic co-administration of sitagliptin and M. oleifera showed a progressive decrease in anti-hyperglycaemic effect of sitagliptin, and although it delayed the onset of

  4. The effect of intracerebroventricular injection of L-glutamate on the hypothalamic GnRH content in rat

    International Nuclear Information System (INIS)

    Fu Qiang; He Haoming

    2001-01-01

    Objective: To investigate the effect of intracerebroventricular injection of L-Glutamate (L-Glu) on hypothalamic gonadotrophin-releasing hormone (GnRH) content in male rats. Methods: The GnRH content in the supernatant of hypothalamic homogenates was measured by RIA. Results: The mean values of hypothalamic GnRH content in rat were 1.59 +- 0.41, 0.88 +- 0.34, 0.70 +- 0.42 ng/10mg wet tissue 40 min after intracerebroventricular injection of 0.01176, 0.1176, 1.176 μg/20 μl L-Glu respectively, which were significantly lower than those in controls with saline injections (P 3 H-Glu in rat at 40 min the author found that the intake of 3 H-glu by MBH was 1069.82 +- 490.33 cpm/10 mg wet tissues, the highest value among those taken by cerebrum, cerebellum, pituitary, POA and MBH itself. Conclusion: L-Glu probably participates in the regulation of functional activity of GnRH neurons in the hypothalamus

  5. Self-Administered Ethanol Enema Causing Accidental Death

    Directory of Open Access Journals (Sweden)

    Thomas Peterson

    2014-01-01

    Full Text Available Excessive ethanol consumption is a leading preventable cause of death in the United States. Much of the harm from ethanol comes from those who engage in excessive or hazardous drinking. Rectal absorption of ethanol bypasses the first pass metabolic effect, allowing for a higher concentration of blood ethanol to occur for a given volume of solution and, consequently, greater potential for central nervous system depression. However, accidental death is extremely rare with rectal administration. This case report describes an individual with klismaphilia whose death resulted from acute ethanol intoxication by rectal absorption of a wine enema.

  6. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats.

    Science.gov (United States)

    Toalston, Jamie E; Deehan, Gerald A; Hauser, Sheketha R; Engleman, Eric A; Bell, Richard L; Murphy, James M; McBride, William J; Rodd, Zachary A

    2015-08-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood. Published by Elsevier Inc.

  7. The Reinforcing Properties of Ethanol are Quantitatively Enhanced in Adulthood by Peri-Adolescent Ethanol, but not Saccharin, Consumption in Female Alcohol-Preferring (P) Rats

    Science.gov (United States)

    Toalston, Jamie E.; Deehan, Gerald A.; Hauser, Sheketha R.; Engleman, Eric A.; Bell, Richard L.; Murphy, James M.; McBride, William J.; Rodd, Zachary A.

    2015-01-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30–60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood. PMID:26074425

  8. Differential effects of whole-body {gamma}-irradiation on antinociception induced by morphine and {beta}-endorphin administered intracerebroventricularly in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.K. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Chung, K.M.; Park, T.W.

    2000-05-01

    Two separate lines of evidence suggested the present study. First, intracerebroventricularly (i.c.v.) administered morphine (a {mu}-opioid receptor agonist) and {beta}-endorphin (an {epsilon}-opioid receptor agonist) produce antinociception by activating different descending pain inhibitory systems. Second, {gamma}-irradiation attenuates the acute antinociceptive action of i.c.v. injected morphine, but not DPLPE (a {delta}-opioid receptor agonist), in mice. These findings prompted us to investigate the effect of {gamma}-irradiation on the antinociception produced by i.c.v. injected morphine and {beta}-endorphin in male ICR mice. In one group, mice were exposed to whole-body irradiation at a dose of 5 Gy from a {sup 60}Co {gamma}-source and the antinociceptive effects were tested 5, 30, 60,90 and 180 min after irradiation using the 1% acetic acid-induced writhing test (10 ml/kg). The antinociceptive effect was produced time-dependently and reached its maximum at 90 min after irradiation. Thus, time was fixed in the following studies. In another group, mice were irradiated with 5 Gy and tested 90 minutes later for antinociception produced by i.c.v. administration of morphine (50 and 100 ng/mouse) or {beta}-endorphin (31 ng/mouse). Irradiation significantly potentiated the antinociception produced by {beta}-endorphin. However, the antinociception produced by morphine was not affected by irradiation. These results demonstrate a differential sensitivity of {mu}- and {epsilon}-opioid receptors to {gamma}-irradiation, in addition, support the hypothesis that morphine and {beta}-endorphin administered supraspinally produce antinociception by different neuronal mechanisms. (author)

  9. Differential effects of whole-body γ-irradiation on antinociception induced by morphine and β-endorphin administered intracerebroventricularly in the mouse

    International Nuclear Information System (INIS)

    Kim, J.K.; Chung, K.M.; Park, T.W.

    2000-01-01

    Two separate lines of evidence suggested the present study. First, intracerebroventricularly (i.c.v.) administered morphine (a μ-opioid receptor agonist) and β-endorphin (an ε-opioid receptor agonist) produce antinociception by activating different descending pain inhibitory systems. Second, γ-irradiation attenuates the acute antinociceptive action of i.c.v. injected morphine, but not DPLPE (a δ-opioid receptor agonist), in mice. These findings prompted us to investigate the effect of γ-irradiation on the antinociception produced by i.c.v. injected morphine and β-endorphin in male ICR mice. In one group, mice were exposed to whole-body irradiation at a dose of 5 Gy from a 60 Co γ-source and the antinociceptive effects were tested 5, 30, 60,90 and 180 min after irradiation using the 1% acetic acid-induced writhing test (10 ml/kg). The antinociceptive effect was produced time-dependently and reached its maximum at 90 min after irradiation. Thus, time was fixed in the following studies. In another group, mice were irradiated with 5 Gy and tested 90 minutes later for antinociception produced by i.c.v. administration of morphine (50 and 100 ng/mouse) or β-endorphin (31 ng/mouse). Irradiation significantly potentiated the antinociception produced by β-endorphin. However, the antinociception produced by morphine was not affected by irradiation. These results demonstrate a differential sensitivity of μ- and ε-opioid receptors to γ-irradiation, in addition, support the hypothesis that morphine and β-endorphin administered supraspinally produce antinociception by different neuronal mechanisms. (author)

  10. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    Science.gov (United States)

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  11. Fuel ethanol discussion paper

    International Nuclear Information System (INIS)

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  12. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  13. Recurring ethanol exposure induces disinhibited courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.

  14. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Choi

    Full Text Available Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days. Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed, and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.

  15. Protective effect of the leaves of Vitex negundo against ethanol ...

    African Journals Online (AJOL)

    The present study investigated the effect of the various fractions of hydromethanolic extract of the leaves of Vitex negundo (Verbenaceae) against ethanol-induced cerebral oxidative stress in rats. Cerebral oxidative stress was induced by the administration of 20% ethanol (5 ml/100g bw) for a period of 28 days.

  16. Effect of Ethanolic Leaf Extract of Senna Fistula on some ...

    African Journals Online (AJOL)

    olayemitoyin

    This study was designed to investigate the effect of chronic administration of ethanolic leave extract of Senna ... Diabetes is a disorder in the metabolism of protein, .... Acute toxicity study .... pancreatic beta cells, however, further study could be.

  17. Lithium, phenserine, memantine and pioglitazone reverse memory deficit and restore phospho-GSK3β decreased in hippocampus in intracerebroventricular streptozotocin induced memory deficit model.

    Science.gov (United States)

    Ponce-Lopez, Teresa; Liy-Salmeron, Gustavo; Hong, Enrique; Meneses, Alfredo

    2011-12-02

    Intracerebroventricular (ICV) streptozotocin (STZ) treated rat has been described as a suitable model for sporadic Alzheimer's disease (AD). Central application of STZ has demonstrated behavioral and neurochemical features that resembled those found in human AD. Chronic treatments with antioxidants, acetylcholinesterase (AChE) inhibitors, or improving glucose utilization drugs have reported a beneficial effect in ICV STZ-treated rats. In the present study the post-training administration of a glycogen synthase kinase (GSK3) inhibitor, lithium; antidementia drugs: phenserine and memantine, and insulin sensitizer, pioglitazone on memory function of ICV STZ-rats was assessed. In these same animals the phosphorylated GSK3β (p-GSK3β) and total GSK3β levels were determined, and importantly GSK3β regulates the tau phosphorylation responsible for neurofibrillary tangle formation in AD. Wistar rats received ICV STZ application (3mg/kg twice) and 2 weeks later short- (STM) and long-term memories (LTM) were assessed in an autoshaping learning task. Animals were sacrificed immediately following the last autoshaping session, their brains removed and dissected. The enzymes were measured in the hippocampus and prefrontal cortex (PFC) by western blot. ICV STZ-treated rats showed a memory deficit and significantly decreased p-GSK3β levels, while total GSK3β did not change, in both the hippocampus and PFC. Memory impairment was reversed by lithium (100mg/kg), phenserine (1mg/kg), memantine (5mg/kg) and pioglitazone (30 mg/kg). The p-GSK3β levels were restored by lithium, phenserine and pioglitazone in the hippocampus, and restored by lithium in the PFC. Memantine produced no changes in p-GSK3β levels in neither the hippocampus nor PFC. Total GSK3β levels did not change with either drug. Altogether these results show the beneficial effects of drugs with different mechanisms of actions on memory impairment induced by ICV STZ, and restored p-GSK3β levels, a kinase key of

  18. Ethanol Transportation Backgrounder

    OpenAIRE

    Denicoff, Marina R.

    2007-01-01

    For the first 6 months of 2007, U.S. ethanol production totaled nearly 3 billion gallons—32 percent higher than the same period last year. As of August 29, there were 128 ethanol plants with annual production capacity totaling 6.78 billion gallons, and an additional 85 plants were under construction. U.S. ethanol production capacity is expanding rapidly and is currently expected to exceed 13 billion gallons per year by early 2009, if not sooner. Ethanol demand has increased corn prices and le...

  19. Opioid system of the brain and ethanol.

    Science.gov (United States)

    Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T

    2009-04-01

    Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.

  20. Effects of intracerebroventricular and intra-accumbens melanin-concentrating hormone agonism on food intake and energy expenditure.

    Science.gov (United States)

    Guesdon, Benjamin; Paradis, Eric; Samson, Pierre; Richard, Denis

    2009-03-01

    The brain melanin-concentrating hormone (MCH) system represents an anabolic system involved in energy balance regulation through influences exerted on the homeostatic and nonhomeostatic controls of food intake and energy expenditure. The present study was designed to further delineate the effect of the MCH system on energy balance regulation by assessing the actions of the MCH receptor 1 (MCHR1) agonism on both food intake and energy expenditure after intracerebroventricular (third ventricle) and intra-nucleus-accumbens-shell (intraNAcSH) injections of a MCHR1 agonist. Total energy expenditure and substrate oxidation were assessed following injections in male Wistar rats using indirect calorimetry. Food intake was also measured. Pair-fed groups were added to evaluate changes in thermogenesis that would occur regardless of the meal size and its thermogenic response. Using such experimental conditions, we were able to demonstrate that acute MCH agonism in the brain, besides its orexigenic effect, induced a noticeable change in the utilization of the main metabolic fuels. In pair-fed animals, MCH significantly reduced lipid oxidation when it was injected in the third ventricle. Such an effect was not observed following the injection of MCH in the NAcSH, where MCH nonetheless strongly stimulated appetite. The present results further delineate the influence of MCH on energy expenditure and substrate oxidation while confirming the key role of the NAcSH in the effects of the MCH system on food intake.

  1. Effects of Intracerebroventricularly (ICV) Injected Ghrelin on Cardiac Inducible Nitric Oxide Synthase Activity/Expression in Obese Rats.

    Science.gov (United States)

    Sudar Milovanovic, E; Jovanovic, A; Misirkic-Marjanovic, M; Vucicevic, Lj; Janjetovic, K; Isenovic, E R

    2015-11-01

    The aim of this study was to examine the effects of ghrelin on regulation of cardiac inducible nitric oxide synthase (iNOS) activity/expression in high fat (HF), obese rats.For this study, male Wistar rats fed with HF diet (30% fat) for 4 weeks were injected every 24 h for 5 days intracerebroventricularly (ICV) with ghrelin (0.3 nmol/5 µl) or with an equal volume of phosphate buffered saline (PBS). Control rats were ICV injected with an equal volume of PBS. Glucose, insulin and nitric oxide (NO) concentrations were measured in serum, while arginase activity and citrulline concentrations were measured in heart lysate. Protein iNOS and regulatory subunit of nuclear factor-κB (NFκB-p65), phosphorylation of enzymes protein kinase B (Akt) at Ser(473), and extracellular signal-regulated kinases 1/2 (ERK1/2) at Tyr(202)/Tyr(204) were determined in heart lysate by Western blot. For gene expression of iNOS qRT-PCR was used.Results show significantly (parginase activity (pactivity of cardiac iNOS via Akt phosphorylation followed by NFκB activation in HF rats. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain.

    Science.gov (United States)

    Ataie, Amin; Sabetkasaei, Masoumeh; Haghparast, Abbas; Moghaddam, Akbar Hajizadeh; Ataee, Ramin; Moghaddam, Shiva Nasiraei

    2010-08-01

    Aging is the major risk factor for neurodegenerative diseases and oxidative stress and is involved in their pathophysiology. Oxidative stress can induce neuronal damage and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. In this study we investigated the neuroprotective properties of the natural polyphenolic antioxidant compound, curcumin, against homocysteine (Hcy) neurotoxicity. Curcumin (5, 15, or 45 mg/kg) was injected intraperitoneally once daily for a period of 10 days beginning 5 days prior to Hcy (0.2 micromol/microl) intracerebroventricular injection in rats. Biochemical and behavioral studies, including passive avoidance learning and locomotor activity tests, were evaluated 24 hours after the last injection of curcumin or vehicle. Results indicated that Hcy induces lipid peroxidation and increases malondialdehyde (MDA) and superoxide anion (SOA) levels in whole rat brain. In addition, Hcy impaired memory retention in the passive avoidance learning test. However, curcumin treatment significantly decreased MDA and SOA levels and improved learning and memory in rats. These results suggest that Hcy may induce lipid peroxidation in rat brain and that polyphenol treatment (curcumin) improves learning and memory deficits by protecting the nervous system against oxidative stress.

  3. Effects of the kappa opioid receptor antagonist MR-2266-BS on the acquisition of ethanol preference

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, C.; Borrell, J.; Guaza, C. (Cajal Institute, Madrid (Spain))

    1990-01-01

    Using a paradigm by which rats forced to drink a weak ethanol solution develop ethanol preference in consecutive retention testing days, the effects of the administration of the kappa opioid antagonist MR-2266-BS, prior to or after the forced ethanol session, were studied. Pre-conditioning subcutaneous (s.c.) administration of 1 mg/kg of MR-2266-BS induced a decrease in subsequent ethanol consumption without significantly modifying the acquisition of ethanol preference. Post-conditioning administration of MR-2266-BS induced both a dose-dependent reduction in ethanol consumption and in preference throughout the three following days. The results of the present study provide further support of the involvement of kappa-type opioids on drinking behavior, and suggest that kappa receptors may be involved in the consumption and development of preference to ethanol.

  4. Market penetration of ethanol

    International Nuclear Information System (INIS)

    Szulczyk, Kenneth R.; McCarl, Bruce A.; Cornforth, Gerald

    2010-01-01

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  5. Central reinforcing effects of ethanol are blocked by catalase inhibition.

    Science.gov (United States)

    Nizhnikov, Michael E; Molina, Juan C; Spear, Norman E

    2007-11-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol's positive reinforcing effects. Central administrations of ethanol (25-200mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn's response to a surrogate nipple scented with the CS. It has been shown that ethanol's first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats, catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (IC) administrations of 100mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with IC administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was used as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats.

  6. Canadian ethanol retailers' directory

    International Nuclear Information System (INIS)

    1998-06-01

    This listing is a directory of all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listing includes the name and address of the retailer. Bulk purchase facilities of ethanol-blended fuels are also included, but in a separate listing

  7. Canada's ethanol retail directory

    International Nuclear Information System (INIS)

    1996-11-01

    A directory was published listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer. A list of bulk purchase facilities of ethanol-blended fuels is also included

  8. Cardiovascular effects of the intracerebroventricular injection of adrenomedullin: roles of the peripheral vasopressin and central cholinergic systems

    Directory of Open Access Journals (Sweden)

    B. Cam-Etoz

    2012-03-01

    Full Text Available Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g female rats (N = 7 in each group the effects of intracerebroventricularly (icv injected adrenomedullin (ADM on blood pressure and heart rate (HR, and to determine if ADM and calcitonin gene-related peptide (CGRP receptors, peripheral V1 receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1 icv ADM (750 ng/10 µL caused an increase in both blood pressure and HR (DMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm. 2 Pretreatment with a CGRP receptor antagonist (CGRP8-37 and ADM receptor antagonist (ADM22-52 blocked the effect of central ADM on blood pressure and HR. 3 The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv. 4 The V1 receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl¹, O-me-Tyr²,Arg8]-vasopressin (V2255; 10 µg/kg, that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V1 receptors in the increasing effects of icv ADM on blood pressure and HR.

  9. Cardiovascular effects of the intracerebroventricular injection of adrenomedullin: roles of the peripheral vasopressin and central cholinergic systems

    Energy Technology Data Exchange (ETDEWEB)

    Cam-Etoz, B.; Isbil-Buyukcoskun, N.; Ozluk, K. [Department of Physiology, Uludag University Medical Faculty, Gorukle/Bursa (Turkey)

    2012-03-02

    Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g) female rats (N = 7 in each group) the effects of intracerebroventricularly (icv) injected adrenomedullin (ADM) on blood pressure and heart rate (HR), and to determine if ADM and calcitonin gene-related peptide (CGRP) receptors, peripheral V{sub 1} receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1) icv ADM (750 ng/10 µL) caused an increase in both blood pressure and HR (ΔMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm). 2) Pretreatment with a CGRP receptor antagonist (CGRP{sub 8-37}) and ADM receptor antagonist (ADM{sub 22-52}) blocked the effect of central ADM on blood pressure and HR. 3) The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv) and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv) prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv). 4) The V{sub 1} receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl{sup 1}, O-me-Tyr{sup 2},Arg{sup 8}]-vasopressin (V2255; 10 µg/kg), that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V{sub 1} receptors in the increasing effects of icv ADM on blood pressure and HR.

  10. Systemic morphine blocks the seizures induced by intracerebroventricular (i.c.v.) injections of opiates and opioid peptides.

    Science.gov (United States)

    Urca, G; Frenk, H

    1982-08-19

    Intracerebroventricular (i.c.v.) injections of the endorphins and of morphine in rats produce highly characteristic, naloxone sensitive, electrographic seizures. In contrast, systemic injections of morphine have been shown to exert a marked anticonvulsant effect. The present study demonstrates that systemic morphine pretreatment can prevent the occurrence of electrographic seizures injected by i.c.v. morphine, Leu-enkephalin and beta-endorphin and that the anti-epileptic effect of morphine can be reversed by naloxone. Male albino rats, previously prepared for chronic i.c.v. injections and EEG recordings, were pretreated with 0--100 mg/kg of intraperitoneal (i.p.) morphine. Thirty five minutes later morphine (520 nmol), Leu-enkephalin (80 nmol) or beta-endorphin (5 nmol) were injected i.c.v. Pretreatment with i.p. morphine blocked the occurrence of seizures induced by morphine and both endogenous opioids. Lower doses of systemic morphine (50 mg/kg) were necessary to block i.c.v. morphine seizures than the dose (100 mg/kg) necessary to block seizures induced by i.c.v. Leu-enkephalin and beta-endorphin. Naloxone (1 mg/kg) administered 25 min following 50 mg/kg of i.p. morphine and preceding the injections of i.c.v. morphine reversed the antiepileptic effect of systemic morphine. These results demonstrate the possible existence of two opiate sensitive systems, one with excitatory-epileptogenic effects and the other possessing inhibitory-antiepileptic properties. The possible relationship between these findings and the known heterogeneity of opiate receptors and opiate actions is discussed.

  11. Cardiovascular effects of the intracerebroventricular injection of adrenomedullin: roles of the peripheral vasopressin and central cholinergic systems

    International Nuclear Information System (INIS)

    Cam-Etoz, B.; Isbil-Buyukcoskun, N.; Ozluk, K.

    2012-01-01

    Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g) female rats (N = 7 in each group) the effects of intracerebroventricularly (icv) injected adrenomedullin (ADM) on blood pressure and heart rate (HR), and to determine if ADM and calcitonin gene-related peptide (CGRP) receptors, peripheral V 1 receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1) icv ADM (750 ng/10 µL) caused an increase in both blood pressure and HR (ΔMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm). 2) Pretreatment with a CGRP receptor antagonist (CGRP 8-37 ) and ADM receptor antagonist (ADM 22-52 ) blocked the effect of central ADM on blood pressure and HR. 3) The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv) and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv) prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv). 4) The V 1 receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl 1 , O-me-Tyr 2 ,Arg 8 ]-vasopressin (V2255; 10 µg/kg), that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V 1 receptors in the increasing effects of icv ADM on blood pressure and HR

  12. Intracerebroventricular Infusion of Vasoactive Intestinal Peptide (VIP Rescues the Luteinizing Hormone Surge in Middle-Aged Female Rats

    Directory of Open Access Journals (Sweden)

    Yan eSun

    2012-02-01

    Full Text Available Reproductive aging is characterized by delayed and attenuated luteinizing hormone (LH surges apparent in middle-aged rats. The suprachiasmatic nucleus (SCN contains the circadian clock that is responsible for the timing of diverse neuroendocrine rhythms. Electrophysiological studies suggest vasoactive intestinal peptide (VIP originating from the SCN excites gonadotropin-releasing hormone (GnRH neurons and affects daily patterns of GnRH-LH release. Age-related LH surge dysfunction correlates with reduced VIP mRNA expression in the SCN and fewer GnRH neurons with VIP contacts expressing c-fos, a marker of neuronal activation, on the day of the LH surge. To determine if age-related LH surge dysfunction reflects reduced VIP availability or altered VIP responsiveness under estradiol positive feedback conditions, we assessed the effect of intracerebroventricular (icv VIP infusion on c-fos expression in GnRH neurons and on LH release in ovariohysterectomized, hormone-primed young and middle-aged rats. Icv infusion of VIP between 1300 and 1600 h significantly advanced the time of peak LH release, increased total and peak LH release, and increased the number of GnRH neurons expressing c-fos on the day of the LH surge in middle-aged rats. Surprisingly, icv infusion of VIP in young females significantly reduced the number of GnRH neurons expressing c-fos and delayed and reduced the LH surge. These observations suggest that a critical balance of VIP signaling is required to activate GnRH neurons for an appropriately timed and robust LH surge in young and middle-aged females. Age-related LH surge changes may, in part, result from decreased availability and reduced VIP-mediated neurotransmission under estradiol positive feedback conditions.

  13. Neuroprotective effects of tenuigenin on neurobehavior, oxidative stress, and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats

    Directory of Open Access Journals (Sweden)

    Xiao-Bo Huang

    2018-01-01

    Full Text Available BACKGROUND: Tenuigenin (TEN, a major active component of the Chinese herb Polygala tenuifolia root, has been used to improve memory and cognitive function in Traditional Chinese Medicine for centuries. PURPOSE: The present study was designed to explore the possible neuroprotective effect of TEN on the streptozotocin (STZ-induced rat model of sporadic Alzheimer's disease (sAD. METHODS: STZ was injected twice intracerebroventrically (3 mg/kg, ICV on alternate days (day 1 and day 3 in Rats. Daily treatment with TEN (2, 4, and 8 mg/kg starting from the first dose of STZ for 28 days. Memory-related behaviors were evaluated using the Morris water maze test. Hyperphosphorylation of tau proteins in hippocampus were measured by western blot assay. Superoxide dismutase activities, malondialdehyde, glutathione peroxidase and 4-hydroxy-2-nonenal adducts contents were also measured in the hippocampus.RESULTS: Treatment with TEN significantly improved STZ-induced cognitive damage, markedly reduced changes in malondialdehyde and 4-hydroxy-2-nonenal adducts, and significantly inhibited STZ-induced reduction in superoxide dismutase and glutathione peroxidase activities in the hippocampus. In addition, TEN decreased hyperphosphorylation of tau resulting from intracerebroventricular STZ (ICV-STZ injection, and Nissl staining results showed that TEN has protective effects on hippocampal neurons. CONCLUSION: These results provide experimental evidence demonstrating preventive effect of TEN on cognitive dysfunction, oxidative stress, and hyperphosphorylation of tau in ICV-STZ rats. This study indicates that TEN may have beneficial effects in the treatment of neurodegenerative disorders such as AD.

  14. Nucleus Accumbens MC4-R Stimulation Reduces Food and Ethanol Intake in Adult Rats Regardless of Binge-Like Ethanol Exposure during Adolescence

    Directory of Open Access Journals (Sweden)

    Francisca Carvajal

    2017-09-01

    Full Text Available The melanocortin (MC system regulates feeding and ethanol consumption. Recent evidence shows that melanocortin 4 receptor (MC4-R stimulation within the nucleus accumbens (NAc elicits anorectic responses and reduces ethanol consumption and ethanol palatability in adult rats. Ethanol exposure during adolescence causes long-lasting changes in neural pathways critically involved in neurobehavioral responses to ethanol. In this regard, binge-like ethanol exposure during adolescence reduces basal alpha-melanocyte-stimulating hormone (α-MSH and alters the levels of agouti-related peptide (AgRP in hypothalamic and limbic areas. Given the protective role of MC against excessive ethanol consumption, disturbances in the MC system induced by binge-like ethanol exposure during adolescence might contribute to excessive ethanol consumption during adulthood. In the present study, we evaluated whether binge-like ethanol exposure during adolescence leads to elevated ethanol intake and/or eating disturbance during adulthood. Toward that aim, Sprague-Dawley rats were treated with ethanol (3 g/kg i.p.; BEP group or saline (SP group for 14 days (PND 25 to PND 38. On PND73, all the groups were given access to 20% ethanol on an intermittent schedule. Our results showed that adult rats given intermittent access (IAE to 20% ethanol achieved high spontaneous ethanol intake that was not significantly enhanced by binge-like ethanol pretreatment during adolescence. However, BEP group exhibited an increase in food intake without a parallel increase in body weight (BW relative to SP group suggesting caloric efficiency disturbance. Additionally, we evaluated whether binge-like ethanol exposure during adolescence alters the expected reduction in feeding and ethanol consumption following NAc shell administration of a selective MC4-R agonist in adult rats showing high rates of ethanol consumption. For that, animals in each pretreatment condition (SP and BEP were divided into

  15. Speichim cuts ethanol energy

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-08

    France's Speichim has reported low-pressure steam consumption of only 0.7kg/l in the production of industrial-grade ethanol. Mechanical compression of distillation vapours can reduce this energy demand even more.

  16. Environmental benefits of ethanol

    International Nuclear Information System (INIS)

    1998-11-01

    The environmental benefits of ethanol blended fuels in helping to reduce harmful emissions into the atmosphere are discussed. The use of oxygenated fuels such as ethanol is one way of addressing air pollution concerns such as ozone formation. The state of California has legislated stringent automobile emissions standards in an effort to reduce emissions that contribute to the formation of ground-level ozone. Several Canadian cities also record similar hazardous exposures to carbon monoxide, particularly in fall and winter. Using oxygenated fuels such as ethanol, is one way of addressing the issue of air pollution. The net effect of ethanol use is an overall decrease in ozone formation. For example, use of a 10 per cent ethanol blend results in a 25-30 per cent reduction in carbon monoxide emissions by promoting a more complete combustion of the fuel. It also results in a 6-10 per cent reduction of carbon dioxide, and a seven per cent overall decrease in exhaust VOCs (volatile organic compounds). The environmental implications of feedstock production associated with the production of ethanol for fuel was also discussed. One of the Canadian government's initiatives to address the climate change challenge is its FleetWise initiative, in which it has agreed to a phased-in acquisition of alternative fuel vehicles by the year 2005. 9 refs

  17. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    International Nuclear Information System (INIS)

    Crago, Christine L.; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO 2 is needed to affect competitiveness. (author)

  18. Neuroprotective effect of Quince leaf hydroalcoholic extract on intracerebroventricular streptozotocin-induced oxidative stress in cortical tissue of rat brain

    Directory of Open Access Journals (Sweden)

    A Hajizadeh Moghaddam

    2015-12-01

    Full Text Available Background & aim: Oxidative stress is a result of the imbalance between free radicals and the antioxidant system of the body. Increased oxidative stress in brain causes dysfunction of brain activities, destruction of neurons, and disease such as Alzheimer. Antioxidants, for example vitamins, phenolic compounds and flavonoids have been extensively investigated as potential therapeutic agents in vitro and in vivo for prevention of neurodegenerative diseases. In the present experimental study, the neuro-protective effect of quince leaf hydroalcoholic extract (QLHE on intracerebroventricular streptozotocin (icv-STZ-induced oxidative stress in cortical tissue of rat brain was examined. Methods: In the present experimental research, forty-two Wistar rats were randomly divided into control, sham, icv-STZ and icv-STZ treated with QLHE groups. The ICV-STZ group rats were injected unilaterally with ICV-STZ (3 mg/kg using a stereotactic device and QLHE (50, 100 and 150 mg/kg/day were administered for 6 weeks starting from 3 weeks before of ICV-STZ injection. The rats were killed at the end of the study and their brain cortical tissue superoxide dismutase and catalase activity were measured. The assay of catalase and superoxide dismutase was performed by following the Genet method. The amount of protein was determined according to the Bradford method.The statistical analysis was performed using one way ANOVA. Data were expressed as mean±SD and  P<0.05 was considered significant. Results: The present study indicated that in the ICV-STZ group showed significant decrease (P<0.001 in enzymatic antioxidants superoxide dismutase and catalase in the cortical tissue of the brain. Treatment of different doses of QLHE significantly increased superoxide dismutase and catalase activity compared to icv-STZ group (P<0.001 in cortical tissue of the brain. Conclusion: The study demonstrated the effectiveness of quince leaf hydroalcoholic extract as a powerful antioxidant

  19. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid beta-infused rat by repressing amyloid beta accumulation.

    Science.gov (United States)

    Lee, Chun-Lin; Kuo, Tzong-Fu; Wang, Jyh-Jye; Pan, Tzu-Ming

    2007-11-01

    Amyloid beta (Abeta) peptide related to the onset of Alzheimer's disease (AD) damaged neurons and further resulted in dementia. Monascus-fermented red mold rice (RMR), a traditional Chinese medicine as well as health food, includes monacolins (with the same function as statins) and multifunctional metabolites. In this study, ethanol extract of RMR (RE) was used to evaluate neuroprotection against Abeta40 neurotoxicity in PC12 cells. Furthermore, the effects of dietary administration of RMR on memory and learning abilities are confirmed in an animal model of AD rats infused with Abeta40 into the cerebral ventricle. During continuous Abeta40 infusion for 28 days, the rats of test groups were administered RMR or lovastatin. Memory and learning abilities were evaluated in the water maze and passive avoidance tasks. After sacrifice, cerebral cortex and hippocampus were collected for the examination of AD risk factors. The in vitro results clearly indicate that RE provides stronger neuroprotection in rescuing cell viability as well as repressing inflammatory response and oxidative stress. RMR administration potently reverses the memory deficit in the memory task. Abeta40 infusion increases acetylcholinesterase activity, reactive oxygen species, and lipid peroxidation and decreases total antioxidant status and superoxide dismutase activity in brain, but these damages were potently reversed by RMR administration, and the protection was more significant than that with lovastatin administration. The protection provided by RMR is able to prevent Abeta fibrils from being formed and deposited in hippocampus and further decrease Abeta40 accumulation, even though Abeta40 solution was infused into brain continuously. (c) 2007 Wiley-Liss, Inc.

  20. Ethanol fuels in Brazil

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1993-01-01

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  1. Is there a role for leukotrienes as mediators of ethanol-induced gastric mucosal damage?

    International Nuclear Information System (INIS)

    Wallace, J.L.; Beck, P.L.; Morris, G.P.

    1988-01-01

    The role of leukotriene (LT) C 4 as a mediator of ethanol-induced gastric mucosal damage was investigated. Rats were pretreated with a number of compounds, including inhibitors of leukotriene biosynthesis and agents that have previously been shown to reduce ethanol-induced damage prior to oral administration of absolute ethanol. Ethanol administration resulted in a fourfold increase in LTC 4 synthesis. LTC 4 synthesis could be reduced significantly by pretreatment with L651,392 or dexamethosone without altering the susceptibility of the gastric mucosa to ethanol-induced damage. Furthermore, changes in LBT 4 synthesis paralleled the changes in LTC 4 synthesis observed after ethanol administration. The effects of ethanol on gastric eicosanoid synthesis were further examined using an ex vivo gastric chamber preparation that allowed for application of ethanol to only one side of the stomach. These studies confirm that ethanol can stimulate gastric leukotriene synthesis independent of the production of hemorrhagic damage. Inhibition of LTC 4 synthesis does not confer protection to the mucosa, suggesting that LTC 4 does not play an important role in the etiology of ethanol-induced gastric damage

  2. Bioavailability of ethanol is reduced in several commonly used liquid diets.

    Science.gov (United States)

    de Fiebre, N C; de Fiebre, C M; Booker, T K; Nelson, S; Collins, A C

    1994-01-01

    Liquid diets are often used as a vehicle for chronically treating laboratory animals with ethanol. However, a recent report suggested that one or more components of these diets may bind ethanol which could result in a decrease in the bioavailability of ethanol. Consequently, we compared the blood ethanol concentration vs. time curves obtained following the intragastric (i.g.) administration of ethanol dissolved in water or in one of three liquid diets (Bioserv AIN-76, Sustacal, or Carnation Slender) using the long-sleep (LS) and short-sleep (SS) mouse lines. The initial rates of absorption were generally the same for the water-ethanol and diet-ethanol groups, but the diets generally produced lower peak levels and the areas under the ethanol concentration-time curves were less for all of the liquid diets than for the control, ethanol-water solution. In vitro dialysis experiments indicated that the Bioserv diet binds ethanol in a saturable manner. Therefore, it may be that the slower release of ethanol, which should occur as a result of binding, serves to increase the role of first pass metabolism in regulating ethanol concentrations following oral administration. Because the effects of the diets were seen even after pyrazole treatment, it may be that the lower blood ethanol levels arise because metabolism by gastric ADH, rather than hepatic ADH, is responsible for a major portion of ethanol metabolism as ethanol is slowly released by the diets. If so, the observation that the diet/water differences were uniformly greater in the LS mice may indicate that LS-SS differences in gastric ADH exist.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Cue-induced reinstatement of ethanol seeking in Sardinian alcohol-preferring rats.

    Science.gov (United States)

    Maccioni, Paola; Orrú, Alessandro; Korkosz, Agnieszka; Gessa, Gian Luigi; Carai, Mauro A M; Colombo, Giancarlo; Bienkowski, Przemyslaw

    2007-02-01

    The purpose of the present study was to characterize cue-induced reinstatement of ethanol seeking in selectively bred Sardinian alcohol-preferring (sP) rats trained to lever press for ethanol in 30-min self-administration sessions. Four responses on an "active" lever led to presentation of 0.1 ml of 15% (vol/vol) ethanol by a liquid dipper and concurrent activation of a set of discrete light and auditory cues. In a 70-min extinction/reinstatement session, responding was first extinguished for 60 min. Subsequently, different stimuli were delivered in a noncontingent manner and reinstatement of nonreinforced responding was assessed. Fifteen presentations of the ethanol-predictive stimulus complex, including the dipper cup containing 5 or 15% ethanol, potently reinstated responding on the previously active lever. The magnitude of reinstatement increased with the number of stimulus presentations and concentration of ethanol presented by the dipper cup. Fifteen presentations of the ethanol-predictive stimulus complex, including the dipper cup filled with water (0% ethanol), did not produce any reinstatement. These results indicate that (1) noncontingent presentations of the ethanol-predictive stimulus complex may reinstate ethanol seeking in sP rats and (2) the orosensory properties of ethanol may play an important role in reinstatement of ethanol seeking in sP rats. The latter finding concurs with clinical observations that odor and taste of alcoholic beverages elicit immediate craving responses in abstinent alcoholics.

  4. Implications of increased ethanol production

    International Nuclear Information System (INIS)

    1992-06-01

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  5. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...

  6. Ethanol Forensic Toxicology.

    Science.gov (United States)

    Perry, Paul J; Doroudgar, Shadi; Van Dyke, Priscilla

    2017-12-01

    Ethanol abuse can lead to negative consequences that oftentimes result in criminal charges and civil lawsuits. When an individual is suspected of driving under the influence, law enforcement agents can determine the extent of intoxication by measuring the blood alcohol concentration (BAC) and performing a standardized field sobriety test. The BAC is dependent on rates of absorption, distribution, and elimination, which are influenced mostly by the dose of ethanol ingested and rate of consumption. Other factors contributing to BAC are gender, body mass and composition, food effects, type of alcohol, and chronic alcohol exposure. Because of individual variability in ethanol pharmacology and toxicology, careful extrapolation and interpretation of the BAC is needed, to justify an arrest and assignment of criminal liability. This review provides a summary of the pharmacokinetic properties of ethanol and the clinical effects of acute intoxication as they relate to common forensic questions. Concerns regarding the extrapolation of BAC and the implications of impaired memory caused by alcohol-induced blackouts are discussed. © 2017 American Academy of Psychiatry and the Law.

  7. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  8. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  9. Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo

    OpenAIRE

    Wen-bin He; Kazuho Abe; Tatsuhiro Akaishi

    2018-01-01

    To explore memory enhancing effect of the flavonoid fisetin, we investigated the effect of oral administration of flavonoids on the induction of long-term potentiation (LTP) at hippocampal CA1 synapses of anesthetized rats. Among four flavonoids (fisetin, quercetin, luteolin and myricetin) tested, only fisetin significantly facilitated the induction of hippocampal LTP. The effect of oral fisetin was abolished by intracerebroventricular injection of U0126, an agent that was previously found to...

  10. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines.

    Science.gov (United States)

    Blednov, Yuri A; Benavidez, Jillian M; Black, Mendy; Mayfield, Jody; Harris, R Adron

    2015-08-01

    Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of methanolic extract of Hibiscus sabdariffa in ethanol-induced ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the activity of Hibiscus sabdariffa on the liver of rats following repeated administration of ethanol. Hepatotoxicity was induced on the rats using ethanol and the levels of serum enzymes such as serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase ...

  12. Chronic ethanol exposure inhibits distraction osteogenesis in a mouse model: Role of the TNF signaling axis

    International Nuclear Information System (INIS)

    Wahl, Elizabeth C.; Aronson, James; Liu, Lichu; Liu, Zhendong; Perrien, Daniel S.; Skinner, Robert A.; Badger, Thomas M.; Ronis, Martin J.J.; Lumpkin, Charles K.

    2007-01-01

    Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine that modulates osteoblastogenesis. In addition, the demonstrated inhibitory effects of chronic ethanol exposure on direct bone formation in rats are hypothetically mediated by TNF-α signaling. The effects in mice are unreported. Therefore, we hypothesized that in mice (1) administration of a soluble TNF receptor 1 derivative (sTNF-R1) would protect direct bone formation during chronic ethanol exposure, and (2) administration of recombinant mouse TNF-α (rmTNF-α) to ethanol naive mice would inhibit direct bone formation. We utilized a unique model of limb lengthening (distraction osteogenesis, DO) combined with liquid diets to measure chronic ethanol's effects on direct bone formation. Chronic ethanol exposure resulted in increased marrow TNF, IL-1, and CYP 2E1 RNA levels in ethanol-treated vs. control mice, while no significant weight differences were noted. Systemic administration of sTNF-R1 during DO (8.0 mg/kg/2 days) to chronic ethanol-exposed mice resulted in enhanced direct bone formation as measured radiologically and histologically. Systemic rmTNF-α (10 μg/kg/day) administration decreased direct bone formation measures, while no significant weight differences were noted. We conclude that chronic ethanol-associated inhibition of direct bone formation is mediated to a significant extent by the TNF signaling axis in a mouse model

  13. Effect Of Caffeine And Ethanol Consumption On the Metabolism Of 5 ...

    African Journals Online (AJOL)

    The effect of caffeine and ethanol on the metabolism of 5-hydroxy tryptamine in the rat was investigated. Rats were divided into four groups and the first group was fed rat chow with water and an oral administration of 2ml of 1% caffeine. The second group of rats was fed rat chow with 7% ethanol and the third group was fed ...

  14. Production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-10

    Ethanol is produced by fermentation with a photohardening resin-immobilized yeast preparation. The ethanol producing yeast may be selected from Saccharomyces, Zygosaccharomyces, or Schizosaccharomyces. The photohardening resin for yeast immobilization is a hydrophilic unsaturated compound, especially polyurethane acrylate, with an average molecular weight of 300-80,000 and containing at least 2 photopolymerizable ethylene groups. The immobilized yeast preparation is prepared by irradiating an aqueous suspension of yeast and a photohardening resin with UV light; the average size of the immobilized yeast is 0.1-3.0 mm and with various shapes. Thus, an aqueous suspension containing Saccharomyces formosensis cells (5 parts), a poly(ethylene glycol)isopharone diisocyanate-2-hydroxyethyl methacrylate copolymer (50 parts), and benzoin ethyl ether (0.5 parts) was homogenized, spread on a polypropylene tray (1.0 mm depth), and irradiated with a 3600 A Hg lamp for 5-10 minutes to form a yeast-containing polyurethane acrylate sheet (1.0 mm thickness), which was then sliced into bits of approximately 1.0 mm. When a molasses substrate solution (pH 4.5-5.0) was passed through a column (200 x 20 mm) packed with the polyurethane acrylate-immobilized yeast preparation, eluates containing 7% (weight/volume) ethanol were produced for >3000 hours.

  15. Innovative inexpensive ethanol

    International Nuclear Information System (INIS)

    Mackek, S.

    1991-01-01

    New Energy Company of Indiana which produces 70 million gallons of ethanol per year, avoids the headaches often associated with organic by-products by creating an efficient and profitable sideline business. This paper reports that stretching across 55 acres in South Bend, Ind., New Energy's plant is the largest in the U.S. built specifically for fuel alcohol. The $186-million complex is a dramatic advance in the art of producing ethanol and its co-products. As the demand grows in the coming years for fuel alcohol-proven as an octane booster and a clean-burning alternative fuel. New Energy looks forward to increase production and profits. At the company's six-year-old plant, fuel alcohol is made from 26 million bushels a year of No. 2 yellow dent corn. Left at the bottom of the first column, after the alcohol has been boiled off, is stillage that contains more than 90% of the corn's protein and fat content, and virtually all of its vitamins and minerals, along with the yeast used to make the ethanol. While technically a waste product of the fuel alcohol process, this material's quantity and organic content not only make it difficult and costly to dispose, but its nutritional quality makes it an excellent candidate to be further processed into animal feed

  16. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  17. Hippocampal nicotinic receptors have a modulatory role for ethanol and MDMA interaction in memory retrieval.

    Science.gov (United States)

    Rostami, Maryam; Rezayof, Ameneh; Alijanpour, Sakineh; Sharifi, Khadijeh Alsadat

    2017-08-15

    The aim of the current study was to examine the effect of dorsal hippocampal nicotinic acetylcholine receptors (nAChRs) activation on the functional interaction between ethanol and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) in memory retrieval. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated and memory retrieval was measured in a step-down type passive avoidance apparatus. Post-training or pre-test systemic administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol reversed pre-training ethanol-induced amnesia, suggesting ethanol state-dependent learning. Pre-test intra-CA1 microinjection of different doses of MDMA (0.25-1µg/mouse) with an ineffective dose of ethanol (0.25g/kg, i.p.) also induced amnesia. Interestingly, pre-test intra-CA1 microinjection of MDMA (0.25-1µg/mouse) potentiated ethanol state-dependent learning. On the other hand, the activation of the dorsal hippocampal nAChRs by pre-test microinjection of nicotine (0.1-1µg/mouse, intra-CA1) improved amnesia induced by the co-administration of MDMD and ethanol. It is important to note that intra-CA1 microinjection of the same doses of MDMA or nicotine could not affect memory formation by itself. Pre-test intra-CA1 microinjection of nicotine (0.3-0.9µg/mouse) could not reverse amnesia induced by pre-training administration of ethanol while this treatment enhanced MDMA response on ethanol state-dependent learning. Thus, it can be concluded that there may be functional interactions among ethanol, MDMA and nicotine via the dorsal hippocampal nicotinic acetylcholine receptor mechanism in memory retrieval and drug state-dependent learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fact sheet: Ethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    This fact sheet is intended to provide an overview of the advantages of ethanol from corn, emphasizing ethanol`s contribution to environmental protection and sustainable agriculture. Ethanol, an alternative fuel used as an octane enhancer is produced through the conversion of starch to sugars by enzymes, and fermentation of these sugars to ethanol by yeast. The production process may involve wet milling or dry milling. Both these processes produce valuable by-products, in addition to ethanol and carbon dioxide. Ethanol contains about 32,000 BTU per litre. It is commonly believed that using state-of-the-art corn farming and corn processing processes, the amount of energy contained in ethanol and its by-products would be more than twice the energy required to grow and process corn into ethanol. Ethanol represents the third largest market for Ontario corn, after direct use as animal feed and wet milling for starch, corn sweetener and corn oil. The environmental consequences of using ethanol are very significant. It is estimated that a 10 per cent ethanol blend in gasoline would result in a 25 to 30 per cent decrease in carbon monoxide emissions, a 6 to 10 per cent decrease in net carbon dioxide, a slight increase in nitrous oxide emissions which, however, would still result in an overall decrease in ozone formation, since the significant reduction in carbon monoxide emissions would compensate for any slight increase in nitrous oxide. Volatile organic compounds emission would also decrease by about 7 per cent with a 10 per cent ethanol blend. High level blends could reduce VOCs production by as much as 30 per cent. 7 refs.

  19. Brain catalase activity inhibition as well as opioid receptor antagonism increases ethanol-induced HPA axis activation.

    Science.gov (United States)

    Pastor, Raúl; Sanchis-Segura, Carles; Aragon, Carlos M G

    2004-12-01

    Growing evidence indicates that brain catalase activity is involved in the psychopharmacological actions of ethanol. Recent data suggest that participation of this enzymatic system in some ethanol effects could be mediated by the endogenous opioid system. The present study assessed whether brain catalase has a role in ethanol-induced activation of the HPA axis, a neuroendocrine system modulated by the endogenous opioid neurotransmission. Swiss male mice received an intraperitoneal injection of the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg), and 0 to 20 hr after this administration, animals received an ethanol (0-4 g/kg; intraperitoneally) challenge. Thirty, 60, or 120 min after ethanol administration, plasma corticosterone levels were determined immunoenzymatically. In addition, we tested the effects of 45 mg/kg of cyanamide (another catalase inhibitor) and 0 to 2 mg/kg of naltrexone (nonselective opioid receptor antagonist) on ethanol-induced enhancement in plasma corticosterone values. The present study revealed that AT boosts ethanol-induced increase in plasma corticosterone levels in a dose- and time-dependent manner. However, it did not affect corticosterone values when measured after administration of saline, cocaine (4 mg/kg, intraperitoneally), or morphine (30 mg/kg, intraperitoneally). The catalase inhibitor cyanamide (45 mg/kg, intraperitoneally) also increased ethanol-related plasma corticosterone levels. These effects of AT and cyanamide on ethanol-induced corticosterone values were observed under treatment conditions that decreased significantly brain catalase activity. Indeed, a significant correlation between effects of catalase manipulations on both variables was found. Finally, we found that the administration of naltrexone enhanced the levels of plasma corticosterone after the administration of saline or ethanol. This study shows that the inhibition of brain catalase increases ethanol-induced plasma corticosterone levels. Results are

  20. Canada's directory of ethanol retailers

    International Nuclear Information System (INIS)

    1997-07-01

    This document is a directory listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer by province from west to east. Appendices providing a list of bulk purchase facilities of ethanol-blended fuels was also included, as well as a list of ethanol-blended gasoline retailers

  1. Aqueous and ethanolic leaf extracts of Ocimum basilicum (sweet ...

    African Journals Online (AJOL)

    We evaluated the effects of aqueous and ethanolic leaf extracts of Ocimum basilicum (sweet basil) on sodium arsenite-induced hepatotoxicity in Wistar rats. We observed that treatment of the animals with the extracts before or just after sodium arsenite administration significantly (p < 0.05) reduced mean liver and serum ...

  2. Ethanol stem bark extract of Rauwolfia vomitoria ameliorates MPTP ...

    African Journals Online (AJOL)

    Methods: The Parkinson's disease was induced in rats by a single intraperitoneal (IP) injection of MPTP. After 72h of induction, the young adult male rats were treated with oral administration of stem bark ethanol extract of the plant daily for 2 weeks. The blood chemistry, antioxidant markers and brain dopamine levels were ...

  3. The Protective Role of Zinc Sulphate on Ethanol -Induced Liver and Kidney Damages in Rats

    International Nuclear Information System (INIS)

    Al-Damegh, Mona Abdalla

    2007-01-01

    Around the world more and more people suffer from alcoholism. Addiction problems, alcoholism and excessive use of drugs both medical and nonmedical, are major causes of liver and kidney damage in adults. The purpose of this study was to investigate on the protective role of zinc sulphate on liver and kidney in rats with acute alcoholism. Wistar albino rats were divided into four groups. Group I; control group, group 2; given only Zinc Sulphate (100 mg/kg/day for 3days), group 3; rats given absolute ethanol (1 ml of absolute ethanol administrated by gavage technique to each rat), group 4 given Zinc sulphate prior to the administration of absolute ethanol. The results of this study revealed that acute ethanol exposure caused degenerative morphological changes in the liver and kidney. Significant difference were found in the levels of serum, liver, kidney super oxide dismutase(SOD), catalase (CAT), nitric oxide(NO), and malondialdehyde (MDA) in the ethanol group compared to the control group. Moreover ,serum urea, creatnine, uric acid, alkaline phoshpatase and transaminases activities (GOTand GPT) were increased in the ethanol group compared to the control group. On the other hand,administration of zinc sulphate in the ethanol group caused a significant decrease in the degenerative changes, lipid peroxidation, antioxidant enzymes, and nitric oxide in serum, liver, and kidney. It can be concluded that zinc Sulphate has a protective role on the ethanol induced liver and kidney injury. In addition ,nitric oxide is involved in the mechanism of acute alcohol intoxication. (author)

  4. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats.

    Science.gov (United States)

    Sanchis-Segura, Carles; Correa, Mercé; Miquel, Marta; Aragon, Carlos M G

    2005-03-07

    Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.

  5. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    Science.gov (United States)

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  6. Inhibitory effects of ethanol on phosphatidylinositol breakdown in pancreatic acini

    International Nuclear Information System (INIS)

    Towner, S.J.; Peppin, J.F.; Tsukamoto, H.

    1986-01-01

    Recently the physiological relationship between the phospholipid effect and secretagogue-induced cellular function has begun to be understood. In this study, the authors investigated acute and chronic effects of ethanol on phosphatidylinositol (PI) synthesis and breakdown in pancreatic acini. Five pairs of male Wistar rats were intragastrically infused for 30 days with high fat diet (25% total calories) plus ethanol or isocaloric dextrose. After intoxication, isolated in HEPES media, followed by 30 min incubation with CCK-8 (0, 100, 300 or 600 pM) and ethanol (0 or 100 mM). Acinar lipids were extracted and counted for labeled PI. Incorporation of 3 H-inositol into alcoholic acinar PI was reduced to 38.2% of that in controls. A percent maximal PI break down by CCK-8 was similar in the two groups (13-24% of basal). However, the magnitude of PI breakdown was markedly lower in alcoholic acini (482 vs 1081 dpm) due to the decreased PI synthesis rate. The presence of 100 mM ethanol in the media further inhibited the breakdown by 50% in this group. These results strongly indicate that chronic ethanol intoxication inhibits PI synthesis and breakdown in pancreatic acini, and that this inhibition can be potentiated by acute ethanol administration

  7. Oral administration of Rauwolfia vomitoria extract has no untoward ...

    African Journals Online (AJOL)

    The effect of ethanolic extract of leaf and root of Rauwolfia vomitoria on kidney and liver functions in rats was investigated. Rats were given daily oral administration of ethanolic extracts of either root or leaf of R. vomitoria at two different concentrations (1.0 and 2.0 g/kg body weight) for a period of 14 days. Some biochemical ...

  8. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice.

    Science.gov (United States)

    Ledesma, Juan Carlos; Font, Laura; Aragon, Carlos M G

    2012-07-01

    In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  10. Alternative Fuels Data Center: Ethanol Fueling Stations

    Science.gov (United States)

    ... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure fueling stations by location or along a route. Infrastructure Development Learn about ethanol fueling infrastructure; codes, standards, and safety; and ethanol equipment options. Maps & Data E85 Fueling Station

  11. The effect of chronic ethanol on glutamate binding in human and rat brain

    International Nuclear Information System (INIS)

    Cummins, J.T.; Sack, M.; von Hungen, K.

    1990-01-01

    Quantitative autoradiographic techniques demonstrate that chronic alcohol administration causes a decrease in [ 3 H]-glutamate binding to hippocampal N-methyl-D-aspartate (NMDA) receptors. A 14% decrease in [ 3 H]-glutamate binding in the hippocampal CA 1 region is seen both in the rat after five days of ethanol administration and in postmortem hippocampal tissues from alcoholics. In the rat, 24 hr ethanol withdrawal values are intermediate between control and alcohol binding levels. There was no significant effect of ethanol on [ 3 H]-glutamate binding in the cortex or caudate

  12. Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administration

    Science.gov (United States)

    Wade, Carrie L.; Schuster, Daniel J.; Domingo, Kristine M.; Kitto, Kelley F.; Fairbanks, Carolyn A.

    2009-01-01

    The decarboxylation product of arginine, agmatine, has effectively reduced or prevented opioid-induced tolerance and dependence when given either systemically (intraperitoneally or subcutaneously) or centrally (intrathecally or intracerebroventricularly). Systemically administered agmatine also reduces the escalation phase of intravenous fentanyl self-administration in rats. The present study assessed whether centrally (intracerebroventricular, i.c.v.) delivered agmatine could prevent the development of fentanyl self-administration in mice. Mice were trained to respond under a fixed-ratio 1 (FR1) schedule for either fentanyl (0.7 μg/70 μl, p.o.) or food reinforcement. Agmatine (10 nmol/5 μl), injected i.c.v. 12-14h before the first session and every other evening (12-14h before session) for 2 weeks, completely attenuated oral fentanyl self-administration (but not food-maintained responding) compared to saline-injected controls. When agmatine was administered after fentanyl self-administration had been established (day 8) it had no attenuating effects on bar pressing. This dose of agmatine does not decrease locomotor activity as assessed by rotarod. The present findings significantly extend the previous observation that agmatine prevents opioid-maintained behavior to a chronic model of oral fentanyl self-administration as well as identifying a supraspinal site of action for agmatine inhibition of drug addiction. PMID:18495108

  13. Brazilian third world ethanol pilot

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P

    1981-01-01

    A financial cost model has been developed in Brazil, under contract from th United Nations Industrial Development Organization, for fermentation ethanol production based on sugar cane molasses, sugar cane juice and cassava. The model is designed to help in analysing the feasibility and implementation of ethanol programs in developing countries.

  14. Ethanol from mixed waste paper

    International Nuclear Information System (INIS)

    Kerstetter, J.D.; Lyons, J.K.

    1991-01-01

    The technology, markets, and economics for converting mixed waste paper to ethanol in Washington were assessed. The status of enzymatic and acid hydrolysis projects were reviewed. The market for ethanol blended fuels in Washington shows room for expansion. The economics for a hypothetical plant using enzymatic hydrolysis were shown to be profitable

  15. Reactions of ethanol on Ru

    NARCIS (Netherlands)

    Sturm, Jacobus Marinus; Liu, Feng; Lee, Christopher James; Bijkerk, Frederik

    2012-01-01

    The adsorption and reactions of ethanol on Ru(0001) were studied with temperatureprogrammed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS). Ethanol was found to adsorb intact onto Ru(0001) below 100 K. Heating to 250 K resulted in formation of ethoxy groups, which undergo

  16. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  17. Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer's disease monkey model induced by intracerebroventricular injection of streptozotocin.

    Science.gov (United States)

    Lee, Youngjeon; Kim, Young-Hyun; Park, Sang-Je; Huh, Jae-Won; Kim, Sang-Hyun; Kim, Sun-Uk; Kim, Ji-Su; Jeong, Kang-Jin; Lee, Kyoung-Min; Hong, Yonggeun; Lee, Sang-Rae; Chang, Kyu-Tae

    2014-01-01

    We reported previously that the intracerebroventricular streptozotocin (icv-STZ)-treated cynomolgus monkey showed regionally specific glucose hypometabolism in FDG-PET imaging, similar to that observed in the early stages of sporadic Alzheimer's disease (sAD). However, further pathological analyses of this model at the molecular level are needed to validate it as a feasible model for sAD. Two cynomolgus monkeys were injected with 2 mg/kg STZ into the cerebellomedullary cistern at day 1, 7 and 14. Two control monkeys were given normal saline. At 5 months after injection, the expression levels of genes encoding 9 upstream molecules in insulin/insulin-like growth factor (IGF) signaling and markers for 4 cell-type populations in the frontal cortex, hippocampus, posterior cingulate, precuneus, and occipital cortex of control and icv-STZ treated cynomolgus monkeys were examined. Real-time quantitative PCR analyses demonstrated that the overall mRNA expression of insulin/IGF signaling-related genes was mainly impaired in the anterior part of the cerebrum, frontal cortex, and hippocampus, similar to the early stage of sAD. The changes were accompanied by the loss of oligodendrocytes and neurons. The posterior part of the cerebrum did not show degenerative alterations. The present study provides important fundamental information on the icv-STZ monkey model for sAD. These results may help guide future studies using this model for the investigation of pathological mechanisms and the development of drugs for sAD.

  18. Dietary fish oil, and to a lesser extent the fat-1 transgene, increases astrocyte activation in response to intracerebroventricular amyloid-β 1-40 in mice.

    Science.gov (United States)

    Hopperton, Kathryn E; James, Nicholas C E; Mohammad, Dana; Irfan, Maha; Bazinet, Richard P

    2017-11-07

    Increases in astrocytes and one of their markers, glial fibrillary acidic protein (GFAP) have been reported in the brains of patients with Alzheimer's disease (AD). N-3 polyunsaturated fatty acids (PUFA) modulate neuroinflammation in animal models; however, their effect on astrocytes is unclear. Fat-1 mice and their wildtype littermates were fed either a fish oil diet or a safflower oil diet deprived of n-3 PUFA. At 12 weeks, mice underwent intracerebroventricular infusion of amyloid-β 1-40. Astrocyte phenotype in the hippocampus was assessed at baseline and 10 days post-surgery using immunohistochemistry with various microscopy and image analysis techniques. GFAP increased in all groups in response to amyloid-β, with a greater increase in fish oil-fed mice than either fat-1 or wildtype safflower oil-fed mice. Astrocytes in this group were also more hypertrophic, suggesting increased activation. Both fat-1- and fish oil-fed mice had greater increases in branch number and length in response to amyloid-β infusion than wildtype safflower animals. Fish oil feeding, and to a lesser extent the fat-1 transgene, enhances the astrocyte activation phenotype in response to amyloid-β 1-40. Astrocytes in mice fed fish oil were more activated in response to amyloid-β than in fat-1 mice despite similar levels of hippocampal n-3 PUFA, which suggests that other fatty acids or dietary factors contribute to this effect.

  19. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  20. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model

    International Nuclear Information System (INIS)

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Nikolov, Manasi; La Maestra, S.; Micale, Rosanna T.; Steele, Vernon E.; De Flora, Silvio

    2016-01-01

    Highlights: • Cigarette smoke and ethanol are known to synergize in the upper aerodigestive tract. • Their interactions in the lower respiratory tract have poorly been explored. • Prenatal and postnatal treatments of mice with ethanol caused pulmonary alterations. • However, ethanol attenuated smoke-induced preneoplastic and neoplastic lesions in lung. • The interaction between smoke and alcohol depends on life stage and target tissue. - Abstract: Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol

  1. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    Wang, Tao; Yang, Ping; Zhan, Yibei; Xia, Lin; Hua, Zichun; Zhang, Jianfa

    2013-01-01

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  2. Caffeine reversal of ethanol effects on the multiple sleep latency test, memory, and psychomotor performance.

    Science.gov (United States)

    Drake, Christopher L; Roehrs, Timothy; Turner, Lauren; Scofield, Holly M; Roth, Thomas

    2003-02-01

    Caffeine has been shown to reverse some of the performance-impairing effects of ethanol. However, it is not known whether this antagonistic effect of caffeine is mediated by a reduction in sleepiness. The present study assessed physiological alertness/sleepiness, memory, and psychomotor performance following the administration of placebo, ethanol, and caffeine+ethanol combinations. A total of 13 healthy individuals (21-35 years old) underwent four conditions presented in a Latin Square Design: placebo-placebo, ethanol (0.5 g/kg)-placebo, ethanol (0.5 g/kg)-caffeine 150 mg, and ethanol (0.5 g/kg)-caffeine 300-mg. The Multiple Sleep Latency Test (MSLT), psychomotor performance battery, memory test, and mood/sleepiness questionnaires were administered following each condition. The peak breadth ethanol concentration (BrEC) was 0.043+/-0.0197% and did not differ among the three caffeine treatments. As expected, ethanol reduced mean latency on the MSLT. The lowest caffeine dose reversed this effect and the highest dose increased mean latency (greater alertness) significantly beyond placebo levels. Ethanol also impaired psychomotor performance and memory. The 300-mg caffeine dose restored performance and memory measures to placebo levels. Although visual analog ratings of dizziness were increased by ethanol, they were not diminished by either caffeine dose. In conclusion, Low-dose caffeine prevented the sleepiness and performance impairment associated with a moderate dose of ethanol. Thus, caffeine, similar to other stimulants, can reverse the physiologically sedating effects of ethanol, although other negative effects remain.

  3. Effect Of Sub Chronic Administration Of Ethanolic Leaf Extract Of ...

    African Journals Online (AJOL)

    The extract at the doses administered was found to caused reductions in PCV, HB, RBC, MCH, MCH and WBC, in a dose – dependent fashion. However elevation of MCV was observed. This results indicate that the extract has the potential of suppressing haemopoiesis and causing anaemia. Key words: Croton zambesicus, ...

  4. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    Science.gov (United States)

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Plant cell walls to ethanol.

    Science.gov (United States)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  6. ENERGY CHARACTERISTICS OF ETHANOL CHARACTERISTICS ...

    African Journals Online (AJOL)

    eobe

    CHARACTERISTICS OF ETHANOL-DIESEL MIX FOR AUTOMOTIVE. DIESEL ... diesel engine and the engine speed, torque, power and specific fuel consumption (sfc) were determine .... heated on an electric stove and stirred continuously.

  7. Establishing an ethanol production business

    International Nuclear Information System (INIS)

    1993-01-01

    Many Saskatchewan communities are interested in the potential benefits of establishing an ethanol production facility. A guide is presented to outline areas that communities should consider when contemplating the development of an ethanol production facility. Political issues affecting the ethanol industry are discussed including environmental impacts, United States legislation, Canadian legislation, and government incentives. Key success factors in starting a business, project management, marketing, financing, production, physical requirements, and licensing and regulation are considered. Factors which must be taken into consideration by the project manager and team include markets for ethanol and co-products, competent business management staff, equity partners for financing, production and co-product utilization technologies, integration with another facility such as a feedlot or gluten plant, use of outside consultants, and feedstock, water, energy, labour, environmental and site size requirements. 2 figs., 2 tabs

  8. Administrating Solr

    CERN Document Server

    Mohan, Surendra

    2013-01-01

    A fast-paced, example-based guide to learning how to administrate, monitor, and optimize Apache Solr.""Administrating Solr"" is for developers and Solr administrators who have a basic knowledge of Solr and who are looking for ways to keep their Solr server healthy and well maintained. A basic working knowledge of Apache Lucene is recommended, but this is not mandatory.

  9. Administrative Synergy

    Science.gov (United States)

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  10. Production of ethanol from cellulose (sawdust)

    OpenAIRE

    Otulugbu, Kingsley

    2012-01-01

    The production of ethanol from food such as corn, cassava etc. is the most predominate way of producing ethanol. This has led to a shortage in food, inbalance in food chain, increased food price and indirect land use. This thesis thus explores using another feed for the production of ethanol- hence ethanol from cellulose. Sawdust was used to carry out the experiment from the production of ethanol and two methods were considered: SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous...

  11. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  12. Ethanol from lignocellulosic biomasses

    International Nuclear Information System (INIS)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G.; Cuna, D.

    2001-01-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220 0 C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw [it

  13. Administrative Circulars

    CERN Document Server

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  14. From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol

    Directory of Open Access Journals (Sweden)

    Alessandra T. Peana

    2016-01-01

    Full Text Available In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects.

  15. Social opportunity and ethanol drinking in rats.

    Science.gov (United States)

    Tomie, Arthur; Burger, Kelly M; Di Poce, Jason; Pohorecky, Larissa A

    2004-11-01

    Two experiments were designed to evaluate the effects of pairings of ethanol sipper conditioned stimulus (CS) with social opportunity unconditioned stimulus (US) on ethanol sipper CS-directed drinking in rats. In both experiments, rats were deprived of neither food nor water, and initiation of drinking of unsweetened 3% ethanol was evaluated, as were the effects of increasing the concentration of unsweetened ethanol (3-10%) across sessions. In Experiment 1, Group Paired (n=8) received 35 trials per session wherein the ethanol sipper CS was presented for 10 s immediately prior to 15 s of social opportunity US. All rats initiated sipper CS-directed drinking of 3% ethanol. Increasing the concentration of ethanol in the sipper CS [(3%, 4%, 6%, 8%, 10% (vol./vol.)] across sessions induced escalation of daily g/kg ethanol intake. To evaluate the hypothesis that the drinking in Group Paired was due to autoshaping, Experiment 2 included a pseudoconditioning control that received sipper CS and social opportunity US randomly with respect to one another. All rats in Group Paired (n=6) and in Group Random (n=6) initiated sipper CS-directed drinking of 3% ethanol and daily mean g/kg ethanol intake in the two groups was comparable. Also comparable was daily g/kg ethanol intake, which increased for both groups with the availability of higher concentrations of ethanol in the sipper CS, up to a maximum of approximately 0.8 g/kg ethanol intake of 10% ethanol. Results indicate that random presentations of ethanol sipper CS and social opportunity US induced reliable initiation and escalation of ethanol intake, and close temporally contiguous presentations of CS and US did not induce still additional ethanol intake. This may indicate that autoshaping CR performance is not induced by these procedures, or that high levels of ethanol intake induced by factors related to pseudoconditioning produces a ceiling effect. Implications for ethanol drinking in humans are discussed.

  16. The effect of an intracerebroventricular injection of metformin or AICAR on the plasma concentrations of melatonin in the ewe: potential involvement of AMPK?

    Directory of Open Access Journals (Sweden)

    Collet Armelle

    2011-07-01

    Full Text Available Abstract Background It is now widely accepted that AMP-activated protein kinase (AMPK is a critical regulator of energy homeostasis. Recently, it has been shown to regulate circadian clocks. In seasonal breeding species such as sheep, the circadian clock controls the secretion of an endogenous rhythm of melatonin and, as a consequence, is probably involved in the generation of seasonal rhythms of reproduction. Considering this, we identified the presence of the subunits of AMPK in different hypothalamic nuclei involved in the pre- and post-pineal pathways that control seasonality of reproduction in the ewe and we investigated if the intracerebroventricular (i.c.v. injection of two activators of AMPK, metformin and AICAR, affected the circadian rhythm of melatonin in ewes that were housed in constant darkness. In parallel the secretion of insulin was monitored as a peripheral metabolic marker. We also investigated the effects of i.c.v. AICAR on the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC, a downstream target of AMPK, in brain structures along the photoneuroendocrine pathway to the pineal gland. Results All the subunits of AMPK that we studied were identified in all brain areas that were dissected but with some differences in their level of expression among structures. Metformin and AICAR both reduced (p Conclusions Taken together, these results suggest a potential role for AMPK on the secretion of melatonin probably acting trough the paraventricular nucleus and/or directly in the pineal gland. We conclude that AMPK may act as a metabolic cue to modulate the rhythm of melatonin secretion.

  17. The effects of intra-cerebroventricular administered rocuronium on the central nervous system of rats and determination of its epileptic seizure-inducing dose.

    Science.gov (United States)

    Baykal, Mehmet; Gökmen, Necati; Doğan, Alper; Erbayraktar, Serhat; Yılmaz, Osman; Ocmen, Elvan; Erdost, Hale Aksu; Arkan, Atalay

    The aim of this study was to investigate the effects of intracerebroventricularly administered rocuronium bromide on the central nervous system, determine the seizure threshold dose of rocuronium bromide in rats, and investigate the effects of rocuronium on the central nervous system at 1/5, 1/10, and 1/100 dilutions of the determined seizure threshold dose. A permanent cannula was placed in the lateral cerebral ventricle of the animals. The study was designed in two phases. In the first phase, the seizure threshold dose of rocuronium bromide was determined. In the second phase, Group R 1/5 (n=6), Group 1/10 (n=6), and Group 1/100 (n=6) were formed using doses of 1/5, 1/10, and 1/100, respectively, of the obtained rocuronium bromide seizure threshold dose. The rocuronium bromide seizure threshold value was found to be 0.056±0.009μmoL. The seizure threshold, as a function of the body weight of rats, was calculated as 0.286μmoL/kg -1 . A dose of 1/5 of the seizure threshold dose primarily caused splayed limbs, posturing, and tremors of the entire body, whereas the dose of 1/10 of the seizure threshold dose caused agitation and shivering. A dose of 1/100 of the seizure threshold dose was associated with decreased locomotor activity. This study showed that rocuronium bromide has dose-related deleterious effects on the central nervous system and can produce dose-dependent excitatory effects and seizures. Published by Elsevier Editora Ltda.

  18. [The effects of intra-cerebroventricular administered rocuronium on the central nervous system of rats and determination of its epileptic seizure-inducing dose].

    Science.gov (United States)

    Baykal, Mehmet; Gökmen, Necati; Doğan, Alper; Erbayraktar, Serhat; Yılmaz, Osman; Ocmen, Elvan; Erdost, Hale Aksu; Arkan, Atalay

    The aim of this study was to investigate the effects of intracerebroventricularly administered rocuronium bromide on the central nervous system, determine the seizure threshold dose of rocuronium bromide in rats, and investigate the effects of rocuronium on the central nervous system at 1/5, 1/10, and 1/100 dilutions of the determined seizure threshold dose. A permanent cannula was placed in the lateral cerebral ventricle of the animals. The study was designed in two phases. In the first phase, the seizure threshold dose of rocuronium bromide was determined. In the second phase, Group R 1/5 (n=6), Group 1/10 (n=6), and Group 1/100 (n=6) were formed using doses of 1/5, 1/10, and 1/100, respectively, of the obtained rocuronium bromide seizure threshold dose. The rocuronium bromide seizure threshold value was found to be 0.056±0.009μmoL. The seizure threshold, as a function of the body weight of rats, was calculated as 0.286μmoL/kg -1 . A dose of 1/5 of the seizure threshold dose primarily caused splayed limbs, posturing, and tremors of the entire body, whereas the dose of 1/10 of the seizure threshold dose caused agitation and shivering. A dose of 1/100 of the seizure threshold dose was associated with decreased locomotor activity. This study showed that rocuronium bromide has dose-related deleterious effects on the central nervous system and can produce dose-dependent excitatory effects and seizures. Publicado por Elsevier Editora Ltda.

  19. Antioxidative and Neuroprotective Effects of Curcumin in an Alzheimer's Disease Rat Model Co-Treated with Intracerebroventricular Streptozotocin and Subcutaneous D-Galactose.

    Science.gov (United States)

    Huang, Han-Chang; Zheng, Bo-Wen; Guo, Yu; Zhao, Jian; Zhao, Jiang-Yan; Ma, Xiao-Wei; Jiang, Zhao-Feng

    2016-04-05

    Epidemiological data imply links between the increasing incidences of Alzheimer's disease (AD) and type 2 diabetes mellitus. In this study, an AD rat model was established by combining treatments with intracerebroventricular streptozotocin (icv-STZ) and subcutaneous D-galactose, and the effects of curcumin on depressing AD-like symptoms were investigated. In the AD model group, rats were treated with icv-STZ in each hippocampus with 3.0 mg/kg of bodyweight once and then were subcutaneously injected with D-galactose daily (125 mg/kg of bodyweight) for 7 weeks. In the curcumin-protective group, after icv-STZ treatment, rats were treated with D-galactose (the same as in the AD model group) and intraperitoneally injected with curcumin daily (10 mg/kg of bodyweight) for 7 weeks. Vehicle-treated rats were treated as control. Compared with the vehicle control, the amount of protein carbonylation and glutathione in liver, as well as malondialdehyde in serum, were upregulated but glutathione peroxidase activity in blood was downregulated in the AD model group. The shuttle index and locomotor activity of rats in the AD model group were decreased compared with the vehicle control group. Furthermore, AD model rats showed neuronal damage and neuron loss with formation of amyloid-like substances and neurofibrillary tangles, and the levels of both β-cleavage of AβPP and phosphorylation of tau (Ser396) were significantly increased compared with the vehicle control group. Notably, compared with the AD model group, oxidative stress was decreased and the abilities of active avoidance and locomotor activity were improved, as well as attenuated neurodegeneration, in the curcumin-protective group. These results imply the applications of this animal model for AD research and of curcumin in the treatment of AD.

  20. First-pass metabolism of ethanol in human beings: effect of intravenous infusion of fructose

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Billinger, MH; Schäfer, C.

    2004-01-01

    Intravenous infusion of fructose has been shown to enhance reduced form of nicotinamide adenine dinucleotide reoxidation and, thereby, to enhance the metabolism of ethanol. In the current study, the effect of fructose infusion on first-pass metabolism of ethanol was studied in human volunteers....... A significantly higher first-pass metabolism of ethanol was obtained after administration of fructose in comparison with findings for control experiments with an equimolar dose of glucose. Because fructose is metabolized predominantly in the liver and can be presumed to have virtually no effects in the stomach...

  1. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    International Nuclear Information System (INIS)

    Puig, J.G.; Fox, I.H.

    1984-01-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with [8-14C] adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake

  2. Vitamin-C protect ethanol induced apoptotic neuro degeneration in postnatal rat brain

    International Nuclear Information System (INIS)

    Naseer, M.I.; Najeebullah; Ikramullah; Zubair, H.; Hassan, M.; Yang, B.C.

    2010-01-01

    Objective: To evaluate ethanol effects to induced activation of caspsae-3, and to observe the protective effects of Vitamin C (vit-C) on ethanol-induced apoptotic neuro degeneration in rat cortical area of brain. Methodology: Administration of a single dose of ethanol in 7-d postnatal (P7) rats triggers activation of caspase-3 and widespread apoptotic neuronal death. Western blot analysis, cells counting and Nissl staining were used to elucidate possible protective effect of vit-C against ethanol-induced apoptotic neuro degeneration in brain. Results: The results showed that ethanol significantly increased caspase-3 expression and neuronal apoptosis. Furthermore, the co-treatment of vit-C along with ethanol showed significantly decreased expression of caspase-3 as compare to control group. Conclusion: Our findings indicate that vit-C can prevent some of the deleterious effect of ethanol on developing rat brain when given after ethanol exposure and can be used as an effective protective agent for Fetal Alcohol Syndrome (FAS). (author)

  3. Pharmacological effects of ethanol on ingestive behavior of the preweanling rat.

    Science.gov (United States)

    Kozlov, Andrey P; Nizhnikov, Michael E; Varlinskaya, Elena I; Spear, Norman E

    2009-12-14

    The present study was designed to test the hypothesis that sensitivity of ingestive behavior of infant rat to the pharmacological effects of ethanol changes between postnatal (P) days 9 and 12. The intake of 0.1% saccharin and water, general motor activity, and myoclonic twitching activity were assessed following administration of three doses of ethanol (0, 0.25, and 0.5 g/kg) while fluids were free available to the animals. The 0.5 g/kg dose of ethanol attenuated saccharin intake in P9 pups and enhanced saccharin intake in P12 rats. On P12 some sex-related differences emerged at 0.5 g/kg of ethanol, with saccharin intake being higher in females than in their male counterparts. Taste reactivity probe revealed that 0.5 g/kg of ethanol increased taste responsiveness to saccharin on P12 but only to infusions presented at a high rate. The results of the present study indicate that ontogenetic changes in sensitivity to the effects of ethanol on ingestive behavior occur during the second postnatal week, with P9 animals being more sensitive to the inhibitory (sedative) effects on saccharin intake and P12 rats being more sensitive to the stimulatory effects of ethanol. We suggest that acute ethanol enhanced saccharin intake via sensitization of oral response to appetitive taste stimulation.

  4. CENTRAL REINFORCING EFFECTS OF ETHANOL ARE BLOCKED BY CATALASE INHIBITION

    OpenAIRE

    Nizhnikov, Michael Edward; Molina, Juan Carlos; Spear, Norman

    2007-01-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol’s positive reinforcing effects. Central administrations of ethanol (25–200 mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn’s response to a surrogate nipple scented with the CS. It has been shown that ethanol’s first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous sy...

  5. Administrative Reform

    DEFF Research Database (Denmark)

    Plum, Maja

    Through the example of a Danish reform of educational plans in early childhood education, the paper critically addresses administrative educational reforms promoting accountability, visibility and documentation. Drawing on Foucaultian perspectives, the relation between knowledge and governing...... of administrative technology, tracing how the humanistic values of education embed and are embedded within ‘the professional nursery teacher' as an object and subject of administrative practice. Rather than undermining the humanistic potential of education, it is argued that the technology of accounting...

  6. Nicotine as a discriminative stimulus for ethanol use.

    Science.gov (United States)

    Ginsburg, Brett C; Levy, Simon A; Lamb, R J

    2018-01-01

    Abused drugs reinforce behavior; i.e., they increase the probability of the behavior preceding their administration. Abused drugs can also act as discriminative stimuli; i.e., they can set the occasion for responding reinforced by another event. Thus, one abused drug could come to set the occasion for the use of another and this functional relationship may play a role in polysubstance abuse, where common patterns of use could result in this relationship. Here we establish nicotine (0.4mg/kg, ip 5-min pre-session) as a discriminative stimulus for behavior reinforced by ethanol (0.1ml 8% w/v po, versus food) and determine the ability of nicotine (0.02-0.4mg/kg), varenicline (0.1-3.0mg/kg), and ethanol (250 and 500mg/kg) to control responding for ethanol. We compare these results to those from rats where nicotine signaled food was available (and ethanol was not). Nicotine came to function as a discriminative stimulus. Nicotine and varenicline produced dose-dependent increases in responding on the nicotine-appropriate lever while ethanol produced responding on the vehicle-appropriate lever. Whether this responding occurred on the lever that produced ethanol or food access depended on the training condition. These results demonstrate that a drug can come to set the occasion for use of another and suggest that this behavioral mechanism could play an important role in the maintenance of and recovery from polysubstance abuse, depending on the pattern of use. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effect of ethanol on 35-S-TBPS binding to mouse brain membranes in the presence of chloride

    International Nuclear Information System (INIS)

    Liljequist, S.; Culp, S.; Tabakoff, B.

    1989-01-01

    The effect of in vitro and in vivo administration of ethanol on the binding of 35 S-t-butyl-bicyclophosphorothionate ( 35 S-TBPS) to cortical brain membranes of C57B1 mice was investigated using KCl (100 mM) containing assay media. The in vitro addition of ethanol produced a dose-dependent inhibition of basal 35 S-TBPS binding. In the presence of chloride ions, GABA and pentobarbital had a biphasic action (stimulation followed by inhibition) on 35 S-TBPS binding, whereas diazepam only stimulated the binding. Ethanol reduced the stimulatory effects of GABA and pentobarbital in a dose-dependent manner, but had no effect on the enhancement of 35 S-TBPS binding produced by diazepam. 35 S-TBPS binding to cortical brain membranes was inhibited by the putative Cl - channel blocking agent DIDS. This inhibitory action of DIDS was significantly, and dose-dependently reduced by ethanol (≤ 100 mM ethanol). Chronic ethanol ingestion in vivo, which produced tolerance to and physical dependence on ethanol in the animals, did not alter the stimulatory and inhibitory effects of GABA and pentobarbital on 35 S-TBPS binding. The enhancement of 35 S-TBPS binding produced by diazepam was slightly, but significantly, enhanced in brain membranes from animals which had undergone 24 hours of ethanol withdrawal. Chronic ethanol treatment did not change the potency of picrotoxin and of the peripheral BDZ-receptor ligand RO 5-4864 to competitively inhibit 35 S-TBPS binding. Our results suggest that in vitro addition of ethanol alters the activity of the activity of the GABA benzodiazepine (BDZ) receptor complex. Although there was no change in basal 35 S-TBPS binding following chronic in vivo ethanol administration, our curent data suggest that chronic ethanol ingestion may cause specific changes of the GABA BDZ receptor proteins, in this study revealed as an altered modulation of 35 S-TBPS binding by diazepam. (author)

  8. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  9. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  10. Influences of β-endorphins in Ethanol Consumption Patterns and Acquisition of a Conditioned Taste Aversion Mediated by the Drug

    Directory of Open Access Journals (Sweden)

    Juan Carlos Molina

    2009-09-01

    Full Text Available Rewarding effects of ethanol may be mediated in part by endogenous opioids. Ethanol alters β-endorphin synthesis and release. β-endorphin heterozygous (HT and knockout (KO mice consume higher levels of a low-concentrated alcohol solution and show heightened predisposition to self-administer ethanol in comparison with wild-type (WT mice (Grisel et al., 1999. This study was conducted in order to: i re-analyze and extend previous results in terms of ethanol consumption profiles of β-endorphin deficient mice; and ii analyze conditioned aversive learning mediated by ethanol postabsorptive effects as a function of genetic capabilities to synthesize β-endorphin. In Experiment 1, mice were evaluated in terms of consumption of a low (7% ethanol solution in a two-bottle free choice paradigm. Ethanol concentration was then increased to 10 % and voluntary intake consumption was tested. WT mice displayed significantly higher consumption levels and ethanol-preference scores than did KO mice, independently from ethanol concentration. HT mice drank more ethanol than did KO mice. In Experiment 2, mice (KO, HT and WT were tested in a conditioned taste aversion paradigm in which a sodium chloride (NaCl solution was paired with a 2-g/kg ethanol dose. Only HT and KO displayed a conditioned aversion when using 2-g/kg ethanol as unconditioned stimulus. The present results indicate that total or partial deficiency of β-endorphin synthesis reduces ethanol preference and consumption. Furthermore, this study indicates that the lack of β-endorphin synthesis exacerbates ethanol’s aversive postabsorptive effects which can in turn modulate self-administration patterns of the drug.

  11. Ethanol fuel gets the hangover

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Corn, wheat, sugar cane.. The multiplication of biofuel refineries has led to a rise of the prices of agriculture products. The question is: do we need ethanol? The US situation gives an answer: the offer exceeds the demand and ethanol prices have dropped down. Other environmental and socio-economical consequences of biofuels development are put forward by the UNO, the IMF and by non-governmental organizations who foresee a dramatic rise of food products prices and an aggravation of starvation in developing countries. (J.S.)

  12. A Quantitative Gas Chromatographic Ethanol Determination.

    Science.gov (United States)

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  13. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  14. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1-40 in mice.

    Science.gov (United States)

    Hopperton, Kathryn E; Trépanier, Marc-Olivier; Giuliano, Vanessa; Bazinet, Richard P

    2016-09-29

    Neuroinflammation is a proposed mechanism by which Alzheimer's disease (AD) pathology potentiates neuronal death and cognitive decline. Consumption of omega-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of AD in human observational studies and exerts protective effects on cognition and pathology in animal models. These fatty acids and molecules derived from them are known to have anti-inflammatory and pro-resolving properties, presenting a potential mechanism for these protective effects. Here, we explore this mechanism using fat-1 transgenic mice and their wild type littermates weaned onto either a fish oil diet (high in n-3 PUFA) or a safflower oil diet (negligible n-3 PUFA). The fat-1 mouse carries a transgene that enables it to convert omega-6 to omega-3 PUFA. At 12 weeks of age, mice underwent intracerebroventricular (icv) infusion of amyloid-β 1-40. Brains were collected between 1 and 28 days post-icv, and hippocampal microglia, astrocytes, and degenerating neurons were quantified by immunohistochemistry with epifluorescence microscopy, while microglia morphology was assessed with confocal microscopy and skeleton analysis. Fat-1 mice fed with the safflower oil diet and wild type mice fed with the fish oil diet had higher brain DHA in comparison with the wild type mice fed with the safflower oil diet. Relative to the wild type mice fed with the safflower oil diet, fat-1 mice exhibited a lower peak in the number of labelled microglia, wild type mice fed with fish oil had fewer degenerating neurons, and both exhibited alterations in microglia morphology at 10 days post-surgery. There were no differences in astrocyte number at any time point and no differences in the time course of microglia or astrocyte activation following infusion of amyloid-β 1-40. Increasing brain DHA, through either dietary or transgenic means, decreases some elements of the inflammatory response to amyloid-β in a mouse model of AD. This supports the

  15. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P Rats.

    Directory of Open Access Journals (Sweden)

    Jessica Godfrey

    Full Text Available Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total or were given access only to water (control. Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4-desaturase (Degs2, an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels

  16. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome

    Directory of Open Access Journals (Sweden)

    Laura R. Hoyt

    2017-08-01

    Full Text Available Alcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation. Here we show that long-term ethanol exposure of human peripheral blood mononuclear cells and a mouse macrophage cell line (J774 amplifies IL-1β secretion following stimulation with NLRP3 agonists, but not with AIM2 or NLRP1b agonists. The augmented NRLP3 activation was mediated by increases in iNOS expression and NO production, in conjunction with increases in mitochondrial membrane depolarization, oxygen consumption rate, and ROS generation in J774 cells chronically exposed to ethanol (CE cells, effects that could be inhibited by the iNOS inhibitor SEITU, the NO scavenger carboxy-PTIO, and the mitochondrial ROS scavenger MitoQ. Chronic ethanol exposure did not alter K+ efflux or Zn2+ homeostasis in CE cells, although it did result in a lower intracellular concentration of NAD+. Prolonged administration of acetaldehyde, the product of alcohol dehydrogenase (ADH mediated metabolism of ethanol, mimicked chronic ethanol exposure, whereas ADH inhibition prevented ethanol-induced IL-1β hypersecretion. Together, these results indicate that increases in iNOS and mitochondrial ROS production are critical for chronic ethanol-induced IL-1β hypersecretion, and that protracted exposure to the products of ethanol metabolism are probable mediators of NLRP3 inflammasome hyperactivation. Keywords: Inflammasome, IL

  17. Offentlig administration

    DEFF Research Database (Denmark)

    Nielsen, Elof Nellemann; Rehr, Preben René

    En undervisningsbog der henvender sig til administrationsbacheloruddannelsen. Kapitlerne er inddelt efter modulerne på uddannelsen og indeholder derfor elementer af administration, forvaltning, økonomistyring, innovation, samfundsvidenskabelige metoder og politisk styrede organisationer.......En undervisningsbog der henvender sig til administrationsbacheloruddannelsen. Kapitlerne er inddelt efter modulerne på uddannelsen og indeholder derfor elementer af administration, forvaltning, økonomistyring, innovation, samfundsvidenskabelige metoder og politisk styrede organisationer....

  18. SAT administrator

    International Nuclear Information System (INIS)

    Havas, A.

    1998-01-01

    SAT Administrator is the Information System for Nuclear Power Plant Personnel Training Program Design. It supports the design of training programs in the following phases: job analysis; task analysis; competency analysis; task competency association; definition of learning objectives to competencies; training program design; definition of test items. The general structure of the database and management software supports application of the SAT Administrator in any nuclear power installation

  19. Big increase in US ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-10

    US ethanol capacity is expected to reach 600 million US gal/year by the end of 1982, according to a report from the AIChE. Although this is a six-fold increase over capacity installed in 1979 it is still less than 1% of US domestic motor fuel supply.

  20. Philippines sugar cane ethanol plant

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-06

    The Philippines' National Alcohol Commission has called for international tenders for the construction of ethanol from sugar cane plants. Interested companies have been asked to quote for capacities of 60,000, 120,000 and 180,000 litre per day. The initial tender calls for three plants but the figure could rise to ten which would then be worth about $20 million.

  1. Heat integrated ethanol dehydration flowsheets

    Energy Technology Data Exchange (ETDEWEB)

    Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van [Univ. of South Carolina, Columbia, SC (United States)

    1995-04-01

    zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essential for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.

  2. The ontogeny of ethanol aversion.

    Science.gov (United States)

    Saalfield, Jessica; Spear, Linda

    2016-03-15

    Recent work has suggested separate developmental periods within the broader framework of adolescence, with data suggesting distinct alterations and vulnerabilities within these intervals. While previous research has suggested reduced sensitivity to the aversive effects of alcohol in adolescence relative to adults, a more detailed ontogeny of this effect has yet to be conducted. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion. The current study aimed to determine the ontogeny of ethanol aversion by utilizing a conditioned taste aversion procedure at six different ages to test the hypothesis that the transitions into, through, and out of adolescence are associated with ontogenetic alterations in sensitivity to the aversive properties of ethanol. Non-deprived animals given Boost® as the conditioned stimulus (CS) were used in Experiment 1, whereas Experiment 2 used water-restricted animals provided with a saccharin/sucrose solution as the CS. In both experiments, an attenuated sensitivity to the aversive properties of ethanol was evident in adolescents compared to adults, although more age differences were apparent in water deprived animals than when a highly palatable CS was given to ad libitum animals. Overall, the data suggest an attenuated sensitivity to the aversive properties of ethanol that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo

    Directory of Open Access Journals (Sweden)

    Wen-bin He

    2018-01-01

    Full Text Available To explore memory enhancing effect of the flavonoid fisetin, we investigated the effect of oral administration of flavonoids on the induction of long-term potentiation (LTP at hippocampal CA1 synapses of anesthetized rats. Among four flavonoids (fisetin, quercetin, luteolin and myricetin tested, only fisetin significantly facilitated the induction of hippocampal LTP. The effect of oral fisetin was abolished by intracerebroventricular injection of U0126, an agent that was previously found to inhibit its effect in hippocampal slices in vitro. These results suggest that orally administered fisetin crosses the blood–brain barrier and promotes synaptic functions in the hippocampus.

  4. Intravenous alcohol self-administration in the P rat.

    Science.gov (United States)

    Windisch, Kyle A; Kosobud, Ann E K; Czachowski, Cristine L

    2014-08-01

    Alcohol consumption produces a complex array of effects that can be divided into two types: the explicit pharmacological effects of ethanol (which can be temporally separate from time of intake) and the more temporally "relevant" effects (primarily olfactory and taste) that bridge the time from intake to onset of the pharmacological effects. Intravenous (IV) self-administration of ethanol limits the confounding "non-pharmacological" effects associated with oral consumption, allows for controlled and precise dosing, and bypasses first order absorption kinetics, allowing for more direct and better-controlled assessment of alcohol's effect on the brain. IV ethanol self-administration has been reliably demonstrated in mouse and human experimental models; however, models of IV self-administration have been historically problematic in the rat. An operant multiple-schedule study design was used to elucidate the role of each component of a compound IV-ethanol plus oral-sucrose reinforcer. Male alcohol-preferring P rats had free access to both food and water during all IV self-administration sessions. Animals were trained to press a lever for orally delivered 1% sucrose (1S) on a fixed ratio 4 schedule, and then surgically implanted with an indwelling jugular catheter. Animals were then trained to respond on a multiple FR4-FR4 schedule composed of alternating 2.5-min components across 30-min sessions. For the multiple schedule, two components were used: an oral 1S only and an oral 1S plus IV 20% ethanol (25 mg/kg/injection). Average total ethanol intake was 0.47 ± 0.04 g/kg. We found significantly higher earning of sucrose-only reinforcers and greater sucrose-lever error responding relative to the compound oral-sucrose plus IV-ethanol reinforcer. These response patterns suggest that sucrose, not ethanol, was responsible for driving overall responding. The work with a compound IV ethanol-oral sucrose reinforcer presented here suggests that the existing intravenous ethanol

  5. The effect of ethanol on sup 35 -S-TBPS binding to mouse brain membranes in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Liljequist, S.; Culp, S.; Tabakoff, B. (Laboratory for Studies of Neuroadaptive Processes, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda (USA))

    1989-01-01

    The effect of in vitro and in vivo administration of ethanol on the binding of {sup 35}S-t-butyl-bicyclophosphorothionate ({sup 35}S-TBPS) to cortical brain membranes of C57B1 mice was investigated using KCl containing assay media. The in vitro addition of ethanol produced a dose-dependent inhibition of basal {sup 35}S-TBPS binding. In the presence of chloride ions, GABA and pentobarbital had a biphasic action on {sup 35}S-TBPS binding, whereas diazepam only stimulated the binding. Ethanol reduced the stimulatory effects of GABA and pentobarbital in a dose-dependent manner, but had no effect on the enhancement of {sup 35}S-TBPS binding produced by diazepam. {sup 35}S-TBPS binding to cortical brain membranes was inhibited by the putative Cl{sup -} channel blocking agent DIDS. This inhibitory action of DIDS was significantly, and dose-dependently reduced by ethanol. Chronic ethanol ingestion in vivo, which produced tolerance to and physical dependence on ethanol in the animals, did not alter the stimulatory and inhibitory effects of GABA and pentobarbital on {sup 35}S-TBPS binding. The enhancement of {sup 35}S-TBPS binding produced by diazepam was slightly, but significantly, enhanced in brain membranes from animals which had undergone 24 hours of ethanol withdrawal. Chronic ethanol treatment did not change the potency of picrotoxin and of the peripheral BDZ-receptor ligand RO 5-4864 to competitively inhibit {sup 35}S-TBPS binding. Our results suggest that in vitro addition of ethanol alters the activity of the activity of the GABA benzodiazepine (BDZ) receptor complex. Although there was no change in basal {sup 35}S-TBPS binding following chronic in vivo ethanol administration, our curent data suggest that chronic ethanol ingestion may cause specific changes of the GABA BDZ receptor proteins, in this study revealed as an altered modulation of {sup 35}S-TBPS binding by diazepam.

  6. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    Science.gov (United States)

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  7. Effect of isopregnanolone on rapid tolerance to the anxiolytic effect of ethanol

    Directory of Open Access Journals (Sweden)

    Debatin Thaize

    2006-01-01

    Full Text Available OBJETIVE: It has been shown that neurosteroids can either block or stimulate the development of chronic and rapid tolerance to the incoordination and hypothermia caused by ethanol consumption. The aim of the present study was to investigate the influence of isopregnanolone on the development of rapid tolerance to the anxiolytic effect of ethanol in mice. METHOD: Male Swiss mice were pretreated with isopregnanolone (0.05, 0.10 or 0.20 mg/kg 30 min before administration of ethanol (1.5 g/kg. Twenty-four hours later, all animals we tested using the plus-maze apparatus. The first experiment defined the doses of ethanol that did or did not induce rapid tolerance to the anxiolytic effect of ethanol. In the second, the influence of pretreatment of mice with isopregnanolone (0.05, 0.10 or 0.20 mg/kg on rapid tolerance to ethanol (1.5 g/kg was studied. CONCLUSIONS: The results show that pretreatment with isopregnanolone interfered with the development of rapid tolerance to the anxiolytic effect of ethanol.

  8. Curcuma aromatica Water Extract Attenuates Ethanol-Induced Gastritis via Enhancement of Antioxidant Status

    Directory of Open Access Journals (Sweden)

    Woo-Young Jeon

    2015-01-01

    Full Text Available Curcuma aromatica is an herbal medicine and traditionally used for the treatment of various diseases in Asia. We investigated the effects of C. aromatica water extract (CAW in the stomach of rats with ethanol-induced gastritis. Gastritis was induced in rats by intragastric administration of 5 mL/kg body weight of absolute ethanol. The CAW groups were given 250 or 500 mg of extract/kg 2 h before administration of ethanol, respectively. To determine the antioxidant effects of CAW, we determined the level of lipid peroxidation, the level of reduced glutathione (GSH, the activities of catalase, degree of inflammation, and mucus production in the stomach. CAW reduced ethanol-induced inflammation and loss of epithelial cells and increased the mucus production in the stomach. CAW reduced the increase in lipid peroxidation associated with ethanol-induced gastritis (250 and 500 mg/kg, p<0.01, resp. and increased mucosal GSH content (500 mg/kg, p<0.01 and the activity of catalase (250 and 500 mg/kg, p<0.01, resp.. CAW increased the production of prostaglandin E2. These findings suggest that CAW protects against ethanol-induced gastric mucosa injury by increasing antioxidant status. We suggest that CAW could be developed for the treatment of gastritis induced by alcohol.

  9. Interaction of ethanol and mercury body burden in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.D.

    1978-01-01

    The interaction of ethanol with mercury in the body resulting in increased exhalation of the metal was studied in the mouse. A persistent elimination of the metal in the breath was demonstrated after single, sublethal (<1 mgHg/Kg body weight) exposures to mercury vapor (Hg/sup 0/) or mercury II chloride (HgCl/sub 2/). The amount of mercury exhaled per unit time was enhanced by oral or parenteral administration of ethanol solutions. These modifications were investigated in dose-response studies in which the drug was administered in doses ranging from 0.2g to 5.5g/Kg to mice pretreated with mercury. The EC/sub 50/ for blood ethanol with respect to mercury exhalation was determined to be approximately 200 mg/dl corresponding to an output rate of approximately 0.1% of the simultaneous body burden in 30 min several days after mercury. A hypothesis that mercury expired by these animals was proportional to the body burden after mercury administration was addressed in experiments whereby mice given one of several doses of mercuric chloride (0.16 to 500 ..mu..g/Kg) were monitored for pulmonary mercury elimination for a fifteen day period. The high correlation obtained between the amount of mercury exhaled in a standard time period and the body burden by group indicated that breath sampling could be applied as an indicator of the mercury body burden which may not be limited to the mouse.

  10. [Involvement of distal fragment of chromosome 13 in the regulation of sensitivity to ethanol in mice].

    Science.gov (United States)

    Bazovkina, D V; Kulikov, A V

    2015-01-01

    The role of the fragment 57-65 cM of mouse chromosome 13 was studied in the regulation of ethanol action on locomotor activity, anxiety and sensitivity to hypnotic and hypothermic effects of ethanol. We used male mice of recombinant lines AKR/J and AKR.CBA-D13Mit76C, differing only in this fragment. After acute administration of ethanol only AKR mice showed the increase in the length of traveled distance in the open-field test (p mice demonstrated the increase the time spent in the center of open-field arena (p mice. The results suggest the involvement of the distal fragment 57-65 cM of chromosome 13 in the mechanisms of ethanol action in mice.

  11. Renewable corn-ethanol and energy security

    International Nuclear Information System (INIS)

    Eaves, James

    2007-01-01

    Though corn-ethanol is promoted as renewable, models of the production process assume fossil fuel inputs. Moreover, ethanol is promoted as a means of increasing energy security, but there is little discussion of the dependability of its supply. This study investigates the sensibility of promoting corn-ethanol as an automobile fuel, assuming a fully renewable production process. We then use historical data to estimate the supply risk of ethanol relative to imported petroleum. We find that devoting 100% of US corn to ethanol would displace 3.5% of gasoline consumption and the annual supply of the ethanol would be inherently more risky than that of imported oil. Finally, because large temperature increases can simultaneously increase fuel demand and the cost of growing corn, the supply responses of ethanol producers to temperature-induced demand shocks would likely be weaker than those of gasoline producers. (author)

  12. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  13. Ethanol Reversal of Tolerance to the Antinociceptive Effects of Oxycodone and Hydrocodone.

    Science.gov (United States)

    Jacob, Joanna C; Poklis, Justin L; Akbarali, Hamid I; Henderson, Graeme; Dewey, William L

    2017-07-01

    This study compared the development of tolerance to two orally bioavailable prescription opioids, oxycodone and hydrocodone, to that of morphine, and the reversal of this tolerance by ethanol. Oxycodone (s.c.) was significantly more potent in the mouse tail-withdrawal assay than either morphine or hydrocodone. Oxycodone was also significantly more potent in this assay than hydrocodone when administered orally. Tolerance was seen following chronic subcutaneous administration of each of the three drugs and by the chronic administration of oral oxycodone, but not following the chronic oral administration of hydrocodone. Ethanol (1 g/kg i.p.) significantly reversed the tolerance to the subcutaneous administration of each of the three opioids that developed when given 30 minutes prior to challenge doses. It took twice as much ethanol, when given orally, to reverse the tolerance to oxycodone. We investigated whether the observed tolerance to oxycodone and its reversal by ethanol were due to biodispositional changes or reflected a true neuronal tolerance. As expected, a relationship between brain oxycodone concentrations and activity in the tail-immersion test existed following administration of acute oral oxycodone. Following chronic treatment, brain oxycodone concentrations were significantly lower than acute concentrations. Oral ethanol (2 g/kg) reversed the tolerance to chronic oxycodone, but did not alter brain concentrations of either acute or chronic oxycodone. These studies show that there is a metabolic component of tolerance to oxycodone; however, the reversal of that tolerance by ethanol is not due to an alteration of the biodisposition of oxycodone, but rather is neuronal in nature. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Long-lasting effect of NMDA receptor antagonist memantine on ethanol-cue association and relapse.

    Science.gov (United States)

    Vengeliene, Valentina; Olevska, Anastasia; Spanagel, Rainer

    2015-12-01

    It is well known that the glutamatergic system plays a crucial role in alcohol addiction and especially in relapse-like behaviour. However, results of clinical studies on compounds that influence the activity of the glutamatergic system have been disappointing so far. The aim of our study was to establish treatment conditions under which the N-methyl-d-aspartate receptor (NMDAR) antagonist memantine may produce more reliable treatment effect with respect to alcohol relapse-like behaviour. For this purpose, male Wistar rats were trained to associate several discrete stimuli with ethanol delivery. Thereafter, half of the animals received a brief memory reactivation session followed by two administrations of 20 mg/kg of memantine, while the other half received the same treatment without memory reactivation. Afterwards, a cue-induced ethanol-seeking behaviour test was performed followed by repeated extinction sessions and a reacquisition test. Our data show that administration of memantine reduced responding on the ethanol-associated lever in a cue-induced ethanol-seeking test. This reduction did not depend on whether or not a memory reactivation session was introduced prior to memantine administration. Following extinction, however, reacquisition of ethanol self-administration was only impaired in the group where memantine was given after a short memory reactivation session, showing that this schedule of drug administration produced a long-lasting disruption of the association between the conditioned stimuli and the delivery of ethanol. In conclusion, we show that memantine disrupted the drug-cue association, which consequently interfered with relapse-like behaviour supporting the possibility that memantine is a treatment option for alcoholism. Our data supports the possibility that memantine is a treatment option for alcoholism. However, the effectiveness of this drug seems to lie in its ability to disrupt conditioned behaviours and should be given in conjunction

  15. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  16. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes.

    Science.gov (United States)

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Rhouma, Khémais Ben

    2013-05-01

    The aim of the present study was to investigate the efficacy of Opuntia ficus indica f. inermis fruit juice (OFIj) on reversing oxidative damages induced by chronic ethanol intake in rat erythrocytes. OFIj was firstly analyzed with HPLC for phenolic and flavonoids content. Secondly, 40 adult male Wistar rats were equally divided into five groups and treated for 90 days as follows: control (C), ethanol-only 3 g/kg body weight (b.w) (E), low dose of OFIj 2 ml/100 g b.w+ethanol (Ldj+E), high dose of OFIj 4 ml/100 g b.w+ethanol (Hdj+E), and only a high dose of OFIj 4 ml/100g b.w (Hdj). HPLC analysis indicated high concentrations of phenolic acids and flavonoids in OFIj. Ethanol treatment markedly decreased the activities of erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the level of reduced glutathione (GSH). Changes in the erythrocyte's antioxidant ability were accompanied by enhanced oxidative modification of lipids (increase of malondialdeyde level) and proteins (increase in carbonyl groups). Interestingly, pre-administration of either 2 ml/100 g b.w or 4 ml/100 g b.w of OFIj to ethanol-intoxicated rats significantly reversed decreases in enzymatic as well as non enzymatic antioxidants parameters in erythrocytes. Also, the administration of OFIj significantly protected lipids and proteins against ethanol-induced oxidative modifications in rat erythrocytes. The beneficial effect of OFIj can result from the inhibition of ethanol-induced free radicals chain reactions in rat erythrocytes or from the enhancement of the endogenous antioxidants activities. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    Science.gov (United States)

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  18. Benzyl alcohol increases voluntary ethanol drinking in rats.

    Science.gov (United States)

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p < 0.01). The present results can explain the previous discrepancy between the two nandrolone studies. No significant BA effects on basal and ethanol-mediated serum testosterone and corticosterone levels were observed in blood samples taken at days 1, 8 and 22. However, 2h after ethanol administration significantly (p = 0.02) higher frequency of testosterone elevations was detected in high drinking AA rats compared to low drinking Wistars, which supports our previous hypotheses of a role of testosterone elevation in promoting ethanol drinking. Skin irritation and dermatitis were shown exclusively in the BA-treated animals. Altogether, the present results indicate that earlier findings obtained with Deca-Durabolin containing BA need to be re-evaluated. Copyright © 2014 Elsevier Inc. All

  19. Effect of ethanol on γ-aminobutyric acid in the brain

    International Nuclear Information System (INIS)

    Lassanova, M.; Tursky, T.; Homerova, D.

    1989-01-01

    The effect of acute and chronic ethanol administration on the level of γ-aminobutyric acid (GABA), glutamate, aspartate, and glutamine was investigated using 14 C-labelled compounds. The level of GABA rose after both acute and chronic ethanol administration. In chronic experiments also the levels of glutamate, aspartate and glutamine were increased. In acute experiments the incorporation from glucose into the studied amino acids (neuronal compartment) increased, while in chronic experiments a decreasing trend was observed. In the glial compartment the incorporation increased only into glutamate and glutamine in acute experiments, while in chronic experiments a decreased incorporation into glutamine was recorded. The activities of three enzymes were studied in seven parts of the brain after acute ethanol administration. The activity of glutamic acid decarboxylase increased in the hypothalamus and brain cortex and decreased in the medulla oblongata. The activity of GABA transaminase did not change and the activity of glutamine synthetase decreased only in the hippocampus. In accordance with several other studies, the presented results show that ethanol interferes with the GABA system in the brain. It is suggested that the primary effect of ethanol is exerted on the cell membranes with preference for the regions connected with the GABA system. (author). 3 figs., 6 tabs., 18 refs

  20. Administrative circular

    CERN Multimedia

    2003-01-01

    • N° 21 - August 2003 Special leave This circular has been amended. Copies of this circular are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://cern.ch/hr-div/internal/admin_services/admincirc/listadmincirc.asp Human Resources Division Tel. 74128

  1. Database Administrator

    Science.gov (United States)

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  2. Administrative IT

    Science.gov (United States)

    Grayson, Katherine, Ed.

    2006-01-01

    When it comes to Administrative IT solutions and processes, best practices range across the spectrum. Enterprise resource planning (ERP), student information systems (SIS), and tech support are prominent and continuing areas of focus. But widespread change can also be accomplished via the implementation of campuswide document imaging and sharing,…

  3. Voluntary ethanol intake predicts κ-opioid receptor supersensitivity and regionally distinct dopaminergic adaptations in macaques.

    Science.gov (United States)

    Siciliano, Cody A; Calipari, Erin S; Cuzon Carlson, Verginia C; Helms, Christa M; Lovinger, David M; Grant, Kathleen A; Jones, Sara R

    2015-04-15

    The dopaminergic projections from the ventral midbrain to the striatum have long been implicated in mediating motivated behaviors and addiction. Previously it was demonstrated that κ-opioid receptor (KOR) signaling in the striatum plays a critical role in the increased reinforcing efficacy of ethanol following ethanol vapor exposure in rodent models. Although rodents have been used extensively to determine the neurochemical consequences of chronic ethanol exposure, establishing high levels of voluntary drinking in these models has proven difficult. Conversely, nonhuman primates exhibit similar intake and pattern to humans in regard to drinking. Here we examine the effects of chronic voluntary ethanol self-administration on dopamine neurotransmission and the ability of KORs to regulate dopamine release in the dorsolateral caudate (DLC) and nucleus accumbens (NAc) core. Using voltammetry in brain slices from cynomolgus macaques after 6 months of ad libitum ethanol drinking, we found increased KOR sensitivity in both the DLC and NAc. The magnitude of ethanol intake predicted increases in KOR sensitivity in the NAc core, but not the DLC. Additionally, ethanol drinking increased dopamine release and uptake in the NAc, but decreased both of these measures in the DLC. These data suggest that chronic daily drinking may result in regionally distinct disruptions of striatal outputs. In concert with previous reports showing increased KOR regulation of drinking behaviors induced by ethanol exposure, the strong relationship between KOR activity and voluntary ethanol intake observed here gives further support to the hypothesis that KORs may provide a promising pharmacotherapeutic target in the treatment of alcoholism. Copyright © 2015 the authors 0270-6474/15/355959-10$15.00/0.

  4. Activated mesenchymal stem cell administration inhibits chronic alcohol drinking and suppresses relapse-like drinking in high-alcohol drinker rats.

    Science.gov (United States)

    Ezquer, Fernando; Quintanilla, María Elena; Morales, Paola; Ezquer, Marcelo; Lespay-Rebolledo, Carolyne; Herrera-Marschitz, Mario; Israel, Yedy

    2017-10-18

    Neuroinflammation has been reported to follow chronic ethanol intake and may perpetuate alcohol consumption. Present studies determined the effect of human mesenchymal stem cells (hMSCs), known for their anti-inflammatory action, on chronic ethanol intake and relapse-like ethanol intake in a post-deprivation condition. Rats were allowed 12-17 weeks of chronic voluntary ethanol (10% and 20% v/v) intake, after which a single dose of activated hMSCs (5 × 10 5 ) was injected into a brain lateral ventricle. Control animals were administered vehicle. After assessing the effect of hMSCs on chronic ethanol intake for 1 week, animals were deprived of ethanol for 2 weeks and thereafter an ethanol re-access of 60 min was allowed to determine relapse-like intake. A single administration of activated hMSCs inhibited chronic alcohol consumption by 70% (P 80 mg/dl. The single hMSC administration reduced relapse-like blood ethanol levels to 20 mg/dl. Chronic ethanol intake increased by 250% (P chronic ethanol intake, an effect that was fully abolished by the administration of hMSCs. This study supports the neuroinflammation-chronic ethanol intake hypothesis and suggest that mesenchymal stem cell administration may be considered in the treatment of alcohol use disorders. © 2017 Society for the Study of Addiction.

  5. Ethanol annual report FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Texeira, R.H.; Goodman, B.J. (eds.)

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  6. Sugarcane bio ethanol and bioelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Leal, Manoel Regis Lima Verde

    2012-07-01

    This chapter approaches the Brazilian sugar cane production and processing model, sugarcane processing, sugarcane reception, sugarcane preparation and juice extraction, juice treatment, fermentation, distillation, sector efficiencies and future improvement - 2007, 2015 and 2025, present situation (considering the 2007/2008 harvesting season), prospective values for 2015 and for 2025, bioelectricity generation, straw recovery, bagasse availability, energy balance, present situation, perspective for improvements in the GHG mitigation potential, bio ethanol production chain - from field to tank, and surplus electricity generation.

  7. Anhydrous ethanol: A renewable source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh; Singh, Neetu; Prasad, Ram [Department of Chemical Engineering, H. B. Technological Institute, Kanpur 208002 (India)

    2010-09-15

    Anhydrous ethanol is one of the biofuels produced today and it is a subset of renewable energy. It is considered to be an excellent alternative clean-burning fuel to gasoline. Anhydrous ethanol is commercially produced by either catalytic hydration of ethylene or fermentation of biomass. Any biological material that has sugar, starch or cellulose can be used as biomass for producing anhydrous ethanol. Since ethanol-water solution forms a minimum-boiling azeotrope of composition of 89.4 mol% ethanol and 10.6 mol% water at 78.2 C and standard atmospheric pressure, the dilute ethanol-water solutions produced by fermentation process can be continuously rectified to give at best solutions containing 89.4 mol% ethanol at standard atmospheric pressure. Therefore, special process for removal of the remaining water is required for manufacture of anhydrous ethanol. Various processes for producing anhydrous ethanol have been used/suggested. These include: (i) chemical dehydration process, (ii) dehydration by vacuum distillation process, (iii) azeotropic distillation process, (iv) extractive distillation processes, (v) membrane processes, (vi) adsorption processes and (vii) diffusion distillation process. These processes of manufacturing anhydrous ethanol have been improved continuously due to the increasingly strict requirements for quantity and quality of this product. The literature available on these processes is reviewed. These processes are also compared on the basis of energy requirements. (author)

  8. Interactive effects of ethanol on ulcerative colitis and its associated testicular dysfunction in pubertal BALB/c mice.

    Science.gov (United States)

    Adedara, Isaac A; Ajayi, Babajide O; Awogbindin, Ifeoluwa O; Farombi, Ebenezer O

    2017-11-01

    Available epidemiological reports have indicated an increase in the incidence of ulcerative colitis, as well as alcohol consumption, globally. The present study investigated the possible interactive effects of ethanol consumption on ulcerative colitis and its associated testicular dysfunction using six groups of 12 pubertal mice each. Group I (Control) mice received drinking water alone. Group II mice received ethanol alone at 5 g/kg body weight. Group III mice received 2.5% dextran sulphate sodium (DSS) in drinking water followed by normal drinking water. Groups IV, V, and VI mice received DSS followed by ethanol at 1.25, 2.5, and 5 g/kg, respectively. Administration of ethanol to mice with ulcerative colitis intensified the disease-activity index with marked reduction in colon length, colon mass index, body weight gain, and organo-somatic indices of testes and epididymis when compared with the DSS-alone group. Moreover, ethanol exacerbated colitis-mediated decrease in enzymatic and non-enzymatic antioxidants but increased the oxidative stress and inflammatory biomarkers in the testes and epididymis. The diminution in luteinizing hormone, follicle stimulating hormone, and testosterone levels was intensified following administration of ethanol to mice with ulcerative colitis that were administered 5 g/kg ethanol alone. The decrease in sperm functional parameters and testicular spermatogenic indices as well as histopathological damage in colon, testes, and epididymis was aggravated following administration of ethanol to mice with ulcerative colitis. In conclusion, the exacerbating effects of ethanol on ulcerative colitis-induced testicular dysfunction are related to increased oxidative stress and inflammation in the treated mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Process for producing ethanol from syngas

    Science.gov (United States)

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  10. The Role of Cellulosic Ethanol in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  11. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses

    Directory of Open Access Journals (Sweden)

    Shivendra D. Shukla

    2015-11-01

    Full Text Available Chronic alcoholics who also binge drink (i.e., acute on chronic are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4% for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart. Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9, dually modified phosphoacetylated histone H3 (H3AcK9/PS10, and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10 and H3 ser 28 (H3S28 increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  12. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling.

    Science.gov (United States)

    Yin, Huquan; Liang, Xiaomei; Jogasuria, Alvin; Davidson, Nicholas O; You, Min

    2015-05-01

    Ethanol-mediated injury, combined with gut-derived lipopolysaccharide (LPS), provokes generation of proinflammatory cytokines in Kupffer cells, causing hepatic inflammation. Among the mediators of these effects, miR-217 aggravates ethanol-induced steatosis in hepatocytes. However, the role of miR-217 in ethanol-induced liver inflammation process is unknown. Here, we examined the role of miR-217 in the responses to ethanol, LPS, or a combination of ethanol and LPS in RAW 264.7 macrophages and in primary Kupffer cells. In macrophages, ethanol substantially exacerbated LPS-mediated induction of miR-217 and production of proinflammatory cytokines compared with LPS or ethanol alone. Consistently, ethanol administration to mice led to increases in miR-217 abundance and increased production of inflammatory cytokines in isolated primary Kupffer cells exposed to the combination of ethanol and LPS. miR-217 promoted combined ethanol and LPS-mediated inhibition of sirtuin 1 expression and activity in macrophages. Moreover, miR-217-mediated sirtuin 1 inhibition was accompanied by increased activities of two vital inflammatory regulators, NF-κB and the nuclear factor of activated T cells c4. Finally, adenovirus-mediated overexpression of miR-217 led to steatosis and inflammation in mice. These findings suggest that miR-217 is a pivotal regulator involved in ethanol-induced hepatic inflammation. Strategies to inhibit hepatic miR-217 could be a viable approach in attenuating alcoholic hepatitis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Influence of zinc on the biokinetics of Zn-65 and hepatic trace elements of ethanol treated rats

    International Nuclear Information System (INIS)

    Dhawan, D.K.; Pathak, A.; Pathak, R.; Mahmood, A.

    2002-01-01

    Influence of zinc on the biokinetics of 65 Zn and hepatic trace elements of ethanol treated rats. The effect of zinc on the biokinetics of 65 Zn in liver and whole body and its relation to the hepatic levels of different elements was evaluated in male wistar rats under alcoholic conditions. The rats were segregated into four treatment groups viz., normal control, ethanol treated, zinc treated and combined zinc+ethanol treated. Animals were fed 3ml of 30% ethanol orally daily and zinc in the form of zinc sulfate (ZnSo 4 7H 2 O) was administrated to rats at a dose level of 227mg/L mixed in their drinking water for a total duration of 2 months. Whole body counting studies indicated that the Tb 1 i.e., the faster elimination of the radiotracer. On the contrary, Tb 2 i.e., the slower component was increased significantly following ethanol treatment. Percent uptake values of 65 Zn were found to be increased in liver, intestine, muscle and kidney and decreased in bone under alcoholic conditions. A significant elevation was noticed in in vitro uptake 65 Zn in ethanol treated animals. In the above said conditions, the values were reverted back to within normal limits upon zinc supplementation to these ethanol intoxicated animals, except in the case of in vitro 65 Zn uptake in liver where the uptake was further increased upon combined treatment. A significant decrease in zinc contents was noticed in ethanol treated rats, which however were raised to normal levels upon zinc supplementation. Copper levels, on the other hand, were found to be significantly enhanced in both ethanol fed and combined ethanol+zinc supplemented animals. Calcium levels were found to e significantly decreased in both ethanol and zinc treated rats, which however were further reduced upon zinc supplementation to ethanol fed rats. However, no significant change was observed in the concentrations of sodium and potassium in any of the treatment groups. Therefore, zinc appears to play a protective role by

  14. Electrocatalysis of anodic oxidation of ethanol

    Science.gov (United States)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  15. Ethanol demand in Brazil: Regional approach

    International Nuclear Information System (INIS)

    Freitas, Luciano Charlita de; Kaneko, Shinji

    2011-01-01

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: → Article consists of a first insight on regional demand for ethanol in Brazil. → It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. → Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. → Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  16. Electrocatalysis of anodic oxidation of ethanol

    International Nuclear Information System (INIS)

    Tarasevich, M R; Korchagin, O V; Kuzov, A V

    2013-01-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references

  17. Ethanol demand in Brazil: Regional approach

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Luciano Charlita de, E-mail: lucianofreitas@hiroshima-u.ac.j [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan); Kaneko, Shinji [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan)

    2011-05-15

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: {yields} Article consists of a first insight on regional demand for ethanol in Brazil. {yields} It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. {yields} Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. {yields} Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  18. The effects of gonadectomy and binge-like ethanol exposure during adolescence on open field behaviour in adult male rats.

    Science.gov (United States)

    Yan, Wensheng; Kang, Jie; Zhang, Guoliang; Li, Shuangcheng; Kang, Yunxiao; Wang, Lei; Shi, Geming

    2015-09-14

    Binge drinking ethanol exposure during adolescence can lead to long-term neurobehavioural damage. It is not known whether the pubertal surge in testosterone that occurs during adolescence might impact the neurobehavioural effects of early ethanol exposure in adult animals. We examined this hypothesis by performing sham or gonadectomy surgeries on Sprague-Dawley rats around postnatal day (P) 23. From P28-65,the rats were administered 3.0g/kg ethanol using a binge-like model of exposure. Dependent measurements included tests of open field behaviour, blood ethanol concentrations, and testosterone levels. As adults, significant decreases in open field activity were observed in the GX rats. The open field behaviour of the GX rats was restored after testosterone administration. Binge-like ethanol exposure altered most of the parameters of the open field behaviour, suggestive of alcohol-induced anxiety, but rats treated with alcohol in combination with gonadectomy showed less motor behaviour and grooming behaviour and an increase in immobility, suggesting ethanol-induced depression. These results indicated that testosterone is required for ethanol-induced behavioural changes and that testicular hormones are potent stimulators of ethanol-induced behaviours. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Ethanol-induced effects on sting extension response and punishment learning in the western honey bee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Manuel A Giannoni-Guzmán

    Full Text Available Acute ethanol administration is associated with sedation and analgesia as well as behavioral disinhibition and memory loss but the mechanisms underlying these effects remain to be elucidated. During the past decade, insects have emerged as important model systems to understand the neural and genetic bases of alcohol effects. However, novel assays to assess ethanol's effects on complex behaviors in social or isolated contexts are necessary. Here we used the honey bee as an especially relevant model system since bees are typically exposed to ethanol in nature when collecting standing nectar crop of flowers, and there is recent evidence for independent biological significance of this exposure for social behavior. Bee's inhibitory control of the sting extension response (SER and a conditioned-place aversion assay were used to study ethanol effects on analgesia, behavioral disinhibition, and associative learning. Our findings indicate that although ethanol, in a dose-dependent manner, increases SER thresholds (analgesic effects, it disrupts the ability of honey bees to inhibit SER and to associate aversive stimuli with their environment. These results suggest that ethanol's effects on analgesia, behavioral disinhibition and associative learning are common across vertebrates and invertebrates. These results add to the use of honey bees as an ethanol model to understand ethanol's effects on complex, socially relevant behaviors.

  20. Autoshaping of ethanol drinking in rats: effects of ethanol concentration and trial spacing.

    Science.gov (United States)

    Tomie, Arthur; Wong, Karlvin; Apor, Khristine; Patterson-Buckendahl, Patricia; Pohorecky, Larissa A

    2003-11-01

    In two studies, we evaluated the effects of ethanol concentration and trial spacing on Pavlovian autoshaping of ethanol drinking in rats. In these studies, the brief insertion of an ethanol sipper conditioned stimulus (CS) was followed by the response-independent presentation of food unconditioned stimulus (US), inducing sipper CS-directed drinking conditioned responses (CRs) in all rats. In Experiment 1, the ethanol concentration in the sipper CS [0%-16% volume/volume (vol./vol.), in increments of 1%] was systematically increased within subjects across autoshaping sessions. Groups of rats received sipper CS-food US pairings (Paired/Ethanol), a CS-US random procedure (Random/Ethanol), or water sipper CS paired with food US (Paired/Water). In Experiment 2, saccharin-fading procedures were used to initiate, in the Ethanol group, drinking of 6% (vol./vol.) ethanol in 0.1% saccharin or, in the Water group, drinking of tap water in 0.1% saccharin. After elimination of saccharin, and across days, the duration of access to the sipper CS during each autoshaping trial was increased (5, 10, 12.5, 15, 17.5, and 20 s), and subsequently, across days, the duration of the mean intertrial interval (ITI) was increased (60, 90, 120, and 150 s). In Experiment 1, Paired/Ethanol and Random/Ethanol groups showed higher intake of ethanol, in terms of grams per kilogram of body weight, at higher ethanol concentrations, with more ethanol intake recorded in the Paired/Ethanol group. In Experiment 2, the Ethanol group drank more than was consumed by the Water group, and, for both groups, fluid intake increased with longer ITIs. Results support the suggestion that autoshaping contributes to sipper CS-directed ethanol drinking.

  1. Ethanol-Induced Upregulation of 10-Formyltetrahydrofolate Dehydrogenase Helps Relieve Ethanol-Induced Oxidative Stress

    OpenAIRE

    Hsiao, Tsun-Hsien; Lin, Chia-Jen; Chung, Yi-Shao; Lee, Gang-Hui; Kao, Tseng-Ting; Chang, Wen-Ni; Chen, Bing-Hung; Hung, Jan-Jong; Fu, Tzu-Fun

    2014-01-01

    Alcoholism induces folate deficiency and increases the risk for embryonic anomalies. However, the interplay between ethanol exposure and embryonic folate status remains unclear. To investigate how ethanol exposure affects embryonic folate status and one-carbon homeostasis, we incubated zebrafish embryos in ethanol and analyzed embryonic folate content and folate enzyme expression. Exposure to 2% ethanol did not change embryonic total folate content but increased the tetrahydrofolate level app...

  2. Mixed waste paper to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  3. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  4. Compound list: ethanol [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available ethanol ETN 00137 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_v...itro/ethanol.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/et...hanol.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single.../ethanol.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/ethanol.Rat.in_vivo.Liver.Repeat.zip ...

  5. Characterization of wine yeasts for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Benitez, T.

    1986-11-01

    Selected wine yeasts were tested for their ethanol and sugar tolerance, and for their fermentative capacity. Growth (..mu..) and fermentation rates (..nu..) were increasingly inhibited by increasing ethanol and glucose concentrations, ''flor'' yeasts being the least inhibited. Except in the latter strains, the ethanol production rate was accelerated by adding the glucose stepwise. The best fermenting strains selected in laboratory medium were also the best at fermenting molasses. Invertase activity was not a limiting step in ethanol production, ..nu.. being accelerated by supplementing molasses with ammonia and biotine, and by cell recycle.

  6. Administrative contracts

    Directory of Open Access Journals (Sweden)

    Vukićević-Petković Milica

    2015-01-01

    Full Text Available Administrative contracts are a special type of contract where usually one of the contracting parties is a public law body and which is concluded for the performance of public service and the realization of a public interest. They go a long way since its inception to its eventual final acceptance of all the legal systems. One of the enduring characteristics of this type of contract is their disquised or unnoticed existence. This is why only monitoring their development may lead to a complete understanding of the importance and essence of this institution as well as the need for its complete legal regulation.

  7. Administrative contracts

    OpenAIRE

    Vukićević-Petković Milica

    2015-01-01

    Administrative contracts are a special type of contract where usually one of the contracting parties is a public law body and which is concluded for the performance of public service and the realization of a public interest. They go a long way since its inception to its eventual final acceptance of all the legal systems. One of the enduring characteristics of this type of contract is their disquised or unnoticed existence. This is why only monitoring their development may lead to a complete u...

  8. Cerebral blood flow and oxygen consumption during ethanol withdrawal in the rat.

    Science.gov (United States)

    Hemmingsen, R; Barry, D I; Hertz, M M; Klinken, L

    1979-09-14

    The ethanol withdrawal syndrome in man and animals is characterized by signs of CNS hyperactivity although a direct measurement of a physiological variable reflecting this CNS hyperactivity has never been performed in untreated man or in animals. We induced ethanol dependence in the rat by means of intragastric intubation with a 20% w/v ethanol solution, thus keeping the animals in a state of continuous severe intoxication for 3--4 days; during the subsequent state of withdrawal characterized by tremor, rigidity, stereotyped movements and general seizures a 25% increase in cerebral oxygen consumption (CMRO2) could be measured; this increase was not due to catecholamines originating from adrenal medulla as adrenomedullectomized animals showed a similar increase in CMRO2 (28%); the withdrawing animals showed a corresponding cerebral blood flow (CBF) increase. The elevated CMRO2 and CBF could be reduced to normal by administration of a beta-adrenergic receptor blocker (propranolol 2 mg/kg i.v.), and hence the increased CMRO2 during ethanol withdrawal could be related to catecholaminergic systems in the brain, e.g. the noradrenergic locus coeruleus system which is anatomically well suited as a general activating system. This interpretation is supported by the earlier neurochemical finding of an increased cerebral noradrenaline turnover during ethanol withdrawal. The exact mechanism underlying the increased cerebral oxygen consumption during ethanol withdrawal and the effect of propranolol on cerebral function during this condition remains to be clarified.

  9. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    Science.gov (United States)

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  10. Ascorbic acid supplementation enhances recovery from ethanol induced inhibition of Leydig cell steroidogenesis than abstention in male guinea pigs.

    Science.gov (United States)

    Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Indira, Madambath

    2014-01-15

    The impact of ascorbic acid supplementation against ethanol induced Leydig cell toxicity was studied in guinea pigs. Male guinea pigs were exposed to ethanol (4g/kgb.wt.) for 90 days. After 90 days, ethanol administration was completely stopped and animals in the ethanol group were divided into abstention group and ascorbic acid supplemented group (25mg/100gb.wt.) and those in control group were maintained as control and control+ascorbic acid group. Ethanol administration reduced the serum testosterone and LH (luteinising hormone) levels and elevated estradiol levels. Cholesterol levels in Leydig cell were increased whereas the mRNA and protein expressions of StAR (steroidogenic acute regulatory) protein, cytochrome P450scc (cytochrome p450side chain cleavage enzyme), 3β-HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and LH receptor were drastically reduced. Administration of ascorbic acid resulted in alteration of all these parameters indicating enhanced recovery from ethanol induced inhibition of Leydig cell steroidogenesis. Although abstention could also reduce the inhibition of steroidogenesis, this was lesser in comparison with ascorbic acid supplemented group. © 2013 Published by Elsevier B.V.

  11. Hepatoprotective effect of ethanolic extract of Trichosanthes lobata on paracetamol-induced liver toxicity in rats

    Directory of Open Access Journals (Sweden)

    Rajasekaran Aiyalu

    2012-05-01

    Full Text Available Abstract Background Trichosanthes lobata (family cucurbitaceae is used to treat malarial fever and liver disorders. This study aims to investigate possible hepatoprotective activities of ethanolic extract of Trichosanthes lobata against paracetamol-induced hepatotoxicity. Methods Hepatotoxicity was induced in Wistar male rats by oral administration, 2 g/kg body weight on 7th day after the administration of ethanolic extract of Trichosanthes lobata and silymarin (100 mg/kg. Ethanolic extract of Trichosanthes lobata was administered orally at doses of 200 mg/kg and 400 mg/kg body weight daily for 7 days. Several serum markers, aspartate transaminase, alanine transaminase, alkaline phosphatase, bilirubin, total protein was measured to assess the effect of the extract on paracetamol (acetaminophen-induced hepatic damage. The study included histopathological examination of liver sections. Results Blood samples from rats treated with ethanolic extract of Trichosanthes lobata (200 mg/kg body weight and 400 mg/kg body weight had significant reductions in serum markers in paracetamol administered animals, indicating the effect of the extract in restoring the normal functional ability of hepatocytes. Silymarin (100 mg/kg, p.o. was used as a reference drug. Conclusion The ethanolic extract of Trichosanthes lobata exhibits protective effects against paracetamol‒induced hepatotoxicity.

  12. Effects of silibinin and ethanol on skeletal muscle ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Yusuf Ergün

    2013-03-01

    Full Text Available PURPOSE: To investigate the potential beneficial effect of silibinin in ischemia-reperfusion injury (IRI of skeletal muscle. METHODS: Under urethane anesthesia, four experimental groups were established in Balb/c mice: I Sham-control, II IRI (Tourniquet-induced (2+1 h, III IRI+ethanol (10%, and IV IRI+silibinin (50 mg/kg/IP. The viability of muscle (left was evaluated by the triphenyltetrazolium chloride dye method and calculated as the percentage of the contralateral control muscle (right. Malondialdehyde, superoxide dismutase, and catalase were measured in the gastrocnemius muscle via a spectrophotometer. RESULTS:The viability of gastrocnemius muscle in group II was significantly lower in comparison with that seen in group I. The administration of either ethanol or silibinin rendered the tissues to recover nearly to the baseline level. Additionally, malondialdehyde levels were higher in group II than those in group I. The application of silibinin prior to the reperfusion attenuated these to the control levels. However, malondialdehyde levels in the ethanol administrated group were reduced as well. The enhanced superoxide dismutase activity seen in the IRI group was not diminished in the animals treated with either silibinin or ethanol. Similarly, there were no differences between groups regarding the catalase activities. CONCLUSION: Ethanol seems to be effective in attenuating IRI in skeletal muscle and no definite conclusion can be made on silibinin effect.

  13. Biofilm reactors for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J L; Clausen, E C; Gaddy, J L

    1988-07-01

    Whole cell immobilization has been studied in the laboratory during the last few years as a method to improve the performance and economics of most fermentation processes. Among the various techniques available for cell immobilization, methods that provide generation of a biofilm offer reduced diffusional resistance, high productivities, and simple operation. This paper reviews some of the important aspects of biofilm reactors for ethanol production, including reactor start-up, steady state behavior, process stability, and mathematical modeling. Special emphasis is placed on covalently bonded Saccharomyces cerevisiae in packed bed reactors.

  14. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    Directory of Open Access Journals (Sweden)

    Javier Navarro-Zaragoza

    Full Text Available Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA. The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27, after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA. Drinking in the dark (DID procedure was used as a model of binge. Noradrenaline (NA turnover, tyrosine hydroxylase (TH, TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN were determined by high-performance liquid chromatography (HPLC; TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.

  15. Development of mechanical hypersensitivity in rats during heroin and ethanol dependence: alleviation by CRF₁ receptor antagonism.

    Science.gov (United States)

    Edwards, Scott; Vendruscolo, Leandro F; Schlosburg, Joel E; Misra, Kaushik K; Wee, Sunmee; Park, Paula E; Schulteis, Gery; Koob, George F

    2012-02-01

    Animal models of drug dependence have described both reductions in brain reward processes and potentiation of stress-like (or anti-reward) mechanisms, including a recruitment of corticotropin-releasing factor (CRF) signaling. Accordingly, chronic exposure to opiates often leads to the development of mechanical hypersensitivity. We measured paw withdrawal thresholds (PWTs) in male Wistar rats allowed limited (short access group: ShA) or extended (long access group: LgA) access to heroin or cocaine self-administration, or in rats made dependent on ethanol via ethanol vapor exposure (ethanol-dependent group). In heroin self-administering animals, after transition to LgA conditions, thresholds were reduced to around 50% of levels observed at baseline, and were also significantly lower than thresholds measured in animals remaining on the ShA schedule. In contrast, thresholds in animals self-administering cocaine under either ShA (1 h) or LgA (6 h) conditions were unaltered. Similar to heroin LgA rats, ethanol-dependent rats also developed mechanical hypersensitivity after eight weeks of ethanol vapor exposure compared to non-dependent animals. Systemic administration of the CRF1R antagonist MPZP significantly alleviated the hypersensitivity observed in rats dependent on heroin or ethanol. The emergence of mechanical hypersensitivity with heroin and ethanol dependence may thus represent one critical drug-associated negative emotional state driving dependence on these substances. These results also suggest a recruitment of CRF-regulated nociceptive pathways associated with escalation of intake and dependence. A greater understanding of relationships between chronic drug exposure and pain-related states may provide insight into mechanisms underlying the transition to drug addiction, as well as reveal new treatment opportunities. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress

    Science.gov (United States)

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  17. HYPOTENSIVE AND CARDIOINHIBOTORY EFFECTS OF THE AQUEOUS AND ETHANOL EXTRACTS OF CELERY (APIUM GRAVEOLENS, APIACEAE

    Directory of Open Access Journals (Sweden)

    Dragana Pavlović

    2010-03-01

    Full Text Available In this study we present the effects of aqueous and ethanol extracts of celery (Apium graveolens L., Apiaceae investigated on the mean blood pressure of anaesthetized rabbits and contractility of isolated atria of the rats. In our experiments were used rabbits and Wistar albino rats. The effects of extracts (0.5-15 mg/kg on blood pressure were recorded directly from the carotid artery. Rat isolated atria was mounted in 10 ml tissue bath. An equilibrium period of 30 min was given before the application of the extracts (0.02-0.75 mg/ml. In anesthetized rabbit, intravenous administration of aqueous extracts induced least hypotensive effects (14.35±2.94%, while the ethanol extract caused the greatest fall in the blood pressure (45.79±10.86%. Hypotensive effects of the extracts were partially blocked by atropine (0.3 mg/kg, an unselective muscarinic receptor antagonist. In isolated rat atria both aqueous and ethanolic extracts of celery, exhibit a negative chronotropic and an inotropic action. Aqueous extract decreased rate of contractions for 12.88±2.74% and amplitude for 8.73±0.89%. Ethanol extract inhibited rate of the atria contractions for 34.26±5.69%, and amplitude for 25.40±3.61%. Pretreatment of the atria with atropine (1μM partially blocked inhibitory response of aqueous and ethanol extracts. Ethanol extract of celery exhibited significantly greater hypotensive and cardio-depressant activities then aqueous extract (p<0.05. These data suggest that the aqueous and ethanol extracts of celery caused the hypotensive, negative inotropic and chronotropic effects, which could partially be mediated possibly via stimulation of muscarinic receptors. Inhibitory effect of ethanol extract was significant comparing to aqueous extract of celery.

  18. Behavioral Sensitization to the Disinhibition Effect of Ethanol Requires the Dopamine/Ecdysone Receptor in Drosophila

    Directory of Open Access Journals (Sweden)

    Gissel P. Aranda

    2017-08-01

    Full Text Available Male flies under the influence of ethanol display disinhibited courtship, which is augmented with repeated ethanol exposures. We have previously shown that dopamine is important for this type of ethanol-induced behavioral sensitization but the underlying mechanism is unknown. Here we report that DopEcR, an insect G-protein coupled receptor that binds to dopamine and steroid hormone ecdysone, is a major receptor mediating courtship sensitization. Upon daily ethanol administration, dumb and damb mutant males defective in D1 (dDA1/DopR1 and D5 (DAMB/DopR2 dopamine receptors, respectively, showed normal courtship sensitization; however, the DopEcR-deficient der males exhibited greatly diminished sensitization. der mutant males nevertheless developed normal tolerance to the sedative effect of ethanol, indicating a selective function of DopEcR in chronic ethanol-associated behavioral plasticity. DopEcR plays a physiological role in behavioral sensitization since courtship sensitization in der males was reinstated when DopEcR expression was induced during adulthood but not during development. When examined for the DopEcR’s functional site, the der mutant’s sensitization phenotype was fully rescued by restored DopEcR expression in the mushroom body (MB αβ and γ neurons. Consistently, we observed DopEcR immunoreactivity in the MB calyx and lobes in the wild-type Canton-S brain, which was barely detectable in the der brain. Behavioral sensitization to the locomotor-stimulant effect has been serving as a model for ethanol abuse and addiction. This is the first report elucidating the mechanism underlying behavioral sensitization to another stimulant effect of ethanol.

  19. Ethanol induced hepatic mitochondrial dysfunction is attenuated by all trans retinoic acid supplementation.

    Science.gov (United States)

    Nair, Saritha S; Prathibha, P; Rejitha, S; Indira, M

    2015-08-15

    Alcoholics have reduced vitamin A levels in serum since vitamin A and ethanol share the same metabolic pathway. Vitamin A supplementation has an additive effect on ethanol induced toxicity. Hence in this study, we assessed the impact of supplementation of all trans retinoic acid (ATRA), an active metabolite of vitamin A on ethanol induced disruptive alterations in liver mitochondria. Male Sprague Dawley rats were grouped as follows: I: Control; II: Ethanol (4 g/kg b.wt./day); III: ATRA (100 μg/kg b.wt./day); and IV: Ethanol (4 g/kg b.wt./day)+ATRA (100 μg/kg b.wt./day). Duration of the experiment was 90 days, after which the animals were sacrificed for the study. The key enzymes of energy metabolism, reactive oxygen species, mitochondrial membrane potential and hepatic mRNA expressions of Bax, Bcl-2, c-fos and c-jun were assessed. Ethanol administration increased the reactive oxygen species generation in mitochondria. It also decreased the activities of the enzymes of citric acid cycle and oxidative phosphorylation. ATP content and mitochondrial membrane potential were decreased and cytosolic cytochrome c was increased consequently enhancing apoptosis. All these alterations were altered significantly on ATRA supplementation along with ethanol. These results were reinforced by our histopathological studies. ATRA supplementation to ethanol fed rats, led to reduction in oxidative stress, decreased calcium overload in the matrix and increased mitochondrial membrane potential, which might have altered the mitochondrial energy metabolism and elevated ATP production thereby reducing the apoptotic alterations. Hence ATRA supplementation seemed to be an effective intervention against alcohol induced mitochondrial dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Modified SPEEK membranes for direct ethanol fuel cell

    KAUST Repository

    Maab, Husnul; Nunes, Suzana Pereira

    2010-01-01

    /PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm

  1. ADMINISTRATIVE CIRCULARS

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    N° 2 (Rev. 1) - March 2000Guidelines and procedures concerning recruitment and probation period of staff membersN° 9 (Rev. 2) - March 2000Staff members contractsN° 16 (Rev. 2) - January 2000TrainingN° 30 (Rev. 1) - January 2000Indemnities and reimbursements upon taking up appointment and termination of contractN° 32 - February 2000Principles and procedures governing complaints of harassmentThese circular have been amended (No 2, N° 9, N° 16 and N° 30) or drawn up (N° 32).Copies are available in the Divisional Secretariats.Note:\tAdministrative and operational circulars, as well as the lists of those in force, are available for consultation in the server SRV4_Home in the Appletalk zone NOVELL (as GUEST or using your Novell username and password), volume PE Division Data Disk.The Word files are available in the folder COM, folder Public, folder ADM.CIRC.docHuman Resources DivisionTel. 74128

  2. Pharmaco-EEG-based assessment of the interaction between ethanol and oxcarbazepine.

    Science.gov (United States)

    Pietrzak, Bogusława; Czarnecka, Elzbieta

    2010-01-01

    Oxcarbazepine is a representative molecule for a new class of anticonvulsant drugs that can treat alcohol dependence in addition to other disorders. Interestingly, the central mechanism of action in oxcarbazepine is very similar to ethanol, suggesting that these two agents may interact and cause enhanced effects in the central nervous system. In this study, we used a pharmaco-EEG method to examine the influence of oxcarbazepine on the effect of ethanol on the EEG of rabbits (midbrain reticular formation, hippocampus, frontal cortex). Oxcarbazepine was administered po as a single dose (20 mg/kg or 80 mg/kg) or repeatedly at a dose of 40 mg/kg/day for 14 days. Ethanol was injected iv at a dose of 0.8 g/kg 60 min after the administration of oxcarbazepine. Ethanol caused an increase in the low frequencies (0.5-4 Hz) in the recordings, and it caused a marked decrease in higher frequencies (13-30 Hz and 30-45 Hz). Oxcarbazepine altered the EEG pattern in rabbits; this interaction was dependent on the dose of the drug and whether it was administered as a single dose or as multiple doses. Oxcarbazepine administered at a lower dose had a synergistic effect with ethanol in the frontal cortex and midbrain reticular formation, and a similar effect was observed in the hippocampus at a higher dose. Changes in EEG recordings after the administration of oxcarbazepine alone were more pronounced after multiple administrations. The drug decreased the sensitivity of the hippocampus to ethanol, an observation that may be important for the treatment of alcohol addiction.

  3. Ethanol production using engineered mutant E. coli

    Science.gov (United States)

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  4. Water-induced ethanol dewetting transition.

    Science.gov (United States)

    Ren, Xiuping; Zhou, Bo; Wang, Chunlei

    2012-07-14

    The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.

  5. Characterization of ethanol concentrations at ultraviolet wavelength ...

    African Journals Online (AJOL)

    This paper presents the measurement of optical absorption spectrum for different concentrations of ethanol at ultraviolet wavelength. Ethanol absorption spectrum was measured using portable spectroscopy setup from Avantes. It consists of Balanced Deuterium Halogen light source and spectrometer. The light source can ...

  6. Beyond commonplace biofuels: Social aspects of ethanol

    International Nuclear Information System (INIS)

    Ribeiro, Barbara Esteves

    2013-01-01

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  7. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    15% ethanol tolerance. High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application in ethanologenic fermentations. Data presented in this study revealed that Orc 6 yeast isolate tolerated osmotic stress above 12% (w/v) sorbitol and 15% (w/v) sucrose equivalent of osmotic pressure ...

  8. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Juliana

    2015-02-11

    Feb 11, 2015 ... The use of vegetable biomass as substrate for ethanol production could reduce the ... Fermentation was performed in a laboratory scale using the J10 and FT858 ... Key words: Hydrolysis of sugarcane straw and pointers, sugarcane juice, ..... Ethanol: An Overview about Composition, Pretreatment Methods,.

  9. Acute effects of ethanol and ethanol plus furosemide on pancreatic capillary blood flow in rats.

    Science.gov (United States)

    Dib, J A; Cooper-Vastola, S A; Meirelles, R F; Bagchi, S; Caboclo, J L; Holm, C; Eisenberg, M M

    1993-07-01

    The effects of intravenous ethanol and ethanol plus furosemide on pancreatic capillary blood flow (PCBF) were investigated using a laser-Doppler flowmeter. Forty Sprague-Dawley male rats were divided into 4 groups: (1) control, (2) 80% ethanol, (3) 80% ethanol plus furosemide, and (4) furosemide. Mean arterial blood pressure and heart rate were monitored. Levels of serum amylase, calcium, electrolytes, ethanol, and furosemide (groups 3 and 4) were measured, and samples of pancreatic tissue were obtained. The ethanol and furosemide levels were statistically different (p 0.05) between groups 1 and 4. Histopathologic analysis revealed swollen acini in group 2 and sparse focal necrosis without acinar swelling in group 3. The depressant effect of ethanol on PCBF may be the result of its direct action on pancreatic cells causing edema and capillary compression rather than on primary vascular control mechanisms that adjust blood flow. Furosemide counters this effect.

  10. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    Science.gov (United States)

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Robert E. [Downstream Alternatives, Inc., South Bend, IN (United States)

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  12. Chronic Nicotine Exposure Initiated in Adolescence and Unpaired to Behavioral Context Fails to Enhance Sweetened Ethanol Seeking

    Directory of Open Access Journals (Sweden)

    Aric C. Madayag

    2017-08-01

    Full Text Available Nicotine use in adolescence is pervasive in the United States and, according to the Gateway Hypothesis, may lead to progression towards other addictive substances. Given the prevalence of nicotine and ethanol comorbidity, it is difficult to ascertain if nicotine is a gateway drug for ethanol. Our study investigated the relationship between adolescent exposure to nicotine and whether this exposure alters subsequent alcohol seeking behavior. We hypothesized that rats exposed to nicotine beginning in adolescence would exhibit greater alcohol seeking behavior than non-exposed siblings. To test our hypothesis, beginning at P28, female rats were initially exposed to once daily nicotine (0.4 mg/kg, SC or saline for 5 days. Following these five initial injections, animals were trained to nose-poke for sucrose reinforcement (10%, w/v, gradually increasing to sweetened ethanol (10% sucrose; 10% ethanol, w/v on an FR5 reinforcement schedule. Nicotine injections were administered after the behavioral sessions to minimize acute effects of nicotine on operant self-administration. We measured the effects of nicotine exposure on the following aspects of ethanol seeking: self-administration, naltrexone (NTX-induced decreases, habit-directed behavior, motivation, extinction and reinstatement. Nicotine exposure did not alter self-administration or the effectiveness of NTX to reduce alcohol seeking. Nicotine exposure blocked habit-directed ethanol seeking. Finally, nicotine did not alter extinction learning or cue-induced reinstatement to sweetened ethanol seeking. Our findings suggest that nicotine exposure outside the behavioral context does not escalate ethanol seeking. Further, the Gateway Hypothesis likely applies to scenarios in which nicotine is either self-administered or physiologically active during the behavioral session.

  13. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  14. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo

    2015-01-01

    A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars...... to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from...... widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...

  15. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  16. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  17. Policy Uncertainty and the US Ethanol Industry

    Directory of Open Access Journals (Sweden)

    Jason P. H. Jones

    2017-11-01

    Full Text Available The Renewable Fuel Standard (RFS2, as implemented, has introduced uncertainty into US ethanol producers and the supporting commodity market. First, the fixed mandate for what is mainly cornstarch-based ethanol has increased feedstock price volatility and exerts a general effect across the agricultural sector. Second, the large discrepancy between the original Energy Independence and Security Act (EISA intentions and the actual RFS2 implementation for some fuel classes has increased the investment uncertainty facing investors in biofuel production, distribution, and consumption. Here we discuss and analyze the sources of uncertainty and evaluate the effect of potential RFS2 adjustments as they influence these uncertainties. This includes the use of a flexible, production dependent mandate on corn starch ethanol. We find that a flexible mandate on cornstarch ethanol relaxed during drought could significantly reduce commodity price spikes and alleviate the decline of livestock production in cases of feedstock production shortfalls, but it would increase the risk for ethanol investors.

  18. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  19. [3H]-ouabain binding to peripheral organs of cats: effect of ethanol

    International Nuclear Information System (INIS)

    Banerjee, S.P.; Sharma, V.K.

    1978-01-01

    The specific [ 3 H]-ouabain binding to microsomal fractions derived from cat heart, liver, spleen, and kidney increased significantly following chronic administration of ethanol. Since ouabain binds exclusively to cell membrane (Na + + K + )-adenosine triphosphatase ((Na + + K + )-ATPase), these results provide evidence for an increase in number of (Na + + K + )-ATPase macromolecules during chronic alcoholism. The importance of the increase in number of (Na + + K + )-ATPase molecules in the adaptive increase in ethanol metabolism and cardiac myopathy in chronic alcoholism is discussed. (author)

  20. Chronic ethanol consumption inhibits repair of dimethylnitrosamine-induced DNA alkylation

    International Nuclear Information System (INIS)

    Mufti, S.I.; Salvagnini, M.; Lieber, C.S.; Garro, A.J.

    1988-01-01

    Chronic ethanol consumption causes a DNA repair deficiency. This was demonstrated in Sprague-Dawley rats injected with 14 C-labeled dimethylnitrosamine after being pair-fed isocaloric, ethanol, or carbohydrate control diets for 4 weeks. Hepatic DNA was isolated from rats killed at intervals over a 36 hour period after administration of the nitrosamine and concentrations of alkylated guanine derivatives were measured. While N7-methylguanine was lost at equivalent rates from the DNA of both diet groups, 06methylguanine, a promutagenic lesion, persisted at higher levels for longer periods of time in the DNA from the alcohol-fed animals

  1. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training.

    Directory of Open Access Journals (Sweden)

    Sheila A Engi

    Full Text Available This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6, animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances.

  2. Perspectives on fuel ethanol consumption and trade

    International Nuclear Information System (INIS)

    Walter, Arnaldo; Dolzan, Paulo; Piacente, Erik; Borges da Cunha, Kamyla; Rosillo-Calle, Frank

    2008-01-01

    Since the year 2000 or so there has been a rapid growth on fuel ethanol production and consumption, particularly in US and Brazil. Ethanol trade represented about 10% of world consumption in 2005, Brazil being the main exporter. The most important consumer markets - US and European Union (EU) - have trade regimes that constrained the comparative advantages of the most efficient producers, such as Brazil. This paper evaluates the fuel ethanol market up to 2030 together with the potential for international biotrade. Based on forecasts of gasoline consumption and on targets and mandates of fuel ethanol use, it is estimated that demand could reach 272 Gl in 2030, displacing 10% of the estimated demand of gasoline (Scenario 1), or even 566 Gl in the same year, displacing about 20% of the gasoline demand (Scenario 2). The analysis considers fuel ethanol consumption and production in US, EU-25, Japan, China, Brazil and the rest of the world (ROW-BR). Without significant production of ethanol from cellulosic materials in this period, displacing 10% of the gasoline demand in 2030, at reasonable cost, can only be accomplished by fostering fuel ethanol production in developing countries and enhancing ethanol trade. If the US and EU-25 reach their full production potential (based on conventional routes), the minimum amount that could be traded in 2030 would be about 34 Gl. Displacing 20% of the gasoline demand by 2030 will require the combined development of second-generation technologies and large-scale international trade in ethanol fuel. Without second-generation technologies, Scenario 2 could become a reality only with large-scale production of ethanol from sugarcane in developing countries, e.g., Brazil and ROW-BR could be able to export at least 14.5 Gl in 2010, 73.9 Gl in 2020 and 71.8 Gl in 2030. (author)

  3. Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides: counteraction by lipid-lowering drugs.

    Science.gov (United States)

    Barson, Jessica R; Karatayev, Olga; Chang, Guo-Qing; Johnson, Deanne F; Bocarsly, Miriam E; Hoebel, Bartley G; Leibowitz, Sarah F

    2009-09-01

    Studies in both humans and animals suggest a positive relationship between the intake of ethanol and intake of fat, which may contribute to alcohol abuse. This relationship may be mediated, in part, by hypothalamic orexigenic peptides such as orexin (OX), which stimulate both consumption of ethanol and fat, and circulating triglycerides (TGs), which stimulate these peptides and promote consummatory behavior. The present study investigated this vicious cycle between ethanol and fat, to further characterize its relation to TGs and to test the effects of lowering TG levels. In Experiment 1, the behavioral relationship between fat intake and ethanol was confirmed. Adult male Sprague-Dawley rats, chronically injected intraperitoneally with ethanol (1g/kg) and tested in terms of their preference for a high-fat diet (HFD) compared with low-fat diet (LFD), showed a significant increase in their fat preference, compared with rats injected with saline, in measures of 2h and 24h intake. Experiment 2 tested the relationship of circulating TGs in this positive association between ethanol and fat, in rats chronically consuming 9% ethanol versus water and given acute meal tests (25kcal) of a HFD versus LFD. Levels of TGs were elevated in response to both chronic drinking of ethanol versus water and acute eating of a high-fat versus low-fat meal. Most importantly, ethanol and a HFD showed an interaction effect, whereby their combination produced a considerably larger increase in TG levels (+172%) compared to ethanol with a LFD (+111%). In Experiment 3, a direct manipulation of TG levels was found to affect ethanol intake. After intragastric administration of gemfibrozil (50mg/kg) compared with vehicle, TG levels were lowered by 37%, and ethanol intake was significantly reduced. In Experiment 4, the TG-lowering drug gemfibrozil also caused a significant reduction in the expression of the orexigenic peptide, OX, in the perifornical lateral hypothalamus. These results support the

  4. Autoshaping induces ethanol drinking in nondeprived rats: evidence of long-term retention but no induction of ethanol preference.

    Science.gov (United States)

    Tomie, Arthur; Kuo, Teresa; Apor, Khristine R; Salomon, Kimberly E; Pohorecky, Larissa A

    2004-04-01

    The effects of autoshaping procedures (paired vs. random) and sipper fluid (ethanol vs. water) on sipper-directed drinking were evaluated in male Long-Evans rats maintained with free access to food and water. For the paired/ethanol group (n=16), autoshaping procedures consisted of presenting the ethanol sipper (containing 0% to 28% unsweetened ethanol) conditioned stimulus (CS) followed by the response-independent presentation of food unconditioned stimulus (US). The random/ethanol group (n=8) received the sipper CS and food US randomly with respect to one another. The paired/water group (n=8) received only water in the sipper CS. The paired/ethanol group showed higher grams per kilogram ethanol intake than the random/ethanol group did at ethanol concentrations of 8% to 28%. The paired/ethanol group showed higher sipper CS-directed milliliter fluid consumption than the paired/water group did at ethanol concentrations of 1% to 6%, and 15%, 16%, 18%, and 20%. Following a 42-day retention interval, the paired/ethanol group showed superior retention of CS-directed drinking of 18% ethanol, relative to the random/ethanol group, and superior retention of CS-directed milliliter fluid drinking relative to the paired/water group. When tested for home cage ethanol preference using limited access two-bottle (28% ethanol vs. water) procedures, the paired/ethanol and random/ethanol groups did not differ on any drinking measures.

  5. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver.

    Science.gov (United States)

    Nencini, Cristina; Franchi, Gian Gabriele; Cavallo, Federica; Micheli, Lucia

    2010-04-01

    This study investigated the protective effect of Allium neapolitanum Cyr., a spontaneous species of the Italian flora, compared with garlic (Allium sativum L.) on liver injury induced by ethanol in rats. Male albino Wistar rats were orally treated with fresh Allium homogenates (leaves or bulbs, 250 mg/kg) daily for 5 days, whereas controls received vehicle only. At the end of the experimental 5-day period, the animals received an acute ethanol dose (6 mL/kg, i.p.) 2 hours before the last Allium administration and were sacrificed 6 hours after ethanol administration. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) and the levels of malondialdehyde (MDA), ascorbic acid (AA), and reduced (GSH) and oxidized glutathione in liver tissue were determined. Administration of both Allium species for 5 days (leaves or bulbs) led to no statistical variation of nonenzymatic parameters versus the control group; otherwise Allium treatment caused an increase of GSH and AA levels compared with the ethanol group and a diminution of MDA levels, showing in addition that A. neapolitanum bulb had the best protective effect. Regarding to enzymatic parameters, GR and CAT activities were enhanced significantly compared with the ethanol group, whereas SOD activity showed a trend different from other parameters estimated. However, the treatment with both Allium species followed by acute ethanol administration reestablished the nonenzymatic parameters similar to control values and enhanced the activities of the enzymes measured. These results suggest that fresh Allium homogenates (leaves or bulbs) possess antioxidant properties and provide protection against ethanol-induced liver injury.

  6. Cellulosic ethanol: status and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, Lee R.; Liang, Xiaoyu; Biddy, Mary J.; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E.; Laser, Mark S.; Wang, Michael; Wyman, Charles E.

    2017-06-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today’s technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).

  7. Bioconversion of cellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B; Mandenius, C F; Mattiasson, B; Nilsson, B; Axelsson, J P; Hagander, P

    1985-06-20

    Enzymatic hydrolysis of steam pretreated sallow gives highest yields of soluble sugars when hemicellulose is degraded already in the pretreatment step. The steam pretreatment equipment is rebuilt so that 75 g (dry matter) material instead of 7 g can be treated each time. The cellulose production has been increased 123% by the utilization of aqueous two-phase systems as compared to regular growth medium. The cellulase activity per gram of cellulose has been increased from 42 FPU in regular growth medium to 156 FPU in aqueous two-phase systems. Crude dextran can be used for enzyme production. Enzyme recovery up to 75% has been achieved by combining aqueous two-phase technique with membrane technique. Using the enzyme glucose isomerase in combination with S. cerevisiae theoretical yields in pentose fermentations have been achieved, with a product concentration of 60 g/L and a productivity of 2 g/L x h. Yeast and enzyme can be recirculated using membrane technique. Computer simulation shows that the rate equation for enzymatic hydrolysis with respect to inhibiting sugar concentrations can be used to interpolate with respect to sugar concentrations. Computer simulations show that hydrolysis experiments should focus on high substrate concentrations (>10%) using fed-batch technique and enzyme concentrations in the range of 2-8% in relation to substrate dry matter. The combined 'flow injection analysis', FIA, and enzyme reactor probe has been adapted to enzymatic saccarifications of sodium hydroxide pretreated sallow. The gas membrane sensor for ethanol has been utilized in simultaneous saccharification and fermentation of sodium hydroxide pretreated sallow. A literature study concerning pervaporation for ethanol up-grading has been made.(Author).

  8. Sustainably produced ethanol. A premium fuel component; Nachhaltig produziertes Ethanol. Eine Premium Kraftstoffkomponente

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Joerg [Suedzucker AG, Obrigheim/Pfalz (Germany)

    2012-07-01

    Ethanol is the most used biofuel in the world. It is part of the European biofuel strategy, which is intended to preserve finite fossil resources, reduce greenhouse gas emissions and strengthen European agriculture. In addition to its traditional use in E5 fuel, ethanol most recently features in new fuels for petrol engines in Europe: as E10 as an expansion of the already existing concept of ethanol blends, such as in E5, or as ethanol fuel E85, a blend made up primarily of ethanol. There is already extensive international experience for both types of fuel for example in the USA or Brazil. The use of ethanol as a biofuel is linked to sustainability criteria in Europe which must be proven through a certification scheme. In addition to ethanol, the integrated production process also provides vegetable protein which is used in food as well as in animal feed and therefore provides the quality products of processed plants used for sustainable energy and in animal and human food. Ethanol has an effect on the vapour pressure, boiling behaviour and octane number of the fuel blend. Adjusting the blend stock petrol to fulfil the quality requirements of the final fuel is therefore necessary. Increasing the antiknock properties, increasing the heat of evaporation of the fuel using ethanol and the positive effects this has on the combustion efficiency of the petrol engine are particularly important. Investigations on cars or engines that were specifically designed for fuel with a higher ethanol content show significant improvements in using the energy from the fuel and the potential to reduce carbon dioxide emissions if fuels containing ethanol are used. The perspective based purely on an energy equivalent replacement of fossil fuels with ethanol is therefore misleading. Ethanol can also contribute to increasing the energy efficiency of petrol engines as well as being a replacement source of energy. (orig.)

  9. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  10. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  11. Catalase induction in normal and tumorigenic mice using x-rays, clofibrate, ethanol, or hydrogen peroxide

    International Nuclear Information System (INIS)

    Alexander, L.; Oberley, L.

    1985-01-01

    The authors studied catalase induction in normal male Swiss mice as well as in male mice harboring H-6 hepatomas. The induction patterns many suggest reasons why tumor cells have lower catalase activity than normal cells. X-rays, hydrogen peroxide, ethanol, and clofibrate were used as inducing agents. X-rays interact with tissue and cause free radical formation. This results in an increase in hydrogen peroxide concentration, which ought to induce catalase. Oral administration of hydrogen peroxide should induce catalase similarly. Ethanol can be a substrate for catalase, forming acetalehyde; and as such may induce catalase. Ethanol can also restore inactive catalase compound II to useful catalase. Clofibrate is a hypolipidemic agent which induces catalase, most likely because of its ability to accelerate lipid breakdown, which raises peroxide concentration

  12. A study Antiurolithiatic Activity of ethanolic extract of Asparagus racemosus in animal models

    Directory of Open Access Journals (Sweden)

    Jagannath N

    2015-12-01

    Full Text Available Objective: To investigate the Antiurolithiatic Activity of ethanolic extract of Asparagus racemosus in animal models.Materials and Methods: The study includes performing on healthy albino rats of either sex weighing 220 – 270gms and urolithiasis was induced by oral administration of ethylene glycol and ammonium chloride water. The parameters studied are serum analysis for Urea, Creatinine, Calcium and Phosphorus, Body Weight of animals included in the study group and Histopathological Study of kidney for the presences crystals.  Results In our study the Ethanolic extract of Asparagus Racemosus with doses of 800mg/kg and 1600mg/kg per orally to rats showed significant reduction in serum urea, creatinine, calcium and phosphorus levels in urolithiatic rats when compared to the positive control rats (Group II. These results were found to be statistically significant (p<0.05.Conclusion: Ethanol Extract of Asparagus racemosus has a significant antiurolithiatic activity.

  13. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    Full Text Available While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses. Tissue was collected 7 hours after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol

  14. Ethanol production using nuclear petite yeast mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, A.; Oliver, S.G. [Department of Biomolecular Sciences, UMIST, Manchester (United Kingdom)

    1998-12-31

    Two respiratory-deficient nuclear petites, FY23{Delta}pet191 and FY23{Delta}cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23{rho}{sup 0}. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K{sub i}, of 2.3% (w/v) and a specific rate of ethanol production, q{sub p}, of 0.90 g ethanol g dry cells{sup -1} h{sup -1}. FY23{rho}{sup 0} was the most sensitive to ethanol, exhibiting a K{sub i} of 1.71% (w/v) and q{sub p} of 0.87 g ethanol g dry cells{sup -1} h{sup -1}. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23{Delta}pet191, having a K{sub i} of 2.14% (w/v) and the 85% respiratory-deficient FY23{Delta}cox5a, having a K{sub i} of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23{rho}{sup 0} is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject of the Pasteur effect and so exhibit higher rates of fermentation. (orig.)

  15. The role of ethanol in heroin deaths.

    Science.gov (United States)

    Levine, B; Green, D; Smialek, J E

    1995-09-01

    The purpose of this study was to evaluate the role of ethanol in deaths due to heroin intoxication. Over a 12 month period, all cases investigated by the Office of the Chief Medical Examiner, State of Maryland where a blood screen by Roche Abuscreen radioimmunoassay (RIA) was positive at a cutoff of 100 ng/mL were included in the study. Free morphine was quantitated using the Coat-A-Count RIA and ethanol was quantitated by head space gas chromatography. All presumptive morphine positive cases were confirmed by gas chromatography/mass spectrometry. Seventy of the 119 cases where death was attributed to narcotic or alcohol and narcotic intoxication had blood ethanol concentrations (BAC) greater than or equal to 0.02 g/dL; 48 had BAC > or = 0.10 g/dL. Only 3 of 45 cases where morphine was identified but was unrelated to death had BAC > or = 0.02 g/dL. At all ranges of free morphine concentrations, there was a greater percentage of narcotic deaths when ethanol was present. From the data, we conclude that 1) the use of even small amounts of ethanol with heroin is clearly a risk factor in deaths due to heroin, 2) there are some heroin deaths where no free morphine is identified in the blood. In these deaths, ethanol is unlikely to be present, 3) at blood ethanol concentrations between 0.20 and 0.29 g/dL, the morphine concentrations in heroin deaths increased significantly, 4) at blood ethanol concentrations greater than 0.30 g/dL, morphine became less of a factor than the ethanol in causing death.

  16. Greenprint on ethanol production in Saskatchewan

    International Nuclear Information System (INIS)

    2002-04-01

    Investment in Saskatchewan's ethanol industry is being actively promoted by the provincial government. This document represents the provincial strategy in support of the ethanol industry, which will result in significant environmental benefits for the province and the residents through the increased use of ethanol as an additive to conventional gasoline. The big advantage offered by ethanol is a more complete fuel combustion, thereby reducing emissions of greenhouse gases by as much as 30 per cent. The production costs of ethanol have decreased in the last twenty years by 50 per cent. The competitiveness of ethanol should increase due to ongoing research and development progress being made. The agricultural sector should benefit through the creation of meaningful jobs in the sector, as well as offering new marketing opportunities to the grain producers of the province and the wood-product companies. A renewable resource, ethanol reduces carbon dioxide exhaust emissions bu up to 20 per cent, reduces the smog-creating compounds up to 15 per cent, and achieves a net reduction of up to 10 per cent in carbon dioxide emissions. The abundance of raw materials and resources required for the production of ethanol, Saskatchewan possesses an obvious advantage for becoming a world leader in the field. The government of Saskatchewan has developed its strategy, outlined in this document. It calls for tax incentives, the mandating of ethanol blend, opening up markets, working with communities. The industry size, economic impact, export potential, and future opportunities were briefly discussed in the last section of the document. 1 tab., 3 figs

  17. Sweet future? Brazil's ethanol fuel programme

    International Nuclear Information System (INIS)

    Calle, F.R.

    1999-01-01

    This article traces the history of Brazil's ethanol fuel programme from 1975 to the present, and considers Brazil's energy policy, and the implications of price liberalisation and privatisation aimed at reducing prices to control inflation. The achievements of ProAlcool which was established in 1975 with the aim of replacing petrol with ethanol, costs and investment in ProAlcool, environmental implications, and policy initiatives to boost ProAlcool are examined. Details of typical emissions from a 6-year old car in Brazil are tabulated illustrating the reduced emissions due to ethanol fuels

  18. Ethanol dehydration on doped cadmium oxide

    International Nuclear Information System (INIS)

    Abd El-Salaam, K.M.

    1975-01-01

    The vapour phase catalytic dehydration of ethanol over Fe impregnated cadmium oxide was investigated between 200-450 0 C in atmospheric pressure. Electron transfer mechanisms involved in adsorption and catalytic dehydration reaction were investigated. The change in electrical conductivity of the catalyst resulting from calcination, adsorption and surface reaction processes were studied. Adsorption conductivity at low temperature ( 0 C) indicates that ethanol adsorbs as an electron donor. A mechanism of creation of interstitial Cd atoms responsible for the catalytic dehydration of ethanol on the catalyst surface was suggested. (orig.) [de

  19. Ethanol as radon storage: applications for measurement

    International Nuclear Information System (INIS)

    Winter, I.; Philipsborn, H. von

    1997-01-01

    Ethanol as Radon Storage: Applications for Measurement Ethanol has a solubility for radon of 6 Bq/l per kBq/m 3 air, 24 times higher than water. On filtration of ethanol, radon decay products are completely adsorbed on glass fiber filters, as previously reported for water. Hence: 1. A new simple method for measuring radon in soil air, without expensive equipment. 2. The production of mailable radon calibration sources ('radonol') with 50-100 kBq/l in PET-bottles with 3.8 days half-life, using uraniferous rocks as primary source. (orig.) [de

  20. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism.

    Science.gov (United States)

    Ott, V; Benedict, C; Schultes, B; Born, J; Hallschmid, M

    2012-03-01

    In recent years, the central nervous system (CNS) has emerged as a principal site of insulin action. This notion is supported by studies in animals relying on intracerebroventricular insulin infusion and by experiments in humans that make use of the intranasal pathway of insulin administration to the brain. Employing neurobehavioural and metabolic measurements as well as functional imaging techniques, these studies have provided insight into a broad range of central and peripheral effects of brain insulin. The present review focuses on CNS effects of insulin administered via the intranasal route on cognition, in particular memory function, and whole-body energy homeostasis including glucose metabolism. Furthermore, evidence is reviewed that suggests a pathophysiological role of impaired brain insulin signaling in obesity and type 2 diabetes, which are hallmarked by peripheral and possibly central nervous insulin resistance, as well as in conditions such as Alzheimer's disease where CNS insulin resistance might contribute to cognitive dysfunction. © 2011 Blackwell Publishing Ltd.

  1. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  2. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  3. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  4. Fenofibrate Administration Reduces Alcohol and Saccharin Intake in Rats: Possible Effects at Peripheral and Central Levels

    Directory of Open Access Journals (Sweden)

    Mario Rivera-Meza

    2017-07-01

    Full Text Available We have previously shown that the administration of fenofibrate to high-drinker UChB rats markedly reduces voluntary ethanol intake. Fenofibrate is a peroxisome proliferator-activated receptor alpha (PPARα agonist, which induces the proliferation of peroxisomes in the liver, leading to increases in catalase levels that result in acetaldehyde accumulation at aversive levels in the blood when animals consume ethanol. In these new studies, we aimed to investigate if the effect of fenofibrate on ethanol intake is produced exclusively in the liver (increasing catalase and systemic levels of acetaldehyde or there might be additional effects at central level. High drinker rats (UChB were allowed to voluntary drink 10% ethanol for 2 months. Afterward, a daily dose of fenofibrate (25, 50 or 100 mg/kg/day or vehicle (as control was administered orally for 14 days. Voluntary ethanol intake was recorded daily. After that time, animals were deprived of ethanol access for 24 h and administered with an oral dose of ethanol (1 g/kg for acetaldehyde determination in blood. Fenofibrate reduced ethanol voluntary intake by 60%, in chronically drinking rats, at the three doses tested. Acetaldehyde in the blood rose up to between 80 μM and 100 μM. Considering the reduction of ethanol consumption, blood acetaldehyde levels and body weight evolution, the better results were obtained at a dose of 50 mg fenofibrate/kg/day. This dose of fenofibrate also reduced the voluntary intake of 0.2% saccharin by 35% and increased catalase levels 2.5-fold in the liver but showed no effects on catalase levels in the brain. To further study if fenofibrate administration changes the motivational properties of ethanol, a conditioned-place preference experiment was carried out. Animals treated with fenofibrate (50 mg/kg/day did not develop ethanol-conditioned place preference (CPP.In an additional experiment, chronically ethanol-drinking rats underwent two cycles of ethanol

  5. Administration of Chemistry, Research Department

    African Journals Online (AJOL)

    ), kobs varies non linearly with the soivent composition, passing through a minimum in the region of equimolar portions of the two components. This is in contradiction to the behaviour in ethanol - dioxane and ethanol. - propan-2-ol mixtures, ...

  6. The acute toxicity of ethanol extract from irradiated Temulawak (curcuma xanthorrizha roxb.) which have anticancer activity

    International Nuclear Information System (INIS)

    Ermin Katrin; Susanto; Hendig Winarno

    2011-01-01

    Pasteurization of herbs and herbal medicinal products have been carried out by several herbal industries, but information about the safety of irradiated herbal medicine is still a little, even the influence of gamma irradiation for pasteurization purpose on the toxicity of crude Temulawak has never been investigated. The ethanol extract of Curcuma xanthorrizha Roxb. has cytotoxic activity which potential as an anticancer. In this research, the acute toxicity tests were carried out to the ethanol extract from Curcuma xanthorrizha without irradiation and irradiated with doses of 5 and 10 kGy. The acute toxicity tests of ethanol extract were conducted in mice by observing the effect of extracts on animal behavior (pharmacologic profile) after a single dose of test material, the development of animal body weight and death every day for 14 days and observed several organ weights on day 14. Acute toxicity test results after administration of extracts on male and female mice a dose up to 7500 mg/kg body weight (BW) showed that no deaths and no significant toxic effect, so that the ethanol extract of Curcuma xanthorrizha without irradiation and irradiated with doses of 5 and 10 kGy can be declared safe. Thus LD 50 from ethanol extract of Curcuma xanthorrizha without irradiation and irradiated (5 and 10 kGY) in mice was greater than 7500 mg/kg body weight. (author)

  7. Gastroprotective effect of Cymbopogon citratus infusion on acute ethanol-induced gastric lesions in rats.

    Science.gov (United States)

    Sagradas, Joana; Costa, Gustavo; Figueirinha, Artur; Castel-Branco, Maria Margarida; Silvério Cabrita, António Manuel; Figueiredo, Isabel Vitória; Batista, Maria Teresa

    2015-09-15

    Treatment of gastric ulcers with medicinal plants is quite common in traditional medicine worldwide. Cymbopogon citratus (DC) Stapf. leaves infusion has been used in folk medicine of many tropical and subtropical regions to treat gastric disturbances. The aim of this study was to assess the potential gastroprotective activity of an essential oil-free infusion from C. citratus leaves in acute gastric lesions induced by ethanol in rat. The study was performed on adult male Wistar rats (234.0±22.7g) fasted for 24h but with free access to water. The extract was given orally before (prevention) or after (treatment) intragastric administration of absolute ethanol. Effects of dose (28 or 56mg/kg of body weight) and time of contact of the extract with gastric mucosa (1 or 2h) were also assessed. Animals were sacrificed, being the stomachs removed and the lesions were assessed by macroscopic observation and histopathology. C. citratus extract, given orally before or after ethanol, significantly (P<0.01) reduced gastric mucosal injury compared with control group (vehicle+ethanol). The effect does not appear to be dose-dependent. Results also suggested that the extract is more effective when the time of contact with gastric mucosa increases. The results of this assay confirm the gastroprotective activity of C. citratus extract on experimental gastric lesions induced by ethanol, contributing for the pharmacological validation of its traditional use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    OpenAIRE

    Domnik Bayer; Florina Jung; Birgit Kintzel; Martin Joos; Carsten Cremers; Dierk Martin; Jörg Bernard; Jens Tübke

    2011-01-01

    Acidic or alkaline direct ethanol fuel cells (DEFCs) can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution...

  9. Examination of Ethanol Marketing and Input Procurement Practices of the U.S. Ethanol Producers

    OpenAIRE

    Spaulding, Aslihan D.; Schmidgall, Timothy J.

    2008-01-01

    Growing concerns about the dependence on foreign oil and high prices of gasoline have led to rapid growth in ethanol production in the past decade. Unlike earlier development of the ethanol industry which was highly concentrated in a few large corporations, recent ownership of the ethanol plants has been by farmer-owned cooperatives. Not much is known about the marketing and purchasing practices and plants’ flexibility with respect to adapting new technologies. The purpose of this research is...

  10. Solanum nigrum Protects against Hepatic Fibrosis via Suppression of Hyperglycemia in High-Fat/Ethanol Diet-Induced Rats

    Directory of Open Access Journals (Sweden)

    Cheng-Jeng Tai

    2016-02-01

    Full Text Available Background: Advanced glycation end products (AGEs signal through the receptor for AGE (RAGE, which can lead to hepatic fibrosis in hyperglycemia and hyperlipidemia. We investigated the inhibitory effect of aqueous extracts from Solanum nigrum (AESN on AGEs-induced RAGE signaling and activation of hepatic stellate cells (HSCs and hyperglycemia induced by high-fat diet with ethanol. Methods: An animal model was used to evaluate the anti-hepatic fibrosis activity of AESN in rats fed a high-fat diet (HFD; 30% with ethanol (10%. Male Wistar rats (4 weeks of age were randomly divided into four groups (n = 6: (1 control (basal diet; (2 HFD (30% + ethanol (10% (HFD/ethanol; (3 HFD/ethanol + AESN (100 mg/kg, oral administration; and (4 HFD/ethanol + pioglitazone (10 mg/kg, oral administration and treated with HFD for 6 months in the presence or absence of 10% ethanol in dietary water. Results: We found that AESN improved insulin resistance and hyperinsulinemia, and downregulated lipogenesis via regulation of the peroxisome proliferator-activated receptor α (PPARα, PPARγ co-activator (PGC-1α, carbohydrate response element-binding protein (ChREBP, acetyl-CoA carboxylase (ACC, and fatty acid synthase (FAS mRNA levels in the liver of HFD/ethanol-treated rats. In turn, AESN may delay and inhibit the progression of hepatic fibrosis, including α-smooth muscle actin (α-SMA inhibition and MMP-2 production. Conclusions: These results suggest that AESN may be further explored as a novel anti-fibrotic strategy for the prevention of liver disease.

  11. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  12. Derived thermodynamic properties for the (ethanol + decane) and (carbon dioxide + ethanol + decane) systems at high pressures

    International Nuclear Information System (INIS)

    Zamora-López, Héctor S.; Galicia-Luna, Luis A.; Elizalde-Solis, Octavio; Hernández-Rosales, Irma P.; Méndez-Lango, Edgar

    2012-01-01

    Highlights: ► Experimental density data are reported for (ethanol + decane) and (ethanol + decane + CO 2 ) mixtures. ► Compressed liquid densities were measured in a vibrating tube densimeter from (313 to 363) K. ► Excess molar volumes for (ethanol + decane) mixtures are positive. ► The presence of carbon dioxide in the (ethanol + decane) mixture causes negative excess molar volumes. - Abstract: Volumetric properties for the binary (ethanol + decane) and ternary (ethanol + decane + carbon dioxide) systems are reported from (313 to 363) K and pressures up to 20 MPa. Compressed liquid densities of both systems were measured in a vibrating tube densimeter at different compositions. Binary mixtures {x 1 ethanol + (1-x 1 ) decane} were prepared at x 1 = 0.0937, 0.1011, 0.2507, 0.4963, 0.7526, 0.9014. Compositions for the ternary system were prepared by varying the ethanol/decane relation and trying to keep constant the presence of carbon dioxide at about 0.2 mole fraction. These were {x 1 ethanol + x 2 decane + (1-x 1 -x 2 ) carbon dioxide} x 1 = 0.0657, 0.1986, 0.4087, 0.6042, 0.7109. Density results were correlated using an empirical model with five parameters. Deviations between experimental and calculated values agree and are within the experimental uncertainty. Isobaric expansivity, isothermal compressibility, thermal pressure coefficient, and internal pressure have been calculated for both binary and ternary systems using the empirical model.

  13. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  14. Chronic ethanol consumption impairs learning and memory after cessation of ethanol.

    Science.gov (United States)

    Farr, Susan A; Scherrer, Jeffrey F; Banks, William A; Flood, James F; Morley, John E

    2005-06-01

    Acute consumption of ethanol results in reversible changes in learning and memory whereas chronic ethanol consumption of six or more months produces permanent deficits and neural damage in rodents. The goal of the current paper was determine whether shorter durations of chronic ethanol ingestion in mice would produce long-term deficits in learning and memory after the cessation of ethanol. We first examined the effects of four and eight weeks of 20% ethanol followed by a three week withdrawal period on learning and memory in mice. We determined that three weeks after eight, but not four, weeks of 20% ethanol consumption resulted in deficits in learning and long-term memory (seven days) in T-maze footshock avoidance and Greek Cross brightness discrimination, step-down passive avoidance and shuttlebox active avoidance. Short-term memory (1 hr) was not affected. The deficit was not related to changes in thiamine status, caloric intake, or nonmnemonic factors, such as, activity or footshock sensitivity. Lastly, we examined if the mice recovered after longer durations of withdrawal. After eight weeks of ethanol, we compared mice after three and 12 weeks of withdrawal. Mice that had been off ethanol for both three and 12 weeks were impaired in T-maze footshock avoidance compared to the controls. The current results indicate that a duration of ethanol consumption as short as eight weeks produces deficits in learning and memory that are present 12 weeks after withdrawal.

  15. Treatment of biomass to obtain ethanol

    Science.gov (United States)

    Dunson, Jr., James B.; Elander, Richard T [Evergreen, CO; Tucker, III, Melvin P.; Hennessey, Susan Marie [Avondale, PA

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  16. Radiolytic decomposition of water-ethanol mixtures

    International Nuclear Information System (INIS)

    Baquey, Charles

    1968-07-01

    This research thesis addresses the study of the behaviour of binary mixtures submitted to ionizing radiations, and notably aims, by studying the case of water-ethanol mixtures, at verifying solutions proposed by previously published works on the origin of hydrogen atoms and of molecular hydrogen, on the intervention of excited atoms, and on the origin of products appearing under radiolysis. The experimental part of this work consists in the dosing of products formed in water-ethanol mixtures irradiated in presence or absence of nitrate, hydrogen, hydrocarbon, acetaldehyde, 2-3 butanediol and nitrite. Results are discussed and interpreted in terms of acetaldehyde efficiency, 2-3 butanediol efficiencies, and hydrocarbon efficiencies in pure ethanol, and in water-ethanol mixtures. The influence of the presence of nitrate ions in mixtures is also discussed

  17. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application ... sources include cashew, apple juice (Osho, 2005), palm ... choice for fermentation (Chandra and Panchal, 2003). Yeasts ...

  18. Northeastern California Ethanol Manufacturing Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    1997-11-01

    This report is a compilation of work by several different organizations and includes the NREL researched report, 'Biomass to Ethanol, Facility Design, Cost Estimate, and Financial Evaluation' Volumes I and II.

  19. Aqueous ethanolic extract of Cochlospermum planchonii rhizome ...

    African Journals Online (AJOL)

    DR. ABU

    2012-07-03

    Jul 3, 2012 ... This study was designed to investigate the effects of aqueous ethanolic ... Key words: Cochlospermum planchonii, sperm characteristics, reproduction, Wistar rats. ... extract was stored in air-tight container at 4°C until needed.

  20. Remetabolism of transpired ethanol by Populus deltoides

    International Nuclear Information System (INIS)

    MacDonald, R.C.; Kimmerer, T.W.

    1990-01-01

    Ethanol is present in the transpiration stream of flooded and unflooded trees in concentrations up to 0.5mM. Transpired ethanol does not evaporate but is remetabolized by foliage and upper stems in Populus deltoides. 14 C-ethanol was supplied in the transpiration stream to excised leaves and shoots; more than 98% was incorporated. Less than 1% was respired as CO 2 . Organic and amino acids were labelled initially, with eventual accumulations in water- and chloroform-soluble fractions and into protein. Much of the label was incorporated into stem tissue, with little reaching the lamina. These experiments suggest that ethanol is not lost transpirationally through the leaves, but is efficiently recycled in a manner resembling lactate recycling in mammals

  1. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    Science.gov (United States)

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D.

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol as well as ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering intake of food or water reinforcement. Higher VGB doses (>200 mg/kg) still reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. While not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative stimulus effects of ethanol as evidenced by significant left-ward and up-ward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol. PMID:22336593

  2. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    Directory of Open Access Journals (Sweden)

    Anna Sommansson

    Full Text Available Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v. did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v. but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  3. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats.

    Science.gov (United States)

    Kumar, Jaya; Hapidin, Hermizi; Bee, Yvonne-Tee Get; Ismail, Zalina

    2013-11-26

    Abstinence from chronic ethanol consumption leads to the manifestation of a variety of symptoms attributed to central nervous system hyperexcitability, such as increased irritability, anxiety, and restlessness. Recent studies have demonstrated the importance of metabotropic glutamate receptor 5 (mGluR5) in addictive behaviours. This study investigates the effects of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on ethanol withdrawal induced anxiety using two behavioural paradigms. Male Wistar rats were fed a Modified Liquid Diet (MLD) containing low fat cow milk, sucrose, and maltodextrin with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into ethanol withdrawal, the rats were intraperitoneally injected with normal saline and MPEP (2.5, 5.0, 10, 20, 30 mg/kg) and were assessed for ethanol withdrawal induced anxiety-like syndrome using an automated elevated plus maze and an open field. MPEP at 10 mg/kg significantly attenuated ethanol withdrawal induced anxiety without any compromising effects on locomotor activities. Despite reversing several indices of ethanol withdrawal induced anxiety in both the elevated plus maze and the open field, low doses of MPEP (2.5, 5 mg/kg) significantly compromised the locomotor activities of ethanol withdrawn rats. High doses of MPEP (20 and 30 mg/kg) significantly attenuated withdrawal anxiety when tested in the elevated plus maze but not in the open field. Administration of MPEP (2.5, 5, 10, 20, 30 mg/kg) has no significant compromising effect on the locomotor activities of ethanol naïve rats. Despite significantly reducing withdrawal anxiety in both behavioural paradigms at 10 mg/kg, the compromising effects of low and high doses of MPEP must be further explored along with the therapeutic efficiency of this drug for relieving withdrawal induced anxiety.

  4. Ethanol affects acylated and total ghrelin levels in peripheral blood of alcohol-dependent rats.

    Science.gov (United States)

    Szulc, Michal; Mikolajczak, Przemyslaw L; Geppert, Bogna; Wachowiak, Roman; Dyr, Wanda; Bobkiewicz-Kozlowska, Teresa

    2013-07-01

    There is a hypothesis that ghrelin could take part in the central effects of alcohol as well as function as a peripheral indicator of the changes which occur during long-term alcohol consumption. The aim of this study was to determine a correlation between alcohol concentration and acylated and total form of ghrelin after a single administration of alcohol (intraperitoneal, i.p.) (experiment 1) and prolonged ethanol consumption (experiment 2). The study was performed using Wistar alcohol preferring (PR) and non-preferring (NP) rats and rats from inbred line (Warsaw High Preferring, WHP; Warsaw Low Preferring, WLP). It was found that ghrelin in ethanol-naive WHP animals showed a significantly lower level when compared with the ethanol-naive WLP or Wistar rats. After acute ethanol administration in doses of 1.0; 2.0 and 4.0 g/kg, i.p., the simple (WHP) or inverse (WLP and Wistar) relationship between alcohol concentration and both form of ghrelin levels in plasma were found. Chronic alcohol intake in all groups of rats led to decrease of acylated ghrelin concentration. PR and WHP rats, after chronic alcohol drinking, had lower levels of both form of ghrelin in comparison with NP and WLP rats, respectively, and the observed differences in ghrelin levels were in inverse relationship with their alcohol intake. In conclusion, it is suggested that there is a strong relationship between alcohol administration or intake, ethanol concentration in blood and both active and total ghrelin level in the experimental animals, and that ghrelin plasma concentration can be a marker of alcohol drinking predisposition. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  5. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  6. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  7. Differential effects of ethanol on feline rage and predatory attack behavior: an underlying neural mechanism.

    Science.gov (United States)

    Schubert, K; Shaikh, M B; Han, Y; Poherecky, L; Siegel, A

    1996-08-01

    Previous studies have shown that, at certain dose levels, ethanol can exert a powerful, facilitatory effect on aggressive behavior in both animals and humans. In the cat, however, it was discovered that ethanol differentially alters two forms of aggression that are common to this species. Defensive rage behavior is significantly enhanced, whereas predatory attack behavior is suppressed by ethanol administration. One possible mechanism governing alcohol's potentiation of defensive rage behavior is that it acts on the descending pathway from the medial hypothalamus to the midbrain periaqueductal gray (PAG)-an essential pathway for the expression of defensive rage behavior that uses excitatory amino acids as a neurotransmitter. This hypothesis is supported by the finding that the excitatory effects of alcohol on defensive rage behavior are blocked by administration of the N-methyl-D-aspartate antagonist alpha-2-amino-7-phosphoheptanoic acid (AP-7) when microinjected into the periaqueductal gray, a primary neuronal target of descending fibers from the medial hypothalamus that mediate the expression of defensive rage behavior. Thus, the present study establishes for the first time a specific component of the neural circuit for defensive rage behavior over which the potentiating effects of ethanol are mediated.

  8. Production of 16% ethanol from 35% sucrose

    International Nuclear Information System (INIS)

    Breisha, Gaber Z.

    2010-01-01

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g -1 of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l -1 together with thiamine at a level of 0.2 g l -1 led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm 3 min -1 m 3 of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production.

  9. The expanding U. S. ethanol industry

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, B

    1991-01-01

    American experience in the ethanol industry is discussed. Archer Daniel Midlands Co. (ADM) is a large agri-processing company that is the largest processor of grains and oilseeds, and processes ca 400,000 bushels of corn per day at its Decateur facility. Waste water and heat from the plant is used to grow vegetables hydroponically, with carbon dioxide from distillation used to speed growing at night. About 40,000 heads of lettuce per day are harvested, with cucumbers and tomatoes grown as premium crops. The plant includes a state-of-the-art fluidized bed power plant that burns high sulfur coal without sulfur emission. Approval has recently been granted by the Environmental Protection Agency to burn used tires, and payback for the process is expected to take 3-4 years. Ethanol is produced by steeping corn and separating germ and starch, with the starch used to make corn sweeteners. As well as ethanol, byproducts include animal feed, hydroponics, oils and margarines. ADM is the largest barging company in the U.S., with 14,000 rail cars, 1,200 dedicated to fuel ethanol. The Clean Air Act will mandate a 2.7% oxygen gasoline, and 10% ethanol additive gives 3.3% oxygen. The high octane rating of ethanol-blend gasoline is a strong selling point, and is a good deal for refiners, especially at octane-poor refineries.

  10. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  11. Production of 16% ethanol from 35% sucrose

    Energy Technology Data Exchange (ETDEWEB)

    Breisha, Gaber Z. [Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia (Egypt)

    2010-08-15

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g{sup -1} of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l{sup -1} together with thiamine at a level of 0.2 g l{sup -1} led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm{sup 3} min{sup -1} m{sup 3} of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production. (author)

  12. Carbon nanotube-based ethanol sensors

    International Nuclear Information System (INIS)

    Brahim, Sean; Colbern, Steve; Gump, Robert; Moser, Alex; Grigorian, Leonid

    2009-01-01

    Sensors containing metal-carbon nanotube (CNT) hybrid materials as the active sensing layer were demonstrated for ethanol vapor detection at room temperature. The metal-CNT hybrid materials were synthesized by infiltrating single wall carbon nanotubes (SWNTs) with the transition metals Ti, Mn, Fe, Co, Ni, Pd or Pt. Each sensor was prepared by drop-casting dilute dispersions of a metal-CNT hybrid onto quartz substrate electrodes and the impedimetric responses to varying ethanol concentration were recorded. Upon exposure to ethanol vapor, the ac impedance (Z') of the sensors was found to decrease to different extents. The sensor containing pristine CNT material was virtually non-responsive at low ethanol concentrations (<50 ppm). In contrast, all metal-CNT hybrid sensors showed extremely high sensitivity to trace ethanol levels with 100-fold or more gains in sensitivity relative to the starting SWNT sensor. All hybrid sensors, with the exception of Ni filled CNT, exhibited significantly larger sensor responses to ethanol vapor up to 250 ppm compared to the starting SWNT sensor.

  13. [Insights into engineering of cellulosic ethanol].

    Science.gov (United States)

    Yue, Guojun; Wu, Guoqing; Lin, Xin

    2014-06-01

    For energy security, air pollution concerns, coupled with the desire to sustain the agricultural sector and revitalize the rural economy, many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector. Because of abundant feedstock resources and effective reduction of green-house-gas emissions, the cellulosic ethanol has attracted great attention. With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world, it is necessary to solve engineering problems and complete the economic assessment in 2015-2016, gradually enter the commercialization stage. To avoid "competing for food with humans and competing for land with food", the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol. Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years, the main engineering application problems encountered in pretreatment, enzymes and enzymatic hydrolysis, pentose/hexose co-fermentation strains and processes, equipment were discussed from chemical engineering and biotechnology perspective. The development direction of cellulosic ethanol technology in China was addressed.

  14. Sorption equilibria of ethanol on cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  15. Ethanol research with representatives of provincial/territorial governments and ethanol retailers : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    This paper provided the results of a survey conducted to obtain feedback from retailers and provincial and territorial governments concerning the promotion of ethanol use. A key objective of the research was to determine whether local and provincial governments and retailers are interested in cooperating with the federal government in promoting ethanol use. Thirteen government representatives were interviewed as well as 11 retailers. Results of the study suggested that approaches to collaboration with the diverse stakeholders involved in the promotion of ethanol will require a tailored approach. The needs and interests of jurisdictions and provinces varied widely. Outlets selling ethanol-blended gasoline were concentrated in Ontario, Quebec, and Saskatchewan. Retailers who embraced the alternative fuel tended to be well-established in the ethanol market, and did not require assistance from the Government of Canada. Retailers who were reluctant to embrace ethanol stated that they were only likely to enter the market when required to do so by law. Many stakeholders felt that consumers entertained common misperceptions concerning ethanol, and that consumers were unsure of the effect of ethanol on their vehicles. Many retailers had taken steps to communicate with consumers about the relative benefits of ethanol-blended gasoline. Results indicated that the federal government can assist provinces and retailers by providing promotional tools such as flyers, pamphlets and brochures. Interest among retailers in collaborating with the government was only moderate. It was recommended that retailers be provided with accurate information on ethanol. It was concluded that strategies should be developed by the federal government to increase public awareness of ethanol use.

  16. Ligno-ethanol in competition with food-based ethanol in Germany

    International Nuclear Information System (INIS)

    Poganietz, Witold-Roger

    2012-01-01

    First-generation biofuels are often challenged over their potentially adverse impact on food prices. Biofuels that use nonfood biomass such as lignocellulose are being promoted to ease the conflict between fuels and food. However, their complex processes mean that the total costs of lignocellulosic ethanol may be high in comparison. This might undermine the economic soundness of plans for its use. Another potential advantage of lignocellulosic ethanol is seen in an enhanced contribution to a reduction in greenhouse gas emissions. Yet the increasing attractiveness of lignocellulosic biofuels may also lead to changes in land use that induce additional carbon emissions. For this reason, the environmental impacts of such plans are not straightforward and depend on the affected category of land. The objective of this paper is to compare the economic perspectives and environmental impact of lignocellulosic ethanol with food-based ethanol taking into account market constraints and policy measures. The analysis of the environmental impact focuses on carbon dioxide emissions. In the medium run, i.e., by 2020, lignocellulosic ethanol could enter the gasoline market, crowding out inter alia food-based ethanol. In terms of carbon dioxide emissions, lignocellulosic ethanol seems to be environmentally desirable in each of the analyzed cases. The findings depend crucially on the market conditions, which are influenced inter alia by crude oil, the exchange rate, and technology conditions. -- Highlights: ► Competition of ligno-ethanol with competing energy carriers is analyzed. ► In medium-term ligno-ethanol could crowd out food-based ethanol. ► In terms of CO 2 ligno-ethanol seems to be environmentally desirable. ► The environmental impacts include by land use change induced CO 2 emissions. ► The findings depend crucially on market conditions.

  17. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  18. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    OpenAIRE

    G. Morais-Silva; J. Fernandes-Santos; D. Moreira-Silva; M.T. Marin

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex int...

  19. Administrative Appeals and ADR in Danish Administrative Law

    DEFF Research Database (Denmark)

    Conradsen, Inger Marie; Gøtze, Michael

    2014-01-01

    Administrative Appeals, review, administrative tribunals, ombudsman, alternative dispute resolution......Administrative Appeals, review, administrative tribunals, ombudsman, alternative dispute resolution...

  20. Glycyl-glutamine in nucleus accumbens reduces ethanol intake in alcohol preferring (P) rats.

    Science.gov (United States)

    Resch, Garth E; Shridharani, Shyam; Millington, William R; Garris, David R; Simpson, C Wayne

    2005-10-05

    Opioid peptides and glycyl-glutamine (Gly-Gln) have been implicated in the control of ethanol consumption. A recognized beta-endorphin cleavage product, Gly-Gln, inhibits voluntary alcohol consumption when microinjected into the nucleus accumbens (AcbSh) of P rats. To evaluate the site-specific efficacy of Gly-Gln on ethanol consumption following AcbSh application, ethanol preferring (P) rats were allowed to establish individual baseline ethanol/water consumption utilizing a voluntary self-administration paradigm. Subsequent to baseline ethanol consumption being established, bilateral guide cannulae were stereotaxically implanted +1 mm dorsal to the AcbSh for subsequent Gly-Gln (100 nmol/microl) or saline vehicle (1 microl) injections. Alcohol intake, body weight, and water intake were measured at 24 h post-injection intervals. Unilateral Gly-Gln injections reduced ethanol consumption 35.6% (P < 0.05) from pre-established baseline consumption (6.24 +/- 0.64 g/kg to 4.06 +/- 0.28 g/kg). Bilateral Gly-Gln injections further reduced consumption to 51.9% (6.4 +/- 1.0 g/kg to 3.08 +/- 0.65 g/kg at 24 h (P < 0.01) below established baseline values within 24 h without significant changes in body weight or water consumption. Also, the amino acid constituents of the dipeptide had no influence on ethanol consumption behavior; however, Gly-Gln efficacy was shown to be comparable to central beta-endorphin-(1-27) or intraperitoneal (i.p.) naltrexone-induced suppression of ethanol intake. These data indicate that the AcbSh exhibits a site-specific sensitivity to the suppressive actions of Gly-Gln or beta-endorphin-(1-27) injections that modulate voluntary ethanol consumption in P rats. These findings support the broader concept that select forebrain opioid-responsive neural sites may influence the development or expression of alcohol abuse syndromes in animal models or humans.

  1. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  3. Effects of ethanol on plasma protein shedding in the human stomach

    International Nuclear Information System (INIS)

    Brassinne, A.

    1979-01-01

    Plasma protein shedding in the stomach was measured in 23 normal individuals before and after intragastric administration of a 30% solution of ethyl alcohol. Two different methods were used to assess plasma protein shedding. The first technique utilizes [ 131 I] albumin and requires neutralization of the gastric juice. It was used in 12 subjects and failed to demonstrate any increase of plasma protein shedding under the influence of ethanol. The second technique which utilizes [ 51 Cr] chloride was used in 11 subjects. It demonstrated a significant increase of the gastric clearance of plasma protein which reached 2.5 times the control values. The [ 51 Cr] chloride technique does not require prior neutralization of gastric acidity. It is concluded that, in normal man, ethanol administration increases plasma protein shedding in the stomach when it is given in the presence of an acid gastric juice. The effect is not observed when the gastric acidity is neutralized

  4. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  5. Presentation to the Manitoba ethanol advisory panel

    International Nuclear Information System (INIS)

    2002-01-01

    The Manitoba Chambers of Commerce, representing the entire spectrum of businesses from all regions of Manitoba, has long advocated for alternative fuels based on agricultural products. Some of the major questions that must be answered in this debate on the ethanol industry in Manitoba are: (1) What are the benefits of a vibrant ethanol industry? (2) What are the facts about ethanol, and are those facts getting out to the public? (3) and How do we foster a vibrant ethanol industry in Manitoba? This document places the emphasis on the third issue raised. The Manitoba Chambers of Commerce endorses the idea of a mandated blend of ethanol. It also believes that Manitoba should maintain its gasoline tax-gasohol preference. The Manitoba Chambers of Commerce recommends against the government controlling the size and number of ethanol facilities in the province. It also recommends that funding not be afforded to the creation of new programs designed for the specific purpose of providing financial assistance to the ethanol industry. Government awareness campaigns should be limited to issues within the public interest, dealing with environmental and consumer issues and benefits. The government should commit to the enhancement of the vitality of new generation cooperatives (NGCs) in Manitoba. Emphasis by the government should be placed on ensuring that the required infrastructure and partnerships are in place to foster the development and commercialization of innovations in this field. The Manitoba Chambers of Commerce recommended that the provincial government facilitate partnerships through the sponsoring of provincial conferences, while pursuing its partnership efforts with the federal and other provincial governments

  6. Ethanol: the promise and the peril : Should Manitoba expand ethanol subsidies?

    International Nuclear Information System (INIS)

    Sopuck, R.D.

    2002-01-01

    Ethanol is produced through the fermentation of wheat. Blending ethanol with gasoline results in an ethanol-blended gasoline (EBG). Manitoba has already established an ethanol industry in the province and the government of the province is studying the feasibility of expansion. Every year in Manitoba, approximately 90 million litres of EBG are consumed, and the province's ethanol facility also produces a high protein cattle feed called distillers dry grain. Controversies surround the ethanol industry over both the economics and the environmental benefits and impacts. At issue is the economic efficiency of the production of ethanol, where opponents claim that the final product contains less energy than that required to produce it. A small gain is obtained, as revealed by a recent study. It is difficult to quantify the environmental effects of the ethanol industry, whether they be negative or positive. The author indicates that no matter what happens, the gasoline market in Manitoba is so small when compared to the rest of the world that the effect will not be significant. The three methods for the production of ethanol are: (1) the most risky and expensive method is the stand alone ethanol production facility, (2) integrated facilities where other products are produced, such as wet mash or nutraceuticals, and (3) integrated facilities where dry mash can be exported as a high protein feed. The production of a wide range of products is clearly the best option to be considered during the design of an ethanol facility. Price collapse and the capitalizing of subsidies into prices are the main risks facing the expansion of ethanol production in Manitoba. The author states that direct subsidies and price supports should be avoided, since subsidies would encourage the conversion of more feed grain into ethanol. The feed shortage would worsen especially as Manitoba does not currently produce enough feed to support its growing livestock industry. The author concludes that

  7. Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 Over-activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum.

    Science.gov (United States)

    Ieraci, Alessandro; Herrera, Daniel G

    2018-06-01

    Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.

  8. Antihyperlipidemic activity of Hibiscus rosa-sinensis Linn. ethanolic extract fractions

    OpenAIRE

    Mukesh Singh Sikarwar; M B Patil

    2015-01-01

    Aim: The study investigates the antihyperlipidemic effect of Hibiscus rosa-sinensis Linn. (Malvaceae) ethanolic extract fractions in triton and atherogenic diet-induced hyperlipidemic rats. Materials and Methods: Oral administrations of 500 mg/kg body weight of various fractions of selected plant were evaluated for possible antihyperlipidemic activity in triton and atherogenic diet-induced hyperlipidemic rats for duration of 48 h and 14 days respectively. In triton model, hyperlipidemia was i...

  9. Effect of ethanol and the catalase inhibitor aminotriazole on lipid peroxidation in the rat myocardium

    International Nuclear Information System (INIS)

    Panchenko, L.F.; Pirozhkov, S.V.; Popova, S.V.; Antonenkov, V.D.

    1987-01-01

    The authors study the effect of chronic administration of ethanol and aminotriazole on the level of lipid peroxidation in the ray myocardium. The action of natural and artificial antioxidants on alcohol-induced lipid peroxidation also was studied. To determine the level of chemiluminescence, 1 ml of a sample of nuclear free homogenate or of the total fraction of particles was introduced for radioactivity measurement. After incubation the spontaneous weak luminescence was measured

  10. Interaction of biogenic amines with ethanol.

    Science.gov (United States)

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  11. The sustainability of ethanol production from sugarcane

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Coelho, Suani Teixeira; Guardabassi, Patricia

    2008-01-01

    The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO 2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil's sugarcane plantations are located and are responsible for 62% of ethanol production. (author)

  12. Environemtnal benefits of the Brazilian Ethanol Programme

    International Nuclear Information System (INIS)

    La Rovere, E.L.; Audinet, P.

    1993-01-01

    After nearly twenty years since it was first launched, the Brazilian Ethanol Programme to data remains the largest commercial application of biomass for energy production and use in the world. It succeeded in demonstrating the technical feasibility of large scale ethanol production from sugar cane and its use to fuel car engines. On social and economic grounds, however, its evaluation is less positive. The purpose of this study is to provide an updated overview of the perspectives for the Ethanol Programme under the light of increasingly important local and global environmental concerns. Major results show that after oil prices supported upon the basis of its contribution to curb the increase of air pollution in Brazilian cities and of the greenhouse effect. It is concluded that the very survival of the Ethanol Programme, depends upon adequate economic compensation considering its global environmental benefits. These are appraised with two scenarios based on the use of a Markal-like model to define the range and costs of curbing greenhouse gases with a policy aiming at extending the Ethanol Programme

  13. An Indirect Route for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  14. Cooperative effects in (ethanol)3-water heterotetramers

    International Nuclear Information System (INIS)

    Mejia, Sol; Espinal, Juan F; Mondragon, Fanor

    2009-01-01

    Density Functional Theory (DFT: B3LYP/6-31 + G(d)) was used for the optimization of clusters on the potential energy surface of (ethanol)3-water heterotetramers. The tetramerization energies can reach values up to -21.00 kcal/ mol. This energy can not be obtained by just considering the contributions from interactions between two cluster molecules, which suggests of the presence of global cooperative effects (positive). These effects are reflected in smaller hydrogen bond distances and smaller oxygen-oxygen distances, as well as in greater elongations of the O-H proton donor bond with a stronger red-shift in the heterotetramers compared to the ethanol-water heterodimers and the ethanol dimer. The largest cooperativity effect was observed in the four hydrogen bonds arranged in the largest possible cyclic geometric pattern, where all the molecules act as proton acceptor and donor simultaneously. A similar analysis to the characterization of (ethanol)3-water heterotetramers was carried out on (methanol)3-water heterotetramers, and ethanol and methanol tetramers, whose comparison showed a great similarity between all evaluated parameters for the clusters with equal geometric pattern.

  15. Ethanol embolization of auricular arteriovenous malformations

    International Nuclear Information System (INIS)

    Fan Xindong; Zheng Lianzhou; Yi Hongying; Su Lixin; Zheng Jiawei

    2009-01-01

    Objective: To present the authors' initial experience of treating auricular arteriovenous malformations(AVMs) with ethanol embolization and to assess the clinical effectiveness of this therapeutic method. Methods: Twenty-two patients with AVMs were enrolled in this study. Through local puncturing or super-selective catheterization the absolute ethanol,or diluted alcohol (based on the pattern of the AVMs), was manually injected into the abnormal vascular plexus of the auricular lesion. The clinical results were estimated with physical examination or angiography at intervals of 3-4 month, and telephone questionnaire was made at monthly intervals for all patients. Results: Thirty-eight ethanol embolization procedures were performed, the amount of ethanol used during the procedure ranged from 4 ml to 65 ml. After the treatment the clinical symptoms were improved, which were manifested as healing of the ulceration, stop of bleeding, disappearing or alleviation of tinnitus. Angiographic examination showed that the abnormal vascular lesion was completely vanished in 9 cases, decreased by 50%-75% in 8 cases and decreased less than 50% in remaining 5 cases. The common complications included irreversible local necrosis and vesiculation. Conclusion: For the treatment of auricular AVMs ethanol embolization is an effective and safe method,which might become the therapy of first choice. (authors)

  16. Ethanol embolization of auricular arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Xindong, Fan; Lianzhou, Zheng [Department of Interventional Radiology, the Ninth People' s Hospital, School of Medicine, Shanghai Jiaotong Univ., Shanghai (China); Hongying, Yi; Lixin, Su; Jiawei, Zheng

    2009-11-15

    Objective: To present the authors' initial experience of treating auricular arteriovenous malformations(AVMs) with ethanol embolization and to assess the clinical effectiveness of this therapeutic method. Methods: Twenty-two patients with AVMs were enrolled in this study. Through local puncturing or super-selective catheterization the absolute ethanol,or diluted alcohol (based on the pattern of the AVMs), was manually injected into the abnormal vascular plexus of the auricular lesion. The clinical results were estimated with physical examination or angiography at intervals of 3-4 month, and telephone questionnaire was made at monthly intervals for all patients. Results: Thirty-eight ethanol embolization procedures were performed, the amount of ethanol used during the procedure ranged from 4 ml to 65 ml. After the treatment the clinical symptoms were improved, which were manifested as healing of the ulceration, stop of bleeding, disappearing or alleviation of tinnitus. Angiographic examination showed that the abnormal vascular lesion was completely vanished in 9 cases, decreased by 50%-75% in 8 cases and decreased less than 50% in remaining 5 cases. The common complications included irreversible local necrosis and vesiculation. Conclusion: For the treatment of auricular AVMs ethanol embolization is an effective and safe method,which might become the therapy of first choice. (authors)

  17. Prospects for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, K R

    1978-05-01

    Whey is a by-product of the manufacture of cheese and casein. Casein whey is not as fully utilized as cheese whey although in the last five years commercial processes have been developed to recover the whey proteins, either in denatured form as lactalbumin or in their soluble form as Solac. The removal of the whey proteins makes little difference to the polluting strength or volume of the whey and a crude lactose solution - serum or permeate - remains to be processed. Many processes have been evaluated for the use of this crude lactose solution; one is microbial transformation to produce products such as methane, ethanol, acetone and butanol and etc. The technologies for these processes are well known and it is the economic evaluation which ultimately determines the feasibility of the process being considered. For the purposes of this paper, the prospects for ethanol production have been evaluated. Unless there is a significant reduction in capital costs, it is concluded that ethanol production from whey is not a viable proposition as an energy source for New Zealand. Industrial ethanol (annual imports; 3.5 x 10/sup 6/ 1 CIF value 32 c/1) and potable ethanol production may be worth contemplating.

  18. Pharmacokinetic evaluation of the interaction between oral kaempferol and ethanol in rats.

    Science.gov (United States)

    Zhou, Zhaoxiang; Wang, Meng; Guo, Zengjun; Zhang, Xiaoying

    2016-12-01

    This study was aimed at investigating the effect of ethanol on oral bioavailability of kaempferol in rats, namely, at disclosing their possible interaction. Kaempferol (100 or 250 mg kg-1 bm) was administered to the rats by oral gavage with or without ethanol (600 mg kg-1 bm) co-administration. Intravenous administration (10 and 25 mg kg-1 bm) of kaempferol was used to determine the bioavailability. The concentration of kaempferol in plasma was estimated by ultra high performance liquid chromatography. During coadministration, a significant increase of the area under the plasma concentration-time curve as well as the peak concentration were observed, along with a dramatic decrease in total body clearance. Consequently, the bioavailability of kaempferol in oral control groups was 3.1 % (100 mg kg-1 bm) and 2.1 % (250 mg kg-1 bm). The first was increased by 4.3 % and the other by 2.8 % during ethanol co-administration. Increased permeability of cell membrane and ethanolkaempferol interactions on CYP450 enzymes may enhance the oral bioavailability of kaempferol in rats.

  19. Methanolic extract of Morinda citrifolia L. (noni unripe fruit attenuates ethanol-induced conditioned place preferences in mice

    Directory of Open Access Journals (Sweden)

    Yasmin Khan

    2016-09-01

    Full Text Available Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC, on compulsive ethanol-seeking behaviour using the mouse conditioned place preference (CPP test. CPP was established by injections of ethanol (2g/kg, i.p. in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM, on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3 and 5g/kg and ACAM (300 mg/kg 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction, during which the treatment groups received MMC (1, 3 and 5g/kg, p.o. or ACAM (300 mg/kg, p.o.. Finally, a priming injection of a low dose of ethanol (0.4g/kg, i.p. in the home cage (Reinstatement was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5g/kg, p.o and ACAM (300 mg/kg, p.o. significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  20. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via1H NMR-based metabolomics approach.

    Science.gov (United States)

    Abu Bakar Sajak, Azliana; Mediani, Ahmed; Maulidiani; Mohd Dom, Nur Sumirah; Machap, Chandradevan; Hamid, Muhajir; Ismail, Amin; Khatib, Alfi; Abas, Faridah

    2017-12-01

    Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. By using a combination of 1 H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    Science.gov (United States)

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  2. Nicotine and ethanol co-use in Long-Evans rats: Stimulatory effects of perinatal exposure to a fat-rich diet

    Science.gov (United States)

    Karatayev, Olga; Lukatskaya, Olga; Moon, Sang-Ho; Guo, Wei-Ran; Chen, Dan; Algava, Diane; Abedi, Susan; Leibowitz, Sarah F.

    2015-01-01

    Clinical studies demonstrate frequent co-existence of nicotine and alcohol abuse and suggest that this may result, in part, from the ready access to and intake of fat-rich diets. Whereas animal studies show that high-fat diet intake in adults can enhance the consumption of either nicotine or ethanol and that maternal consumption of a fat-rich diet during pregnancy increases operant responding for nicotine in offspring, little is known about the impact of dietary fat on the co-abuse of these two drugs. The goal of this study was to test in Long-Evans rats the effects of perinatal exposure to fat on the co-use of nicotine and ethanol, using a novel paradigm that involves simultaneous intravenous (IV) self-administration of these two drugs. Fat- vs. chow-exposed offspring were characterized and compared, first in terms of their nicotine self-administration behavior, then in terms of their nicotine/ethanol self-administration behavior, and lastly in terms of their self-administration of ethanol in the absence of nicotine. The results demonstrate that maternal consumption of fat compared to low-fat chow during gestation and lactation significantly stimulates nicotine self-administration during fixed-ratio testing. It also increases nicotine/ethanol self-administration during fixed-ratio and dose-response testing, with BEC elevated to 120 mg/dL, and causes an increase in breakpoint during progressive ratio testing. Of particular note is the finding that rats perinatally exposed to fat self-administer significantly more of the nicotine/ethanol mixture as compared to nicotine alone, an effect not evident in the chow-control rats. After removal of nicotine from the nicotine/ethanol mixture, this difference between the fat- and chow-exposed rats was lost, with both groups failing to acquire the self-administration of ethanol alone. Together, these findings suggest that perinatal exposure to a fat-rich diet, in addition to stimulating self-administration of nicotine, causes

  3. Toxicological evaluation of ethanolic extract of Lychnophora trichocarpha, Brazilian arnica

    Directory of Open Access Journals (Sweden)

    Fernanda C. Ferrari

    2012-10-01

    Full Text Available The species of the genus Lychnophora, Asteraceae, are popularly known as "arnica" and are native from Brazilian savana (Cerrado. They are widely used in Brazilian folk medicine as anti-inflammatory, to treat bruise, pain, rheumatism and for insect bites. For evaluation of acute toxicity, the ethanolic extract was given to albino female and male mice. In open-field test, the extract of Lychnophora trichocarpha (Spreng. Spreng. (0.750 g/kg induced a significant inhibition of the spontaneous locomotor activity and exploratory behavior of the animals were observed 1 and 4 h after administration. In traction test, the same dose reduced the muscular force 1 h after administration. The exploratory behavior reduced significantly in the group that received 0.50 g/kg, 1 and 4 h after administration of the extract. The animals that received the doses of 0.25, 0.50 and 0.75 g/kg did not show any change of blood biochemical parameters comparing to control group and showed some histopathological changes such as congestion and inflammation of kidney and liver. The dose of 1.5 g/kg caused the most serious signs of toxicity. Histopathological changes observed was hemorrhage in 62.5% and pulmonary congestion in 100% of the animals. Brain and liver congestion was found in 62.5% of the animals.

  4. Toxicological evaluation of ethanolic extract of Lychnophora trichocarpha, Brazilian arnica

    Directory of Open Access Journals (Sweden)

    Fernanda C. Ferrari

    2012-07-01

    Full Text Available The species of the genus Lychnophora, Asteraceae, are popularly known as "arnica" and are native from Brazilian savana (Cerrado. They are widely used in Brazilian folk medicine as anti-inflammatory, to treat bruise, pain, rheumatism and for insect bites. For evaluation of acute toxicity, the ethanolic extract was given to albino female and male mice. In open-field test, the extract of Lychnophora trichocarpha (Spreng. Spreng. (0.750 g/kg induced a significant inhibition of the spontaneous locomotor activity and exploratory behavior of the animals were observed 1 and 4 h after administration. In traction test, the same dose reduced the muscular force 1 h after administration. The exploratory behavior reduced significantly in the group that received 0.50 g/kg, 1 and 4 h after administration of the extract. The animals that received the doses of 0.25, 0.50 and 0.75 g/kg did not show any change of blood biochemical parameters comparing to control group and showed some histopathological changes such as congestion and inflammation of kidney and liver. The dose of 1.5 g/kg caused the most serious signs of toxicity. Histopathological changes observed was hemorrhage in 62.5% and pulmonary congestion in 100% of the animals. Brain and liver congestion was found in 62.5% of the animals.

  5. Quetiapine mitigates the ethanol-induced oxidative stress in brain tissue, but not in the liver, of the rat

    Directory of Open Access Journals (Sweden)

    Han JH

    2015-06-01

    Full Text Available Jin-hong Han,1,2 Hong-zhao Tian,2 Yang-yang Lian,1 Yi Yu,1 Cheng-biao Lu,2 Xin-min Li,3 Rui-ling Zhang,1 Haiyun Xu4 1The Second Affiliated Hospital of Xinxiang Medical University, 2School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China; 3Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; 4The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: Quetiapine, an atypical antipsychotic, has been employed to treat alcoholic patients with comorbid psychopathology. It was shown to scavenge hydroxyl radicals and to protect cultured cells from noxious effects of oxidative stress, a pathophysiological mechanism involved in the toxicity of alcohol. This study compared the redox status of the liver and the brain regions of prefrontal cortex, hippocampus, and cerebellum of rats treated with or without ethanol and quetiapine. Ethanol administration for 1 week induced oxidative stress in the liver and decreased the activity of glutathione peroxidase and total antioxidant capacity (TAC there. Coadministration of quetiapine did not protect glutathione peroxidase and TAC in the liver against the noxious effect of ethanol, thus was unable to mitigate the ethanol-induced oxidative stress there. The ethanol-induced alteration in the redox status in the prefrontal cortex is mild, whereas the hippocampus and cerebellum are more susceptible to ethanol intoxication. For all the examined brain regions, coadministration of quetiapine exerted effective protection on the antioxidants catalase and total superoxide dismutase and on the TAC, thus completely blocking the ethanol-induced oxidative stress in these brain regions. These protective effects may explain the clinical observations that quetiapine reduced psychiatric symptoms intensity and maintained a good level of tolerability in chronic alcoholism with

  6. Effect of the presence of initial ethanol on ethanol production in sugar cane juice fermented by Zymomonas mobilis

    OpenAIRE

    Tano,Marcia Sadae; Buzato,João Batista

    2003-01-01

    Ethanol production in sugar cane juice in high initial sugar concentration, fermented by Z. mobilis in the presence and absence of ethanol, was evaluated. Ethanol production was low in both media. The presence of initial ethanol in the sugar cane juice reduced ethanol production by 48.8%, biomass production by 25.0% and the total sugar consumption by 28.3%. The presence of initial ethanol in the medium did not affect significantly levan production and biomass yield coefficient (g biomass/g su...

  7. Ethanol is a strategic raw material

    Directory of Open Access Journals (Sweden)

    Baras Josip K.

    2002-01-01

    Full Text Available The first part of this review article considers general data about ethanol as an industrial product, its qualities and uses. It is emphasized that, if produced from biomass as a renewable raw material, its perspectives as a chemical raw material and energent are brilliant. Starchy grains, such as corn, must be used as the main raw materials for ethanol production. The production of bioethanol by the enzyme-catalyzed conversion of starch followed by (yeast fermentation, distillation is the process of choice. If used as a motor fuel, anhydrous ethanol can be directly blended with gasoline or converted into an oxygenator such as ETBE. Finally, bioethanol production in Yugoslavia and the possibilities for its further development are discussed.

  8. Recovery of ethanol from municipal solid waste

    International Nuclear Information System (INIS)

    Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

    1992-01-01

    Methods for disposal of MSW that reduce the potential for groundwater or air pollution will be essential in the near future. Seventy percent of MSW consists of paper, food waste, yard waste, wood and textiles. These lignocellulosic components may be hydrolyzed to sugars with mineral acids, and the sugars may be subsequently fermented to ethanol or other industrial chemicals. This chapter presents data on the hydrolysis of the lignocellulosic fraction of MSW with concentrated HC1 and the fermentation of the sugars to ethanol. Yields, kinetics, and rates are presented and discussed. Design and economic projections for a commercial facility to produce 20 MM gallons of ethanol per year are developed. Novel concepts to enhance the economics are discussed

  9. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  10. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-09

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  11. Incubation of ethanol reinstatement depends on test conditions and how ethanol consumption is reduced

    Science.gov (United States)

    Ginsburg, Brett C.; Lamb, R. J.

    2015-01-01

    In reinstatement studies (a common preclinical procedure for studying relapse), incubation occurs (longer abstinence periods result in more responding). This finding is discordant with the clinical literature. Identifying determinants of incubation could aid in interpreting reinstatement and identifying processes involved in relapse. Reinstated responding was examined in rats trained to respond for ethanol and food under a multiple concurrent schedule (Component 1: ethanol FR5, food FR150; Component 2: ethanol FR5, food FR5–alternating across the 30-min session). Ethanol consumption was then reduced for 1 or 16 sessions either by suspending training (rats remained in home cage) or by providing alternative reinforcement (only Component 2 stimuli and contingencies were presented throughout the session). In the next session, stimuli associated with Component 1 were presented and responses recorded but ethanol and food were never delivered. Two test conditions were studied: fixed-ratio completion either produced ethanol- or food-associated stimuli (signaled) or had no programmed consequence (unsignaled). Incubation of ethanol responding was observed only after suspended training during signaled test sessions. Incubation of food responding was also observed after suspended training. These results are most consistent with incubation resulting from a degradation of feedback functions limiting extinction responding, rather than an increased motivation. PMID:25595114

  12. Intracerebroventricular gene therapy that delays neurological disease progression is associated with selective preservation of retinal ganglion cells in a canine model of CLN2 disease.

    Science.gov (United States)

    Whiting, Rebecca E H; Jensen, Cheryl A; Pearce, Jacqueline W; Gillespie, Lauren E; Bristow, Daniel E; Katz, Martin L

    2016-05-01

    CLN2 disease is one of a group of lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs). The disease results from mutations in the TPP1 gene that cause an insufficiency or complete lack of the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). TPP1 is involved in lysosomal protein degradation, and lack of this enzyme results in the accumulation of protein-rich autofluorescent lysosomal storage bodies in numerous cell types including neurons throughout the central nervous system and the retina. CLN2 disease is characterized primarily by progressive loss of neurological functions and vision as well as generalized neurodegeneration and retinal degeneration. In children the progressive loss of neurological functions typically results in death by the early teenage years. A Dachshund model of CLN2 disease with a null mutation in TPP1 closely recapitulates the human disorder with a progression from disease onset at approximately 4 months of age to end-stage at 10-11 months. Delivery of functional TPP1 to the cerebrospinal fluid (CSF), either by periodic infusion of the recombinant protein or by a single administration of a TPP1 gene therapy vector to the CSF, significantly delays the onset and progression of neurological signs and prolongs life span but does not prevent the loss of vision or modest retinal degeneration that occurs by 11 months of age. In this study we found that in dogs that received the CSF gene therapy treatment, the degeneration of the retina and loss of retinal function continued to progress during the prolonged life spans of the treated dogs. Eventually the normal cell layers of the retina almost completely disappeared. An exception was the ganglion cell layer. In affected dogs that received TPP1 gene therapy to the CSF and survived an average of 80 weeks, ganglion cell axons were present in numbers comparable to those of normal Dachshunds of similar age. The selective preservation of the retinal ganglion cells suggests

  13. Ethanol production in China: Potential and technologies

    International Nuclear Information System (INIS)

    Li, Shi-Zhong; Chan-Halbrendt, Catherine

    2009-01-01

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  14. Life-Stage PBPK Models for Multiple Routes of Ethanol Exposure in the Rat

    Science.gov (United States)

    Ethanol is commonly blended with gasoline (10% ethanol) in the US, and higher ethanol concentrations are being considered. While the pharmacokinetics and toxicity of orally-ingested ethanol are widely reported, comparable work is limited for inhalation exposure (IE), particularly...

  15. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  16. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    Science.gov (United States)

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  17. Ethanol as an alternative source of energy

    International Nuclear Information System (INIS)

    Haroon, M.; Benjamin, S.E.

    2011-01-01

    Pakistan, at present facades huge shortage of energy that has disabled several industries and has worsened the living standards of a common man. Its economy mainly depends upon agriculture but relies heavily on imported petroleum to meet the necessities. The importance of national resources as an alternative energy resource is thus greatly felt. The sugar cane industry of Pakistan holds a potential to provide such an alternative fuel as bio ethanol that can be produced entirely from molasses. This paper looks deeper into scope of ethanol as one replacement that can reduce the financial and environmental cost of petroleum based fuels. (author)

  18. Pulse radiolysis of 6-aminophenalenone ethanolic solutions

    International Nuclear Information System (INIS)

    Semenova, G.V.; Kartasheva, L.I.; Ryl'kov, V.V.; Pikaev, A.K.

    1986-01-01

    Intermediates of 6-aminophenalenone radiolytic transformations in ethanol are investigated using pulse radiolysis method (5 and 8 MeV energy electrons, pulse duration is 2.3 μs and 15 ns respectively). Constants of reaction rate of e s and α-ethanolic radical with dye are measured (they are equal to (9.3±1.0)x10 9 and (1.1±0.2)x10 8 l/(molxs) respectively); optical and kinetic characteristics of products of their interaction are investigated. Mechanism of radiolytic transformations of this dye is proposed

  19. Nanocatalysts for Ethanol Oxidation: Synthesis and Characterisation

    OpenAIRE

    Bonesi, A.; Triaca, W. E.; Luna, A. M. Castro

    2009-01-01

    Carb on-supported binary PtSn/C and ternary PtSnNi/C catalysts were prepared for the electro-oxidation of ethanol. The carbon-supported nanoparticles were synthesised by employing a modified polyol methodology and characterised in terms of structure, morphology and composition by using XRD, EDX and TEM techniques. Their electro-catalytic behaviour for ethanol oxidation (EO) was investigated by employing a disc-composite electrode covered by a thin layer of catalyst imbedded in a Nafion polyme...

  20. Administrative Data Repository (ADR)

    Data.gov (United States)

    Department of Veterans Affairs — The Administrative Data Repository (ADR) was established to provide support for the administrative data elements relative to multiple categories of a person entity...

  1. EPA Administrative Enforcement Dockets

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA Administrative Enforcement Dockets database contains the electronic dockets for administrative penalty cases filed by EPA Regions and Headquarters. Visitors...

  2. Philippines - Revenue Administration Reform

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Challenge Account-Philippines' (MCA-P) implementation of the Revenue Administration Reform Project (RARP) is expected to improve tax administration,...

  3. Pervaporation : membranes and models for the dehydration of ethanol

    NARCIS (Netherlands)

    Spitzen, Johannes Wilhelmus Franciscus

    1988-01-01

    In this thesis the dehydration of ethanol/water mixtures by pervaporation using homogeneous membranes is studied. Both the general transport mechanism as well as the development of highly selective membranes for ethanol/water separation are investigated.

  4. Potential feedstock sources for ethanol production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Mohammad [Univ. of Florida, Gainesville, FL (United States); Hodges, Alan [Univ. of Florida, Gainesville, FL (United States)

    2015-10-01

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production. However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.

  5. State-level workshops on ethanol for transportaton

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Angela [BBI International, Cotopaxi, CO (United States)

    2004-01-01

    The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources.

  6. optimization of the ethanol fermentation of cassava wastewater

    African Journals Online (AJOL)

    Umo

    production would improve the ethanol yield, and thereby reduce the cost of production. KEYWORDS: Ethanol, cassava ... biomass sources are receiving attention globally. .... HYDROLYZED CASSAVA WASTEWATER. A blank solution ..... A Global Overview of Biomass Potentials ... Pretreatment of Lignocellulosic Wastes.

  7. Effect of Ethanol Chemistry on SCC of Carbon Steel

    Science.gov (United States)

    2011-02-22

    Pipeline companies have a keen interest in assessing the feasibility of transporting fuel grade ethanol (FGE) and ethanol blends in existing pipelines. Previous field experience and laboratory research, funded by PRCI and API, has shown that steel ca...

  8. Study of growth kinetic and modeling of ethanol production by ...

    African Journals Online (AJOL)

    ... coefficient (0.96299). Based on Leudking-Piret model, it could be concluded that ethanol batch fermentation is a non-growth associated process. Key words: Kinetic parameters, simulation, cell growth, ethanol, Saccharomyces cerevisiae.

  9. Techno-economic analysis of fuel ethanol production from cassava ...

    African Journals Online (AJOL)

    Moncada Botero, J. (Jonathan)

    Key words: Fuel-ethanol, cassava, Tanzania, process modelling. INTRODUCTION ..... mathematical calculations such as Matlab, Octave and Polymath were also ... models. To start the different simulation procedures in ethanol production, a.

  10. GABA(A) receptor modulation during adolescence alters adult ethanol intake and preference in rats.

    Science.gov (United States)

    Hulin, Mary W; Amato, Russell J; Winsauer, Peter J

    2012-02-01

    To address the hypothesis that GABA(A) receptor modulation during adolescence may alter the abuse liability of ethanol during adulthood, the effects of adolescent administration of both a positive and negative GABA(A) receptor modulator on adult alcohol intake and preference were assessed. Three groups of adolescent male rats received 12 injections of lorazepam (3.2 mg/kg), dehydroepiandrosterone (DHEA, 56 mg/kg), or vehicle on alternate days starting on postnatal day (PD) 35. After this time, the doses were increased to 5.6 and 100 mg/kg, respectively, for 3 more injections on alternate days. Subjects had access to 25 to 30 g of food daily, during the period of the first 6 injections, and 18 to 20 g thereafter. Food intake of each group was measured 60 minutes after food presentation, which occurred immediately after drug administration on injection days or at the same time of day on noninjection days. When subjects reached adulthood (PD 88), ethanol preference was determined on 2 separate occasions, an initial 3-day period and a 12-day period, in which increasing concentrations of ethanol were presented. During each preference test, intake of water, saccharin, and an ethanol/saccharin solution was measured after each 23-hour access period. During adolescence, lorazepam increased 60-minute food intake, and this effect was enhanced under the more restrictive feeding schedule. DHEA had the opposite effect on injection days, decreasing food intake compared with noninjection days. In adulthood, the lorazepam-treated group preferred the 2 lowest concentrations of ethanol/saccharin more than saccharin alone compared with vehicle-treated subjects, which showed no preference for any concentration of ethanol/saccharin over saccharin. DHEA-treated subjects showed no preference among the 3 solutions. These data demonstrate that GABA(A) receptor modulation during adolescence can alter intake and preference for ethanol in adulthood and highlights the importance of drug history

  11. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos.

    Science.gov (United States)

    Gu, Jian-Wei; Bailey, Amelia Purser; Sartin, Amanda; Makey, Ian; Brady, Ann L

    2005-01-15

    The mechanisms by which alcohol consumption causes cancer have not been established due to a lack of experimental studies. A chick embryo chorioallantoic membrane (CAM) model that bore human fibrosarcoma (HT1080) was used to determine whether the administration of physiologically relevant doses of ethanol could stimulate tumor growth, angiogenesis, metastasis, and vascular endothelial growth factor (VEGF) expression in tumors. HT1080 cells were inoculated onto the "upper CAM" on Day 8, saline or ethanol was administrated at a dose of 0.25 g/kg per day on the CAM, and the tumors were harvested on Day 17. VEGF mRNA and protein were determined by Northern blot analysis and enzyme-linked immunosorbent assay. Intratumoral vascular volume density (IVVD) was determined by point counting on periodic acid-Schiff-stained sections. Intravasation of HT1080 cells was determined using human-Alu polymerase chain reaction analysis. The effects of ethanol on VEGF expression and cell proliferation were examined in cultured HT1080 cells. Ethanol treatment for 9 days caused a 2.2-fold increase in tumor volume (867 +/- 138 mm(3) vs. 402 +/- 28 mm(3)), a 2.1-fold increase in IVVD (0.021 +/- 0.004 mm(3)/mm(3) vs. 0.010 mm(3)/mm(3) +/- 0.002 mm(3)/mm(3)), and a significant increase in VEGF mRNA or protein expression in tumors compared with a group of control embryos (n = 6 embryos; P 8-fold in the intravasated HT1080 cells in the CAM group compared with the control group (n = 6 embryos; P < 0.01). Physiologically relevant levels of ethanol (10 mM and 20 mM) caused a dose-related increase in VEGF mRNA and protein expression in cultured HT1080 cells. The ethanol-HT1080-conditioned media increased the proliferation of endothelial cells, but not of HT1080 cells. The findings suggest that the induction of angiogenesis and VEGF expression by ethanol represents an important mechanism of cancer progression associated with alcoholic beverage consumption. (c) 2004 American Cancer Society.

  12. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents.

    Science.gov (United States)

    Gong, Mei-Fang; Wen, Rui-Ting; Xu, Ying; Pan, Jian-Chun; Fei, Ning; Zhou, Yan-Meng; Xu, Jiang-Ping; Liang, Jian-Hui; Zhang, Han-Ting

    2017-10-01

    Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. These results provide the first demonstration for that PDE4 plays a role in modulating

  13. Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High or Low Ethanol Preference

    Science.gov (United States)

    Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.

    2010-01-01

    Background Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptiblility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction by using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. Methods Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 hr/day) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hr after final ethanol (or air) exposure for 5 consecutive days. Results Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared to HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice

  14. Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system.

    Science.gov (United States)

    Jain, Nishant S; Kannamwar, Uday; Verma, Lokesh

    2017-02-01

    The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT 2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT 1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT 2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT 1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT 1A receptor or contributory role of the 5-HT 2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.

  15. Effect of Artemisia annua L. leaves essential oil and ethanol extract on behavioral assays

    Directory of Open Access Journals (Sweden)

    Fabio F. Perazzo

    Full Text Available Artemisia annua has been used as a traditional plant for the treatment of malaria and fever in China because of the presence of its active compound, artemisinin. The present study evaluated the central activity of the essential oil and the crude ethanol extract of A. annua L. in animals as a part of a psychopharmacological screening of this plant. The extract was prepared in ethanol (AEE and the essential oil (AEO obtained by hydrodistillation, both with fresh leaves. Induced immobility, the forced swimming test (FST and the open-field test (OFT are well-known animal models to study drug-induced depression. The administration of A. annua essential oil or crude ethanol extract increased the immobility time in the FST and decreased other activities (ambulation, exploration, rearing and grooming in the OFT in animals. Both AEO and AEE prolonged pentobarbital-induced sleep as well, but the essential oil had a marked effect. Observing these results, it is possible to suggest that A. annua crude ethanol extract and essential oil could act as depressors on the Central Nervous System (CNS.

  16. Cytoprotective Effect of American Ginseng in a Rat Ethanol Gastric Ulcer Model

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2013-12-01

    Full Text Available Panax quinquefolium L. (American Ginseng, AG is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n = 8 per group: supplementation with water (vehicle and low-dose (AG-1X, medium-dose (AG-2X and high-dose (AG-5X AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg. Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  17. Neurogranin in the nucleus accumbens regulates NMDA receptor tolerance and motivation for ethanol seeking.

    Science.gov (United States)

    Reker, Ashlie N; Oliveros, Alfredo; Sullivan, John M; Nahar, Lailun; Hinton, David J; Kim, Taehyun; Bruner, Robert C; Choi, Doo-Sup; Goeders, Nicholas E; Nam, Hyung W

    2018-03-15

    Dysfunction of N-methyl-d-aspartate receptor (NMDAR) signaling in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng), a calmodulin-binding protein, is exclusively expressed in the post-synapse, and mediates NMDAR driven synaptic plasticity by regulating the calcium-calmodulin (Ca 2+ -CaM) pathway. To study the functional role of Ng in AUD, we administrated behavior tests including Pavlovian instrument transfer (PIT), operant conditioning, and rotarod test using Ng null mice (Ng -/- mice). We used adeno-associated virus (AAV)-mediated Ng expression and pharmacological manipulation to validate behavioral responses in Ng -/- mice. The results from our multidisciplinary approaches demonstrated that deficit of Ng increases tolerance to NMDAR inhibition and elicit faster cue reactivity during PIT without changes in ethanol reward. Operant conditioning results demonstrated that Ng -/- mice self-administered significantly more ethanol and displayed reduced sensitivity to aversive motivation. We identified that ethanol exposure decreases mGluR5 (metabotropic glutamate receptor 5) expression in the NAc of Ng -/- mice and pharmacological inhibition of mGluR5 reverses NMDAR desensitization in Ng -/- mice. Together these findings specifically suggest that accumbal Ng plays an essential role in the counterbalance between NMDAR and mGluR5 signaling; which alters NMDAR resistance, and thereby altering aversive motivation for ethanol and may ultimately contribute to susceptibility for alcohol addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Gastroprotective effect of esculin on ethanol-induced gastric lesion in mice.

    Science.gov (United States)

    Li, Weifeng; Wang, Yu; Wang, Xiumei; Zhang, Hailin; He, Zehong; Zhi, Wenbing; Liu, Fang; Niu, Xiaofeng

    2017-04-01

    The gastroprotective effect of esculin was investigated in a mouse model of ethanol-induced gastric lesion. Administration of esculin at doses of 5, 10, and 20 mg/kg body weight prior to ethanol ingestion led to significant gastroprotection compared with untreated mice. Gastric mucosal lesions were evaluated by macroscopic and histopathological alterations, lesion index, and myeloperoxidase (MPO) activity. Pretreatment with esculin significantly reduced macroscopic and histopathological damage, gastric lesion index, and MPO activity in a dose-dependent manner. Moreover, esculin significantly reduced nitric oxide (NO) production, inducible NO synthase (iNOS) levels, and nuclear factor-kappa B (NF-κB) p65 protein expression in gastric tissues after ethanol challenge. Analysis of inflammatory cytokines indicated that esculin pretreatment markedly suppressed the increased expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in ethanol-treated mice. The results demonstrate a protective effect of esculin against gastric injury and suggest that the underlying mechanism might be associated with inhibition of NF-κB activation, which subsequently reduces expression of iNOS, TNF-α, and IL-6. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  19. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  20. Ethanol Production from Different Intermediates of Sugar Beet Processing

    OpenAIRE

    Mladen Pavlečić; Ivna Vrana; Kristijan Vibovec; Mirela Ivančić Šantek; Predrag Horvat; Božidar Šantek

    2010-01-01

    In this investigation, the production of ethanol from the raw sugar beet juice and raw sugar beet cossettes has been studied. For ethanol production from the raw sugar beet juice, batch and fed-batch cultivation techniques in the stirred tank bioreactor were used, while batch ethanol production from the raw sugar beet cossettes was carried out in horizontal rotating tubular bioreactor (HRTB). In both cases, Saccharomyces cerevisiae was used as a production microorganism. During batch ethanol ...

  1. Ethanol Wet-bonding Technique Sensitivity Assessed by AFM

    OpenAIRE

    Osorio, E.; Toledano, M.; Aguilera, F.S.; Tay, F.R.; Osorio, R.

    2010-01-01

    In ethanol wet bonding, water is replaced by ethanol to maintain dehydrated collagen matrices in an extended state to facilitate resin infiltration. Since short ethanol dehydration protocols may be ineffective, this study tested the null hypothesis that there are no differences in ethanol dehydration protocols for maintaining the surface roughness, fibril diameter, and interfibrillar spaces of acid-etched dentin. Polished human dentin surfaces were etched with phosphoric acid and water-rinsed...

  2. High ethanol yields using Aspergillus oryzae koji and corn media

    Energy Technology Data Exchange (ETDEWEB)

    Ziffer, J.; Iosif, M.C.

    1982-01-01

    High ethanol and stillage solids were achieved using whole corn mashes. Ethanol yields of 14% (98.5% of theory) and stillage levels of approximately 23% were obtained in 74-90 hours using mild acid pretreatment with A. oryzae wheat bran koji saccharification. High ethanol yields were also obtained with bacterial amylase, instead of the acid treatment, when the sterilization step was omitted. The implications of ethanol fermentation process modifications are explored.

  3. Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo.

    Science.gov (United States)

    He, Wen-Bin; Abe, Kazuho; Akaishi, Tatsuhiro

    2018-01-01

    To explore memory enhancing effect of the flavonoid fisetin, we investigated the effect of oral administration of flavonoids on the induction of long-term potentiation (LTP) at hippocampal CA1 synapses of anesthetized rats. Among four flavonoids (fisetin, quercetin, luteolin and myricetin) tested, only fisetin significantly facilitated the induction of hippocampal LTP. The effect of oral fisetin was abolished by intracerebroventricular injection of U0126, an agent that was previously found to inhibit its effect in hippocampal slices in vitro. These results suggest that orally administered fisetin crosses the blood-brain barrier and promotes synaptic functions in the hippocampus. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Wheel running, voluntary ethanol consumption, and hedonic substitution.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2008-08-01

    Few studies have examined the relationship between naturally rewarding behaviors and ethanol drinking behaviors in mice. Although natural and drug reinforcers activate similar brain circuitry, there is behavioral evidence suggesting food and drug rewards differ in perceived value. The primary goal of the present study was to investigate the relationships between naturally reinforcing stimuli and consumption of ethanol in ethanol preferring C57BL/6J mice. Mouse behaviors were observed after the following environmental manipulations: standard or enhanced environment, accessible or inaccessible wheel, and presence or absence of ethanol. Using a high-resolution volumetric drinking monitor and wheel running monitor, we evaluated whether alternating access to wheel running modified ethanol-related behaviors and whether alternating access to ethanol modified wheel running or subsequent ethanol-related behaviors. We found that ethanol consumption remains stable with alternating periods of wheel running. Wheel running increases in the absence of ethanol and decreases upon reintroduction of ethanol. Upon reintroduction of ethanol, an alcohol deprivation effect was seen. Collectively, the results support theories of hedonic substitution and suggest that female C57BL/6J mice express ethanol seeking and craving under these specific conditions.

  5. Effects of ethanol extract of Radix Sophorae Flavescentis on activity ...

    African Journals Online (AJOL)

    This paper mainly studied the inhibitory effect of total ethanol extract of Radix Sophorae Flavescentis on proliferation of colon cancer HT29 cells. By reflux extraction method and with ethanol as extraction solvent, different extracts were obtained at different ethanol concentrations, different solid-liquid ratios, and at different ...

  6. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    The ability of different yeast strains isolated from ripe banana peels to produce ethanol was investigated. Of the 8 isolates screened for their fermentation ability, 5 showed enhanced performance and were subsequently identified and assessed for important ethanol fermentation attributes such as ethanol producing ability, ...

  7. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  8. Nonrenewable energy cost of corn-ethanol in China

    International Nuclear Information System (INIS)

    Yang, Q.; Chen, G.Q.

    2012-01-01

    Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning. - Highlights: ► Nonrenewable energy (NE) cost is conservatively accounted for corn-ethanol in China. ► Corn cultivation, ethanol conversion and wastewater treatment are included. ► NE cost is estimated as 1.70 times that of the ethanol energy produced. ► Corn-ethanol processes in China are mostly a conversion of coal to ethanol.

  9. Preparation, assay and certification of aqueous ethanol reference solutions

    CSIR Research Space (South Africa)

    Archer, M

    2007-04-01

    Full Text Available with traceability to the SI. Ethanol solutions in the concentration range 10 mg/100 g to 20 g/100 g are prepared gravimetrically by mixing ethanol and reagent quality water. To verify the concentration of the ethanol it is oxidized to acetic acid with potassium...

  10. Antitumor effect of the ethanol extract of Scutellaria baicalensis on ...

    African Journals Online (AJOL)

    user6

    2012-03-22

    Mar 22, 2012 ... In our study, two kinds of ethanol extract of S. baicalensis were used in U14 cervical cancer .... On day 15, all of the mice were killed, and then transplanted tumors .... George and the 30% ethanol and 50% ethanol were used.

  11. Determination of ulcer protecting effect of ethanol extract of ...

    African Journals Online (AJOL)

    Ethanol extract of dietary vegetable, Gongronema latifolium, was evaluated for anti-ulcer activity. The extract was obtained from air-dried, pulverized leaves of the plant following its maceration in ethanol, filteration with Whatman No. 1 filter paper and drying at 110°C. Fractionation of the dry crude ethanol extract was ...

  12. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Domnik Bayer

    2011-01-01

    Full Text Available Acidic or alkaline direct ethanol fuel cells (DEFCs can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution. Beside, basic electrochemical tests, differential electrochemical mass spectrometry (DEMS and fuel cell tests were conducted. It was found that fusel oil is not suitable as denaturing agent for DEFC. However, tert-butyl ethyl ether does not seem to hinder the ethanol conversion as much. Finally, a mixture of tert-butyl ethyl ether and Bitrex can be proposed as promising candidate as denaturing agent for use in acidic and alkaline DEFC.

  13. The administrative contract asimilated to administrative acts in administrative litigation

    Directory of Open Access Journals (Sweden)

    Silvia GORIUC

    2018-03-01

    Full Text Available An administrative contract is the will between a public authority either a person empowe¬red by it, and one or more natural or legal persons, whether private or public, pursuing the realization of a public interest and to which a special scheme of administrative law applies. The typology of administrative contracts is very varied, depending on the evolution of the society’s needs. Thus, they are currently included in the category of administrative contracts: concession contracts and public procurement contracts, contracts for the use of public goods, public management contracts, public-private partnership contracts, public lending contracts and constitutive documents of the associative structures of public authorities.

  14. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    The use of vegetable biomass as substrate for ethanol production could reduce the existing usage of fossil fuels, thereby minimizing negative environmental impacts. Due to mechanical harvesting of sugarcane, the amount of pointer and straw has increased in sugarcane fields, becoming inputs of great energy potential.

  15. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Juliana

    2015-02-11

    Feb 11, 2015 ... Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License · 4.0 International .... Statistical analysis. The results of cell viability and ethanol production were subjected to analysis of variance by the F test, and the comparison of the means.

  16. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  17. Metabolic response to exogenous ethanol in yeast

    Indian Academy of Sciences (India)

    In this study, we applied this approach to evaluate the effects of increasing concentration of exogenous ethanol on the Saccharomyces cerevisiae fermentative metabolism. We show that the STOCSY analysis correctly identifies the different types of correlations among the enriched metabolites involved in the fermentation, ...

  18. Bio ethanol use in light vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Leal, Manoel Regis Lima Verde

    2012-07-01

    This chapter approaches vehicles emissions and air quality, Unite States context, Brazilian context, bio ethanol impact on engine emissions, bioethanol and engine technologies for emission control, bioethanol impact on engine emissions, flex-fuel vehicles, impact of bioethanol use in light vehicles, evolution perspectives for light vehicles: energy issues, and hybrid vehicles.

  19. Antihypercholesterolemic activity of ethanolic extract of Buchholzia ...

    African Journals Online (AJOL)

    Background: Hypercholesterolemia is a condition characterised with high level of cholesterol in the blood. Objectives: The effect of ethanolic extract of Buchholzia coriacea (EEBC) on the lipid profile levels and extent of lipid peroxidation in hypercholesterolemic albino rats was investigated in this study. Methods: Thirty ...

  20. Catalytic depolymerization of lignin in supercritical ethanol

    NARCIS (Netherlands)

    Huang, X.; Koranyi, T.I.; Boot, M.D.; Hensen, E.J.M.

    2014-01-01

    One-step valorization of soda lignin in supercritical ethanol using a CuMgAlOx catalyst results in high monomer yield (23 wt¿%) without char formation. Aromatics are the main products. The catalyst combines excellent deoxygenation with low ring-hydrogenation activity. Almost half of the monomer

  1. Urine ethanol concentration and alcohol hangover severity

    NARCIS (Netherlands)

    Brookhuis, Karel; Van De Loo, Aurora; Mackus, M.; Verster, Joris

    Background The aim of this study was to examine the relationship between urine ethanol concentration and alcohol hangover severity. Methods N = 36 healthy social drinkers participated in a naturalistic study, comprising a hangover day and a control day. N = 18 of them have regular hangovers (the

  2. ANTIFUNGAL ACTIVITY OF ETHANOLIC LEAF EXTRACT OF ...

    African Journals Online (AJOL)

    Ethanolic leaf extract of Eucalyptus camaldulensis, dispersed in a concentrated sugar solution had marked fungicidal effect against clinical dermatophytic fungal isolates; Microsporium gypseum and Trichophyton mentagrophytes. Microsporium gypseum at an inoculum level of 4.8 x 103 cfu/ml and T. mentagrophytes at ...

  3. Antihypercholesterolemic activity of ethanolic extract of Buchholzia ...

    African Journals Online (AJOL)

    EB

    Department of Biochemistry, University of Ibadan, Ibadan, Nigeria. Abstract ... Objectives: The effect of ethanolic extract of Buchholzia coriacea (EEBC) on the lipid profile levels and extent of lipid peroxidation in ..... in the pathogenesis of increased membrane rigidity, reduced ... lipoprotein cholesterol in plasma without use.

  4. Catalytic dehydration of ethanol to ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ying; Jin, Zhaosheng; Shen, Wei [SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai (China)

    2011-07-01

    The different routes of ethylene production were briefly introduced and the advantage of ethanol to ethylene (ETE) route was explained. Followed by that, the upgraded catalyst applied in this route developed by SINOPEC Shanghai Research Institute of Petrochemical Technology (SRIPT) was introduced together with the development of the ethanol to ethylene process. The core technologies involved in this process development were discussed, such as isothermal fixed-bed reactor, water scrubber and alkaline wash column, two columns of low-temperature separation as well as process heat integration. Furthermore, the performance of one of ethanol industrial plants licensed by SRIPT was reviewed. It is as follows, conversion of ethanol reaches 99% while selectivity of ethylene is over 96% at the reaction temperature of 350{approx}450 C, the liquid hourly space velocity (LHSV)of 0.5{approx}1.0 h{sup -1} and atmosphere pressure. Meanwhile, the catalyst shows its life time of one year. This route is considered not only as an economical and practical process but also as an environmentfriendly path to ethylene production. (orig.)

  5. Softening and elution of monomers in ethanol

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition...

  6. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  7. Ethanol Fuels Reference Guide: A Decision-Makers Guide to Ethanol Fuels

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-01

    This guide is a compendium of information on alcohol fuel production and use. Chapter titles are: facts about ethanol; gasohol-answers to the basic questions; feedstocks and their coproducts; ethanol production processes; and vehicle fuel use and performance. In addition, there are 8 appendices which include fermentation guides for common grains and potatoes, component and enzyme manufacturers, and information on regulations and permits. (DMC)

  8. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  9. The Metastability and Nucleation Thresholds of Ibuprofen in Ethanol and Water-Ethanol Mixtures

    Directory of Open Access Journals (Sweden)

    Abdur Rashid

    2015-01-01

    Full Text Available To investigate the crystallization of ibuprofen [((RS-2-(4-(2-methylpropyl phenyl propanoic acid] from ethanol and water-ethanol mixtures it is necessary to know the nucleation limits of its solutions. In the absence of crystals, nucleation will seldom occur below the PNT (primary nucleation threshold. If crystals are present, nucleation will seldom occur until below the lower SNT (secondary nucleation threshold. Below the SNT, crystals will still grow with negligible nucleation. PNT and SNT values (expressed as relative supersaturation σ have been measured at 10, 25, and 40°C for ibuprofen in ethanol and in a range of mixtures of different ethanol (E/water (W ratios. The induction times were determined from observing the times to nucleate for a range of different supersaturated solutions at a given temperature and E/W ratio. As expected, lowering the supersaturation leads to longer induction times. In ethanol, the SNT values are small and thus the secondary metastable zone width (MSZW is relatively narrow with a 1 h SNT relative supersaturation typically about σ ~ 0.05. The 1 h PNT values are much larger with values for σ around 0.3. In aqueous ethanolic mixtures at 25°C, both the PNT and SNT decrease as the water content increases.

  10. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  11. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  12. Transcriptome profiling of Zymomonas mobilis under ethanol stress

    Directory of Open Access Journals (Sweden)

    He Ming-xiong

    2012-10-01

    Full Text Available Abstract Background High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. Results We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. Conclusion In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic

  13. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    G. Riva

    2013-09-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the CRA-VIT (Viticulture Research Centre Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. LCA (Life Cycle Assessment of grape ethanol energy chain was performed following two different methods: (i using the spreadsheet “BioGrace, developed within the “Intelligent Energy Europe” program to support and to ease the RED (Directive 2009/28/EC implementation; (ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy. The comparison with other bioenergy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains.

  14. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  15. FRACTAL PROPERTY OF ADMINISTRATION

    OpenAIRE

    Zlatko Brnjas

    2014-01-01

    To understand the constant increase in administration, we need a new approach to the administration. For many years, the administration has intensified as a closed science, associated only with economics, law and political science. However, this approach did not bring anything good, because almost nothing in the administration has improved. Therefore, it is necessary to connect the administration with the natural sciences which give the best description of the world around us. Because of this...

  16. Comparative effects of dietary corn oil, safflower oil, fish oil and palm oil on metabolism of ethanol and carnitine in the rat.

    Science.gov (United States)

    Sachan, Dileep S; Yatim, Ayub M; Daily, James W

    2002-06-01

    This study was launched to determine comparative effects of corn oil (CO), safflower oil (SO), fish oil (FO) and palm oil (PO) on carnitine status and ethanol metabolism in rats. Twenty-four male Sprague-Dawley rats (300 g bw) were randomly divided into four groups (n = 6) and fed a semisynthetic diets containing fat as oils listed above. Blood and 24 hour urine samples were collected before and after dietary treatment and acute ethanol administration. Samples were analyzed for blood-ethanol concentration (BEC) and carnitine species. The diets containing FO and PO retarded ethanol metabolism compared to the diets containing CO and SO. The effect of these dietary fats on carnitine species in plasma and urine was varied before and after dietary treatment and following a single oral ethanol dose. The liver carnitine content was higher in the PO group after dietary and ethanol treatment. It is concluded that attenuation of ethanol clearance was related to unique fatty acid makeup of the oils that in part may be attributed to the composite ratio of saturated to unsaturated fatty acids in the oils.

  17. Chronic intermittent ethanol exposure in early adolescent and adult male rats: effects on tolerance, social behavior, and ethanol intake.

    Science.gov (United States)

    Broadwater, Margaret; Varlinskaya, Elena I; Spear, Linda P

    2011-08-01

    Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of this study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Juvenile/adolescent and adult male Sprague-Dawley rats were assigned to one of five 10-day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), nonmanipulated/acutely challenged with ethanol (4 g/kg on day 10), or nonmanipulated. For assessment of tolerance development, duration of the loss of righting reflex (LORR) and blood ethanol concentrations (BECs) upon regaining of righting reflex (RORR) were tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and nonmanipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hours after the last ethanol exposure, with ethanol-naïve chronic saline and nonmanipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and nonmanipulated animals using an 8-day 2 bottle choice, limited-access ethanol intake procedure. In general, adolescent animals showed shorter durations of LORR and higher BECs upon RORR than adults on the first and last ethanol exposure days, regardless of chronic exposure condition. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults

  18. Case of administrative dispute

    Directory of Open Access Journals (Sweden)

    Xhemazie Ibraimi

    2015-11-01

    Full Text Available The activity of administrative bodies includes big numbers of various acts and actions, through which the will of public administration is formed. The will of public administration bodies, expressed in administrative individual and normative acts, in administrative contracts and real acts, finds its reflection in the Constitution, laws and other provisions of legal character. All this activity is not inerrant and therefore, it is not uncontrollable. The supervision of executive activity is subject to political control of administrative acts through authorities designated for this purpose, as well as internal control and the judicial control. The institution of judicial control of administrative acts and actions appears as very important and widely treated in the legal doctrine. The protection of constitutional and legal rights of private persons is accomplished by subjecting administrative activity both to internal administrative control, as well as to the judicial control in accordance with legal provisions. The judicial control of administrative acts represents a constitutional guarantee for citizens to protect their rights through public and fair trial by an independent and impartial court. In this way, the Constitution empowers the common administrative court that invalidates an action or administrative act, but not all administrative acts may be subject to administrative dispute, with the exception of cases against which the administrative conflict cannot be carried out (negative enumeration.

  19. Protective effect of bovine milk against HCl and ethanol-induced gastric ulcer in mice.

    Science.gov (United States)

    Yoo, Jeong-Hyun; Lee, Jeong-Sang; Lee, You-Suk; Ku, SaeKwang; Lee, Hae-Jeung

    2018-05-01

    The purpose of this study was to investigate the gastroprotective effects of bovine milk on an acidified ethanol (HCl-ethanol) mixture that induced gastric ulcers in a mouse model. Mice received different doses of commercial fresh bovine milk (5, 10, and 20 mL/kg of body weight) by oral gavage once a day for 14 d. One hour after the last oral administration of bovine milk, the HCl-ethanol mixture was orally intubated to provoke severe gastric damage. Our results showed that pretreatment with bovine milk significantly suppressed the formation of gastric mucosa lesions. Pretreatment lowered gastric myeloperoxidase and increased gastric mucus contents and antioxidant enzymes catalase and superoxide dismutase. Administration of bovine milk increased nitrate/nitrite levels and decreased the malondialdehyde levels and the expression of proinflammatory genes, including transcription factor nuclear factor-κB, cyclooxygenase-2, and inducible nitric oxide synthase in the stomach of mice. These results suggest that bovine milk can prevent the development of gastric ulcer caused by acid and alcohol in mice. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    Science.gov (United States)

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  1. Effects of ethanol on CYP2E1 levels and related oxidative stress using a standard balanced diet.

    Science.gov (United States)

    Azzalis, Ligia A; Fonseca, Fernando L A; Simon, Karin A; Schindler, Fernanda; Giavarotti, Leandro; Monteiro, Hugo P; Videla, Luis A; Junqueira, Virgínia B C

    2012-07-01

    Expression of cytochrome P4502E1 (CYP2E1) is very much influenced by nutritional factors, especially carbohydrate consumption, and various results concerning the expression of CYP2E1 were obtained with a low-carbohydrate diet. This study describes the effects of ethanol treatment on CYP2E1 levels and its relationship with oxidative stress using a balanced standard diet to avoid low or high carbohydrate consumption. Rats were fed for 1, 2, 3, or 4 weeks a commercial diet plus an ethanol-sucrose solution. The results have shown that ethanol administration was associated with CYP2E1 induction and stabilization without related oxidative stress. Our findings suggest that experimental models with a low-carbohydrate/high-fat diet produce some undesirable CYP2E1 changes that are not present when a balanced standard diet is given.

  2. Selecting ethanol as an ideal organic solvent probe in radiation chemistry γ-radiolysis of acetone-ethanol system and acetophenone-ethanol system

    International Nuclear Information System (INIS)

    Jin Haofang; Wu Jilan; Fang Xingwang; Zhang Xujia

    1995-01-01

    Radiolysis of acetone-ethanol solution and acetophenone-ethanol solution has been studied in this work. The dependences of G values of the final γ radiolysis products such as H 2 . 2,3-butanediol and acetaldehyde on additive concentration in liquid ethanol have been obtained. There are two kinds of new final products, isopropanol and 2-methyl-2,3-butanediol are detected in irradiated acetone-ethanol solution. As for acetophenone-ethanol system, more new final products are found. In addition, experiments of pulse radiolysis upon acetophenone-ethanol solution have also been performed. The absorption spectrum with λ max at 315nm and 440nm is observed, which is assigned to ketyl radical ion C 6 H 5 (CH 3 )CO - . And the reaction mechanism of the two systems is proposed respectively with a moderate success. (author)

  3. The effects of continuous and intermittent ethanol exposure in adolesence on the aversive properties of ethanol during adulthood.

    Science.gov (United States)

    Diaz-Granados, Jaime L; Graham, Danielle L

    2007-12-01

    Alcohol abuse among adolescents is prevalent. Epidemiological studies suggest that alcohol abuse during the adolescent developmental period may result in long-term changes such as an increased susceptibility to alcohol-related problems in adulthood. Laboratory findings suggest that alcohol exposure during the adolescent developmental period, as compared with adulthood, may differentially impact subsequent neurobehavioral responses to alcohol. The present study was designed to examine whether ethanol exposure, continuous versus intermittent, during the adolescent developmental period would alter the aversive properties of ethanol in adult C3H mice. Periadolescent (PD28) male C3H mice were exposed to 64 hours of continuous or intermittent ethanol vapor. As a comparison, adult (PD70) C3H mice were also exposed to 64 hours of continuous or intermittent ethanol vapor. Six weeks after ethanol exposure, taste aversion conditioning was carried out on both ethanol pre-exposed and ethanol-naive animals using a 1-trial, 1-flavor taste-conditioning procedure. Ethanol exposure during the periadolescent period significantly attenuated a subsequent ethanol-induced conditioned taste aversion, as compared with control animals. Adult animals exposed to chronic ethanol vapor during adolescence showed less of an aversion to an ethanol-paired flavor than ethanol-naive adults. Intermittent exposure to ethanol vapor during periadolescence produced a greater attenuation. It is suggested that ethanol exposure during the periadolescent period results in long-term neurobehavioral changes, which lessen a conditioned aversion to ethanol in adulthood. It is suggested that this age-related effect may underlie the increased susceptibility to alcohol-related problems which is negatively correlated with the age of onset for alcohol abuse.

  4. Ethanol wet-bonding technique sensitivity assessed by AFM.

    Science.gov (United States)

    Osorio, E; Toledano, M; Aguilera, F S; Tay, F R; Osorio, R

    2010-11-01

    In ethanol wet bonding, water is replaced by ethanol to maintain dehydrated collagen matrices in an extended state to facilitate resin infiltration. Since short ethanol dehydration protocols may be ineffective, this study tested the null hypothesis that there are no differences in ethanol dehydration protocols for maintaining the surface roughness, fibril diameter, and interfibrillar spaces of acid-etched dentin. Polished human dentin surfaces were etched with phosphoric acid and water-rinsed. Tested protocols were: (1) water-rinse (control); (2) 100% ethanol-rinse (1-min); (3) 100% ethanol-rinse (5-min); and (4) progressive ethanol replacement (50-100%). Surface roughness, fibril diameter, and interfibrillar spaces were determined with atomic force microscopy and analyzed by one-way analysis of variance and the Student-Newman-Keuls test (α = 0.05). Dentin roughness and fibril diameter significantly decreased when 100% ethanol (1-5 min) was used for rinsing (p ethanol produced collapse and shrinkage of collagen fibrils. Ascending ethanol concentrations did not collapse the matrix and shrank the fibrils less than absolute ethanol-rinses.

  5. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that