WorldWideScience

Sample records for intracellular proton-transfer mutants

  1. Intracellular Proton-Transfer Mutants in a CLC Cl-/H+ Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H.; Miller, C

    2009-01-01

    CLC-ec1, a bacterial homologue of the CLC family's transporter subclass, catalyzes transmembrane exchange of Cl- and H+. Mutational analysis based on the known structure reveals several key residues required for coupling H+ to the stoichiometric countermovement of Cl-. E148 (Gluex) transfers protons between extracellular water and the protein interior, and E203 (Gluin) is thought to function analogously on the intracellular face of the protein. Mutation of either residue eliminates H+ transport while preserving Cl- transport. We tested the role of Gluin by examining structural and functional properties of mutants at this position. Certain dissociable side chains (E, D, H, K, R, but not C and Y) retain H+/Cl- exchanger activity to varying degrees, while other mutations (V, I, or C) abolish H+ coupling and severely inhibit Cl- flux. Transporters substituted with other nonprotonatable side chains (Q, S, and A) show highly impaired H+ transport with substantial Cl- transport. Influence on H+ transport of side chain length and acidity was assessed using a single-cysteine mutant to introduce non-natural side chains. Crystal structures of both coupled (E203H) and uncoupled (E203V) mutants are similar to wild type. The results support the idea that Gluin is the internal proton-transfer residue that delivers protons from intracellular solution to the protein interior, where they couple to Cl- movements to bring about Cl-/H+ exchange.

  2. Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase II.

    Science.gov (United States)

    Maupin, C Mark; Castillo, Norberto; Taraphder, Srabani; Tu, Chingkuang; McKenna, Robert; Silverman, David N; Voth, Gregory A

    2011-04-27

    In human carbonic anhydrase II (HCA II), the mutation of position 64 from histidine to alanine (H64A) disrupts the rate limiting proton transfer (PT) event, resulting in a reduction of the catalytic activity of the enzyme as compared to the wild-type. Potential of mean force (PMF) calculations utilizing the multistate empirical valence bond (MS-EVB) methodology for H64A HCA II yields a PT free energy barrier significantly higher than that found in the wild-type enzyme. This high barrier, determined in the absence of exogenous buffer and assuming no additional ionizable residues in the PT pathway, indicates the likelihood of alternate enzyme pathways that utilize either ionizable enzyme residues (self-rescue) and/or exogenous buffers (chemical rescue). It has been shown experimentally that the catalytic activity of H64A HCA II can be chemically rescued to near wild-type levels by the addition of the exogenous buffer 4-methylimidazole (4MI). Crystallographic studies have identified two 4MI binding sites, yet site-specific mutations intended to disrupt 4MI binding have demonstrated these sites to be nonproductive. In the present work, MS-EVB simulations show that binding of 4MI near Thr199 in the H64A HCA II mutant, a binding site determined by NMR spectroscopy, results in a viable chemical rescue pathway. Additional viable rescue pathways are also identified where 4MI acts as a proton transport intermediary from the active site to ionizable residues on the rim of the active site, revealing a probable mode of action for the chemical rescue pathway.

  3. Solvent control of intramolecular proton transfer

    DEFF Research Database (Denmark)

    Manolova, Y.; Marciniak, Heinz; Tschierlei, S.

    2017-01-01

    of molecules in the enol and zwitterionic proton transfer (PT) form exists in the ground state. However, the zwitterion is the energetically favored one in the electronically excited state. Optical excitation of the enol form results in intramolecular proton transfer and formation of the PT form within 1.4 ps...

  4. A NOVEL PROTON TRANSFER COMPOUND (A NEW ...

    African Journals Online (AJOL)

    Preferred Customer

    intermolecular proton transfer from (MoO4H2) to (OHRNH2) results in the formation of a new molybdate salt that ... KEY WORDS: Proton transfer, Molybdate salt, X-ray structure, MoO2(acac)2, 2-Amino-2-methyl-1-propanol ..... data can be obtained free of charge on application to The Director, CCDC, 12 Union Road,.

  5. Proton transfer reaction - mass spectrometry

    International Nuclear Information System (INIS)

    Cappellin, L.

    2012-01-01

    Proton transfer reaction mass spectrometry (PTR-MS) provides on-line monitoring of volatile organic compounds (VOCs) with a low detection threshold and a fast response time. Commercially available set-ups are usually based on quadrupole analysers but recently new instruments based on time-of-flight (PTR-ToF-MS) analysers have been proposed and commercialized. PTR-MS has been successfully applied to a variety of fields including environmental science, food science and technology, plant physiology and medical science. Many new challenges arise from the newly available PTR-ToF-MS instruments, ranging from mass calibration and absolute VOC concentration determination to data mining and sample classification. This thesis addresses some of these problems in a coherent framework. Moreover, relevant applications in food science and technology are presented. It includes twelve papers published in peer reviewed journals. Some of them address methodological issues regarding PTR-ToF-MS; the others contain applicative studies of PTR-ToF-MS to food science and technology. Among them, there are the first two published applications of PTR-ToF-MS in this field. (author)

  6. Functional Dynamics and Proton Transfer in Proteins

    Science.gov (United States)

    Boxer, Steven

    2014-03-01

    Internal proton transfer between an enzyme and substrate is a common feature of many enzyme mechanisms. Likewise, internal proton transfer between the chromophore of green fluorescent protein (GFP) and amino acids on the inside of the beta barrel are important both in the ground and excited state. I will discuss an interesting connection between the proton transfer dynamics in GFP and those in an enzyme, ketosteroid isomerase (KSI), bound to substrate analogs. In both cases there is a tug of war between the protein and bound substrate analog or chromophore that depends on their affinities for a proton and which can be tuned either by changing the substrate/chromophore or the protein. This can be observed in the ground state by optical methods (absorption and IR) as well as by nmr, or in the excited state by time-resolved fluorescence or visible pump-IR probe measurements. In both cases the proton dynamics have important functional consequences.

  7. Proton-transfer doping of polyacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, L.M.; Schomaker, J.A. (School of Chemistry and Biochemistry, Georgia Inst. of Tech., Atlanta (USA))

    1991-04-30

    Exhaustive deprotonation of films of poly(acetylene-co-1,3-butadiene) (PAB) fails to produce a conductive film. In contrast, deprotonation of segmented polyacetylene (SPA) produces a conductive material with similar characteristics to n-doped polyacetylene. Thus the feasibility of a proton-transfer approach to doping of polyacetylene has been demonstrated. (orig.).

  8. Hydrogen-bond dynamics and proton transfer in nanoconfinement

    NARCIS (Netherlands)

    van der Loop, T.H.

    2015-01-01

    Proton transfer is of fundamental importance to both biology and chemistry. Much is known about proton transfer in large water volumes but often proton transfer reactions take place in very small nanometer sized volumes for example between lipid layers and in proton channels in mitochondria and

  9. A NOVEL PROTON TRANSFER COMPOUND (A NEW ...

    African Journals Online (AJOL)

    Preferred Customer

    2-amino-2-methyl-1-propanol and MoO2(acac)2, synthesized and characterized by 1H NMR, X-ray diffraction analysis, UV-Vis and FT-IR spectroscopy. The single crystal X-ray diffraction analysis revealed that intra- and intermolecular proton transfer from (MoO4H2) to (OHRNH2) results in the formation of a new molybdate ...

  10. Temperature dependence of proton transfer kinetics in the green fluorescent protein

    Science.gov (United States)

    Salna, Bridget; Benabbas, Abdelkrim; Champion, Paul; Sage, J. Timothy; van Thor, Jasper; Fitzpatrick, Ann

    2012-02-01

    In green fluorescent protein (GFP), near UV photoexcitation leads to proton transfer from the chromophore phenolic oxygen along a proton ``wire'' consisting of an internal water molecule, Ser205 and Glu222. Using transient absorption kinetics, the complete cycle, including the picosecond excited-state proton transfer, the nanosecond radiative emission, and the slower ground state proton back-transfer reactions have been studied holistically as a function of temperature. This experiment was performed for both the hydrogenated and deuterated forms of GFP. We have extracted the Arrhenius prefactors and activation energy barriers for both the forward and back proton transfer kinetics. A large kinetic isotope effect for the ground state proton back-transfer has been observed at high temperatures suggesting that tunneling plays an important role. At lower temperatures the data suggest a cross-over to a different pathway for the back-transfer reaction. To investigate this hypothesis we studied the E222D mutant of GFP, which substitutes aspartate for glutamate on the proton wire. The H/D kinetics of this mutant explicitly test for the source of proton donors and indicate that proton transfer proceeds along the same pathway in the native protein at room temperature.

  11. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results...... in an unusually large fluorescence Stokes shift of 10500 cm−1. The emission appears as a broad band with a maximum at 17500 cm−1 and is characterized by a low and nearly temperature-independent quantum yield. The results are interpreted as an indication of a large equilibrium geometry change upon excitation...

  12. Theoretical study of the mechanism of proton transfer in tautomeric ...

    Indian Academy of Sciences (India)

    Unknown

    complete separation of the two entities, i.e. the alloxan anion and the hydronium ion in the latter case, indicating that in this case a dissociative mechanism of the kind encountered in acid–base equilibria is operating. Keywords. Proton transfers; tautomerism; dissociative process; direct proton transfer. 1. Introduction.

  13. 4-Hydroxy-1-naphthaldehydes: proton transfer or deprotonation

    DEFF Research Database (Denmark)

    Manolova, Y; Kurteva, V; Antonov, L

    2015-01-01

    . For 4-hydroxy-3-(piperidin-1-ylmethyl)-1-naphthaldehyde (a Mannich base) an intramolecular proton transfer involving the OH group and the piperidine nitrogen occurs. In acetonitrile the equilibrium is predominantly at the OH-form, whereas in methanol the proton transferred tautomer is the preferred form...

  14. Theoretical studies on proton transfer reaction of 3 (5)-substituted ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1. Theoretical studies on proton transfer reaction of 3(5)-substituted pyrazoles ... Abstract. The inter and intra molecular proton transfer reactions of a series of pyrazole derivatives have been studied by using density functional theory (DFT) andMP2 methods ...

  15. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  16. Proton Transfer in Nucleobases is Mediated by Water

    Energy Technology Data Exchange (ETDEWEB)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  17. Theory of interrelated electron and proton transfer processes

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2003-01-01

    A simple theory of elementary act of interrelated reactions of electron and proton transfer is developed. Mechanisms of synchronous and multistage transfer and coherent transitions via a dynamically populated intermediate state are discussed. Formulas for rate constants of adiabatic and nonadiaba......A simple theory of elementary act of interrelated reactions of electron and proton transfer is developed. Mechanisms of synchronous and multistage transfer and coherent transitions via a dynamically populated intermediate state are discussed. Formulas for rate constants of adiabatic...

  18. Relationship between intracellular Na+ concentration and reduced Na+ affinity in Na+,K+-ATPase mutants causing neurological disease

    DEFF Research Database (Denmark)

    Toustrup-Jensen, Mads Schak; Einholm, Anja P.; Schack, Vivien

    2014-01-01

    The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na+,K+-ATPase α2- and α3-isoforms, expressed in glial and neuronal cells, respectively. Although these disorders......, addressing the question to what extent they cause a change of the intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) in COS cells. C-terminal extension mutants generally showed dramatically reduced Na+ affinity without disturbance of K+ binding, as did other RDP mutants. No phosphorylation from ATP...... was observed for the +28 mutation of α2, despite a high expression level. A significant rise of [Na+]i and reduction of [K+]i was detected in cells expressing mutants with reduced Na+ affinity, and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two...

  19. Variation of kinetic isotope effect in multiple proton transfer reactions

    Indian Academy of Sciences (India)

    Proton transfer; promoter modes; kinetic isotope effect. 1. Introduction. Kinetic isotope effect (KIE) is the dependence of the rate constant on the mass of the isotope of the atom in a chemical reaction. The primary kinetic isotope effect is the KIE when the bonds connecting that atom to the rest of the molecular frame are broken ...

  20. Theoretical study of the mechanism of proton transfer in tautomeric ...

    Indian Academy of Sciences (India)

    Unknown

    Theoretical study of the mechanism of proton transfer in tautomeric systems: Alloxan. RITA KAKKAR*, BHUPENDRA K SARMA and VANDANA KATOCH. Department of Chemistry, University of Delhi, Delhi 110 007, India e-mail: rita_kakkar@vsnl.com. MS received 12 July 1999; revised 18 January 2000. Abstract.

  1. The Membrane Modulates Internal Proton Transfer in Cytochrome c Oxidase

    DEFF Research Database (Denmark)

    Öjemyr, Linda Nasvik; Ballmoos, Christoph von; Faxén, Kristina

    2012-01-01

    The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O-2 reduction...

  2. Parallel proton transfer pathways in aqueous acid-base reactions

    NARCIS (Netherlands)

    Cox, M.J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25M to 4M. Using

  3. Effect of electrostatic interactions on the formation of proton transfer ...

    Indian Academy of Sciences (India)

    WINTEC

    Electrostatic interactions are known to play a crucial role in protein structure and function as evident from a large number of studies, for example, in enzymatic catalysis,1,2 proton transfer,3,4 electron transfer,5,6 ion channels7,8 and ligand binding.9,10 Therefore, quantita- tive estimations of the electrostatic energies and.

  4. and Di-hydration on the Intramolecular Proton Transfers and ...

    Indian Academy of Sciences (India)

    of the isomers did not change the stability trend, so that the tri-keto isomer was the most stable isomer among the hydrated and non-hydrated isomers. The activation energies (Ea) of the intramolecular proton transfers. (tautomerisms) and energy barriers of H-rotations around its C-O axis in enolic isomers were calculated.

  5. Variation of kinetic isotope effect in multiple proton transfer reactions

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 1. Variation of kinetic isotope ... An extension of this to the concerted multiple proton transfer reactions implies that the kinetic isotope effect in such reaction depends exponentially on the number of protons that are being transferred. Computational evidence ...

  6. Theoretical study of the mechanism of proton transfer in tautomeric ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 4. Theoretical study of the mechanism of proton transfer in tautomeric systems: Alloxan ... The N-H bond is almost broken, while the O-H bond is only partially formed in the transition state. The other stabilizing effect in aqueous solution is due to bulk solvent ...

  7. Theoretical study of the mechanism of proton transfer in tautomeric ...

    Indian Academy of Sciences (India)

    Theoretical study of the mechanism of proton transfer in tautomeric systems: Alloxan ... reason is the almost complete separation of the two entities, i.e. the alloxan anion and the hydronium ion in the latter case, indicating that in this case a dissociative mechanism of the kind encountered in acid-base equilibria is operating.

  8. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage

    Science.gov (United States)

    Shih, I-hung; Been, Michael D.

    2001-01-01

    Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76Δ) ribozymes in D2O and H2O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76Δ mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under kcat/KM conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (β) of 0.51 was determined for the base-rescued reaction of C76Δ. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage. PMID:11171978

  9. Proton transfer versus redox modulation in thiourea-phenanthrenequinone molecular and polymeric complexes.

    Science.gov (United States)

    Carroll, Joseph B; Gray, Mark; Cooke, Graeme; Rotello, Vincent M

    2004-02-21

    Phenanthrenequinone undergoes highly efficient proton transfer processes in the presence of a thiourea-functionalised polystyrene copolymer whereas interactions with a similar benzyl-thiourea monomer show strong redox modulation of the quinone without proton transfer.

  10. Intracellular localization and movement phenotypes of alfalfa mosaic virus movement protein mutants

    NARCIS (Netherlands)

    Huang, M.; Jongejan, L.; Zheng, H.; Zhang, L.; Bol, J. F.

    2001-01-01

    Thirteen mutations were introduced in the movement protein (MP) gene of Alfalfa mosaic virus (AMV) fused to the green fluorescent protein (GFP) gene and the mutant MP-GFP fusions were expressed transiently in tobacco protoplasts, tobacco suspension cells, and epidermal cells of tobacco leaves. In

  11. Specific Features of Intramolecular Proton Transfer Reaction in Schiff Bases

    Directory of Open Access Journals (Sweden)

    Aleksander Koll

    2003-06-01

    Full Text Available Abstract: The differences between the intramolecular proton transfer in Mannich and Schiff bases are discussed. The tautomeric forms being in equilibrium in both types of molecules are seriously different. In Mannich bases there are in equilibrium the forms of phenols and phenolates. In Schiff bases each of tautomers is strongly influenced by resonance between zwitterionic and keto structures. Despite the common opinion that the proton transfer forms in compounds with internal π-electronic coupling are mainly keto forms it is shown in this work, that in Schiff bases the content of keto structure is slightly less than zwitterionic one. Almost equal participation of both forms leads to effective resonance between them and stabilization of intramolecular hydrogen bond in this way.

  12. Maximization of Intracellular Lipase Production in a Lipase-Overproducing Mutant Derivative of Rhizopus oligosporus DGM 31: A Kinetic Study

    Directory of Open Access Journals (Sweden)

    Tehreema Iftikhar

    2008-01-01

    Full Text Available Regulation and maximization of lipase production in a mutant derivative of R. oligosporus has been investigated using different substrates, inoculum sizes, pH of the medium, temperature, and nitrogen sources in shake flask experiments and batch fermentation in a fermentor. The production of intracellular lipase was improved 3 times following medium optimization involving one-at-a-time approach and aeration in the fermentor. Interestingly, intracellular lipase was poorly induced by oils, instead its production was induced by sugars, mainly starch, lactose, sucrose, xylose, glucose and glycerol. Dependent variables studied were cell mass, lipase activity, lipase yield, lipase specific and volumetric rate of formation. It was confirmed that lipase production in the derepressed mutant is sufficiently uncoupled from catabolite repression. The results of average specific productivities at various temperatures worked out according to the Arrhenius equation revealed that mutation decreased the magnitude of enthalpy and entropy demand in the inactivation equilibrium during product formation, suggesting that mutation made the metabolic network of the organism thermally more stable. The highest magnitudes of volumetric productivity (QP=490 IU/(L·h and other product attributes of lipase formation occurring on optimized medium in the fermentor are greater than the values reported by other workers. The purified enzyme is monomeric in nature and exhibits stability up to 80 °C and pH=6.0–8.0. Activation energy, enthalpy and entropy of catalysis at 50 °C, and magnitudes of Gibbs free energy for substrate binding, transition state stabilization and melting point indicated that this lipase is highly thermostable.

  13. Probing hydrogen bonding interactions and proton transfer in proteins

    Science.gov (United States)

    Nie, Beining

    Scope and method of study. Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. It is therefore important to probe dynamic changes in hydrogen bonding interactions during protein folding and function. Time-resolved Fourier transform infrared spectroscopy is highly sensitive to hydrogen bonding interactions. However, it lacks quantitative correlation between the vibrational frequencies and the number, type, and strength of hydrogen bonding interactions of ionizable and polar residues. We employ quantum physics theory based ab initio calculations to study the effects of hydrogen bonding interactions on vibrational frequencies of Asp, Glu, and Tyr residues and to develop vibrational spectral markers for probing hydrogen bonding interactions using infrared spectroscopy. In addition, proton transfer process plays a crucial role in a wide range of energy transduction, signal transduction, and enzymatic reactions. We study the structural basis for proton transfer using photoactive yellow protein as an excellent model system. Molecular dynamics simulation is employed to investigate the structures of early intermediate states. Quantum theory based ab initio calculations are used to study the impact of hydrogen bond interactions on proton affinity and proton transfer. Findings and conclusions. Our extensive density function theory based calculations provide rich structural, spectral, and energetic information on hydrogen bonding properties of protonated side chain groups of Asp/Glu and Tyr. We developed vibrational spectral markers and 2D FTIR spectroscopy for structural characterization on the number and the type of hydrogen bonding interactions of the COOH group of Asp/Glu and neutral phenolic group of Tyr. These developments greatly enhance the power of time-resolved FTIR spectroscopy as a major experimental tool for structural characterization of functionally important

  14. Proton transfer in ionic and neutral reverse micelles.

    Science.gov (United States)

    Lawler, Christian; Fayer, Michael D

    2015-05-14

    Proton-transfer kinetics in both ionic and neutral reverse micelles were studied by time-correlated single-photon counting investigations of the fluorescent photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS). Orientational dynamics of dissolved probe molecules in the water pools of the reverse micelles were also investigated by time-dependent fluorescence anisotropy measurements of MPTS, the methoxy derivative of HPTS. These experiments were compared to the same experiments in bulk water. It was found that in ionic reverse micelles (surfactant Aerosol OT, AOT), orientational motion (fluorescence anisotropy decay) of MPTS was relatively unhindered, consistent with MPTS being located in the water core of the reverse micelle away from the water-surfactant interface. In nonionic reverse micelles (surfactant Igepal CO-520, Igepal), however, orientational anisotropy displayed a slow multiexponential decay consistent with wobbling-in-a-cone behavior, indicating MPTS is located at the water-surfactant interface. HPTS proton transfer in ionic reverse micelles followed kinetics qualitatively like those in bulk water, albeit slower, with the long-time power law time dependence associated with recombination of the proton with the dissociated photoacid, suggesting a modified diffusion-controlled process. However, the power law exponents in the ionic reverse micelles are smaller (∼ -0.55) than that in bulk water (-1.1). In neutral reverse micelles, proton-transfer kinetics did not show discernible power law behavior and were best represented by a two-component model with one relatively waterlike population and a population with a faster fluorescence lifetime and negligible proton transfer. We explain the Igepal results on the basis of close association between the probe and the neutral water-surfactant interface, with the probe experiencing a distribution of more and less waterlike environments. In addition, the observation in bulk water of a power law t(-1.1) for diffusion

  15. Proton transfer reactions and dynamics in protonated water clusters.

    Science.gov (United States)

    Lao-Ngam, Charoensak; Asawakun, Prapasri; Wannarat, Sornthep; Sagarik, Kritsana

    2011-03-14

    Proton transfer reactions and dynamics were theoretically studied using the hydrogen-bond (H-bond) complexes formed from H(3)O(+) and nH(2)O, n = 1-4, as model systems. The investigations began with searching for characteristics of transferring protons in the gas phase and continuum aqueous solution using DFT method at the B3LYP/TZVP level, followed by Born-Oppenheimer molecular dynamics (BOMD) simulations at 350 K. B3LYP/TZVP calculations revealed the threshold asymmetric O-H stretching frequencies (ν(OH)*) for the proton transfers in the Zundel complex (H(5)O) in the gas phase and continuum aqueous solution at 1984 and 1881 cm(-1), respectively. BOMD simulations suggested lower threshold frequencies (ν(OH,MD)* = 1917 and 1736 cm(-1), respectively), with two characteristic ν(OH,MD) being the IR spectral signatures of the transferring protons. The low-frequency band could be associated with the "oscillatory shuttling motion" and the high-frequency band with the "structural diffusion motion". These can be regarded as the spectroscopic evidences of the formations of the shared-proton structure (O···H(+)···O) and the H(3)O(+)-H(2)O contact structure (O-H(+)···O), respectively. Since the quasi-dynamic equilibrium between the Zundel and Eigen complexes was suggested to be the rate-determining step, in order to achieve an "ideal" maximum efficiency of proton transfer, a concerted reaction pathway should be taken. The most effective interconversion between the two proton states, the shared-proton structure and the H(3)O(+)-H(2)O contact structure, can be reflected from comparable intensities of the oscillatory shuttling and structural diffusion bands. The present results iterated the previous conclusions that static proton transfer potentials cannot provide complete description of the structural diffusion process and it is essential to incorporate thermal energy fluctuations and dynamics in the model calculations.

  16. Intracellular distribution of a speech/language disorder associated FOXP2 mutant

    International Nuclear Information System (INIS)

    Mizutani, Akifumi; Matsuzaki, Ayumi; Momoi, Mariko Y.; Fujita, Eriko; Tanabe, Yuko; Momoi, Takashi

    2007-01-01

    Although a mutation (R553H) in the forkhead box (FOX)P2 gene is associated with speech/language disorder, little is known about the function of FOXP2 or its relevance to this disorder. In the present study, we identify the forkhead nuclear localization domains that contribute to the cellular distribution of FOXP2. Nuclear localization of FOXP2 depended on two distally separated nuclear localization signals in the forkhead domain. A truncated version of FOXP2 lacking the leu-zip, Zn 2+ finger, and forkhead domains that was observed in another patient with speech abnormalities demonstrated an aggregated cytoplasmic localization. Furthermore, FOXP2 (R553H) mainly exhibited a cytoplasmic localization despite retaining interactions with nuclear transport proteins (importin α and β). Interestingly, wild type FOXP2 promoted the transport of FOXP2 (R553H) into the nucleus. Mutant and wild type FOXP2 heterodimers in the nucleus or FOXP2 R553H in the cytoplasm may underlie the pathogenesis of the autosomal dominant speech/language disorder

  17. Spectroscopic Monitoring of Proton Transfer in Green Fluorescent Protein

    Science.gov (United States)

    Sage, J. Timothy; O'Brien, Mannis; Salna, Bridget; Abdelkrim, Benabbas; Champion, Paul M.; van Thor, Jasper

    2014-03-01

    Vibrational spectroscopy is an ideal probe for proton transfer in biological molecules because of its sensitivity to the motion of protons, which are difficult to track with more direct structural methods such as X-ray crystallography. Previous time-resolved infrared measurements provided direct experimental evidence for Glu 222 as the excited state proton acceptor following excitation of green fluorescent protein (GFP). Here, we use infrared cryospectroscopy to characterize a low quantum yield photochemical channel that leads to decarboxylation of Glu 222 coupled with proton transfer to complete the methyl group on the resulting α-aminobutyric acid residue. The irreversible nature of this process allows us to obtain infrared data at much higher sensitivity and over an extended frequency range. Difference spectra recorded over the full 1000-4000 cm-1 range at 100 K probe perturbations of internal water molecules and nearby amino acids as well as the chromophore. We identify vibrational frequencies that probe hydrogen bonding along the ``proton wire'' that connects the chromophore to Glu 222.

  18. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  19. Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI.

    Science.gov (United States)

    Jiang, Shanshan; Zou, Tianyu; Eberhart, Charles G; Villalobos, Maria A V; Heo, Hye-Young; Zhang, Yi; Wang, Yu; Wang, Xianlong; Yu, Hao; Du, Yongxing; van Zijl, Peter C M; Wen, Zhibo; Zhou, Jinyuan

    2017-09-01

    To assess the amide proton transfer-weighted (APTw) MRI features of isocitrate dehydrogenase (IDH)-wildtype and IDH-mutant grade II gliomas and to test the hypothesis that the APTw signal is a surrogate imaging marker for identifying IDH mutation status preoperatively. Twenty-seven patients with pathologically confirmed low-grade glioma, who were previously scanned at 3T, were retrospectively analyzed. The Mann-Whitney test was used to evaluate relationships between APTw intensities for IDH-mutant and IDH-wildtype groups, and receiver operator characteristic (ROC) analysis was used to assess the diagnostic performance of APTw. Based on histopathology and molecular analysis, seven cases were diagnosed as IDH-wildtype grade II gliomas and 20 cases as IDH-mutant grade II gliomas. The maximum and minimum APTw values, based on multiple regions of interest, as well as the whole-tumor histogram-based mean and 50th percentile APTw values, were significantly higher in the IDH-wildtype gliomas than in the IDH-mutant groups. This corresponded to the areas under the ROC curves of 0.89, 0.76, 0.75, and 0.75, respectively, for the prediction of the IDH mutation status. IDH-wildtype lesions typically were associated with relatively high APTw signal intensities as compared with IDH-mutant lesions. The APTw signal could be a valuable imaging biomarker by which to identify IDH1 mutation status in grade II gliomas. Magn Reson Med 78:1100-1109, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Intermolecular proton transfer in anionic complexes of uracil with alcohols

    International Nuclear Information System (INIS)

    Haranczyk, Maciej; Rak, Janusz; Gutowski, Maciej S.; Radisic, Dunja; Stokes, Sarah T.; Bowen, Kit H.

    2005-01-01

    A series of eighteen alcohols (ROH) has been designed with an enthalpy of deprotonation (H DP ) in a range of 13.8-16.3 eV. The effects of excess electron attachment to the binary alcohol-uracil (ROH...U) complexes have been studied at the density functional level with a B3LYP exchange-correlation functional and at the second order Moeller-Plesset perturbation theory level. The photoelectron spectra of anionic complexes of uracil with three alcohols (ethanol, 2,2,3,3,3-pentafluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol) have been measured with 2.54 eV photons. For ROHs with deprotonation enthalpies larger than 14.8 eV only the ROH...U - minimum exists on the potential energy surface of the anionic complex. For alcohols with deprotonation enthalpies in a range of 14.3-14.8 eV two minima might exist on the anionic potential energy surface, which correspond to the RO - ...HU . and ROH...U - structures. For ROHs with deprotonation enthalpies smaller than 14.3 eV, the excess electron attachment to the ROH...U complex always induces a barrier-free proton transfer from the hydroxyl group of ROH to the O8 atom of U, with the product being RO - ...HU . . A driving force for the intermolecular proton transfer is to stabilize the excess negative charge localized on a orbital of uracil. Therefore, these complexes with proton transferred to the anionic uracil are characterized by larger values of electron vertical detachment energy (VDE). The values of VDE for anionic complexes span a range from 1.0 to 2.3 eV and roughly correlate with the acidity of alcohols. However, there is a gap of ∼0.5 eV in the values of VDE, which separates the two families, ROH...U - and RO - ...HU . , of anionic complexes. The energy of stabilization for the anionic complexes spans a range from 0.6 to 1.7 eV and roughly correlates with the acidity of alcohols. The measured photoelectron spectra are in good agreement with the theoretical predictions

  1. New memory devices based on the proton transfer process

    International Nuclear Information System (INIS)

    Wierzbowska, Małgorzata

    2016-01-01

    Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing  information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge—saturated with oxygen or the hydroxy group—and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices. The energetic barriers for the hop forward and backward processes can be tuned by the distance and potential of the STM tip; this thus enables us to tailor the non-volatile logic states. The proposed system enables very dense packing of the logic cells and could be used in random access and flash memory devices. (paper)

  2. New memory devices based on the proton transfer process

    Science.gov (United States)

    Wierzbowska, Małgorzata

    2016-01-01

    Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge—saturated with oxygen or the hydroxy group—and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices. The energetic barriers for the hop forward and backward processes can be tuned by the distance and potential of the STM tip; this thus enables us to tailor the non-volatile logic states. The proposed system enables very dense packing of the logic cells and could be used in random access and flash memory devices.

  3. Proton Transfers at the Air-Water Interface

    Science.gov (United States)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (technique is direct, surface-specific, and provides unambiguous mass-to-charge ratios of interfacial

  4. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  5. Mechanism of Asp24 Upregulation in Brucella abortus Rough Mutant with a Disrupted O-Antigen Export System and Effect of Asp24 in Bacterial Intracellular Survival

    Science.gov (United States)

    Tian, Mingxing; Qu, Jing; Han, Xiangan; Ding, Chan; Wang, Shaohui; Peng, Daxin

    2014-01-01

    We previously showed that Brucella abortus rough mutant strain 2308 ΔATP (called the ΔrfbE mutant in this study) exhibits reduced intracellular survival in RAW264.7 cells and attenuated persistence in BALB/c mice. In this study, we performed microarray analysis to detect genes with differential expression between the ΔrfbE mutant and wild-type strain S2308. Interestingly, acid shock protein 24 gene (asp24) expression was significantly upregulated in the ΔrfbE mutant compared to S2308, as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Further studies using additional strains indicated that the upregulation of asp24 occurred only in rough mutants with disrupted O-antigen export system components, including the ATP-binding protein gene rfbE (bab1_0542) and the permease gene rfbD (bab1_0543), while the ΔwboA rough mutant (which lacks an O-antigen synthesis-related glycosyltransferase) and the RB51 strain (a vaccine strain with the rough phenotype) showed no significant changes in asp24 expression compared to S2308. In addition, abolishing the intracellular O-antigen synthesis of the ΔrfbE mutant by deleting the wboA gene (thereby creating the ΔrfbE ΔwboA double-knockout strain) recovered asp24 expression. These results indicated that asp24 upregulation is associated with intracellular O-antigen synthesis and accumulation but not with the bacterial rough phenotype. Further studies indicated that asp24 upregulation in the ΔrfbE mutant was associated neither with bacterial adherence and invasion nor with cellular necrosis on RAW264.7 macrophages. However, proper expression of the asp24 gene favors intracellular survival of Brucella in RAW264.7 cells and HeLa cells during an infection. This study reveals a novel mechanism for asp24 upregulation in B. abortus mutants. PMID:24752516

  6. Concerted and asynchronous mechanism of ground state proton transfer in alcohol mediated 7-hydroxyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Baotao [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jang, Du-Jeon [Department of Chemistry, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-29

    Highlights: • Reaction rate constants obtained by DFT agree with experimental ones quite well. • Experimental postulate of concerted and asynchronous GSPT was confirmed. • The GSPT reaction can be decomposed into three asynchronous steps. - Abstract: Alcohols mediated 7-hydroxyquinoline (7-HQ) complex has received enormous attractions on the issue of proton transfer reaction in the ground and excited states. In the present paper, concentrating on the ground state proton transfer (GSPT), density functional theory (DFT) calculations were carried out to investigate the intrinsic insight into the reaction mechanism. We found that the GSPT is concerted and asynchronous process and can be accelerated by more acidic alcohol. Such GSPT was initiated by the proton transfer from alcohol to keto group of 7-HQ and finished by the proton transfer from nitrogen to alcohol. Our findings were in agreement with experimental conclusions quite well. Our results would be helpful to understand the proton transfer reaction for 7-HQ and related systems.

  7. Excited state intramolecular proton transfer (ESIPT) in dihydroxyphenyl anthracenes.

    Science.gov (United States)

    Wang, Yu-Hsuan; Wan, Peter

    2011-12-01

    The photochemistry of three 9-(dihydroxyphenyl)anthracenes 6-8 was studied in neat CH(3)CN and selected organic solvents, to investigate excited state intramolecular proton transfer (ESIPT) from the phenol to the anthracene moiety. In D(2)O-CH(3)CN mixtures, the observed deuterium exchange of 6-8 is consistent with water-mediated (formal) ESIPT process from the ortho phenolic OH to the 10'-position of the anthracene ring, giving rise to quinone methide (QM) intermediates 12-14. There is no ESIPT for the corresponding methoxy-substituted compounds. Introduction of an extra hydroxyl group onto the phenol ring at different positions led to a range of deuterium exchange quantum yields (Φ = 0.03 to 0.15). In addition to the anticipated ESIPT process to the 10'-position, in neat CH(3)CN and other organic solvents, 6 (but not 7 or 8) undergoes a clean photocyclization to give bridged product 19 in quantitative yield. The mechanism of this unique photocyclization may involve a direct ESIPT or a 1,4-hydrogen transfer from the ortho phenolic OH to the 9'-position of the anthracene ring, generating a zwitterion (20) or diradical (21) intermediate, respectively, followed by ring closure. Fluorescence studies of 6 in various solvents show the existence of both local excited and intramolecular charge transfer states whereas only the former was present for 7 and 8, offering a possible rationalization for the photocyclization pathway.

  8. Alternating electron and proton transfer steps in photosynthetic water oxidation.

    Science.gov (United States)

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-10-02

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.

  9. Proton transfer and water exchange in the green fluorescent protein

    Science.gov (United States)

    Agmon, Noam

    2014-03-01

    The green fluorescent protein (GFP) is the only naturally occurring protein in which excited-state proton-transfer has been identified. Upon excitation, a proton is ejected from its chromophore, travelling through the ``privileged water molecule'' (PWM) and Ser205 to Glu222, on a 10 ps timescale or faster. However, time-resolved fluorescence from the chromophore exhibits a t-α power-law decay extending into the ns regime. With increasing temperature, α switches from 1/2 (below 230 K) to 3/2 (above it). This has been interpreted as pseudo one-dimensional proton hopping along an internal ``proton wire,'' with an activated process that opens a ``doorway'' for proton escape to solution at the higher temperatures. To identify such putative pathways, we have developed a computer code mapping all ``proton wires'' within a protein structure. Applying it to a X-ray GFP structure of 0.9 Angstrom resolution, a proton wire indeed continues from Glu222 along the axis of the GFP ``barrel,'' connecting to a negatively charged surface patch (a ``proton collecting antenna''?). This might explain the t- 1 / 2 behavior. However, a direct escape pathway opening from the chromophore to solution is not readily identified in the X-ray structure. Here we report molecular dynamics results showing that the PWM escapes to solution on the 100 ps timescale. This occurs by fluctuations of the beta-sheet, creating an opening through which water molecules can leave and enter the protein. The exact pathway of the PWM on its way in and out has been identified, as well as the water-exchange kinetics that follows a stretched-exponential time behavior. This research was supported by the ISRAEL SCIENCE FOUNDATION grant No. 766/12.

  10. Recent aspects of the proton transfer reaction in H-bonded complexes

    Science.gov (United States)

    Szafran, Mirosław

    1996-07-01

    Proton transfer processes cover a very wide range of situations and time scales and they are of great interest from the viewpoint of chemical reactions in solution. These processes can occur via thermally activated crossing or tunneling. This review considers various aspects of this many-faceted field. Spectroscopic, dielectric, colligative and energetic properties and structures of various species with H-bonds are examined. Proton transfer reactions in water and organic solvents, and the contribution of various H-bonded species and ions to these processes are discussed. Among other topics, this survey includes the effects of solvent, acid-base stoichiometry, concentration, temperature and impurity on proton transfer reactions in complexes of phenols and carboxylic acids with amines, pyridines and pyridine N-oxides. The contribution of the nonstoichiometric acid-base complexes and ionic species to the reversible proton transfer mechanism is discussed.

  11. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  12. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nonose, Shinji, E-mail: nonose@yokohama-cu.ac.jp; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-09-23

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H]{sup 2+}, to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H]{sup 2+} with gaseous molecules. The results relate to conformation changes of [M + 2H]{sup 2+} with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H]{sup 3+}, were also studied. The reaction rates did not depend on temperature so definitely.

  13. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    International Nuclear Information System (INIS)

    Nonose, Shinji; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-01-01

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H] 2+ , to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H] 2+ with gaseous molecules. The results relate to conformation changes of [M + 2H] 2+ with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H] 3+ , were also studied. The reaction rates did not depend on temperature so definitely

  14. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    Science.gov (United States)

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    electron-proton-transfer mediators, such as TEMPO, may be used in combination with first-row transition metals, such as copper, to achieve efficient two-electron electrochemical processes, thereby introducing a new concept for the development of non-precious-metal electrocatalysts.

  15. Characterization of ATP7A missense mutants suggests a correlation between intracellular trafficking and severity of Menkes disease

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Pedersen, Per Amstrup; Thorborg, Sidsel Salling

    2017-01-01

    led to trapping of the protein in TGN and displayed essentially no activity in a yeast-based functional assay. These were predicted to inhibit the catalytic phosphorylation of the protein. Four mutants showed diffuse post-TGN localization, while two displayed copper dependent trafficking. These six...... variants were identified in patients with mild MD and typically displayed activity in the yeast assay. The four post-TGN located mutants were presumably affected in the catalytic dephosphorylation of the protein. Together these results indicate that the severity of MD correlate with cellular localization...

  16. Proton Transfer in Perfluorosulfonic Acid Fuel Cell Membranes with Differing Pendant Chains and Equivalent Weights.

    Science.gov (United States)

    Thomaz, Joseph E; Lawler, Christian M; Fayer, Michael D

    2017-05-04

    Proton transfer in the nanoscopic water channels of polyelectrolyte fuel cell membranes was studied using a photoacid, 8-hydroxypyrene-1,3,6-trisulfonic acid sodium salt (HPTS), in the channels. The local environment of the probe was determined using 8-methoxypyrene-1,3,6-trisulfonic acid sodium salt (MPTS), which is not a photoacid. Three fully hydrated membranes, Nafion (DuPont) and two 3M membranes, were studied to determine the impact of different pendant chains and equivalent weights on proton transfer. Fluorescence anisotropy and excited state population decay data that characterize the local environment of the fluorescent probes and proton transfer dynamics were measured. The MPTS lifetime and anisotropy results show that most of the fluorescent probes have a bulk-like water environment with a relatively small fraction interacting with the channel wall. Measurements of the HPTS protonated and deprotonated fluorescent bands' population decays provided information on the proton transport dynamics. The decay of the protonated band from ∼0.5 ns to tens of nanoseconds is in part determined by dissociation and recombination with the HPTS, providing information on the ability of protons to move in the channels. The dissociation and recombination is manifested as a power law component in the protonated band fluorescence decay. The results show that equivalent weight differences between two 3M membranes resulted in a small difference in proton transfer. However, differences in pendant chain structure did significantly influence the proton transfer ability, with the 3M membranes displaying more facile transfer than Nafion.

  17. Intracellular processing and maturation of mutant gene products in hereditary beta-galactosidase deficiency (beta-galactosidosis).

    Science.gov (United States)

    Oshima, A; Yoshida, K; Itoh, K; Kase, R; Sakuraba, H; Suzuki, Y

    1994-02-01

    Heterogeneous patterns of biosynthesis, posttranslational processing, and degradation were demonstrated for mutant enzymes in three clinical forms of beta-galactosidase deficiency (beta-galactosidosis): juvenile GM1-gangliosidosis, adult GM1-gangliosidosis, and Morquio B disease. The precursor of the mutant enzyme in adult GM1-gangliosidosis was not phosphorylated, and only a small portion of the gene product reached the lysosomes. The enzyme in Morquio B disease was normally processed and transported to lysosomes, but its catalytic activity was low. A common gene mutation in juvenile GM1-gangliosidosis (R201C) produced an enzyme protein that did not aggregate with protective protein in the lysosome, and was rapidly degraded by thiol proteases. This abnormal turnover was similar to that for the normal but dissociated beta-galactosidase in galactosialidosis. Protease inhibitors restored the enzyme activity in fibroblasts of this clinical form. A possible therapeutic approach is discussed for this specific type of enzyme deficiency.

  18. Evidence for a Proton Transfer Network and a Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide Dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Eun Jin Kim; Jian Feng; Matthew R. Bramlett; Paul A. Lindahl

    2004-05-18

    OAK-B135 Carbon monoxide dehydrogenase from Moorella thermoacetica catalyzes the reversible oxidation of CO to CO2 at a nickel-iron-sulfur active-site called the C-cluster. Mutants of a proposed proton transfer pathway and of a cysteine residue recently found to form a persulfide bond with the C-cluster were characterized. Four semi-conserved histidine residues were individually mutated to alanine. His116 and His122 were essential to catalysis, while His113 and His119 attenuated catalysis but were not essential. Significant activity was ''rescued'' by a double mutant where His116 was replaced by Ala and His was also introduced at position 115. Activity was also rescued in double mutants where His122 was replaced by Ala and His was simultaneously introduced at either position 121 or 123. Activity was also ''rescued'' by replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster attenuated activity but did not eliminate it. Activity was virtually abolished in a double mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved Asn284 also attenuated activity. These effects suggest the presence of a network of amino acid residues responsible for proton transfer rather than a single linear pathway. The Ser mutant of the persulfide-forming Cys316 was essentially inactive and displayed no EPR signals originating from the C-cluster. Electronic absorption and metal analysis suggests that the C-cluster is absent in this mutant. The persulfide bond appears to be essential for either the assembly or stability of the C-cluster, and/or for eliciting the redox chemistry of the C-cluster required for catalytic activity.

  19. Evidence for a Proton Transfer Network and a Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide Dehydrogenases

    International Nuclear Information System (INIS)

    Eun Jin Kim; Jian Feng; Bramlett, Matthew R.; Lindahl, Paul A.

    2004-01-01

    OAK-B135 Carbon monoxide dehydrogenase from Moorella thermoacetica catalyzes the reversible oxidation of CO to CO2 at a nickel-iron-sulfur active-site called the C-cluster. Mutants of a proposed proton transfer pathway and of a cysteine residue recently found to form a persulfide bond with the C-cluster were characterized. Four semi-conserved histidine residues were individually mutated to alanine. His116 and His122 were essential to catalysis, while His113 and His119 attenuated catalysis but were not essential. Significant activity was ''rescued'' by a double mutant where His116 was replaced by Ala and His was also introduced at position 115. Activity was also rescued in double mutants where His122 was replaced by Ala and His was simultaneously introduced at either position 121 or 123. Activity was also ''rescued'' by replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster attenuated activity but did not eliminate it. Activity was virtually abolished in a double mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved Asn284 also attenuated activity. These effects suggest the presence of a network of amino acid residues responsible for proton transfer rather than a single linear pathway. The Ser mutant of the persulfide-forming Cys316 was essentially inactive and displayed no EPR signals originating from the C-cluster. Electronic absorption and metal analysis suggests that the C-cluster is absent in this mutant. The persulfide bond appears to be essential for either the assembly or stability of the C-cluster, and/or for eliciting the redox chemistry of the C-cluster required for catalytic activity

  20. Spectroscopy and dynamics of double proton transfer in formic acid dimer

    DEFF Research Database (Denmark)

    Mackeprang, Kasper; Xu, Zhen-Hao; Maroun, Zeina

    2016-01-01

    We present the isolated gas phase infrared spectra of formic acid dimer, (HCOOH)2, and its deuterated counterpart formic-d acid, (DCOOH)2, at room temperature. The formic acid dimer spectrum was obtained by spectral subtraction of a spectrum of formic acid vapor recorded at low pressure from....... Building on the previous development of the Molecular Mechanics with Proton Transfer (MMPT) force field for simulating proton transfer reactions, molecular dynamics (MD) simulations were carried out to interpret the experimental spectra in the OH-stretching region. Within the framework of MMPT...

  1. Two-proton transfer reactions on even Ni and Zn isotopes

    International Nuclear Information System (INIS)

    Boucenna, A.; Kraus, L.; Linck, I.; Tsan Ung Chan

    1988-01-01

    Two-proton transfer reactions induced by 112 MeV 12 C ions on even Ni and Zn isotopes are found to be less selective than the analogous two-neutron transfer reactions induced on the same targets in a similar incident energy range. The additional collective aspects observed in the proton transfer are examined in view of a semiphenomenological model of two quasi-particles coupled to a triaxial asymmetric rotor. Tentative spin and parity assignments emerge from this comparison, from crude shell model calculations and from systematic trends

  2. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states

    Science.gov (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho

    1994-08-01

    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  3. Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Lindinger, W.; Hansel, A.

    1996-01-01

    A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)

  4. High throughput phenotypic selection of Mycobacterium tuberculosis mutants with impaired resistance to reactive oxygen species identifies genes important for intracellular growth.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    Full Text Available Mycobacterium tuberculosis has the remarkable capacity to survive within the hostile environment of the macrophage, and to resist potent antibacterial molecules such as reactive oxygen species (ROS. Thus, understanding mycobacterial resistance mechanisms against ROS may contribute to the development of new anti-tuberculosis therapies. Here we identified genes involved in such mechanisms by screening a high-density transposon mutant library, and we show that several of them are involved in the intracellular lifestyle of the pathogen. Many of these genes were found to play a part in cell envelope functions, further strengthening the important role of the mycobacterial cell envelope in protection against aggressions such as the ones caused by ROS inside host cells.

  5. Effect of active-site mutation at Asn67 on the proton transfer mechanism of human carbonic anhydrase II.

    Science.gov (United States)

    Maupin, C Mark; Zheng, Jiayin; Tu, Chingkuang; McKenna, Robert; Silverman, David N; Voth, Gregory A

    2009-08-25

    The rate-limiting proton transfer (PT) event in the site-specific mutant N67L of human carbonic anhydrase II (HCA II) has been examined by kinetic, X-ray, and simulation approaches. The X-ray crystallography studies, which were previously reported, and molecular dynamics (MD) simulations indicate that the proton shuttling residue, His64, predominantly resides in the outward orientation with a significant disruption of the ordered water in the active site for the dehydration pathway. While disorder is seen in the active-site water, water cluster analysis indicates that the N67L mutant may form water clusters similar to those seen in the wild-type (WT). For the hydration pathway of the enzyme, the active site water cluster analysis reveals an inability of the N67L mutant to stabilize water clusters when His64 is in the inward orientation, thereby favoring PT when His64 is in the outward orientation. The preference of the N67L mutant to carry out the PT when His64 is in the outward orientation for both the hydration and dehydration pathway is reasoned to be the main cause of the observed reduction in the overall rate. To probe the mechanism of PT, solvent H/D kinetic isotope effects (KIEs) were experimentally studied with catalysis measured by the exchange of (18)O between CO(2) and water. The values obtained from the KIEs were determined as a function of the deuterium content of solvent, using the proton inventory method. No differences were detected in the overarching mechanism of PT between WT and N67L HCA II, despite changes in the active-site water structure and/or the orientation of His64.

  6. Size-restricted proton transfer within toluene-methanol cluster ions.

    Science.gov (United States)

    Chiang, Chi-Tung; Shores, Kevin S; Freindorf, Marek; Furlani, Thomas; DeLeon, Robert L; Garvey, James F

    2008-11-20

    To understand the interaction between toluene and methanol, the chemical reactivity of [(C6H5CH3)(CH3OH) n=1-7](+) cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n = 2-4. For n = 5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n = 4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n = 3 and n = 4 (CH3OH)3H(+) is the preferred fragment ion. The calculational results reveal that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n = 3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n >or= 4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H(+) cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product.

  7. Excited-state proton transfer from pyranine to acetate in methanol

    Indian Academy of Sciences (India)

    TECS

    -trisulphonate,. HPTS) to acetate in methanol has been studied by steady-state and time-resolved fluorescence spectros- copy. The rate constant of direct proton transfer from pyranine to acetate (k1) is calculated to be. ~1 × 10. 9. M. –1 s. –1.

  8. Excited-state proton transfer from pyranine to acetate in methanol

    Indian Academy of Sciences (India)

    trisulphonate, HPTS) to acetate in methanol has been studied by steady-state and time-resolved fluorescence spectroscopy. The rate constant of direct proton transfer from pyranine to acetate (1) is calculated to be ∼ 1 × 109 M-1 s-1. This is slower by ...

  9. Offline thermal-desorption proton-transfer-reaction mass spectrometry to study composition of organic aerosol

    NARCIS (Netherlands)

    Timkovsky, J.; Dusek, U.|info:eu-repo/dai/nl/314134166; Henzing, J. S.; Kuipers, T. L.; Röckmann, T.|info:eu-repo/dai/nl/304838233; Holzinger, R.|info:eu-repo/dai/nl/337989338

    2015-01-01

    We present a novel approach to study the organic composition of aerosol filter samples using thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) in the laboratory. The method is tested and validated based on the comparison with in situ TD-PTR-MS measurements. In general, we

  10. Prototropic studies in vitreous and in solid phases: Pyranine and 2-naphthol excited state proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fátima Aparecida das Chagas [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Rezende, Eduardo Triboni [Universidade Nove de Julho, São Paulo, SP (Brazil); Filho, Décio Briotto [Departamento de Bioquímica Instituto de Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Brito Rezende, Daisy de [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Cuccovia, Iolanda Midea [Departamento de Bioquímica Instituto de Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Gome, Ligia Ferreira [Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Silva, Mauro Francisco Pinheiro da [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); and others

    2014-02-15

    Excited state proton transfer processes in vitreous glasses and in solid mixtures are investigated by steady state fluorimetry and laser flash photolysis kinetic studies with the photoacids pyranine and 2-naphthol. Glasses were derived from TEOS by the sol–gel condensation process and hydrated solid mixtures from NaCl or KH{sub 2}PO{sub 4}/K{sub 2}HPO{sub 4} crystals. The extent of the water content necessary for the reaction is determined. Shrinkage of TEOS derived monoliths from water loss leads to an increase in proton transfer extent due to the increase in local concentrations of accepting and donor buffer species, but the concomitant increase in the ionic strength actuates in an opposite direction. Furthermore, water losses by aging of air-exposed gel goes to a critical 20% weight fraction, beyond it proton transfer reactions are hindered. Similar studies with solid NaCl or solid phosphate buffer mixtures demonstrated the same critical water level indicating that free water molecules are crucial for the proton to escape from the original cage where the geminate ion pair [–||RO{sup −⁎}H{sup +}||–] is formed and can undergo coupled proton transfer reactions. -- Highlights: • Pyranine and 2-naphthol excited state proton transfer in SiO{sub 2} gel, solid phosphate buffer and NaCl. • Sol–gel formation leads to contraction and concentration of donor and accepting species. • 20% weight fraction water is required for the ESPT to go forward.

  11. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water.

    Science.gov (United States)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfer process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps(-1), which is about 2.5 times faster than that in vacuum, 0.27 ps(-1). This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.

  12. Proton-transfer polymerization (HTP): converting methacrylates to polyesters by an N-heterocyclic carbene.

    Science.gov (United States)

    Hong, Miao; Chen, Eugene Y-X

    2014-10-27

    A new polymerization termed proton (H)-transfer polymerization (HTP) has been developed to convert dimethacrylates to unsaturated polyesters. HTP is catalyzed by a selective N-heterocyclic carbene capable of promoting intermolecular Umpolung condensation through proton transfer and proceeds through the step-growth propagation cycles via enamine intermediates. The role of the added suitable phenol, which is critical for achieving an effective HTP, is twofold: shutting down the radically induced chain-growth addition polymerization under HTP conditions (typically at 80-120 °C) and facilitating proton transfer after each monomer enchainment. The resulting unsaturated polyesters have a high thermal stability and can be readily cross-linked to robust polyester materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. First-principles investigation of isomerization by proton transfer in β-fumaric acid crystal

    Science.gov (United States)

    Dopieralski, P.; Panek, J.; Latajka, Z.

    2009-04-01

    Crystal structure of fumaric acid was investigated by Car-Parrinello molecular dynamics and Path Integral molecular dynamics. We propose a mechanism of isomerization by proton transfer in the solid state. It is shown that the three conformers of fumaric acid observed in cryogenic Ar matrix are also present in the solid. Standard ab initio Car-Parrinello dynamics of the studied solid at 100 K indicates that barrier height for proton transfer is too high to enable thermal jump over the barrier. Path Integral method in this particular case significantly changes proton behavior in the hydrogen bridge, and the proton tunneling process is observed. Vibrational spectra of investigated system HOOC-CH=CH-COOH and its deuterated analog DOOC-CH=CH-COOD were calculated and compared with experimental data.

  14. First-principles investigation of isomerization by proton transfer in beta-fumaric acid crystal.

    Science.gov (United States)

    Dopieralski, P; Panek, J; Latajka, Z

    2009-04-28

    Crystal structure of fumaric acid was investigated by Car-Parrinello molecular dynamics and Path Integral molecular dynamics. We propose a mechanism of isomerization by proton transfer in the solid state. It is shown that the three conformers of fumaric acid observed in cryogenic Ar matrix are also present in the solid. Standard ab initio Car-Parrinello dynamics of the studied solid at 100 K indicates that barrier height for proton transfer is too high to enable thermal jump over the barrier. Path Integral method in this particular case significantly changes proton behavior in the hydrogen bridge, and the proton tunneling process is observed. Vibrational spectra of investigated system HOOC-CH=CH-COOH and its deuterated analog DOOC-CH=CH-COOD were calculated and compared with experimental data.

  15. Dynamics of excited state proton transfer in nitro substituted 10-hydroxybenzo[h] quinolines

    DEFF Research Database (Denmark)

    Marciniak, H.; Hristova, S.; Deneva, V.

    2017-01-01

    The ground state tautomerism and excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ) and its nitro derivatives, 7-nitrobenzo[h]quinolin-10-ol (2) and 7,9-dinitrobenzo[h]quinolin-10-ol (3), have been studied in acetonitrile using steady state as well as time...... occurs with a time constant of 0.89 ps and 0.68 ps, respectively. In both cases a mixture of the enol and proton transfer forms is optically excited. The enol form exhibits then the ESIPT and subsequently both fractions take the same relaxation path. We propose that in 2 and 3 the ESIPT path exhibits...... a potential energy barrier resulting in an incoherent rate governed process while in HBQ the ESIPT proceeds as a ballistic wavepacket motion along a path without significant barriers. The theoretical calculations (M06-2X/TZVP) confirm the existence of a barrier in the ground and excited states as result...

  16. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Bellina, Bruno; Merthe, Daniel J.; Kresin, Vitaly V. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States)

    2015-03-21

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N–H ⋅ ⋅ ⋅ N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  17. Dynamics of Reactions Involving Hydrogen Atom or Proton Transfer Symmetric Case.

    Science.gov (United States)

    1980-09-01

    rates; tunneling; atom and proton transfer. 20 ABSTRACT ( ContInuo an revese side It necoee.,y and idenlify by block moibor) / C_ -3 A method is... improve the understanding of the dynamics of the reaction and facilitate its computational treatment. If a quasi-constant of the motion does exist for a...neglect of nonadiabatic effects and (ii) use of polar coordinates to treat the dynamics. Each could be improved , e. g. , in (i) by including perturbatively

  18. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  19. Application of Marcus theory for modeling proton transfer in cytochrome c oxidase

    Science.gov (United States)

    Garbuz, A. A.; Boronovskiy, S. E.; Nartsissov, Ya R.

    2017-11-01

    The process of proton transport in cytochrome c oxidase is studied in the framework of stochastic modeling. The activation energies are calculated using Marcus theory. This model allows to define the key amino acid residues and water molecules which form the main H+ transduction pathway. According to the simulation results, Asn-207 and Asn-121 are not involved in direct proton translocation. The estimated rate of the proton transfer through the D-channel of cytochrome c oxidase is (1.43±0.18)·104 s-1.

  20. Intramolecular hydrogen bond in molecular and proton-transfer forms of Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Filarowski, A.; Koll, A.; Karpfen, A.; Wolschann, P

    2004-02-16

    The force field and structural parameters modifications upon the formation of intramolecular hydrogen bond and proton transfer reaction in N-methyl-2-hydroxybenzylidene amine (HBZA) are determined on the basis of ab initio and DFT calculations. Reliability of the calculations is verified by comparing of the theoretical vibrational spectra with those experimentally determined in the gas phase. A model of resonance interactions is applied and the quantitative contribution of ortho-quinoid structure in the particular conformers is estimated. A comparison is also made to the systems without {pi}-electron coupling (Mannich bases)

  1. Unfolding intermediates of the mutant His-107-Tyr of human ...

    Indian Academy of Sciences (India)

    When projected along a reaction coordinate these trajectories yield four distinguishable sets of structures that map qualitatively to folding intermediates of this mutant postulated earlier from experiments.We present in this article a detailed analysis of representative structures and proton transfer activity of these intermediates.

  2. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity

    Science.gov (United States)

    Wuttig, Anna; Yaguchi, Momo; Motobayashi, Kenta; Osawa, Masatoshi; Surendranath, Yogesh

    2016-01-01

    CO2 reduction in aqueous electrolytes suffers efficiency losses because of the simultaneous reduction of water to H2. We combine in situ surface-enhanced IR absorption spectroscopy (SEIRAS) and electrochemical kinetic studies to probe the mechanistic basis for kinetic bifurcation between H2 and CO production on polycrystalline Au electrodes. Under the conditions of CO2 reduction catalysis, electrogenerated CO species are irreversibly bound to Au in a bridging mode at a surface coverage of ∼0.2 and act as kinetically inert spectators. Electrokinetic data are consistent with a mechanism of CO production involving rate-limiting, single-electron transfer to CO2 with concomitant adsorption to surface active sites followed by rapid one-electron, two-proton transfer and CO liberation from the surface. In contrast, the data suggest an H2 evolution mechanism involving rate-limiting, single-electron transfer coupled with proton transfer from bicarbonate, hydronium, and/or carbonic acid to form adsorbed H species followed by rapid one-electron, one-proton, or H recombination reactions. The disparate proton coupling requirements for CO and H2 production establish a mechanistic basis for reaction selectivity in electrocatalytic fuel formation, and the high population of spectator CO species highlights the complex heterogeneity of electrode surfaces under conditions of fuel-forming electrocatalysis. PMID:27450088

  3. Proton transfer in phenothiazine photochemical oxidation: Laser flash photolysis and fluorescence studies

    International Nuclear Information System (INIS)

    Gao Yuhe; Chen Jiafu; Zhuang Xiujuan; Wang Jinting; Pan Yang; Zhang Limin; Yu Shuqin

    2007-01-01

    Phenothiazine (PTH) cation and neutral radical have been characterized by nanosecond laser flash photolysis in basic and acid acetonitrile. In the presence of water or small amounts of base, the radical cation (PTH +· ) was not detected and the neutral radical (PT · ) was the only observed radical in photoionization process. Triplet PTH ( 3 PTH*) was quenched by diethyl fumarate in acetonitrile at a rapid rate (k q T =6.1x10 9 M -1 s -1 ), and then, it was observed a specific absorption around 410 nm that is assigned to PT · formed via photoinduced electron/proton transfer. However, no PT · was detected on 3 PTH*quenching by cinnamonitrile (China). On the basis of the results, the fast proton transfer in the oxidation process is mainly dependent on the basic groups, such as the carbonyl group in electron acceptors. The quenching rate constants (k q T ) of 3 PTH* by various electron acceptors have been determined at 470 nm as well as fluorescence quenching rate constants k q S obtained by Stern-Volmer equation. All k q T and k q S values approach the diffusion limit. The driving force dependence of bimolecular quenching rate constants was evaluated in light of Rehm-Weller analysis. In addition, disharmonic k q values by CN in endergonic region might be the contribution of charge transfer

  4. Excited-state proton transfer in methanol-doped ice in the presence of KF.

    Science.gov (United States)

    Uritski, Anna; Huppert, Dan

    2008-05-15

    Steady-state and time-resolved emission techniques were employed to study the photoprotolytic cycle of an excited photoacid in ice in the presence of a low concentration of a weak base-like F(-). In previous studies we found that the photoprotolytic cycle in methanol-doped ice (1% mol fraction) is too slow to be observed at temperatures below 190 K. In this study we found that at temperatures below 240 K an additional proton-transfer process occurs in ice doped with 10 mM KF. We attributed this reaction to the creation of a mobile L-defect by F(-) ions. We used a diffusion-assisted reaction model, based on the Debye-Smoluchowski equation, to account for the direct reaction of the L-defect with the excited photoacid at temperatures below T < 240 K. Below 160 K the spectroscopic properties as well as the photoprotolytic cycle change dramatically. We propose that below 160 K the sample enters a new phase. The excited-state proton-transfer (ESPT) process was observed and followed down to a liquid nitrogen temperature of approximately 78 K. In the low-temperature phase the ESPT rate is almost twice as much as at 180 K and the temperature dependence of the rate is very small. The kinetic isotope effect of the ESPT at the low-temperature phase is small of about 1.3.

  5. A Molecular Dynamic Simulation of Hydrated Proton Transfer in Perfluorosulfonate Ionomer Membranes (Nafion 117

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2015-01-01

    Full Text Available A molecular dynamic model based on Lennard-Jones Potential, the interaction force between two particles, molecular diffusion, and radial distribution function (RDF is presented. The diffusion of the hydrated ion, triggered by both Grotthuss and vehicle mechanisms, is used to study the proton transfer in Nafion 117. The hydrated ion transfer mechanisms and the effects of the temperature, the water content in the membrane, and the electric field on the diffusion of the hydrated ion are analyzed. The molecular dynamic simulation results are in good agreement with those reported in the literature. The modeling results show that when the water content in Nafion 117 is low, H3O+ is the main transfer ion among the different hydrated ions. However, at higher water content, the hydrated ion in the form of H+(H2O2 is the main transfer ion. It is also found that the negatively charged sulfonic acid group as the fortified point facilitates the proton transfer in Nafion 117 better than the free water molecule. The diffusion of the hydrated ion can be improved by increasing the cell temperature, the water content in Nafion, and the electric field intensity.

  6. Tautomerism and proton transfer in photoionized acetaldehyde and acetaldehyde-water clusters.

    Science.gov (United States)

    Di Palma, Tonia M; Bende, Attila

    2014-08-01

    Understanding the gas-phase chemistry of acetaldehyde can be challenging because the molecule can assume several tautomeric forms, namely keto, enol and carbene. The two last forms are the most stable ionic forms. Here, insight into the gas-phase cluster ion chemistry of homogeneous acetaldehyde and mixed water-acetaldehyde clusters is provided by mass spectrometry/vacuum ultraviolet photoionization combined with density functional theory calculations. (AA)nH(+) clusters (AA = acetaldehyde) and mixed (AA)nH3O(+) clusters were detected using tunable vacuum ultraviolet photoionization. Barrierless proton transfers were observed during the geometry optimization of the most stable dimer structures and helped to explain the cluster ion chemistry induced by photoionization, namely the formation of deprotonated tautomers and protonated keto tautomers. Water was found to catalyze the keto-enol and keto-carbene isomerizations and facilitate the proton transfer from the ionized enol or carbene part of the cluster to the neutral keto part, resulting in protonated keto structures. The production of protonated keto structures was identified to be the main fragmentation channel following ionization of the homogeneous acetaldehyde cluster and a channel for ionized mixed clusters as well. These findings are significant for a broad range of fields, including current atmospheric models, because acetaldehyde is one of the most prominent organic species in the troposphere and ions play a crucial role in aerosol formation. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Intramolecular proton transfer and tunnelling reactions of hydroxyphenylbenzoxazole derivatives in Xenon at 15 K

    Energy Technology Data Exchange (ETDEWEB)

    Walla, Peter J. [Max-Planck-Institute for Biophysical Chemistry, Department 010, Spectroscopy and Photochemical Kinetics, Am Fassberg 11, D-37077 Goettingen (Germany) and Department for Biophysical Chemistry, Technical University of Brunswick, Institute for Physical and Theoretical Chemistry, Hans-Sommerstr. 10, D-38106 Braunschweig (Germany)]. E-mail: pwalla@gwdg.de; Nickel, Bernhard [Max-Planck-Institute for Biophysical Chemistry, Department 010, Spectroscopy and Photochemical Kinetics, Am Fassberg 11, D-37077 Goettingen (Germany)

    2005-06-06

    We investigated the site dependence and the tunnelling processes of the intramolecular proton and deuteron transfer in the triplet state of the compounds 2-(2'-hydroxy-4'-methylphenyl)benzoxazole (m-MeHBO) and 2-(2'-hydroxy-3'-methylphenyl)benzoxazoles (o-MeHBO) and their deuterio-oxy analogues in a solid xenon matrix. After singlet excitation there occurs an ultrafast intramolecular enol {yields} keto proton transfer and subsequent intersystem crossing mainly to the keto triplet state. In the triplet state of m-MeHBO, the proton transfer back to the lower enol triplet state is governed by tunnelling processes. In o-MeHBO, however, the enol triplet state is higher and therefore normally no tunnel reaction can be observed. Because of the external heavy atom-effect in a xenon matrix, we were able to investigate the reverse enol-keto-tunnelling after exciting directly the enol triplet state of deuterated o-MeHBO. The time constants of the reverse enol-keto tautomerization are similar to those of the normal keto-enol tautomerization. In a xenon matrix, the observed site-selective phosphorescence spectra are very well-resolved vibrationally. This allowed the study of the tunnel rates in different well-defined sites. The vibrational energies obtained in the spectra are in good agreement with vibrational energies found in resonant Raman and IR spectra of 2-(2'-hydroxyphenyl)benzoxazole (HBO)

  8. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.

    Science.gov (United States)

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey

    2016-04-11

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Theoretical studies of π-electron delocalization and localization on intramolecular proton transfer in the ground state

    Science.gov (United States)

    Peng, Hongliang; Huang, Pengru; Yi, Pinggui; Xu, Fen; Sun, Lixian

    2018-02-01

    Proton transfer processes of 15 benzimidazole compounds are studied by density functional theory methods, and natural orbital energy index (NOEI) is introduced. Here, NOEI and nucleus independent chemical shift (NICS) are applied to estimate the π-electron localization and delocalization, respectively. Proton transfer potential energy surfaces are calculated to explore these processes, and the results show that the changes of the π-electron delocalization of the phenyl (pyridyl) is the main factors for the stability of keto form. There is high correlation between the π-electron delocalization and the proton transfer barrier. When the π-electron localization is considered, the regression increases the correlation coefficient, increasing from 0.9663 to 0.9864. NOEI index is sensitive to π-electron localization; it is a beneficial and useful complement to NICS.

  10. Crystallography aided by atomic core-level binding energies: proton transfer versus hydrogen bonding in organic crystal structures.

    Science.gov (United States)

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2011-10-10

    Ionic bond or hydrogen bridge? Brønsted proton transfer to nitrogen acceptors in organic crystals causes strong N1s core-level binding energy shifts. A study of 15 organic cocrystal and salt systems shows that standard X-ray photoelectron spectroscopy (XPS) can be used as a complementary method to X-ray crystallography for distinguishing proton transfer from H-bonding in organic condensed matter. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. UV laser induced proton-transfer of protein molecule in the gas phase produced by droplet-beam laser ablation

    Science.gov (United States)

    Kohno, Jun-ya; Kondow, Tamotsu

    2008-09-01

    Droplet-beam laser-ablation mass-spectrometry was applied for a study of the UV-laser induced proton-transfer reaction of protonated lysozyme hydrated clusters in the gas phase. Protonated lysozyme hydrated clusters were produced by irradiation of an IR laser onto a droplet-beam of an aqueous solution of lysozyme and were subsequently irradiated by a UV laser. It is found that H + and H 3O + are produced through photodissociation of protonated lysozyme hydrated clusters. The mechanism of the proton-transfer reaction is discussed.

  12. Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghwa; Joo, Taiha [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ∼300 fs component observed frequently in ESIPT dynamics arises from the S{sub 2}→S{sub 1} internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in S{sub 1} state to the keto isomer in S{sub 2} state.

  13. Proton transfer bis-benzazole fluors and their use in scintillator detectors

    Science.gov (United States)

    Kauffman, Joel M.

    1994-01-01

    A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.

  14. Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS: correction for humidity effects

    Directory of Open Access Journals (Sweden)

    A. Vlasenko

    2010-08-01

    Full Text Available Formaldehyde measurements can provide useful information about photochemical activity in ambient air, given that HCHO is formed via numerous oxidation processes. Proton transfer reaction mass spectrometry (PTR-MS is an online technique that allows measurement of VOCs at the sub-ppbv level with good time resolution. PTR-MS quantification of HCHO is hampered by the humidity dependence of the instrument sensitivity, with higher humidity leading to loss of PTR-MS signal. In this study we present an analytical, first principles approach to correct the PTR-MS HCHO signal according to the concentration of water vapor in sampled air. The results of the correction are validated by comparison of the PTR-MS results to those from a Hantzsch fluorescence monitor which does not have the same humidity dependence. Results are presented for an intercomparison made during a field campaign in rural Ontario at Environment Canada's Centre for Atmospheric Research Experiments.

  15. Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    Energy Technology Data Exchange (ETDEWEB)

    Bu, W.; Vaknin, D.; Travesset, A. (Iowa State)

    2010-07-13

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L{sub 3} Cs{sup +} resonance, we provide spatial counterion distributions (Cs{sup +}) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H{sub 3}O{sup +} at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  16. Monovalent counterion distributions at highly charged water interfaces: proton-transfer and Poisson-Boltzmann theory.

    Science.gov (United States)

    Bu, Wei; Vaknin, David; Travesset, Alex

    2005-12-01

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion distributions (Cs+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3O+ at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  17. On the pH dependence of electrochemical proton transfer barriers

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Chan, Karen; Skulason, Egill

    2016-01-01

    The pH dependence of rate of the hydrogen evolution/oxidation reaction HER/HOR is investigated. Based on thermodynamic considerations, a possible explanation to the low exchange current for hydrogen reactions in alkaline is put forward. We propose this effect to be a consequence of the change...... environment in the double layer region. The entropic barrier can be rate determining only when the surface catalysis is fast. Therefore the effect of pH is most pronounced on good catalysts and for fast reactions. This entropic barrier is also in a good agreement with the unusually low prefactor measured...... in experiments of good catalysts such as Pt. In such catalysts, the enthalpy barrier of 0.1-0.2. eV of the rate-determining step does not come from any of the surface reactions (Volmer, Tafel or Heyrovsky) but instead from the proton transfer into the outer Helmholtz layer....

  18. First-principles characterization of the energy landscape and optical spectra of green fluorescent protein along the A→I→B proton transfer route.

    Science.gov (United States)

    Grigorenko, Bella L; Nemukhin, Alexander V; Polyakov, Igor V; Morozov, Dmitry I; Krylov, Anna I

    2013-08-07

    Structures and optical spectra of the green fluorescent protein (GFP) forms along the proton transfer route A→I→B are characterized by first-principles calculations. We show that in the ground electronic state the structure representing the wild-type (wt) GFP with the neutral chromophore (A-form) is lowest in energy, whereas the systems with the anionic chromophore (B- and I-forms) are about 1 kcal/mol higher. In the S65T mutant, the structures with the anionic chromophore are significantly lower in energy than the systems with the neutral chromophore. The role of the nearby amino acid residues in the chromophore-containing pocket is re-examined. Calculations reveal that the structural differences between the I- and B-forms (the former has a slightly red-shifted absorption relative to the latter) are based not on the Thr203 orientation, but on the Glu222 position. In the case of wt-GFP, the hydrogen bond between the chromophore and the His148 residue stabilizes the structures with the deprotonated phenolic ring in the I- and B-forms. In the S65T mutant, concerted contributions from the His148 and Thr203 residues are responsible for a considerable energy gap between the lowest energy structure of the B type with the anionic chromophore from other structures.

  19. Ground-State Proton Transfer Tautomer of Al(III)-Salicylate Complexes in Ethanol Solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming (BATTELLE (PACIFIC NW LAB)); Friedrich, Donald (Optical Coating Laboratory, Inc.); Ainsworth, Calvin C.(BATTELLE (PACIFIC NW LAB)); Hemmer, Staci L.(UNIVERSITY PROGRAMS); Joly, Alan G.(BATTELLE (PACIFIC NW LAB)); Beversluis, Michael R.(ASSOC WESTERN UNIVERSITY)

    2001-01-01

    The tautomerization of salicylate anion in the presence of A1(III) in ethanol was studied by UV? visible absorption spectroscopy and fluorescence spectroscopy, anisotropy, and lifetime measurements from 100 to 298 K. Complexation with A1(III) causes an equilibrium shift from the normal form of the salicylate anion toward the tautomer form, demonstrating that the presence of a highly charged cation, A1(III), stabilizes the tautomer form of salicylate. Spectra and fluorescence lifetimes of salicylate and other salicyl derivatives in the presence of A1(III) reveal three types of A1(III)-salicylate complexes. In type I complexes, salicylate binds to A1(III) through the carboxylate group, preserving the intramolecular hydrogen bond between the carbonyl oxygen and the phenol group, as indicated by the largely Stokes-shifted fluorescence emission following the excited state proton transfer process. In type II complexes, salicylate binds to A1(III) through the carboxylate group, but the phenol proton is oriented away from the carbonyl oxygen so that the complex shows short wavelength fluorescence emission characteristic of substituted phenolic compounds. In type III complexes, A1(III) stabilizes and binds to the tautomer form of salicylate through the phenolate oxygen, in which salicylate exists in its proton transferred tautomer form. Absorption spectra recorded at temperatures between 100 K and 298 K indicate that the type III tautomer complex is energetically favored at low temperature, although type I is the dominant species at room temperature. All three types of complexes are interconvertible above the ethanol glass transition temperature. However, below the glass transition temperature interconversion ceases, indicating large amplitude atomic motion is involved in the conversion.

  20. Quantification of diesel exhaust gas phase organics by a thermal desorption proton transfer reaction mass spectrometer

    Science.gov (United States)

    Erickson, M. H.; Wallace, H. W.; Jobson, B. T.

    2012-02-01

    A new approach was developed to measure the total abundance of long chain alkanes (C12 and above) in urban air using thermal desorption with a proton transfer reaction mass spectrometer (PTR-MS). These species are emitted in diesel exhaust and may be important precursors to secondary organic aerosol production in urban areas. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The yield of the fragment ions is a function of drift conditions. At a drift field strength of 80 Townsends, the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Higher drift field strengths yield greater normalized sensitivity implying that the proton affinity of the long chain n-alkanes is less than H2O. Analysis of diesel fuel shows the mass spectrum was dominated by alkanes (CnH2n+1), monocyclic aromatics, and an ion group with formula CnH2n-1 (m/z 97, 111, 125, 139). The PTR-MS was deployed in Sacramento, CA during the Carbonaceous Aerosols and Radiative Effects Study field experiment in June 2010. The ratio of the m/z 97 to 85 ion intensities in ambient air matched that found in diesel fuel. Total diesel exhaust alkane concentrations calculated from the measured abundance of m/z 85 ranged from the method detection limit of ~1 μg m-3 to 100 μg m-3 in several air pollution episodes. The total diesel exhaust alkane concentration determined by this method was on average a factor of 10 greater than the sum of alkylbenzenes associated with spark ignition vehicle exhaust.

  1. Reaction Coordinate, Free Energy, and Rate of Intramolecular Proton Transfer in Human Carbonic Anhydrase II.

    Science.gov (United States)

    Paul, Sanjib; Paul, Tanmoy Kumar; Taraphder, Srabani

    2018-03-22

    The role of structure and dynamics of an enzyme has been investigated at three different stages of its function including the chemical event it catalyzes. A one-pot computational method has been designed for each of these stages on the basis of classical and/or quantum mechanical-molecular mechanical molecular dynamics and transition path sampling simulations. For a pair of initial and final states A and B separated by a high free-energy barrier, using a two-stage selection process, several collective variables (CVs) are identified that can delineate A and B. However, these CVs are found to exhibit strong cross-coupling over the transition paths. A set of mutually orthogonal order parameters is then derived from these CVs and an optimal reaction coordinate, r, determined applying half-trajectory likelihood maximization along with a Bayesian information criterion. The transition paths are also used to project the multidimensional free energy surface and barrier crossing dynamics along r. The proposed scheme has been applied to the rate-determining intramolecular proton transfer reaction of the well-known enzyme human carbonic anhydrase II. The potential of mean force, F( r), in the absence of the chemical step is found to reproduce earlier results on the equilibrium population of two side-chain orientations of key residue His-64. Estimation of rate constants, k, from mean first passage times for the three different stages of catalysis shows that the rate-determining step of intramolecular proton transfer occurs with k ≃ 1.0 × 10 6 s -1 , in close agreement with known experimental results.

  2. Excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by shpol'skii spectroscopy: The influence of redistribution of electron density

    NARCIS (Netherlands)

    Bader, A.N.; Pivovarenko, V.; Demchenko, A.P.; Ariese, F.; Gooijer, C.

    2004-01-01

    We studied the mechanisms of excited-state intramolecular proton transfer (ESIPT) and ground-state back proton transfer (BPT) in 3-hydroxyflavone (3HF) at cryogenic temperatures. The focus was on substituents that change the distribution of electronic density on the chromophore and their influence

  3. Geographical provenancing of purple grape juices from different farming systems by proton transfer reaction mass spectrometry using supervised statistical techniques

    NARCIS (Netherlands)

    Granato, Daniel; Koot, Alex; Ruth, van S.M.

    2015-01-01

    BACKGROUND: Organic, biodynamic and conventional purple grape juices (PGJ; n = 79) produced in Brazil and Europe were characterized by volatile organic compounds (m/z 20-160) measured by proton transfer reaction mass spectrometry (PTR-MS), and classification models were built using supervised

  4. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb

    NARCIS (Netherlands)

    Erasmus, Sara W.; Muller, Magdalena; Alewijn, Martin; Koot, Alex H.; Ruth, van Saskia M.; Hoffman, Louwrens C.

    2017-01-01

    The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile

  5. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics

    Czech Academy of Sciences Publication Activity Database

    Zamotaiev, O. M.; Shvadchak, Volodymyr; Sych, T. P.; Melnychuk, N. A.; Yushchenko, Dmytro A.; Mely, Y.; Pivovarenko, V. G.

    2016-01-01

    Roč. 4, č. 3 (2016), č. článku 034004. ISSN 2050-6120 Institutional support: RVO:61388963 Keywords : quinolone * fluorescent probes * local polarity * hydration * excited-state intramolecular proton transfer * kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.656, year: 2016

  6. Proton transfer reaction-mass spectrometry volatile organic compound fingerprinting for monovarietal extra virgin olive oil identification

    NARCIS (Netherlands)

    Ruiz-Samblas, C.; Tres, A.; Koot, A.H.; Ruth, van S.M.; Gonzalez-Casado, A.; Cuadros-Rodriguez, L.

    2012-01-01

    Proton transfer reaction-mass spectrometry (PTR-MS) is a relatively new technique that allows the fast and accurate qualification of the volatile organic compound (VOC) fingerprint. This paper describes the analysis of thirty samples of extra virgin olive oil, of five different varieties of olive

  7. Low Ascorbic Acid in the vtc-1 Mutant of Arabidopsis Is Associated with Decreased Growth and Intracellular Redistribution of the Antioxidant System1

    Science.gov (United States)

    Veljovic-Jovanovic, Sonja D.; Pignocchi, Cristina; Noctor, Graham; Foyer, Christine H.

    2001-01-01

    Ascorbic acid has numerous and diverse roles in plant metabolism. We have used the vtc-1 mutant of Arabidopsis, which is deficient in ascorbate biosynthesis, to investigate the role of ascorbate concentration in growth, regulation of photosynthesis, and control of the partitioning of antioxidative enyzmes. The mutant possessed 70% less ascorbate in the leaves compared with the wild type. This lesion was associated with a slight increase in total glutathione but no change in the redox state of either ascorbate or glutathione. In vtc-1, total ascorbate in the apoplast was decreased to 23% of the wild-type value. The mutant displayed much slower shoot growth than the wild type when grown in air or at high CO2 (3 mL L−1), where oxidative stress is diminished. Leaves were smaller, and shoot fresh weight and dry weight were lower in the mutant. No significant differences in the light saturation curves for CO2 assimilation were found in air or at high CO2, suggesting that the effect on growth was not due to decreased photosynthetic capacity in the mutant. Analysis of chlorophyll a fluorescence quenching revealed only a slight effect on non-photochemical energy dissipation. Hydrogen peroxide contents were similar in the leaves of the vtc-1 mutant and the wild type. Total leaf peroxidase activity was increased in the mutant and compartment-specific differences in ascorbate peroxidase (APX) activity were observed. In agreement with the measurements of enzyme activity, the expression of cytosolic APX was increased, whereas that for chloroplast APX isoforms was either unchanged or slightly decreased. These data implicate ascorbate concentration in the regulation of the compartmentalization of the antioxidant system in Arabidopsis. PMID:11598218

  8. Relationship between intracellular Na+ concentration and reduced Na+ affinity in Na+,K+-ATPase mutants causing neurological disease

    DEFF Research Database (Denmark)

    Toustrup-Jensen, Mads Schak; Einholm, Anja P.; Schack, Vivien

    was observed for the +28 mutation of α2 despite a high expression level. A significant rise of [Na+]i and reduction of [K+]i was detected in cells expressing mutants with reduced Na+ affinity and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two...

  9. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    Science.gov (United States)

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Excited state proton transfer in 9-aminoacridine carboxamides in water and in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Charles A. [Iowa State Univ., Ames, IA (United States)

    1995-09-26

    The 9-aminoacridine molecule is important in several different fields of chemistry. The absorption and fluorescence spectra of this compound are pH sensitive and it is this property that allowed it to be used as a pH probe in different chemical environments. The compound exhibits proton transfer reactions which are among the most fundamental of chemical reactions. The planarity of 9-aminoacridine allows it to intercalate into DNA. Intercalation is a process in which the aromatic flat surface of the intercalator inserts between adjacent base pairs of DNA. The large surface area of 9-aminoacridine`s fused tricyclic ring system allows strong intercalative binding through van der Waals attractions. 9-aminoacridine and many of its derivatives have been tried as possible antitumor drugs. The cytotoxicity of an antitumor agent can be dramatically increased through the addition of one or two cationic side chains. This increase in cytotoxicity using the 9-aminoacridine compound as a parent molecule has been investigated through various derivatives with cationic side chains consisting of different number of carbon atoms between the proximal and distal N atoms. Similar derivatives varied the position of the carboxamide side chain on the aromatic ring system. The objective of this work is to first create a baseline study of the excited state kinetics of the 9-aminoacridine carboxamides in the absence of DNA. The baseline study will allow the excited state kinetics of these antitumor drugs when placed in DNA to be more fully understood.

  11. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry.

    Science.gov (United States)

    Ruzsanyi, Veronika; Fischer, Lukas; Herbig, Jens; Ager, Clemes; Amann, Anton

    2013-11-05

    Proton-transfer-reaction time-of-flight mass-spectrometry (PTR-TOFMS) exhibits high selectivity with a resolution of around 5000 m/Δm. While isobars can be separated with this resolution, discrimination of isomeric compounds is usually not possible. The coupling of a multi-capillary column (MCC) with a PTR-TOFMS overcomes these problems as demonstrated in this paper for the ketone isomers 3-heptanone and 2-methyl-3-hexanone and for different aldehydes. Moreover, fragmentation of compounds can be studied in detail which might even improve the identification. LODs for compounds tested are in the range of low ppbv and peak positions of the respective separated substances show good repeatability (RSD of the peak positions <3.2%). Due to its special characteristics, such as isothermal operation, compact size, the MCC setup is suitable to be installed inside the instrument and the overall retention time for a complete spectrum is only a few minutes: this allows near real-time measurements in the optional MCC mode. In contrast to other methods that yield additional separation, such as the use of pre-cursor ions other than H3O(+), this method yields additional information without increasing complexity. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development.

    Science.gov (United States)

    Zheng, Yang; Wang, Xiaoming; Zhao, Xuna

    2016-01-01

    Purpose. This study aims to evaluate the process of brain development in neonates using combined amide proton transfer (APT) imaging and conventional magnetization transfer (MT) imaging. Materials and Methods. Case data were reviewed for all patients hospitalized in our institution's neonatal ward. Patients underwent APT and MT imaging (a single protocol) immediately following the routine MR examination. Single-slice APT/MT axial imaging was performed at the level of the basal ganglia. APT and MT ratio (MTR) measurements were performed in multiple brain regions of interest (ROIs). Data was statistically analyzed in order to assess for significant differences between the different regions of the brain or correlation with patient gestational age. Results. A total of 38 neonates were included in the study, with ages ranging from 27 to 41 weeks' corrected gestational age. There were statistically significant differences in both APT and MTR measurements between the frontal lobes, basal ganglia, and occipital lobes (APT: frontal lobe versus occipital lobe P = 0.031 and other groups P = 0.00; MTR: frontal lobe versus occipital lobe P = 0.034 and other groups P = 0.00). Furthermore, APT and MTR in above brain regions exhibited positive linear correlations with patient gestational age. Conclusions. APT/MT imaging can provide valuable information about the process of the neonatal brain development at the molecular level.

  13. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development

    International Nuclear Information System (INIS)

    Zhang, Hong; Kang, Huiying; Peng, Yun; Zhao, Xuna; Jiang, Shanshan; Zhang, Yi; Zhou, Jinyuan

    2016-01-01

    To quantify the brain maturation process during childhood using combined amide proton transfer (APT) and conventional magnetization transfer (MT) imaging at 3 Tesla. Eighty-two neurodevelopmentally normal children (44 males and 38 females; age range, 2-190 months) were imaged using an APT/MT imaging protocol with multiple saturation frequency offsets. The APT-weighted (APTW) and MT ratio (MTR) signals were quantitatively analyzed in multiple brain areas. Age-related changes in MTR and APTW were evaluated with a non-linear regression analysis. The APTW signals followed a decreasing exponential curve with age in all brain regions measured (R 2 = 0.7-0.8 for the corpus callosum, frontal and occipital white matter, and centrum semiovale). The most significant changes appeared within the first year. At maturation, larger decreases in APTW and lower APTW values were found in the white matter. On the contrary, the MTR signals followed an increasing exponential curve with age in the same brain regions measured, with the most significant changes appearing within the initial 2 years. There was an inverse correlation between the MTR and APTW signal intensities during brain maturation. Together with MT imaging, protein-based APT imaging can provide additional information in assessing brain myelination in the paediatric population. (orig.)

  14. Double proton transfer reactions in the formic acid dimer in solution

    International Nuclear Information System (INIS)

    Kohanoff, J.; Estrin, D.A.; Laria, D.; Abashkin, Y.

    2000-06-01

    The issue of multiple proton transfer (PT) reactions in solution is addressed by performing molecular dynamics simulations for a formic acid dimer embedded in a water cluster. The reactant species is treated quantum mechanically, within a density functional approach, while the solvent is represented by a classical model. By constraining different distances within the dimer we analyze the PT process in a variety of situations representative of more complex environments. Free energy profiles are presented, and analyzed in terms of typical solvated configurations extracted from the simulations. A decrease in the PT barrier height upon solvation is rationalized in terms of a transition state which is more polarized than the stable states. The dynamics of the double PT process is studied in a low-barrier case and correlated with that of the polarization fluctuations of the solvent. Cooperative effects in the motion of the two protons are observed in two different situations: when the solvent polarization does not favor the transfer of one of the two protons and when the motion of the two protons is not synchronized. This body of observations is correlated with structural and dynamical local properties of the solvent in the vicinity of the reactant. (author)

  15. Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ha-Kyu [Philips Korea, Seoul (Korea, Republic of); Korea Basic Science Institute, Chungcheongbuk-do (Korea, Republic of); Han, Kyunghwa [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Seodaemun-gu, Seoul (Korea, Republic of); Yonsei University College of Medicine, Yonsei Biomedical Research Institute, Seoul (Korea, Republic of); Zhou, Jinyuan [Johns Hopkins University School of Medicine, Division of MRI Research, Department of Radiology, Baltimore, MD (United States); Zhao, Yansong [Philips Healthcare, MR Clinical Science, Cleveland, OH (United States); Choi, Yoon Seong; Lee, Seung-Koo; Ahn, Sung Soo [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Seodaemun-gu, Seoul (Korea, Republic of)

    2017-04-15

    The aim of this study was to characterize amide proton transfer (APT)-weighted signals in acute and subacute haemorrhage brain lesions of various underlying aetiologies. Twenty-three patients with symptomatic haemorrhage brain lesions including tumorous (n = 16) and non-tumorous lesions (n = 7) were evaluated. APT imaging was performed and analyzed with magnetization transfer ratio asymmetry (MTR{sub asym}). Regions of interest were defined as the enhancing portion (when present), acute or subacute haemorrhage, and normal-appearing white matter based on anatomical MRI. MTR{sub asym} values were compared among groups and components using a linear mixed model. MTR{sub asym} values were 3.68 % in acute haemorrhage, 1.6 % in subacute haemorrhage, 2.65 % in the enhancing portion, and 0.38 % in normal white matter. According to the linear mixed model, the distribution of MTR{sub asym} values among components was not significantly different between tumour and non-tumour groups. MTR{sub asym} in acute haemorrhage was significantly higher than those in the other regions regardless of underlying pathology. Acute haemorrhages showed high MTR{sub asym} regardless of the underlying pathology, whereas subacute haemorrhages showed lower MTR{sub asym} than acute haemorrhages. These results can aid in the interpretation of APT imaging in haemorrhage brain lesions. (orig.)

  16. Experimental and computational studies on creatininium 4-nitrobenzoate - An organic proton transfer complex

    Science.gov (United States)

    Thirumurugan, R.; Anitha, K.

    2017-10-01

    A new organic proton transfer complex of creatininium 4-nitrobenzoate (C4NB) has been synthesized and its single crystals were grown successfully by slow evaporation technique. The grown single crystal was subjected to various characterization techniques like single crystal X-ray diffraction (SCXRD), FTIR, FT-Raman and Kurtz-Perry powder second harmonic generation (SHG). The SCXRD analysis revealed that C4NB was crystallized into orthorhombic crystal system, with noncentrosymmetric (NCS), P212121 space group. The creatininium cation and 4-nitrobenzoate anion were connected through a pair of N__H⋯O hydrogen bonds (N(3)__H(6) ⋯ O(3) (x+1, y, z) and N(2)__H(5) &ctdot O(2) (x-1/2, -y-1/2, -z+2)) and fashioned a R22(8) ring motif. The crystal structure was stabilized by strong N__H⋯O and weak C__H⋯O intermolecular interactions and it was quantitatively analysed by Hirshfeld surface and fingerprint (FP) analysis. FTIR and FT-Raman studies confirmed the vibrational modes of functional groups present in C4NB compound indubitably. SHG efficiency of grown crystal was 4.6 times greater than that of standard potassium dihydrogen phosphate (KDP) material. Moreover, density functional theory (DFT) studies such as Mulliken charge distribution, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) map, natural bond orbital analysis (NBO) and first order hyperpolarizability (β0) were calculated to explore the structure-property relationship.

  17. Keto-enol tautomerization and intermolecular proton transfer in photoionized cyclopentanone dimer in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arup K.; Chatterjee, Piyali; Chakraborty, Tapas, E-mail: pctc@iacs.res.in [Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A Raja S. C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2014-07-28

    Time-of-flight mass spectra of cyclopentanone and its clusters cooled in a supersonic jet expansion have been measured following 4-, 3-, and 2-photon ionizations by the 2nd, 3rd, and 4th harmonic wavelengths, respectively, of a Q-switched Nd:YAG laser. The mass spectra reveal signatures of energetically favored keto to enol tautomerization of the molecular ion leading to intermolecular proton transfer, and this observation is found sharply dependent on the ionization wavelengths used. Electronic structure calculation predicts that in spite of the energetic preference, keto-enol conversion barrier of isolated molecular ion is high. However, the barrier is significantly reduced in a CH⋯O hydrogen-bonded dimer of the molecule. The transition states associated with tautomeric conversion of both cyclopentanone monomer and dimer cations have been identified by means of intrinsic reaction co-ordinate calculation. In a supersonic jet expansion, although a weakly bound dimer is readily generated, the corresponding cation and also the protonated counterpart are observed only for ionization by 532 nm. For other two ionization wavelengths, these species do not register in the mass spectra, where the competing reaction channels via α-cleavage of the ring become dominant. In contrast to the report of a recent study, we notice that the intact molecular ion largely survives fragmentations when ionized from the 2-photon resonant 3p Rydberg state as intermediate using nanosecond laser pulses, and the corresponding resonant 3-photon ionization spectrum has been recorded probing the intact molecular ion.

  18. Triacetone triperoxide detection using low reduced-field proton transfer reaction mass spectrometer

    Science.gov (United States)

    Shen, Chengyin; Li, Jianquan; Han, Haiyan; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2009-08-01

    Proton transfer reaction mass spectrometry (PTR-MS) was applied to on-line detection of the explosive triacetone triperoxide (TATP) using a discharge gas of water vapor or alternative ammonia in the ion source. The dependence of ionic intensity on reduced-field in the drift tube was investigated, and the results indicate that an irregular operation using low reduced-field can enhance TATP detection due to reduced collision-induced dissociation in the drift tube. When water vapor is used as the discharge gas, the characteristic ions for TATP identification are [TATP + H]+ which are detectable at a reduced-field about 50 Td. If ammonia is the discharge gas, PTR-MS exhibits a better sensitivity, the explosive TATP can be discriminated according to the adduct ions [TATP + NH4]+, and a limit of detection at ppb level can be achieved at a reduced-field around 100 Td in this PTR-MS apparatus. PTR-MS is suggested as a potential tool for on-site detection of the explosive TATP with the advantages of rapid response and high sensitivity without sample pretreatment.

  19. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  20. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Kang, Huiying; Peng, Yun [Beijing Children' s Hospital, Capital Medical University, Imaging Center, Department of Radiology, Beijing (China); Zhao, Xuna [Philips Healthcare, Beijing (China); Jiang, Shanshan; Zhang, Yi; Zhou, Jinyuan [Johns Hopkins University, Division of MR Research, Department of Radiology, Baltimore, MD (United States)

    2016-10-15

    To quantify the brain maturation process during childhood using combined amide proton transfer (APT) and conventional magnetization transfer (MT) imaging at 3 Tesla. Eighty-two neurodevelopmentally normal children (44 males and 38 females; age range, 2-190 months) were imaged using an APT/MT imaging protocol with multiple saturation frequency offsets. The APT-weighted (APTW) and MT ratio (MTR) signals were quantitatively analyzed in multiple brain areas. Age-related changes in MTR and APTW were evaluated with a non-linear regression analysis. The APTW signals followed a decreasing exponential curve with age in all brain regions measured (R{sup 2} = 0.7-0.8 for the corpus callosum, frontal and occipital white matter, and centrum semiovale). The most significant changes appeared within the first year. At maturation, larger decreases in APTW and lower APTW values were found in the white matter. On the contrary, the MTR signals followed an increasing exponential curve with age in the same brain regions measured, with the most significant changes appearing within the initial 2 years. There was an inverse correlation between the MTR and APTW signal intensities during brain maturation. Together with MT imaging, protein-based APT imaging can provide additional information in assessing brain myelination in the paediatric population. (orig.)

  1. Amide proton transfer imaging for differentiation of benign and atypical meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Bio [The Armed Forces Capital Hospital, Department of Radiology, Seongnam, Gyeonggi-do (Korea, Republic of); Han, Kyunghwa; Choi, Yoon Seong; Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, College of Medicine, Seoul (Korea, Republic of); Ahn, Sung Soo [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, College of Medicine, Seoul (Korea, Republic of); Yonsei University, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Chang, Jong Hee; Kang, Seok-Gu [Yonsei University College of Medicine, Department of Neurosurgery, Seoul (Korea, Republic of); Kim, Se Hoon [Yonsei University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Zhou, Jinyuan [Johns Hopkins University School of Medicine, Division of MRI Research, Department of Radiology, Baltimore, MD (United States)

    2018-01-15

    To investigate the difference in amide proton transfer (APT)-weighted signals between benign and atypical meningiomas and determine the value of APT imaging for differentiating the two. Fifty-seven patients with pathologically diagnosed meningiomas (benign, 44; atypical, 13), who underwent preoperative MRI with APT imaging between December 2014 and August 2016 were included. We compared normalised magnetisation transfer ratio asymmetry (nMTR{sub asym}) values between benign and atypical meningiomas on APT-weighted images. Conventional MRI features were qualitatively assessed. Both imaging features were evaluated by multivariable logistic regression analysis. The discriminative value of MRI with and without nMTR{sub asym} was evaluated. The nMTR{sub asym} of atypical meningiomas was significantly greater than that of benign meningiomas (2.46% vs. 1.67%; P < 0.001). In conventional MR images, benign and atypical meningiomas exhibited significant differences in maximum tumour diameter, non-skull base location, and heterogeneous enhancement. On multivariable logistic regression analysis, high nMTR{sub asym} was an independent predictor of atypical meningiomas (adjusted OR, 11.227; P = 0.014). The diagnostic performance of MRI improved with nMTR{sub asym} for predicting atypical meningiomas. Atypical meningiomas exhibited significantly higher APT-weighted signal intensities than benign meningiomas. The discriminative value of conventional MRI improved significantly when combined with APT imaging for diagnosis of atypical meningioma. (orig.)

  2. Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hao; Zou, Tianyu; Wang, Xianlong; Du, Yongxing; Jiang, Chunxiu; Ma, Ling; Zhu, Jianbin; He, Wen; Rui, Qihong; Wen, Zhibo [Zhujiang Hospital, Southern Medical University, Department of Radiology, Guangzhou, Guangdong (China); Lou, Huiling [The First People' Hospital of Guangzhou, Department of Geriatrics, Guangzhou, Guangdong (China); Jiang, Shanshan [Zhujiang Hospital, Southern Medical University, Department of Radiology, Guangzhou, Guangdong (China); Johns Hopkins University School of Medicine, Division of MR Research, Department of Radiology, Baltimore, MD (United States); Huang, Zhongqing [Shantou University Medical College, Department of Medical Image Center, Yuebei People' s Hospital, Shantou, Guangdong (China); Zhou, Jianyuan [Johns Hopkins University School of Medicine, Division of MR Research, Department of Radiology, Baltimore, MD (United States)

    2017-11-15

    To determine the utility of amide proton transfer-weighted (APTw) MR imaging in distinguishing solitary brain metastases (SBMs) from glioblastomas (GBMs). Forty-five patients with SBMs and 43 patients with GBMs underwent conventional and APT-weighted sequences before clinical intervention. The APTw parameters and relative APTw (rAPTw) parameters in the tumour core and the peritumoral brain zone (PBZ) were obtained and compared between SBMs and GBMs. The receiver-operating characteristic (ROC) curve was used to assess the best parameter for distinguishing between the two groups. The APTw{sub max}, APTw{sub min}, APTw{sub mean}, rAPTw{sub max}, rAPTw{sub min} or rAPTw{sub mean} values in the tumour core were not significantly different between the SBM and GBM groups (P = 0.141, 0.361, 0.221, 0.305, 0.578 and 0.448, respectively). However, the APTw{sub max}, APTw{sub min}, APTw{sub mean}, rAPTw{sub max}, rAPTw{sub min} or rAPTw{sub mean} values in the PBZ were significantly lower in the SBM group than in the GBM group (P < 0.001). The APTw{sub min} values had the highest area under the ROC curve 0.905 and accuracy 85.2% in discriminating between the two neoplasms. As a noninvasive imaging method, APT-weighted MR imaging can be used to distinguish SBMs from GBMs. (orig.)

  3. Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization

    Science.gov (United States)

    Lu, I.-Chung; Chu, Kuan Yu; Lin, Chih-Yuan; Wu, Shang-Yun; Dyakov, Yuri A.; Chen, Jien-Lian; Gray-Weale, Angus; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    The ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI.

  4. Observing Proton Transfer Reactions Inside the MALDI Plume: Experimental and Theoretical Insight into MALDI Gas-Phase Reactions

    Science.gov (United States)

    Mirabelli, Mario F.; Zenobi, Renato

    2017-08-01

    We evaluated the contribution of gas-phase in-plume proton transfer reactions to the formation of protonated and deprotonated molecules in the MALDI process. A split sample holder was used to separately deposit two different samples, which avoids any mixing during sample preparation. The two samples were brought very close to each other and desorbed/ionized by the same laser pulse. By using a combination of deuterated and non-deuterated matrices, it was possible to observe exclusively in-plume proton transfer processes. The hydrogen/deuterium exchange (HDX) kinetics were evaluated by varying the delayed extraction (DE) time, allowing the desorbed ions and neutrals to interact inside the plume for a variable period of time before being extracted and detected. Quantum mechanical calculations showed that the HDX energy barriers are relatively low for such reactions, corroborating the importance of gas-phase proton transfer in the MALDI plume. The experimental results, supported by theoretical simulations, confirm that the plume is a very reactive environment, where HDX reactions could be observed from 0 ns up to 400 ns after the laser pulse. These results could be used to evaluate the relevance of previously proposed (and partially conflicting) ionization models for MALDI.

  5. TDDFT study on excited state intramolecular proton transfer mechanism in 2-amino-3-(2‧-benzazolyl)-quinolines

    Science.gov (United States)

    Jia, Xueli; Li, Chaozheng; Li, Donglin; Liu, Yufang

    2018-03-01

    The intramolecular proton transfer reaction of the 2-amino-3-(2‧-benzoxazolyl)-quinoline (ABO) and 2-amino-3-(2‧-benzothiazolyl)-quinoline (ABT) molecules in both S0 and S1 states at B3LYP/6-311 ++G(d,p) level in ethanol solvent have been studied to reveal the deactivation mechanism of the tautomers of the two molecules from the S1 state to the S0 state. The results show that the tautomers of ABO and ABT molecules may return to the S0 state by emitting fluorescence. In addition, the bond lengths, angles and infrared spectra are analyzed to confirm the hydrogen bonds strengthened upon photoexcitation, which can facilitate the proton transfer process. The frontier molecular orbitals (MOs) and natural bond orbital (NBO) are also calculated to indicate the intramolecular charge transfer which can be used to explore the tendency of ESIPT reaction. The potential energy surfaces of the ABO and ABT molecules in the S0 and S1 states have been constructed. According to the energy potential barrier of 9.12 kcal/mol for ABO molecule and 5.96 kcal/mol for ABT molecule, it can be indicated that the proton transfer may occur in the S1 state.

  6. Intramolecular photoinduced proton transfer in 2-(2′-hydroxyphenyl)benzazole family: A TD-DFT quantum chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Roohi, Hossein, E-mail: hroohi@guilan.ac.ir; Mohtamedifar, Nafiseh; Hejazi, Fahemeh

    2014-11-24

    Highlights: • PBE1PBE/TD method was used to study the ESIPT process in the benzazole family. • Potential energy curves in ground and excited states were calculated. • Effect of substitution in benzazole ring on the ESIPT process was investigated. • In contrast to S{sub 0} state, keto form of the molecules can be formed at the S{sub 1} state. • The photophysical properties of the compounds were calculated. - Abstract: In this work, intramolecular photoinduced proton transfer in 2-(2′-hydroxyphenyl)benzazole family (HBO, HBI and HBT) was investigated using TD-DFT calculations at PBE1PBE/6-311++G(2d,2p) level of theory. The potential energy surfaces were employed to explore the proton transfer reactions in both states. In contrast to the ground state, photoexcitation from S{sub 0} state to S{sub 1} one encourages the operation of the excited-state intramolecular proton transfer process. Structural parameters, H-bonding energy, absorption and emission bands, vertical excitation and emission energies, oscillator strength, fluorescence rate constant, dipole moment, atomic charges and electron density at critical points were calculated. Molecular orbital analysis shows that vertical S{sub 0} → S{sub 1} transition in the studied molecules corresponds essentially to the excitation from HOMO (π) to LUMO (π{sup ∗}). Our calculated results are in good agreement with the experimental observations.

  7. Novel gradient echo sequence-based amide proton transfer magnetic resonance imaging in hyperacute cerebral infarction

    Science.gov (United States)

    HUANG, DEXIAO; LI, SHENKAI; DAI, ZHUOZHI; SHEN, ZHIWEI; YAN, GEN; WU, RENHUA

    2015-01-01

    In the progression of ischemia, pH is important and is essential in elucidating the association between metabolic disruption, lactate formation, acidosis and tissue damage. Chemical exchange-dependent saturation transfer (CEST) imaging can be used to detect tissue pH and, in particular, a specific form of CEST magnetic resonance imaging (MRI), termed amide proton transfer (APT) MRI, which is sensitive to pH and can detect ischemic lesions, even prior to diffusion abnormalities. The critical parameter governing the ability of CEST to detect pH is the sequence. In the present study, a novel strategy was used, based on the gradient echo sequence (GRE), which involved the insertion of a magnetization transfer pulse in each repetition time (TR) and minimizing the TR for in vivo APT imaging. The proposed GRE-APT MRI method was initially verified using a tissue-like pH phantom and optimized MRI parameters for APT imaging. In order to assess the range of acute cerebral infarction, rats (n=4) were subjected to middle cerebral artery occlusion (MCAO) and MRI scanning at 7 telsa (T). Hyperacute ischemic tissue damage was characterized using multiparametric imaging techniques, including diffusion, APT and T2-Weighted MRI. By using a magnetization transfer pulse and minimizing TR, GRE-APT provided high spatial resolution and a homogeneous signal, with clearly distinguished cerebral anatomy. The GRE-APT and diffusion MRI were significantly correlated with lactate content and the area of cerebral infarction in the APT and apparent diffusion coefficient (ADC) maps matched consistently during the hyperacute period. In addition, compared with the infarction area observed on the ADC MRI map, the APT map contained tissue, which had not yet been irreversibly damaged. Therefore, GRE-APT MRI waa able to detect ischemic lactic acidosis with sensitivity and spatiotemporal resolution, suggesting the potential use of pH MRI as a surrogate imaging marker of impaired tissue metabolism for the

  8. Novel gradient echo sequence‑based amide proton transfer magnetic resonance imaging in hyperacute cerebral infarction.

    Science.gov (United States)

    Huang, Dexiao; Li, Shenkai; Dai, Zhuozhi; Shen, Zhiwei; Yan, Gen; Wu, Renhua

    2015-05-01

    In the progression of ischemia, pH is important and is essential in elucidating the association between metabolic disruption, lactate formation, acidosis and tissue damage. Chemical exchange‑dependent saturation transfer (CEST) imaging can be used to detect tissue pH and, in particular, a specific form of CEST magnetic resonance imaging (MRI), termed amide proton transfer (APT) MRI, which is sensitive to pH and can detect ischemic lesions, even prior to diffusion abnormalities. The critical parameter governing the ability of CEST to detect pH is the sequence. In the present study, a novel strategy was used, based on the gradient echo sequence (GRE), which involved the insertion of a magnetization transfer pulse in each repetition time (TR) and minimizing the TR for in vivo APT imaging. The proposed GRE‑APT MRI method was initially verified using a tissue‑like pH phantom and optimized MRI parameters for APT imaging. In order to assess the range of acute cerebral infarction, rats (n=4) were subjected to middle cerebral artery occlusion (MCAO) and MRI scanning at 7 telsa (T). Hyperacute ischemic tissue damage was characterized using multiparametric imaging techniques, including diffusion, APT and T2‑Weighted MRI. By using a magnetization transfer pulse and minimizing TR, GRE‑APT provided high spatial resolution and a homogeneous signal, with clearly distinguished cerebral anatomy. The GRE‑APT and diffusion MRI were significantly correlated with lactate content and the area of cerebral infarction in the APT and apparent diffusion coefficient (ADC) maps matched consistently during the hyperacute period. In addition, compared with the infarction area observed on the ADC MRI map, the APT map contained tissue, which had not yet been irreversibly damaged. Therefore, GRE‑APT MRI waa able to detect ischemic lactic acidosis with sensitivity and spatiotemporal resolution, suggesting the potential use of pH MRI as a surrogate imaging marker of impaired tissue

  9. The π-Tetrel Bond and its Influence on Hydrogen Bonding and Proton Transfer.

    Science.gov (United States)

    Wei, Yuanxin; Li, Qingzhong; Scheiner, Steve

    2017-12-01

    The positive region that lies above the plane of F 2 TO (T=C and Si) interacts with malondialdehyde (MDA), which contains an intramolecular H-bond. The T atom of F 2 TO can lie either in the MDA molecular plane, forming a T⋅⋅⋅O tetrel bond, or F 2 TO can stack directly above MDA in a parallel arrangement. The former structure is more stable than the latter, and in either case, F 2 SiO engages in a much stronger interaction than does F 2 CO, reaching nearly 200 kJ mol -1 . The π-tetrel bond strengthens/weakens the MDA H-bond when the bond is formed to the hydroxyl/carbonyl group of MDA, and causes an accompanying inhibition/promotion of proton transfer within this H-bond; this effect is stronger for F 2 SiO. These same aspects can be tuned by substituents placed on any of the C atoms of MDA, although their effects are not fully correlated with the electron-withdrawing or electron-releasing properties of the substituent. A new type of π-π tetrel bond occurs when the π-hole on the T atom of F 2 TO approaches the middle carbon atom of MDA from above, and a similar configuration is also found between F 2 TO and benzene. Evidence for extensive C⋅⋅⋅C π-π tetrel bonding in crystal materials is presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    Science.gov (United States)

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.

  11. Electrostatic models of electron-driven proton transfer across a lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Anatoly Yu; Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Mourokh, Lev G [Department of Physics, Queens College, The City University of New York, Flushing, NY 11367 (United States)

    2011-06-15

    We present two models for electron-driven uphill proton transport across lipid membranes, with the electron energy converted to the proton gradient via the electrostatic interaction. In the first model, associated with the cytochrome c oxidase complex in the inner mitochondria membranes, the electrostatic coupling to the site occupied by an electron lowers the energy level of the proton-binding site, making proton transfer possible. In the second model, roughly describing the redox loop in a nitrate respiration of E. coli bacteria, an electron displaces a proton from the negative side of the membrane to a shuttle, which subsequently diffuses across the membrane and unloads the proton to its positive side. We show that both models can be described by the same approach, which can be significantly simplified if the system is separated into several clusters, with strong Coulomb interaction inside each cluster and weak transfer couplings between them. We derive and solve the equations of motion for the electron and proton creation/annihilation operators, taking into account the appropriate Coulomb terms, tunnel couplings, and the interaction with the environment. For the second model, these equations of motion are solved jointly with a Langevin-type equation for the shuttle position. We obtain expressions for the electron and proton currents and determine their dependence on the electron and proton voltage build-ups, on-site charging energies, reorganization energies, temperature, and other system parameters. We show that the quantum yield in our models can be up to 100% and the power-conversion efficiency can reach 35%.

  12. Measurements of Volatile Organic Compounds Using Proton Transfer Reaction - Mass Spectrometry during the MILAGRO 2006 Campaign

    Science.gov (United States)

    Fortner, E. C.; Zheng, J.; Zhang, R.; Berk Knighton, W.; Volkamer, R. M.; Sheehy, P.; Molina, L.; André, M.

    2009-01-01

    Volatile organic compounds (VOCs) were measured by proton transfer reaction - mass spectrometry (PTR-MS) on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of the Megacity Initiative - Local and Global Research Observations (MILAGRO) 2006 field campaign. Thirty eight individual masses were monitored during the campaign and many species were quantified including methanol, acetaldehyde, toluene, the sum of C2 benzenes, the sum of C3 benzenes, acetone, isoprene, benzene, and ethyl acetate. The VOC measurements were analyzed to gain a better understanding of the type of VOCs present in the MCMA, their diurnal patterns, and their origins. Diurnal profiles of weekday and weekend/holiday aromatic VOC concentrations showed the influence of vehicular traffic during the morning rush hours and during the afternoon hours. Plumes including elevated toluene as high as 216 parts per billion (ppb) and ethyl acetate as high as 183 ppb were frequently observed during the late night and early morning hours, indicating the possibility of significant industrial sources of the two compounds in the region. Wind fields during those peak episodes revealed no specific direction for the majority of the toluene plumes but the ethyl acetate plumes arrived at the site when winds were from the Southwest or West. The PTR-MS measurements combined with other VOC measuring techniques at the field site as well as VOC measurements conducted in other areas of the Mexico City Metropolitan Area (MCMA) will help to develop a better understanding of the spatial pattern of VOCs and its variability in the MCMA.

  13. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    Science.gov (United States)

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  14. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas.

    Science.gov (United States)

    Ringer, Joachim M

    2013-01-01

    The chemical warfare agents (CWA) Sarin, Soman, Cyclosarin and Tabun were characterised by proton transfer mass spectrometry (PTRMS). It was found that PTRMS is a suitable technique to detect nerve agents highly sensitively, highly selectively and in near real-time. Methods were found to suppress molecule fragmentation which is significant under PTRMS hollow cathode ionisation conditions. In this context, the drift voltage (as one of the most important system parameters) was varied and ammonia was introduced as an additional chemical reagent gas. Auxiliary chemicals such as ammonia affect ionisation processes and are quite common in context with detectors for CWAs based on ion mobility spectrometry (IMS). With both, variation of drift voltage and ammonia as the reagent gas, fragmentation can be suppressed effectively. Suppression of fragmentation is crucial particularly concerning the implementation of an algorithm for automated agent identification in field applications. On the other hand, appearance of particular fragments might deliver additional information. Degradation and rearrangement products of nerve agents are not distinctive for the particular agent but for the chemical class they belong to. It was found that switching between ammonia doped and ordinary water ionisation chemistry can easily be performed within a few seconds. Making use of this effect it is possible to switch between fragment and molecular ion peak spectra. Thus, targeted fragmentation can be used to confirm identification based only on single peak detection. PTRMS turned out to be a promising technique for future CWA detectors. In terms of sensitivity, response time and selectivity (or confidence of identification, respectively) PTRMS performs as a bridging technique between IMS and GC-MS.

  15. Sterics level the rates of proton transfer to [Ni(XPh){PhP(CH₂CH₂PPh₂)₂}]⁺ (X = O, S or Se).

    Science.gov (United States)

    Alwaaly, Ahmed; Henderson, Richard A

    2014-09-04

    Rates of proton transfers between lutH(+) (lut = 2,6-dimethylpyridine) and [Ni(XPh)(PhP{CH2CH2PPh2}2)](+) (X = O, S or Se) are slow and show little variation (k(O) : k(S) : k(Se) = 1 : 12 : 9). This unusual behaviour is a consequence of sterics affecting the optimal interaction between the reactants prior to proton transfer.

  16. 10-hydroxybenzo[h]quinoline: Switching between single and double-well proton transfer through structural modifications

    DEFF Research Database (Denmark)

    Hristova, S; Dobrikov, G; Kamounah, F. S.

    2015-01-01

    and excited singlet state. We observed that the incorporation of electron acceptor substituents on position 7 of the HBQ backbone led to appearance of a keto tautomer in ground state and changes in the excited state potential energy surface. Both processes were strongly solvent dependent. In the ground state...... the equilibrium could be driven from the enol to the keto form by change of solvent. The theoretical calculations explain the substitution-determined transition from a single- to a double-well proton transfer mechanism...

  17. Photophysics of a proton transfer phototautomer within biological confinement of a protein: Spectroscopic and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan K., E-mail: bijan.paul.chem.cu@gmail.com; Guchhait, Nikhil, E-mail: nguchhait@yahoo.com

    2014-09-15

    The present work demonstrates the effect of biological confinement on the photophysics of a proton transfer phototautomer viz., 2-hydroxy-1-naphthaldehyde (HN21). HN21 is a potential candidate exhibiting excited-state intramolecular proton transfer (ESIPT) reaction and thereby generating the phototautomer (i.e., proton transferred keto form) in the excited-state. The ESIPT photophysics of the probe (HN21) is found to be remarkably modified within the confined bio-environment of a model transport protein Bovine Serum Albumin (BSA). Such considerable modification of the ESIPT photophysics of the probe has been exploited to determine the probe–protein binding strength (binding constant, K(±10%)=1.23×10{sup 4} M{sup −1}). The probe–protein binding process is found to be thermodynamically feasible (ΔG=−24.25 kJ mol{sup −1}). The present work also delves into evaluation of the probable binding location of the probe (HN21) within the biomacromolecular assembly of the protein by blind docking simulation technique, which reveals that HN21 favorably binds to the hydrophobic subdomain IIIA of BSA. Circular dichroism (CD) spectroscopy delineates the effect of probe binding on the protein secondary structure in terms of decrease of α-helical content of BSA with increasing probe concentration. Apart from this, excitation–emission matrix fluorescence technique is found to hint at the effect on protein tertiary structure upon binding to the probe. The modulated dynamics of the proton transfer phototautomer of HN21 within the biological confinement is investigated in this context by time-resolved fluorescence decay measurements. The present work also accentuates the mutually corroborating data found from experimental and computational studies. - Highlights: • Remarkable modification of ESIPT emission of HN21 in protein is explored. • Probe–protein binding efficiency is evaluated from fluorescence spectral data. • Binding to the probe accompanies perturbation

  18. Characterisation of Dissolved Organic Carbon by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    Science.gov (United States)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-04-01

    Dissolved organic carbon (DOC) is an integral component of the global carbon cycle. DOC represents an important terrestrial carbon loss as it is broken down both biologically and photochemically, resulting in the release of carbon dioxide (CO2) to the atmosphere. The magnitude of this carbon loss can be affected by land management (e.g. drainage). Furthermore, DOC affects autotrophic and heterotrophic processes in aquatic ecosystems, and, when chlorinated during water treatment, can lead to the release of harmful trihalomethanes. Numerous methods have been used to characterise DOC. The most accessible of these use absorbance and fluorescence properties to make inferences about chemical composition, whilst high-performance size exclusion chromatography can be used to determine apparent molecular weight. XAD fractionation has been extensively used to separate out hydrophilic and hydrophobic components. Thermochemolysis or pyrolysis Gas Chromatography - Mass Spectrometry (GC-MS) give information on molecular properties of DOC, and 13C NMR spectroscopy can provide an insight into the degree of aromaticity. Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. So far, PTR-MS has been used in various environmental applications such as real-time monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols etc. However, as the method is not compatible with water, it has not been used for analysis of organic traces present in natural water samples. The aim of this work was to develop a method based on thermal desorption PTR-MS to analyse water samples in order to characterise chemical composition of dissolved organic carbon. We developed a clean low-pressure evaporation/sublimation system to remove water from samples and thermal desorption system to introduce

  19. Theoretical study on the excited-state intramolecular proton-transfer reaction of 10-hydroxybenzo[h]quinoline in methanol and cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng [Department of Chemistry, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhao, Jinfeng [Department of Physics, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cui, Yanling; Wang, Qianyu [Department of Physics, Liaoning University, Shenyang 110036 (China); Dai, Yumei [Normal College, Shenyang University, Shenyang 110044 (China); Song, Peng, E-mail: songpeng@lnu.edu.cn [Department of Physics, Liaoning University, Shenyang 110036 (China); Xia, Lixin, E-mail: lixinxia@lnu.edu.cn [Department of Chemistry, Liaoning University, Shenyang 110036 (China)

    2015-05-15

    The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 10-hydroxybenzoquinoline (HBQ) in different solvents, have been investigated based on the time-dependent density functional theory (TD-DFT) in detail. Upon excitation, the intramolecular hydrogen bond between the hydroxyl and phenanthrene functionality is significantly strengthened in the S{sub 1} state, which can be used as a reasonable tendency for facilitating the ESIPT process. In addition, the calculated vertical excitation energies in the S{sub 0} state and S{sub 1} state reproduce the experimental UV–vis absorbance and fluorescence emission spectra well. Through calculating the fluorescence spectra of the HBQ chromophore, two outcomes for this chromophore were found in the S{sub 1} state, which demonstrates that the ESIPT process occurs. The potential energy curves have been calculated to account for the mechanism of the proton-transfer process in the excited-state. As a result, the barrierless ESIPT process can occur in the S{sub 1} state with proton transfer from the O atom to the N atom. And maybe the ESIPT process is easier in methanol solvent due to the higher potential energy difference. - Highlights: • The hydrogen bond between the hydroxyl and phenanthrene is strengthened. • The hydrogen bond facilitates the proton transfer from the hydroxyl group to the N atom. • The spontaneous excited-state intramolecular proton transfer reaction can be observed.

  20. The proton transfer reaction in malonaldehyde derivatives: Substituent effects and quasi-aromaticity of the proton bridge

    International Nuclear Information System (INIS)

    Palusiak, Marcin; Simon, Silvia; Sola, Miquel

    2007-01-01

    The proton transfer in malonaldehyde and in some of its derivatives have been considered in order to study the interrelation between the reaction barrier and the π-delocalization in the quasi-ring. A set of simple and mostly common substituents having different properties in resonance effect according to values of substituents constants were chosen in order to simulate the influence of substitution in position 2 or in position 1 (or 3) of malonaldehyde on the quasi-aromaticity and H-bonding. The following substituents have been taken into consideration: NO, NO 2 , CN, CHO, F, H, CH 3 , OCH 3 , OH, and NH 2 . Our results show that when the substituent is attached at position 2 of the quasi-ring, the resonance effect predominates over the field/inductive effect which leads to changes in H-bonding and quasi-aromaticity of the ring motif, while in the case of 1(3) substitution the field/inductive effect is significantly more effective influencing the HB strength, and thus, the proton transfer barrier. Somehow counterintuitively, for the 1(3) substituted systems, the most stable isomer is the one having the weakest HB and lower aromaticity. The reason for this surprising behaviour is discussed

  1. Does excited-state proton-transfer reaction contribute to the emission behaviour of 4-aminophthalimide in aqueous media?

    Science.gov (United States)

    Khara, Dinesh Chandra; Banerjee, Sanghamitra; Samanta, Anunay

    2014-06-23

    4-Aminophthalimide (AP) is an extensively used molecule both for fundamental studies and applications primarily due to its highly solvent-sensitive fluorescence properties. The fluorescence spectrum of AP in aqueous media was recently shown to be dependent on the excitation wavelength. A time-dependent blue shift of its emission spectrum is also reported. On the basis of these findings, the excited-state solvent-mediated proton-transfer reaction of the molecule, which was proposed once but discarded at a later stage, is reintroduced. We report on the fluorescence behaviour of AP and its imide-H protected derivative, N-BuAP, to prove that a solvent-assisted excited-state keto-enol transformation does not contribute to the steady-state and time-resolved emission behaviour of AP in aqueous media. Our results also reveal that the fluorescence of AP in aqueous media arises from two distinct hydrogen-bonded species. The deuterium isotope effect on the fluorescence quantum yield and lifetime of AP, which was thought to be a reflection of the excited-state proton-transfer reaction in the system, is explained by considering the difference in the influence of H(2)O and D(2)O on the nonradiative rates and ground-state exchange of the proton with the solvent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Time resolved investigations on biogenic trace gases exchanges using proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Karl, T.

    2000-02-01

    Volatile organic compounds (VOCs) released from vegetation, including wound-induced VOCs, can have important effects on atmospheric chemistry. The analytical methods for measuring wound-induced VOCs, especially the hexenal family of VOCs (hexenals, hexenols and hexenyl esters) but also compounds like acetaldehyde, are complicated by their chemical instability and the transient nature of their formation after leaf and stem wounding. The goal of this thesis was to assess, quantify and complement our understanding on the origin of tropospheric VOCs. This thesis demonstrates that formation and emission of hexenal family compounds can be monitored on-line using proton-transfer-reaction mass spectrometry (PTR-MS), avoiding the need for preconcentration or chromatography. These measurements revealed the rapid emission of the parent compound, (Z)-3-hexenal, within 1-2 seconds of wounding of leaves from various woody and nonwoody plants, and its metabolites including (E)-2-hexenal, hexenols and hexenyl acetates. Emission of (Z)-3-hexenal from detached, drying leaves averaged 500 μg (gram dry weight)-1. PTR-MS showed to be a useful tool for the analysis of VOC emissions resulting from grazing, herbivory, harvesting and senescing leaves. The release of reactive VOCs during lawn mowing was observed in on-line ambient air measurements in July and August 1998 in the outskirts of Innsbruck. Also obtained were data on emission rates of reactive aldehydes (hexenyl compounds) and other abundant VOCs such as methanol, acetaldehyde and acetone from drying grass in various chamber experiments. Fluxes were measured after cutting of grass using eddy covariance measurements and the micrometeorological gradient method (Obhukov-Similarity-Method). Comparison of data obtained by these different methods showed satisfactory agreement. The highest fluxes for methanol during drying were 5 mg/m2h, for (Z)-3-hexenal 1.5 mg/m2h. Experiments conducted on the Sonnblick Observatory in Fall and Winter

  3. Proton Transfer and Low-Barrier Hydrogen Bonding: a Shifting Vibrational Landscape Dictated by Large Amplitude Tunneling

    Science.gov (United States)

    Vealey, Zachary; Foguel, Lidor; Vaccaro, Patrick

    2017-06-01

    Our fundamental understanding of synergistic hydrogen-bonding and proton-transfer phenomena has been advanced immensely by studies of model systems in which the coherent transduction of hydrons is mediated by two degenerate equilibrium configurations that are isolated from one another by a potential barrier of substantial height. This topography advantageously affords unambiguous signatures for the underlying state-resolved dynamics in the form of tunneling-induced spectral bifurcations, the magnitudes of which encode both the overall efficacy and the detailed mechanism of the unimolecular transformation. As a prototypical member of this class of compounds, 6-hydroxy-2-formylfulvene (HFF) supports an unusual quasi-linear O-H...O \\leftrightarrow O...H-O reaction coordinate that presents a minimal impediment to proton migration - a situation commensurate with the concepts of low-barrier hydrogen bonding (which are characterized by great strength, short distance, and a vanishingly small barrier for hydron migration). A variety of fluorescence-based, laser-spectroscopic probes have been deployed in a cold supersonic free-jet expansion to explore the vibrational landscape and anomalously large tunneling-induced shifts that dominate the ˜{X}^{1}A_{1} potential-energy surface of HFF, thus revealing the most rapid proton tunneling ever reported for a molecular ground state (τ_{pt}≤120fs). The surprising efficiency of such tunneling-mediated processes stems from proximity of the zero-point level to the barrier crest and produces a dramatic alteration in the canonical pattern of vibrational features that reflects, in part, the subtle transition from quantum-mechanical barrier penetration to classical over-the-barrier dynamics. The ultrafast proton-transfer regime that characterizes the ˜{X}^{1}A_{1} manifold will be juxtaposed against analogous findings for the lowest-lying singlet excited state ˜{A}^{1}B_{2} (π*←π), where a marked change in the nature of the

  4. Local Control Theory in Trajectory Surface Hopping Dynamics Applied to the Excited-State Proton Transfer of 4-Hydroxyacridine.

    Science.gov (United States)

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2015-07-20

    The application of local control theory combined with nonadiabatic ab initio molecular dynamics to study the photoinduced intramolecular proton transfer reaction in 4-hydroxyacridine was investigated. All calculations were performed within the framework of linear-response time-dependent density functional theory. The computed pulses revealed important information about the underlying excited-state nuclear dynamics highlighting the involvement of collective vibrational modes that would normally be neglected in a study performed on model systems constrained to a subset of the full configuration space. This study emphasizes the strengths of local control theory for the design of pulses that can trigger chemical reactions associated with the population of a given molecular excited state. In addition, analysis of the generated pulses can help to shed new light on the photophysics and photochemistry of complex molecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Amide proton transfer imaging in clinics: Basic concepts and current and future use in brain tumors and stoke

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jahng, Geon Ho [Dept. of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Jeong, Ha Kyu [Philips Korea, Seoul (Korea, Republic of)

    2016-12-15

    Amide proton transfer (APT) imaging is gaining attention as a relatively new in vivo molecular imaging technique that has higher sensitivity and spatial resolution than magnetic resonance spectroscopy imaging. APT imaging is a subset of the chemical exchange saturation transfer mechanism, which can offer unique image contrast by selectively saturating protons in target molecules that get exchanged with protons in bulk water. In this review, we describe the basic concepts of APT imaging, particularly with regard to the benefit in clinics from the current literature. Clinical applications of APT imaging are described from two perspectives: in the diagnosis and monitoring of the treatment response in brain glioma by reflecting endogenous mobile proteins and peptides, and in the potential for stroke imaging with respect to tissue acidity.

  6. The Effect of Substituent Position on Excited State Intramolecular Proton Transfer in Benzoxazinone Derivatives: Experiment and DFT Calculation.

    Science.gov (United States)

    Bian, Gao-Feng; Guo, Yun; Lv, Xiao-Jing; Zhang, Cheng

    2017-01-01

    The preparation and the photophysical behaviour of two benzoxazinone derivatives isomers 2-(1-hydroxynaphthalen-2-yl)-4H-benzo[e][1, 3]oxazin-4-one(1) and 2-(3-hydroxynaphthalen-2-yl)-4H-benzo[e][1, 3]oxazin-4-one(2) designed for displaying were reported. The effect of substituent position and solvent effect on the excited state intramolecular proton transfer (ESIPT) dynamics and the spectroscopic properties were investigated using a combined theoretical (i.e., time-dependent density function theory (DFT)) and experimental (i.e., steady-state absorption and emission spectra and time-resolved fluorescence spectra) study. The results showed that compound 1 would facilitate ESIPT process and favored the keto tautomer emission, while compound 2 suppressed the ESIPT process and favored the enol emission.

  7. Rotational dependence of the proton-transfer reaction HBr+ + CO2-->HOCO+ + Br. I. Energy versus angular momentum effects.

    Science.gov (United States)

    Paetow, Lisa; Unger, Franziska; Beichel, Witali; Frenking, Gernot; Weitzel, Karl-Michael

    2010-05-07

    Cross sections for the endothermic proton-transfer reactions of rotationally state-selected HBr(+) and DBr(+) ions with CO(2) were measured in a guided ion beam apparatus in order to determine the influence of rotational excitation and collision energy in the center of mass (c.m.) system on the cross section. Ab initio calculations were performed to obtain energetic information about reactants, intermediates, and products. In the experiment HBr(+) and DBr(+) ions were prepared with the same mean rotational quantum number but different mean rotational energies as the rotational constants differ by about a factor of two. The mean rotational energy was varied from 1.4 to 66.3 meV for HBr(+) and from 0.7 to 43.0 meV for DBr(+). Collision energies (E(c.m.)) ranged from 0.32 to 1.00 eV. Under all conditions considered, an increase in the rotational excitation leads to a decrease in the cross section for both reactions. However, the effect is more pronounced for the higher collision energies. For E(c.m.)=1.00 and 0.85 eV; a comparison between the results for HBr(+) and DBr(+) indicates that the cross section is dominated by effects of rotational energy rather than angular momentum. For lower collision energies the cross sections for the deuteron transfer and the proton transfer are in best agreement if not compared for the same c.m. collision energy but for the same value of the difference between the collision energy and the reaction enthalpy.

  8. On-line analysis of organic compounds in diesel exhaust using a proton transfer reaction mass spectrometer (PTR-MS)

    Science.gov (United States)

    Jobson, B. T.; Alexander, M. L.; Maupin, G. D.; Muntean, G. G.

    2005-08-01

    Chemical ionization mass spectrometry using H3O+ proton transfer in an ion drift tube (PTR-MS) was used to measure volatile organic compound (VOC) concentrations on-line in diesel engine exhaust as a function of engine load. The purpose of the study was to evaluate the PTR-MS instrument as an analytical tool for diesel engine emissions abatement research. Measured sensitivities determined from gas standards were found to agree well with calculated sensitivities for non-polar species. A slight humidity dependent sensitivity was observed for non-polar species, implying that reactions with H+(H2O)2 were important for some organics. The diesel exhaust mass spectra were complex but displayed a pattern of strong ion signals at 14n + 1 (n = 3.8) masses, with a relative ion abundance similar to that obtained from electron impact ionization of alkanes. Laboratory experiments verified that C8-C16 n-alkanes and C8-C13 1-alkenes react with H3O+ in dissociative proton transfer reaction resulting in alkyl cation ion products, primarily m/z 41, 43, 57, 71 and 85. Monitoring the sum of these ion signals may be useful for estimating alkane emissions from unburnt diesel fuel. Alkane fragmentation likely simplified the diesel exhaust mass spectrum and reduced potential mass interferences with isobaric aromatic compounds. Concentrations of aldehydes and ketones dominated those of aromatic species with formaldehyde and acetaldehyde estimated to be the most abundant VOCs in the PTR-MS mass spectrum at all engine loads. The relative abundances of benzene and toluene increased with engine load indicating their pyrogenic origin. The relative abundance of alkanes, aromatics, aldehydes and alcohols was broadly consistent with literature publications of diesel exhaust analysis by gas chromatography. About 75% of the organic ion signal could be assigned. On-line analysis of diesel exhaust using this technology may be valuable tool for diesel engine emission research.

  9. Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus.

    Science.gov (United States)

    Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter

    2014-11-04

    A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.

  10. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Esboui, Mounir, E-mail: mounir.esboui@fst.rnu.tn [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, 2092 Tunis (Tunisia); Technical and Vocational Training Corporation, Hail College of Technology, P.O. Box 1960, Hail 81441 (Saudi Arabia)

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  11. Key role of water in proton transfer at the Q(o)-site of the cytochrome bc(1) complex predicted by atomistic molecular dynamics simulations

    DEFF Research Database (Denmark)

    Postila, P. A.; Kaszuba, K.; Sarewicz, M.

    2013-01-01

    Cytochrome (cyt) bc(1) complex, which is an integral part of the respiratory chain and related energy-conserving systems, has two quinone-binding cavities (Q(o)- and Q(i)-sites), where the substrate participates in electron and proton transfer. Due to its complexity, many of the mechanistic detai...

  12. Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System : Stereospecificity of Proton Transfer in the Phosphorylation of Enzyme I from (Z)-Phosphoenolbutyrate

    NARCIS (Netherlands)

    Hoving, H; Nowak, Thomas; Robillard, George T.

    1983-01-01

    The stereochemistry of the proton transfer in the reaction of phosphoenolbutyrate with enzyme I has been established. During the reaction of the pure Z isomer of this analogue of phosphoenolpyruvate with enzyme I, to yield phosphoenzyme I and 2-oxobutyrate, the substrate is protonated at C-3 from

  13. CALCULATION OF THE PROTON-TRANSFER RATE USING DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS - INCLUSION OF THE PROTON EXCITED-STATES

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC

    1995-01-01

    The methodology for treatment of proton transfer processes by density matrix evolution (DME) with inclusion of many excited states is presented. The DME method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. 1993, 97, 13464) that simulates the dynamics of quantum systems embedded in a classical

  14. On-line Analysis of Organic Compounds in Diesel Exhaust Using a Proton Transfer Reaction Mass Spectrometer (PTR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Jobson, B Tom T.; Alexander, M. Lizabeth; Maupin, Gary D.; Muntean, George G.

    2005-08-01

    Chemical ionization mass spectrometry using H3O+ proton transfer in an ion drift tube (PTR-MS) was used to measure volatile organic compound (VOC) concentrations on-line in diesel engine exhaust as a function on engine load. The purpose of the study was to evaluate the PTR-MS instrument as an analytical tool for diesel engine emissions abatement research. Measured sensitivities determined from gas standards were found to be between 30% and 100% greater than calculated sensitivities. A slight humidity dependent sensitivity was observed for non-polar species, implying that reactions with H+(H2O)2 were important for some organics. The mass spectra of diesel exhaust were complex but displayed a pattern of strong ion signals at 14n+1 (n=3..8) masses, with a relative ion abundance similar to that obtained from electron impact ionization of alkanes. Laboratory experiments verified that C8-C16 n-alkanes and C8-C13 1-alkenes react with H3O+ in dissociative proton transfer reaction resulting in alkyl cation ion products, primarily m/z 41, 43, 57, 71 and 85. Monitoring the sum of these ions signals may be useful for estimating alkane emissions from unburnt diesel fuel. Alkane fragmentation likely simplified the diesel exhaust mass spectrum and reduced potential mass interferences with isobaric aromatic compounds. It is shown that the relative abundances of VOCs changed as a function of engine load. Concentrations of aldehydes and ketones dominated those of aromatic species with formaldehyde and acetaldehyde estimated to be the most abundant VOCs in the PTR-MS mass spectrum at all engine loads. The relative abundances of benzene and toluene increased with engine load indicating their pyrogenic origin. The relative abundance of alkanes, aromatics, aldehydes, and alcohols was broadly consistent with literature publications of diesel exhaust analysis by gas chromatography. About 75% of the organic ion signal could be assigned. On line analysis of diesel exhaust using this

  15. Liver histology of an afibrinogenemic patient with the Bbeta-L353R mutation showing no evidence of hepatic endoplasmic reticulum storage disease (ERSD); comparative study in COS-1 cells of the intracellular processing of the Bbeta-L353R fibrinogen vs. the ERSD-associated gamma-G284R mutant.

    Science.gov (United States)

    Duga, S; Braidotti, P; Asselta, R; Maggioni, M; Santagostino, E; Pellegrini, C; Coggi, G; Malcovati, M; Tenchini, M L

    2005-04-01

    Type I fibrinogen deficiencies (hypofibrinogenemia and afibrinogenemia) are rare congenital disorders characterized by low or unmeasurable plasma fibrinogen antigen levels. Their genetic bases are represented by mutations within the three fibrinogen genes. Among the 11 reported missense mutations, a few have been characterized by expression studies and found to have an impaired fibrinogen assembly and/or secretion. Histopathological analyses were previously reported in two hypofibrinogenemic cases with discernible hepatic disease, revealing that both underlying mutations (gamma-Gly284Arg and gamma-Arg375Trp) were associated with hepatic fibrinogen endoplasmic reticulum storage disease (ERSD). The objective of this study was to investigate the liver histology in an afibrinogenemic patient, homozygous for the Bbeta-Leu353Arg mutation, and to study the intracellular processing of the mutant protein. Liver histology was evaluated by light microscopy, electron microscopy and immunocytochemistry. Intracellular processing of mutant fibrinogen was analyzed by pulse-chase labeling and immunoprecipitation experiments. Messenger RNA levels were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR). The histopathological characterization of the liver showed no signs of fibrinogen accumulation, a difference from the previously reported findings in two hypofibrinogenemic kindreds with ERSD. To evaluate whether the Bbeta-Leu353Arg mutation and the ERSD-associated gamma-Gly284Arg mutation affected intracellular fibrinogen trafficking differently, both mutant proteins were expressed in COS-1 cells. Bbeta-Leu353Arg led to a more severe secretion defect, but no differences that could explain phenotype-genotype correlation were found in the intracellular processing. Endoglycosidase-H analysis demonstrated a secretion block before translocation to the Golgi medial stacks. Real-time RT-PCR studies showed normal levels of the Bbeta mRNA in the patient's liver

  16. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy.

    Science.gov (United States)

    Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe

    2013-08-14

    Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.

  17. Internal proton transfer and H2 rotations in the H5(+) cluster: a marked influence on its thermal equilibrium state.

    Science.gov (United States)

    de Tudela, Ricardo Pérez; Barragán, Patricia; Prosmiti, Rita; Villarreal, Pablo; Delgado-Barrio, Gerardo

    2011-03-31

    Classical and path integral Monte Carlo (CMC, PIMC) "on the fly" calculations are carried out to investigate anharmonic quantum effects on the thermal equilibrium structure of the H5(+) cluster. The idea to follow in our computations is based on using a combination of the above-mentioned nuclear classical and quantum statistical methods, and first-principles density functional (DFT) electronic structure calculations. The interaction energies are computed within the DFT framework using the B3(H) hybrid functional, specially designed for hydrogen-only systems. The global minimum of the potential is predicted to be a nonplanar configuration of C(2v) symmetry, while the next three low-lying stationary points on the surface correspond to extremely low-energy barriers for the internal proton transfer and to the rotation of the H2 molecules, around the C2 axis of H5(+), connecting the symmetric C(2v) minima in the planar and nonplanar orientations. On the basis of full-dimensional converged PIMC calculations, results on the quantum vibrational zero-point energy (ZPE) and state of H5(+) are reported at a low temperature of 10 K, and the influence of the above-mentioned topological features of the surface on its probability distributions is clearly demonstrated.

  18. Effect of NaCl Salts on the Activation Energy of Excited-State Proton Transfer Reaction of Coumarin 183.

    Science.gov (United States)

    Joung, Joonyoung F; Kim, Sangin; Park, Sungnam

    2015-12-17

    Coumarin 183 (C183) was used as a photoacid to study excited-state proton transfer (ESPT) reactions. Here, we studied the effect of ions on the ESPT of C183 in aqueous NaCl solutions using a steady-state fluorescence spectroscopy and time-correlated single photon counting (TCSPC) method. The acid dissociation equilibrium of excited-state C183 and the activation energy for the ESPT of C183 were determined as a function of NaCl concentration. The change in the equilibrium constant was found to be correlated with the solvation energy of deprotonated C183. Frequency-resolved TCSPC signals measured at several temperatures were analyzed by using a global fitting analysis method which enabled us to extract all the rate constants involving the ESPT reaction and the spectra of individual species. The activation energy for the ESPT reaction of C183 was highly dependent on NaCl concentration. Quantum chemical calculations were used to calculate the local hydrogen-bond (H-bond) configurations around C183 in aqueous NaCl solutions. It was found that the activation energy for the ESPT was determined by the local H-bond configurations around C183 which were significantly influenced by the dissolved ions.

  19. Competitive roles of reagent vibration and translation in the exothermic proton transfer reaction H+2+Ar→HAr++H

    International Nuclear Information System (INIS)

    Bilotta, R.M.; Farrar, J.M.

    1981-01-01

    We present a crossed beam study of the title reaction at fixed collision energies of 1.2 and 2.3 eV with reagent H + 2 average vibrational energies of 0.44 and 0.89 eV; we also present data at fixed total energies with variable proportions of reagent vibrational and translational energy. At fixed collision energy, reagent vibrational excitation is found to have negligible effect on the total cross section for proton transfer. At fixed total energy, a decrease in reagent vibrational excitation with a corresponding increase in reagent translation leads to partial disposal of the incremental translation in product translation: At a total energy of 3.5 eV, 50% of this incremental reagent translation appears as product translation. At a total energy of 4.6 eV, 78% of the incremental translation appears in product translation. The experimental data are discussed in terms of induced attractive and repulsive energy release on an attractive potential surface. The role of noncollinear geometries and compressed reactant configurations is judged to be of substantial importance in assessing product rotational excitation and dissociation

  20. QTES-DFTB dynamics study on the effect of substrate motion on quantum proton transfer in soybean lipoxygenase-1

    Science.gov (United States)

    Mazzuca, James; Garashchuk, Sophya; Jakowski, Jacek

    2014-03-01

    It has been shown that the proton transfer in the enzymatic active site of soybean lipoxygenase-1 (SLO-1) occurs largely by a quantum tunneling mechanism. This study examined the role of local substrate vibrations on this proton tunneling reaction. We employ an approximate quantum trajectory (QT) dynamics method with linear quantum force. The electronic structure (ES) was calculated on-the-fly with a density functional tight binding (DFTB) method. This QTES-DFTB method scales linearly with number of trajectories, and the calculation of the quantum force is a small addition to the overall cost of trajectory dynamics. The active site was represented as a 44-atom system. Quantum effects were included only for the transferring proton, and substrate nuclei were treated classically. The effect of substrate vibrations was evaluated by freezing or relaxing the substrate nuclei. Trajectory calculations were performed at several temperatures ranging from 250-350 K, and rate constants were calculated through the quantum mechanical flux operator which depends on time-dependent correlation functions. It was found that the substrate motion reliably increases the rate constants, as well as the P/D kinetic isotope effect, by approximately 10% across all temperatures examined. NSF Grant No. CHE-1056188, APRA-NSF-EPS-0919436, and CHE-1048629, NICS Teragrid/Xsede TG-DMR110037.

  1. Excited-state proton transfer of 4-hydroxyl-1, 8-naphthalimide derivatives: A combined experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Zongjin; Li, Peng; Zhang, Xuexiang; Wang, Endong; Wang, Yanni; Zhou, Panwang, E-mail: pwzhou@dicp.ac.cn

    2016-09-15

    The photophysical properties of N-butyl-4-hydroxyl-1, 8-naphthalimide (BOH) and N-(morpholinoethyl)−4-hydroxy-1, 8-naphthalimide (MOH) in various solvents are presented and the density functional theory (DFT)/time-dependent density functional theory (TDDFT) methods at the B3LYP/TZVP theoretical level are adopted to investigate the UV–visible absorption and emission data. An efficient intermolecular excited-state proton transfer (ESPT) reaction occurs for both compounds in DMSO, methanol and water. In aqueous solution, both BOH and MOH can be used as ratiometric pH probes and perform as strong photoacids with pKa*=−2.2, −2.4, respectively. Most interestingly, in the steady-state fluorescence spectra of BOH and MOH in concentrated HCl, an unexpected blue-shifted band is observed and assumed to originate from the contact ion pair (CIP) formed by hydronium ion and the anionic form of the photoacid resulted from ESPT. Theoretical calculations are used to simulate the CIP in the case of BOH, which afford reasonable results compared with the experimental data.

  2. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb.

    Science.gov (United States)

    Erasmus, Sara W; Muller, Magdalena; Alewijn, Martin; Koot, Alex H; van Ruth, Saskia M; Hoffman, Louwrens C

    2017-10-15

    The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile fingerprints were affected by the origin of the meat. The classification of the origin of the lamb was achieved by examining the calculated and recorded fingerprints in combination with chemometrics. Four different partial least squares discriminant analysis (PLS-DA) models were fitted to the data to classify lamb meat and fat samples into "region of origin" (six different regions) and "origin" (Karoo vs. Non-Karoo). The estimation models classified samples 100% correctly. Validation of the first two models gave 42% (fat) and 58% (meat) correct classification of region, while the second two models performed better with 92% (fat) and 83% (meat) correct classification of origin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Measurements of acetone yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Wisthaler, A.; Lindinger, W.; Jensen, N.R.; Winterhalter, R.; Hjorth, J.

    2002-01-01

    Biogenic VOCs (Volatile Organic Compounds) are known to be emitted in large quantities from vegetation exceeding largely global emissions of anthropogenic VOCs. Monoterpenes (C 10 H 16 ) are important constituents of biogenic VOC emissions. The atmospheric oxidation of Monoterpenes appears to be a potentially relevant source of acetone in the atmosphere. Acetone is present as a significant trace gas in the whole troposphere and influences in particular the atmospheric chemistry in the upper troposphere by substantially contributing to the formation of HO x radicals and peroxyacetyl nitrate (PAN). Acetone is formed promptly, following attack by the OH-radical on the terpene, via a series of highly unstable radical intermediates, but it is also formed slowly via the degradation of stable non-radical intermediates such as pinonaldehyde and nopinone. In order to investigate the relative importance of these processes, the OH-initiated oxidation of α-pinene and β-pinene was investigated in a chamber study, where the concentrations of monoterpenes, acetone, pinonaldehyde and nopinone were monitored by proton-transfer-reaction mass spectrometry (PTR-MS). It was found that significant amounts of acetone are formed directly, whenα-pinene and β-pinene are oxidized by the OH radical, but also secondary chemistry (degradation of primary reaction products) gives a significant contribution to the formation of acetone from monoterpenes. It can be concluded that atmospheric oxidation of monoterpenes contributes a significant fraction to the global acetone source strength. (nevyjel)

  4. Effective targeting of proton transfer at ground and excited states of ortho-(2'-imidazolyl)naphthol constitutional isomers.

    Science.gov (United States)

    Oliveira, Thaís C F; Carmo, Luiz F V; Murta, Bárbara; Duarte, Luís G T A; Nome, Rene A; Rocha, Willian R; Brandão, Tiago A S

    2015-01-28

    Steady-state and time-resolved spectroscopy and quantum chemical computational studies were employed to investigate ground and excited state proton transfer of a novel series of ortho-(1H-imidazol-2-yl)naphthol constitutional isomers: 1-(1H-imidazol-2-yl)naphthalen-2-ol (1NI2OH), 2-(1H-imidazol-2-yl)naphthalen-1-ol (2NI1OH) and 3-(1H-imidazol-2-yl)naphthalen-2-ol (3NI2OH). Proper Near Attack Conformations (NACs) involving a strong intramolecular hydrogen bond between the naphthol moiety and the ortho-imidazole group account for the highest ground state acidity of 2NI1OH compared with 1NI2OH and 3NI2OH. Moreover, ESIPT for 2NI1OH and 3NI2OH is further associated with planar chelate H-ring formation whereas 1NI2OH shows the highest ESIPT barrier and a noncoplanar imidazole group. In addition to energetic and structural requirements, the final state also depends on electronic configuration of the ESIPT product with the neutral 3NI2OH showing an ICT effect that correlates with the excited state pKa of the cationic species.

  5. Restrained Proton Indicator in Combined Quantum-Mechanics/Molecular-Mechanics Dynamics Simulations of Proton Transfer through a Carbon Nanotube.

    Science.gov (United States)

    Duster, Adam W; Lin, Hai

    2017-09-14

    Recently, a collective variable "proton indicator" was purposed for tracking an excess proton solvated in bulk water in molecular dynamics simulations. In this work, we demonstrate the feasibility of utilizing the position of this proton indicator as a reaction coordinate to model an excess proton migrating through a hydrophobic carbon nanotube in combined quantum-mechanics/molecular-mechanics simulations. Our results indicate that applying a harmonic restraint to the proton indicator in the bulk solvent near the nanotube pore entrance leads to the recruitment of water molecules into the pore. This is consistent with an earlier study that employed a multistate empirical valence bond potential and a different representation (center of excess charge) of the proton. We attribute this water recruitment to the delocalized nature of the solvated proton, which prefers to be in high-dielectric bulk solvent. While water recruitment into the pore is considered an artifact in the present simulations (because of the artificially imposed restraint on the proton), if the proton were naturally restrained, it could assist in building water wires prior to proton transfer through the pore. The potential of mean force for a proton translocation through the water-filled pore was computed by umbrella sampling, where the bias potentials were applied to the proton indicator. The free energy curve and barrier heights agree reasonably with those in the literature. The results suggest that the proton indicator can be used as a reaction coordinate in simulations of proton transport in confined environments.

  6. Excited-state intramolecular proton transfer in 3-hyroxyflavone isolated in solid argon: fluorescence and fluorescence-excitation spectra and tautomer fluorescence rise time

    Energy Technology Data Exchange (ETDEWEB)

    Dick, B.; Ernsting, N.P.

    1987-07-30

    The fluorescence properties of 3-hydroxyflavone isolated in solid argon at 15 K have been investigated. Upon electronic excitation the molecules undergo rapid intramolecular proton transfer. No fluorescence from the excited state of the normal form of the molecule could be detected. Perturbations due to hydrogen-bonding impurities which produce serious experimental problems in hydrocarbon glasses are largely suppressed in argon matrices. The rise of the green fluorescence of the tautomer was studied with excitation pulses of 230-fs duration and streak camera detection. An apparent tautomer fluorescence rise time of 2.7 ps was obtained by deconvolution. A comparative measurement of the dye coumarine 6 yielded an apparent fluorescence rise time of 2.5 ps, which can be entirely attributed to the group velocity dispersion of the streak camera optics. This indicates a rate constant for excited-state intramolecular proton transfer in 3-hydroxyflavone of greater than 10/sup 12/ s/sup -1/.

  7. Proton-transfer and H2-elimination reactions of trimethylamine alane: role of dihydrogen bonding and Lewis acid-base interactions.

    Science.gov (United States)

    Filippov, Oleg A; Tsupreva, Victoria N; Golubinskaya, Lyudmila M; Krylova, Antonina I; Bregadze, Vladimir I; Lledos, Agusti; Epstein, Lina M; Shubina, Elena S

    2009-04-20

    Proton-transfer and H(2)-elimination reactions of aluminum hydride AlH(3)(NMe(3)) (TMAA) with XH acids were studied by means of IR and NMR spectroscopy and DFT calculations. The dihydrogen-bonded (DHB) intermediates in the interaction of the TMAA with XH acids (CH(3)OH, (i)PrOH, CF(3)CH(2)OH, adamantyl acetylene, indole, 2,3,4,5,6-pentafluoroaniline, and 2,3,5,6-tetrachloroaniline) were examined experimentally at low temperatures, and the spectroscopic characteristics, dihydrogen bond strength and structures, and the electronic and energetic characteristics of these complexes were determined by combining experimental and theoretical approaches. The possibility of two different types of DHB complexes with polydentate proton donors (typical monodentate and bidentate coordination with the formation of a symmetrical chelate structure) was shown by DFT calculations and was experimentally proven in solution. The DHB complexes are intermediates of proton-transfer and H(2)-elimination reactions. The extent of this reaction is very dependent on the acid strength and temperature. With temperature increases the elimination of H(2) was observed for OH and NH acids, yielding the reaction products with Al-O and Al-N bonds. The reaction mechanism was computationally studied. Besides the DHB pathway for proton transfer, another pathway starting from a Lewis complex was discovered. Preference for one of the pathways is related to the acid strength and the nucleophilicity of the proton donor. As a consequence of the dual Lewis acid-base nature of neutral aluminum hydride, participation of a second ROH molecule acting as a bifunctional catalyst forming a six-member cycle connecting aluminum and hydride sites notably reduces the reaction barrier. This mechanism could operate for proton transfer from weak OH acids to TMAA in the presence of an excess of proton donor.

  8. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sensitive detection of n-alkanes using a mixed ionization mode proton-transfer-reaction mass spectrometer

    Directory of Open Access Journals (Sweden)

    O. Amador-Muñoz

    2016-11-01

    Full Text Available Proton-transfer-reaction mass spectrometry (PTR-MS is a technique that is widely used to detect volatile organic compounds (VOCs with proton affinities higher than water. However, n-alkanes generally have a lower proton affinity than water and therefore proton transfer (PT by reaction with H3O+ is not an effective mechanism for their detection. In this study, we developed a method using a conventional PTR-MS to detect n-alkanes by optimizing ion source and drift tube conditions to vary the relative amounts of different primary ions (H3O+, O2+, NO+ in the reaction chamber (drift tube. There are very few studies on O2+ detection of alkanes and the mixed mode has never been proposed before. We determined the optimum conditions and the resulting reaction mechanisms, allowing detection of n-alkanes from n-pentane to n-tridecane. These compounds are mostly emitted by evaporative/combustion process from fossil fuel use. The charge transfer (CT mechanism observed with O2+ was the main reaction channel for n-heptane and longer n-alkanes, while for n-pentane and n-hexane the main reaction channel was hydride abstraction (HA. Maximum sensitivities were obtained at low E ∕ N ratios (83 Td, low water flow (2 sccm and high O2+ ∕ NO+ ratios (Uso =  180 V. Isotopic 13C contribution was taken into account by subtracting fractions of the preceding 12C ion signal based on the number of carbon atoms and the natural abundance of 13C (i.e., 5.6 % for n-pentane and 14.5 % for n-tridecane. After accounting for isotopic distributions, we found that PT cannot be observed for n-alkanes smaller than n-decane. Instead, protonated water clusters of n-alkanes (M  ⋅  H3O+ species were observed with higher abundance using lower O2+ and higher water cluster fractions. M  ⋅  H3O+ species are probably the source for the M + H+ species observed from n-decane to n-tridecane. Normalized sensitivities to O2+ or to the sum of O2++

  10. Guanine radical reaction processes: a computational description of proton transfer in X-irradiated 9-ethylguanine single crystals.

    Science.gov (United States)

    Jayatilaka, Nayana; Nelson, William H

    2008-12-25

    Computational methods based on DFT procedures have been used to investigate proton-transfer processes in irradiated 9-ethylguanine crystals. Previous experimental results from X-irradiation and study of this system at 10 K found significant concentrations of two main products, R1, formed by N7-hydrogenation of the purine ring, and R2, the primary one-electron oxidation product (Jayatilaka, N.; Nelson, W. H. J. Phys. Chem. B 2007, 111, 7887). The objective of this work is to describe the processes leading to these products using computational methods that take into account molecular packing and bulk dielectric properties. The basic concept is that a proton will transfer following ionization if the net electronic energy of the system, consisting of the donor plus the acceptor plus any intervening molecules, becomes lower. Three approaches were used to investigate this concept, two based on energies computed for single molecules and one based on energies computed for two-molecule clusters arranged as in the crystals. The results are that the methods successfully predict the observed behavior, that it is energetically favorable on one-electron reduction for proton H1 to transfer from a neutral molecule to N7 of the neighbor, forming the N7-hydrogenated product, and that there is virtually no energy advantage for a proton to transfer upon one-electron oxidation. The results also support the proposal that the C8 H-addition radical, found only upon irradiation at 300 K, was the product of intramolecular transfer of the H7 proton to C8 in a process apparently requiring sufficient thermal energy for activation. Finally, the computations predict hyperfine couplings and tensors in very good agreement with those from experiment, thereby providing additional evidence for the success of the computations in describing the experimental observations.

  11. Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron–Proton Transfer

    Science.gov (United States)

    2016-01-01

    The rate constants for typical concerted proton-coupled electron transfer (PCET) reactions depend on the vibronic coupling between the diabatic reactant and product states. The form of the vibronic coupling is different for electronically adiabatic and nonadiabatic reactions, which are associated with hydrogen atom transfer (HAT) and electron–proton transfer (EPT) mechanisms, respectively. Most PCET rate constant expressions rely on the Condon approximation, which assumes that the vibronic coupling is independent of the nuclear coordinates of the solute and the solvent or protein. Herein we test the Condon approximation for PCET vibronic couplings. The dependence of the vibronic coupling on molecular geometry is investigated for an open and a stacked transition state geometry of the phenoxyl-phenol self-exchange reaction. The calculations indicate that the open geometry is electronically nonadiabatic, corresponding to an EPT mechanism that involves significant electronic charge redistribution, while the stacked geometry is predominantly electronically adiabatic, corresponding primarily to an HAT mechanism. Consequently, a single molecular system can exhibit both HAT and EPT character. The dependence of the vibronic coupling on the solvent or protein configuration is examined for the soybean lipoxygenase enzyme. The calculations indicate that this PCET reaction is electronically nonadiabatic with a vibronic coupling that does not depend significantly on the protein environment. Thus, the Condon approximation is shown to be valid for the solvent and protein nuclear coordinates but invalid for the solute nuclear coordinates in certain PCET systems. These results have significant implications for the calculation of rate constants, as well as mechanistic interpretations, of PCET reactions. PMID:26412613

  12. Laboratory studies in support of the detection of biogenic unsaturated alcohols by proton transfer reaction-mass spectrometry

    Science.gov (United States)

    Demarcke, M.; Amelynck, C.; Schoon, N.; Dhooghe, F.; Rimetz-Planchon, J.; van Langenhove, H.; Dewulf, J.

    2010-02-01

    The effect of the ratio of the electric field to the buffer gas number density (E/N) in the drift tube reactor of a proton transfer reaction-mass spectrometer (PTR-MS) on the product ion distributions of seven common biogenic unsaturated alcohols (2-methyl-3-buten-2-ol, 1-penten-3-ol, cis-3-hexen-1-ol, trans-2-hexen-1-ol, 1-octen-3-ol, 6-methyl-5-hepten-2-ol and linalool) has been investigated. At low E/N values, the dominant product ion is the dehydrated protonated alcohol. Increasing E/N results in more extensive fragmentation for all compounds. For cis-3-hexenol and 6-methyl-5-hepten-2-ol the contribution of the protonated molecule can be enhanced by reducing E/N with respect to commonly used PTR-MS E/N values (120-130 Td). Significant differences have been found between some of the isomeric species studied, opening a way for selective detection. The C10 alcohol linalool mainly results in product ions at m/z 137 and 81, which are also PTR-MS fingerprints of monoterpenes. This may complicate monoterpene quantification when linalool and monoterpenes are simultaneously present in sampled air. Furthermore the influence of the water vapour pressure in the PTR-MS inlet line on the product ion distributions has been determined. Some major fingerprint ions of the unsaturated alcohols were found to depend significantly on the water vapour pressure in the inlet line and this should be taken into account for accurate quantification of these species by PTR-MS.

  13. Use of Rapid Reduced Electric Field Switching to Enhance Compound Specificity for Proton Transfer Reaction-Mass Spectrometry.

    Science.gov (United States)

    González-Méndez, Ramón; Watts, Peter; Reich, D Fraser; Mullock, Stephen J; Cairns, Stuart; Hickey, Peter; Brookes, Matthew; Mayhew, Chris Anthony

    2018-04-09

    The high sensitivity of Proton Transfer Reaction-Mass Spectrometry (PTR-MS) makes it a suitable analytical tool for detecting trace compounds. Its specificity is primarily determined by the accuracy of identifying the m/z of the product ions specific to a particular compound. However, specificity can be enhanced by changing the product ions (concentrations and types) through modifying the reduced electric field. For current PTR-MS systems this is not possible for trace compounds that would only be present in the reaction chamber of a PTR-MS for a short time (seconds). For such circumstances it is necessary to change the reduce electric field swiftly if specificity enhancements are to be achieved. In this paper we demonstrate such a novel approach, which permits any compound that may only be present in the drift tube for seconds to be thoroughly investigated. Specifically, we have developed hardware and software which permits the reaction region's voltages to be rapidly switched at a frequency of 0.1-5 Hz. We show how this technique can be used to provide a higher confidence in the identification of compounds than is possible by keeping to one reduced electric field value through illustrating the detection of explosives. Although demonstrated for homeland security applications, this new technique has applications in other analytical areas and disciplines where rapid changes in a compound's concentration can occur, e.g. in the Earth's atmosphere, plant emissions and in breath. Importantly, this adaptation provides a method for improved selectivity without expensive instrumental changes or the need for high mass resolution instruments.

  14. Mixed quantum classical calculation of proton transfer reaction rates: from deep tunneling to over the barrier regimes.

    Science.gov (United States)

    Xie, Weiwei; Xu, Yang; Zhu, Lili; Shi, Qiang

    2014-05-07

    We present mixed quantum classical calculations of the proton transfer (PT) reaction rates represented by a double well system coupled to a dissipative bath. The rate constants are calculated within the so called nontraditional view of the PT reaction, where the proton motion is quantized and the solvent polarization is used as the reaction coordinate. Quantization of the proton degree of freedom results in a problem of non-adiabatic dynamics. By employing the reactive flux formulation of the rate constant, the initial sampling starts from the transition state defined using the collective reaction coordinate. Dynamics of the collective reaction coordinate is treated classically as over damped diffusive motion, for which the equation of motion can be derived using the path integral, or the mixed quantum classical Liouville equation methods. The calculated mixed quantum classical rate constants agree well with the results from the numerically exact hierarchical equation of motion approach for a broad range of model parameters. Moreover, we are able to obtain contributions from each vibrational state to the total reaction rate, which helps to understand the reaction mechanism from the deep tunneling to over the barrier regimes. The numerical results are also compared with those from existing approximate theories based on calculations of the non-adiabatic transmission coefficients. It is found that the two-surface Landau-Zener formula works well in calculating the transmission coefficients in the deep tunneling regime, where the crossing point between the two lowest vibrational states dominates the total reaction rate. When multiple vibrational levels are involved, including additional crossing points on the free energy surfaces is important to obtain the correct reaction rate using the Landau-Zener formula.

  15. Measurements of Volatile Organic Compounds Using Proton Transfer Reaction – Mass Spectrometry during the MILAGRO 2006 Campaign

    Directory of Open Access Journals (Sweden)

    E. C. Fortner

    2009-01-01

    Full Text Available Volatile organic compounds (VOCs were measured by proton transfer reaction – mass spectrometry (PTR-MS on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of the Megacity Initiative – Local and Global Research Observations (MILAGRO 2006 field campaign. Thirty eight individual masses were monitored during the campaign and many species were quantified including methanol, acetaldehyde, toluene, the sum of C2 benzenes, the sum of C3 benzenes, acetone, isoprene, benzene, and ethyl acetate. The VOC measurements were analyzed to gain a better understanding of the type of VOCs present in the MCMA, their diurnal patterns, and their origins. Diurnal profiles of weekday and weekend/holiday aromatic VOC concentrations showed the influence of vehicular traffic during the morning rush hours and during the afternoon hours. Plumes including elevated toluene as high as 216 parts per billion (ppb and ethyl acetate as high as 183 ppb were frequently observed during the late night and early morning hours, indicating the possibility of significant industrial sources of the two compounds in the region. Wind fields during those peak episodes revealed no specific direction for the majority of the toluene plumes but the ethyl acetate plumes arrived at the site when winds were from the Southwest or West. The PTR-MS measurements combined with other VOC measuring techniques at the field site as well as VOC measurements conducted in other areas of the Mexico City Metropolitan Area (MCMA will help to develop a better understanding of the spatial pattern of VOCs and its variability in the MCMA.

  16. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics.

    Science.gov (United States)

    Jiang, Shanshan; Rui, Qihong; Wang, Yu; Heo, Hye-Young; Zou, Tianyu; Yu, Hao; Zhang, Yi; Wang, Xianlong; Du, Yongxing; Wen, Xinrui; Chen, Fangyao; Wang, Jihong; Eberhart, Charles G; Zhou, Jinyuan; Wen, Zhibo

    2017-12-12

    To explore the feasibility of using amide proton transfer-weighted (APTw) MRI metrics as surrogate biomarkers to identify the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in glioblastoma (GBM). Eighteen newly diagnosed GBM patients, who were previously scanned at 3T and had a confirmed MGMT methylation status, were retrospectively analysed. For each case, a histogram analysis in the tumour mass was performed to evaluate several quantitative APTw MRI metrics. The Mann-Whitney test was used to evaluate the difference in APTw parameters between MGMT methylated and unmethylated GBMs, and the receiver-operator-characteristic analysis was further used to assess diagnostic performance. Ten GBMs were found to harbour a methylated MGMT promoter, and eight GBMs were unmethylated. The mean, variance, 50th percentile, 90th percentile and Width 10-90 APTw values were significantly higher in the MGMT unmethylated GBMs than in the MGMT methylated GBMs, with areas under the receiver-operator-characteristic curves of 0.825, 0.837, 0.850, 0856 and 0.763, respectively, for the discrimination of MGMT promoter methylation status. APTw signal metrics have the potential to serve as valuable imaging biomarkers for identifying MGMT methylation status in the GBM population. • APTw-MRI is applied to predict MGMT promoter methylation status in GBMs. • GBMs with unmethylated MGMT promoter present higher APTw-MRI than methylated GBMs. • Multiple APTw histogram metrics can identify MGMT methylation status. • Mean APTw values showed the highest diagnostic accuracy (AUC = 0.825).

  17. Amide Proton Transfer Magnetic Resonance Imaging of Alzheimer′s Disease at 3.0 Tesla: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2015-01-01

    Full Text Available Background: Amide proton transfer (APT imaging has recently emerged as an important contrast mechanism for magnetic resonance imaging (MRI in the field of molecular and cellular imaging. The aim of this study was to evaluate the feasibility of APT imaging to detect cerebral abnormality in patients with Alzheimer′s disease (AD at 3.0 Tesla. Methods: Twenty AD patients (9 men and 11 women; age range, 67-83 years and 20 age-matched normal controls (11 men and 9 women; age range, 63-82 years underwent APT and traditional MRI examination on a 3.0 Tesla MRI system. The magnetic resonance ratio asymmetry (MTR asym values at 3.5 ppm of bilateral hippocampi (Hc, temporal white matter regions, occipital white matter regions, and cerebral peduncles were measured on oblique axial APT images. MTR asym (3.5 ppm values of the cerebral structures between AD patients and control subjects were compared with independent samples t-test. Controlling for age, partial correlation analysis was used to investigate the associations between mini-mental state examination (MMSE and the various MRI measures among AD patients. Results: Compared with normal controls, MTR asym (3.5 ppm values of bilateral Hc were significantly increased in AD patients (right 1.24% ± 0.21% vs. 0.83% ± 0.19%, left 1.18% ± 0.18% vs. 0.80%± 0.17%, t = 3.039, 3.328, P = 0.004, 0.002, respectively. MTR asym (3.5 ppm values of bilateral Hc were significantly negatively correlated with MMSE (right r = −0.559, P = 0.013; left r = −0.461, P = 0.047. Conclusions: Increased MTR asym (3.5 ppm values of bilateral Hc in AD patients and its strong correlations with MMSE suggest that APT imaging could potentially provide imaging biomarkers for the noninvasive molecular diagnosis of AD.

  18. Rapid "breath-print" of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study.

    Directory of Open Access Journals (Sweden)

    Filomena Morisco

    Full Text Available UNLABELLED: The aim of the present work was to test the potential of Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS in the diagnosis of liver cirrhosis and the assessment of disease severity by direct analysis of exhaled breath. Twenty-six volunteers have been enrolled in this study: 12 patients (M/F 8/4, mean age 70.5 years, min-max 42-80 years with liver cirrhosis of different etiologies and at different severity of disease and 14 healthy subjects (M/F 5/9, mean age 52.3 years, min-max 35-77 years. Real time breath analysis was performed on fasting subjects using a buffered end-tidal on-line sampler directly coupled to a PTR-ToF-MS. Twelve volatile organic compounds (VOCs resulted significantly differently in cirrhotic patients (CP compared to healthy controls (CTRL: four ketones (2-butanone, 2- or 3- pentanone, C8-ketone, C9-ketone, two terpenes (monoterpene, monoterpene related, four sulphur or nitrogen compounds (sulfoxide-compound, S-compound, NS-compound, N-compound and two alcohols (heptadienol, methanol. Seven VOCs (2-butanone, C8-ketone, a monoterpene, 2,4-heptadienol and three compounds containing N, S or NS resulted significantly differently in compensate cirrhotic patients (Child-Pugh A; CP-A and decompensated cirrhotic subjects (Child-Pugh B+C; CP-B+C. ROC (Receiver Operating Characteristic analysis was performed considering three contrast groups: CP vs CTRL, CP-A vs CTRL and CP-A vs CP-B+C. In these comparisons monoterpene and N-compound showed the best diagnostic performance. CONCLUSIONS: Breath analysis by PTR-ToF-MS was able to distinguish cirrhotic patients from healthy subjects and to discriminate those with well compensated liver disease from those at more advanced severity stage. A breath-print of liver cirrhosis was assessed for the first time.

  19. Analysis of expiration gas in intensive care patients with SIRS/sepsis using proton-transfer-reaction-mass-spectrometry

    International Nuclear Information System (INIS)

    Bodrogi, F.B.M.

    2003-11-01

    In 1971, Pauling and co-workers were the first to detect volatile organic compounds (VOC) in human breath. Since then, a number of technical applications for breath gas analyses have been designed and processed, among them gas chromatography and proton transfer reaction-mass spectrometry (PTR-MS). Due to this technical progress it is meanwhile possible to correlate different kinds and stages of diseases with measurable changes in the patient's VOC profile. The aim of the present study was to investigate the composition of VOC in exhaled air of patients with sepsis via PTR-MS. To isolate distinct volatile organic compounds that may serve as clinical markers for the onset, the progress, as well as the outcome of the disease, the results obtained from septic patients were compared with two different control groups: 25 healthy, non-smoking volunteers enrolled in the day-case-surgery and 25 post-operative in-patients residing in post-anaesthetic care units (PACU). PTR-MS is capable to analyze VOC according to their molecular weight with a range between 21-230 Da. A total of 210 different masses has been detected in the present study. 54 masses were significantly different in exhaled air of septic patients as compared to healthy controls as well as post-operative patients. Among them, mass 69 representing isoprene might be of special interest for the diagnosis of sepsis. Although no exact biochemical properties of isoprene have been described to date, it is known that isoprene synthesis is increased in plants following exposure to oxidative stress. Chronic, systemic infectious diseases like sepsis are accompanied by the production of reactive oxygen species, indicating that isoprene might be increased in the course of sepsis, too. In the present study, isoprene values were markedly higher in septic patients as compared to PACU residents (3.3-fold increase in mean value) and to healthy volunteers (2.2-fold increase in mean value). In addition (and in contrast to other VOC

  20. ATM mutants

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. ATM mutants. ATM (Ataxia Telangiectasia Mutated). AT2BE and AT5B1 cells – fibroblast cell lines from Ataxia telangiectasia patients. Deletion mutants expressing truncated ATM protein which is inactive. Have been used in studies looking at the role of ATM in DNA damage ...

  1. Spectroscopic characterization of hydrogen-bonded proton transfer complex between 4-aminopyridine with 2,6-dichloro-4-nitrophenol in different solvents and solid state.

    Science.gov (United States)

    Al-Ahmary, Khairia M; Al-Solmy, Eman A; Habeeb, Moustafa M

    2014-05-21

    Proton transfer reaction between the proton donor 2,6-dichloro-4-nitrophenol (DCNP) with the proton acceptor 4-aminopyridine (4APy) has been investigated spectrophotometrically in different solvents included the aprotic solvent acetonitrile (MeCN), the protic one methanol (MeOH) and a mixture consists of 50% acetonitrile+50% dichloroethane (ANDC). The proton transfer complex is produced instantaneously with deep yellow color and absorption maxima in the range 395-425nm. The composition of the complex was characterized spectrophotometrically to be 1:1 in all solvent proving that the solvent has no effect on the complex stoichiometry. The proton transfer formation constant has been estimated by using Benesi-Hildebrand equation where the highest value was recorded in the mixture ANDC. This proofs the high stability of the complex in less polar solvent as a result of the high stability of the complex ground state. The solid complex has been synthesized and characterized by elemental analysis to be 1:2 [(proton donor) (proton acceptor)2]. The obtained solid complex was analyzed by infrared spectroscopy where two broad band's at 3436 and 2500cm(-1) characterized for asymmetric NHN(+) hydrogen bond were identified. Molecular modeling utilizing GAMESS computations as a package of ChemBio3D Ultra12 program was carried out where asymmetric NHN(+) was explored with NN bond distance 2.77Å. The computations showed a difference in molecular geometry of the complex compared with reactants especially bond lengths, bond angles and distances of close contact. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  3. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  4. Semivolatile organic compounds monitored using a proton transfer reaction mass spectrometer at 200m above ground in rural Netherlands

    Science.gov (United States)

    Strickland, Jessica; Klinger, Andreas; Herbig, Jens; Holzinger, Rupert

    2017-04-01

    Semi-volatile organic compounds (SVOCs) are anthropogenically and naturally occurring chemical compounds that have vapor pressures such that they exist in both the gas and condensed phase at room temperature. Due to the fact SVOCs condense easily, they are interesting in the context of organic aerosol formation and these compounds impact atmospheric properties and human health. Proton Transfer Reaction Mass Spectrometry (PTR-MS, resolution 1200 FWHM) is a method that facilitates deeper analysis of SVOCs. Our setup, consisting of a PTR-MS with a time of flight mass spectrometer coupled to a denuder sampler (DS) was stationed as part of the European ACTRIS-2 program at 200m atop the Cabauw tower in the Netherlands as of September, 2016. The DS consists of three denuders in series. The first two denuders are coated with dimethylpolysiloxane (DB1, OD 4mm, 3cm long) and consists of an assemblage of micro-channels (ID 80 micrometer). The third denuder is an activated charcoal monolith of the same dimensions but with larger (thus fewer) channels (ID 800 micrometer). The air sampled at 800mL/min is pulled through these denuders as laminar flow and the SVOCs will collide and condense on the wall. Undesirable wall losses are minimized by using a short and high flow inlet lines. The collected SVOCs are thermally desorbed under a Nitrogen (N2) gas flow and transferred to the PTR-MS through heated lines to avoid re-condensation. Evaluation of the full mass spectra revealed over 200 different compounds in the range 15-500 Da. The majority of the mass of SVOCs was contained in m/z > 100 and typical mixing ratios of the detected SVOCs were a few pmol/mol in ambient air. Discernible contamination from the DB1 coating was detected and therefore, different blank methods have been tested and evaluated using a student T-test. Proper blank correction is an important issue of this method and will be discussed in detail. Data from October 19th, 2016, are used as case studies for analyzing

  5. Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations.

    Science.gov (United States)

    Scharnagl, C; Raupp-Kossmann, R; Fischer, S F

    1999-10-01

    We performed a theoretical study to elucidate the coupling between protonation states and orientation of protein dipoles and buried water molecules in green fluorescent protein, a versatile biosensor for protein targeting. It is shown that the ionization equilibria of the wild-type green fluorescent protein-fluorophore and the internal proton-binding site E222 are mutually interdependent. Two acid-base transitions of the fluorophore occur in the presence of neutral (physiologic pH) and ionized (pH > 12) E222, respectively. In the pH-range from approximately 8 to approximately 11 ionized and neutral sites are present in constant ratio, linked by internal proton transfer. The results indicate that modulation of the internal proton sharing by structural fluctuations or chemical variations of aligning residues T203 and S65 cause drastic changes of the neutral/anionic ratio-despite similar physiologic fluorophore pK(a) s. Moreover, we find that dipolar heterogeneities in the internal hydrogen-bond network lead to distributed driving forces for excited-state proton transfer. A molecular model for the unrelaxed surrounding after deprotonation is discussed in relation to pathways providing fast ground-state recovery or slow stabilization of the anion. The calculated total free energy for excited-state deprotonation ( approximately 19 k(B)T) and ground-state reprotonation ( approximately 2 k(B)T) is in accordance with absorption and emission data (

  6. Tunable excited-state intramolecular proton transfer reactions with Nsbnd H or Osbnd H as a proton donor: A theoretical investigation

    Science.gov (United States)

    Li, Yuanyuan; Wen, Keke; Feng, Songyan; Yuan, Huijuan; An, Beibei; Zhu, Qiuling; Guo, Xugeng; Zhang, Jinglai

    2017-12-01

    Excited-state intramolecular proton transfer (ESIPT) reactions occurring in the S1 state for five molecules, which possess five/six-membered ring intramolecular Nsbnd H···N or Osbnd H···N hydrogen bonds bearing quinoline or 2-phenylpyridine moiety, have been described in detail by the time-dependent density functional theory (TD-DFT) approach using the B3LYP hybrid functional. For the five molecules, the constrained potential energy profiles along the ESIPT reactions show that proton transfer is barrierless in molecules possessing six-membered ring intramolecular H-bonds, which is smoother than that with certain barriers in five-membered ring H-bonding systems. For the latter, chemical modification by a more strong acid group can lower the ESIPT barrier significantly, which harnesses the ESIPT reaction from a difficult type to a fast one. The energy barrier of the ESIPT reaction depends on the intensity of the intramolecular H-bond, which can be measured with the topological descriptors by topology analysis of the bond critical point (BCP) of the intramolecular H-bond. It is found that when the value of electron density ρ(r) at BCP is bigger than 0.025 a.u., the corresponding molecule might go through an ultrafast and barrierless ESIPT process, which opens a new scenario to explore the ESIPT reactions.

  7. Rotation around the glycosidic bond as driving force of proton transfer in protonated 2‧-deoxyriboadenosine monophosphate (dAMP)

    Science.gov (United States)

    Shishkin, Oleg V.; Dopieralski, Przemyslaw; Palamarchuk, Gennady V.; Latajka, Zdzislaw

    2010-04-01

    Theoretical investigation of the conformation of 2'-deoxyriboadenosine monophosphate protonated at the N7 atom and stabilized by a very strong C8-H⋯O-P hydrogen bond indicates that this hydrogen bond may be disrupted by rotation of the adenine moiety around the glycosidic bond. A B3LYP/aug-cc-pVDZ scan of the relaxed potential energy surface demonstrates that this rotation is a multi-stage process, accompanying proton transfer from the N7 atom of adenine to the oxygen atom of the phosphate group with a change of conformation of the nucleotide from south/anti to north/syn conformation. Car-Parrinello molecular dynamics simulation indicates that rotation around the glycosidic bond is the preferred way for relaxation of the molecular geometry of this conformer. Both processes, i.e. conformational transition and proton transfer, are strongly coupled. However, the conformer containing a strong C-H⋯O hydrogen bond also corresponds to a local minimum on the Gibbs free energy surface. A specific property of this hydrogen bond is the large variation of the H⋯O distance (ranging from 1.3 to 2.2 Å), which is not caused by proton movement between the carbon and oxygen atoms, but rather by relative motions of the adenine and phosphate moieties.

  8. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical-Molecular Mechanical Simulations of Proton Transfer in DNA.

    Science.gov (United States)

    Das, Susanta; Nam, Kwangho; Major, Dan Thomas

    2018-03-13

    In recent years, a number of quantum mechanical-molecular mechanical (QM/MM) enzyme studies have investigated the dependence of reaction energetics on the size of the QM region using energy and free energy calculations. In this study, we revisit the question of QM region size dependence in QM/MM simulations within the context of energy and free energy calculations using a proton transfer in a DNA base pair as a test case. In the simulations, the QM region was treated with a dispersion-corrected AM1/d-PhoT Hamiltonian, which was developed to accurately describe phosphoryl and proton transfer reactions, in conjunction with an electrostatic embedding scheme using the particle-mesh Ewald summation method. With this rigorous QM/MM potential, we performed rather extensive QM/MM sampling, and found that the free energy reaction profiles converge rapidly with respect to the QM region size within ca. ±1 kcal/mol. This finding suggests that the strategy of QM/MM simulations with reasonably sized and selected QM regions, which has been employed for over four decades, is a valid approach for modeling complex biomolecular systems. We point to possible causes for the sensitivity of the energy and free energy calculations to the size of the QM region, and potential implications.

  9. Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe(3))(2)(CO)H and its role in proton transfer.

    Science.gov (United States)

    Dub, Pavel A; Filippov, Oleg A; Belkova, Natalia V; Daran, Jean-Claude; Epstein, Lina M; Poli, Rinaldo; Shubina, Elena S

    2010-02-28

    The interaction of the carbonyl hydride complex Cp*Mo(PMe(3))(2)(CO)H with Brønsted (fluorinated alcohols, (CF(3))(n)CH(3-n)OH (n = 1-3), and CF(3)COOH) and Lewis (Hg(C(6)F(5))(2), BF(3).OEt(2)) acids was studied by variable temperature IR and NMR ((1)H, (31)P, (13)C) spectroscopies in combination with DFT/B3LYP calculations. Among the two functionalities potentially capable of the interaction - carbonyl and hydride ligands - the first was found to be the preferential binding site for weak acids, yielding CO...HOR or CO...Hg complexes as well as CO...(HOR)(2) adducts. For stronger proton donors ((CF(3))(3)COH, CF(3)COOH) hydrogen-bonding to the hydride ligand can be revealed as an intermediate of the proton transfer reaction. Whereas proton transfer to the CO ligand is not feasible, protonation of the hydride ligand yields an (eta(2)-H(2)) complex. Above 230 K dihydrogen evolution is observed leading to decomposition. Among the decomposition products compound [Cp*Mo(PMe(3))(3)(CO)](+)[(CF(3))(3)CO.2HOC(CF(3))(3)](-) resulting from a phosphine transfer reaction was characterized by X-ray diffraction. Reaction with BF(3).OEt(2) was found to produce [Cp*Mo(PMe(3))(2)(CO)BF(4)] via initial attack of the hydride ligand.

  10. Cooperative Electrocatalytic O 2 Reduction Involving Co(salophen) with p- Hydroquinone as an Electron–Proton Transfer Mediator

    Energy Technology Data Exchange (ETDEWEB)

    Anson, Colin W. [Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States; Stahl, Shannon S. [Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States

    2017-12-01

    The molecular cobalt complex, Co(salophen), and para-hydroquinone (H2Q) serve as effective cocatalysts for the electrochemical reduction of O2 to water. Mechanistic studies reveal redox cooperativity between Co(salophen) and H2Q. H2Q serves as an electron-proton transfer mediator (EPTM) that enables electrochemical O2 reduction at higher potentials and with faster rates than is observed with Co(salophen) alone. Replacement of H2Q with the higher potential EPTM, 2-chloro-H2Q, allows for faster O2 reduction rates at higher applied potential. These results demonstrate a unique strategy to achieve improved performance with molecular electrocatalyst systems.

  11. Time-resolved resonance Raman study of proton transferring systems in the excited triplet state: 2,2'-bipyridine and 2,2'-bipyridine-3,3'-diol

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Mordzinski, A.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman (RR) spectra of the excited triplet state T1 of 2,2'-bipyridine (BP), 2,2'-bipyridine-3,3'-diol BP(OH)2, and 5,5'-dimethyl-2,2'-bipyridine-3,3'-diol Me2BP(OH)2 are obtained. and interpreted by comparison with their ground-state Raman spectra and the T1 spectrum...... of biphenyl. The BP T1 RR spectrum is assigned assuming C2h molecular symmetry. The T1 RR spectra of BP(OH)2 and Me2BP(OH)2 are ascribed to diketo tautomers that are products of double proton transfer in the S1 state....

  12. Use of Proton-Transfer-Reaction Mass Spectrometry to Characterize Volatile Organic Compound Sources at the La Porte Super Site During the Texas Air Quality Study 2000

    Energy Technology Data Exchange (ETDEWEB)

    Karl, Thomas G.; Jobson, B Tom T.; Kuster, W. C.; Williams, Eric; Stutz, Jochen P.; Shetter, Rick; Hall, Samual R.; Goldan, P. D.; Fehsenfeld, Fred C.; Lindinger, Werner

    2003-08-19

    Proton-transfer-reaction mass spectrometry (PTR-MS) was deployed for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Overall, 28 ions dominated the PTR-MS mass spectra and were assigned as anthropogenic aromatics (e.g., benzene, toluene, xylenes) and hydrocarbons (propene, isoprene), oxygenated compounds (e.g., formaldehyde, acetaldehyde, acetone, methanol, C7 carbonyls), and three nitrogencontaining compounds (e.g., HCN, acetonitrile and acrylonitrile). Biogenic VOCs were minor components at this site. Propene was the most abundant lightweight hydrocarbon detected by this technique with concentrations up to 100+ nmol mol-1, and was highly correlated with its oxidation products, formaldehyde (up to ~40 nmol mol-1) and acetaldehyde (up to ~80 nmol/mol), with typical ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained data set helped in identifying different anthropogenic sources (e.g., industrial from urban emissions) and testing current emission inventories. A comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by ‘‘soft’’ chemical ionization using proton-transfer via H3O+. The method was especially valuable in monitoring rapidly changing VOC plumes which passed over the site, and when coupled with meteorological data it was possible to identify likely sources.

  13. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells.

    Science.gov (United States)

    Katti, Muralidhar K; Dai, Guixiang; Armitige, Lisa Y; Rivera Marrero, Carlos; Daniel, Sundarsingh; Singh, Christopher R; Lindsey, Devin R; Dhandayuthapani, Subramanian; Hunter, Robert L; Jagannath, Chinnaswamy

    2008-06-01

    Mycobacterium tuberculosis H37Rv (Mtb) excludes phagocyte oxidase (phox) and inducible nitric oxide synthase (iNOS) while preventing lysosomal fusion in macrophages (MPhis). The antigen 85A deficient (Delta fbpA) mutant of Mtb was vaccinogenic in mice and the mechanisms of attenuation were compared with MPhis infected with H37Rv and BCG. Delta fbpA contained reduced amounts of trehalose 6, 6, dimycolate and induced minimal levels of SOCS-1 in MPhis. Blockade of oxidants enhanced the growth of Delta fbpA in MPhis that correlated with increased colocalization with phox and iNOS. Green fluorescent protein-expressing strains within MPhis or purified phagosomes were analysed for endosomal traffick with immunofluorescence and Western blot. Delta fbpA phagosomes were enriched for rab5, rab11, LAMP-1 and Hck suggesting enhanced fusion with early, recycling and late endosomes in MPhis compared with BCG or H37Rv. Delta fbpA phagosomes were thus more mature than H37Rv or BCG although, they failed to acquire rab7 and CD63 preventing lysosomal fusion. Finally, Delta fbpA infected MPhis and dendritic cells (DCs) showed an enhanced MHC-II and CD1d expression and primed immune T cells to release more IFN-gamma compared with those infected with BCG and H37Rv. Delta fbpA was thus more immunogenic in MPhis and DCs because of an enhanced susceptibility to oxidants and increased maturation.

  14. Correction: The stability and generation pattern of thermally formed isocyanic acid (ICA) in air - potential and limitations of proton transfer reaction-mass spectrometry (PTR-MS) for real-time workroom atmosphere measurements.

    Science.gov (United States)

    Jankowski, Mikolaj Jan; Olsen, Raymond; Thomassen, Yngvar; Molander, Paal

    2018-02-21

    Correction for 'The stability and generation pattern of thermally formed isocyanic acid (ICA) in air - potential and limitations of proton transfer reaction-mass spectrometry (PTR-MS) for real-time workroom atmosphere measurements' by Mikolaj Jan Jankowski et al., Environ. Sci.: Processes Impacts, 2016, 18, 810-818.

  15. Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions

    Science.gov (United States)

    J. M. Roberts; P. Veres; C. Warneke; J. A. Neuman; R. A. Washenfelder; S. S. Brown; M. Baasandorj; J. B. Burkholder; I. R. Burling; T. J. Johnson; R. J. Yokelson; J. de Gouw

    2010-01-01

    A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric 5 (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be...

  16. Characterization of a Legionella micdadei mip mutant

    DEFF Research Database (Denmark)

    O'Connell, W A; Bangsborg, Jette Marie; Cianciotto, N P

    1995-01-01

    The pathogenesis of Legionella micdadei is dependent upon its ability to infect alveolar phagocytes. To better understand the basis of intracellular infection by this organism, we examined the importance of its Mip surface protein. In Legionella pneumophila, Mip promotes infection of both human m...... into the phagocyte. Similarly, the mutant was less able to parasitize Hartmannella amoebae. Taken together, these data argue that Mip specifically potentiates intracellular growth by L. micdadei....

  17. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group.

    Science.gov (United States)

    Sucharitakul, Jeerus; Wongnate, Thanyaporn; Chaiyen, Pimchai

    2011-05-13

    C4a-hydroperoxyflavin is found commonly in the reactions of flavin-dependent monooxygenases, in which it plays a key role as an intermediate that incorporates an oxygen atom into substrates. Only recently has evidence for its involvement in the reactions of flavoprotein oxidases been reported. Previous studies of pyranose 2-oxidase (P2O), an enzyme catalyzing the oxidation of pyranoses using oxygen as an electron acceptor to generate oxidized sugars and hydrogen peroxide (H(2)O(2)), have shown that C4a-hydroperoxyflavin forms in P2O reactions before it eliminates H(2)O(2) as a product (Sucharitakul, J., Prongjit, M., Haltrich, D., and Chaiyen, P. (2008) Biochemistry 47, 8485-8490). In this report, the solvent kinetic isotope effects (SKIE) on the reaction of reduced P2O with oxygen were investigated using transient kinetics. Our results showed that D(2)O has a negligible effect on the formation of C4a-hydroperoxyflavin. The ensuing step of H(2)O(2) elimination from C4a-hydroperoxyflavin was shown to be modulated by an SKIE of 2.8 ± 0.2, and a proton inventory analysis of this step indicates a linear plot. These data suggest that a single-proton transfer process causes SKIE at the H(2)O(2) elimination step. Double and single mixing stopped-flow experiments performed in H(2)O buffer revealed that reduced flavin specifically labeled with deuterium at the flavin N5 position generated kinetic isotope effects similar to those found with experiments performed with the enzyme pre-equilibrated in D(2)O buffer. This suggests that the proton at the flavin N5 position is responsible for the SKIE and is the proton-in-flight that is transferred during the transition state. The mechanism of H(2)O(2) elimination from C4a-hydroperoxyflavin is consistent with a single proton transfer from the flavin N5 to the peroxide leaving group, possibly via the formation of an intramolecular hydrogen bridge.

  18. A new colorimetric and fluorescent bis(coumarin)methylene probe for fluoride ion detection based on the proton transfer signaling mode

    International Nuclear Information System (INIS)

    Mahapatra, Ajit Kumar; Maiti, Kalipada; Sahoo, Prithidipa; Nandi, Prasanta Kumar

    2013-01-01

    A new turn-on fluorescent and colorimetric sensor, oxidized bis(coumarin)methane (1) for fluoride in acetonitrile was designed and synthesized. The binding ability evaluated by UV–vis and fluorescence titration experiments reveals that 1 can selectively interact with fluoride. Upon addition of fluoride to receptor 1 in acetonitrile solution, the appearance of a new absorption band around 349 nm showed a color change from colorless to yellow, which can provide a way of ‘naked eye’ detection of fluorides. The spectral change of 1 is due to the anion induced deprotonation and hence an increase in charge density and rigidity of the receptor molecule. Furthermore, the binding mode with fluoride was investigated by 1 H NMR titration experiments. Again, the deprotonation of oxidized bis(coumarin)methane 1 is responsible for the color change. -- Graphical abstract: A new colorimetric and fluorescent bis(coumarin)methylene probe for fluoride ion detection based on the proton transfer signaling mode. Highlights: • The first report of conjugated biscoumarin-based colorimetric chemosensor. • Oxidized bis(coumarin)methane acts as colorimetric reporter. • The oxidized coumarin moiety might modulate the internal charge transfer (ICT). • Fluorescence turn-on sensing of fluoride

  19. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Seong; Ahn, Sung Soo; Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, College of Medicine, Seoul (Korea, Republic of); Chang, Jong Hee; Kang, Seok-Gu [Yonsei University College of Medicine, Department of Neurosurgery, Seoul (Korea, Republic of); Kim, Se Hoon [Yonsei University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Zhou, Jinyuan [Johns Hopkins University School of Medicine, Division of MRI Research, Department of Radiology, Baltimore, MD (United States)

    2017-08-15

    To evaluate the added value of amide proton transfer (APT) imaging to the apparent diffusion coefficient (ADC) from diffusion tensor imaging (DTI) and the relative cerebral blood volume (rCBV) from perfusion magnetic resonance imaging (MRI) for discriminating between high- and low-grade gliomas. Forty-six consecutive adult patients with diffuse gliomas who underwent preoperative APT imaging, DTI and perfusion MRI were enrolled. APT signals were compared according to the World Health Organization grade. The diagnostic ability and added value of the APT signal to the ADC and rCBV for discriminating between low- and high-grade gliomas were evaluated using receiver operating characteristic (ROC) analyses and integrated discrimination improvement. The APT signal increased as the glioma grade increased. The discrimination abilities of the APT, ADC and rCBV values were not significantly different. Using both the APT signal and ADC significantly improved discrimination vs. the ADC alone (area under the ROC curve [AUC], 0.888 vs. 0.910; P = 0.007), whereas using both the APT signal and rCBV did not improve discrimination vs. the rCBV alone (AUC, 0.927 vs. 0.923; P = 0.222). APT imaging may be a useful imaging biomarker that adds value to the ADC for discriminating between low- and high-grade gliomas. (orig.)

  20. Excited-state inter- and intramolecular proton transfer in methyl 3-hydroxy-2-quinoxalinate: effects of solvent and acid or base concentrations

    International Nuclear Information System (INIS)

    Dogra, S.K.

    2005-01-01

    Absorption, fluorescence excitation and fluorescence spectroscopy, combined with time-dependent spectroscopy and semi-empirical (AM1) and density functional theory using Gaussian 98 program calculations have been used to study the effects of solvent and acid or base concentration on the spectral characteristics of methyl 3-hydroxy-2-quinoxalinate (M3HQ). M3HQ is present as enol in less polar solvents and as keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to the phototautomer, formed by the excited-state intramolecular proton transfer, whereas fluorescence is only observed from keto in the polar solvents. In aqueous and polar solvents the monocation (MC5/MC6) is formed by protonating the carbonyl oxygen atom in the ground (S 0 ) and the first excited singlet states (S 1 ). Dication is formed by protonating one of ?N- atom of MC5/MC6. Monoanion is formed by deprotonating the phenolic proton of enol in the basic solution. pK a values for different prototropic equilibriums were determined in S 0 and S 1 states and discussed

  1. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume

    International Nuclear Information System (INIS)

    Choi, Yoon Seong; Ahn, Sung Soo; Lee, Seung-Koo; Chang, Jong Hee; Kang, Seok-Gu; Kim, Se Hoon; Zhou, Jinyuan

    2017-01-01

    To evaluate the added value of amide proton transfer (APT) imaging to the apparent diffusion coefficient (ADC) from diffusion tensor imaging (DTI) and the relative cerebral blood volume (rCBV) from perfusion magnetic resonance imaging (MRI) for discriminating between high- and low-grade gliomas. Forty-six consecutive adult patients with diffuse gliomas who underwent preoperative APT imaging, DTI and perfusion MRI were enrolled. APT signals were compared according to the World Health Organization grade. The diagnostic ability and added value of the APT signal to the ADC and rCBV for discriminating between low- and high-grade gliomas were evaluated using receiver operating characteristic (ROC) analyses and integrated discrimination improvement. The APT signal increased as the glioma grade increased. The discrimination abilities of the APT, ADC and rCBV values were not significantly different. Using both the APT signal and ADC significantly improved discrimination vs. the ADC alone (area under the ROC curve [AUC], 0.888 vs. 0.910; P = 0.007), whereas using both the APT signal and rCBV did not improve discrimination vs. the rCBV alone (AUC, 0.927 vs. 0.923; P = 0.222). APT imaging may be a useful imaging biomarker that adds value to the ADC for discriminating between low- and high-grade gliomas. (orig.)

  2. Excited-state proton transfer in confined medium. 4-methyl-7-hydroxyflavylium and β-naphthol incorporated in cucurbit[7]uril.

    Science.gov (United States)

    Basílio, Nuno; Laia, César A T; Pina, Fernando

    2015-02-12

    Excited-state proton transfer (ESPT) was studied by fluorescent emission using a mathematical model recast from the Weller theory. The titration curves can be fitted with three parameters: pK(a) (acidity constant of the ground sate), pK(ap)* (apparent acidity constant of the excited state), and η(A*), the efficiency of excited base formation from the excited acid. β-Naphthol and 4-metyhl-7-hydroxyflavylium were studied in aqueous solution and upon incorporation in cucurbit[7]uril. For all the compounds studied the interaction with the host leads to 1:1 adducts and the ground-state pK(a) increases upon incorporation. Whereas the ESPT of 4-methyl-7-hydroxyflavylium practically does not change in the presence of the host, in the case of β-naphthol it is prevented and the fluorescence emission titration curves are coincident with those taken by absorption. The position of the guest inside the host was investigated by NMR experiments and seems to determine the efficiency of the ESPT. The ESPT decreases for the guest, exhibiting a great protection of the phenol to the bulk water interaction.

  3. An environmentally friendly method to remove and utilize the highly toxic strychnine in other products based on proton-transfer complexation

    Science.gov (United States)

    Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.; Hegab, Mohamed S.

    2015-12-01

    The study of toxic and carcinogenic substances represents one of the most demanding areas in human safety, due to their repercussions for public health. There is great motivation to remove and utilize these substances in other products instead of leaving them contaminate the environment. One potentially toxic compound for humans is strychnine (Sy). In the present study, we attempted to establish a quick, simple, direct and efficient method to remove and utilize discarded Sy in other products based on proton-transfer complexation. First, Sy was reacted with the acido organic acceptors PA, DNBA and CLA. Then, the resultant salts were direct carbonized into carbon materials. Also, this study provides an insight into the structure and morphology of the obtained products by a range of physicochemical techniques, such as UV-visible, IR, 1H NMR and 13C NMR spectroscopies; XRD; SEM; TEM; and elemental and thermal analyses. Interestingly, the complexation of Sy with the PA or DNBA acceptor leads to a porous carbon material, while its complexation with CLA acceptor forms non-porous carbon product.

  4. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    Science.gov (United States)

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  5. Analytical detection of explosives and illicit, prescribed and designer drugs using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Bishu; Petersson, Fredrik; Juerschik, Simone [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Jordan, Alfons [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Watts, Peter; Mayhew, Chris A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 4TT (United Kingdom)

    2011-07-01

    This work demonstrates the extremely favorable features of Proton Transfer Reaction Time-of-flight Mass Spectrometry (PTR-TOF-MS) for the detection and identification of solid explosives, chemical warfare agent simulants and illicit, prescribed and designer drugs in real time. Here, we report the use of PTR-TOF, for the detection of explosives (e.g., trinitrotoluene, trinitrobenzene) and illicit, prescribed and designer drugs (e.g., ecstasy, morphine, heroin, ethcathinone, 2C-D). For all substances, the protonated parent ion (as we used H{sub 3}O{sup +} as a reagent ion) could be detected, providing a high level of confidence in their identification since the high mass resolution allows compounds having the same nominal mass to be separated. We varied the E/N from 90 to 220 T{sub d} (1 T{sub d}=10{sup -17} Vcm{sup -1}). This allowed us to study fragmentation pathways as a function of E/N (reduced electric field). For a few compounds rather unusual E/N dependencies were also discovered.

  6. Synthesis, crystal growth and characterization of bioactive material: 2-amino-1H-benzo[d]imidazol-3-ium salicylate single crystal-a proton transfer molecular complex

    Science.gov (United States)

    Fathima, K. Saiadali; Anitha, K.

    2017-05-01

    The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.

  7. Experimental and quantum chemical studies of a new organic proton transfer compound, 1H-imidazole-3-ium-3-hydroxy-2,4,6-trinitrophenolate

    Science.gov (United States)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M.

    2018-02-01

    A new proton transfer compound, 1H-imidazole-3-ium-3-hydroxy-2,4,6-trinitrophenolate (IMHTP), was crystallized by slow evaporation-solution growth technique. 1H and 13C NMR spectral studies confirm the molecular structure of the grown crystal. Single crystal X-ray diffraction study confirms that IMHTP crystallizes in monoclinic system with space group P21/c. Thermal curves (TG/DTA) show that the material is thermally stable up to 198 °C. The crystal emits fluorescence at 510 nm, proving its utility in making green light emitting materials in optical applications. The stable molecular structure was optimized by Gaussian 09 program with B3LYP/6-311++G(d,p) level of basis set. The frontier molecular orbital study shows that the charge transfer interaction occurs within the complex. The calculated first-order hyperpolarizability value of IMHTP is 44 times higher than that the reference material, urea. The electrostatic potential map was used to probe into electrophilic and nucleophilic reactive sites present in the molecule.

  8. External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4'-N,N-Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films.

    Science.gov (United States)

    Furukawa, Kazuki; Hino, Kazuyuki; Yamamoto, Norifumi; Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro; Sekiya, Hiroshi

    2015-09-17

    The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4'-N,N-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm(-1) enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck-Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment.

  9. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Togao, Osamu; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Keupp, Jochen [Philips Research, Hamburg (Germany); Yoshimoto, Koji; Kuga, Daisuke; Iihara, Koji [Kyushu University, Department of Neurosurgery, Graduate School of Medical Sciences, Fukuoka (Japan); Yoneyama, Masami [Philips Electronics Japan, Tokyo (Japan); Suzuki, Satoshi O.; Iwaki, Toru [Kyushu University, Department of Neuropathology, Graduate School of Medical Sciences, Fukuoka (Japan); Takahashi, Masaya [Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX (United States)

    2017-02-15

    To investigate whether amide proton transfer (APT) MR imaging can differentiate high-grade gliomas (HGGs) from low-grade gliomas (LGGs) among gliomas without intense contrast enhancement (CE). This retrospective study evaluated 34 patients (22 males, 12 females; age 36.0 ± 11.3 years) including 20 with LGGs and 14 with HGGs, all scanned on a 3T MR scanner. Only tumours without intense CE were included. Two neuroradiologists independently performed histogram analyses to measure the 90th-percentile (APT{sub 90}) and mean (APT{sub mean}) of the tumours' APT signals. The apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) were also measured. The parameters were compared between the groups with Student's t-test. Diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis. The APT{sub 90} (2.80 ± 0.59 % in LGGs, 3.72 ± 0.89 in HGGs, P = 0.001) and APT{sub mean} (1.87 ± 0.49 % in LGGs, 2.70 ± 0.58 in HGGs, P = 0.0001) were significantly larger in the HGGs compared to the LGGs. The ADC and rCBV values were not significantly different between the groups. Both the APT{sub 90} and APT{sub mean} showed medium diagnostic performance in this discrimination. APT imaging is useful in discriminating HGGs from LGGs among diffuse gliomas without intense CE. (orig.)

  10. A comprehensive spectroscopic and computational investigation of intramolecular proton transfer in the excited states of 2-(2′-hydroxyphenyl) benzoxazole and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Padalkar, Vikas S. [Tinctorial Chemistry Group, Institute of Chemical Technology, Matunga, Mumbai 400019 (India); Ramasami, Ponnadurai, E-mail: ramchemi@intnet.mu [Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit (Mauritius); Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in [Tinctorial Chemistry Group, Institute of Chemical Technology, Matunga, Mumbai 400019 (India)

    2014-02-15

    The excited-state intramolecular proton transfer (ESIPT) fluorescence of the 2-(2′ hydroxyphenyl) benzoxazole (HBO) and its derivatives with NO{sub 2} as electron acceptor and NH{sub 2} as electron donor at the 4 and 5 position of benzoxazole ring was studied by spectroscopic and computational methods. The changes in the electronic transition, energy levels, and orbital diagrams of the HBO derivatives were investigated using the DFT computations and they were correlated with the experimental spectral emission. The benzoxazole derivatives are fluorescent under UV-light in solution. Photophysical properties of the compounds were also studied in solvents of different polarities. Experimental absorption and emission wavelengths are in agreement with those computed with a deviation ranging between 0 and 50%. The computational methods have been useful for molecular understanding of the transitions responsible for the fluorescent spectra. -- Highlights: • Experimental photophysical properties of 2-substituted benzoxazoles in different solvents have been studied and compared with the computational data. • Compounds show dual emission due to ESIPT process and was supported by DFT and TD-DFT computations. • Experimental results and computational results are in good agreements.

  11. Real-time monitoring of respiratory absorption factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhonghui [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yanli [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Yan, Qiong [Department of Respiratory Diseases, Guangzhou No. 12 People' s Hospital, Guangzhou 510620 (China); Zhang, Zhou [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Xinming, E-mail: wangxm@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2016-12-15

    Respiratory absorption factors (AFs) are essential parameters in the evaluation of human health risks from toxic volatile organic compounds (VOCs) in ambient air. A method for the real time monitoring of VOCs in inhaled and exhaled air by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) has been developed to permit the calculation of respiratory AFs of VOCs. Isoprene was found to be a better breath tracer than O{sub 2}, CO{sub 2}, humidity, or acetone for distinguishing between the expiratory and inspiratory phases, and a homemade online breath sampling device with a buffer tube was used to optimize signal peak shapes. Preliminary tests with seven subjects exposed to aromatic hydrocarbons in an indoor environment revealed mean respiratory AFs of 55.0%, 55.9%, and 66.9% for benzene, toluene, and C8-aromatics (ethylbenzene and xylenes), respectively. These AFs were lower than the values of 90% or 100% used in previous studies when assessing the health risks of inhalation exposure to hazardous VOCs. The mean respiratory AFs of benzene, toluene and C8-aromatics were 66.5%, 70.2% and 82.3% for the three female subjects; they were noticeably much higher than that of 46.4%, 45.2% and 55.3%, respectively, for the four male subjects.

  12. Spray Inlet Proton Transfer Reaction Mass Spectrometry (SI-PTR-MS) for Rapid and Sensitive Online Monitoring of Benzene in Water.

    Science.gov (United States)

    Zou, Xue; Kang, Meng; Li, Aiyue; Shen, Chengyin; Chu, Yannan

    2016-03-15

    Rapid and sensitive monitoring of benzene in water is very important to the health of people and for environmental protection. A novel and online detection method of spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS) was introduced for rapid and sensitive monitoring of trace benzene in water. A spraying extraction system was coupled with the self-developed PTR-MS. The benzene was extracted from the water sample in the spraying extraction system and continuously detected with PTR-MS. The flow of carrier gas and salt concentration in water were optimized to be 50 sccm and 20% (w/v), respectively. The response time and the limit of detection of the SI-PTR-MS for detection of benzene in water were 55 s and 0.14 μg/L at 10 s integration time, respectively. The repeatability of the SI-PTR-MS was evaluated, and the relative standard deviation of five replicate determinations was 4.3%. The SI-PTR-MS system was employed for monitoring benzene in different water matrices, such as tap water, lake water, and wastewater. The results indicated that the online SI-PTR-MS can be used for rapid and sensitive monitoring of trace benzene in water.

  13. Thermal desorption extraction proton transfer reaction mass spectrometer (TDE-PTR-MS) for rapid determination of residual solvent and sterilant in disposable medical devices.

    Science.gov (United States)

    Wang, Yujie; Shen, Chengyin; Li, Jianquan; Wang, Hongmei; Wang, Hongzhi; Jiang, Haihe; Chu, Yannan

    2011-07-15

    Thermal desorption extraction proton transfer reaction mass spectrometer (TDE-PTR-MS) has been exploited to provide rapid determination of residual solvent and sterilant like cyclohexanone (CHX) and ethylene oxide (EO) in disposable medical devices. Two novel methods are proposed for the quantification of residual chemicals in the polyvinyl chloride infusion sets with our homemade PTR-MS. In the first method, EO residue in the solid infusion sets (y, mgset(-1)) is derived through the determination of EO gas concentration within its packaging bag (x, ppm) according to the correlative equation of y=0.00262x. In the second one, residual EO and CHX in the solid infusion sets are determined through a time integral of their respective mass emission rates. The validity of the proposed methods is demonstrated by comparison with the experimental results from the exhaustive extraction method. Due to fast response, absolute concentration determination and high sensitivity, the TDE-PTR-MS is suggested to be a powerful tool for the quality inspection of disposable medical devices including the quantitative determination of residual solvent and sterilant like CHX and EO. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity.

    Science.gov (United States)

    Yushchenko, Dmytro A; Shvadchak, Volodymyr V; Bilokin', Mykhailo D; Klymchenko, Andrey S; Duportail, Guy; Mély, Yves; Pivovarenko, Vasyl G

    2006-11-01

    A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules.

  15. Intramolecular Rotation through Proton Transfer: [Fe(eta(5)-C5H4CO2-)(2)] Versus [(eta(5)-C5H4CO2-)Fe(eta(5)-C5H4CO2H)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Dai, Bing; Woo, Hin-koon; Wang, Lai S.

    2005-08-12

    We report a photoelectron spectroscopic study of doubly charged (?5C5H4CO2-)Fe(?5-C5H4CO2-) (1) and singly charged (?5C5H4CO2-)Fe(?5C5H4CO2H) (2). It is shown that strong intramolecular coulomb repulsion keeps 1 in the trans-form, in which the two ?CO2- groups on the cyclopentadienyl ligands are oriented opposite to each other, whereas 2 assumes the cis-form owing to a strong intramolecular H-bond. We estimate a rotational barrier of 1.4 eV for 1 and 0.6 eV for 2. A proton transfer to 1 would result in a 112? intramolecular rotation, whereas deportation of 2 would result in a similar intramolecular rotation. Thus 1 and 2 form a model molecular rotor system, controlled by a proton transfer.

  16. Rotational dependence of the proton-transfer reaction HBr+ + CO2 → HOCO+ + Br. II. Comparison of HBr+ (2Π(3/2)) and HBr+ (2Π(1/2)).

    Science.gov (United States)

    Paetow, Lisa; Unger, Franziska; Beutel, Bernd; Weitzel, Karl-Michael

    2010-12-21

    The effects of reactant ion rotational excitation on the exothermic proton-transfer reactions of HBr(+)((2)Π(1/2)) and DBr(+)((2)Π(1/2)), respectively, with CO(2) were studied in a guided ion beam apparatus. Cross sections are presented for collision energies in the center of mass system E(c.m.) in the range of 0.23 to 1.90 eV. The HBr(+)/DBr(+) ions were prepared in a state-selective manner by resonance enhanced multiphoton ionization. The mean rotational energy was varied from 3.4 to 46.8 meV for HBr(+)((2)Π(1/2)) and from 1.8 to 40.9 meV for DBr(+)((2)Π(1/2)). Both reactions studied are inhibited by collision energy, as expected for exothermic reactions. For all collision energies considered, the cross section decreases with increasing rotational energy of the ion, but the degree of the rotational dependence differs depending on the collision energy. For E(c.m.) = 0.31 eV, the cross sections of the deuteron transfer are significantly larger than those of the proton transfer. For higher E(c.m.) they differ very little. The current results for the exothermic proton transfer are systematically compared to previously published data for the endothermic proton transfer starting from HBr(+)((2)Π(3/2)) [L. Paetow et al., J. Chem. Phys. 132, 174305 (2010)]. Additional new data regarding the latter reaction are presented to further confirm the conclusions. The dependences on rotational excitation found cannot be explained by the corresponding change in the total energy of the system. For both the endothermic and the exothermic reaction, the cross section is maximized for the smallest rotational energy, at least well above the threshold.

  17. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol + 50% acetonitrile

    Science.gov (United States)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.

  18. Brucella abortus nicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice.

    Science.gov (United States)

    Kim, Suk; Kurokawa, Daisuke; Watanabe, Kenta; Makino, Sou-Ichi; Shirahata, Toshikazu; Watarai, Masahisa

    2004-05-15

    Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. Nicotinamidase/pyrazinamidase mutant (pncA mutant) of Brucella abortus failed to replicate in HeLa cells, and showed a lower rate of intracellular replication than that of wild-type strain in macrophages. Addition of nicotinic acid, but not nicotinamide, into medium supported intracellular replication of pncA mutant in HeLa cells and macrophages. The pncA mutant was not co-localizing with either late endosomes or lysosomes. The B. abortus virB4 mutant was completely cleared from the spleens of mice after 4 weeks, while the pncA mutant showed a 1.5-log reduction of the number of bacteria isolated from spleens after 10 weeks. Although pncA mutant showed reduced virulence in mice and defective intracellular replication, its ability to confer protection against the virulent B. abortus strain 544 was fully retained. These results suggest that PncA does not contribute to intracellular trafficking of B. abortus, but contributes to utilization of nutrients required for intracellular growth. Our results indicate that detailed characterizations of the pncA mutant may help the improvement of currently available live vaccines. Copyright 2004 Federation of European Microbiological Societies

  19. Concerted asynchronous hula-twist photoisomerization in the S65T/H148D mutant of green fluorescent protein.

    Science.gov (United States)

    Zhang, Qiangqiang; Chen, Xuebo; Cui, Ganglong; Fang, Wei-Hai; Thiel, Walter

    2014-08-11

    Fluorescence emission of wild-type green fluorescent protein (GFP) is lost in the S65T mutant, but partly recovered in the S65T/H148D double mutant. These experimental findings are rationalized by a combined quantum mechanics/molecular mechanics (QM/MM) study at the QM(CASPT2//CASSCF)/AMBER level. A barrierless excited-state proton transfer, which is exclusively driven by the Asp148 residue introduced in the double mutant, is responsible for the ultrafast formation of the anionic fluorescent state, which can be deactivated through a concerted asynchronous hula-twist photoisomerization. This causes the lower fluorescence quantum yield in S65T/H148D compared to wild-type GFP. Hydrogen out-of-plane motion plays an important role in the deactivation of the S65T/H148D fluorescent state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ultrafast electronic and vibrational dynamics of stabilized A state mutants of the green fluorescent protein (GFP): Snipping the proton wire

    Science.gov (United States)

    Stoner-Ma, Deborah; Jaye, Andrew A.; Ronayne, Kate L.; Nappa, Jérôme; Tonge, Peter J.; Meech, Stephen R.

    2008-06-01

    Two blue absorbing and emitting mutants (S65G/T203V/E222Q and S65T at pH 5.5) of the green fluorescent protein (GFP) have been investigated through ultrafast time resolved infra-red (TRIR) and fluorescence spectroscopy. In these mutants, in which the excited state proton transfer reaction observed in wild-type GFP has been blocked, the photophysics are dominated by the neutral A state. It was found that the A∗ excited state lifetime is short, indicating that it is relatively less stabilised in the protein matrix than the anionic form. However, the lifetime of the A state can be increased through modifications to the protein structure. The TRIR spectra show that a large shifts in protein vibrational modes on excitation of the A state occurs in both these GFP mutants. This is ascribed to a change in H-bonding interactions between the protein matrix and the excited state.

  1. Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections

    Science.gov (United States)

    Laszlo, Kenneth J.; Buckner, John H.; Munger, Eleanor B.; Bush, Matthew F.

    2017-07-01

    The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source at 25 °C. Characterization of this source demonstrates that the temperature of the liquid sample is decoupled from that of the atmospheric pressure interface, which is heated during CAPTR experiments. Ionization from denaturing conditions yields 18+ to 8+ ions, which were each isolated and reacted with monoanions to generate all CAPTR products with charge states of at least 3+. The highest, intermediate, and lowest charge-state products exhibit collision cross-section distributions that are unimodal, multimodal, and unimodal, respectively. These distributions depend strongly on the charge state of the product, although those for the intermediate charge-state products also depend on that of the precursor. The distributions of the 3+ products are all similar, with averages that are less than half that of the 18+ precursor ions. Ionization of cytochrome c from native-like conditions yields 7+ and 6+ ions. The 3+ CAPTR products from these precursors have slightly more compact collision cross-section distributions that are indistinguishable from those for the 3+ CAPTR products from denaturing conditions. More broadly, these results indicate that the collision cross-sections of ions of this single domain protein depend strongly on charge state for charge states greater than 4.

  2. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    Science.gov (United States)

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  3. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    Science.gov (United States)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  4. (d ,n ) proton-transfer reactions on 9Be, 11B, 13C, N,1514, and 19F and spectroscopic factors at Ed=16 MeV

    Science.gov (United States)

    Febbraro, M.; Becchetti, F. D.; Torres-Isea, R. O.; Riggins, J.; Lawrence, C. C.; Kolata, J. J.; Howard, A. M.

    2017-08-01

    The (d ,n ) reaction has been studied with targets of 9Be, 11B, 13C, N,1514, and 19F at Ed=16 MeV using a deuterated liquid-scintillator array. Advanced spectral unfolding techniques with accurately measured scintillator response functions were employed to extract neutron energy spectra without the need for long-path neutron time-of-flight. An analysis of the proton-transfer data at forward angles to the ground states of the final nuclei, using finite-range distorted-wave Born approximation analysis with common bound-state, global, and local optical-model parameter sets, yields a set of self-consistent spectroscopic factors. These are compared with the results of several previous time-of-flight measurements, most done many years ago for individual nuclei at lower energy and often analyzed using zero-range transfer codes. In contrast to some of the earlier published data, our data generally compare well with simple shell-model predictions, with little evidence for uniform quenching (reduction from shell-model values) that has previously been reported from analysis of nucleon knock-out reactions. Data for low-lying excited states in 14N from 13C(d ,n ) also is analyzed and spectroscopic information relevant to nuclear astrophysics obtained. A preliminary study of the radioactive ion beam induced reaction 7Be(d ,n ) , E (7Be)=30 MeV was carried out and indicates further improvements are needed for such measurements, which require detection of neutrons with En<2 MeV .

  5. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    Science.gov (United States)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from vehicles.

  6. Characterization of biomass burning smoke from cooking fires, peat, crop residue and other fuels with high resolution proton-transfer-reaction time-of-flight mass spectrometry

    Science.gov (United States)

    Stockwell, C. E.; Veres, P. R.; Williams, J.; Yokelson, R. J.

    2014-08-01

    We deployed a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) to measure biomass burning emissions from peat, crop-residue, cooking fires, and many other fire types during the fourth Fire Lab at Missoula Experiment (FLAME-4) laboratory campaign. A combination of gas standards calibrations and composition sensitive, mass dependent calibration curves were applied to quantify gas-phase non-methane organic compounds (NMOCs) observed in the complex mixture of fire emissions. We used several approaches to assign best identities to most major "exact masses" including many high molecular mass species. Using these methods approximately 80-96% of the total NMOC mass detected by PTR-TOF-MS and FTIR was positively or tentatively identified for major fuel types. We report data for many rarely measured or previously unmeasured emissions in several compound classes including aromatic hydrocarbons, phenolic compounds, and furans; many of which are suspected secondary organic aerosol precursors. A large set of new emission factors (EFs) for a range of globally significant biomass fuels is presented. Measurements show that oxygenated NMOCs accounted for the largest fraction of emissions of all compound classes. In a brief study of various traditional and advanced cooking methods, the EFs for these emissions groups were greatest for open 3-stone cooking in comparison to their more advanced counterparts. Several little-studied nitrogen-containing organic compounds were detected from many fuel types that together accounted for 0.1-8.7% of the fuel nitrogen and some may play a role in new particle formation.

  7. Excited-state intramolecular proton transfer (ESIPT) emission of hydroxyphenylimidazopyridine: computational study on enhanced and polymorph-dependent luminescence in the solid state.

    Science.gov (United States)

    Shigemitsu, Yasuhiro; Mutai, Toshiki; Houjou, Hirohiko; Araki, Koji

    2012-12-13

    Although 2-(2'-hydroxyphenyl)imidazo[1,2-a]pyridine (HPIP) is only weakly fluorescent in solution, two of its crystal polymorphs in which molecules are packed as stacked pairs and in nearly coplanar conformation exhibit bright excited-state intramolecular proton transfer (ESIPT) luminescence of different colors (blue-green and yellow). In order to clarify the enhanced and polymorph-dependent luminescence of HPIP in the solid state, the potential energy surfaces (PESs) of HPIP in the ground (S(0)) and excited (S(1)) states were analyzed computationally by means of ab initio quantum chemical calculations. The calculations reproduced the experimental photophysical properties of HPIP in solution, indicating that the coplanar keto form in the first excited (S(1)) state smoothly approaches the S(0)/S(1) conical intersection (CI) coupled with the twisting motion of the central C-C bond. The S(1)-S(0) energy gap of the keto form became sufficiently small at the torsion angle of 60°, and the corresponding CI point was found at 90°. Since a minor role of the proximity effect was indicated experimentally and theoretically, the observed emission enhancement of the HPIP crystals was ascribed to the following two factors: (1) suppression of efficient radiationless decay via the CI by fixing the torsion angle at the nearly coplanar conformation of the molecules in the crystals and (2) inhibition of excimer formation resulting from the lower excited level of the S(1)-keto state compared to the S(0)-S(1) excitation energy in the enol form. However, the fluorescence color difference between the two crystal polymorphs having slightly different torsion angles was not successfully reproduced, even at the MS-CASPT2 level of theory.

  8. Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS).

    Science.gov (United States)

    Del Pulgar, José Sánchez; Soukoulis, Christos; Biasioli, Franco; Cappellin, Luca; García, Carmen; Gasperi, Flavia; Granitto, Pablo; Märk, Tilmann D; Piasentier, Edi; Schuhfried, Erna

    2011-07-15

    In the present study, the recently developed proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) technique was used for the rapid characterization of dry cured hams produced according to 4 of the most important Protected Designations of Origin (PDOs): an Iberian one (Dehesa de Extremadura) and three Italian ones (Prosciutto di San Daniele, Prosciutto di Parma and Prosciutto Toscano). In total, the headspace composition and respective concentration for nine Spanish and 37 Italian dry cured ham samples were analyzed by direct injection without any pre-treatment or pre-concentration. Firstly, we show that the rapid PTR-ToF-MS fingerprinting in conjunction with chemometrics (Principal Components Analysis) indicates a good separation of the dry cured ham samples according to their production process and that it is possible to set up, using data mining methods, classification models with a high success rate in cross validation. Secondly, we exploited the higher mass resolution of the new PTR-ToF-MS, as compared with standard quadrupole based versions, for the identification of the exact sum formula of the mass spectrometric peaks providing analytical information on the observed differences. The work indicates that PTR-ToF-MS can be used as a rapid method for the identification of differences among dry cured hams produced following the indications of different PDOs and that it provides information on some of the major volatile compounds and their link with the implemented manufacturing practices such as rearing system, salting and curing process, manufacturing practices that seem to strongly affect the final volatile organic profile and thus the perceived quality of dry cured ham. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kye Jin; Kim, Ho Sung; Park, Ji Eun; Shim, Woo Hyun; Kim, Sang Joon [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Smith, Seth A. [Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Nashville, TN (United States)

    2016-12-15

    To determine the added value of amide proton transfer (APT) imaging to conventional and perfusion MRI for differentiating tumour progression (TP) from the treatment-related effect (TE) in patients with post-treatment glioblastomas. Sixty-five consecutive patients with enlarging contrast-enhancing lesions following concurrent chemoradiotherapy were assessed using contrast-enhanced T1-weighted MRI (CE-T1WI), 90th percentile histogram parameters of normalized cerebral blood volume (nCBV90) and APT asymmetry value (APT90). Diagnostic performance was determined using the area under the receiver operating characteristic curve (AUC) and cross validations. There were statistically significant differences in the mean APT90 between the TP and the TE groups (3.87-4.01 % vs. 1.38-1.41 %; P <.001). Compared with CE-T1WI alone, the addition of APT90 to CE-T1WI significantly improved cross-validated AUC from 0.58-0.74 to 0.89-0.91 for differentiating TP from TE. The combination of CE-T1WI, nCBV90 and APT90 resulted in greater diagnostic accuracy for differentiating TP from TE than the combination of CE-T1WI and nCBV90 (cross-validated AUC, 0.95-0.97 vs. 0.84-0.91). The inter-reader agreement between the expert and trainee was excellent for the measurements of APT90 (intraclass correlation coefficient, 0.94). Adding APT imaging to conventional and perfusion MRI improves the diagnostic performance for differentiating TP from TE. (orig.)

  10. On-line measurements of nitro organic compounds emitted from automobiles by proton transfer reaction mass spectrometry: Laboratory experiments and a field measurement

    Science.gov (United States)

    Inomata, S.; Tanimoto, H.; Fujitani, Y.; Fushimi, A.; Sato, K.; Sekimoto, K.; Yamada, H.; Hori, S.; Shimono, A.; Hikida, T.

    2011-12-01

    On-line measurements of nitro organic compounds in automobile exhaust were carried out by proton transfer reaction mass spectrometry (PTR-MS) with a chassis dynamometer. Diesel vehicles with oxidation catalyst system (diesel vehicle A) and with diesel PM-NOx reduction system ((diesel vehicle B) and a gasoline vehicle were used as a test vehicle. In the case of the diesel vehicle A, the emissions of nitromethane, nitrophenol (NPh), C7-, C8-, C9-, and C10-nitrophenols, and dihydroxynitrobenzenes (DHNB) were observed in the diesel exhaust from the experiment under the constant driving at 60 km hr-1. Temporal variations of mixing ratios for nitromethane, NPh, and DHNB along with related volatile organic compounds (VOCs) were measured during a transient driving cycle. The time-resolved measurement revealed that the nitromethane emission was strongly correlated with the emissions of CO, benzene, and acetone, which are relatively quickly produced in acceleration processes and appeared as sharp peaks. On the other hand, the NPh emission was moderately correlated with the emissions of acetic acid and phenol, which peaks were broad. The emission of nitromethane was observed from the exhaust of the diesel vehicle B but the emission of other nitro organic compounds was not observed. This suggests that the emission of nitro organic compounds besides nitromethane may depend on the diesel exhaust aftertreatment devices. The emission of nitromethane was also observed from the exhaust of the gasoline vehicle with cold start. An in-situ measurement of nitro organic compounds and their related VOCs was carried out at the crossing of an urban city, Kawasaki. Nitromethane was observed at the crossing and we found that the concentration of nitrometane varied rapidly. During the measurement, the maximum of the concentration of nitrometane reached 5 ppbv. Not only nitrophenols but also nitroaromatics were sometimes detected in the field measurement.

  11. Towards a thermodynamic definition of efficacy in partial agonism: The thermodynamics of efficacy and ligand proton transfer in a G protein-coupled receptor of the rhodopsin class.

    Science.gov (United States)

    Broadley, Kenneth J; Sykes, Shane C; Davies, Robin H

    2010-11-15

    The thermodynamic binding profiles of agonist and antagonist complexes of the 4-hydroxypropanolamine partial agonist, prenalterol, on the chronotropic adrenergic response in guinea-pig right atria were determined over a 15 °C temperature range. The tissue response was compared with data on the ethanolamine agonist, isoprenaline, given by binding studies in a number of rat tissues. Utilising the residue conservatism surrounding the known active conformers bound to either of two aspartate residues (α-helices II, III) in both receptors (β(1), β(2)) and species (guinea-pig, rat and human), no significant deformation in the extended side chain could be found in prenalterol's agonist binding compared to isoprenaline. Antagonist binding gave a highly favourable entropy contribution at 30.0 °C of -4.7±1.2 kcal/mol. The enthalpy change between bound agonist and antagonist complexes, a function of the efficacy alone, was -6.4±1.1 kcal/mol, coincident with the calculated intrinsic preference of a primary/secondary amine-aspartate interaction for a neutral hydrogen-bonded form over its ion pair state, giving values of 6.3-6.6 kcal/mol with calculations of good quality, a figure expected to be close to that shown within a hydrophobic environment. Delivery of a proton to a conserved aspartate anion (α-helix II) becomes the critical determinant for agonist action with resultant proton transfer stabilisation dominating the enthalpy change. A proposed monocation-driven ligand proton pumping mechanism within the ternary complex is consistent with the data, delivery between two acid groups being created by the movement of the cation and the counter-movement of the ligand protonated amine moving from Asp 138 (α-helix III) to Asp 104 (α-helix II). Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters

    KAUST Repository

    Hong, Miao

    2016-01-18

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition–proton transfer–NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability Four MeO– and Cl–substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, RxTPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), OMe2TPT and OMe3TPT, have been synthesized, while OMe2TPT(MeO/H) and OMe2TPT have also been structurally characterized. The structure/reactivity relationship study revealed that OMe2TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl–substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species.

  13. Photophysical properties and excited state intramolecular proton transfer in 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid in homogeneous solvents and micro-heterogeneous environments

    International Nuclear Information System (INIS)

    Gashnga, Pynsakhiat Miki; Singh, T. Sanjoy; Baul, Tushar S. Basu; Mitra, Sivaprasad

    2014-01-01

    A systematic study on the photophysical properties and excited state intramolecular proton transfer (ESIPT) behavior of 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid, is reported using steady-state and time-resolved fluorescence spectroscopy in homogeneous solvents as well as in different micro-heterogeneous environments. Depending on the nature of intramolecular hydrogen bond (IHB), the salicylic acid derivative may exist in two different ground state conformers (I and II). Structure I having IHB between the carbonyl oxygen and phenolic hydrogen can undergo ESIPT upon excitation as evidenced by largely Stokes-shifted fluorescence at ∼455 nm; whereas, normal fluorescence in the blue side of the spectrum (∼410 nm) is due to the spontaneous emission from conformer II. The results in homogeneous solvents were compared with those in bio-mimicking environments of β-cyclodextrin (CD) and surfactants. The intensity of the ESIPT fluorescence increases substantially upon encapsulation of the probe into the cyclodextrin as well as micellar nano-cavities. Detailed analysis of the spectroscopic data indicates that the probe forms 1:1 complex with CD in aqueous medium. Binding constant of the probe with the micelles as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of different surfactants in aqueous medium. -- Highlights: • Steady state and time resolved fluorescence study on ESIPT in HMBA. • Dual fluorescence corresponding to the pro- and non-ESIPT structures. • Modulation of ESIPT fluorescence in micro-heterogeneous environments. • 1:1 stoichiometry for interaction with cyclodextrin. • Calculation of binding constant and other physico-chemical properties from fluorescence titration data in surfactants

  14. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective.

    Science.gov (United States)

    Kasumov, Eldar A; Kasumov, Ruslan E; Kasumova, Irina V

    2015-01-01

    ATP is synthesized using ATP synthase by utilizing energy either from the oxidation of organic compounds, or from light, via redox reactions (oxidative- or photo phosphorylation), in energy-transforming membranes of mitochondria, chloroplasts, and bacteria. ATP synthase undergoes several changes during its functioning. The generally accepted model for ATP synthesis is the well-known rotatory model (see e.g., Junge et al., Nature 459:364-370, 2009; Junge and Müller, Science 333:704-705, 2011). Here, we present an alternative modified model for the coupling of electron and proton transfer to ATP synthesis, which was initially developed by Albert Lester Lehninger (1917-1986). Details of the molecular mechanism of ATP synthesis are described here that involves cyclic low-amplitude shrinkage and swelling of mitochondria. A comparison of the well-known current model and the mechano-chemiosmotic model is also presented. Based on structural, and other data, we suggest that ATP synthase is a Ca(2+)/H(+)-K(+) Cl(-)-pump-pore-enzyme complex, in which γ-subunit rotates 360° in steps of 30°, and 90° due to the binding of phosphate ions to positively charged amino acid residues in the N-terminal γ-subunit, while in the electric field. The coiled coil b 2-subunits are suggested to act as ropes that are shortened by binding of phosphate ions to positively charged lysines or arginines; this process is suggested to pull the α 3 β 3-hexamer to the membrane during the energization process. ATP is then synthesized during the reverse rotation of the γ-subunit by destabilizing the phosphated N-terminal γ-subunit and b 2-subunits under the influence of Ca(2+) ions, which are pumped over from storage-intermembrane space into the matrix, during swelling of intermembrane space. In the process of ATP synthesis, energy is first, predominantly, used in the delivery of phosphate ions and protons to the α 3 β 3-hexamer against the energy barrier with the help of C-terminal alpha

  15. Three-dimensional hydrogen-bonded structures in the hydrated proton-transfer salts of isonipecotamide with the dicarboxylic oxalic and adipic acid homologues.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D

    2013-10-01

    The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O(+)·C2HO4(-)·2H2O, (I), and with adipic acid, bis(4-carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O(+)·C6H8O4(2-)·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carboxylic acid O-H···O(carboxyl) hydrogen-bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-H···O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-H···O(carboxyl) hydrogen bonds, generating cyclic R4(3)(10) and R3(2)(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion-related cations are interlinked through the two water molecules, which act as acceptors in dual amide N-H···O(water) hydrogen bonds, to give a cyclic R4(2)(8) association which is conjoined with an R4(4)(12) motif. Further N-H···O(water), water O-H···O(amide) and piperidinium N-H···O(carboxyl) hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.

  16. Detection of formaldehyde emissions from an industrial zone in the Yangtze River Delta region of China using a proton transfer reaction ion-drift chemical ionization mass spectrometer

    Science.gov (United States)

    Ma, Yan; Diao, Yiwei; Zhang, Bingjie; Wang, Weiwei; Ren, Xinrong; Yang, Dongsen; Wang, Ming; Shi, Xiaowen; Zheng, Jun

    2016-12-01

    A proton transfer reaction ion-drift chemical ionization mass spectrometer (PTR-ID-CIMS) equipped with a hydronium (H3+O) ion source was developed and deployed near an industrial zone in the Yangtze River Delta (YRD) region of China in spring 2015 to investigate industry-related emissions of volatile organic compounds (VOCs). Air pollutants including formaldehyde (HCHO), aromatics, and other trace gases (O3 and CO) were simultaneously measured. Humidity effects on the sensitivity of the PTR-ID-CIMS for HCHO detection were investigated and quantified. The performances of the PTR-ID-CIMS were also validated by intercomparing with offline HCHO measurement technique using 2,4-dinitrophenylhydrazone (DNPH) cartridges and the results showed fairly good agreement (slope = 0.81, R2 = 0.80). The PTR-ID-CIMS detection limit of HCHO (10 s, three-duty-cycle averages) was determined to be 0.9-2.4 (RH = 1-81.5 %) parts per billion by volume (ppbv) based on 3 times the standard deviations of the background signals. During the field study, observed HCHO concentrations ranged between 1.8 and 12.8 ppbv with a campaign average of 4.1 ± 1.6 ppbv, which was comparable with previous HCHO observations in other similar locations of China. However, HCHO diurnal profiles showed few features of secondary formation. In addition, time series of both HCHO and aromatic VOCs indicated strong influence from local emissions. Using a multiple linear regression fit model, on average the observed HCHO can be attributed to secondary formation (13.8 %), background level (27.0 %), and industry-related emissions, i.e., combustion sources (43.2 %) and chemical productions (16.0 %). Moreover, within the plumes the industry-related emissions can account for up to 69.2 % of the observed HCHO. This work has provided direct evidence of strong primary emissions of HCHO from industry-related activities. These primary HCHO sources can potentially have a strong impact on local and regional air pollution formation

  17. Solution and solid state studies of a new supramolecular proton transfer salt and its VO.sub.2./sub. complex constructed with chelidamic acid and 3,4 diaminopyridine

    Czech Academy of Sciences Publication Activity Database

    Shams, H.; Derikvand, Z.; Dušek, Michal; Eigner, Václav; Shokrollahi, A.; Refahi, M.; Azadbakht, A.

    2017-01-01

    Roč. 14, č. 4 (2017), s. 811-822 ISSN 1735-207X R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : chelidamic acid * proton transfer compound * potentiometric study * stability constant * crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.407, year: 2016

  18. Electron paramagnetic resonance evidence for the occurrence of hydrogen and/or proton transfer between C7, C8 and C11 n-alkanes and their cations in irradiated CCl3F matrices at 77 K

    International Nuclear Information System (INIS)

    Luyckx, G.; Ceulemans, J.

    1991-01-01

    After γ-irradiation of heptane and octane at low concentration in CCI 3 F at 77 K, only the EPR spectrum of the corresponding radical cations is observed. At higher concentrations, the spectrum of alkyl radicals also appears. Clear alkyl radical features are also observed after irradiation of 1 mol% undecane in CCI 3 F. In contrast, alkane radical cations but no alkyl radicals are observed after irradiation of heptane, octane and undecane in CCI 3 CF 3 and other saturated chlorofluorocarbon matrices at concentrations where alkyl radicals are already very prominent in CCI 3 F. Different mechanisms for the formation of these alkyl radicals are considered, viz. direct radiolysis of the alkane solutes, formation as a result of electronic excitation energy transfer and formation via the corresponding alkane radical cations that are formed by hole transfer from matrix cations. In the latter case, unimolecular deprotonation, charge neutralization by electron tunnelling and hydrogen/proton transfer with alkane molecules are taken into consideration. It is concluded that the hydrogen/proton transfer reaction (RH dot+ + RH→R dot + RH + 2 ) mainly accounts for the observed alkyl radicals. The results further indicate that in CCI 3 F at 77 K alkanes are present as small aggregates, to which hole transfer from matrix cations still occurs efficiently. (author)

  19. Mechanisms and rates of proton transfer to coordinated carboxydithioates: studies on [Ni(S2CR){PhP(CH2CH2PPh2)2}](+) (R = Me, Et, Bu(n) or Ph).

    Science.gov (United States)

    Alwaaly, Ahmed; Clegg, William; Henderson, Richard A; Probert, Michael R; Waddell, Paul G

    2015-02-21

    The complexes [Ni(S2CR)(triphos)]BPh4 (R = Me, Et, Bu(n) or Ph; triphos = PhP{CH2CH2PPh2}2) have been prepared and characterised. X-ray crystallography (for R = Et, Ph, C6H4Me-4, C6H4OMe-4 and C6H4Cl-4) shows that the geometry of the five-coordinate nickel in the cation is best described as distorted trigonal bipyramidal, containing a bidentate carboxydithioate ligand with the two sulfur atoms spanning axial and equatorial sites, the other axial site being occupied by the central phosphorus of triphos. The reactions of [Ni(S2CR)(triphos)](+) with mixtures of HCl and Cl(-) in MeCN to form equilibrium solutions containing [Ni(SH(S)CR)(triphos)](2+) have been studied using stopped-flow spectrophotometry. The kinetics show that proton transfer is slower than the diffusion-controlled limit and involves at least two coupled equilibria. The first step involves the rapid association between [Ni(S2CR)(triphos)](+) and HCl to form the hydrogen-bonded precursor, {[Ni(S2CR)(triphos)](+)HCl} (K) and this is followed by the intramolecular proton transfer (k) to produce [Ni(SH(S)CR)(triphos)](2+). In the reaction of [Ni(S2CMe)(triphos)](+) the rate law is consistent with the carboxydithioate ligand undergoing chelate ring-opening after protonation. It seems likely that chelate ring-opening occurs for all [Ni(S2CR)(triphos)](+), but only with [Ni(S2CMe)(triphos)](+) is the protonation step sufficiently fast that chelate ring-opening is rate-limiting. With all other systems, proton transfer is rate-limiting. DFT calculations indicate that protonation can occur at either sulfur atom, but only protonation at the equatorial sulfur results in chelate ring-opening. The ways in which protonation of either sulfur atom complicates the analyses and interpretation of the kinetics are discussed.

  20. Solid-phase molecular recognition of cytosine based on proton-transfer reaction. Part II. supramolecular architecture in the cocrystals of cytosine and its 5-Fluoroderivative with 5-Nitrouracil

    Directory of Open Access Journals (Sweden)

    Portalone Gustavo

    2011-09-01

    Full Text Available Abstract Background Cytosine is a biologically important compound owing to its natural occurrence as a component of nucleic acids. Cytosine plays a crucial role in DNA/RNA base pairing, through several hydrogen-bonding patterns, and controls the essential features of life as it is involved in genetic codon of 17 amino acids. The molecular recognition among cytosines, and the molecular heterosynthons of molecular salts fabricated through proton-transfer reactions, might be used to investigate the theoretical sites of cytosine-specific DNA-binding proteins and the design for molecular imprint. Results Reaction of cytosine (Cyt and 5-fluorocytosine (5Fcyt with 5-nitrouracil (Nit in aqueous solution yielded two new products, which have been characterized by single-crystal X-ray diffraction. The products include a dihydrated molecular salt (CytNit having both ionic and neutral hydrogen-bonded species, and a dihydrated cocrystal of neutral species (5FcytNit. In CytNit a protonated and an unprotonated cytosine form a triply hydrogen-bonded aggregate in a self-recognition ion-pair complex, and this dimer is then hydrogen bonded to one neutral and one anionic 5-nitrouracil molecule. In 5FcytNit the two neutral nucleobase derivatives are hydrogen bonded in pairs. In both structures conventional N-H...O, O-H...O, N-H+...N and N-H...N- intermolecular interactions are most significant in the structural assembly. Conclusion The supramolecular structure of the molecular adducts formed by cytosine and 5-fluorocytosine with 5-nitrouracil, CytNit and 5FcytNit, respectively, have been investigated in detail. CytNit and 5FcytNit exhibit widely differing hydrogen-bonding patterns, though both possess layered structures. The crystal structures of CytNit (Dpka = -0.7, molecular salt and 5FcytNit (Dpka = -2.0, cocrystal confirm that, at the present level of knowledge about the nature of proton-transfer process, there is not a strict correlation between the Dpka values

  1. Promising rice mutants

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1988-01-01

    Two induced mutants namely, Mut NS 1 (tall) and Mut NS 5 (semi-dwarf) derived from rice variety Nizersail were evaluated for various agronomic characters at four locations in Bangladesh. Both the mutants matured about three weeks earlier and yielded significantly higher than the parent variety Nizersail. (author). 3 tabs., 9 refs

  2. Mutant heterosis in rice

    International Nuclear Information System (INIS)

    1987-01-01

    In the variety TKM6 a high yielding semidwarf mutant has been induced. This TKM6 mutant was used in test crosses with a number of other varieties and mutants to examine the extent of heterosis of dwarfs in rice and to select superior crosses. An excerpt of the published data is given. It appears from the backcross of the mutant with its original variety, that an increase in number of productive tillers occurs in the hybrid, leading to a striking grain yield increase, while the semi-dwarf culm length (the main mutant character) reverts to the normal phenotype. In the cross with IR8 on the other hand, there is only a minimal increase in tiller number but a substantial increase in TGW leading to more than 30% yield increase over the better parent

  3. Intracellularly Induced Cyclophilins Play an Important Role in Stress Adaptation and Virulence of Brucella abortus

    Science.gov (United States)

    García Fernández, Lucía; DelVecchio, Vito G.; Briones, Gabriel

    2013-01-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells. PMID:23230297

  4. Drosophila VAMP7 regulates Wingless intracellular trafficking.

    Science.gov (United States)

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui

    2017-01-01

    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  5. Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase

    Energy Technology Data Exchange (ETDEWEB)

    Schreferl, G.; Kubicek, C.P.; Roehr, M.

    1986-03-01

    Mutant strains of Aspergillus niger with reduced citrate control of carbohydrate catabolism (cic mutants) grow faster than the parent strain on media containing 5% (wt/vol) citrate. The mutants tolerated a higher intracellular citrate concentration than the parent strain. One mutant (cic-7/3) contained phosphofructokinase activity significantly less sensitive towards citrate than the enzyme from the parent strain. When this mutant was grown under citrate accumulating conditions, acidogenesis was far less sensitive to inhibition by Mn/sup 2 +/ than in the parent strain. Some of the cic mutants also showed altered citrate inhibition of NADP-specific isocitrate dehydrogenase.

  6. Role of Intracellular Proteases in the Antibiotic Resistance, Motility, and Biofilm Formation of Pseudomonas aeruginosa

    OpenAIRE

    Fernández, Lucía; Breidenstein, Elena B. M.; Song, Diana; Hancock, Robert E. W.

    2012-01-01

    Pseudomonas aeruginosa possesses complex regulatory networks controlling virulence and survival under adverse conditions, including antibiotic pressure, which are interconnected and share common regulatory proteins. Here, we screen a panel of 13 mutants defective in intracellular proteases and demonstrate that, in addition to the known alterations in Lon and AsrA mutants, mutation of three protease-related proteins PfpI, ClpS, and ClpP differentially affected antibiotic resistance, swarming m...

  7. Productive mutants of niger

    International Nuclear Information System (INIS)

    Misra, R.C.

    2001-01-01

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  8. Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel

    International Nuclear Information System (INIS)

    Pielak, Rafal M.; Chou, James J.

    2010-01-01

    Research highlights: → This paper reports the structure of the V27A drug resistant mutant of the M2 channel of influenza A virus. → High quality NMR data allowed a better-defined structure for the C-terminal region of the M2 channel. → Using the structure, we propose a proton transfer pathway during M2 proton conduction. → Structural comparison between the wildtype, V27A and S31N variants allowed an in-depth analysis of possible modes of drug resistance. → Distinct feature of the V27A channel pore also provides an explanation for its faster rate of proton conduction. -- Abstract: The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication. It is the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the solution NMR structure of the highly pathogenic, drug resistant mutant V27A. The structure reveals subtle structural differences from wildtype that maybe linked to drug resistance. The V27A mutation significantly decreases hydrophobic packing between the N-terminal ends of the transmembrane helices, which explains the looser, more dynamic tetrameric assembly. The weakened channel assembly can resist drug binding either by destabilizing the rimantadine-binding pocket at Asp44, in the case of the allosteric inhibition model, or by reducing hydrophobic contacts with amantadine in the pore, in the case of the pore-blocking model. Moreover, the V27A structure shows a substantially increased channel opening at the N-terminal end, which may explain the faster proton conduction observed for this mutant. Furthermore, due to the high quality NMR data recorded for the V27A mutant, we were able to determine the structured region connecting the channel domain to the C-terminal amphipathic helices that was not determined in the wildtype structure. The new structural data show that the

  9. Stability of hemi-bonded vs proton-transferred structures of (H2O)2(+), (H2S)2(+), and (H2Se)2(+) studied with projected Hartree-Fock methods.

    Science.gov (United States)

    Stein, Tamar; Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E

    2014-09-04

    Hartree-Fock (HF) is known to suffer from drawbacks in the description of the relative stabilities between the hemi-bonded (HB) and proton-transferred (PT) isomers of the water dimer cation, (H2O)2(+). The energy difference predicted by HF is too large, approximately 27 kcal/mol, which is lowered to 7 kcal/mol when correlation effects are added. The error in HF has been previously attributed to the large dynamic correlation effects in the HB structure as well to the large symmetry breaking this structure exhibits. In this study we use the recently developed projected Hartree-Fock (PHF) methods to study the relative stability of the two isomers of (H2O)2(+) as well as its second and third row analogs, namely, (H2S)2(+) and (H2Se)2(+). In PHF, symmetries are broken and restored in a variation-after-projection approach and thus can deal easily with systems for which HF itself spontaneously breaks symmetry. We use different flavors of PHF (SUHF, KSUHF, SGHF, and KSGHF) to explore their ability in capturing dynamic correlation effects and to compare their performance to different wave function based methods. We study the role of the symmetry-breaking in the above systems, using wave function based methods with unrestricted and restricted wave functions as well as performing a single-shot symmetry restoration (a projection-after-variation scheme).

  10. Effects of air exchange, temperature and slurry management on odorant emissions from pig production units and slurry tanks studied by proton-transfer-reaction mass spectrometry (PTR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Feilberg, A.; Adamsen, A.P.S.; Liu, D.; Hansen, M.J.; Bildsoe, P. [Aarhus Univ., Tjele (Denmark). Dept. of Biosystems Engineering

    2010-07-01

    The factors affecting the variability of odorant emissions from intensive pig production facilities were examined using proton-transfer-reaction mass spectrometry (PTR-MS) to monitor emissions of odorants. Quantitative and time-resolved results for protonated ions representing hydrogen sulphide (H{sub 2}S), volatile organic sulphur compounds, organic amines, volatile carboxylic acids, carbonyls, phenols and indoles can be obtained. This study presented the results from PTRMS measurements of odorant emissions from finisher pig houses and finisher manure storage tanks. The measurements were performed at an experimental full-scale pig section with mechanical ventilation and at an experimental manure storage facility with controlled air exchange. Field measurements were taken during variable air exchange rates and temperatures, during finisher growth, and during emptying of the slurry pit. The results revealed a pronounced diurnal variation in emissions of odorants from the pig section with peaks in daytime coinciding with the highest ventilation rates and highest room temperatures. The highest emission rates were observed for H{sub 2}S and carboxylic acids. Based on odour threshold values, methanethiol and 4-methylphenol were estimated to contribute considerably to the odour nuisance. Discharging of the slurry pit led to reduced H{sub 2}S emissions, but peaks of H{sub 2}S were observed during manure handling.

  11. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers.

    Science.gov (United States)

    Bachmeier, Andreas; Esselborn, Julian; Hexter, Suzannah V; Krämer, Tobias; Klein, Kathrin; Happe, Thomas; McGrady, John E; Myers, William K; Armstrong, Fraser A

    2015-04-29

    Formaldehyde (HCHO), a strong electrophile and a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases, is used to identify the point in the catalytic cycle at which a highly reactive metal-hydrido species is formed. Investigations of the reaction of Chlamydomonas reinhardtii [FeFe]-hydrogenase with formaldehyde using pulsed-EPR techniques including electron-nuclear double resonance spectroscopy establish that formaldehyde binds close to the active site. Density functional theory calculations support an inhibited super-reduced state having a short Fe-(13)C bond in the 2Fe subsite. The adduct forms when HCHO is available to compete with H(+) transfer to a vacant, nucleophilic Fe site: had H(+) transfer already occurred, the reaction of HCHO with the Fe-hydrido species would lead to methanol, release of which is not detected. Instead, Fe-bound formaldehyde is a metal-hydrido mimic, a locked, inhibited form analogous to that in which two electrons and only one proton have transferred to the H-cluster. The results provide strong support for a mechanism in which the fastest pathway for H2 evolution involves two consecutive proton transfer steps to the H-cluster following transfer of a second electron to the active site.

  12. Spectral, thermal, structural and quantum chemical calculations of 3,5-dimethyl-1H-pyrazol-2-ium-3-hydroxy-2,4,6-trinitrophenolate - A new organic proton transfer crystal

    Science.gov (United States)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M.

    2017-12-01

    Single crystals of a new proton transfer optical material, 3,5-dimethyl-1H-pyrazol-2-ium-3-hydroxy-2,4,6-trinitrophenolate (DPHTP), were obtained using slow evaporation of methanolic solution containing 1:1 M quantities of 3,5 dimethyl-1H-pyrazole and 3-hydroxy 2,4,6-trinitro phenol (styphnic acid). Asymmetric unit of DPHTP contains a univalent 3,5- dimethylpyrazolium cation with a univalent 3-hydroxy-2,4,6-trinitrophenolate anion. The various types of carbon atoms and protons in the compound were established using 1H and 13C NMR spectral studies. Thermal stability and decomposition pattern of DPHTP were studied by TG/DTA. The optical nonlinearities of DPHTP have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. The equilibrium optimized geometry, the first order hyperpolarizability calculations, molecular electrostatic interactions, frontier molecular orbital analysis, Mulliken population analysis have been calculated by density functional theoretical (DFT) method with (B3LYP)/6-311++G(d,p) level of basis set. First order hyperpolarizability (β) of DPHTP is 22 times greater than that of urea.

  13. Real-time flavor analysis: optimization of a proton-transfer-mass spectrometer and comparison with an atmospheric pressure chemical ionization mass spectrometer with an MS-nose interface.

    Science.gov (United States)

    Avison, Shane J

    2013-03-06

    Two techniques are recognized for the real-time analysis of flavors during eating and drinking, atmospheric pressure chemical ionization mass spectrometry (APCI-MS), and proton transfer reaction mass spectrometry (PTR-MS). APCI-MS was developed for the analysis of flavors and fragrances, whereas PTR-MS was originally developed and optimized for the analysis of atmospheric pollutants. Here, the suitability of the two techniques for real-time flavor analysis is compared, using a varied range of common flavor compounds. An Ionicon PTR-MS was first optimized and then its performance critically compared with that of APCI-MS. Performance was gauged using the capacity for soft ionization, dynamic linear range, and limit of detection. Optimization of the PTR-MS increased the average sensitivity by a factor of more than 3. However, even with this increase in sensitivity, the Limit of Detection was typically 10 times higher and the Dynamic Linear Range ten times narrower than that of the APCI-MS.

  14. Comparison of the proton-transfer paths in hydrogen bonds from theoretical potential-energy surfaces and the concept of conservation of bond order III. O-H-O hydrogen bonds.

    Science.gov (United States)

    Majerz, Irena; Olovsson, Ivar

    2010-01-01

    The quantum-mechanically derived reaction coordinates (QMRC) for the proton transfer in O-H-O hydrogen bonds have been derived from ab initio calculations of potential-energy surfaces. A comparison is made between the QMRC and the corresponding bond-order reaction coordinates (BORC) derived by applying the Pauling bond order concept together with the principle of conservation of bond order. In agreement with earlier results for N-H-N(+) hydrogen bonds there is virtually perfect agreement between the QMRC and BORC curves for intermolecular O-H-O hydrogen bonds. For intramolecular O-H-O hydrogen bonds, the donor and acceptor parts of the molecule impose strong constraints on the O···O distance and the QMRC does not follow the BORC relation in the whole range. The neutron-determined proton positions are located close to the theoretically calculated potential-energy minima, and where the QMRC and the BORC curves coincide with each other. The results confirm the universal character of intermolecular hydrogen bonds: BORC is identical with QMRC and the proton can be moved from donor to acceptor keeping its valency equal to 1. The shape of PES for intramolecular hydrogen bonds is more complex as it is sensitive to the geometry of the molecule as well as of the hydrogen bridge. This journal is © the Owner Societies 2010

  15. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. The intracellular pharmacokinetics of terminally capped peptides.

    NARCIS (Netherlands)

    Ruttekolk, I.R.R.; Witsenburg, J.J.; Glauner, H.B.; Bovee-Geurts, P.H.M.; Ferro, E.S.; Verdurmen, W.P.R.; Brock, R.E.

    2012-01-01

    With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular

  17. Functional genomics of intracellular bacteria.

    Science.gov (United States)

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  18. Spectral and electrooptical absorption and emission studies on internally hydrogen bonded benzoxazole 'double' derivatives: 2,5-bis(benzoxazolyl)hydroquinone (BBHQ) and 3,6-bis(benzoxazolyl)pyrocatechol (BBPC). Single versus double proton transfer in the excited BBPC revisited

    Energy Technology Data Exchange (ETDEWEB)

    Wortmann, R.; Lebus, S.; Reis, H. [Institute of Physical Chemistry, University of Mainz, Jakob-Welder-Weg 11, 55099 Mainz (Germany); Grabowska, A.; Kownacki, K. [Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka, 01-224 Warsaw (Poland); Jarosz, S. [Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka, 01-224 Warsaw (Poland)

    1999-05-15

    Ground and excited state dipole moments and polarizabilities of 2,5-bis(benzoxazolyl)hydroquinone (BBHQ) and 3,6-bis(benzoxazolyl)pyrocatechol (BBPC) are determined by means of electrooptical absorption and emission measurements. BBHQ is found to exhibit a small, while BBPC a large increase of the static polarizability in the Franck-Condon (FC) excited singlet state. The change of the dipole moments upon excitation to the FC state is zero within experimental error. However, both molecules show dipole moments in the fluorescent states of their phototautomers, of about 5 D, the major component being parallel to the long molecular axis. The experimental and theoretical results strongly suggest that the fluorescent species of BBHQ and BBPC are monoketo-tautomers created by single proton transfer in the course of the excited state relaxation. For BBPC this was confirmed by a comparative photophysical study with its monomethoxy-derivative (MeBBPC), in which one active proton is replaced by the CH{sub 3} group. These results lead to the revision of previous conclusions [Grabowska et al., Chem. Phys. Lett. 177 (1991) 17] stating that BBPC undergoes a double proton transfer in the excited state. For BBHQ the previously found single proton transfer mechanism of tautomerization is fully confirmed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Guo, Jing; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-05-22

    Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.

  20. Proton Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable nocturnal conditions

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Ciccioli, Paolo; Zona, Donatella; Loreto, Francesco; Janssens, Ivan A.; Ceulemans, Reinhart

    2014-11-01

    Combustion of solid and liquid fuels is the largest source of potentially toxic volatile organic compounds (VOCs), which can strongly affect health and the physical and chemical properties of the atmosphere. Among combustion processes, biomass burning is one of the largest at global scale. We used a Proton Transfer Reaction “Time-of-Flight” Mass Spectrometer (PTR-TOF-MS), which couples high sensitivity with high mass resolution, for real-time detection of multiple VOCs emitted by burned hay and straw in a barn located near our measuring station. We detected 132 different organic ions directly attributable to VOCs emitted from the fire. Methanol, acetaldehyde, acetone, methyl vinyl ether (MVE), acetic acid and glycolaldehyde dominated the VOC mixture composition. The time-course of the 25 most abundant VOCs, representing ∼85% of the whole mixture of VOCs, was associated with that of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) emissions. The strong linear relationship between the concentrations of pyrogenic VOC and of a reference species (i.e. CO) allowed us to compile a list of emission ratios (ERs) and emission factors (EFs), but values of ER (and EF) were overestimated due to the limited mixing of the gases under the stable (non-turbulent) nocturnal conditions. In addition to the 25 most abundant VOCs, chemical formula and concentrations of the residual, less abundant VOCs in the emitted mixture were also estimated by PTR-TOF-MS. Furthermore, the evolution of the complex combustion process was described on the basis of the diverse types of pyrogenic gases recorded.

  1. Unique photophysical behavior of 2,2'-bipyridine-3,3'-diol in DMSO-water binary mixtures: potential application for fluorescence sensing of Zn2+ based on the inhibition of excited-state intramolecular double proton transfer.

    Science.gov (United States)

    Mandal, Sarthak; Ghosh, Surajit; Banerjee, Chiranjib; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-10-10

    In this work we have investigated the anomalous behavior of DMSO-water binary mixtures using 2,2'-bipyridine-3,3'-diol (BP(OH)2) as a microenvironment-sensitive excited-state-intramolecular-double-proton-transfer (ESIDPT) probe. Here we present results on the UV-vis absorption and fluorescence properties of BP(OH)2 in the binary solutions. DMSO-water binary mixtures at various compositions are an intriguing hydrogen bonded system, where DMSO acts to diminish the hydrogen bonding ability of water with the dissolved solutes. As a result, we observe unusual changes in the photophysical properties of BP(OH)2 with increasing DMSO content in complete correlation with the prior simulation and experimental results on the solvent structures and dynamics. The fluorescence quantum yield and fluorescence lifetime of BP(OH)2 depend strongly on the DMSO content and become maximum at very low mole fraction (∼0.12) of DMSO. The anomalous behavior at this particular region likely arises from the enhanced pair hydrophobicity of the medium as demonstrated by Bagchi and co-workers (Banerjee, S.; Roy, S.; Bagchi, B. J. Phys. Chem. B 2010, 114, 12875-12882). In addition we have also shown the utilization of BP(OH)2 as a potential Zn(2+)-selective fluorescent sensor in a 1:1 DMSO-water binary mixture useful for biological applications. We observed highly enhanced fluorescence emission of BP(OH)2 selectively for binding with the Zn(2+) metal ion. Moreover, the fluorescence emission maximum of BP(OH)2-Zn(2+) is significantly blue-shifted with a reduced Stokes shift due to the inhibition of the ESIDPT process of BP(OH)2 through strong coordination.

  2. Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: Crucial role of proton-transfer shuttles in the PNP-Ir system

    KAUST Repository

    Qu, Shuanglin

    2014-04-02

    Kempe et al. and Milstein et al. have recently advanced the dehydrogenative coupling methodology to synthesize pyrroles from secondary alcohols (e.g., 3) and β-amino alcohols (e.g., 4), using PNP-Ir (1) and PNN-Ru (2) pincer complexes, respectively. We herein present a DFT study to characterize the catalytic mechanism of these reactions. After precatalyst activation to give active 1A/2A, the transformation proceeds via four stages: 1A/2A-catalyzed alcohol (3) dehydrogenation to give ketone (11), base-facilitated C-N coupling of 11 and 4 to form an imine-alcohol intermediate (18), base-promoted cyclization of 18, and catalyst regeneration via H2 release from 1R/2R. For alcohol dehydrogenations, the bifunctional double hydrogen-transfer pathway is more favorable than that via β-hydride elimination. Generally, proton-transfer (H-transfer) shuttles facilitate various H-transfer processes in both systems. Notwithstanding, H-transfer shuttles play a much more crucial role in the PNP-Ir system than in the PNN-Ru system. Without H-transfer shuttles, the key barriers up to 45.9 kcal/mol in PNP-Ir system are too high to be accessible, while the corresponding barriers (<32.0 kcal/mol) in PNN-Ru system are not unreachable. Another significant difference between the two systems is that the addition of alcohol to 1A giving an alkoxo complex is endergonic by 8.1 kcal/mol, whereas the addition to 2A is exergonic by 8.9 kcal/mol. The thermodynamic difference could be the main reason for PNP-Ir system requiring lower catalyst loading than the PNN-Ru system. We discuss how the differences are resulted in terms of electronic and geometric structures of the catalysts and how to use the features in catalyst development. © 2014 American Chemical Society.

  3. Ethylene glycol modified 2-(2′-aminophenyl)benzothiazoles at the amino site: the excited-state N-H proton transfer reactions in aqueous solution, micelles and potential application in live-cell imaging

    International Nuclear Information System (INIS)

    Liu, Bo-Qing; Tsai, Yi-Hsuan; Li, Yi-Jhen; Chao, Chi-Min; Liu, Kuan-Miao; Chen, Yi-Ting; Chen, Yu-Wei; Chung, Kun-You; Tseng, Huan-Wei; Chou, Pi-Tai

    2016-01-01

    Triethylene glycol monomethyl ether and poly(ethylene glycol) monomethyl ether modified 2-(2′-aminophenyl)benzothiazoles, namely ABT-P3EG, ABT-P7EG and ABT-P12EG varied by different chain length of poly(ethylene glycol) at the amino site, were synthesized to probe their photophysical and bio-imaging properties. In polar, aprotic solvents such as CH 2 Cl 2 ultrafast excited-state intramolecular proton transfer (ESIPT) takes place, resulting in a large Stokes shifted tautomer emission in the green-yellow (550 nm) region. In neutral water, ABT-P12EG forms micelles with diameters of 15  ±  3 nm under a critical micelle concentration (CMC) of ∼80 μM, in which the tautomer emission is greatly enhanced free from water perturbation. Cytotoxicity experiments showed that all ABT-PnEGs have negligible cytotoxicity against HeLa cells even at doses as high as 1 mM. Live-cell imaging experiments were also performed, the results indicate that all ABT-PnEGs are able to enter HeLa cells. While the two-photon excitation emission of ABT-P3EG in cells cytoplasm shows concentration independence and is dominated by the anion blue fluorescence, ABT-P7EG and ABT-P12EG exhibit prominent green tautomer emission at  >  CMC and in part penetrate to the nuclei, adding an additional advantage for the cell imaging. (paper)

  4. Cytochrome c4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c1 and c5 promote intracellular infection.

    Science.gov (United States)

    Yip, Emily S; Burnside, Denise M; Cianciotto, Nicholas P

    2011-03-01

    A panel of cytochrome c maturation (ccm) mutants of Legionella pneumophila displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a Legionella-specific bioassay. These data, coupled with the finding that ccm transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by L. pneumophila. To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual c-type cytochromes. Whereas ubiquinol-cytochrome c reductase (petC) mutants specifically lacking cytochrome c(1) and cycB mutants lacking cytochrome c(5) had normal siderophore expression, cyc4 mutants defective for cytochrome c(4) completely lacked legiobactin. These data, along with the expression pattern of cyc4 mRNA, indicate that cytochrome c(4) in particular promotes siderophore expression. In intracellular infection assays, petC mutants and cycB mutants, but not cyc4 mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like ccm mutants, the cycB mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome c(5) in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a c-type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of c-type cytochromes in intracellular infection events.

  5. Bimolecular reactions of carbenes: Proton transfer mechanism

    Science.gov (United States)

    Abu-Saleh, Abd Al-Aziz A.; Almatarneh, Mansour H.; Poirier, Raymond A.

    2018-04-01

    Here we report the bimolecular reaction of trifluoromethylhydroxycarbene conformers and the water-mediated mechanism of the 1,2-proton shift for the unimolecular trans-conformer by using quantum chemical calculations. The CCSD(T)/cc-pVTZ//MP2/cc-pVDZ potential-energy profile of the bimolecular reaction of cis- and trans-trifluoromethylhydroxycarbene, shows the lowest gas-phase barrier height of 13 kJ mol-1 compared to the recently reported value of 128 kJ mol-1 for the unimolecular reaction. We expect bimolecular reactions of carbene's stereoisomers will open a valuable field for new and useful synthetic strategies.

  6. Structural elements involved in proton translocation by cytochrome c oxidase as revealed by backbone amide hydrogen-deuterium exchange of the E286H mutant.

    Science.gov (United States)

    Busenlehner, Laura S; Brändén, Gisela; Namslauer, Ida; Brzezinski, Peter; Armstrong, Richard N

    2008-01-08

    Cytochrome c oxidase is the terminal electron acceptor in the respiratory chains of aerobic organisms and energetically couples the reduction of oxygen to water to proton pumping across the membrane. The mechanisms of proton uptake, gating, and pumping have yet to be completely elucidated at the molecular level for these enzymes. For Rhodobacter sphaeroides CytcO (cytochrome aa3), it appears as though the E286 side chain of subunit I is a branching point from which protons are shuttled either to the catalytic site for O2 reduction or to the acceptor site for pumped protons. Amide hydrogen-deuterium exchange mass spectrometry was used to investigate how mutation of this key branching residue to histidine (E286H) affects the structures and dynamics of four redox intermediate states. A functional characterization of this mutant reveals that E286H CytcO retains approximately 1% steady-state activity that is uncoupled from proton pumping and that proton transfer from H286 is significantly slowed. Backbone amide H-D exchange kinetics indicates that specific regions of CytcO, perturbed by the E286H mutation, are likely to be involved in proton gating and in the exit pathway for pumped protons. The results indicate that redox-dependent conformational changes around E286 are essential for internal proton transfer. E286H CytcO, however, is incapable of these specific conformational changes and therefore is insensitive to the redox state of the enzyme. These data support a model where the side chain conformation of E286 controls proton translocation in CytcO through its interactions with the proton gate, which directs the flow of protons either to the active site or to the exit pathway. In the E286H mutant, the proton gate does not function properly and the exit channel is unresponsive. These results provide new insight into the structure and mechanism of proton translocation by CytcO.

  7. A method for functional trans-complementation of intracellular Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Shaun Steele

    Full Text Available Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1β secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1β secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional

  8. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  9. Isozyme differences in barley mutants

    International Nuclear Information System (INIS)

    AI-Jibouri, A.A.M.; Dham, K.M.

    1990-01-01

    Full text: Thirty mutants (M 11 ) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  10. Proton transfer reaction time-of-flight mass spectrometry: A high-throughput and innovative method to study the influence of dairy system and cow characteristics on the volatile compound fingerprint of cheeses.

    Science.gov (United States)

    Bergamaschi, M; Biasioli, F; Cappellin, L; Cecchinato, A; Cipolat-Gotet, C; Cornu, A; Gasperi, F; Martin, B; Bittante, G

    2015-12-01

    The aim of this work was to study the effect of dairy system and individual cow-related factors on the volatile fingerprint of a large number of individual model cheeses analyzed by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). A total of 1,075 model cheeses were produced using milk samples collected from individual Brown Swiss cows reared in 72 herds located in mountainous areas of Trento province (Italy). The herds belonged to 5 main dairy systems ranging from traditional to modern and the cows presented different daily milk yields (24.6±7.9kg × d(-1)), stages of lactation (199±138 d in milk), and parities (2.7±1.8). The PTR-ToF-MS revealed 619 peaks, of which the 240 most intense were analyzed, and 61 of these were tentatively attributed to relevant volatile organic compounds on the basis of their fragmentation patterns and data from the literature. Principal component analysis was used to convert the multiple responses characterizing the PTR-ToF-MS spectra into 5 synthetic variables representing 62% of the total information. These principal components were related to groups of volatile compounds tentatively attributed to different peaks and used to investigate the relationship of the volatile compound profile obtained by PTR-ToF-MS to animal and farm characteristics. Lactation stage is related to 4 principal components which brought together 52.9% of the total variance and 57.9% of the area of analyzed peaks. In particular, 2 principal components were positively related to peaks tentatively attributed to aldehydes and ketones and negatively related to alcohols, esters, and acids, which displayed a linear increase during lactation. The second principal component was affected by dairy system; it was higher in the modern system in which cows received total mixed rations. The third principal component was positively related to daily milk production. In summary, we report the first application of this innovative, high

  11. The stability and generation pattern of thermally formed isocyanic acid (ICA) in air - potential and limitations of proton transfer reaction-mass spectrometry (PTR-MS) for real-time workroom atmosphere measurements.

    Science.gov (United States)

    Jankowski, Mikolaj Jan; Olsen, Raymond; Thomassen, Yngvar; Molander, Paal

    2016-07-13

    Isocyanic acid (ICA) in vapour phase has been reported to be of unstable nature, making the occupational hygienic relevance of ICA questionable. The stability of pure ICA in clean air at different humidity conditions was investigated by Fourier transform-infrared spectrometric (FT-IR) measurements. Furthermore, the stability of ICA in a complex atmosphere representative thermal degradation hot-work procedures were examined by performing parallel measurements by proton transfer reaction-mass spectrometric (PTR-MS) instrumentation and off-line denuder air sampling using di-n-butylamine (as a derivatization agent prior to liquid chromatography mass spectrometric (LC-MS) determination). The apparent half-life of ICA in pure ICA atmospheres was 16 to 4 hours at absolute humidity (AH) in the range 4.2 to 14.6 g m(-3), respectively. In a complex atmosphere at an initial AH of 9.6 g m(-3) the apparent half-life of ICA was 8 hours, as measured with the denuder method. Thus, thermally formed ICA is to be considered as a potential occupational hazard with regard to inhalation. The generation pattern of ICA formed during controlled gradient (100-540 °C) thermal decomposition of different polymers in the presence of air was examined by parallel PTR-MS and denuder air sampling. According to measurement by denuder sampling ICA was the dominant aliphatic isocyanate formed during the thermal decomposition of all polymers. The real-time measurements of the decomposed polymers revealed different ICA generation patterns, with initial appearance of thermally released ICA in the temperature range 200-260 °C. The PTR-MS ICA measurements was however affected by mass overlap from other decomposition products at m/z 44, illustrated by a [ICA]Denuder/[ICA]PTR-MS ratio ranging from 0.04 to 0.90. These findings limits the potential use of PTR-MS for real time measurements of thermally released ICA in field, suggesting parallel sampling with short-term sequential off-line methodology.

  12. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate.

    Science.gov (United States)

    Heshmat, Mojgan; Privalov, Timofei

    2017-07-06

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Emergence of quinolone-resistant, topoisomerase-mutant Brucella after treatment with fluoroquinolones in a macrophage experimental infection model.

    Science.gov (United States)

    Rodríguez Tarazona, Elisa; García Rodríguez, José Ángel; Muñoz Bellido, Juan Luis

    2015-04-01

    To determine the activity of fluoroquinolones (FQ) and the selection of FQ-resistant mutants in a macrophage experimental infection model (MEIM). Canine macrophages were inoculated with Brucella melitensis ATCC 23457 (WT), achieving intracellular counts of around 105 CFU/mL. Cell cultures were incubated in the presence of ciprofloxacin (CIP), levofloxacin (LEV), moxifloxacin (MOX), and doxycycline (DOX). After cell lysis, surviving microorganisms were plated for count purposes, and plated onto antibiotics-containing media for mutant selection. Topoisomerases mutations were detected by PCR and sequencing. Bacterial counts after cell lysis were 14.3% (CIP), 65.3% (LEV), and 75% (MOX) lower compared to the control. Quinolone-resistant mutants emerged in cell cultures containing CIP and LEV with a frequency of around 0.5×10(-3). All mutants showed an Ala87Val change in GyrA. Mutants had FQs MICs around 10×WT. The ability of these mutants for infecting new macrophages and the intracellular lysis after antibiotic exposure did not change significantly. No 2nd step FQ-resistant mutants were selected from 1st step mutants. Intracellular activity of FQs is low against WT and gyrA-mutant Brucella. FQs easily select gyrA mutants in MEIM. The ability of mutants for infecting new macrophages remains unchanged. In this MEIM, 2nd step mutants do not emerge. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  15. Modulation of mutant huntingtin N-terminal cleavage and its effect on aggregation and cell death

    NARCIS (Netherlands)

    Juenemann, Katrin; Weisse, Christina; Reichmann, Denise; Kaether, Christoph; Calkhoven, Cornelis F.; Schilling, Gabriele

    2011-01-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion near the N-terminus of huntingtin. A neuropathological hallmark of Huntington's disease is the presence of intracellular aggregates composed of mutant huntingtin N-terminal fragments in human postmortem

  16. Light Reduces the Excitation Efficiency in the nss Mutant of the Sheep Blowfly Lucilia

    NARCIS (Netherlands)

    Barash, S.; Suss, E.; Stavenga, D.G.; Rubinstein, C.T.; Selinger, Z.; Minke, B.

    1988-01-01

    The nss (no steady state) phototransduction mutant of the sheep blowfly Lucilia was studied electrophysiologically using intracellular recordings. The effects of the nss mutation on the receptor potential are manifested in the following features of the light response. (a) The responses to a flash or

  17. Manganese (Mn oxidation increases intracellular Mn in Pseudomonas putida GB-1.

    Directory of Open Access Journals (Sweden)

    Andy Banh

    Full Text Available Bacterial manganese (Mn oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS. Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection.

  18. Evaluation of tall rice mutant

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1989-01-01

    One tall mutant (Mut NS1) of rice variety Nizersail was put to multilocation on-farm trial. It showed improvement over the parent in respect of by earlier maturity and higher grain yield at all locations and thus it appears as an improved mutant of Nizersail. (author). 6 refs

  19. Intracellular ion channels and cancer

    Directory of Open Access Journals (Sweden)

    Luigi eLeanza

    2013-09-01

    Full Text Available Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3, Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC and the Permeability Transition Pore (MPTP contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER-located inositol 1,4,5-trisphosphate (IP3 receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1, a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

  20. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Onkar Sharma

    2016-03-01

    Full Text Available A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase. When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO, and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.

  1. The Swedish mutant barley collection

    International Nuclear Information System (INIS)

    1989-01-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  2. Intracellular polyamine pools, oligopeptide-binding protein A expression, and resistance to aminoglycosides in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Maria BR Acosta

    2005-11-01

    Full Text Available The role of intracellular free polyamine (putrescine and spermidine pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA levels and/or defective ornithine decarboxylase (ODC activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.

  3. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    DEFF Research Database (Denmark)

    Billestrup, N; Allevato, G; Norstedt, G

    1994-01-01

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated...... a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to mediate GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH...... as well as metabolic effects. These results indicate that the intracellular part of the GH receptor can be divided into at least three functional domains: (i) for transcriptional activity, two domains are involved, one located in the C-terminal 184 amino acids and the other in the proline-rich domain; (ii...

  4. Mutants of alfalfa mosaic virus

    International Nuclear Information System (INIS)

    Roosien, J.

    1983-01-01

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  5. Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice

    Energy Technology Data Exchange (ETDEWEB)

    Zemel, M.B.; Kim, J.H. [Univ. of Tennessee, Knoxville, TN (United States); Woychik, R.P.; Michaud, E.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hadwell, S.H.; Patel, I.R.; Wilkison, W.O. [Research Institute, Research Triangle Park, NC (United States)

    1995-05-23

    Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca{sup 2+} is believed to play a role in mediating insulin action and dysregulation of Ca{sup 2+} flux is observed in diabetic animals and humans, we examined the status of intracellular Ca{sup 2+} in mice carrying the dominant agouti allele, viable yellow (A{sup vy}). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca{sup 2+}]{sub i}) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca{sup 2+}]{sub i} in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca{sup 2+}]{sub i}. 36 refs., 3 figs., 2 tabs.

  6. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  7. Effect of zinc binding residues in growth hormone (GH) and altered intracellular zinc content on regulated GH secretion.

    Science.gov (United States)

    Petkovic, Vibor; Miletta, Maria Consolata; Eblé, Andrée; Iliev, Daniel I; Binder, Gerhard; Flück, Christa E; Mullis, Primus E

    2013-11-01

    Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.

  8. Promotion and Rescue of Intracellular Brucella neotomae Replication during Coinfection with Legionella pneumophila.

    Science.gov (United States)

    Kang, Yoon-Suk; Kirby, James E

    2017-05-01

    We established a new Brucella neotomae in vitro model system for study of type IV secretion system-dependent (T4SS) pathogenesis in the Brucella genus. Importantly, B. neotomae is a rodent pathogen, and unlike B. abortus , B. melitensis , and B. suis , B. neotomae has not been observed to infect humans. It therefore can be handled more facilely using biosafety level 2 practices. More particularly, using a series of novel fluorescent protein and lux operon reporter systems to differentially label pathogens and track intracellular replication, we confirmed T4SS-dependent intracellular growth of B. neotomae in macrophage cell lines. Furthermore, B. neotomae exhibited early endosomal (LAMP-1) and late endoplasmic reticulum (calreticulin)-associated phagosome maturation. These findings recapitulate prior observations for human-pathogenic Brucella spp. In addition, during coinfection experiments with Legionella pneumophila , we found that defective intracellular replication of a B. neotomae T4SS virB4 mutant was rescued and baseline levels of intracellular replication of wild-type B. neotomae were significantly stimulated by coinfection with wild-type but not T4SS mutant L. pneumophila Using confocal microscopy, it was determined that intracellular colocalization of B. neotomae and L. pneumophila was required for rescue and that colocalization came at a cost to L. pneumophila fitness. These findings were not completely expected based on known temporal and qualitative differences in the intracellular life cycles of these two pathogens. Taken together, we have developed a new system for studying in vitro Brucella pathogenesis and found a remarkable T4SS-dependent interplay between Brucella and Legionella during macrophage coinfection. Copyright © 2017 American Society for Microbiology.

  9. Isolation and characteristics of minute plaque forming mutant of cyanophage AS-1

    International Nuclear Information System (INIS)

    Amla, D.V.

    1981-01-01

    Minute plaque forming mutant (m) of cyanophage AS-1 infecting unicellular blue-green algae was isolated spontaneously and after mutagenic treatment. Compared to wild type m mutant formed small plaques, adsorption rate was slow and the burst-size was significantly decreased with prolonged eclipse and latent period. The plaque forming ability of mutant phage was sensitive to pH, heat, EDTA shock, distilled water and photosensitisation with acriflavine whereas ultraviolet sensitivity of free and intracellular phage was identical to the parent. The spontaneous reversion frequencies of mutant phage to wild type were between 10 -5 to 10 -3 and appeared to be clonal property. Reversion studies suggested possibilities of frame-shift or base-pair substitution for m mutation. (author)

  10. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    International Nuclear Information System (INIS)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-01-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [ 14 C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31 P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM

  11. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-04-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.

  12. Detection of ubiquitinated huntingtin species in intracellular aggregates

    Directory of Open Access Journals (Sweden)

    Katrin eJuenemann

    2015-01-01

    Full Text Available Protein conformation diseases, including polyglutamine diseases, result from the accumulation and aggregation of misfolded proteins. Huntington’s disease is one of nine diseases caused by an expanded polyglutamine repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated huntingtin such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated huntingtin fragments offers an important possibility to understand huntingtin degradation and aggregation processes within the cell. For the identification of aggregated huntingtin and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant huntingtin. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.

  13. Intracellular Polyamines Enhance Astrocytic Coupling

    Science.gov (United States)

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V.; Rivera, Yomarie; Kucheryavykh, Lilia Y.; Nichols, Colin G.; Eaton, Misty J.; Skatchkov, Serguei N.

    2013-01-01

    Spermine (SPM) and spermidine (SPD), endogenous polyamines (PA) with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant and other effects in vivo such as increasing longevity. These PA are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. Results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21–25 day old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions (ICS) without SPM. However, there was a robust increase in the spreading of Lucifer yellow via gap junctions to neighboring astrocytes when the cells were patched with ICS containing 1 mM SPM; a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM via gap junctions and further suggest a new role of polyamines in the regulation of the astroglial network in both normal and pathological conditions. PMID:23076119

  14. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation

    Directory of Open Access Journals (Sweden)

    Paulina eAguilera

    2016-01-01

    Full Text Available Microcin E492 (MccE492 is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well characterized, however it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in E. coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophillic probes, 2-4´-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59, which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  15. Targeting ESR1-Mutant Breast Cancer

    Science.gov (United States)

    2015-09-01

    we have developed models of mutant ER driven cancer in which to characterize gene expression. Specifically, tetracycline inducible MCF7 cells that...expression profiling. Figure 1: Degradation of WT and mutant ER with ARN810. MCF7 cells stably transfected with tet-inducible WT and mutant...mutant ER. MCF7 cells stably transfected with tet- inducible WT and mutant ER are treated for 24 hours with estradiol and gene expression profiling

  16. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  17. Wild Accessions and Mutant Resources

    DEFF Research Database (Denmark)

    Kawaguchi, Masayoshi; Sandal, Niels Nørgaard

    2014-01-01

    Lotus japonicus, Lotus burttii, and Lotus filicaulis are species of Lotus genus that are utilized for molecular genetic analysis such as the construction of a linkage map and QTL analysis. Among them, a number of mutants have been isolated from two wild accessions: L. japonicus Gifu B-129...

  18. components in induced sorghum mutants

    African Journals Online (AJOL)

    (1984) evaluated induced mutation and hybridisation methods for producing genetic variability in 15 quantitative characters of sorghum. Their results showed large variability in grain yield, plant maturity, plant height and panicles length. Selected mutants with favorable properties can be directly combined in varietal hybrids.

  19. A quantum-rovibrational-state-selected study of the proton-transfer reaction H2+(X2Σ: v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold.

    Science.gov (United States)

    Xiong, Bo; Chang, Yih-Chung; Ng, Cheuk-Yiu

    2017-07-19

    Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H 2 + (X 2 Σ: v + = 1-3; N + = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔE lab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H 2 + (X 2 Σ: v + ; N + ) + Ne. Here, we present the integral cross sections [σ(v + ; N + )'s] for the H 2 + (v + = 1-3; N + = 0-3) + Ne → NeH + + H reaction observed in the center-of-mass kinetic energy (E cm ) range of 0.05-2.00 eV. The σ(v + = 1, N + = 1) exhibits a distinct E cm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v + -vibrational enhancements are observed for σ(v + = 1-3, N + ) in the E cm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v + = 3, N + ), a careful search leads to the observation of moderate N + -rotational enhancements at v + = 2: σ(v + = 2; N + = 0) quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.

  20. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Induced High Lysine Mutants in Barley

    DEFF Research Database (Denmark)

    Doll, Hans; Køie, B.; Eggum, B. O.

    1974-01-01

    variety. Comparisons of six high lysine mutants with the parent variety showed that grain yield and seed size of the mutants are reduced between 10 and 30 per cent. However, the most promising mutant had the lowest reduction in grain yield, and the absolute lysine yield of this mutant was some 30 per cent...... above that of the parent variety. Feeding tests with rats revealed substantial increases in the biological value of the high lysine mutant protein. Also the net protein utilization was improved but less so because of a somewhat reduced digestibility of the mutant protein....

  2. Investigating Internalization and Intracellular Trafficking of GPCRs

    DEFF Research Database (Denmark)

    Foster, Simon R; Bräuner-Osborne, Hans

    2017-01-01

    for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal...... independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies...... that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader...

  3. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  4. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome.

    Science.gov (United States)

    Orelio, Claudia; van der Sluis, Renée M; Verkuijlen, Paul; Nethe, Micha; Hordijk, Peter L; van den Berg, Timo K; Kuijpers, Taco W

    2011-01-01

    Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.

  5. Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum.

    Science.gov (United States)

    Shi, Deng-Ke; Zhu, Jing; Sun, Ze-Hua; Zhang, Guang; Liu, Rui; Zhang, Tian-Jun; Wang, Sheng-Li; Ren, Ang; Zhao, Ming-Wen

    2017-10-01

    The alternative oxidase (AOX), which forms a branch of the mitochondrial respiratory electron transport pathway, functions to sustain electron flux and alleviate reactive oxygen species (ROS) production. In this article, a homologous AOX gene was identified in Ganoderma lucidum. The coding sequence of the AOX gene in G. lucidum contains 1038 nucleotides and encodes a protein of 39.48 kDa. RNA interference (RNAi) was used to study the function of AOX in G. lucidum, and two silenced strains (AOXi6 and AOXi21) were obtained, showing significant decreases of approximately 60 and 50 %, respectively, in alternative pathway respiratory efficiency compared to WT. The content of ganoderic acid (GA) in the mutant strains AOXi6 and AOXi21 showed significant increases of approximately 42 and 44 %, respectively, compared to WT. Elevated contents of intermediate metabolites in GA biosynthesis and elevated transcription levels of corresponding genes were also observed in the mutant strains AOXi6 and AOXi21. In addition, the intracellular ROS content in strains AOXi6 and AOXi21 was significantly increased, by approximately 1.75- and 1.93-fold, respectively, compared with WT. Furthermore, adding N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly depressed the intracellular ROS content and GA accumulation in AOX-silenced strains. These results indicate that AOX affects GA biosynthesis by regulating intracellular ROS levels. Our research revealed the important role of AOX in the secondary metabolism of G. lucidum.

  6. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome.

    Directory of Open Access Journals (Sweden)

    Claudia Orelio

    Full Text Available Shwachman-Diamond Syndrome (SDS is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.

  7. Mutant genes in pea breeding

    International Nuclear Information System (INIS)

    Swiecicki, W.K.

    1990-01-01

    Full text: Mutations of genes Dpo (dehiscing pods) and A (anthocyanin synthesis) played a role in pea domestication. A number of other genes were important in cultivar development for 3 types of usage (dry seeds, green vegetable types, fodder), e.g. fn, fna, le, p, v, fas and af. New genes (induced and spontaneous), are important for present ideotypes and are registered by the Pisum Genetics Association (PGA). Comparison of a pea variety ideotype with the variation available in gene banks shows that breeders need 'new' features. In mutation induction experiments, genotype, mutagen and method of treatment (e.g. combined or fractionated doses) are varied for broadening the mutation spectrum and selecting more genes of agronomic value. New genes are genetically analysed. In Poland, some mutant varieties with the gene afila were registered, controlling lodging by a shorter stem and a higher number of internodes. Really non-lodging pea varieties could strongly increase seed yield. But the probability of detecting a major gene for lodging resistance is low. Therefore, mutant genes with smaller influence on plant architecture are sought, to combine their effect by crossing. Promising seem to be the genes rogue, reductus and arthritic as well as a number of mutant genes not yet genetically identified. The gene det for terminal inflorescence - similarly to Vicia faba - changes plant development. Utilisation of assimilates and ripening should be better. Improvement of harvest index should give higher seed yield. A number of genes controlling disease resistance are well known (eg. Fw, Fnw, En, mo and sbm). Important in mass screening of resistance are closely linked gene markers. Pea gene banks collect respective lines, but mutants induced in highly productive cultivars would be better. Inducing gene markers sometimes seems to be easier than transfer by crossing. Mutation induction in pea breeding is probably more important because a high number of monogenic features are

  8. Saint Louis Encephalitis Temperature-Sensitive Mutants.

    Science.gov (United States)

    1981-01-01

    group II contains two mutants and group III contains three mutants. Examination of the ability of mutants to grow at 300C, 40 C or 37 C indicates that...importance. Information from studies with Poliovirus has shown that the use of live attenuated virus vaccines result in longer lasting, more effec- tive...sensitive mutant to grow at internal body temperature may have a significant effect on the ability of the virus to induce a protective immune response or

  9. Identification and characterization of the intracellular poly-3-hydroxybutyrate depolymerase enzyme PhaZ of Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Zachertowska Alicja

    2010-03-01

    Full Text Available Abstract Background S. meliloti forms indeterminate nodules on the roots of its host plant alfalfa (Medicago sativa. Bacteroids of indeterminate nodules are terminally differentiated and, unlike their non-terminally differentiated counterparts in determinate nodules, do not accumulate large quantities of Poly-3-hydroxybutyrate (PHB during symbiosis. PhaZ is in intracellular PHB depolymerase; it represents the first enzyme in the degradative arm of the PHB cycle in S. meliloti and is the only enzyme in this half of the PHB cycle that remains uncharacterized. Results The S. meliloti phaZ gene was identified by in silico analysis, the ORF was cloned, and a S. meliloti phaZ mutant was constructed. This mutant exhibited increased PHB accumulation during free-living growth, even when grown under non-PHB-inducing conditions. The phaZ mutant demonstrated no reduction in symbiotic capacity; interestingly, analysis of the bacteroids showed that this mutant also accumulated PHB during symbiosis. This mutant also exhibited a decreased capacity to tolerate long-term carbon starvation, comparable to that of other PHB cycle mutants. In contrast to other PHB cycle mutants, the S. meliloti phaZ mutant did not exhibit any decrease in rhizosphere competitiveness; however, this mutant did exhibit a significant increase in succinoglycan biosynthesis. Conclusions S. meliloti bacteroids retain the capacity to synthesize PHB during symbiosis; interestingly, accumulation does not occur at the expense of symbiotic performance. phaZ mutants are not compromised in their capacity to compete for nodulation in the rhizosphere, perhaps due to increased succinoglycan production resulting from upregulation of the succinoglycan biosynthetic pathway. The reduced survival capacity of free-living cells unable to access their accumulated stores of PHB suggests that PHB is a crucial metabolite under adverse conditions.

  10. An extra early mutant of pigeonpea

    International Nuclear Information System (INIS)

    Ravikesavan, R.; Kalaimagal, T.; Rathnaswamy, R.

    2001-01-01

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M 2 to M 4 generation. In the M 4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  11. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  12. Early responses to Nod factors and mycorrhizal colonization in a non-nodulating Phaseolus vulgaris mutant.

    Science.gov (United States)

    Cárdenas, Luis; Alemán, Emilia; Nava, Noreide; Santana, Olivia; Sánchez, Federico; Quinto, Carmen

    2006-03-01

    Legumes can acquire nitrogen through a symbiotic interaction with rhizobial bacteria. The initiation of this process is determined by a molecular dialogue between the two partners. Legume roots exude flavonoids that induce the expression of the bacterial nodulation genes, which encode proteins involved in the synthesis and secretion of signals called Nod factors (NFs). NFs signal back to the plant root and trigger several responses, leading to bacterial invasion and nodule formation. Here, we describe the molecular and cellular characterization of a Phaseolus vulgaris non-nodulating mutant (NN-mutant). Root hair cells of the NN-mutant plant respond with swelling and branching when inoculated with Rhizobium etli, albeit without curling induction. Furthermore, neither initiation of cell division in the outer cortex, nor entrapment of bacteria nor infection thread formation was observed. Both the bean wild-type and the NN-mutant responded with elevated intracellular calcium changes in the root hairs. Although the NN-mutant is deficient in early nodulin gene expression when inoculated with R. etli, it can be effectively colonized by arbuscular mycorrhizal fungi (Glomus intraradices). Our data indicate that the P. vulgaris NN-mutant is not blocked at the NFs early perception stage, but at later downstream stages between Ca(2+) signaling and early nodulin induction. This supports the idea that both microsymbionts are perceived and trigger different downstream pathways in the host plant.

  13. Mutant torsinA interacts with tyrosine hydroxylase in cultured cells.

    Science.gov (United States)

    O'Farrell, C A; Martin, K L; Hutton, M; Delatycki, M B; Cookson, M R; Lockhart, P J

    2009-12-15

    A specific mutation (DeltaE302/303) in the torsinA gene underlies most cases of dominantly inherited early-onset torsion dystonia. This mutation causes the protein to aggregate and form intracellular inclusion bodies in cultured cells and animal models. Co-expression of the wildtype and mutant proteins resulted in the redistribution of the wildtype protein from the endoplasmic reticulum to inclusion bodies in cultured HEK293 cells, and this was associated with increased interaction between the two proteins. Expression of DeltaE302/303 but not wildtype torsinA in primary postnatal midbrain neurons resulted in the formation of intracellular inclusion bodies, predominantly in dopaminergic neurons. Tyrosine hydroxylase was sequestered in these inclusions and this process was mediated by increased protein-protein interaction between mutant torsinA and tyrosine hydroxylase. Analysis in an inducible neuroblastoma cell culture model demonstrated altered tyrosine hydroxylase activity in the presence of the mutant but not wildtype torsinA protein. Our results suggest that the interaction of tyrosine hydroxylase and mutant torsinA may contribute to the phenotype and reported dopaminergic dysfunction in torsinA-mediated dystonia.

  14. Accumulation of the PX domain mutant Frank-ter Haar syndrome protein Tks4 in aggresomes.

    Science.gov (United States)

    Ádám, Csaba; Fekete, Anna; Bőgel, Gábor; Németh, Zsuzsanna; Tőkési, Natália; Ovádi, Judit; Liliom, Károly; Pesti, Szabolcs; Geiszt, Miklós; Buday, László

    2015-07-17

    Cells deploy quality control mechanisms to remove damaged or misfolded proteins. Recently, we have reported that a mutation (R43W) in the Frank-ter Haar syndrome protein Tks4 resulted in aberrant intracellular localization. Here we demonstrate that the accumulation of Tks4(R43W) depends on the intact microtubule network. Detergent-insoluble Tks4 mutant colocalizes with the centrosome and its aggregate is encaged by the intermediate filament protein vimentin. Both the microtubule inhibitor nocodazole and the histone deacetylase inhibitor Trichostatin A inhibit markedly the aggresome formation in cells expressing Tks4(R43W). Finally, pretreatment of cells with the proteasome inhibitor MG132 markedly increases the level of aggresomes formed by Tks4(R43W). Furthermore, two additional mutant Tks4 proteins (Tks4(1-48) or Tks4(1-341)) have been investigated. Whereas the shorter Tks4 mutant, Tks4(1-48), shows no expression at all, the longer Tks4 truncation mutant accumulates in the nuclei of the cells. Our results suggest that misfolded Frank-ter Haar syndrome protein Tks4(R43W) is transported via the microtubule system to the aggresomes. Lack of expression of Tks4(1-48) or aberrant intracellular expressions of Tks4(R43W) and Tks4(1-341) strongly suggest that these mutations result in dysfunctional proteins which are not capable of operating properly, leading to the development of FTHS.

  15. Isolation of hypoxanthine phosphoribosyltransferase-defective mutants in Chinese hamster V79 cells by tritium suicide

    International Nuclear Information System (INIS)

    Bryant, R.E.; Schauer, I.E.; Hatcher, D.G.

    1981-01-01

    Tritium suicide was shown to be a highly efficient method for isolating mutants defective in hypoxanthine incorporation in the Chinese hamster lung of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of ( 3 H) hypoxanthine for 5 or 10 min, followed by storage of 3 H-labelled cells at -70 0 C for 4-10 days. 12 clones that survived the 3rd kill cycle were tested for incorporation of ( 3 H)hypoxanthine and all were found to be defective. At least 6 of the clones have defective hypoxanthine phosphoribosyltransferase (HPRT) activity. One mutant, H19, chosen for further characterization, had HPRT with a 13-fold elevation in apparent Ksub(m) for phosphoribosylpyrophosphate (PRPP). Thin-layer chromatography of cell extracts showed that this mutant was incapable of converting intracellular hypoxanthine to IMP or to other purine metabolites. In addition, H19 was resistant to 6-thioguanine. (orig.)

  16. Enhancers of Conidiation Mutants in Aspergillus Nidulans

    OpenAIRE

    Gems, D. H.; Clutterbuck, A. J.

    1994-01-01

    Mutants at a number of loci, designated sthenyo, have been isolated as enhancers of the oligoconidial mutations at the medA locus. Two loci have been mapped: sthA on linkage group I, and sthB on linkage group V. Two probable alleles have been identified at each locus but two further mutants were unlinked to either sthA or sthB. Neither sthA nor sthB mutants have conspicuous effects on morphology on their own, nor could the sthA1 sthB2 double mutant be distinguished from wild type. Mutants at ...

  17. Dwarf mutant of rice variety Seratus Malam

    International Nuclear Information System (INIS)

    Mugiono, P. S.; Soemanggono, A.M.R.

    1989-01-01

    Full text: Seeds of 'Seratus Malam', a local tall upland variety with long panicles and high yield potential were irradiated with 10-50 krad gamma rays in 1983. From 50,000 M 2 plants, 130 semidwarf mutants and 1 dwarf mutant were selected. The dwarf mutant M-362 was obtained from the 10 krad treatment. The mutant shows about 50% reduction in plant height, but also in number of productive tillers. Thus the yield per plant is also significantly less. However, the mutant gene is not allelic to DGWG and therefore may be useful in cross breeding. (author)

  18. NtrBC and Nac contribute to efficient Shigella flexneri intracellular replication.

    Science.gov (United States)

    Waddell, Chelsea D; Walter, Thomas J; Pacheco, Sophia A; Purdy, Georgiana E; Runyen-Janecky, Laura J

    2014-07-01

    Shigella flexneri two-component regulatory systems (TCRS) are responsible for sensing changes in environmental conditions and regulating gene expression accordingly. We examined 12 TCRS that were previously uncharacterized for potential roles in S. flexneri growth within the eukaryotic intracellular environment. We demonstrate that the TCRS EvgSA, NtrBC, and RstBA systems are required for wild-type plaque formation in cultured epithelial cells. The phenotype of the NtrBC mutant depended in part on the Nac transcriptional regulator. Microarray analysis was performed to identify S. flexneri genes differentially regulated by the NtrBC system or Nac in the intracellular environment. This study contributes to our understanding of the transcriptional regulation necessary for Shigella to effectively adapt to the mammalian host cell. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Asp3Gly polymorphism affects fatty acid-binding protein 3 intracellular stability and subcellular localization.

    Science.gov (United States)

    Kusudo, Tatsuya; Hashida, Yasuhiko; Ando, Fujiko; Shimokata, Hiroshi; Yamashita, Hitoshi

    2015-08-19

    Fatty acid-binding proteins (FABP) play a crucial role in intracellular fatty acid transportation and metabolism. In this study, we investigate the effects of the FABP3 Asp3Gly (D3G) polymorphism on protein structure and function. Although the mutation did not alter protein secondary structure or the ability to bind 1-anilinonaphthalene-8-sulfonic acid and palmitate, the intracellular stability of the D3G mutant was significantly decreased. Immunocytochemical analysis reveals that the mutation alters FABP3 subcellular localization. Our results suggest that the D3G polymorphism may impact energy metabolism and physiological functions. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Thymosin β4 promotes the migration of endothelial cells without intracellular Ca2+ elevation

    International Nuclear Information System (INIS)

    Selmi, Anna; Malinowski, Mariusz; Brutkowski, Wojciech; Bednarek, Radoslaw; Cierniewski, Czeslaw S.

    2012-01-01

    Numerous studies have demonstrated the effects of Tβ4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which Tβ4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with Tβ4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that Tβ4 interacts with Ku80, which may operate as a novel receptor for Tβ4 and mediates its intracellular activity. In this paper, we provide evidence that Tβ4 induces cellular processes without changes in the intracellular Ca 2+ concentration. External treatment of HUVECs with Tβ4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (Tβ4 AcSDKPT/4A ) or the actin-binding sequence KLKKTET (Tβ4 KLKKTET/7A ) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by Tβ4 was not associated with the intracellular Ca 2+ elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added Tβ4 induces HUVEC migration via the surface membrane receptors known to generate Ca 2+ influx. Our data confirm the concept that externally added Tβ4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.

  1. Copper homeostasis at the host vibrio interface: lessons from intracellular vibrio transcriptomics.

    Science.gov (United States)

    Vanhove, Audrey S; Rubio, Tristan P; Nguyen, An N; Lemire, Astrid; Roche, David; Nicod, Julie; Vergnes, Agnès; Poirier, Aurore C; Disconzi, Elena; Bachère, Evelyne; Le Roux, Frédérique; Jacq, Annick; Charrière, Guillaume M; Destoumieux-Garzón, Delphine

    2016-03-01

    Recent studies revealed that several vibrio species have evolved the capacity to survive inside host cells. However, it is still often ignored if intracellular stages are required for pathogenicity. Virulence of Vibrio tasmaniensis LGP32, a strain pathogenic for Crassostrea gigas oysters, depends on entry into hemocytes, the oyster immune cells. We investigated here the mechanisms of LGP32 intracellular survival and their consequences on the host-pathogen interaction. Entry and survival inside hemocytes were required for LGP32-driven cytolysis of hemocytes, both in vivo and in vitro. LGP32 intracellular stages showed a profound boost in metabolic activity and a major transcription of antioxidant and copper detoxification genes, as revealed by RNA sequencing. LGP32 isogenic mutants showed that resistance to oxidative stress and copper efflux are two main functions required for vibrio intracellular stages and cytotoxicity to hemocytes. Copper efflux was also essential for host colonization and virulence in vivo. Altogether, our results identify copper resistance as a major mechanism to resist killing by phagocytes, induce cytolysis of immune cells and colonize oysters. Selection of such resistance traits could arise from vibrio interactions with copper-rich environmental niches including marine invertebrates, which favour the emergence of pathogenic vibrios resistant to intraphagosomal killing across animal species. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Mechanism of H. pylori intracellular entry: an in vitro study

    Directory of Open Access Journals (Sweden)

    Hui eLiu

    2012-03-01

    Full Text Available The majority of H. pylori reside on gastric epithelial cell surfaces and in the overlying mucus, but a small fraction of H. pylori enter host epithelial and immune cells. To explore the role of the nudA invasin in host cell entry, a ΔnudA deletion derivative of strain J99 was constructed and transformants were verified by PCR and by fluorescence in situ hybridization. AGS cells were inoculated with either wild type (WT strain J99 or its ΔnudA mutant to determine the fraction of bacteria that were bound to the cells and inside these cells using the gentamicin protection assay. We observed no significant difference between either the density of H. pylori bound to AGS cell membranes or the density of intracellular H. pylori. To further explore this finding, separate chambers of each culture were fixed in glutaraldehyde for transmission electron microscopy (TEM and immunogold TEM. This addition to the classical gentamicin assay demonstrated that there were significantly more intracellular, and fewer membrane-bound, H. pylori in WT-infected AGS cells than in ΔnudA allele infected cells. Thus, the sum of intracellular and membrane-bound H. pylori was similar in the two groups. Since no other similar TEM study has been performed, it is at present unknown whether our observations can be reproduced by others Taken together however, our observations suggest that the classical gentamicin protection assay is not sufficiently sensitive to analyze H. pylori cell entry and that the addition of TEM to the test demonstrate that nudA plays a role in H. pylori entry into AGS cells in vitro. In addition, deletion of the invasin gene appears to limit H. pylori to the AGS cell surface, where it may be partly protected against gentamicin. In contrast, this specific environment may render H. pylori more vulnerable to host defense and therapeutic intervention, and less prone to trigger normal immune, carcinogenic, and other developmental response pathways.

  3. Intracellular transport: from physics to ... biology.

    Science.gov (United States)

    Roux, Aurélien; Cuvelier, Damien; Bassereau, Patricia; Goud, Bruno

    2008-03-01

    Considerable effort over the past three decades has allowed the identification of the protein families that control the cellular machinery responsible for intracellular transport within eukaryotic cells. These proteins are estimated to represent about 10-20% of the human "proteome." The complexity of intracellular transport makes useful the development of model membranes. We describe here experimental systems based on lipid giant unilamellar vesicles (GUVs), which are attached to kinesin molecules. These systems give rise to thin membrane tubes and to complex tubular networks when incubated in vitro with microtubules and ATP. This type of assay, which mimics key events occurring during intracellular transport, allows physicists and biologists to understand how the unique mechanical properties of lipid membranes could be involved in the budding process, the sorting of cargo proteins and lipids, and the separation of the buds from a donor membrane.

  4. Micro- and nanotechnologies for intracellular delivery.

    Science.gov (United States)

    Yan, Li; Zhang, Jinfeng; Lee, Chun-Sing; Chen, Xianfeng

    2014-11-01

    The majority of drugs and biomolecules need to be delivered into cells to be effective. However, the cell membranes, a biological barrier, strictly resist drugs or biomolecules entering cells, resulting in significantly reduced intracellular delivery efficiency. To overcome this barrier, a variety of intracellular delivery approaches including chemical and physical ways have been developed in recent years. In this review, the focus is on summarizing the nanomaterial routes involved in making use of a collection of receptors for the targeted delivery of drugs and biomolecules and the physical ways of applying micro- and nanotechnologies for high-throughput intracellular delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fluorescent nanothermometers for intracellular thermal sensing.

    Science.gov (United States)

    Jaque, Daniel; Rosal, Blanca Del; Rodríguez, Emma Martín; Maestro, Laura Martínez; Haro-González, Patricia; Solé, José García

    2014-05-01

    The importance of high-resolution intracellular thermal sensing and imaging in the field of modern biomedicine has boosted the development of novel nanosized fluorescent systems (fluorescent nanothermometers) as the next generation of probes for intracellular thermal sensing and imaging. This thermal mapping requires fluorescent nanothermometers with good biocompatibility and high thermal sensitivity in order to obtain submicrometric and subdegree spatial and thermal resolutions, respectively. This review describes the different nanosized systems used up to now for intracellular thermal sensing and imaging. We also include the later advances in molecular systems based on fluorescent proteins for thermal mapping. A critical overview of the state of the art and the future perspective is also included.

  6. Macrophage defense mechanisms against intracellular bacteria.

    Science.gov (United States)

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. © 2015 The Authors

  7. Macrophage defense mechanisms against intracellular bacteria

    Science.gov (United States)

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  8. Role of intracellular infections in premature childbirth.

    Science.gov (United States)

    Zurabishvili, S; Mamamtavrishvili, I; Apridonidze, K; Shanidze, L

    2005-09-01

    Vaginal Smear taken by sterile Folkman spoon from 15 women with premature birth was studied. The study was performed by the direct immune fluorescence method with the luminescence microscope. We aimed to study the effect of intracellular infections: ureaplasma urealitikum, mycoplasma hominis, Chlamydia trachomatis, herpes simplex virus of I and II type and cytomegalovirus. Intracellular infections were detected in at about 82% of cases, which included mono infections with cytomegalovirus and in 9 cases in the form of bi-component associations. The obtained results may be interesting from the etiologic point of view of premature births in Georgian population.

  9. PNRI mutant variety: Cordyline 'Afable'

    International Nuclear Information System (INIS)

    Aurigue, Fernando B.

    2012-01-01

    Cordyline 'Afable', registered by the Philippine Nuclear Research Institute as NSIC 2009 Or-83, is an induced mutant developed from Cordyline 'Kiwi' by treating stem cuttings with acute gamma radiation from a Cobalt-60 source. The new mutant is identical to Cordyline 'Kiwi' in growth habit but differs in foliage color, and exhibits field resistance to Phytophthora sp., a fungus that causes leaf blight and rot in Ti plants. Results of this mutation breeding experiment showed that leaf color was altered by gamma irradiation and resistance to fungal diseases was improved. It also demonstrated how mutations that occur in nature may be generated artificially. Propagation of cordyline 'Afable' is true-to-type by vegetative propagation methods, such as separation of suckers and offshoots, shoot tip cutting, and top cutting. Aside from landscaping material, terrarium or dish-garden plant, it is ideal as containerized plant for indoor and outdoor use. The leaves or shoots may be harvested as cut foliage for flower arrangements. (author)

  10. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M 1 V 1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m 2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  11. Hepatitis C virus intracellular host interactions

    NARCIS (Netherlands)

    Liefhebber, Johanna Maaike Pieternella

    2010-01-01

    Hepatitis C virus (HCV) infects about 170 million people worldwide causing a major healthcare problem. The virus lifecycle is greatly dependent on the host-cell for effective replication. In this thesis, the intracellular interactions of the non-structural HCV proteins with the host-cell were

  12. Enhanced production of intracellular dextran dextrinase from ...

    African Journals Online (AJOL)

    Enhanced production of intracellular dextran dextrinase from Gluconobacter oxydans using statistical experimental methods. ... the Plackett-Burman screening. A four-factor five-level central composite design (CCD) was chosen to explain the combined effects of the four medium constituents. The optimum medium consisted ...

  13. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    ... nontoxic, safe, biocompatible and environmentally acceptable. In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent ...

  14. Efficient intracellular delivery of native proteins

    NARCIS (Netherlands)

    D'Astolfo, Diego S; Pagliero, Romina J; Pras, Anita; Karthaus, Wouter R; Clevers, Hans; Prasad, Vikram; Lebbink, Robert Jan; Rehmann, Holger; Geijsen, Niels

    2015-01-01

    Modulation of protein function is used to intervene in cellular processes but is often done indirectly by means of introducing DNA or mRNA encoding the effector protein. Thus far, direct intracellular delivery of proteins has remained challenging. We developed a method termed iTOP, for induced

  15. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... [Ganguli P, Chowdhury S, Bhowmick R and Sarkar RR 2015 Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: A ... cells and tissues by studying different signalling pathways, such as Hedgehog ...... Murray JD 2003 On the mechanochemical theory of biological.

  16. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-02-02

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  17. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  18. Investigation on the Metabolic Regulation of pgi gene knockout Escherichia coli by Enzyme Activities and Intracellular Metabolite Concentrations

    Directory of Open Access Journals (Sweden)

    Nor ‘Aini, A. R.

    2006-01-01

    Full Text Available An integrated analysis of the cell growth characteristics, enzyme activities, intracellular metabolite concentrations was made to investigate the metabolic regulation of pgi gene knockout Escherichia coli based on batch culture and continuous culture which was performed at the dilution rate of 0.2h-1. The enzymatic study identified that pathways of pentose phosphate, ED pathway and glyoxylate shunt were all active in pgi mutant. The glycolysis enzymes i.e glyceraldehyde-3-phosphate dehydrogenase, fructose diphosphatase, pyruvate kinase, triose phosphate isomerase were down regulated implying that the inactivation of pgi gene reduced the carbon flux through glycolytic pathway. Meanwhile, the pentose phosphate pathway was active as a major route for intermediary carbohydrate metabolism instead of glycolysis. The pentose phosphate pathway generates most of the major reducing co-factor NADPH as shown by the increased of NADPH/NADP+ ratio in the mutant when compared with the parent strain. The fermentative enzymes such as acetate kinase and lactate dehydrogenase were down regulated in the mutant. Knockout of pgi gene results in the significant increase in the intracellular concentration of glucose-6-phosphate and decrease in the concentration of oxaloacetate. The slow growth rate of the mutant was assumed to be affected by the accumulation of glucose-6-phosphate and imbalance of NADPH reoxidation.

  19. N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome.

    Science.gov (United States)

    Kimura, Ayuko; Kato, Yu; Hirano, Hisashi

    2012-11-06

    The 26S proteasome is a large, complex multisubunit protease involved in protein quality control and other critical processes in eukaryotes. More than 110 post-translational modification (PTM) sites have been identified by a mass spectrometry of the 26S proteasome of Saccharomyces cerevisiae and are predicted to be implicated in the dynamic regulation of proteasomal functions. Here, we report that the N-myristoylation of the Rpt2 subunit controls the intracellular localization of the 26S proteasome. While proteasomes were mainly localized in the nucleus in normal cells, mutation of the N-myristoylation site of Rpt2 caused diffusion of the nuclear proteasome into the cytoplasm, where it formed aggregates. In mutant cells, the level of accumulation of cytoplasmic proteasomes was significantly increased in the nonproliferating state. Although the molecular assembly and peptidase activity of the 26S proteasome were totally unchanged in the nonmyristoylated mutants of Rpt2, an increased level of accumulation of polyubiquitinated proteins and a severe growth defect were observed in mutant cells induced for protein misfolding. In addition, polyubiquitinated protein and the nuclear protein Gcn4 tended not to colocalize with the proteasome in normal and mutant cells. Our results suggest that N-myristoylation is involved in regulating the proper intracellular distribution of proteasome activity by controlling the nuclear localization of the 26S proteasome.

  20. Therapeutic Antibodies against Intracellular Tumor Antigens

    Directory of Open Access Journals (Sweden)

    Iva Trenevska

    2017-08-01

    Full Text Available Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8–10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I molecules. These tumor-associated peptide–MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm or T-cell receptor (TCR-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.

  1. Mutants for plant height in hexaploid triticale

    International Nuclear Information System (INIS)

    Reddy, V.R.K.; Gupta, P.K.

    1988-01-01

    Full text: Four hexaploid triticale varieties namely Beagle, Coorong, TL 419 and Welsh were subjected to gamma rays (100 Gy, 200 Gy, 300 Gy) and to aqueous solution of EMS (0.5%, (8h, 12h, 16h). In all four varieties, three types of mutants for plant height were observed: Semidwarf - the mutant plants are 20-25 cm shorter than the shortest plant in the control. Dwarf - mutant plants grow up to 40-60 cm. Stunted - mutant plants grow up to 10-20 cm. The segregation pattern suggests that semidwarf mutants are quantitatively inherited, showing continuous segregation in M 3 , M 4 and M 5 , whereas dwarf and stunted are monogenic recessive. They showed true breeding in M 3 and later generations. The semi-dwarf, dwarf and stunted mutants can be used as initial material for development of new varieties with short straw and resistance to lodging. (author)

  2. Gamma ray induced mutants in Colocasia

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    Presented are selected treatments with 250 r, 500 r and 1000 r gamma rays Colocasia mutants with changes in morphological and yield characters. Results from a preliminary yield trial of four mutants with its control variety C 9 are presented. The mutant's characteristics are (i) erect and narrow leaf (ii) cup shaped leaf, dwarf, matures within 120 days against 180 days in control (iii) narrow and thicker leaves, colour of lamina chalky and pale green (iv) vigorous

  3. Calcium channel blockers inhibit retinal degeneration in the retinal-degeneration-B mutant of Drosophila.

    Science.gov (United States)

    Sahly, I; Bar Nachum, S; Suss-Toby, E; Rom, A; Peretz, A; Kleiman, J; Byk, T; Selinger, Z; Minke, B

    1992-01-01

    Light accelerates degeneration of photoreceptor cells of the retinal degeneration B (rdgB) mutant of Drosophila. During early stages of degeneration, light stimuli evoke spikes from photoreceptors of the mutant fly; no spikes can be recorded from photoreceptors of the wild-type fly. Production of spike potentials from mutant photoreceptors was blocked by diltiazem, verapamil hydrochloride, and cadmium. Little, if any, effect of the (-)-cis isomer or (+)-cis isomer of diltiazem on the light response was seen. Further, the (+)-cis isomer was approximately 50 times more effective than the (-)-cis isomer in blocking the Ca2+ spikes, indicating that diltiazem action on the rdgB eye is mediated by means of blocking voltage-sensitive Ca2+ channels, rather than by blocking the light-sensitive channels. Application of the Ca(2+)-channel blockers (+)-cis-diltiazem and verapamil hydrochloride to the eyes of rdgB flies over a 7-day period largely inhibited light-dependent degeneration of the photoreceptor cells. Pulse labeling with [32P]phosphate showed much greater incorporation into eye proteins of [32P]phosphate in rdgB flies than in wild-type flies. Retarding the light-induced photoreceptor degeneration in the mutant by Ca(2+)-channel blockers, thus, suggests that toxic increase in intracellular Ca2+ by means of voltage-gated Ca2+ channels, possibly secondary to excessive phosphorylation, leads to photoreceptor degeneration in the rdgB mutant. Images PMID:1309615

  4. Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in Saccharomyces cerevisiae▿

    Science.gov (United States)

    Sullivan, David P.; Georgiev, Alexander; Menon, Anant K.

    2009-01-01

    Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that intracellular accumulation of exogenously supplied [3H]cholesterol in the form of [3H]cholesteryl ester requires an intact PM-ER sterol transport pathway. Upc2-1 cells were mutagenized using a transposon library, incubated with [3H]cholesterol, and subjected to tritium suicide selection to isolate mutants with a decreased ability to accumulate [3H]cholesterol. Many of the mutants had defects in the expression and trafficking of Aus1 and Pdr11, PM-localized ABC transporters that are required for sterol uptake. Through characterization of one of the mutants, a new role was uncovered for the transcription factor Mot3 in controlling expression of Aus1 and Pdr11. A number of mutants had transposon insertions in the uncharacterized Ydr051c gene, which we now refer to as DET1 (decreased ergosterol transport). These mutants expressed Aus1 and Pdr11 normally but were severely defective in the ability to accumulate exogenously supplied cholesterol. The transport of newly synthesized sterols from the ER to the PM was also defective in det1Δ cells. These data indicate that the cytoplasmic protein encoded by DET1 is involved in intracellular sterol transport. PMID:19060182

  5. Daptomycin Tolerance in the Staphylococcus aureus pitA6 Mutant Is Due to Upregulation of the dlt Operon.

    Science.gov (United States)

    Mechler, Lukas; Bonetti, Eve-Julie; Reichert, Sebastian; Flötenmeyer, Matthias; Schrenzel, Jacques; Bertram, Ralph; François, Patrice; Götz, Friedrich

    2016-05-01

    Understanding the mechanisms of how bacteria become tolerant toward antibiotics during clinical therapy is a very important object. In a previous study, we showed that increased daptomycin (DAP) tolerance of Staphylococcus aureus was due to a point mutation in pitA (inorganic phosphate transporter) that led to intracellular accumulation of both inorganic phosphate (Pi) and polyphosphate (polyP). DAP tolerance in the pitA6 mutant differs from classical resistance mechanisms since there is no increase in the MIC. In this follow-up study, we demonstrate that DAP tolerance in the pitA6 mutant is not triggered by the accumulation of polyP. Transcriptome analysis revealed that 234 genes were at least 2.0-fold differentially expressed in the mutant. Particularly, genes involved in protein biosynthesis, carbohydrate and lipid metabolism, and replication and maintenance of DNA were downregulated. However, the most important change was the upregulation of the dlt operon, which is induced by the accumulation of intracellular Pi The GraXRS system, known as an activator of the dlt operon (d-alanylation of teichoic acids) and of the mprF gene (multiple peptide resistance factor), is not involved in DAP tolerance of the pitA6 mutant. In conclusion, DAP tolerance of the pitA6 mutant is due to an upregulation of the dlt operon, triggered directly or indirectly by the accumulation of Pi. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Kharon1 null mutants of Leishmania mexicana are avirulent in mice and exhibit a cytokinesis defect within macrophages.

    Directory of Open Access Journals (Sweden)

    Khoa D Tran

    Full Text Available In a variety of eukaryotes, flagella play important roles both in motility and as sensory organelles that monitor the extracellular environment. In the parasitic protozoan Leishmania mexicana, one glucose transporter isoform, LmxGT1, is targeted selectively to the flagellar membrane where it appears to play a role in glucose sensing. Trafficking of LmxGT1 to the flagellar membrane is dependent upon interaction with the KHARON1 protein that is located at the base of the flagellar axoneme. Remarkably, while Δkharon1 null mutants are viable as insect stage promastigotes, they are unable to survive as amastigotes inside host macrophages. Although Δkharon1 promastigotes enter macrophages and transform into amastigotes, these intracellular parasites are unable to execute cytokinesis and form multinucleate cells before dying. Notably, extracellular axenic amastigotes of Δkharon1 mutants replicate and divide normally, indicating a defect in the mutants that is only exhibited in the intra-macrophage environment. Although the flagella of Δkharon1 amastigotes adhere to the phagolysomal membrane of host macrophages, the morphology of the mutant flagella is often distorted. Additionally, these null mutants are completely avirulent following injection into BALB/c mice, underscoring the critical role of the KHARON1 protein for viability of intracellular amastigotes and disease in the animal model of leishmaniasis.

  7. Early transcriptional responses of internalization defective Brucella abortus mutants in professional phagocytes, RAW 264.7.

    Science.gov (United States)

    Cha, Seung Bin; Lee, Won Jung; Shin, Min Kyoung; Jung, Myung Hwan; Shin, Seung Won; Yoo, An Na; Kim, Jong Wan; Yoo, Han Sang

    2013-06-27

    Brucella abortus is an intracellular zoonotic pathogen which causes undulant fever, endocarditis, arthritis and osteomyelitis in human and abortion and infertility in cattle. This bacterium is able to invade and replicate in host macrophage instead of getting removed by this defense mechanism. Therefore, understanding the interaction between virulence of the bacteria and the host cell is important to control brucellosis. Previously, we generated internalization defective mutants and analyzed the envelope proteins. The present study was undertaken to evaluate the changes in early transcriptional responses between wild type and internalization defective mutants infected mouse macrophage, RAW 264.7. Both of the wild type and mutant infected macrophages showed increased expression levels in proinflammatory cytokines, chemokines, apoptosis and G-protein coupled receptors (Gpr84, Gpr109a and Adora2b) while the genes related with small GTPase which mediate intracellular trafficking was decreased. Moreover, cytohesin 1 interacting protein (Cytip) and genes related to ubiquitination (Arrdc3 and Fbxo21) were down-regulated, suggesting the survival strategy of this bacterium. However, we could not detect any significant changes in the mutant infected groups compared to the wild type infected group. In summary, it was very difficult to clarify the alterations in host cellular transcription in response to infection with internalization defective mutants. However, we found several novel gene changes related to the GPCR system, ubiquitin-proteosome system, and growth arrest and DNA damages in response to B. abortus infection. These findings may contribute to a better understanding of the molecular mechanisms underlying host-pathogen interactions and need to be studied further.

  8. Intracellular APP Sorting and Aβ Secretion are Regulated by Src-mediated Phosphorylation of Mint2

    Science.gov (United States)

    Chaufty, Jeremy; Sullivan, Sarah E.; Ho, Angela

    2012-01-01

    Mint adaptor proteins bind to the membrane-bound amyloid precursor protein (APP) and affect the production of pathogenic amyloid-beta (Aβ) peptides related to Alzheimer’s disease (AD). Previous studies have shown that loss of each of the three Mint proteins delays the age-dependent production of amyloid plaques in transgenic mouse models of AD. However, the cellular and molecular mechanisms underlying Mints effect on amyloid production are unclear. Because Aβ generation involves the internalization of membrane-bound APP via endosomes and Mints bind directly to the endocytic motif of APP, we proposed that Mints are involved in APP intracellular trafficking, which in turn, affects Aβ generation. Here, we show that APP endocytosis was attenuated in Mint knockout neurons, revealing a role for Mints in APP trafficking. We also show that the endocytic APP sorting processes are regulated by Src-mediated phosphorylation of Mint2 and that internalized APP is differentially sorted between autophagic and recycling trafficking pathways. A Mint2 phospho-mimetic mutant favored endocytosis of APP along the autophagic sorting pathway leading to increased intracellular Aβ accumulation. Conversely, the Mint2 phospho-resistant mutant increased APP localization to the recycling pathway and back to the cell surface thereby enhancing Aβ42 secretion. These results demonstrate that Src-mediated phosphorylation of Mint2 regulates the APP endocytic sorting pathway, providing a mechanism for regulating Aβ secretion. PMID:22787047

  9. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    International Nuclear Information System (INIS)

    Hasegawa, K.; Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1989-01-01

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well

  10. Characterization and protective property of Brucella abortus cydC and looP mutants.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Barate, Abhijit Kashinath; Kim, Suk; Hahn, Tae-Wook

    2014-11-01

    Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Kuge, O.; Nishijima, M.; Akamatsu, Y. (National Institute of Health, Tokyo (Japan))

    1989-11-25

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in (14C)ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of (14C)ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-(14C)ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.

  12. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-01-01

    The intracellular glutathione (GSH) content of HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulphoximine or diethyl maleate (DEM). Clonogenicity, single-strand DNA breaks (ssb) and double-strand DNA breaks (dsb) were used as criteria for radiation-induced damage after X- or γ-irradiation. In survival experiments, DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the o.e.r. was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (author)

  13. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  14. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-05-01

    The intracellular glutathione (GSH) content in HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulfoximine (BSO) or diethyl maleate (DEM). Clonogenicity, single strand DNA breaks (ssb) and double strand DNA breaks (dsb) were used as criteria for radiation induced damage after X- or γ irradiation. In survival experiments DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the OER was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (Auth.)

  15. Intracellular Protein Delivery for Treating Breast Cancer

    Science.gov (United States)

    2014-08-01

    Intracellular delivery of such proteins, including human tumor suppressors (such as p53) (Brown et al., 2009) and exogenous tumor-killing proteins...vivo systems. Nature materials 11, 1038-1043. Chorny, M., Hood, E., Levy, R.J., and Muzykantov, V.R. (2010). Endothelial delivery of antioxidant ...for the ntracellular delivery of such proteins, including human umor suppressors [7] and exogenous tumor-killing proteins 8—10]), is attractive as a

  16. Fluorescent nanoparticles for intracellular sensing: A review

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria J.; Walters, Jamie D.; Orte, Angel; Hall, Elizabeth A.H.

    2012-01-01

    Highlights: ► Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. ► Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. ► Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  17. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  18. A bacteriophage endolysin that eliminates intracellular streptococci.

    Science.gov (United States)

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-03-15

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB-PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities.

  19. Comparison of listeriolysin O and phospholipases PlcA and PlcB activities, and initial intracellular growth capability among food and clinical strains of Listeria monocytogenes.

    Science.gov (United States)

    Kanki, M; Naruse, H; Kawatsu, K

    2018-03-01

    We investigated whether Listeria monocytogenes strains differ in their ability to escape from the primary phagosome after internalization into human intestinal epithelial cells. Food and clinical strains were used to study specific alleles; the activities of listeriolysin O (LLO) and phospholipases PlcA and PlcB, which promote rupture of the phagocytic vacuole; and initial intracellular bacterial growth in Caco-2 cells. Results showed no difference in LLO activities between food and clinical strains or among serotypes. In contrast, the LLO truncation mutant lacked detectable haemolytic activity and intracellular growth. PlcA and PlcB produced by the strains of serotypes 4b/4e and 1/2b exhibited significantly lower activities than those of serotypes 1/2a and 1/2c. In contrast, the strains of serotype 1/2b grew significantly faster than those of serotypes 4b/4e and 1/2a. Moreover, the PrfA truncation mutants lacked LLO and phospholipases activities and did not show intracellular growth. We determined that LLO and PrfA mutants exert a significant effect on intracellular growth, although it was unclear from this study whether PlcA and PlcB alleles affect escape from vacuoles. This study estimates that low-virulence L. monocytogenes strains associated with escape ability from the primary vacuoles are not widely distributed among food strains. © 2018 The Society for Applied Microbiology.

  20. Flocculation phenomenon of a mutant flocculent Saccharomyces ...

    African Journals Online (AJOL)

    The flocculation mechanism of a stable mutant flocculent yeast strain Saccharomyces cerevisiae KRM-1 was quantitatively investigated for potential industrial interest. It was found that the mutant flocculent strain was NewFlo phenotype by means of sugar inhibition test. The flocculation was completely inhibited by treatment ...

  1. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    Compared to the wild CC-124, these mutants are characterized by a decrease in chlorophyll a & b content and an increase in carotenoids. The lowest decrease in chlorophyll a was 3 to 4 folds, while the highest increase in carotenoids was 2 to 4 folds. The result of bio-test, using the resulting pigment mutant of C. reinhardtii ...

  2. Grb2 is regulated by foxd3 and has roles in preventing accumulation and aggregation of mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Shounak Baksi

    Full Text Available Growth factor receptor protein binding protein 2 (Grb2 is known to be associated with intracellular growth and proliferation related signaling cascades. Huntingtin (Htt, a ubiquitously expressed protein, when mutated, forms toxic intracellular aggregates - the hallmark of Huntington's disease (HD. We observed an elevated expression of Grb2 in neuronal cells in animal and cell models of HD. Grb2 overexpression was predominantly regulated by the transcription factor Forkhead Box D3 (Foxd3. Exogenous expression of Grb2 also reduced aggregation of mutant Htt in Neuro2A cells. Grb2 is also known to interact with Htt, depending on epidermal growth factor receptor (EGFR activation. Grb2- mutant Htt interaction in the contrary, took place in vesicular structures, independent of EGFR activation that eventually merged with autophagosomes and activated the autophagy machinery helping in autophagosome and lysosome fusion. Grb2, with its emerging dual role, holds promise for a survival mechanism for HD.

  3. Los mutantes de la escuela

    Directory of Open Access Journals (Sweden)

    Diego Armando Jaramillo-Ocampo

    2013-01-01

    Full Text Available El presente artículo muestra los resultados parciales del estudio “Juegos en el recreo escolar: un escenario para la formación ciudadana”, cuya pretensión fue comprender los imaginarios sociales de juego en el recreo escolar y su relación con la convivencia social desde la proximidad del enfoque de complementariedad y el diseño de investigación emergente, planteado por Murcia y Jaramillo (2008. Se presentan los desarrollos logrados en dos categorías centrales del estudio: el patio y el cuerpo; dos categorías que mutan constantemente como entidades vivas en la escuela, hacia la configuración de sujetos que reconocen en el otro y lo otro su posibilidad. La escuela viva, donde es posible “ser en relación con”… se reduce a un espacio temporal y físico, limitado por la campana, “el recreo”. El texto muestra, desde la voz de los actores, esa vida que se da y se quita en la escuela y que se posiciona como una más de las imposiciones normalizadas para controlar. Reconoce, finalmente, una propuesta desde la posibilidad que estos dos mutantes propician para una escuela libre y dinámica.

  4. Intracellular Calcium Decreases Upon Hyper Gravity-Treatment of Arabidopsis Thaliana Cell Cultures

    Science.gov (United States)

    Neef, Maren; Denn, Tamara; Ecke, Margret; Hampp, Rüdiger

    2016-06-01

    Cell cultures of Arabidopsis thaliana ( A. t.) respond to changes in the gravitational field strength with fluctuations of the amount of cytosolic calcium (Ca2+). In parabolic flight experiments, where hyper- and μg phases follow each other, μg clearly increased Ca2+, while hyper-g caused a slight reduction. Since the latter observation had not been reported before, we studied this effect in more detail. Using a special centrifuge for heavy items (ZARM, Bremen, Germany), we determined the hyper-g-dependent intracellular Ca2+ level with transgenic cell lines expressing the Ca2+ sensor, cameleon. This sensor exhibits a shift in fluorescence from 480 to 530 nm in response to Ca2+ binding. The data show a drop in the intracellular Ca2+ concentration with a threshold gravity of around 3 g. This is above hypergravity levels achieved during parabolic flights (1.8 g). The use of mutants with different sub-cellular targets of cameleon expression (nucleus, tonoplast, plasma membrane) gave the same results, i.e. Ca2+ is obviously exported from several intracellular compartments.

  5. Use of magnetic nanobeads to study intracellular antigen processing

    Energy Technology Data Exchange (ETDEWEB)

    Perrin-Cocon, Laure A.; Chesne, Serge; Pignot-Paintrand, Isabelle; Marche, Patrice N.; Villiers, Christian L. E-mail: christian.villiers@cea.fr

    2001-07-01

    Magnetic nanobeads were covalently linked to antigens and used as a tool to simultaneously follow their intracellular transport into the cells and specifically purify the intracellular compartments implicated in antigen processing. The protein content of these vesicles was analysed by 2D-electrophoresis. Furthermore, nanobeads allowed intracellular localisation of the antigen in electron and fluorescence microscopy.

  6. Use of magnetic nanobeads to study intracellular antigen processing

    International Nuclear Information System (INIS)

    Perrin-Cocon, Laure A.; Chesne, Serge; Pignot-Paintrand, Isabelle; Marche, Patrice N.; Villiers, Christian L.

    2001-01-01

    Magnetic nanobeads were covalently linked to antigens and used as a tool to simultaneously follow their intracellular transport into the cells and specifically purify the intracellular compartments implicated in antigen processing. The protein content of these vesicles was analysed by 2D-electrophoresis. Furthermore, nanobeads allowed intracellular localisation of the antigen in electron and fluorescence microscopy

  7. Isolation and genetic analysis of Aspergillus niger mutants with reduced extracellular glucoamylase

    International Nuclear Information System (INIS)

    Valent, G.U.; Calil, M.R.; Bonatelli Junior, R.

    1992-01-01

    Mutants with impaired production of extracellular glucoamylase were isolated at a high frequency (2% of survivors) from an Aspergillus niger strain treated with UV light. These were designated as low glucoamylase producers (lgp, up to 30% of the parental yield) and medium producers (mgp, a 35 to 50% decrease in enzyme level). All the mutants were shown to be recessive; one strain segregated two unlinked genes. Complementation tests, and segregation from heterozygous diploid, suggested at least three to four unlinked genes, each able to impair glucoamylase production. There is evidence of a single structural gene for glucoamylase in A. niger. Therefore, as production of extracellular enzymes is normally the final result of several steps at intracellular and membrane levels, including regulation of enzyme synthesis, we suggest intergenic interaction that controls extracellular enzyme accumulation and that mutation in any of these genes would result in impaired production. (author)

  8. Theoretical Modelling for the Ground State Rotamerisation and Excited State Intramolecular Proton Transfer of 2-(2’-hydroxyphenyloxazole, 2-(2’-hydroxyphenylimidazole, 2-(2’-hydroxyphenylthiazole and Their Benzo Analogues

    Directory of Open Access Journals (Sweden)

    Nitin Chattopadhyay

    2003-05-01

    Full Text Available Abstract: Two series of compounds, one comprising of 2-(2′-hydroxyphenylbenzoxazole (HBO, 2-(2′-hydroxyphenylbenzimidazole (HBI, 2-(2′-hydroxyphenylbenzothiazole (HBT, and the other of 2-(2′-hydroxyphenyloxazole (HPO, 2-(2′-hydroxyphenylimidazole (HPI and 2-(2′-hydroxyphenylthiazole (HPT are susceptible to ground state rotamerization as well as excited state intramolecular proton transfer (ESIPT reactions. Some of these compounds show experimental evidence of the existence of two ground state conformers. Out of these two one undergoes ESIPT reaction leading to the formation of the tautomer. The two photophysical processes, in combination, result in the production of a number of fluorescence bands each one of which corresponding to a particular species. Semiempirical AM1-SCI calculations have been performed to rationalize the photophysical behaviour of the compounds. The calculations suggest that for the first series of compounds, two rotational isomers are present in the ground state of HBO and HBI while HBT has a single conformer under similar circumstances. For the molecules of the other series existence of rotamers depends very much on the polarity of the environment. The potential energy curves (PEC for the ESIPT process in different electronic states of the molecules have been generated theoretically. The simulated PECs reveal that for all these systems the IPT reaction is unfavourable in the ground state but feasible, both kinetically and thermodynamically, in the S1 as well as T1 states.

  9. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    Science.gov (United States)

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic

  10. Quantitative proteomic analysis of Burkholderia pseudomallei Bsa type III secretion system effectors using hypersecreting mutants.

    Science.gov (United States)

    Vander Broek, Charles W; Chalmers, Kevin J; Stevens, Mark P; Stevens, Joanne M

    2015-04-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Adaptive response in Drosophila melanogaster heat shock proteins mutant strains

    International Nuclear Information System (INIS)

    Shaposhnikov, M.V.; Moskalev, A.A.; Turysheva, E.V.

    2007-01-01

    Complete text of publication follows. The members of the heat shock proteins (Hsp) family function as molecular chaperones and assist intracellular folding of newly synthesized proteins. Also it is possible that molecular chaperones are induced during adaptive response to oxidative stress and radiation. The aim of our research was to exam the role of heat shock proteins in adaptive response to oxidative stress after low dose rate gamma-irradiation in Drosophila melanogaster. Drosophilamelanogaster strains were kindly provided by Bloomington Drosophila Stock Center (University of state of Indiana, Bloomington, USA). We used wild type strain (CS), heat shock protein mutant strains (Hsp22, Hsp70, Hsp83), and heat shock factor mutant strain (Hsf). Strains were chronically exposured to adaptive dose of gamma-irradiation in dose rate of 0.17 cGy/h during all stages of life history (from the embrional stage to the stage of matured imago). The rate of absorbed dose was 60 cGy. For oxidative-stress challenge twodays old flies were starved in empty vials for 6 h and then transferred to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival data were collected after 26 h of treatment. Dead flies were counted daily. The obtained data were subjected to survival analysis by Kaplan and Meier method and presented as survival curves. Statistical analysis was held by non-parametric methods. To test the significance of the difference between the two age distributions Kolmogorov-Smirnov test was applied. Gehan-Braslow- Wilcoxon and Cox-Mantel tests were used for estimation of median life span differences. In addition the minimal and maximal life span, time of 90% death, and mortality rate doubling time (MRDT) were estimated. The obtained results will be discussed in presentation.

  12. Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans

    Science.gov (United States)

    Vaccaro, Alexandra; Tauffenberger, Arnaud; Aggad, Dina; Rouleau, Guy; Drapeau, Pierre; Parker, J. Alex

    2012-01-01

    Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening. PMID:22363618

  13. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    Science.gov (United States)

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Phenotypic and genetic analysis of "Chameleon," a paramecium mutant with an enhanced sensitivity to magnesium.

    Science.gov (United States)

    Preston, R R; Hammond, J A

    1997-07-01

    Three mutant strains of Paramecium tetraurelia with an enhanced sensitivity to magnesium have been isolated. These new "Chameleon" mutants result from partial- or codominant mutations at a single locus, Cha. Whereas the wild type responded to 5 mM Mg2+ by swimming backward for 10-15 sec, Cha mutants responded with approximately 30 sec backward swimming. Electrophysiological analysis suggested that this behavior may be caused by slowing in the rate at which a Mg(2+)-specific ion conductance deactivates following membrane excitation. This would be consistent with an observed increase in the sensitivity of Cha mutants to nickel poisoning, since Ni2+ is also able to enter the cell via this pathway. More extensive behavioral analysis showed that Cha cells also overresponded to Na+, but there was no evidence for a defect in intracellular Ca2+ homeostasis that might account for a simultaneous enhancement of both the Mg2+ and Na+ conductances. The possibility that the Cha locus may encode a specific regulator of the Mg(2+)- and Na(+)-permeabilities is considered.

  15. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    International Nuclear Information System (INIS)

    Sze, Heven

    2008-01-01

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular (Ca2+) during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  16. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  17. X-rays sensitive mammalian cell mutant

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1982-01-01

    A phenomenon that in x-ray-sensitive mammalian-cell mutants, cellular death due to x-ray radiation was not increased by caffeine, but on the contrary, the dead cells were resuscitated by it was discussed. The survival rate of mutant cells increased by caffein in a low concentration. This suggested that caffeine may have induced some mechanism to produce x-ray resistant mutant cells. Postirradiation treatment with caffeine increased considerably the survival rate of the mutant cells, and this suggested the existence of latent caffeine-sensitive potentially lethal damage repair system. This system, after a few hours, is thought to be substituted by caffeine-resistant repair system which is induced by caffeine, and this may be further substituted by x-ray-resistant repair system. The repair system was also induced by adenine. (Ueda, J.)

  18. Semi-dwarf mutants for rice improvement

    International Nuclear Information System (INIS)

    Othman, Ramli; Osman, Mohammad; Ibrahim, Rusli

    1990-01-01

    Full text: MARDI and the National University of Malaysia embarked on a programme to induce resistance against blast in rice in 1978. MARDI also obtained semi dwarf mutants of cvs 'Mahsuri', 'Muda', 'Pongsu seribu' and 'Jarum Mas', which are under evaluation. The popular local rice variety 'Manik' was subjected to gamma irradiation (15-40 krad) and 101 promising semidwarf mutants have been obtained following selection in M 2 -M 6 . 29 of them show grain yields of 6.0-7.3 t/ha, compared with 5.7t for 'Manik'. Other valuable mutants were found showing long grain, less shattering, earlier maturity, and glutinous endosperm. One mutant, resistant to brown plant hopper yields 6.3t/ha. (author)

  19. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    Science.gov (United States)

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  20. Intracellular bacteria: the origin of dinoflagellate toxicity.

    Science.gov (United States)

    Silva, E S

    1990-01-01

    Dinoflagellate blooms of the same species have been registered either as toxic or nontoxic and, in the latter case, toxicity may be of different types. A hypothesis has been formulated according to which the bacteria having in some way taken part in the toxin formation are either inside the dinoflagellate cell or in the nutritive liquid. The presence of intracellular bacteria in those microorganisms has been studied mainly in material from cultures, a few from the sea, and several strains were isolated from different species. Experiments with crossed inoculations have shown that the bacterial strain from Gonyaulax tamarensis caused the cells of some other species to become toxic. From nontoxic clonal cultures of Prorocentrum balticum, Glenodinium foliaceum, and Gyrodinium instriatum, after inoculation of that bacterial strain, cultures were obtained whose cell extracts showed the same kind of toxicity as G. tamarensis. No toxic action could be found in the extracts of the bacterial cells form the assayed strains. The interference of intracellular bacteria in the metabolism of dinoflagellates must be the main cause of their toxicity.

  1. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    Science.gov (United States)

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Intracellular accumulation of norfloxacin in Mycobacterium smegmatis.

    Science.gov (United States)

    Corti, S; Chevalier, J; Cremieux, A

    1995-01-01

    To evaluate the intracellular accumulation of norfloxacin in mycobacteria, two methods were used with Mycobacterium smegmatis. A radiometric method (K. V. Cundy, C. E. Fasching, K. E. Willard, and L. R. Peterson, J. Antimicrob. Chemother. 28:491-497, 1991) was used without great modification, but the fluorometric method (P. G. S. Mortimer and L. J. V. Piddock, J. Antimicrob. Chemother. 28:639-653, 1991) was changed considerably. Indeed, adsorption of the quinolone to the bacterial surface was characterized by measuring the level of accumulation of 0 degree C. Taking into account the adsorption, the pH of the washing buffer was increased from 7.0 to 9.0 to improve the desorption of norfloxacin from the cell surface. Both the fluorometric method, with the technical improvement, and the radiometric method could be used to estimate the intracellular accumulation of norfloxacin, which resulted from the difference between the whole uptake measured at 37 degrees C and the adsorption measured at 0 degrees C. A total of 35 ng of norfloxacin per mg of cells (dry weight) penetrated into the M. smegmatis cell, and the steady state was achieved in 5 min. Use of inhibitors of the proton motive force revealed that transport of norfloxacin was energy independent. Thus, the same mechanisms of quinolone accumulation that occur in eubacteria seem to occur in mycobacteria, at least in M. smegmatis. PMID:8585727

  3. Fluorescent nanoparticles for intracellular sensing: a review.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Walters, Jamie D; Orte, Angel; Hall, Elizabeth A H

    2012-11-02

    Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. [Intracellular signaling mechanisms in thyroid cancer].

    Science.gov (United States)

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  5. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  6. Robust mutant strain design by pessimistic optimization.

    Science.gov (United States)

    Apaydin, Meltem; Xu, Liang; Zeng, Bo; Qian, Xiaoning

    2017-10-03

    Flux Balance Analysis (FBA) based mathematical modeling enables in silico prediction of systems behavior for genome-scale metabolic networks. Computational methods have been derived in the FBA framework to solve bi-level optimization for deriving "optimal" mutant microbial strains with targeted biochemical overproduction. The common inherent assumption of these methods is that the surviving mutants will always cooperate with the engineering objective by overproducing the maximum desired biochemicals. However, it has been shown that this optimistic assumption may not be valid in practice. We study the validity and robustness of existing bi-level methods for strain optimization under uncertainty and non-cooperative environment. More importantly, we propose new pessimistic optimization formulations: P-ROOM and P-OptKnock, aiming to derive robust mutants with the desired overproduction under two different mutant cell survival models: (1) ROOM assuming mutants have the minimum changes in reaction fluxes from wild-type flux values, and (2) the one considered by OptKnock maximizing the biomass production yield. When optimizing for desired overproduction, our pessimistic formulations derive more robust mutant strains by considering the uncertainty of the cell survival models at the inner level and the cooperation between the outer- and inner-level decision makers. For both P-ROOM and P-OptKnock, by converting multi-level formulations into single-level Mixed Integer Programming (MIP) problems based on the strong duality theorem, we can derive exact optimal solutions that are highly scalable with large networks. Our robust formulations P-ROOM and P-OptKnock are tested with a small E. coli core metabolic network and a large-scale E. coli iAF1260 network. We demonstrate that the original bi-level formulations (ROOM and OptKnock) derive mutants that may not achieve the predicted overproduction under uncertainty and non-cooperative environment. The knockouts obtained by the

  7. Mutant ribosomes can generate dominant kirromycin resistance.

    Science.gov (United States)

    Tubulekas, I; Buckingham, R H; Hughes, D

    1991-01-01

    Mutations in the two genes for EF-Tu in Salmonella typhimurium and Escherichia coli, tufA and tufB, can confer resistance to the antibiotic kirromycin. Kirromycin resistance is a recessive phenotype expressed when both tuf genes are mutant. We describe a new kirromycin-resistant phenotype dominant to the effect of wild-type EF-Tu. Strains carrying a single kirromycin-resistant tuf mutation and an error-restrictive, streptomycin-resistant rpsL mutation are resistant to high levels of kirromycin, even when the other tuf gene is wild type. This phenotype is dependent on error-restrictive mutations and is not expressed with nonrestrictive streptomycin-resistant mutations. Kirromycin resistance is also expressed at a low level in the absence of any mutant EF-Tu. These novel phenotypes exist as a result of differences in the interactions of mutant and wild-type EF-Tu with the mutant ribosomes. The restrictive ribosomes have a relatively poor interaction with wild-type EF-Tu and are thus more easily saturated with mutant kirromycin-resistant EF-Tu. In addition, the mutant ribosomes are inherently kirromycin resistant and support a significantly faster EF-Tu cycle time in the presence of the antibiotic than do wild-type ribosomes. A second phenotype associated with combinations of rpsL and error-prone tuf mutations is a reduction in the level of resistance to streptomycin. PMID:2050625

  8. Commercialization Of Orchid Mutants For Floriculture Industry

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Zaiton Ahmad

    2014-01-01

    Orchids are the main contributors to cut flower industry in Malaysia with an existing good market and a huge business potential. Orchid industry has been established in Malaysia since 1960s but only started to develop and expand since 1980s. Continuous development of new orchid varieties is essential to meet customers' demands. Orchid mutagenesis research using gamma irradiation at Malaysian Nuclear Agency has successfully generated a number of new orchid varieties with commercial potentials. Therefore, Nuclear Malaysia has collaborated with an industrial partner, Hexagon Green Sdn Bhd (HGSB), to carry out commercialization research on these mutants under a Technofund project entitled 'Pre-Commercialization of Mutant Orchids for Cut Flowers Industry' from July 2011 to July 2014. Through this collaboration, Dendrobium orchid mutant plants developed by Nuclear Malaysia were transferred to HGSB's commercial orchid nursery at Bukit Changgang Agrotechnology Park, Banting, Selangor, for mass-propagation. The activities include evaluations on plant growth performance, flower quality, post harvest and market potential of these mutants. Mutants with good field performance have been identified and filed for Plant Variety Protection (PVP) with Department of Agriculture Malaysia. This paper describes outputs from this collaboration and activities undertaken in commercializing these mutants. (author)

  9. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...

  10. Nuclease activity of Legionella pneumophila Cas2 promotes intracellular infection of amoebal host cells.

    Science.gov (United States)

    Gunderson, Felizza F; Mallama, Celeste A; Fairbairn, Stephanie G; Cianciotto, Nicholas P

    2015-03-01

    Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Comparison of a coq7 deletion mutant with other respiration-defective mutants in fission yeast.

    Science.gov (United States)

    Miki, Risa; Saiki, Ryoichi; Ozoe, Yoshihisa; Kawamukai, Makoto

    2008-11-01

    Among the steps in ubiquinone biosynthesis, that catalyzed by the product of the clk-1/coq7 gene has received considerable attention because of its relevance to life span in Caenorhabditis elegans. We analyzed the coq7 ortholog (denoted coq7) in Schizosaccharomyces pombe, to determine whether coq7 has specific roles that differ from those of other coq genes. We first confirmed that coq7 is necessary for the penultimate step in ubiquinone biosynthesis, from the observation that the deletion mutant accumulated the ubiquinone precursor demethoxyubiquinone-10 instead of ubiquinone-10. The coq7 mutant displayed phenotypes characteristic of other ubiquinone-deficient Sc. pombe mutants, namely, hypersensitivity to hydrogen peroxide, a requirement for antioxidants for growth on minimal medium, and an elevated production of sulfide. To compare these phenotypes with those of other respiration-deficient mutants, we constructed cytochrome c (cyc1) and coq3 deletion mutants. We also assessed accumulation of oxidative stress in various ubiquinone-deficient strains and in the cyc1 mutant by measuring mRNA levels of stress-inducible genes and the phosphorylation level of the Spc1 MAP kinase. Induction of ctt1, encoding catalase, and apt1, encoding a 25 kDa protein, but not that of gpx1, encoding glutathione peroxidase, was indistinguishable in four ubiquinone-deficient mutants, indicating that the oxidative stress response operates at similar levels in the tested strains. One new phenotype was observed, namely, loss of viability in stationary phase (chronological life span) in both the ubiquinone-deficient mutant and in the cyc1 mutant. Finally, Coq7 was found to localize in mitochondria, consistent with the possibility that ubiquinone biosynthesis occurs in mitochondria in yeasts. In summary, our results indicate that coq7 is required for ubiquinone biosynthesis and the coq7 mutant is not distinguishable from other ubiquinone-deficient mutants, except that its phenotypes are more

  12. and Di-hydration on the Intramolecular Proton Transfers and ...

    Indian Academy of Sciences (India)

    Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda. R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao. O, Nakai H, Vreven T, Montgomery J A, Jr., Peralta J E,. Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin. K N, Staroverov V N, Kobayashi R, Normand J,. Raghavachari K, Rendell A, Burant J C, Iyengar S S,.

  13. The Bending Magnets for the Proton Transfer Line of CNGS

    CERN Document Server

    Schirm, K M; Anashin, V; Kiselev, O; Maraev, V; Ogurtsov, A; Pupkov, Yu; Ruvinsky, E; Zhilyaev, K; Konstantinov, Yu S; Kosjakin, M; Peregud, V

    2006-01-01

    The project "CERN neutrinos to Gran Sasso (CNGS)", a collaboration between CERN and the INFN (Gran Sasso Laboratory) in Italy, will study neutrino oscillations in a long base-line experiment. High-energy protons will be extracted from the CERN SPS accelerator, transported through a 727 m long transfer line and focused onto a graphite target to produce a beam of pions and kaons and subsequently neutrinos. The transfer line requires a total of 78 dipole magnets. They were produced in the framework of an in-kind contribution of Germany via DESY to the CNGS project. The normal conducting dipoles, built from laminated steel cores and copper coils, have a core length of 6.3 m, a 37 mm gap height and a nominal field range of 1.38 T - 1.91 T at a maximum current of 4950 A. The magnet design was a collaboration between CERN and BINP. The half-core production was subcontracted to EFREMOV Institute; the coil fabrication, magnet assembly and the field measurements were concluded at BINP in June 2004. The main design issu...

  14. Charge density analysis of two proton transfer complexes ...

    Indian Academy of Sciences (India)

    Wintec

    were collected on a Siemens three circle diffracto- meter attached with a CCD area detector and a graphite monochromator for the MoKα radiation. (50 kV, 40 mA). The crystals were cooled to 100 K on the diffractometer using a stream of cold nitrogen gas from a vertical nozzle and the temperature was maintained within 1 K ...

  15. Effect of electrostatic interactions on the formation of proton transfer ...

    Indian Academy of Sciences (India)

    WINTEC

    the pKa values of ionizable groups and/or internal water molecules.5. In this article, we focus on the enzyme human carbonic anhydrase II (HCA II), which catalyses the reversible hydration of carbon dioxide to produce bicarbonate. This is one of the fastest enzymes24 with a turnover rate of about 106 s–1 at 25°С. From the.

  16. Excited state proton transfer in the Cinchona alkaloid cupreidine

    NARCIS (Netherlands)

    Qian, J.; Brouwer, A.M.

    2010-01-01

    Photophysical properties of the organocatalyst cupreidine (CPD) and its chromophoric building block 6-hydroxyquinoline (6HQ) in protic and nonprotic polar solvents (methanol and acetonitrile) were investigated by means of UV-vis absorption, and steady state and time resolved fluorescence

  17. Intracellular pH in sperm physiology.

    Science.gov (United States)

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  19. Intracellular Na⁺ and cardiac metabolism.

    Science.gov (United States)

    Bay, Johannes; Kohlhaas, Michael; Maack, Christoph

    2013-08-01

    In heart failure, alterations of excitation-contraction underlie contractile dysfunction. One important defect is an elevation of the intracellular Na(+) concentration in cardiac myocytes ([Na(+)]i), which has an important impact on cytosolic and mitochondrial Ca(2+) homeostasis. While elevated [Na(+)]i is thought to compensate for decreased Ca(2+) load of the sarcoplasmic reticulum (SR), it yet negatively affects energy supply-and-demand matching and can even induce mitochondrial oxidative stress. Here, we review the mechanisms underlying these pathophysiological changes. The chain of events may constitute a vicious cycle of ion dysregulation, oxidative stress and energetic deficit, resembling characteristic cellular deficits that are considered key hallmarks of the failing heart. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes". Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. An intracellular anion channel critical for pigmentation.

    Science.gov (United States)

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  1. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Schneider, Anselm F. L.; Leonhardt, Heinrich

    2018-01-01

    Abstract Nanobodies can be seen as next‐generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site‐specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens. PMID:28913971

  2. Development of high yielding mutants in lentil

    International Nuclear Information System (INIS)

    Rajput, M.A.; Sarwar, G.; Siddiqui, K.A.

    2001-01-01

    Full text: Lentil (Lens culinaris Medik.) locally known as Masoor, is the second most important rabi pulse crop, after chickpea, in Pakistan. It is cultivated on an area of over 63,400 ha, which constitutes about 4.83% of the total area under pulses. The annual production of the crop is 28,200 tones with an average yield of 445 kg/ha. Yield at the national level is very low, about one-half of the world's yield, which is mainly due to non-availability of high yield potential genotypes. Keeping in view the importance of mutants in developing a large number of new varieties, an induced mutations programme was initiated at AEARC, Tandojam during 1987-88, to develop high yielding varieties in lentil. For this, seeds of two lentil varieties, 'Masoor-85' and 'ICARDA-8' had been irradiated with gamma-rays ranging from 100-600 Gy in NIAB, Faisalabad during 1990. Selections were made in M2 on the basis of earliness, plant height, branches/plant and 100 grain weight. After confirming these mutants in M3 they were promoted in station yield trials and studied continuously for three consecutive years (1993- 1995). Overall results revealed that these mutants have consistent improvement of earliness in flowering and maturity. Plant height also increased in all mutant lines except AEL 23/40/91 where reduction in this attribute was observed as compared to parent variety. Mutant lines AEL 49/20/91 and AEL 13/30/91 showed improvement in 100 grain weight. The improvement of some agronomic characters enhanced the yield of mutant lines in comparison to parent varieties (Masoor-85 and ICARDA-8). The diversity in yield over the respective parents was computed from 6.94 to 60.12%. From these encouraging results it is hoped that mutant lines like AEL 12/30/91 and AEL 49/20/91 may serve as potential lentil genotypes in future. (author)

  3. Officially released mutant varieties in China

    International Nuclear Information System (INIS)

    Liu, L.; Van Zanten, L.; Shu, Q.Y.; Maluszynski, M.

    2004-01-01

    The use of mutation techniques for crop improvement in China has a long and well-established tradition of more than 50 years. As the result of intensive research in many institutes dealing with application of nuclear technologies more than 620 cultivars of 44 crop species have been released. Numerous mutant varieties have been grown on a large scale bringing significant economic impact, sustaining crop production and greatly contributing to increase of food production also in stress prone areas of the country. However, there is still missing information not only on the number of mutant varieties released in particular crop species but also on mutagens applied, selection approaches and on the use of mutants in cross breeding. Numerous Chinese scientists collected and systematized this information. Results of their work were often published in local scientific journals in the Chinese language and as such were unavailable to breeders from other countries. Having this in mind, we requested Dr. Liu Luxiang, the Director of the Department of Plant Mutation Breeding and Genetics, Institute for Application of Atomic Energy, Chinese Academy of Agricultural Sciences in Beijing to help us in finding as much information as possible on mutant varieties officially released in China. The data has been collected in close collaboration with his colleagues from various institutions all over the country and then evaluated, edited and prepared for publication by our team responsible for the FAO/IAEA Database of Officially Released Mutant Varieties. We would like to thank all Chinese colleagues who contributed to this list of Chinese mutant varieties. We hope that this publication will stimulate plant breeders in China to collect more information on released mutant varieties and especially on the use of mutated genes in cross breeding. (author)

  4. Influence of Altered NADH Metabolic Pathway on the Respiratory-deficient Mutant of Rhizopus oryzae and its L-lactate Production.

    Science.gov (United States)

    Shu, Chang; Guo, Chenchen; Luo, Shuizhong; Jiang, Shaotong; Zheng, Zhi

    2015-08-01

    Respiratory-deficient mutants of Rhizopus oryzae (R. oryzae) AS 3.3461 were acquired by ultraviolet (UV) irradiation to investigate changes in intracellular NADH metabolic pathway and its influence on the fermentation characteristics of the strain. Compared with R. oryzae AS 3.3461, the intracellular ATP level of the respiratory-deficient strain UV-1 decreased by 52.7 % and the glucose utilization rate rose by 8.9 %; When incubated for 36 h, the activities of phosphofructokinase (PFK), hexokinase (HK), and pyruvate kinase (PK) in the mutant rose by 74.2, 7.2, and 12.0 %, respectively; when incubated for 48 h, the intracellular NADH/NAD(+) ratio of the mutant rose by 14.6 %; when a mixed carbon source with a glucose/gluconic acid ratio of 1:1 was substituted to culture the mutant, the NADH/NAD(+) ratio decreased by 4.6 %; the ATP content dropped by 27.6 %; the lactate dehydrogenase (LDH) activity rose by 22.7 %; and the lactate yield rose by 11.6 %. These results indicated that changes to the NADH metabolic pathway under a low-energy charge level can effectively increase the glycolytic rate and further improve the yield of L-lactate of R. oryzae.

  5. Microarray-based identification of differentially expressed genes in intracellular Brucella abortus within RAW264.7 cells.

    Directory of Open Access Journals (Sweden)

    Mingxing Tian

    Full Text Available Brucella spp. is a species of facultative intracellular Gram-negative bacteria that induces abortion and causes sterility in domesticated mammals and chronic undulant fever in humans. Important determinants of Brucella's virulence and potential for chronic infection include the ability to circumvent the host cell's internal surveillance system and the capability to proliferate within dedicated and non-dedicated phagocytes. Hence, identifying genes necessary for intracellular survival may hold the key to understanding Brucella infection. In the present study, microarray analysis reveals that 7.82% (244/3334 of all Brucella abortus genes were up-regulated and 5.4% (180/3334 were down-regulated in RAW264.7 cells, compared to free-living cells in TSB. qRT-PCR verification further confirmed a >5-fold up-regulation for fourteen genes. Functional analysis classified araC, ddp, and eryD as to partake in information storage and processing, alp, flgF and virB9 to be involved in cellular processes, hpcd and aldh to play a role in metabolism, mfs and nikC to be involved in both cellular processes and metabolism, and four hypothetical genes (bruAb1_1814, bruAb1_0475, bruAb1_1926, and bruAb1_0292 had unknown functions. Furthermore, we constructed a B. abortus 2308 mutant Δddp where the ddp gene is deleted in order to evaluate the role of ddp in intracellular survival. Infection assay indicated significantly higher adherence and invasion abilities of the Δddp mutant, however it does not survive well in RAW264.7 cells. Brucella may survive in hostile intracellular environment by modulating gene expression.

  6. The Role of Autophagy in Intracellular Pathogen Nutrient Acquisition

    Directory of Open Access Journals (Sweden)

    Shaun eSteele

    2015-06-01

    Full Text Available Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates and amino acids. It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells

  7. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    Science.gov (United States)

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-25

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance.

  8. Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding

    DEFF Research Database (Denmark)

    Loland, Claus Juul; Grånäs, Charlotta; Javitch, Jonathan A

    2004-01-01

    Recently we showed evidence that mutation of Tyr-335 to Ala (Y335A) in the human dopamine transporter (hDAT) alters the conformational equilibrium of the transport cycle. Here, by substituting, one at a time, 16 different bulky or charged intracellular residues, we identify three residues, Lys-264......, this inactivation was protected by dopamine and enhanced by cocaine. These data are consistent with a Zn(2+)-dependent partial reversal of a constitutively altered conformational equilibrium in the mutant transporters. They also suggest that the conformational equilibrium produced by the mutations resembles...... that of the NET more than that of the DAT. Moreover, the data provide evidence that the cocaine-bound state of both DAT mutants and of the NET is structurally distinct from the cocaine-bound state of the DAT....

  9. Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Navon, G; Shulman, R G; Yamane, T; Eccleshall, T R; Lam, K B; Baronofsky, J J; Marmur, J

    1979-10-16

    High-resolution phosphorus-31 nuclear magnetic resonance (31P NMR) spectra of wild-type and mutant strains of Saccharomyces cerevisiae were observed at a frequency of 145.7 MHz. Levels of various phosphorus metabolites were investigated upon addition of glucose under both aerobic and anaerobic conditions. Three mutant strains were isolated and their biochemical defects characterized: pfk lacked phosphofructokinase activity; pgi lacked phosphoglucose isomerase activity; and cif had no glucose catabolite repression of the fructose bisphosphatase activity. Each mutant strain was found to accumulate characteristic sugar phosphates when glucose was added to the cell suspension. In the case of the phosphofructokinase deficient mutant, the appearance of a pentose shunt metabolite was observed. 31P NMR peak assignments were made by a pH titration of the acid extract of the cells. Separate signals for terminal, penultimate, and central phosphorus atoms in intracellular polyphosphates allowed the estimation of their average molecular weight. Signals for glycero(3)phosphochline, glycero(3)phosphoserine, and glycero(3) phosphoethanolamine as well as three types of nucleotide diphosphate sugars could be observed. The intracellular pH in resting and anaerobic cells was in the range 6.5--6.8 and the level of adenosine 5'-triphosphate (ATP) low. Upon introduction of oxygen, the ATP level increased considerably and the intracellular pH reached a value of pH 7.2--7.3, irrespective of the external medium pH, indicating active proton transport in these cells. A new peak representing the inorganic phosphate of one of the cellular organelles, whose pH differed from the cytoplasmic pH, could be detected under appropriate conditions.

  10. Agronomically valuable mutant lines of castor

    International Nuclear Information System (INIS)

    Bokhan, I.K.

    1990-01-01

    Dry seeds of four castor varieties (VNIIMK 165-improved, VNIIMK 18, Chervonnaya and Antika) were treated with six chemical mutagens, N-nitroso-N-methyl urea (NMU), N-nitroso-N-ethyl urea (NEU), dimethyl sulphate (DMS), diethyl sulphate (DES), ethylenimine (EI) and 1,4-bis-diazoacetyl-butane (DAB) in various doses during 18 hours. About 40,000 plants were studied in M 2 and 80 types of mutations were found, including a number of valuable mutants: short-stemmed, semi-dwarf, dwarf, early maturing, with female and interspersed types of racemes, highly productive etc. Based on trials in M 3 -M 4 , on small plots with two or three replications, the superior mutant lines were identified. The best mutants are presented in the table. Early maturation is very important for growing castor in the USSR, as it is the predecessor of winter wheat in crop rotation. The mutants M2-323 and Ml-83 are of great value as they show early maturation and high yield. Their productivity is mainly conditioned by a high percentage of interspersed plants. The reduction of plant height is of great importance for the successful combine harvesting of castor. Mutant lines M2-119 and Ml-284 characterised by low plant height and high yield are very interesting in this respect. The obtained initial material will be used in further breeding work

  11. Intracellular localization of Equine herpesvirus type 1 tegument protein VP22.

    Science.gov (United States)

    Okada, Ayaka; Kodaira, Akari; Hanyu, Sachiko; Izume, Satoko; Ohya, Kenji; Fukushi, Hideto

    2014-11-04

    Intracellular localization of Equine herpesvirus type 1 (EHV-1) tegument protein VP22 was examined by using a plasmid that expressed VP22 fused with an enhanced green fluorescent protein (EGFP). Also a recombinant EHV-1 expressing VP22 fused with a red fluorescent protein (mCherry) was constructed to observe the localization of VP22 in infected cells. When EGFP-fused VP22 was overexpressed in the cells, VP22 localized in the cytoplasm and nucleus. Live cell imaging suggested that the fluorescently tagged VP22 also localized in the cytoplasm and nucleus. These results show that VP22 localizes in the cytoplasm and nucleus independently of other viral proteins. Experiments with truncation mutants of pEGFP-VP22 suggested that 154-188 aa might be the nuclear localization signal of EHV-1 VP22. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Glucose Metabolism in Legionella pneumophila: Dependence on the Entner-Doudoroff Pathway and Connection with Intracellular Bacterial Growth† ▿

    Science.gov (United States)

    Harada, Eiji; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2010-01-01

    Glucose metabolism in Legionella pneumophila was studied by focusing on the Entner-Doudoroff (ED) pathway with a combined genetic and biochemical approach. The bacterium utilized exogenous glucose for synthesis of acid-insoluble cell components but manifested no discernible increase in the growth rate. Assays with permeabilized cell preparations revealed the activities of three enzymes involved in the pathway, i.e., glucokinase, phosphogluconate dehydratase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, presumed to be encoded by the glk, edd, and eda genes, respectively. Gene-disrupted mutants for the three genes and the ywtG gene encoding a putative sugar transporter were devoid of the ability to metabolize exogenous glucose, indicating that the pathway is almost exclusively responsible for glucose metabolism and that the ywtG gene product is the glucose transporter. It was also established that these four genes formed part of an operon in which the gene order was edd-glk-eda-ywtG, as predicted by genomic information. Intriguingly, while the mutants exhibited no appreciable change in growth characteristics in vitro, they were defective in multiplication within eukaryotic cells, strongly indicating that the ED pathway must be functional for the intracellular growth of the bacterium to occur. Curiously, while the deficient glucose metabolism of the ywtG mutant was successfully complemented by the ywtG+ gene supplied in trans via plasmid, its defect in intracellular growth was not. However, the latter defect was also manifested in wild-type cells when a plasmid carrying the mutant ywtG gene was introduced. This phenomenon, resembling so-called dominant negativity, awaits further investigation. PMID:20363943

  13. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment

    Directory of Open Access Journals (Sweden)

    Nidia Leon-Sicairos

    2015-01-01

    Full Text Available Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.

  14. Plasmodium berghei: in vivo generation and selection of karyotype mutants and non-gametocyte producer mutants

    NARCIS (Netherlands)

    Janse, C. J.; Ramesar, J.; van den Berg, F. M.; Mons, B.

    1992-01-01

    We previously reported that karyotype and gametocyte-producer mutants spontaneously arose during in vivo asexual multiplication of Plasmodium berghei. Here we studied the rate of selection of these mutants in vivo. Gametocyte production and karyotype pattern were established at regular intervals

  15. The research progress on plant mutant germplasm resources in China

    International Nuclear Information System (INIS)

    He Cexi; Ji Linzhen; Zhao Shirong

    1991-07-01

    Mutants induced by nuclear radiation or other mutagens are new artificial germplasm resources. Some mutants have been applied in plant breeding and great achievements have been reached. The status and progress on the collection, identification and utilization of mutants in China are introduced. A proposal for developing mutant germplasm resources with good agronomic characters is suggested

  16. High Persister Mutants in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Heather L Torrey

    Full Text Available Mycobacterium tuberculosis forms drug-tolerant persister cells that are the probable cause of its recalcitrance to antibiotic therapy. While genetically identical to the rest of the population, persisters are dormant, which protects them from killing by bactericidal antibiotics. The mechanism of persister formation in M. tuberculosis is not well understood. In this study, we selected for high persister (hip mutants and characterized them by whole genome sequencing and transcriptome analysis. In parallel, we identified and characterized clinical isolates that naturally produce high levels of persisters. We compared the hip mutants obtained in vitro with clinical isolates to identify candidate persister genes. Genes involved in lipid biosynthesis, carbon metabolism, toxin-antitoxin systems, and transcriptional regulators were among those identified. We also found that clinical hip isolates exhibited greater ex vivo survival than the low persister isolates. Our data suggest that M. tuberculosis persister formation involves multiple pathways, and hip mutants may contribute to the recalcitrance of the infection.

  17. Native Mutant Huntingtin in Human Brain

    Science.gov (United States)

    Sapp, Ellen; Valencia, Antonio; Li, Xueyi; Aronin, Neil; Kegel, Kimberly B.; Vonsattel, Jean-Paul; Young, Anne B.; Wexler, Nancy; DiFiglia, Marian

    2012-01-01

    Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer. PMID:22375012

  18. Yersinia pestis Resists Predation by Acanthamoeba castellanii and Exhibits Prolonged Intracellular Survival.

    Science.gov (United States)

    Benavides-Montaño, Javier A; Vadyvaloo, Viveka

    2017-07-01

    Plague is a flea-borne rodent-associated zoonotic disease caused by Yersinia pestis The disease is characterized by epizootics with high rodent mortalities, punctuated by interepizootic periods when the bacterium persists in an unknown reservoir. This study investigates the interaction between Y. pestis and the ubiquitous soil free-living amoeba (FLA) Acanthamoeba castellanii to assess if the bacterium can survive within soil amoebae and whether intracellular mechanisms are conserved between infection of mammalian macrophages and soil amoebae. The results demonstrate that during coculture with amoebae, representative Y. pestis strains of epidemic biovars Medievalis, Orientalis, and Antiqua are phagocytized and able to survive within amoebae for at least 5 days. Key Y. pestis determinants of the intracellular interaction of Y. pestis and phagocytic macrophages, PhoP and the type three secretion system (T3SS), were then tested for their roles in the Y. pestis -amoeba interaction. Consistent with a requirement for the PhoP transcriptional activator in the intracellular survival of Y. pestis in macrophages, a PhoP mutant is unable to survive when cocultured with amoebae. Additionally, induction of the T3SS blocks phagocytic uptake of Y. pestis by amoebae, similar to that which occurs during macrophage infection. Electron microscopy revealed that in A. castellanii , Y. pestis resides intact within spacious vacuoles which were characterized using lysosomal trackers as being separated from the lysosomal compartment. This evidence for prolonged survival and subversion of intracellular digestion of Y. pestis within FLA suggests that protozoa may serve as a protective soil reservoir for Y. pestis IMPORTANCE Yersinia pestis is a reemerging flea-borne zoonotic disease. Sylvatic plague cycles are characterized by an epizootic period during which the disease spreads rapidly, causing high rodent mortality, and an interepizootic period when the bacterium quiescently persists in an

  19. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation.

    Science.gov (United States)

    Roehrich, A Dorothea; Guillossou, Enora; Blocker, Ariel J; Martinez-Argudo, Isabel

    2013-02-01

    Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram-negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C-terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation. © 2013 Blackwell Publishing Ltd.

  20. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    Directory of Open Access Journals (Sweden)

    Charalampos Rallis

    2014-01-01

    Target of rapamycin complex 1 (TORC1, which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ∼84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not.

  1. The GARP Complex Is Involved in Intracellular Cholesterol Transport via Targeting NPC2 to Lysosomes.

    Science.gov (United States)

    Wei, Jian; Zhang, Ying-Yu; Luo, Jie; Wang, Ju-Qiong; Zhou, Yu-Xia; Miao, Hong-Hua; Shi, Xiong-Jie; Qu, Yu-Xiu; Xu, Jie; Li, Bo-Liang; Song, Bao-Liang

    2017-06-27

    Proper intracellular cholesterol trafficking is critical for cellular function. Two lysosome-resident proteins, NPC1 and NPC2, mediate the egress of low-density lipoprotein-derived cholesterol from lysosomes. However, other proteins involved in this process remain largely unknown. Through amphotericin B-based selection, we isolated two cholesterol transport-defective cell lines. Subsequent whole-transcriptome-sequencing analysis revealed two cell lines bearing the same mutation in the vacuolar protein sorting 53 (Vps53) gene. Depletion of VPS53 or other subunits of the Golgi-associated retrograde protein (GARP) complex impaired NPC2 sorting to lysosomes and caused cholesterol accumulation. GARP deficiency blocked the retrieval of the cation-independent mannose 6-phosphate receptor (CI-MPR) to the trans-Golgi network. Further, Vps54 mutant mice displayed reduced cellular NPC2 protein levels and increased cholesterol accumulation, underscoring the physiological role of the GARP complex in cholesterol transport. We conclude that the GARP complex contributes to intracellular cholesterol transport by targeting NPC2 to lysosomes in a CI-MPR-dependent manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Vitamin E and Phosphoinositides Regulate the Intracellular Localization of the Hepatic α-Tocopherol Transfer Protein.

    Science.gov (United States)

    Chung, Stacey; Ghelfi, Mikel; Atkinson, Jeffrey; Parker, Robert; Qian, Jinghui; Carlin, Cathleen; Manor, Danny

    2016-08-12

    α-Tocopherol (vitamin E) is an essential nutrient for all vertebrates. From the eight naturally occurring members of the vitamin E family, α-tocopherol is the most biologically active species and is selectively retained in tissues. The hepatic α-tocopherol transfer protein (TTP) preferentially selects dietary α-tocopherol and facilitates its transport through the hepatocyte and its secretion to the circulation. In doing so, TTP regulates body-wide levels of α-tocopherol. The mechanisms by which TTP facilitates α-tocopherol trafficking in hepatocytes are poorly understood. We found that the intracellular localization of TTP in hepatocytes is dynamic and responds to the presence of α-tocopherol. In the absence of the vitamin, TTP is localized to perinuclear vesicles that harbor CD71, transferrin, and Rab8, markers of the recycling endosomes. Upon treatment with α-tocopherol, TTP- and α-tocopherol-containing vesicles translocate to the plasma membrane, prior to secretion of the vitamin to the exterior of the cells. The change in TTP localization is specific to α-tocopherol and is time- and dose-dependent. The aberrant intracellular localization patterns of lipid binding-defective TTP mutants highlight the importance of protein-lipid interaction in the transport of α-tocopherol. These findings provide the basis for a proposed mechanistic model that describes TTP-facilitated trafficking of α-tocopherol through hepatocytes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. MUC1 intra-cellular trafficking is clathrin, dynamin, and rab5 dependent

    International Nuclear Information System (INIS)

    Liu Xiaolong; Yuan Zhenglong; Chung, Maureen

    2008-01-01

    MUC1, a transmembrane glycoprotein, is abnormally over-expressed in most human adenocarcinomas. MUC1 association with cytoplasmic cell signal regulators and nuclear accumulation are important for its tumor related activities. Little is known about how MUC1 translocates from the cell membrane to the cytoplasm. In this study, live cell imaging was used to study MUC1 intracellular trafficking. The interaction between EGFR and MUC1 was mapped by FRET analysis and EGF stimulated MUC1 endocytosis was observed directly through live cell imaging. MUC1-CT endocytosis was clathrin and dynamin dependent. Rab5 over-expression resulted in decreased cell membrane localization of MUC1, with accumulation of MUC1 endocytic vesicles in the peri-nuclear region. Conversely, over-expression of a Rab5 dominant negative mutant (S34N) resulted in redistribution of MUC1 from the peri-nuclear region to the cytoplasm. Collectively, these results indicated that MUC1 intra-cellular trafficking occurs through a regulated process that was stimulated by direct EGFR and MUC1 interaction, mediated by clathrin coated pits that were dynamin dependent and regulated by Rab5

  4. PTH1R Mutants Found in Patients with Primary Failure of Tooth Eruption Disrupt G-Protein Signaling.

    Science.gov (United States)

    Subramanian, Hariharan; Döring, Frank; Kollert, Sina; Rukoyatkina, Natalia; Sturm, Julia; Gambaryan, Stepan; Stellzig-Eisenhauer, Angelika; Meyer-Marcotty, Philipp; Eigenthaler, Martin; Wischmeyer, Erhard

    2016-01-01

    Primary failure of tooth eruption (PFE) is causally linked to heterozygous mutations of the parathyroid hormone receptor (PTH1R) gene. The mutants described so far lead to exchange of amino acids or truncation of the protein that may result in structural changes of the expressed PTH1R. However, functional effects of these mutations have not been investigated yet. In HEK293 cells, PTH1R wild type was co-transfected with selected PTH1R mutants identified in patients with PFE. The effects on activation of PTH-regulated intracellular signaling pathways were analyzed by ELISA and Western immunoblotting. Differential effects of wild type and mutated PTH1R on TRESK ion channel regulation were analyzed by electrophysiological recordings in Xenopus laevis oocytes. In HEK293 cells, activation of PTH1R wild type increases cAMP and in response activates cAMP-stimulated protein kinase as detected by phosphorylation of the vasodilator stimulated phosphoprotein (VASP). In contrast, the PTH1R mutants are functionally inactive and mutant PTH1R/Gly452Glu has a dominant negative effect on the signaling of PTH1R wild type. Confocal imaging revealed that wild type PTH1R is expressed on the cell surface, whereas PTH1R/Gly452Glu mutant is mostly retained inside the cell. Furthermore, in contrast to wild type PTH1R which substantially augmented K+ currents of TRESK channels, coupling of mutated PTH1R to TRESK channels was completely abolished. PTH1R mutations affect intracellular PTH-regulated signaling in vitro. In patients with primary failure of tooth eruption defective signaling of PTH1R mutations is suggested to occur in dento-alveolar cells and thus may lead to impaired tooth movement.

  5. Intracellular Shuttle: The Lactate Aerobic Metabolism

    Directory of Open Access Journals (Sweden)

    Rogério Santos de Oliveira Cruz

    2012-01-01

    Full Text Available Lactate is a highly dynamic metabolite that can be used as a fuel by several cells of the human body, particularly during physical exercise. Traditionally, it has been believed that the first step of lactate oxidation occurs in cytosol; however, this idea was recently challenged. A new hypothesis has been presented based on the fact that lactate-to-pyruvate conversion cannot occur in cytosol, because the LDH enzyme characteristics and cytosolic environment do not allow the reaction in this way. Instead, the Intracellular Lactate Shuttle hypothesis states that lactate first enters in mitochondria and only then is metabolized. In several tissues of the human body this idea is well accepted but is quite resistant in skeletal muscle. In this paper, we will present not only the studies which are protagonists in this discussion, but the potential mechanism by which this oxidation occurs and also a link between lactate and mitochondrial proliferation. This new perspective brings some implications and comes to change our understanding of the interaction between the energy systems, because the product of one serves as a substrate for the other.

  6. Intracellular sphingosine releases calcium from lysosomes

    Science.gov (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  7. An intracellular anion channel critical for pigmentation

    Science.gov (United States)

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. DOI: http://dx.doi.org/10.7554/eLife.04543.001 PMID:25513726

  8. Intracellular recording from a spider vibration receptor.

    Science.gov (United States)

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  9. LIPID SYNTHESIS, INTRACELLULAR TRANSPORT, AND SECRETION

    Science.gov (United States)

    Stein, Olga; Stein, Yechezkiel

    1967-01-01

    In the mammary glands of lactating albino mice injected intravenously with 9, 10-oleic acid-3H or 9, 10-palmitic acid-3H, it has been shown that the labeled fatty acids are incorporated into mammary gland glycerides. The labeled lipid in the mammary gland 1 min after injection was in esterified form (> 95%), and the radioautographic reaction was seen over the rough endoplasmic reticulum and over lipid droplets, both intracellular and intraluminal. At 10–60 min after injection, the silver grains were concentrated predominantly over lipid droplets. There was no concentration of radioactivity over the granules in the Golgi apparatus, at any time interval studied. These findings were interpreted to indicate that after esterification of the fatty acid into glycerides in the rough endoplasmic reticulum an in situ aggregation of lipid occurs, with acquisition of droplet form. The release of the lipid into the lumen proceeds directly and not through the Golgi apparatus, in contradistinction to the mode of secretion of casein in the mammary gland or of lipoprotein in the liver. The presence of strands of endoplasmic reticulum attached to intraluminal lipid droplets provides a structural counterpart to the milk microsomes described in ruminant milk. PMID:6033535

  10. On the Computing Potential of Intracellular Vesicles.

    Science.gov (United States)

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  11. Transformed Recombinant Enrichment Profiling Rapidly Identifies HMW1 as an Intracellular Invasion Locus in Haemophilus influenzae

    Science.gov (United States)

    Moleres, Javier; Sinha, Sunita; Fernández-Calvet, Ariadna; Porsch, Eric A.; St. Geme, Joseph W.; Nislow, Corey; Redfield, Rosemary J.; Garmendia, Junkal

    2016-01-01

    Many bacterial species actively take up and recombine homologous DNA into their genomes, called natural competence, a trait that offers a means to identify the genetic basis of naturally occurring phenotypic variation. Here, we describe “transformed recombinant enrichment profiling” (TREP), in which natural transformation is used to generate complex pools of recombinants, phenotypic selection is used to enrich for specific recombinants, and deep sequencing is used to survey for the genetic variation responsible. We applied TREP to investigate the genetic architecture of intracellular invasion by the human pathogen Haemophilus influenzae, a trait implicated in persistence during chronic infection. TREP identified the HMW1 adhesin as a crucial factor. Natural transformation of the hmw1 operon from a clinical isolate (86-028NP) into a laboratory isolate that lacks it (Rd KW20) resulted in ~1,000-fold increased invasion into airway epithelial cells. When a distinct recipient (Hi375, already possessing hmw1 and its paralog hmw2) was transformed by the same donor, allelic replacement of hmw2A Hi375 by hmw1A 86-028NP resulted in a ~100-fold increased intracellular invasion rate. The specific role of hmw1A 86-028NP was confirmed by mutant and western blot analyses. Bacterial self-aggregation and adherence to airway cells were also increased in recombinants, suggesting that the high invasiveness induced by hmw1A 86-028NP might be a consequence of these phenotypes. However, immunofluorescence results found that intracellular hmw1A 86-028NP bacteria likely invaded as groups, instead of as individual bacterial cells, indicating an emergent invasion-specific consequence of hmw1A-mediated self-aggregation. PMID:27124727

  12. Modeling HIV-1 intracellular replication: two simulation approaches

    NARCIS (Netherlands)

    Zarrabi, N.; Mancini, E.; Tay, J.; Shahand, S.; Sloot, P.M.A.

    2010-01-01

    Many mathematical and computational models have been developed to investigate the complexity of HIV dynamics, immune response and drug therapy. However, there are not many models which consider the dynamics of virus intracellular replication at a single level. We propose a model of HIV intracellular

  13. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements

    DEFF Research Database (Denmark)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare Hartvig

    2014-01-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells...

  14. Intracellular angiotensin II inhibits heterologous receptor stimulated Ca2+ entry

    NARCIS (Netherlands)

    Filipeanu, CM; Brailoiu, E; Henning, RH; Deelman, LE; de Zeeuw, D; Nelemans, SA

    2001-01-01

    Recent studies show that angiotensin II (AngII) can act from within the cell, possibly via intracellular receptors pharmacologically different from typical plasma membrane AngII receptors. The role of this intracellular AngII (AngII(i)) is unclear. Besides direct effects of AngII(i) on cellular

  15. Development of bacterial cell-based system for intracellular ...

    African Journals Online (AJOL)

    Development of bacterial cell-based system for intracellular antioxidant activity screening assay using green fluorescence protein (GFP) reporter. ... Both strains demonstrated that quercetin and α- tocopherol exhibited the most potent and significant antioxidant activity with more than 60% reduction of intracellular superoxide ...

  16. Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures

    Directory of Open Access Journals (Sweden)

    Cristi L. Galindo

    2010-01-01

    Full Text Available Braun/murein lipoprotein (Lpp is involved in inflammatory responses and septic shock. We previously characterized a Δlpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT bacterium. We performed global transcriptional profiling of WT Y. pestis and its Δlpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26C, the Y. pestis Δlpp mutant cultured at 37C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA downregulated in the Δlpp mutant relative to WT Y. pestis. Indeed, complementation of the Δlpp mutant with the htrA gene restored intracellular survival of the Y. pestis Δlpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA.

  17. ALS-linked mutant SOD1 proteins promote Aβ aggregates in ALS through direct interaction with Aβ.

    Science.gov (United States)

    Jang, Ja-Young; Cho, Hyungmin; Park, Hye-Yoon; Rhim, Hyangshuk; Kang, Seongman

    2017-11-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons. Aggregation of ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) is a hallmark of a subset of familial ALS (fALS). Recently, intracellular amyloid-β (Aβ) is detected in motor neurons of both sporadic and familial ALS. We have previously shown that intracellular Aβ specifically interacts with G93A, an ALS-linked SOD1 mutant. However, little is known about the pathological and biological effect of this interaction in neurons. In this study, we have demonstrated that the Aβ-binding region is exposed on the SOD1 surface through the conformational changes due to misfolding of SOD1. Interestingly, we found that the intracellular aggregation of Aβ is enhanced through the direct interaction of Aβ with the Aβ-binding region exposed to misfolded SOD1. Ultimately, increased Aβ aggregation by this interaction promotes neuronal cell death. Consistent with this result, Aβ aggregates was three-fold higher in the brains of G93A transgenic mice than those of non Tg. Our study provides the first direct evidence that Aβ, an AD-linked factor, is associated to the pathogenesis of ALS and provides molecular clues to understand common aggregation mechanisms in the pathogenesis of neurodegenerative diseases. Furthermore, it will provide new insights into the development of therapeutic approaches for ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. FAM83H mutations cause ADHCAI and alter intracellular protein localization.

    Science.gov (United States)

    Lee, S-K; Lee, K-E; Jeong, T-S; Hwang, Y-H; Kim, S; Hu, J C-C; Simmer, J P; Kim, J-W

    2011-03-01

    Mutations in a family with sequence similarity 83 member H (FAM83H) cause autosomal-dominant hypocalcification amelogenesis imperfecta (ADH CAI). All FAM83H ADHCAI-causing mutations terminate translation or shift the reading frame within the specific exon 5 segment that encodes from Ser(287) to Glu(694). Mutations near Glu(694) cause a milder, more localized phenotype. We identified disease-causing FAM83H mutations in two families with ADHCAI: family 1 (g.3115C>T, c.1993 C>T, p.Q665X) and family 2 (g.3151C>T, c.2029 C>T, p.Q677X). We also tested the hypothesis that truncation mutations alter the intracellular localization of FAM83H. Wild-type FAM83H and p.E694X mutant FAM83H fused to green fluorescent protein (GFP) localized in the cytoplasm of HEK293T cells, but the mutant FAM83H proteins (p.R325X, p.W460X, and p.Q677X) fused to GFP localized mainly in the nucleus with slight expression in the cytoplasm. We conclude that nuclear targeting of the truncated FAM83H protein contributes to the severe, generalized enamel phenotype.

  19. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols.

    Science.gov (United States)

    Pinu, Farhana R; Villas-Boas, Silas G; Aggio, Raphael

    2017-10-23

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  20. Analysis of Escherichia coli nicotinate mononucleotide adenylyltransferase mutants in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Rydén-Aulin Monica

    2005-09-01

    Full Text Available Abstract Background Adenylation of nicotinate mononucleotide to nicotinate adenine dinucleotide is the penultimate step in NAD+ synthesis. In Escherichia coli, the enzyme nicotinate mononucleotide adenylyltransferase is encoded by the nadD gene. We have earlier made an initial characterization in vivo of two mutant enzymes, NadD72 and NadD74. Strains with either mutation have decreased intracellular levels of NAD+, especially for one of the alleles, nadD72. Results In this study these two mutant proteins have been further characterized together with ten new mutant variants. Of the, in total, twelve mutations four are in a conserved motif in the C-terminus and eight are in the active site. We have tested the activity of the enzymes in vitro and their effect on the growth phenotype in vivo. There is a very good correlation between the two data sets. Conclusion The mutations in the C-terminus did not reveal any function for the conserved motif. On the other hand, our data has lead us to assign amino acid residues His-19, Arg-46 and Asp-109 to the active site. We have also shown that the nadD gene is essential for growth in E. coli.

  1. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae.

    Science.gov (United States)

    Herbert, Mark; Sauer, Elizabeta; Smethurst, Graeme; Kraiss, Anita; Hilpert, Anna-Karina; Reidl, Joachim

    2003-09-01

    The gene for the nicotinamide riboside (NR) transporter (pnuC) was identified in Haemophilus influenzae. A pnuC mutant had only residual NR uptake and could survive in vitro with high concentrations of NR, but could not survive in vivo. PnuC may represent a target for the development of inhibitors for preventing H. influenzae disease.

  2. Ethanol production using engineered mutant E. coli

    Science.gov (United States)

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  3. Avirulent mutants of Macrophomina phaseolina and Aspergillus ...

    Indian Academy of Sciences (India)

    albino colonies out of the above ten were moderately viru- lent compared to wild type strain. They were sclerotia forming and produced phaseolinone in culture. A brown variant, designated Muv 21, and two other albino mutants, designated Muv 19 and Muv 20, were avirulent and pro- duced no phaseolinone in culture.

  4. Induced mutants for cereal grain protein improvement

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 17 papers and one summary presented, six dealing with the genetic improvement of seed protein using ionizing radiations fall within the INIS subject scope. Other topics discussed were non-radiation induced mutants used for cereal grain protein improvement

  5. Mutant PTEN in Cancer : Worse Than Nothing

    NARCIS (Netherlands)

    Leslie, Nick R; den Hertog, Jeroen

    2014-01-01

    Tumor suppressors block the development of cancer and are often lost during tumor development. Papa et al. show that partial loss of normal PTEN tumor suppressor function can be compounded by additional disruption caused by the expression of inactive mutant PTEN protein. This has significant

  6. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    The result of bio-test, using the resulting pigment mutant of C. reinhardtii 124y-1 showed that mutagenic activity was observed significantly in both Tekeli River and Pavlodar Oil Refinery in Kazakhstan; the waste water of the Pavlodar Oil Refinery had high-toxicity while the water of the Tekeli River had medium-toxicity.

  7. Molecular and Genetic Analyses of Collagen Type IV Mutant Mouse Models of Spontaneous Intracerebral Hemorrhage Identify Mechanisms for Stroke Prevention.

    Science.gov (United States)

    Jeanne, Marion; Jorgensen, Jeff; Gould, Douglas B

    2015-05-05

    Collagen type IV alpha1 (COL4A1) and alpha2 (COL4A2) form heterotrimers critical for vascular basement membrane stability and function. Patients with COL4A1 or COL4A2 mutations suffer from diverse cerebrovascular diseases, including cerebral microbleeds, porencephaly, and fatal intracerebral hemorrhage (ICH). However, the pathogenic mechanisms remain unknown, and there is a lack of effective treatment. Using Col4a1 and Col4a2 mutant mouse models, we investigated the genetic complexity and cellular mechanisms underlying the disease. We found that Col4a1 mutations cause abnormal vascular development, which triggers small-vessel disease, recurrent hemorrhagic strokes, and age-related macroangiopathy. We showed that allelic heterogeneity, genetic context, and environmental factors such as intense exercise or anticoagulant medication modulated disease severity and contributed to phenotypic heterogeneity. We found that intracellular accumulation of mutant collagen in vascular endothelial cells and pericytes was a key triggering factor of ICH. Finally, we showed that treatment of mutant mice with a US Food and Drug Administration-approved chemical chaperone resulted in a decreased collagen intracellular accumulation and a significant reduction in ICH severity. Our data are the first to show therapeutic prevention in vivo of ICH resulting from Col4a1 mutation and imply that a mechanism-based therapy promoting protein folding might also prevent ICH in patients with COL4A1 and COL4A2 mutations. © 2015 American Heart Association, Inc.

  8. Neutron Diffraction Studies of a Class A beta-Lactamase Toho-1 E166A/R274N/R276N Triple Mutant

    International Nuclear Information System (INIS)

    Blakeley, Matthew P.; Chen, Yu; Afonine, Pavel

    2010-01-01

    beta-Lactam antibiotics have been used effectively over several decades against many types of bacterial infectious diseases. However, the most common cause of resistance to the beta-lactam antibiotics is the production of beta-lactamase enzymes that inactivate beta-lactams by rapidly hydrolyzing the amide group of the beta-lactam ring. Specifically, the class A extended-spectrum beta-lactamases (ESBLs) and inhibitor-resistant enzymes arose that were capable of hydrolyzing penicillins and the expanded-spectrum cephalosporins and monobactams in resistant bacteria, which lead to treatment problems in many clinical settings. A more complete understanding of the mechanism of catalysis of these ESBL enzymes will impact current antibiotic drug discovery efforts. Here, we describe the neutron structure of the class A, CTX-M-type ESBL Toho-1 E166A/R274N/R276N triple mutant in its apo form, which is the first reported neutron structure of a beta-lactamase enzyme. This neutron structure clearly reveals the active-site protonation states and hydrogen-bonding network of the apo Toho-1 ESBL prior to substrate binding and subsequent acylation. The protonation states of the active-site residues Ser70, Lys73, Ser130, and Lys234 in this neutron structure are consistent with the prediction of a proton transfer pathway from Lys73 to Ser130 that is likely dependent on the conformation of Lys73, which has been hypothesized to be coupled to the protonation state of Glu166 during the acylation reaction. Thus, this neutron structure is in agreement with a proposed mechanism for acylation that identifies Glu166 as the general base for catalysis.

  9. Neutron diffraction studies of a class A beta-lactamase Toho-1 E166A/R274N/R276N triple mutant.

    Science.gov (United States)

    Tomanicek, Stephen J; Blakeley, Matthew P; Cooper, Jonathan; Chen, Yu; Afonine, Pavel V; Coates, Leighton

    2010-03-05

    beta-Lactam antibiotics have been used effectively over several decades against many types of bacterial infectious diseases. However, the most common cause of resistance to the beta-lactam antibiotics is the production of beta-lactamase enzymes that inactivate beta-lactams by rapidly hydrolyzing the amide group of the beta-lactam ring. Specifically, the class A extended-spectrum beta-lactamases (ESBLs) and inhibitor-resistant enzymes arose that were capable of hydrolyzing penicillins and the expanded-spectrum cephalosporins and monobactams in resistant bacteria, which lead to treatment problems in many clinical settings. A more complete understanding of the mechanism of catalysis of these ESBL enzymes will impact current antibiotic drug discovery efforts. Here, we describe the neutron structure of the class A, CTX-M-type ESBL Toho-1 E166A/R274N/R276N triple mutant in its apo form, which is the first reported neutron structure of a beta-lactamase enzyme. This neutron structure clearly reveals the active-site protonation states and hydrogen-bonding network of the apo Toho-1 ESBL prior to substrate binding and subsequent acylation. The protonation states of the active-site residues Ser70, Lys73, Ser130, and Lys234 in this neutron structure are consistent with the prediction of a proton transfer pathway from Lys73 to Ser130 that is likely dependent on the conformation of Lys73, which has been hypothesized to be coupled to the protonation state of Glu166 during the acylation reaction. Thus, this neutron structure is in agreement with a proposed mechanism for acylation that identifies Glu166 as the general base for catalysis. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes

    NARCIS (Netherlands)

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-01-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ which stimulate the intracellular formation of H2O2 or superoxide anions,

  11. Phanerochaete mutants with enhanced ligninolytic activity

    International Nuclear Information System (INIS)

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1994-01-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organo pollutants in soils and aqueous media. Most of the organic compounds are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, bio pulping, bio bleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated, or are hyper producers or super secretors of key enzymes under enriched conditions. Through UV-light and γ-ray mutagenesis, we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants, 76UV, produced 272 U of lignin peroxidases enzyme activity/L after 9 d under high nitrogen (although the parent strain does not produce this enzyme under these conditions). The mutant and the parent strains produced up to 54 and 62 U/L, respectively, of the enzyme activity under low nitrogen growth conditions during this period. In some experiments, the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 d

  12. An Oxygen-Sensing Two-Component System in the Burkholderia cepacia Complex Regulates Biofilm, Intracellular Invasion, and Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Matthew M Schaefers

    2017-01-01

    Full Text Available Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC, which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence.

  13. Hyperspectral Imaging Using Intracellular Spies: Quantitative Real-Time Measurement of Intracellular Parameters In Vivo during Interaction of the Pathogenic Fungus Aspergillus fumigatus with Human Monocytes.

    Directory of Open Access Journals (Sweden)

    Sara Mohebbi

    Full Text Available Hyperspectral imaging (HSI is a technique based on the combination of classical spectroscopy and conventional digital image processing. It is also well suited for the biological assays and quantitative real-time analysis since it provides spectral and spatial data of samples. The method grants detailed information about a sample by recording the entire spectrum in each pixel of the whole image. We applied HSI to quantify the constituent pH variation in a single infected apoptotic monocyte as a model system. Previously, we showed that the human-pathogenic fungus Aspergillus fumigatus conidia interfere with the acidification of phagolysosomes. Here, we extended this finding to monocytes and gained a more detailed analysis of this process. Our data indicate that melanised A. fumigatus conidia have the ability to interfere with apoptosis in human monocytes as they enable the apoptotic cell to recover from mitochondrial acidification and to continue with the cell cycle. We also showed that this ability of A. fumigatus is dependent on the presence of melanin, since a non-pigmented mutant did not stop the progression of apoptosis and consequently, the cell did not recover from the acidic pH. By conducting the current research based on the HSI, we could measure the intracellular pH in an apoptotic infected human monocyte and show the pattern of pH variation during 35 h of measurements. As a conclusion, we showed the importance of melanin for determining the fate of intracellular pH in a single apoptotic cell.

  14. Internalisation of the protease-activated receptor 1: role of the third intracellular loop and of the cytoplasmic tail.

    Science.gov (United States)

    Chen, X; Berrou, J; Vigneau, C; Delarue, F; Rondeau, E

    2001-06-01

    To analyse the mechanisms of PAR-1 internalisation, we constructed several PAR-1 mutants and stably expressed them in CHO cells. Our study shows that the Ser(306)-->Ala mutation (S306A), which eliminates a potential site of phosphorylation by PKC in the third intracellular loop of PAR-1, did not change the rate of phosphorylation but reduced the rate of thrombin-induced internalisation of the PAR-1 mutant (58 versus 78% of membrane PAR-1 in 15 min, pinternalisation upon activation. This deletion also inhibited the PMA-induced and the agonist-independent internalisation of the receptor. The Tyr(371)--> Ala mutation (Y371A), in a NPXXY motif of the seventh transmembrane domain of the receptor had no effect on the receptor behaviour. Our results indicate that both the C-tail and the third intracellular loop are involved in PAR-1 internalisation induced by thrombin while only the C-tail plays a role in the PMA-induced and in the agonist-independent PAR-1 internalisation.

  15. Harmonization of the intracellular cytokine staining assay.

    Science.gov (United States)

    Welters, Marij J P; Gouttefangeas, Cécile; Ramwadhdoebe, Tamara H; Letsch, Anne; Ottensmeier, Christian H; Britten, Cedrik M; van der Burg, Sjoerd H

    2012-07-01

    Active immunotherapy for cancer is an accepted treatment modality aiming to reinforce the T-cell response to cancer. T-cell reactivity is measured by various assays and used to guide the clinical development of immunotherapeutics. However, data obtained across different institutions may vary substantially making comparative conclusions difficult. The Cancer Immunotherapy Immunoguiding Program organizes proficiency panels to identify key parameters influencing the outcome of commonly used T-cell assays followed by harmonization. Our successes with IFNγ-ELISPOT and peptide HLA multimer analysis have led to the current study on intracellular cytokine staining (ICS). We report the results of three successive panels evaluating this assay. At the beginning, 3 out of 9 participants (33 %) were able to detect >6 out of 8 known virus-specific T-cell responses in peripheral blood of healthy individuals. This increased to 50 % of the laboratories in the second phase. The reported percentages of cytokine-producing T cells by the different laboratories were highly variable with coefficients of variation well over 60 %. Variability could partially be explained by protocol-related differences in background cytokine production leading to sub-optimal signal-to-noise ratios. The large number of protocol variables prohibited identification of prime guidelines to harmonize the assays. In addition, the gating strategy used to identify reactive T cells had a major impact on assay outcome. Subsequent harmonization of the gating strategy considerably reduced the variability within the group of participants. In conclusion, we propose that first basic guidelines should be applied for gating in ICS experiments before harmonizing assay protocol variables.

  16. Functional conservation study of polarity protein Crumbs intracellular domain.

    Science.gov (United States)

    Shi, Qi-ping; Cao, Hao-wei; Xu, Rui; Zhang, Dan-dan; Huang, Juan

    2017-01-20

    The transmembrane protein Crumbs (Crb) plays key roles in the establishing and maintaining cell apical-basal polarity in epithelial cells by determining the apical plasma membrane identity. Although its intracellular domain contains only 37 amino acids, it is absolutely essential for its function. In Drosophila, mutations in this intracellular domain result in severe defects in epithelial polarity and abnormal embryonic development. The intracellular domain of Crb shows high homology across species from Drosophila to Mus musculus and Homo sapiens. However, the intracellular domains of the two Crb proteins in C. elegans are rather divergent from those of Drosophila and mammals, raising the question on whether the function of the intracellular domain of the Crb protein is conserved in C. elegans. Using genomic engineering approach, we replaced the intracellular domain of the Drosophila Crb with that of C. elegans Crb2 (CeCrb2), which has extremely low homology with those from the Crb proteins of Drosophila and mammals. Surprisingly, substituting the intracellular domain of Drosophila Crb with that of CeCrb2 did not cause any abnormalities in development of the Drosophila embryo, in terms of expression and localization of Crb and other polarity proteins and apical-basal polarity in embryonic epithelial cells. Our results support the notion that despite their extensive sequence variations, all functionally critical amino acid residues and motifs of the intercellular domain of Crb proteins are fully conserved between Drosophila and C. elegans.

  17. Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions.

    Science.gov (United States)

    Zhao, Chunhua; Lin, Zhao; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2017-06-01

    Pyruvate kinase is one of the three rate-limiting glycolytic enzymes that catalyze the last step of glycolysis, conversion of phosphoenolpyruvate (PEP) into pyruvate, which is associated with ATP generation. Two isozymes of pyruvate kinase, PykF and PykA, are identified in Escherichia coli PykF is considered important, whereas PykA has a less-defined role. Prior studies inactivated the pykA gene to increase the level of its substrate, PEP, and thereby increased the yield of end products derived from PEP. We were surprised when we found a pykA ::Tn 5 mutant in a screen for increased yield of an end product derived from pyruvate ( n -butanol), suggesting that the role of PykA needs to be reexamined. We show that the pykA mutant exhibited elevated intracellular ATP levels, biomass concentrations, glucose consumption, and n -butanol production. We also discovered that the pykA mutant expresses higher levels of a presumed pyruvate transporter, YhjX, permitting the mutant to recapture and metabolize excreted pyruvate. Furthermore, we demonstrated that the nucleotide diphosphate kinase activity of PykA leads to negative regulation of the intracellular ATP levels. Taking the data together, we propose that inactivation of pykA can be considered a general strategy to enhance the production of pyruvate-derived metabolites under anaerobic conditions. IMPORTANCE This study showed that knocking out pykA significantly increased the intracellular ATP level and thus significantly increased the levels of glucose consumption, biomass formation, and pyruvate-derived product formation under anaerobic conditions. pykA was considered to be encoding a dispensable pyruvate kinase; here we show that pykA negatively regulates the anaerobic glycolysis rate through regulating the energy distribution. Thus, knocking out pykA can be used as a general strategy to increase the level of pyruvate-derived fermentative products. Copyright © 2017 American Society for Microbiology.

  18. New perspective in the assessment of total intracellular magnesium

    Directory of Open Access Journals (Sweden)

    Azzurra Sargenti

    2014-01-01

    Full Text Available Magnesium (Mg is essential for biological processes, but its cellular homeostasis has not been thoroughly elucidated, mainly because of the inadequacy of the available techniques to map intracellular Mg distribution. Recently, particular interest has been raised by a new family of fluorescent probes, diaza-18-crown-hydroxyquinoline (DCHQ, that shows remarkably high affinity and specificity for Mg, thus permitting the detection of the total intracellular Mg. The data obtained by fluori- metric and cytofluorimetric assays performed with DCHQ5 are in good agreement with atomic absorption spectroscopy, confirming that DCHQ5 probe allows both qualitative and quantitative determination of total intracellular Mg.

  19. Complement protective epitopes and CD55-microtubule complexes facilitate the invasion and intracellular persistence of uropathogenic Escherichia coli.

    Science.gov (United States)

    Rana, Tanu; Hasan, Rafia J; Nowicki, Stella; Venkatarajan, Mathura S; Singh, Rajbir; Urvil, Petri T; Popov, Vsevolod; Braun, Werner A; Popik, Waldemar; Goodwin, J Shawn; Nowicki, Bogdan J

    2014-04-01

     Escherichia coli-bearing Dr-adhesins (Dr+ E. coli) cause chronic pyelonephritis in pregnant women and animal models. This chronic renal infection correlates with the capacity of bacteria to invade epithelial cells expressing CD55. The mechanism of infection remains unknown.  CD55 amino acids in the vicinity of binding pocket-Ser155 for Dr-adhesin were mutated to alanine and subjected to temporal gentamicin-invasion/gentamicin-survival assay in Chinese hamster ovary cells. CD55/microtubule (MT) responses were studied using confocal/electron microscopy, and 3-dimensional structure analysis.  Mutant analysis revealed that complement-protective CD55-Ser165 and CD55-Phe154 epitopes control E. coli invasion by coregulating CD55-MT complex expression. Single-point CD55 mutations changed E. coli to either a minimally invasive (Ser165Ala) or a hypervirulent pathogen (Phe154Ala). Thus, single amino acid modifications with no impact on CD55 structure and bacterial attachment can have a profound impact on E. coli virulence. While CD55-Ser165Ala decreased E. coli invasion and led to dormant intracellular persistence, intracellular E. coli in CD55-Phe154Ala developed elongated forms (multiplying within vacuoles), upregulated CD55-MT complexes, acquired CD55 coat, and escaped phagolysosomal fusion.  E. coli target complement-protective CD55 epitopes for invasion and exploit CD55-MT complexes to escape phagolysosomal fusion, leading to a nondestructive parasitism that allows bacteria to persist intracellularly.

  20. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia

    Directory of Open Access Journals (Sweden)

    Manivannan Subramanian

    2013-05-01

    Obesity is a complex metabolic disorder that often manifests with a strong genetic component in humans. However, the genetic basis for obesity and the accompanying metabolic syndrome is poorly defined. At a metabolic level, obesity arises from an imbalance between the nutritional intake and energy utilization of an organism. Mechanisms that sense the metabolic state of the individual and convey this information to satiety centers help achieve this balance. Mutations in genes that alter or modify such signaling mechanisms are likely to lead to either obese individuals, who in mammals are at high risk for diabetes and cardiovascular disease, or excessively thin individuals with accompanying health problems. Here we show that Drosophila mutants for an intracellular calcium signaling channel, the inositol 1,4,5-trisphosphate receptor (InsP3R store excess triglycerides in their fat bodies and become unnaturally obese on a normal diet. Although excess insulin signaling can rescue obesity in InsP3R mutants to some extent, we show that it is not the only cause of the defect. Through mass spectrometric analysis of lipids we find that homeostasis of storage and membrane lipids are altered in InsP3R mutants. Possibly as a compensatory mechanism, InsP3R mutant adults also feed excessively. Thus, reduced InsP3R function alters lipid metabolism and causes hyperphagia in adults. Together, the metabolic and behavioral changes lead to obesity. Our results implicate altered InsP3 signaling as a previously unknown causative factor for metabolic syndrome in humans. Importantly, our studies also suggest preventive dietary interventions.

  1. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  2. Hair defects in Hoxc13 mutant mice.

    Science.gov (United States)

    Godwin, A R; Capecchi, M R

    1999-12-01

    Hox genes encode transcription factors that are important during normal embryonic development of diverse organisms including vertebrates. In mammals, Hox genes are responsible for conferring regional identity in embryonic tissues, including the limb bud, the neural tube, the presomitic mesoderm and the intestinal tract. Recent studies have demonstrated expression of Hox genes in skin and hair follicles, suggesting potential functions for these genes in epidermal appendages. These studies are reviewed here with emphasis on Hoxc13, as Hoxc13 mutants are the first Hox mutants to demonstrate overt hair defects. In addition, because Hoxc13 does not show regionally restricted expression in the skin, as demonstrated for other Hox genes, the potentially different roles of Hoxc13 versus other Hox genes in the skin are discussed.

  3. PNRI mutant variety: sansevieria 'Sword of Ibe'

    International Nuclear Information System (INIS)

    Aurigue, Fernando B.

    2011-01-01

    Sansevieria 'Sword of Ibe,' registered by the Philippine Nuclear Research Institute as NSIC 2008 Or-66, is a chlorophyll mutant of Sansevieria trifasciata 'Moonshine' developed by treating its suckers or shoots arising from a rhizome with acute gamma radiation from a Cobalt-60 source. The new mutant is identical in growth habit and vigor to Sansevieria 'Moonshine,' also known as Moonglow. Results of this mutation breeding experiment showed that leaf color and flowering were altered by gamma irradiation without changing the other characteristics of the plant. Propagation is true-to-type by separation of sucker and top cutting. The plant is recommended for use as landscaping material and as pot plant for indoor and outdoor use. The leaves may be harvested as cut foliage for Japanese flower arrangements. (author)

  4. Recombination-deficient mutant of Streptococcus faecalis

    International Nuclear Information System (INIS)

    Yagi, Y.; Clewell, D.B.

    1980-01-01

    An ultraviolet radiation-sensitive derivative of Streptococcus faecalis strain JH2-2 was isolated and found to be deficient in recombination, using a plasmid-plasmid recombination system. The strain was sensitive to chemical agents which interact with deoxyribonucleic acid and also underwent deoxyribonucleic acid degradation after ultraviolet irradiation. Thus, the mutant has properties similar to those of recA strains of Escherichia coli

  5. Radiation induced early maturing mutants in barley

    International Nuclear Information System (INIS)

    Kumar, R.; Chauhan, S.V.S.; Sharma, R.P.

    1978-01-01

    In M 2 generation, two early maturing plants were screened from a single spike progeny of a plant obtained from 20 kR of gamma-ray irradiation of a six-rowed barley (Hordeum vulgare L. var. Jyoti). Their true breeding nature was confirmed in M 3 generation. These mutants flower and mature 38 and 22 days earlier than those of control. (auth.)

  6. Selection of hyperadherent mutants in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Yousef-Coronado, Fatima; Soriano, María Isabel; Yang, Liang

    2011-01-01

    transposon Pseudomonas putida KT2440 mutants showing increased biofilm formation, and the detailed characterization of one of them. This mutant exhibits a complex phenotype, including altered colony morphology, increased production of extracellular polymeric substances and enhanced swarming motility, along...

  7. Multivariate analysis for selecting apple mutants

    International Nuclear Information System (INIS)

    Faedi, W.; Bagnara, G.L.; Rosati, P.; Cecchini, M.

    1992-01-01

    The mutlivariate analysis of four year records on several vegetative and productive traits of twenty-one apple mutants (3 of 'Jonathan', 3 of 'Ozark Gold', 14 of 'Mollie's Delicious', 1 of 'Neipling's Early Stayman)' induced by gamma radiations showed that observation of some traits of one-year-old shoots is the most efficient way to reveal compact growing apple mutants. In particular, basal cross-section area, total length and leaf area resulted the most appropriate parameters, while internode length together with conopy height and width are less appropriate. The most interesting mutants we found are: one of 'Mollie's Delicious for the best balance among tree and fruit traits and for high skin color; one of 'Neipling's Early Stayman' with an earlier and more extensively red colored apple than the original clone. (author)

  8. Probiotic features of Lactobacillus plantarum mutant strains.

    Science.gov (United States)

    Bove, Pasquale; Gallone, Anna; Russo, Pasquale; Capozzi, Vittorio; Albenzio, Marzia; Spano, Giuseppe; Fiocco, Daniela

    2012-10-01

    In this study, the probiotic potential of Lactobacillus plantarum wild-type and derivative mutant strains was investigated. Bacterial survival was evaluated in an in vitro system, simulating the transit along the human oro-gastro-intestinal tract. Interaction with human gut epithelial cells was studied by assessing bacterial adhesive ability to Caco-2 cells and induction of genes involved in innate immunity. L. plantarum strains were resistant to the combined stress at the various steps of the simulated gastrointestinal tract. Major decreases in the viability of L. plantarum cells were observed mainly under drastic acidic conditions (pH ≤ 2.0) of the gastric compartment. Abiotic stresses associated to small intestine poorly affected bacterial viability. All the bacterial strains significantly adhered to Caco-2 cells, with the ΔctsR mutant strain exhibiting the highest adhesion. Induction of immune-related genes resulted higher upon incubation with heat-inactivated bacteria rather than with live ones. For specific genes, a differential transcriptional pattern was observed upon stimulation with different L. plantarum strains, evidencing a possible role of the knocked out bacterial genes in the modulation of host cell response. In particular, cells from Δhsp18.55 and ΔftsH mutants strongly triggered immune defence genes. Our study highlights the relevance of microbial genetic background in host-probiotic interaction and might contribute to identify candidate bacterial genes and molecules involved in probiosis.

  9. Grain product of 34 soya mutant lines

    International Nuclear Information System (INIS)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E.; Cervantes S, T.; De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A.

    2009-01-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R 4 M 18 ) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co 60 gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L 25 and L 32 produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  10. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system.

    Science.gov (United States)

    Septer, Alecia N; Bose, Jeffrey L; Lipzen, Anna; Martin, Joel; Whistler, Cheryl; Stabb, Eric V

    2015-01-01

    The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence. © 2014 John Wiley & Sons Ltd.

  11. Agrobacterium rhizogenes mutants that fail to bind to plant cells.

    OpenAIRE

    Crews, J L; Colby, S; Matthysse, A G

    1990-01-01

    Transposon insertion mutants of Agrobacterium rhizogenes were screened to obtain mutant bacteria that failed to bind to carrot suspension culture cells. A light microscope binding assay was used. The bacterial isolates that were reduced in binding to carrot cells were all avirulent on Bryophyllum diagremontiana leaves and on carrot root disks. The mutants did not appear to be altered in cellulose production. The composition of the medium affected the ability of the parent and mutant bacteria ...

  12. Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti.

    Science.gov (United States)

    D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C

    2017-01-01

    Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti , we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis ( phbA , phbB , phbAB , and phbC ), PHB degradation ( bdhA , phaZ , and acsA2 ), and glycogen synthesis ( glgA1 ). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to

  13. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    Science.gov (United States)

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  14. Spatial Cell Biology : Dissecting and directing intracellular transport mechanisms

    NARCIS (Netherlands)

    Adrian, M.

    2017-01-01

    Cellular compartmentalization and intracellular transport mechanisms are important to establish and maintain the spatial organisation of proteins and organelles needed to ensure proper cellular functioning. Especially in polarized cells like neurons, the proper distribution of proteins into the

  15. Mathematical modeling of mutant transferrin-CRM107 molecular conjugates for cancer therapy.

    Science.gov (United States)

    Yoon, Dennis J; Chen, Kevin Y; Lopes, André M; Pan, April A; Shiloach, Joseph; Mason, Anne B; Kamei, Daniel T

    2017-03-07

    The transferrin (Tf) trafficking pathway is a promising mechanism for use in targeted cancer therapy due to the overexpression of transferrin receptors (TfRs) on cancerous cells. We have previously developed a mathematical model of the Tf/TfR trafficking pathway to improve the efficiency of Tf as a drug carrier. By using diphtheria toxin (DT) as a model toxin, we found that mutating the Tf protein to change its iron release rate improves cellular association and efficacy of the drug. Though this is an improvement upon using wild-type Tf as the targeting ligand, conjugated toxins like DT are unfortunately still highly cytotoxic at off-target sites. In this work, we address this hurdle in cancer research by developing a mathematical model to predict the efficacy and selectivity of Tf conjugates that use an alternative toxin. For this purpose, we have chosen to study a mutant of DT, cross-reacting material 107 (CRM107). First, we developed a mathematical model of the Tf-DT trafficking pathway by extending our Tf/TfR model to include intracellular trafficking via DT and DT receptors. Using this mathematical model, we subsequently investigated the efficacy of several conjugates in cancer cells: DT and CRM107 conjugated to wild-type Tf, as well as to our engineered mutant Tf proteins (K206E/R632A Tf and K206E/R534A Tf). We also investigated the selectivity of mutant Tf-CRM107 against non-neoplastic cells. Through the use of our mathematical model, we predicted that (i) mutant Tf-CRM107 exhibits a greater cytotoxicity than wild-type Tf-CRM107 against cancerous cells, (ii) this improvement was more drastic with CRM107 conjugates than with DT conjugates, and (iii) mutant Tf-CRM107 conjugates were selective against non-neoplastic cells. These predictions were validated with in vitro cytotoxicity experiments, demonstrating that mutant Tf-CRM107 conjugates is indeed a more suitable therapeutic agent. Validation from in vitro experiments also confirmed that such whole

  16. Evaluation of soybean mutants evolved from gamma irradiation

    International Nuclear Information System (INIS)

    Naseri Tafti, M.; Yousefi, F.; Rezazadeh, M.; Sabzi, H.; Ojani, R.

    2003-01-01

    Pure early soybean mutants evolved through mutagenesis (Co-60) from cultivar Clark irradiated with doses 100 Gy, 150 Gy and 250 Gy (absorbed dose) were evaluated for agronomic al traits and compared with two commercial cultivars; Clark and Williams in two regions, Karaj and Alishtar. Experimental design was conducted in a simple lattice (7 m x 7 m) with two replications. A significant statistical difference in yield existed at 1 and 5 percent level among mutants lines and between mutants - Williams and mutants - Clark, respectively in Karaj. The mutant line number 47 placed itself at the top of the list with yield of 4782 Kg/hect., followed by mutant line number 38 with 4722 Kg/hect. A number of mutant lines matured between 10 to 12 days earlier than the commercial soybean cultivars used as checks in the experiment. In Alishtar seed yield of mutant lines compared to the cultivar Williams showed a significant difference at 5% level. The highest seed yield of 3147 Kg/hect. belonged to the mutant line 47 which also matured two weeks earlier compared to the cultivar Clark. The compound analysis of seed yield in Karaj and Alishtar showed superiority of 15 mutant lines over the cultivar Clark and 36 mutant lines over the cultivar Williams. The mutant line number 18 producing seed yield of 3643 Kg/hect. ranks first in the list while, it matured earlier than both check cultivars, Clark and Williams

  17. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants

    NARCIS (Netherlands)

    García-Contreras, R; Lira-Silva, E; Jasso-Chávez, R; Hernández-González, I.L.; Maeda, T.; Hashimoto, T.; Boogerd, F.C.; Sheng, L; Wood, TK; Moreno-Sánchez, R

    2013-01-01

    Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed

  18. Biological changes in Barley mutants resistant to powdery mildew disease

    International Nuclear Information System (INIS)

    Amer, I. M.; Fahim, M. M.; Moustafa, N. A.

    2012-12-01

    physiological studies showed that all kinds of chlorophyll (a), (b) and (a + b) content in infected plant were decreased while, the carotenes pigment were increased. Infection generally reduced total sugars content of all resistant mutants. Infected resistant mutant showed more phenols content and peroxidase, polyphenoloxidase activities than healthy ones of the mutants. (Author)

  19. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications.

    Science.gov (United States)

    De Mello, Walmor C

    2014-01-01

    HighlightsIntracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication - an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10(-9) M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10(-8) M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  20. Western Analysis of Intracellular Interleukin-8 in Human Mononuclear Leukocytes

    OpenAIRE

    Miskolci, Veronika; Hodgson, Louis; Cox, Dianne; Vancurova, Ivana

    2014-01-01

    Most cytokines are stored in the cytoplasm until their release into the extracellular environment; however, some cytokines have been reported to localize in the nucleus. Traditional whole cell extract preparation does not provide information about the intracellular localization of cytokines. Here, we describe how to prepare cytoplasmic and nuclear extracts that can be analyzed by immunoblotting. While in this chapter we use this method to analyze intracellular localization of interleukin-8 (I...

  1. Acquisition of an animal gene by microsporidian intracellular parasites

    OpenAIRE

    Selman, Mohammed; Pombert, Jean-François; Solter, Leellen; Farinelli, Laurent; Weiss, Louis M.; Keeling, Patrick; Corradi, Nicolas

    2011-01-01

    Parasites have adapted to their specialised way of life by a number of means, including the acquisition of genes by horizontal gene transfer. These newly acquired genes seem to come from a variety of sources, but seldom from the host, even in the most intimate associations between obligate intracellular parasite and host [1]. Microsporidian intracellular parasites have acquired a handful of genes, mostly from bacteria, that help them take energy from their hosts or protect them from the envir...

  2. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen

    2008-01-01

    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11...... null mutant, resulting in delayed programmed cell death development and plant survival. Surprisingly, a GLTP mutant form impaired in glycolipid transfer activity also complemented the acd11 mutants. To understand the relationship between functional complementarity and transfer activity, we generated...... site-specific mutants in ACD11 based on homologous GLTP residues required for glycolipid transfer. We show that these ACD11 mutant forms are impaired in their in vitro transfer activity of sphingolipids. However, transgenic expression of these mutant forms fully complemented acd11 mutant cell death...

  3. Immune regulation of Rab proteins expression and intracellular transport.

    Science.gov (United States)

    Pei, Gang; Bronietzki, Marc; Gutierrez, Maximiliano Gabriel

    2012-07-01

    Compartmentalization in cells of the immune system, the focus of this review, facilitates the spatiotemporal organization of cellular responses essential for specialized immune functions. In this process of compartment maintenance, Rab proteins are central regulators of protein-mediated transport and fusion of intracellular structures. It is widely believed that the intracellular concentration of proteins that regulate intracellular transport, including Rab proteins, is constitutively mantained. However, there is a growing body of evidence indicating that transcriptional rates of Rab proteins can be modified. This process is especially evident during immune activation and argues that after activation, these cells require higher levels of Rab proteins. The aim of this review is to discuss evidence showing the increasing links between Rab protein expression and intracellular transport, particularly in monocytes and macrophages. We highlight here biological processes in which the expression of Rab GTPases is selectively regulated, leading to the activation of specific intracellular routes. Further, we focus on the immune regulation of intracellular transport after cytokine activation and microbial infection, with an emphasis in mycobacterial infection.

  4. A Stretch of Negatively Charged Amino Acids of Linker for Activation of T-Cell Adaptor Has a Dual Role in T-Cell Antigen Receptor Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Mikel M. Arbulo-Echevarria

    2018-02-01

    Full Text Available The adaptor protein linker for activation of T cells (LAT has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT–Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051. Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT–Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.

  5. LOXL2 catalytically inactive mutants mediate epithelial-to-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Eva P. Cuevas

    2014-01-01

    Lysyl-oxidase-like 2 (LOXL2 is a member of the lysyl oxidase family that catalyzes the cross-linking of collagens or elastins in the extracellular matrix, thus regulating the tensile strength of tissues. However, many reports have suggested different intracellular roles for LOXL2, including the ability to regulate gene transcription and tumor progression. We previously reported that LOXL2 mediates epithelial-to-mesenchymal transition (EMT by Snail1-dependent and independent mechanisms, related to E-cadherin silencing and downregulation of epidermal differentiation and cell polarity components, respectively. Whether or not the catalytic activity of LOXL2 is required to induce/sustain EMT is actually unknown. Here we show that LOXL2 catalytic inactive mutants collaborate with Snail1 in E-cadherin gene repression to trigger EMT and, in addition, promote FAK/Src pathway activation to support EMT. These findings reveal a non-conventional role of LOXL2 on regulating epithelial cell plasticity.

  6. Functional characterization of the protein C A267T mutation: evidence for impaired secretion due to defective intracellular transport

    Directory of Open Access Journals (Sweden)

    Tjeldhorn Lena

    2010-09-01

    Full Text Available Abstract Background Activated protein C (PC is a serine protease that regulates blood coagulation by inactivating coagulation factors Va and VIIIa. PC deficiency is an autosomally inherited disorder associated with a high risk of recurrent venous thrombosis. The aim of the study was to explore the mechanisms responsible for severe PC deficiency in a patient with the protein C A267T mutation by in-vitro expression studies. Results Huh7 and CHO-K1 cells were transiently transfected with expression vectors containing wild-type (WT PC and mutated PC (A267T PC cDNAs. PC mRNA levels were assessed by qRT-PCR and the PC protein levels were measured by ELISA. The mRNA levels of WT PC and A267T PC were similar, while the intracellular protein level of A267T PC was moderately decreased compared to WT PC. The secretion of A267T PC into the medium was severely impaired. No differences in molecular weights were observed between WT and A267T PC before and after treatment with endo-β-N-acetylglucosaminidase. Proteasomal and lysosomal degradations were examined using lactacystin and bafilomycin, respectively, and revealed that A267T PC was slightly more susceptible for proteasomal degradation than WT PC. Intracellular co-localization analysis indicated that A267T PC was mainly located in the endoplasmic reticulum (ER, whereas WT PC was observed in both ER and Golgi. Conclusions In contrast to what has been reported for other PC mutants, intracellular degradation of A267T PC was not the main/dominant mechanism underlying the reduced intracellular and secretion levels of PC. Our results indicate that the A267T mutation most likely caused misfolding of PC, which might lead to increased retention of the mutated PC in ER.

  7. High yielding mutants of blackgram variety 'PH-25'

    International Nuclear Information System (INIS)

    Misra, R.C.; Mohapatra, B.D.; Panda, B.S.

    2001-01-01

    Seeds of blackgram (Vigna mungo L.) variety 'PH-5' were treated with chemical mutagens ethyl methanesulfonate (EMS), nitrosoguanidine (NG), maleic hydrazide (MH) and sodium azide (NaN 3 ), each at 3 different concentrations. Thirty six mutant lines developed from mutagenic treatments along with parent varieties were tested in M 4 generation. The mutants showed wide variation in most of the traits and multivariante D 2 analysis showed genetic divergence among themselves. Twenty of the thirty mutants showed genetic divergence from parent. Ten selected high yielding mutants were tested in M 5 . Yield and other productive traits of five high yielding mutants in M 4 and M 5 are presented

  8. Using of AFLP to evaluate gamma-irradiated amaranth mutants

    Directory of Open Access Journals (Sweden)

    Labajová Mária

    2013-01-01

    Full Text Available To determine which of several gamma-irradiated mutants of amaranth Ficha cultivar and K-433 hybrid are most genetically similar to their non-irradiated control genotypes, we performed amplified fragment length polymorphism (AFLP based analysis. A total of 40 selective primer combinations were used in reported analyses. First analyses of gamma-irradiated amaranth mutant lines were done used the AFLP. In the study, primers with the differentiation ability for all analysed mutant lines are reported. The very specific changes in the mutant lines´ non-coding regions based on AFLP length polymorphism were analysed. Mutant lines of the Ficha cultivar (C15, C26, C27, C82, C236 shared a genetic dissimilarity of 0,11 and their ISSR profiles are more similar to the Ficha than those of K-433 hybrid mutant lines. The K-433 mutant lines (D54, D279, D282 shared genetic dissimilarity of 0,534 but are more distinct to their control plant as a whole, as those of the Ficha mutant lines. Different AFLP fingerprints patters of the mutant lines when compared to the Ficha cultivar and K-433 hybrid AFLP profiles may be a consequence of the complex response of the intergenic space of mutant lines to the gamma-radiance. Although a genetic polymorphism was detected within accessions, the AFLP markers successfully identified all the accessions. The AFLP results are discussed by a combination of biochemical characteristics of mutant lines and their control genotypes.

  9. Distribution of soluble amino acids in maize endosperm mutants

    Directory of Open Access Journals (Sweden)

    Toro Alejandro Alberto

    2003-01-01

    Full Text Available For human nutrition the main source of vegetable proteins are cereal and legume seeds. The content of total soluble amino acids in mature endosperm of wild-type, opaque and floury maize (Zea mays L. mutants were determined by HPLC. The total absolute concentration of soluble amino acids among the mutants varied depending on the mutant. The o11 and o13 mutants exhibited the highest average content, whereas o10, fl3 and fl1 exhibited the lowest average content. In general, the mutants exhibited similar concentrations of total soluble amino acids when compared to the wild-type lines, with the clear exception of mutants o11 and fl1, with the o11 mutant exhibiting a higher concentration of total soluble amino acids when compared to its wild-type counterpart W22 and the fl1 mutant a lower concentration when compared to its wild-type counterpart Oh43. For methionine, the mutants o2 and o11 and wild-type Oh43 exhibited the highest concentrations of this amino acid. Significant differences were not observed between mutants for other amino acids such as lysine and threonine. The high lysine concentrations obtained originally for these mutants may be due to the amino acids incorporated into storage proteins, but not those present in the soluble form.

  10. Effect of NaN3 on oxygen-dependent lethality of UV-A in Escherichia coli mutants lacking active oxygen-defence and DNA-repair systems

    International Nuclear Information System (INIS)

    Yamada, Kazumasa; Ono, Tetsuyoshi; Nishioka, Hajime

    1996-01-01

    Escherichia coli mutants which lack defence systems against such active oxygen forms as OxyR (ΔoxyR), superoxide dismutase (SOD) (sodA and sodB) and catalase (katE and katG) are sensitive to UV-A lethality under aerobic conditions, whereas OxyR- and SOD-mutants have resistance under anaerobic conditions and in the presence of sodium azide (NaN 3 ) during irradiation. UV-A induces lipid peroxidation in the ΔoxyR mutant, which is suppressed by NaN 3 . These results suggest that UV-A generates 1 O 2 or the hydroxyl radical to produce lipid peroxides intracellularly in the ΔoxyR mutant and that O 2 - stress may be generated in the sodAB mutant after 8 hr of exposure to UV-A. The sensitivities of such DNA repair-deficient mutants as recA ind- and uvrA to UV-A also were examined and compared. These mutants are sensitive to UV-A lethality under aerobic conditions but show only slight resistance under anaerobic conditions or in the presence of NaN 3 during irradiation. We conclude that NaN 3 protects these mutant cells from oxygen-dependent UV-A lethality. (author)

  11. Mutant ribosomes can generate dominant kirromycin resistance.

    OpenAIRE

    Tubulekas, I; Buckingham, R H; Hughes, D

    1991-01-01

    Mutations in the two genes for EF-Tu in Salmonella typhimurium and Escherichia coli, tufA and tufB, can confer resistance to the antibiotic kirromycin. Kirromycin resistance is a recessive phenotype expressed when both tuf genes are mutant. We describe a new kirromycin-resistant phenotype dominant to the effect of wild-type EF-Tu. Strains carrying a single kirromycin-resistant tuf mutation and an error-restrictive, streptomycin-resistant rpsL mutation are resistant to high levels of kirromyci...

  12. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Sabrina J Nolan

    2017-06-01

    Full Text Available Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD, ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2, progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN. Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite's capability in scavenging neutral lipids from host LD.

  13. Intracellular sucrose communicates metabolic demand to sucrose transporters in developing pea cotyledons.

    Science.gov (United States)

    Zhou, Yuchan; Chan, Katie; Wang, Trevor L; Hedley, Cliff L; Offler, Christina E; Patrick, John W

    2009-01-01

    Mechanistic inter-relationships in sinks between sucrose compartmentation/metabolism and phloem unloading/translocation are poorly understood. Developing grain legume seeds provide tractable experimental systems to explore this question. Metabolic demand by cotyledons is communicated to phloem unloading and ultimately import by sucrose withdrawal from the seed apoplasmic space via a turgor-homeostat mechanism. What is unknown is how metabolic demand is communicated to cotyledon sucrose transporters responsible for withdrawing sucrose from the apoplasmic space. This question was explored here using a pea rugosus mutant (rrRbRb) compromised in starch biosynthesis compared with its wild-type counterpart (RRRbRb). Sucrose influx into cotyledons was found to account for 90% of developmental variations in their absolute growth and hence starch biosynthetic rates. Furthermore, rr and RR cotyledons shared identical response surfaces, indicating that control of transporter activity was likely to be similar for both lines. In this context, sucrose influx was correlated positively with expression of a sucrose/H(+) symporter (PsSUT1) and negatively with two sucrose facilitators (PsSUF1 and PsSUF4). Sucrose influx exhibited a negative curvilinear relationship with cotyledon concentrations of sucrose and hexoses. In contrast, the impact of intracellular sugars on transporter expression was transporter dependent, with expression of PsSUT1 inhibited, PsSUF1 unaffected, and PsSUF4 enhanced by sugars. Sugar supply to, and sugar concentrations of, RR cotyledons were manipulated using in vitro pod and cotyledon culture. Collectively the results obtained showed that intracellular sucrose was the physiologically active sugar signal that communicated metabolic demand to sucrose influx and this transport function was primarily determined by PsSUT1 regulated at the transcriptional level.

  14. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii.

    Science.gov (United States)

    Nolan, Sabrina J; Romano, Julia D; Coppens, Isabelle

    2017-06-01

    Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite's capability in scavenging neutral lipids from host LD.

  15. Intracellular disposition of chitosan nanoparticles in macrophages: intracellular uptake, exocytosis, and intercellular transport

    Directory of Open Access Journals (Sweden)

    Jiang LQ

    2017-08-01

    Full Text Available Li Qun Jiang,1 Ting Yu Wang,1 Thomas J Webster,2 Hua-Jian Duan,1 Jing Ying Qiu,1 Zi Ming Zhao,1 Xiao Xing Yin,1,* Chun Li Zheng3,* 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Biodegradable nanomaterials have been widely used in numerous medical fields. To further improve such efforts, this study focused on the intracellular disposition of chitosan nanoparticles (CsNPs in macrophages, a primary cell of the mononuclear phagocyte system (MPS. Such interactions with the MPS determine the nanoparticle retention time in the body and consequently play a significant role in their own clinical safety. In this study, various dye-labeled CsNPs (about 250 nm were prepared, and a murine macrophage cell line (RAW 264.7 was selected as a model macrophage. The results showed two mechanisms of macrophage incorporation of CsNPs, ie, a clathrin-mediated endocytosis pathway (the primary and phagocytosis. Following internalization, the particles partly dissociated in the cells, indicating cellular digestion of the nanoparticles. It was proved that, after intracellular uptake, a large proportion of CsNPs were exocytosed within 24 h; this excretion induced a decrease in fluorescence intensity in cells by 69%, with the remaining particles possessing difficulty being cleared. Exocytosis could be inhibited by both wortmannin and vacuolin-1, indicating that CsNP uptake was mediated by lysosomal and multivesicular body pathways, and after exocytosis, the reuptake of CsNPs by neighboring cells was verified by further experiments. This study, thus, elucidated the fate of CsNPs in macrophages as well as identified cellular disposition

  16. Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates

    Directory of Open Access Journals (Sweden)

    Singhal Neelja

    2012-03-01

    Full Text Available Abstract Background Tuberculosis (TB is the most threatening infectious disease globally. Although progress has been made to reduce global incidence of TB, emergence of multidrug resistant (MDR TB threatens to undermine these advances. To combat the disease, novel intervention strategies effective against drug resistant and sensitive subpopulations of M. tuberculosis are urgently required as adducts in the present treatment regimen. Using THP-1 cells we have analyzed and compared the global protein expression profile of broth-cultured and intraphagosomally grown drug resistant and sensitive M.tuberculosis clinical isolates. Results On comparing the two dimensional (2-DE gels, many proteins were found to be upregulated/expressed during intracellular state which were identified by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS. Four proteins (adenosylhomocysteinase, aspartate carbomyltransferase, putatitive thiosulfate sulfurtransferase and universal stress protein were present in both intracellular MDR and sensitive isolates and three of these belonged to intermediary metabolism and respiration category. Two proteins (alanine dehydrogenase and adenosine kinase of intracellular MDR isolate and two (glucose-6-phosphate isomerase and ATP synthase epsilon chain of intracellular sensitive isolate belonged to intermediary metabolism and respiration category. One protein (Peroxidase/Catalase of intracellular MDR and three (HSPX, 14 kDa antigen and 10 kDa chaperonin of sensitive isolate belonged to virulence, detoxification and adaptation category. ESAT-6 of intracellular MDR belonged to cell wall and cell processes category. Two proteins (Antigen 85-C and Antigen 85-A of intracellular sensitive isolate were involved in lipid metabolism while probable peptidyl-prolyl cis-trans isomerase A was involved in information pathways. Four (Rv0635, Rv1827, Rv0036c and Rv2032 of intracellular MDR and two proteins (Rv2896c and Rv2558c of

  17. Induction of drought tolerant mutants of rice

    International Nuclear Information System (INIS)

    El-Hissewy, A.A.; Abd Allah, A.

    2001-01-01

    The ultimate goal of crop breeding is to develop varieties with a high yield potential and desirable agronomic characteristics. In Egypt, the most important qualities sought by breeders have been high yield potential, resistance to major diseases and insects, and improved grain and eating quality. However, breeding efforts should concentrate on varieties with the potential to minimize yield losses under unfavorable conditions such as drought, and to maximize yields when conditions are favorable. Rice (Oryza sativa L.) in Egypt is completely irrigated and a significant portion of the rice cultivated area is subject to water deficit resulting from an inadequate or insufficient irrigation supply. Drought tolerance is a complex trait in that it results from the interaction of histological and physiological characters of plant with environmental factors, both above-ground and under-ground. Accordingly, root characters are closely related to drought tolerance. Little attention has been paid in Egyptian breeding programs to root characters and their relation to shoot characters. Furthermore, induced mutations are considered as one of the most important methods to induce useful mutants, especially with improved root characters, to overcome the drought problem. The present investigation aimed to study the effect of different doses of gamma rays on several characters of three Egyptian rice varieties, i.e. 'Giza 171', 'Giza 175' and 'Giza 176' and to induce one or more mutants possessing drought tolerance

  18. Flower morphology of Dendrobium Sonia mutants

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Azhar Mohamad; Affrida Abu Hassan; Zaiton Ahmad; Mohd Nazir Basiran

    2010-01-01

    Dendrobium Sonia is a commercial hybrid which is popular as cut flower and potted plant in Malaysia. Variability in flower is important for new variety to generate more demands and choices in selection. Mutation induction is a tool in creating variability for new flower color and shape. In vitro cultures of protocorm-like bodies (PLBs) were exposed to gamma ray at dose 35 Gy. Phenotypic characteristics of the flower were observed at fully bloomed flower with emphasis on shape and color. Approximately 2000 regenerated irradiated plants were observed and after subsequent flowering, 100 plants were finally selected for further evaluation. Most of the color and shape changes are expressed in different combinations of petal, sepal and lip of the flower. In this work, 11 stable mutants were found different at flower phenotype as compared to control. Amongst these, four mutant varieties with commercial potential has been named as Dendrobium 'SoniaKeenaOval', Dendrobium 'SoniaKeenaRadiant', Dendrobium 'SoniaKeenaHiengDing' and Dendrobium 'Sonia KeenaAhmadSobri'. In this paper, variations in flower morphology and flower color were discussed, giving emphasis on variations in flower petal shape. (author)

  19. Indy mutants: live long and prosper

    Directory of Open Access Journals (Sweden)

    Stewart eFrankel

    2012-02-01

    Full Text Available Indy encodes the fly homologue of a mammalian transporter of di and tricarboxylatecomponents of the Krebs cycle. Reduced expression of fly Indy or two of the C. elegansIndy homologs leads to an increase in life span. Fly and worm tissues that play key roles inintermediary metabolism are also the places where Indy genes are expressed. One of themouse homologs of Indy (mIndy is mainly expressed in the liver. It has been hypothesizedthat decreased INDY activity creates a state similar to caloric restriction (CR. Thishypothesis is supported by the physiological similarities between Indy mutant flies on highcalorie food and control flies on CR, such as increased physical activity and decreases inweight, egg production, triglyceride levels, starvation resistance, and insulin signaling. Inaddition, Indy mutant flies undergo changes in mitochondrial biogenesis also observed inCR animals. Recent findings with mIndy knockout mice support and extend the findingsfrom flies. mIndy-/- mice display an increase in hepatic mitochondrial biogenesis, lipidoxidation and decreased hepatic lipogenesis. When mIndy-/- mice are fed high calorie foodthey are protected from adiposity and insulin resistance. These findings point to INDY as apotential drug target for the treatment of metabolic syndrome, type 2 diabetes and obesity.

  20. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 t