WorldWideScience

Sample records for intracellular polyphenol oxidases

  1. (RAPD) markers and polyphenol oxidases (PPO)

    African Journals Online (AJOL)

    Application of randomly amplified polymorphic DNA (RAPD) markers and polyphenol oxidases (PPO) genes for distinguishing between the diploid ( glaucum ) and the tetraploid ( leporinum ) accessions in Hordeum murinum complex.

  2. Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: a case of double-edged sword.

    Directory of Open Access Journals (Sweden)

    Han-Yu Yang

    Full Text Available Many but not all species of Streptomyces species harbour a bicistronic melC operon, in which melC2 encodes an extracellular tyrosinase (a polyphenol oxidase and melC1 encodes a helper protein. On the other hand, a melC-homologous operon (melD is present in all sequenced Streptomyces chromosomes and could be isolated by PCR from six other species tested. Bioinformatic analysis showed that melC and melD have divergently evolved toward different functions. MelD2, unlike tyrosinase (MelC2, is not secreted, and has a narrower substrate spectrum. Deletion of melD caused an increased sensitivity to several phenolics that are substrates of MelD2. Intracellularly, MelD2 presumably oxidizes the phenolics, thus bypassing spontaneous copper-dependent oxidation that generates DNA-damaging reactive oxygen species. Surprisingly, melC(+ strains were more sensitive rather than less sensitive to phenolics than melC(- strains. This appeared to be due to conversion of the phenolics by MelC2 to more hydrophobic and membrane-permeable quinones. We propose that the conserved melD operon is involved in defense against phenolics produced by plants, and the sporadically present melC operon probably plays an aggressive role in converting the phenolics to the more permeable quinones, thus fending off less tolerant competing microbes (lacking melD in the phenolic-rich rhizosphere.

  3. Inhibition of Apple Polyphenol Oxidase Activity by Procyanidins and Polyphenol Oxidation Products

    OpenAIRE

    Bourvellec, Carine Le; Jean-Michel Le Quéré; Sanoner, Philippe; Drilleau, Jean-François; Guyot, Sylvain

    2004-01-01

    The rate of consumption of dissolved oxygen by apple polyphenol oxidase in cider apple juices did not correlate with polyphenol oxidase activity in the fruits and decreased faster than could be explained by the decrease of its polyphenolic substrates. The kinetics parameters of a crude polyphenol oxidase extract, prepared from apple (Braeburn cultivar), were determined using caffeoylquinic acid as a substrate. Three apple procyanidin fractions of n 80, 10.5, and 4 were purifi...

  4. Extraction and Activity of Polyphenol Oxidase from Kolanuts ( Cola ...

    African Journals Online (AJOL)

    Extraction and Activity of Polyphenol Oxidase from Kolanuts ( Cola nitida and Cola acuminata ) and Cocoa ( Theobroma cacao ) ... The differences in km and Vmax values showed that there are variations in the physicochemical characteristics and absolute quantity of polyphenol oxidase present in the three plant species.

  5. Forage Polyphenol Oxidase and Ruminant Livestock Nutrition

    Directory of Open Access Journals (Sweden)

    Michael Richard F. Lee

    2014-12-01

    Full Text Available Polyphenol oxidase (PPO is associated with the detrimental effect of browning fruit and vegetables, however interest within PPO containing forage crops has grown since the brownng reaction was associated with reduced nitrogen (N losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage increased the quality of protein, improving N-use efficiency (NUE when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalysing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP. If the protein is an enzyme the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase un-degraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of red clover.

  6. Polyphenol oxidase-based luminescent enzyme hydrogel: an ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... (A) Photography of supramolecu- lar hydrogel [9] and (B) photography of enzyme hydrogel. type 18 Mili-Q water was used throughout the experiment. Polyphenol oxidase enzyme (10000 U) was purchased and used as received. 2.2 Instruments. Absorption and fluorescence spectra were measured in a.

  7. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  8. Changes in activities of polyphenol oxidase, ascorbate, peroxidase ...

    African Journals Online (AJOL)

    Activities of peroxidase (POD), Polyphenol oxidase (PPO), hydroperoxide and lipid contents were investigated during desiccation of cotyledonary tissues of Irvingia gabonensis at ambient temperature (26OC - 30OC), 35OC and 20OC. Activities of POD and PPO increased initially but declined in the latter desiccation period.

  9. Allelic variations of functional markers for polyphenol oxidase (PPO)

    Indian Academy of Sciences (India)

    Allelic variations of functional markers for polyphenol oxidase (PPO) genes in Indian bread wheat (Triticum aestivum L.) cultivars. Rajender Singh, Umesh Goutam, R. K. Gupta, G. C. Pandey, Jag Shoran and Ratan Tiwari. J. Genet. 88, 325–329. Figure 1. Phenol colour reaction of kernels. Kernels without treatment by ...

  10. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    GREGO

    2006-12-18

    Dec 18, 2006 ... Polyphenol oxidase (EC 1.14.18.1) catalyses enzyma- tic browning through its action on mono and o-diphenols. (Mayer and Harel, 1979; Golbeck and Camarata, 1981;. Mayer and Harel, 1991). Browning of dates was found to be related to enzymatic and non - enzymatic reactions. *Corresponding author.

  11. Polyphenol oxidase-based luminescent enzyme hydrogel: an ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Polyphenol oxidase-based luminescent enzyme hydrogel: an efficient redox active immobilized scaffold. BISWAJIT DEY1,∗. , SUPRABHAT MUKHERJEE2, NILADRI MUKHERJEE2,. RANJAN KUMAR MONDAL1, BISWARUP SATPATI3 and SANTI PRASAD SINHA BABU2. 1Department of Chemistry ...

  12. Polyphenol oxidase activity in co-ensiled temperate grasses

    Science.gov (United States)

    Polyphenol oxidase (PPO) and its o-diphenol substrates have been shown to effectively decrease proteolytic activity during the ensiling of forages such as red clover. Orchardgrass and smooth bromegrass both contain high levels of PPO activity, but lack appropriate levels of o-diphenols to adequately...

  13. Informations on the active site of palmito polyphenol oxidase.

    Science.gov (United States)

    Robert, C; Cadet, F; Rouch, C; Pabion, M

    1995-01-01

    pH studies of palmito polyphenol oxidase are carried out with either 4-methylcatechol or pyrogallol as substrates. The pH profile is independent of the nature of the substrates tested. The symmetrical behaviour and the very slight differences between the values obtained suggest the existence of only one site on the molecule for o-diphenol substrates.

  14. Comparative activity of polyphenol oxidase produced In vivo by ...

    African Journals Online (AJOL)

    The ability to produce polyphenol oxidase in vivo by Aspergillus niger and Aspergillus flavus seed-borne storage molds of rice (Oryzae sativa> L.) was investigated. Also, was the effect of temperature and pH on the activity of the above enzyme secreted by each of the above seed-borne storage molds of rice. The result of ...

  15. Thermal and pH stabilities of partially purified polyphenol oxidase ...

    African Journals Online (AJOL)

    Dr. Paul Chidoka Chikezie

    2012-07-30

    Jul 30, 2012 ... 4(2):115-124. da Silva CR, Koblitz MGB (2010). Partial characterization and inactivation of peroxidases and polyphenol-oxidases of Umbu-Cajá. (Spondias spp.). Ciência e Tecnologia de Alimentos. 30(3):11. Dogan S, Dogan M (2004). Determination of kinetic properties of polyphenol oxidase from Thymus ...

  16. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Science.gov (United States)

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  17. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects.

    Science.gov (United States)

    Taranto, Francesca; Pasqualone, Antonella; Mangini, Giacomo; Tripodi, Pasquale; Miazzi, Monica Marilena; Pavan, Stefano; Montemurro, Cinzia

    2017-02-10

    Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs), following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.

  18. Temperature dependence of the activity of polyphenol peroxidases and polyphenol oxidases in modern and buried soils

    Science.gov (United States)

    Yakushev, A. V.; Kuznetsova, I. N.; Blagodatskaya, E. V.; Blagodatsky, S. A.

    2014-05-01

    Under conditions of the global climate warming, the changes in the reserves of soil humus depend on the temperature sensitivities of polyphenol peroxidases (PPPOs) and polyphenol oxidases (PPOs). They play an important role in lignin decomposition, mineralization, and humus formation. The temperature dependence of the potential enzyme activity in modern and buried soils has been studied during incubation at 10 or 20°C. The experimental results indicate that it depends on the availability of the substrate and the presence of oxygen. The activity of PPOs during incubation in the absence of oxygen for two months decreases by 2-2.5 times, which is balanced by an increase in the activity of PPPOs by 2-3 times. The increase in the incubation temperature to 20°C and the addition of glucose accelerates this transition due to the more abrupt decrease in the activity of PPOs. The preincubation of the soil with glucose doubles the activity of PPPOs but has no significant effect on the activity of PPOs. The different effects of temperature on two groups of the studied oxidases and the possibility of substituting enzymes by those of another type under changing aeration conditions should be taken into consideration in predicting the effect of the climate warming on the mineralization of the soil organic matter. The absence of statistically significant differences in the enzymatic activity between the buried and modern soil horizons indicates the retention by the buried soil of some of its properties (soil memory) and the rapid restoration of high enzymatic activity during the preincubation.

  19. Polyphenol oxidase as a biochemical seed defense mechanism.

    Science.gov (United States)

    Fuerst, E Patrick; Okubara, Patricia A; Anderson, James V; Morris, Craig F

    2014-01-01

    Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO), when wild oat (Avena fatua L.) caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea), non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  20. Reducing peanut allergens by high pressure combined with polyphenol oxidase

    Science.gov (United States)

    Chung, Si-Yin; Houska, Milan; Reed, Shawndrika

    2013-12-01

    Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens. Since high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts containing caffeic acid were treated with each of the following: (1) HP; (2) HP+PPO; (3) PPO; and (4) none. HP was conducted at 300 and 500 MPa, each for 3 and 10 min, 37 °C. After treatment, SDS-PAGE was performed and allergenic capacity (IgE binding) was determined colorimetrically in inhibition enzyme-linked immunosorbent assay and Western blots, using a pooled plasma from peanut-allergic patients. Data showed that HP alone had no effect on major peanut allergens. However, HP at 500 MPa combined with PPO (HP500/PPO) induced a higher (approximately twofold) reduction of major peanut allergens and IgE binding than PPO alone or HP300/PPO. There was no difference between treatment times. We concluded that HP500/PPO at 3-min enhanced a twofold reduction of the allergenic capacity of peanut extracts, as compared to PPO itself.

  1. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  2. Molecular cloning and characterisation of banana fruit polyphenol oxidase.

    Science.gov (United States)

    Gooding, P S; Bird, C; Robinson, S P

    2001-09-01

    Polyphenol oxidase (PPO; EC 1.10.3.2) is the enzyme thought to be responsible for browning in banana [Musa cavendishii (AAA group, Cavendish subgroup) cv. Williams] fruit. Banana flesh was high in PPO activity throughout growth and ripening. Peel showed high levels of activity early in development but activity declined until ripening started and then remained constant. PPO activity in fruit was not substantially induced after wounding or treatment with 5-methyl jasmonate. Banana flowers and unexpanded leaf roll had high PPO activities with lower activities observed in mature leaves, roots and stem. Four different PPO cDNA clones were amplified from banana fruit (BPO1, BPO11, BPO34 and BPO35). Full-length cDNA and genomic clones were isolated for the most abundant sequence (BPO1) and the genomic clone was found to contain an 85-bp intron. Introns have not been previously found in PPO genes. Northern analysis revealed the presence of BPO1 mRNA in banana flesh early in development but little BPO1 mRNA was detected at the same stage in banana peel. BPO11 transcript was only detected in very young flesh and there was no detectable expression of BPO34 or BPO35 in developing fruit samples. PPO transcripts were also low throughout ripening in both flesh and peel. BPO1 transcripts were readily detected in flowers, stem, roots and leaf roll samples but were not detected in mature leaves. BPO11 showed a similar pattern of expression to BPO1 in these tissues but transcript levels were much lower. BPO34 and BPO35 mRNAs were only detected at a low level in flowers and roots and BPO34 transcript was detected in mature leaves, the only clone to do so. The results suggest that browning of banana fruit during ripening results from release of pre-existing PPO enzyme, which is synthesised very early in fruit development.

  3. Oxidative phenols in forage crops containing polyphenol oxidase enzymes.

    Science.gov (United States)

    Parveen, Ifat; Threadgill, Michael D; Moorby, Jon M; Winters, Ana

    2010-02-10

    Polyphenol oxidases (PPOs) are copper-containing enzymes that catalyze oxidation of endogenous monophenols to ortho-dihydroxyaryl compounds and of ortho-dihydroxyaryl compounds to ortho-quinones. Subsequent nucleophilic addition reactions of phenols, amino acids, and proteins with the electrophilic ortho-quinones form brown-, black-, or red-colored secondary products associated with the undesired discolouration of fruit and vegetables. Several important forage plants also exhibit significant PPO activity, and a link with improved efficiency of ruminant production has been established. In ruminant animals, extensive degradation of forage proteins, following consumption, can result in high rates of excretion of nitrogen, which contributes to point-source and diffuse pollution. Reaction of quinones with forage proteins leads to the formation of protein-phenol complexes that are resistant to proteolytic activity during ensilage and during rumen fermentation. Thus, PPO in red clover (Trifolium pratense) has been shown to improve protein utilization by ruminants. While PPO activity has been demonstrated in a number of forage crops, little work has been carried out to identify substrates of PPO, knowledge of which would be beneficial for characterizing this trait in these forages. In general, a wide range of 1,2-dihydroxyarenes can serve as PPO substrates because these are readily oxidized because of the ortho positioning of the hydroxy groups. Naturally occurring phenols isolated from forage crops with PPO activity are reviewed. A large number of phenols, which may be directly or indirectly oxidized as a consequence of PPO activity, have been identified in several forage grass, legume, cereal, and brassica species; these include hydroxybenzoic acids, hydroxycinnamates, and flavonoids. In conclusion, a number of compounds are known or postulated to enable PPO activity in important PPO-expressing forage crops. Targeting the matching of these compounds with PPO activity

  4. Purification and characterization of polyphenol oxidase enzyme from Iğdır apricot (Prunus armeniaca L.)

    OpenAIRE

    Çelikezen, Fatih Çağlar; Demir, Halit; Çimen, Çilem

    2012-01-01

    In this study, polyphenol oxidase (E.C. 1.14.18.1; PPO) enzyme obtained from Igdir Apricot was purified with method of affinity chromatography. The apricot cultivar “Salak ” was provided from Igdir region. To purify polyphenol oxidase enzyme obtained

  5. Gamma irradiation effect on shelf-life, texture, polyphenol oxidase and microflora of mushroom (Agaricus bisporus)

    International Nuclear Information System (INIS)

    Gautam, S.; Arun Sharma; Thomas, P.

    1998-01-01

    An enhancement in the shelf-life of button mushroom (Agaricus bisporus) up to a period of 10 days could be achieved by the application of a gamma ray dose of 2kGy and storage at 10°C. A study of the quality parameters of the mushroom including cap opening, stipe elongation, weight loss, surface microbial load, and polyphenol oxidase activity indicated that the irradiated commodity retained the quality attributes required for its acceptability. The irradiated mushroom showed less brown discoloration compared to non-irradiated controls. The polyphenol oxidase, responsible for causing browning in stored mushroom, was found to have reduced activity in irradiated mushroom

  6. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Golbeck, J.H.; Cammarata, K.V.

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  7. Thermal and pH stabilities of partially purified polyphenol oxidase ...

    African Journals Online (AJOL)

    Enzyme activity depends largely on environmental conditions such as temperature and pH. The stability of polyphenol oxidase (PPO) extracted from Solanum melongenas and Musa sapientum fruits preincubated in varying thermal and pH conditions were carried out. Enzyme activity was measured by spectrophotometric ...

  8. Tissue Printing to Visualize Polyphenol Oxidase and Peroxidase in Vegetables, Fruits, and Mushrooms

    Science.gov (United States)

    Melberg, Amanda R.; Flurkey, William H.; Inlow, Jennifer K.

    2009-01-01

    A simple tissue-printing procedure to determine the tissue location of the endogenous enzymes polyphenol oxidase and peroxidase in a variety of vegetables, fruits, and mushrooms is described. In tissue printing, cell contents from the surface of a cut section of the tissue are transferred to an adsorptive surface, commonly a nitrocellulose…

  9. Optimum pH and pH Stability of Crude Polyphenol Oxidase (PPO ...

    African Journals Online (AJOL)

    The effect of pH on the activity and stability of crude polyphenol oxidase (PPO) extracted from garden egg (Solanum aethiopicum), pawpaw (Carica papaya), pumpkin ... Optimum pH values were found to be 6.0,6.5,6.0, 4.5 and 4.0/or 8.0 for the enzyme extracted from Solanum aethiopicum, Carica papaya, Cucurbita pepo, ...

  10. Immobilization of the enzyme polyphenol oxidase on dendrispheres: In partial fulfilment of the degree Magister Scientiae

    CSIR Research Space (South Africa)

    Bannister, M

    2011-04-01

    Full Text Available (EC) During fermentation : ?Catechins undergo polyphenol oxidase-dependent oxidative polymerization ?Leading to the formation of theaflavins, thearubigins and other oligomers Leung L. K. et al. (2001) American Society for Nutritional Sciences 131... Owuor P. O. and McDowell I. (1994) Food Chemistry 51; 251-254; Leung L. K. et al. (2001) American Society for Nutritional Sciences 131; 2248-2251; Leone M. et al. (2003) Cancer Research 63; 8118-8121; Halder B. et al. (2005) Food and Chemical Toxicology...

  11. Effects of red grape juice polyphenols in NADPH oxidase subunit expression in human neutrophils and mononuclear blood cells.

    Science.gov (United States)

    Dávalos, Alberto; de la Peña, Gema; Sánchez-Martín, Carolina C; Teresa Guerra, M; Bartolomé, Begoña; Lasunción, Miguel A

    2009-10-01

    The NADPH oxidase enzyme system is the main source of superoxide anions in phagocytic and vascular cells. NADPH oxidase-dependent superoxide generation has been found to be abnormally enhanced in several chronic diseases. Evidence is accumulating that polyphenols may have the potential to improve cardiovascular health, although the mechanism is not fully established. Consumption of concentrated red grape juice, rich in polyphenols, has been recently shown to reduce NADPH oxidase activity in circulating neutrophils from human subjects. In the present work we studied whether red grape juice polyphenols affected NADPH oxidase subunit expression at the transcription level. For this, we used human neutrophils and mononuclear cells from peripheral blood, HL-60-derived neutrophils and the endothelial cell line EA.hy926.Superoxide production was measured with 2'7'-dichlorofluorescein diacetate or lucigenin, mRNA expression by real-time RT-PCR and protein expression by Western blot. Each experiment was performed at least three times. In all cell types tested, red grape juice, dealcoholised red wine and pure polyphenols decreased superoxide anion production. Red grape juice and dealcoholised red wine selectively reduced p47phox, p22phox and gp91phox expression at both mRNA and protein levels, without affecting the expression of p67phox. Pure polyphenols, particularly quercetin, also reduced NADPH oxidase subunit expression, especially p47phox, in all cell types tested. The present results showing that red grape juice polyphenols reduce superoxide anion production provide an alternative mechanism by which consumption of grape derivatives may account for a reduction of oxidative stress associated with cardiovascular and/or inflammatory diseases related to NADPH oxidase superoxide overproduction.

  12. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  13. Response of rice polyphenol oxidase promoter to drought and salt stress

    International Nuclear Information System (INIS)

    Akhtar, W.; Mahmood, T.

    2017-01-01

    Polyphenol oxidases (PPO) widely exist in plants that catalyze oxygen dependent oxidation of phenols to quinines and assumed to be involved in plant defense against environmental stresses. In this study transgenic T1 seeds of Arabidopsis thaliana containing Oryza sativa Polyphenol oxidase (OsPPO) gene promoter fused with GUS (Beta-glucuronidase) were analyzed for drought and salt stress. These seeds were already available in our research group. Seeds were germinated on Murashige and Skoog (MS) mediato get T2 plants which were screened in drought stress (5, 10, 15, 20, 25 and 30% PEG-6000) and salt concentrations (50 mM, 100 mM, 150 mM, 200 mM, 250 mM and 300 mM). Experimental data showed that relative GUS expression of OsPPO gene promoter increased with the increase of drought stress. In case of salt stress, OsPPO induction showed similar trend GUS expression was increased. The response of OsPPO to drought and salt stress suggest the possible participation of PPO in plants defense against drought as well as salt stress. (author)

  14. Partial purification, characterization, and histochemical localization of fully latent desert truffle (Terfezia claveryi Chatin) polyphenol oxidase.

    Science.gov (United States)

    Pérez-Gilabert, M; Morte, A; Honrubia, M; García-Carmona, F

    2001-04-01

    In the present paper, a fully latent polyphenol oxidase (PPO) from desert truffle (Terfezia claveryi Chatin) ascocarps is described for the first time. The enzyme was partially purified by using phase partitioning in Triton X-114 (TX-114). The achieved purification was 2-fold from a crude extract, with a 66% recovery of activity. The interfering lipids were reduced to 13% of the original content. In addition, the purification gave rise to a reduction of phenolic compounds to only 37.5%, thus avoiding the postpurification tanning of the enzyme. Latent PPO was activated by the anionic surfactant sodium dodecyl sulfate (SDS) or by incubation with trypsin. The amount of SDS necessary to obtain a maximum activation was dependent on the nature of the substrate. The use of SDS also permitted the histochemical localization of the latent enzyme within the ascocarp. Terfezia polyphenol oxidase was kinetically characterized using two phenolic substrates (L-DOPA and tert-butylcatechol). The latter substrate presented inhibition at high substrate concentration with a K(si) of 6.3 mM. Different inhibiting agents (kojic and cinnamic acid, mimosine and tropolone) were also studied, tropolone being the most effective.

  15. The Enzymatic Decolorization of Textile Dyes by the Immobilized Polyphenol Oxidase from Quince Leaves

    Science.gov (United States)

    Arabaci, Gulnur; Usluoglu, Ayse

    2014-01-01

    Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100 mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents. PMID:24587743

  16. The Enzymatic Decolorization of Textile Dyes by the Immobilized Polyphenol Oxidase from Quince Leaves

    Directory of Open Access Journals (Sweden)

    Gulnur Arabaci

    2014-01-01

    Full Text Available Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO enzyme was extracted from quince (Cydonia Oblonga leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100 mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents.

  17. Phenolic profiles and polyphenol oxidase (PPO) gene expression of red clover (Trifolium pratense) selected for decreased postharvest browning

    Science.gov (United States)

    Red clover (Trifolium pratense L.) is a legume forage abundant in phenolic compounds. It tends to brown when cut for hay, due to oxidation of phenolic compounds catalyzed by polyphenol oxidase (PPO), and subsequent binding to proteins. Selecting for a greener hay may provide information about the re...

  18. Validation of spectrophotometric microplate methods for polyphenol oxidase and peroxidase activities analysis in fruits and vegetables

    Directory of Open Access Journals (Sweden)

    Érica Sayuri SIGUEMOTO

    Full Text Available Abstract Enzymes polyphenol oxidase (PPO and peroxidase (POD play important roles in the processing of fruits and vegetables, since they can produce undesirable changes in color, texture and flavor. Classical methods of activity assessment are based on cuvette spectrophotometric readings. This work aims to propose, to validate and to test microplate spectrophotometric methods. Samples of apple juice and lyophilized enzymes from mushroom and horseradish were analyzed by the cuvette and microplate methods and it was possible to validate the microplate assays with satisfactory results regarding linearity, repeatability, accuracy along with quantitation and detection limits. The proposed microplate methods proved to be reliable and reproducible as the classical methods besides having the advantages of allowing simultaneous analysis and requiring a reduced amount of samples and reactants, which can beneficial to the study of enzyme inactivation in the processing of fruits and vegetables.

  19. Genetic Variation of Isozyme Polyphenol Oxidase (PPO Profiles in Different Varieties of Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Owk ANIEL KUMAR

    2013-12-01

    Full Text Available The genus Capsicum commonly known as chilli pepper is a major spice crop and is of cosmopolitan in distribution. Native polyacrylamide gel electrophoresis (Native PAGE was used to study the polyphenol oxidase (PPO isozyme variation in 21 varieties of Capsicum annuum L. A maximum of 4 PPO bands were scored in five varieties i.e., Ca14, Ca15, Ca16, Ca19 & Ca20, while the minimum (2 bands was observed in four varieties (Ca3, Ca10, Ca13 & Ca17. 15 pair wise combinations showed highest average per cent similarity (100% and the UPGMA dendrogram represented low genetic diversity. The present study revealed that considerable intraspecific differences were found in the varieties. Thus the results obtained could be used in fingerprinting the genotypes.

  20. (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata).

    Science.gov (United States)

    Cho, Man-Ho; Moinuddin, Syed G A; Helms, Gregory L; Hishiyama, Shojiro; Eichinger, Dietmar; Davin, Laurence B; Lewis, Norman G

    2003-09-16

    An enantio-specific polyphenol oxidase (PPO) was purified approximately 1,700-fold to apparent homogeneity from the creosote bush (Larrea tridentata), and its encoding gene was cloned. The posttranslationally processed PPO ( approximately 43 kDa) has a central role in the biosynthesis of the creosote bush 8-8' linked lignans, whose representatives, such as nordihydroguaiaretic acid and its congeners, have potent antiviral, anticancer, and antioxidant properties. The PPO primarily engenders the enantio-specific conversion of (+)-larreatricin into (+)-3'-hydroxylarreatricin, with the regiochemistry of catalysis being unambiguously established by different NMR spectroscopic analyses; the corresponding (-)-enantiomer did not serve as a substrate. This enantio-specificity for a PPO, a representative of a widespread class of enzymes, provides additional insight into their actual physiological roles that hitherto have been difficult to determine.

  1. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Directory of Open Access Journals (Sweden)

    Hongnan Sun

    2018-01-01

    Full Text Available The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics.

  2. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Science.gov (United States)

    Sun, Hongnan; Mu, Bona; Song, Zhen; Ma, Zhimin

    2018-01-01

    The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS) of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics. PMID:29643978

  3. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols.

    Science.gov (United States)

    Sun, Hongnan; Mu, Bona; Song, Zhen; Ma, Zhimin; Mu, Taihua

    2018-01-01

    The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS) of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics.

  4. Isolation and properties of polyphenol oxidase from basidiocarps of Lactarius pergamenus Fr. (Fr. fungi

    Directory of Open Access Journals (Sweden)

    M. V. Tsivinska

    2015-04-01

    Full Text Available Fresh juice of basidiocarps of Lactarius pergamenus Fr. (Fr. fungi was subjected to ion exchange chromatography with used DEAE-toyopearl and CM-cellulose columns, as well as preparative electrophoresis in 7.5% polyacrylamide gels (pH 8.6. Three isoforms of polyphenol oxidase (PPO were discovered and two isoforms (1-1 and 1-2 were purified with a release of protein 0.42 mg/kg and 0.15 mg/kg of basidiocarps, respectively. These isoforms differ in the mobility at disc-electrophoresis in 7.5% PAGE in alkaline buffer system (pH 8.6. Specific activity of isoform 1-2 is 4.8 times higher than that of the isoforms 1-1. The molecular weight determination by gel chromatography on the Toyopearl HW-55 demonstrated that both isoforms 1-1 and 1-2 have the same 64 ± 2 kDa molecular mass. Electrophoresis in 15% PAGE in the presence of sodium dodecylsulphate and β-mercaptoethanol revealed one band with molecular mass of 64 ± 1 kDa which suggests the presence of one polypeptide chain in the molecule of the enzyme. The enzyme has demonstrated the highest activity at pH 6.0 and temperature +10 ºC, and at +70 ºC the enzyme was inactivated. The PPO activity was the highest in young mushrooms and it decreased with their age and positively correlated with the content of the milky juice. Ortho-aminophenol was most effective among all the tested substrates to determine the activity of PPO (o-, m– and p-aminophenol, catechol, tyrosine, resorcinol, phloroglucinol and its relative activity was 129% of the activity of catechol. Ascorbic acid was the most effective inhibitor of the polyphenol oxidase activity which was completely blocked at 1 mM concentration, whereas the same concentration of thiourea and sodium sulphite decreased the enzymatic activity by 40-45%. The PPO in L. pergamenus fungi basidiocarps was mainly localized in the mushroom milky juice where its high activity may be associated with protection of basidiocarps against various pathogens.

  5. Activation of NADPH oxidase is essential, but not sufficient, in controlling intracellular multiplication of Burkholderia pseudomallei in primary human monocytes.

    Science.gov (United States)

    Wikraiphat, Chanthiwa; Pudla, Matsayapan; Baral, Pankaj; Kitthawee, Sangvorn; Utaisincharoen, Pongsak

    2014-06-01

    Burkholderia pseudomallei is a Gram-negative intracellular bacterium and the causative agent of melioidosis. Innate immune mechanisms against this pathogen, which might contribute to outcomes of melioidosis, are little known. We demonstrated here that B. pseudomallei could activate NADPH oxidase in primary human monocytes as judged by production of reactive oxygen species (ROS) and p40(phox) phosphorylation after infection. However, as similar to other intracellular bacteria, this bacterium was able to resist and multiply inside monocytes despite being able to activate NADPH oxidase. In the presence of NADPH oxidase inhibitor, diphenyleneiodonium or apocynin, intracellular multiplication of B. pseudomallei was significantly increased, suggesting that NADPH oxidase-mediated ROS production is essential in suppressing intracellular multiplication of B. pseudomallei. Additionally, interferon-γ (IFN-γ)-mediated intracellular killing of B. pseudomallei requires NADPH oxidase activity, even though ROS level was not detected at higher levels in IFN-γ-treated infected monocytes. Altogether, these results imply that the activation of NADPH plays an essential role in suppressing intracellular multiplication of B. pseudomallei in human monocytes, although this enzyme is not sufficient to stop intracellular multiplication. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Purification and biochemical characterization of polyphenol oxidases from embryogenic and nonembryogenic cotton (Gossypium hirsutum L.) cells.

    Science.gov (United States)

    Kouakou, Tanoh Hilaire; Kouadio, Yatty Justin; Kouamé, Patrice; Waffo-Téguo, Pierre; Décendit, Alain; Mérillon, Jean-Michel

    2009-08-01

    Polyphenol oxidases (PPOs) were isolated from cell suspensions of two cultivars of cotton (Gossypium hirsutum L.), and their biochemical characteristics were studied. PPO from Coker 312, an embryogenic cultivar, showed a highest affinity to catechol 20 mM, and PPO from R405-2000, a nonembryogenic cultivar, showed a highest affinity to 4-methylcatechol 20 mM. The optimal pH for PPO activity was 7.0 and 6.0 for Coker 312 and R405-2000, respectively. The enzyme had an optimal temperature of 25 degrees C and was relatively stable at 20-30 degrees C. Reducing sodium metabisulfite, ascorbic acid, dithiothreitol, SnCl(2), and FeCl(3) markedly inhibited PPO activity, whereas its activity was highly enhanced by Mg(2+), Ca(2+), and Mn(2+) and was moderately inhibited by Ba(2+), Cu(2+), and Zn(2+). The analysis revealed a single band on the sodium dodecyl sulfate polyacrylamide gel electrophoresis which corresponded to a molecular weight of 55 kDa for Coker 312 and 42 kDa for R405-2000.

  7. Potential Use of Apple Polyphenol Oxidase for Bioremediation of Phenolic Contaminants

    Directory of Open Access Journals (Sweden)

    Anita Šalić

    2018-04-01

    Full Text Available Phenolic compounds, such as catechol, are released into the environment from a variety of industrial sources and they present a serious ecosystem burden. This work examined the possibility of using partially purified apple polyphenol oxidase (PPO for bioremediation of phenolic contaminants. In order to optimize process conditions, the optimal pH and temperature for PPO activity were determined, while PPO affinity toward various phenols, as well as the effect of some salts and organic solvents which can be found in wastewaters, was used to confirm applicability of PPO in wastewater treatment. It was found that partially purified apple PPO shows maximal activity at pH 6.8 and 25 °C, but exhibits more than 85 % of its maximal activity in pH range from 5 to 8, and more than 90 % of activity in temperature range from 10 to 50 °C. PPO showed high affinity for various diphenols, but lack of affinity toward monophenols. Sodium tetraborate decahydrate moderately inhibited PPO activity, while exposure of PPO to the presence of organic solvents (φ = 5 % caused 40 % loss in its activity. Catechol oxidation by PPO performed for just 5 min in a batch reactor at optimal process conditions resulted in 25 % conversion. Based on obtained data, it seems that partially purified apple PPO has reasonable potential in wastewater treatment.

  8. Luminescent Metal-Organic-Framework-Based Label-Free Assay of Polyphenol Oxidase with Fluorescent Scan.

    Science.gov (United States)

    Li, Yue; Guo, An; Chang, Lan; Li, Wen-Juan; Ruan, Wen-Juan

    2017-05-11

    Metal-organic frameworks (MOFs) are emerging in recent years as a kind of versatile fluorescent sensing materials, but their application to enzyme assays has rarely been studied. Here, the first example of a MOF-based label-free enzyme assay system is reported. A luminescent MOF was synthesized and applied to the activity analysis of polyphenol oxidase (PPO). With its distinct responses to the phenolic substrate and o-quinone product, this MOF could transduce the extent of PPO-catalyzed oxidation to fluorescence signal and enable the real-time monitoring of this reaction. Wide substrate adaptability and high sensitivity (detection limit=0.00012 U mL -1 ) were exhibited by this method, which meets the requirement of common bioanalysis. Interestingly, by the comparison with molecular capturing reagents, the heterogeneous nature of this MOF-based assay effectively preventing the interaction with the enzyme was proven, thus ensuring the authenticity of results. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Purification and partial biochemical characterization of polyphenol oxidase from mango (Mangifera indica cv. Manila).

    Science.gov (United States)

    Palma-Orozco, Gisela; Marrufo-Hernández, Norma A; Sampedro, José G; Nájera, Hugo

    2014-10-08

    Polyphenol oxidase (PPO) is an enzyme widely distributed in the plant kingdom that has been detected in most fruits and vegetables. PPO was extracted and purified from Manila mango (Mangifera indica), and its biochemical properties were studied. PPO was purified 216-fold by hydrophobic interaction and ion exchange chromatography. PPO was purified to homogeneity, and the estimated PPO molecular weight (MW) by SDS-PAGE was ≈31.5 kDa. However, a MW of 65 kDa was determined by gel filtration, indicating a dimeric structure for the native PPO. The isolated PPO showed the highest affinity to pyrogallol (Km = 2.77 mM) followed by 4-methylcatechol (Km = 3.14 mM) and catechol (Km = 15.14 mM). The optimum pH for activity was 6.0. PPO was stable in the temperature range of 20-70 °C. PPO activity was completely inhibited by tropolone, ascorbic acid, sodium metabisulfite, and kojic acid at 0.1 mM.

  10. Knockdown of Polyphenol Oxidase Gene Expression in Potato (Solanum tuberosum L.) with Artificial MicroRNAs.

    Science.gov (United States)

    Chi, Ming; Bhagwat, Basdeo; Tang, Guiliang; Xiang, Yu

    2016-01-01

    It is of great importance and interest to develop crop varieties with low polyphenol oxidase (PPO) activity for the food industry because PPO-mediated oxidative browning is a main cause of post-harvest deterioration and quality loss of fresh produce and processed foods. We recently demonstrated that potato tubers with reduced browning phenotypes can be produced by inhibition of the expression of several PPO gene isoforms using artificial microRNA (amiRNA) technology. The approach introduces a single type of 21-nucleotide RNA population to guide silencing of the PPO gene transcripts in potato tissues. Some advantages of the technology are: small RNA molecules are genetically transformed, off-target gene silencing can be avoided or minimized at the stage of amiRNA designs, and accuracy and efficiency of the processes can be detected at every step using molecular biological techniques. Here we describe the methods for transformation and regeneration of potatoes with amiRNA vectors, detection of the expression of amiRNAs, identification of the cleaved product of the target gene transcripts, and assay of the expression level of PPO gene isoforms in potatoes.

  11. Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit.

    Science.gov (United States)

    Bravo, Karent; Osorio, Edison

    2016-04-15

    Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued, however it is a very rich source of polyphenol oxidase (PPO). In this study, Cape gooseberry PPO was isolated and biochemically characterized. The enzyme was extracted and purified using acetone and aqueous two-phase systems. The data indicated that PPO had the highest substrate affinity for chlorogenic acid, 4-methylcatechol and catechol. Chlorogenic acid was the most suitable substrate (Km=0.56±0.07 mM and Vmax=53.15±2.03 UPPO mL(-1) min(-1)). The optimal pH values were 5.5 for catechol and 4-methylcatechol and 5.0 for chlorogenic acid. Optimal temperatures were 40°C for catechol, 25°C for 4-methylcatechol and 20°C for chlorogenic acid. In inhibition tests, the most potent inhibitor was found to be ascorbic acid followed by L-cysteine and quercetin. This study shows possible treatments that can be implemented during the processing of Cape gooseberry fruits to prevent browning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Intracellular antioxidant activity of grape skin polyphenolic extracts in rat superficial colonocytes: in situ detection by confocal fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Mara Elena eGiordano

    2016-05-01

    Full Text Available Colon is exposed to a number of prooxidant conditions and several colon diseases are associated with increased levels of reactive species. Polyphenols are the most abundant antioxidants in the diet, but to date no information is available about their absorption and potential intracellular antioxidant activity on colon epithelial cells. The work was addressed to study the intracellular antioxidant activity of red grape polyphenolic extracts on rat colon epithelium experimentally exposed to prooxidant conditions.The experimental model chosen was represented by freshly isolated colon explants, which closely resemble the functional and morphological characteristics of the epithelium in vivo. The study was carried out by in situ confocal microscopy observation on CM-H2DCFDA charged explants exposed to H2O2 (5, 10 and 15 min. The qualitative and quantitative polyphenolic composition of the extracts as well as their in vitro oxygen radical absorbing capacity (ORAC was determined. The incubation of the explants with the polyphenolic extracts for 1h produced a significant decrease of the H2O2 induced fluorescence. This effect was more pronounced following 15 min H2O2 exposure with respect to 5 min and it was also more evident for extracts obtained from mature grapes, which showed an increased ORAC value and qualitative peculiarities in the polyphenolic composition. The results demonstrated the ability of red grape polyphenols to cross the plasma membrane and exert a direct intracellular antioxidant activity in surface colonocytes, inducing a protection against pro-oxidant conditions. The changes in the polyphenol composition due to ripening process was reflected in a more effective antioxidant protection.

  13. [Spectral analysis of polyphenol oxidase (PPO) and lipoxygenase (LOX) treated by pulsed electric field].

    Science.gov (United States)

    Luo, Wei; Zhang, Ruo-Bing; Chen, Jie; Wang, Li-Ming; Guan, Zhi-Cheng; Jia, Zhi-Dong

    2009-08-01

    Inactivation effect of pulsed electric field (PEF) on polyphenol oxidase (PPO) and lipoxygenase (LOX) was investigated using a laboratory PEF system with a coaxial treatment chamber. Circular dichroism (CD) and fluorescence analysis were used to study the conformation change of the protein. The experimental results show that PPO and LOX can be effectively inactivated by the PEF treatment. Inactivation effect of PPO and LOX increases with the increase in the applied electric strength and the treatment time. Activity of PPO and LOX can be reduced by 60.3% and 21.7% at 20 kV x cm(-1) after being treated for 320 micros respectively. The decrease of the negative peaks (208 and 215 nm in PPO spectra, 208 nm and 218 nm in LOX spectra) in CD spectra of PPO and LOX shows that PEF treatment caused a loss of alpha-helix and increase in beta-sheet content, indicating that conformation changes occur in the secondary structure of PPO and LOX enzyme. This effect was strengthened as the applied electric field increased: alpha-helical content of PPO and LOX was 56% and 29% after being treated at 8 kV x cm(-1), however, when the electric field was increased up to 20 kV x cm(-1), alpha-helical content of PPO and LOX decreased to 21% and 16% respectively. The decrease rate of alpha-helix and increase rate of beta-sheet in PPO are higher than LOX, indicating that the second conformation of PPO is less resistant to PEF treatment than LOX. The fluorescence intensity of LOX increases after PEF treatment. At the same time, increasing the applied pulsed electric field increases the fluorescence intensity emitted. Fluorescence measurements confirm that tertiary conformation changes occur in the local structure of LOX. However the possible mechanism of the conformation change induced by the PEF treatment is beyond the scope of the present investigation.

  14. Parameters that enhance the bacterial expression of active plant polyphenol oxidases.

    Directory of Open Access Journals (Sweden)

    Mareike E Dirks-Hofmeister

    Full Text Available Polyphenol oxidases (PPOs, EC 1.10.3.1 are type-3 copper proteins that enzymatically convert diphenolic compounds into their corresponding quinones. Although there is significant interest in these enzymes because of their role in food deterioration, the lack of a suitable expression system for the production of soluble and active plant PPOs has prevented detailed investigations of their structure and activity. Recently we developed a bacterial expression system that was sufficient for the production of PPO isoenzymes from dandelion (Taraxacum officinale. The system comprised the Escherichia coli Rosetta 2 (DE3 [pLysSRARE2] strain combined with the pET-22b(+-vector cultivated in auto-induction medium at a constant low temperature (26 °C. Here we describe important parameters that enhance the production of active PPOs using dandelion PPO-2 for proof of concept. Low-temperature cultivation was essential for optimal yields, and the provision of CuCl2 in the growth medium was necessary to produce an active enzyme. By increasing the copper concentration in the production medium to 0.2 mM, the yield in terms of PPO activity per mol purified protein was improved 2.7-fold achieving a v(max of 0.48 ± 0.1 µkat per mg purified PPO-2 for 4-methylcatechol used as a substrate. This is likely to reflect the replacement of an inactive apo-form of the enzyme with a correctly-folded, copper-containing counterpart. We demonstrated the transferability of the method by successfully expressing a PPO from tomato (Solanum lycopersicum showing that our optimized system is suitable for the analysis of further plant PPOs. Our new system therefore provides greater opportunities for the future of research into this economically-important class of enzymes.

  15. Cloning, Sequencing, Purification, and Crystal Structure of Grenache (Vitis vinifera) Polyphenol Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Virador, V.; Reyes Grajeda, J; Blanco-Labra, A; Mendiola-Olaya, E; Smith, G; Moreno, A; Whitaker, J

    2010-01-01

    The full-length cDNA sequence (P93622{_}VITVI) of polyphenol oxidase (PPO) cDNA from grape Vitis vinifera L., cv Grenache, was found to encode a translated protein of 607 amino acids with an expected molecular weight of ca. 67 kDa and a predicted pI of 6.83. The translated amino acid sequence was 99%, identical to that of a white grape berry PPO (1) (5 out of 607 amino acid potential sequence differences). The protein was purified from Grenache grape berries by using traditional methods, and it was crystallized with ammonium acetate by the hanging-drop vapor diffusion method. The crystals were orthorhombic, space group C2221. The structure was obtained at 2.2 {angstrom} resolution using synchrotron radiation using the 39 kDa isozyme of sweet potato PPO (PDB code: 1BT1) as a phase donor. The basic symmetry of the cell parameters (a, b, and c and {alpha}, {beta}, and {gamma}) as well as in the number of asymmetric units in the unit cell of the crystals of PPO, differed between the two proteins. The structures of the two enzymes are quite similar in overall fold, the location of the helix bundles at the core, and the active site in which three histidines bind each of the two catalytic copper ions, and one of the histidines is engaged in a thioether linkage with a cysteine residue. The possibility that the formation of the Cys-His thioether linkage constitutes the activation step is proposed. No evidence of phosphorylation or glycoslyation was found in the electron density map. The mass of the crystallized protein appears to be only 38.4 kDa, and the processing that occurs in the grape berry that leads to this smaller size is discussed.

  16. Protection by deferoxamine from endothelial injury: A possible link with inhibition of intracellular xanthine oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldo, J.E.; Gorry, M. (Nashville VA Medical Center, TN (USA))

    1990-12-01

    Hydroxyl radical scavengers and xanthine oxidase inhibitors protect cultured bovine pulmonary endothelial cells (BPAEC) from lytic injury by the endotoxin lipopolysaccharide (LPS). We hypothesized that exposure of BPAEC to cytotoxic concentrations of LPS activated intracellular xanthine oxidase, and that intracellular iron-dependent hydroxyl radical formation (a Fenton reaction) ensued, resulting in cell lysis. To test this, the protective effects of deferoxamine against H2O2 and LPS-induced cytotoxicity to BPAEC was assessed by 51Cr release. Preincubation with 0.4 mM deferoxamine conferred 67 +/- 15% (mean +/- SE) protection from LPS-induced cytotoxicity but 48 h of preincubation were required to induce significant protection. Significant protection form a classical Fenton reaction model, injury by 50 microM H2O2, could be induced by a 1-h preincubation with a 0.4 mM deferoxamine. The dissociated time course suggested that deferoxamine might work by different mechanisms in these models. The effects of LPS and deferoxamine on BPAEC-associated xanthine oxidase (XO) and xanthine dehydrogenase (XD) activity were assessed using a spectrofluorophotometric measurement of the conversion of pterin to isoxanthopterin. BPAEC had 106 +/- 7 microU/mg XD+XO activity; XO activity constituted 48 +/- 1% of total XO+XD activity. LPS at a cytotoxic concentration did not alter XO, XD, or percent XO. Deferoxamine had striking proportional inhibitory effects on XO and XD in intact cells. XO+XD activity fell to 6 +/- 1% of control levels during a 48-h exposure of BPAEC to deferoxamine. Deferoxamine did not inhibit XO+XD ex vivo.

  17. Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum.

    Science.gov (United States)

    Shi, Deng-Ke; Zhu, Jing; Sun, Ze-Hua; Zhang, Guang; Liu, Rui; Zhang, Tian-Jun; Wang, Sheng-Li; Ren, Ang; Zhao, Ming-Wen

    2017-10-01

    The alternative oxidase (AOX), which forms a branch of the mitochondrial respiratory electron transport pathway, functions to sustain electron flux and alleviate reactive oxygen species (ROS) production. In this article, a homologous AOX gene was identified in Ganoderma lucidum. The coding sequence of the AOX gene in G. lucidum contains 1038 nucleotides and encodes a protein of 39.48 kDa. RNA interference (RNAi) was used to study the function of AOX in G. lucidum, and two silenced strains (AOXi6 and AOXi21) were obtained, showing significant decreases of approximately 60 and 50 %, respectively, in alternative pathway respiratory efficiency compared to WT. The content of ganoderic acid (GA) in the mutant strains AOXi6 and AOXi21 showed significant increases of approximately 42 and 44 %, respectively, compared to WT. Elevated contents of intermediate metabolites in GA biosynthesis and elevated transcription levels of corresponding genes were also observed in the mutant strains AOXi6 and AOXi21. In addition, the intracellular ROS content in strains AOXi6 and AOXi21 was significantly increased, by approximately 1.75- and 1.93-fold, respectively, compared with WT. Furthermore, adding N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly depressed the intracellular ROS content and GA accumulation in AOX-silenced strains. These results indicate that AOX affects GA biosynthesis by regulating intracellular ROS levels. Our research revealed the important role of AOX in the secondary metabolism of G. lucidum.

  18. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    Directory of Open Access Journals (Sweden)

    Tran Lan T

    2012-08-01

    Full Text Available Abstract Background Plant polyphenol oxidases (PPOs are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss and Glycine max (soybean each had 11 genes. Populus trichocarpa (poplar contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae genomes or Arabidopsis (A. lyrata and A. thaliana. We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic

  19. Decrease of the IgE-binding by Mal d 1, the major apple allergen, by means of polyphenol oxidase and peroxidase treatments

    NARCIS (Netherlands)

    Garcia-Borrego, A.; Wichers, J.H.; Wichers, H.J.

    2007-01-01

    Mal d 1, the major apple allergen, is heat labile and easily oxidized. Oxidative reactions catalyzed by polyphenol oxidase (PPO) and/or peroxidase (POD), present in apple, may be involved in decreasing its allergenicity. PPO and POD convert phenolic compounds into o-quinones. In this study the

  20. Expression analysis of polyphenol oxidase isozymes by active staining method and tissue browning of head lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Noda, Takahiro; Iimure, Kazuhiko; Okamoto, Shunsuke; Saito, Akira

    2017-08-01

    Browning of plant tissue is generally considered attributable to enzymatic oxidation by polyphenol oxidase (PPO). Electrophoresis followed by activity staining has been used as an effective procedure to visually detect and isolate isozymes; however, it has not been applied for examination of various PPO isozymes in lettuce. Our study demonstrated that different lettuce PPO isozymes could be detected at different pH in active staining, and multiple isozymes were detected only under alkaline conditions. As a result, we concluded that activity staining with approximately pH 8 enabled to detect various PPO isozymes in lettuce. By expression analysis of the PPO isozymes after wounding, PPO isozymes that correlated with time-course of tissue browning were detected. The wound-induced PPO may play a key role in enzymatic browning.

  1. Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions.

    Science.gov (United States)

    De Neve, N; Vlaeminck, B; Gadeyne, F; Claeys, E; Van der Meeren, P; Fievez, V

    2018-03-16

    Previously, polyunsaturated fatty acids (PUFA) from linseed oil were effectively protected (>80%) against biohydrogenation through polyphenol-oxidase-mediated protein crosslinking of an emulsion, prepared with polyphenol oxidase (PPO) extract from potato tuber peelings. However, until now, emulsions of only 2 wt% oil have been successfully protected, which implies serious limitations both from a research perspective (e.g. in vivo trials) as well as for further upscaling toward practical applications. Therefore, the aim of this study was to increase the oil/PPO ratio. In the original protocol, the PPO extract served both an emulsifying function as well as a crosslinking function. Here, it was first evaluated whether alternative protein sources could replace the emulsifying function of the PPO extract, with addition of PPO extract and 4-methylcatechol (4MC) to induce crosslinking after emulsion preparation. This approach was then further used to evaluate protection of emulsions with higher oil content. Five candidate emulsifiers (soy glycinin, gelatin, whey protein isolate (WPI), bovine serum albumin and sodium caseinate) were used to prepare 10 wt% oil emulsions, which were diluted five times (w/w) with PPO extract (experiment 1). As a positive control, 2 wt% oil emulsions were prepared directly with PPO extract according to the original protocol. Further, emulsions of 2, 4, 6, 8 and 10 wt% oil were prepared, with 80 wt% PPO extract (experiment 2), or with 90, 80, 70, 60 and 50 wt% PPO extract, respectively (experiment 3) starting from WPI-stabilized emulsions. Enzymatic crosslinking was induced by 24-h incubation with 4MC. Ruminal protection efficiency was evaluated by 24-h in vitro batch simulation of the rumen metabolism. In experiment 1, protection efficiencies were equal or higher than the control (85.5% to 92.5% v. 81.3%). In both experiments 2 and 3, high protection efficiencies (>80%) were achieved, except for emulsions containing 10 wt% oil emulsions (<50

  2. Structural diversity in the dandelion (Taraxacum officinale polyphenol oxidase family results in different responses to model substrates.

    Directory of Open Access Journals (Sweden)

    Mareike E Dirks-Hofmeister

    Full Text Available Polyphenol oxidases (PPOs are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure-function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1 potentially acts as a "selector" for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates.

  3. Structural diversity in the dandelion (Taraxacum officinale) polyphenol oxidase family results in different responses to model substrates.

    Science.gov (United States)

    Dirks-Hofmeister, Mareike E; Singh, Ratna; Leufken, Christine M; Inlow, Jennifer K; Moerschbacher, Bruno M

    2014-01-01

    Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure-function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a "selector" for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates.

  4. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    Science.gov (United States)

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-08

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.

  5. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    International Nuclear Information System (INIS)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo

    2007-01-01

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D 10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D 10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period

  6. Isolation and characterization of polyphenol oxidase from Sardinian poisonous and non-poisonous chemotypes of Ferula communis (L.).

    Science.gov (United States)

    Zucca, Paolo; Sanjust, Enrico; Loi, Martina; Sollai, Francesca; Ballero, Mauro; Pintus, Manuela; Rescigno, Antonio

    2013-06-01

    Ferula communis (L.), a plant belonging to Apiaceae, is widely present in Sardinia, Italy. Currently, interest in F. communis focuses on the presence of two chemotypes in the wild. One chemotype is poisonous to animals, whereas the other chemotype is non-poisonous. Polyphenol oxidase (PPO) has been extracted and partially purified from the two chemotypes of F. communis. The biochemical characterization of the enzymes showed significant differences. In particular, while the two PPOs were not able to use 6- and 7-hydroxycoumarin as substrates, they showed distinct specificity for 6,7- and 7,8-dihydroxycoumarin. Significant differences in the enzyme behavior towards common PPO inhibitors were also observed. In addition, activation energy and activation energy for denaturation were determined, showing significant differences between FP-PPO and FNP-PPO, particularly for denaturation kinetics. The possible roles of the two PPOs in determining differences in composition and toxicity of the two F. communis chemotypes are also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Characterization of polyphenol oxidase in two cocoa (Theobroma cacao L. cultivars produced in the south of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Adrielle Souza Leão MACEDO

    2016-01-01

    Full Text Available Abstract The reactions leading to the formation of precursors of chocolate flavor are performed by endogenous enzymes present in the cocoa seed. Polyphenol oxidase (PPO presence and activity during fermentation of cocoa beans is responsible for the development of flavor precursors and is also implicated in the reduction of bitterness and astringency. However, the reliability of cocoa enzyme activities is complicated due to variations in different genotypes, geographical origins and methods of fermentation. In addition, there is still a lack of systematic studies comparing different cocoa cultivars. So, the present study was designed to characterize the activity of PPO in the pulp and seeds of two cocoa cultivars, PH 16 and TSH 1188. The PPO activity was determined spectrophotometrically and characterized as the optimal substrate concentration, pH and temperature and the results were correlated with the conditions during the fermentation process. The results showed the specificity and differences between the two cocoa cultivars and between the pulp and seeds of each cultivar. It is suggested that specific criteria must be adopted for each cultivar, based on the optimal PPO parameters, to prolong the period of maximum PPO activity during fermentation, contributing to the improvement of the quality of cocoa beans.

  8. Intracellular lysyl oxidase: Effect of a specific inhibitor on nuclear mass in proliferating cells

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Fawzy A. [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Torres, Marie [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Wang, Hao [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Graham, Lila, E-mail: lilagraham@cs.com [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2010-06-11

    LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN ({beta}-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.

  9. Isolation of a latent polyphenol oxidase from loquat fruit (Eriobotrya japonica Lindl.): kinetic characterization and comparison with the active form.

    Science.gov (United States)

    Sellés-Marchart, Susana; Casado-Vela, Juan; Bru-Martínez, Roque

    2006-02-15

    Polyphenol oxidase (PPO) has been extracted from both soluble and particulate fractions of loquat fruit (Eriobotrya japonica Lindl. cv. Algerie). The soluble PPO (20% of total activity) was partially purified 3.3-fold after ammonium sulfate fractionation being in its active state. The particulate PPO fraction (80% of total activity) was purified to homogeneity in a latent form being activable by sodium dodecyl sulfate (SDS). The enzyme was purified 40.0-fold with a total yield of 15.3% after extraction by phase partitioning in Triton X-114 followed by three chromatographic steps. The molecular weight was estimated to be about 59.2 and 61.2 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography, respectively, indicating that latent PPO is a monomer. Latent PPO catalyzed the oxidation of chlorogenic acid (CA) at a rate 50-fold faster than that of 4-tert-butylcatechol (TBC) but the soluble active counterpart only twice. Both PPOs exhibited similar Km values for TBC but Km for CA was 5-fold higher for the latent than for the active soluble PPO. Other kinetic characteristics, including sensitivity to inhibitors, substrate specificity, thermal stability, temperature, and pH profiles, were quite different between both PPOs. These results provide strong evidences that the soluble active and the particulate latent are different forms of PPO in loquat fruit flesh. The results suggest that the major PPO form for the oxidation of CA, leading to enzymatic browning under physiological conditions, is the latent one.

  10. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  11. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice.

    Science.gov (United States)

    Chen, Gang; Tan, Ming-Liang; Li, Kai-Kai; Leung, Ping-Chung; Ko, Chun-Hay

    2015-12-04

    Green tea is a Chinese materia medica with the main functions of "inducing urination and quenching thirst". Green tea polyphenols (GTP) are generally acknowledged as the main active fraction with multiple pharmacological functions in green tea. However, the effect of GTP on hyperuricemia is not clear till now. The present study was carried out to investigate the effect of GTP on serum level of uric acid in potassium oxonate (PO)-induced hyperuricemic mice, and explore the underlying mechanisms from two aspects of production and excretion of uric acid. PO and GTP were intragastricly administered to mice for consecutive 7 days. Serum level of uric acid, and xanthine oxidase (XOD) activity in serum and liver were examined. Simultaneously, expression of XOD protein in liver was analyzed by Western blot assay. Expressions of urate transporters including urate-anion transporter (URAT) 1, organic anion transporter (OAT) 1 and 3 in kidney were analyzed by immunohistochemistry staining method. 300 and 600 mg/kg GTP significantly decreased serum level of uric acid of hyperuricemic mice in a dose-dependent manner (p<0.05 or p<0.01). Besides, 300 and 600 mg/kg GTP markedly reduced XOD activity in serum and liver of hyperuricemic mice (both p<0.01). Furthermore, 300 and 600 mg/kg GTP clearly reduced XOD expression in liver, as well as reduced URAT1 expression and increased OAT1 and OAT3 expressions in kidney of hyperuricemic mice (p<0.05 or p<0.01). These results demonstrated that GTP had the effect of lowering uric acid through decreasing the uric acid production and increasing uric acid excretion. Our study suggested that GTP would be a promising candidate as a novel hypouricaemic agent for further investigation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action.

    Science.gov (United States)

    Khan, Husain Yar; Zubair, Haseeb; Faisal, Mohd; Ullah, Mohd Fahad; Farhan, Mohd; Sarkar, Fazlul H; Ahmad, Aamir; Hadi, Sheikh Mumtaz

    2014-03-01

    Anticancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as antioxidants, but can be prooxidants in the presence of copper ions. We earlier proposed a mechanism for such activity of polyphenols and now we provide data in multiple cancer cell lines in support of our hypothesis. Through multiple assays, we show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition. Since the concentration of copper is significantly elevated in cancer cells, our results strengthen the idea that an important anticancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this prooxidant chemopreventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparative investigation to see the efficacy of polyphenol oxidase inhibitors parallel to sulphite for control of enzymatic browning in guava juice

    International Nuclear Information System (INIS)

    Zai, M.N.K.A.

    2008-01-01

    Comparative study was conducted to determine the efficacy of polyphenol oxidase inhibitors to control browning in guava juice/concentrates parallel to sulfite. Although sulfites are highly effective to control the browning but these have shown adverse effect on health particularly to those who have pulmonary disorder like asthma. Filtration with useful filter aid and juicing agents are found to be helpful in removing browning residue particulates fractions to extend the shelf life of the juice. Non-enzymatic browning can be prevented by cold blanching. (author)

  14. Sensitive and Selective Ratiometric Fluorescence Probes for Detection of Intracellular Endogenous Monoamine Oxidase A.

    Science.gov (United States)

    Wu, Xiaofeng; Li, Lihong; Shi, Wen; Gong, Qiuyu; Li, Xiaohua; Ma, Huimin

    2016-01-19

    Monoamine oxidase A (MAO-A) is known to widely exist in most cell lines in the body, and its dysfunction (unusually high or low levels of MAO-A) is thought to be responsible for several psychiatric and neurological disorders. Thus, a sensitive and selective method for evaluating the relative MAO-A levels in different live cells is urgently needed to better understand the function of MAO-A, but to our knowledge such a method is still lacking. Herein, we rationally design two new ratiometric fluorescence probes (1 and 2) that can sensitively and selectively detect MAO-A. The probes are constructed by incorporating a recognition group of propylamine into the fluorescent skeleton of 1,8-naphthalimide, and the detection mechanism is based on amine oxidation and β-elimination to release the fluorophore (4-hydroxy-N-butyl-1,8-naphthalimide), which is verified by HPLC analysis. Reaction of the probes with MAO-A produces a remarkable fluorescence change from blue to green, and the ratio of fluorescence intensity at 550 and 454 nm is directly proportional to the concentration of MAO-A in the ranges of 0.5-1.5 and 0.5-2.5 μg/mL with detection limits of 1.1 and 10 ng/mL (k = 3) for probes 1 and 2, respectively. Surprisingly, these probes show strong fluorescence responses to MAO-A but almost none to MAO-B (one of two isoforms of MAO), indicating superior ability to distinguish MAO-A from MAO-B. The high specificity of the probes for MAO-A over MAO-B is further supported by different inhibitor experiments. Moreover, probe 1 displays higher sensitivity than probe 2 and is thus investigated to image the relative MAO-A levels in different live cells, such as HeLa and NIH-3T3 cells. It is found that the concentration of endogenous MAO-A in HeLa cells is approximately 1.8 times higher than that in NIH-3T3 cells, which is validated by the result from an ELISA kit. Additionally, the proposed probes may find more uses in the specific detection of MAO-A between the two isoforms of MAO

  15. Differences in the activity of superoxide dismutase, polyphenol oxidase and Cu-Zn content in the fruits of Gordal and Manzanilla olive varieties.

    Science.gov (United States)

    Hornero-Méndez, Dámaso; Gallardo-Guerrero, Lourdes; Jarén-Galán, Manuel; Mínguez-Mosquera, María Isabel

    2002-01-01

    Activity of the enzymes superoxide dismutase (SOD) and polyphenol oxidase (PPO) as well as Cu-Zn content have been monitored during the thirteen weeks growth of both Gordal and Manzanilla olive variety fruits. These metalloenzymes, with Cu and Zn in the prostetic group, are involved in controlling the redox balance in the chloroplast environment. The results indicated that, under similar phenological and environmental conditions, there are periodic peaks of SOD activity in both varieties, followed by fluctuations in the copper content of the fruit. This was interpreted as a common and simultaneous response to situations of oxidative stress, and this response was more intense in the variety Gordal. The enzyme PPO showed an activity peak at start of growth and then practically disappeared. Thus, its activity cannot be correlated with situations of stress or with changes of Cu and Zn in the fruit.

  16. Elasto-regenerative properties of polyphenols.

    Science.gov (United States)

    Sinha, Aditi; Nosoudi, Nasim; Vyavahare, Naren

    2014-02-07

    Abdominal aortic aneurysms (AAA) are progressive dilatations of infra-renal aorta causing structural weakening rendering the aorta prone to rupture. AAA can be potentially stabilized by inhibiting inflammatory enzymes such as matrix metalloproteinases (MMP); however, active regression of AAA is not possible without new elastic fiber regeneration. Here we report the elastogenic benefit of direct delivery of polyphenols such as pentagalloyl glucose (PGG), epigallocatechin gallate (EGCG), and catechin, to smooth muscle cells obtained either from healthy or from aneurysmal rat aorta. Addition of 10 μg/ml PGG and ECGC induce elastin synthesis, organization, and crosslinking while catechin does not. Our results indicate that polyphenols bind to monomeric tropoelastin and enhance coacervation, aid in crosslinking of elastin by increasing lysyl oxidase (LOX) synthesis, and by blocking MMP-2 activity. Thus, polyphenol treatments leads to increased mature elastin fibers synthesis without increasing the production of intracellular tropoelastin. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Egg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes.

    Science.gov (United States)

    Altinkaynak, Cevahir; Kocazorbaz, Ebru; Özdemir, Nalan; Zihnioglu, Figen

    2018-04-01

    In this study, for the first time, we described organic-inorganic hybrid nanoflowers using crude egg white as the organic component and copper (II) ions as the inorganic component under the mild conditions. The synthesized egg white-inorganic hybrid nanoflowers (EW-hNFs) were characterized using SEM, EDX, XRD and FTIR analysis. The biomimetic Polyphenol/Peroxidase like activities of synthesized egg white-inorganic hybrid nanoflowers (EW-hNFs) were determined by using various phenolics with or without H 2 O 2 . Optimum pH and temperature, kinetic parameters, reusability, pH and thermal stability of EW-hNFs were also studied. The most noteworthy aspect of our study is that synthesized EW-hNFs which consist of only egg white proteins, showed polyphenol oxidase activity. Furthermore, potential use of the EW-hNFs in the discoloration of the some synthetic dyes was also evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and ß-glucan in US barley breeding germplasm

    Science.gov (United States)

    A renewed interest in breeding barley specifically for food end-uses is being driven by increased consumer interest in healthier foods. We conducted association mapping on physicochemical properties of barley that play a role in food quality and processing including, grain hardness, polyphenol oxid...

  19. Characterization of a Highly Thermostable and Organic Solvent-Tolerant Copper-Containing Polyphenol Oxidase with Dye-Decolorizing Ability from Kurthia huakuii LAM0618T.

    Directory of Open Access Journals (Sweden)

    Xiang Guo

    Full Text Available Laccases are green biocatalysts that possess attractive advantages for the treatment of resistant environmental pollutants and dye effluents. A putative laccase-like gene, laclK, encoding a protein of 29.3 kDa and belonging to the Cu-oxidase_4 superfamily, was cloned and overexpressed in Escherichia coli. The purified recombinant protein LaclK (LaclK was able to oxidize typical laccase substrates such as 2,6-dimethoxyphenol and l-dopamine. The characteristic adsorption maximums of typical laccases at 330 nm and 610 nm were not detected for LaclK. Cu2+ was essential for substrate oxidation, but the ratio of copper atoms/molecule of LaclK was determined to only be 1:1. Notably, the optimal temperature of LaclK was 85°C with 2,6-dimethoxyphenol as substrates, and the half-life approximately 3 days at 80°C. Furthermore, 10% (v/v organic solvents (methanol, ethanol, isopropyl alcohol, butyl alcohol, Triton x-100 or dimethyl sulfoxide could promote enzymatic activity. LaclK exhibited wide-spectrum decolorization ability towards triphenylmethane dyes, azo dyes and aromatic dyes, decolorizing 92% and 94% of Victoria Blue B (25 μM and Ethyl Violet (25 μM, respectively, at a concentration of 60 U/L after 1 h of incubation at 60°C. Overall, we characterized a novel thermostable and organic solvent-tolerant copper-containing polyphenol oxidase possessing dye-decolorizing ability. These unusual properties make LaclK an alternative for industrial applications, particularly processes that require high-temperature conditions.

  20. Yield, physicochemical traits, antioxidant pattern, polyphenol oxidase activity and total visual quality of field-grown processing tomato cv. Brigade as affected by water stress in Mediterranean climate.

    Science.gov (United States)

    Barbagallo, Riccardo N; Di Silvestro, Isabella; Patanè, Cristina

    2013-04-01

    The 'processing tomato' is an important source of natural antioxidants whose concentration depends, along with other parameters, on water availability. In order to better understand the mechanisms that regulate the response to water stress, a study was carried out in a typically semi-arid Mediterranean environment to investigate the yield, chemical composition and visual quality of tomato cv. 'Brigade' field grown under no irrigation (V0) in comparison with those of the conventional fully irrigated crop (V100). The stressful conditions of V0 affected the total yield. Nevertheless, fruits exhibited an increase in firmness (+27%), total solids (+23%) and total soluble solids (+5%). The dynamic balance between the antioxidant pattern and polyphenol oxidase activity under water stress conditions resulted in fruits with increased antioxidant activity (+12%), due to a decline in enzyme activity (-48%) and a rise in vitamin C (+20%) and total phenolic (+13%) contents. It is possible to manage water stress by applying water-saving irrigation strategies in order to promote the quality and nutritional properties of tomatoes while also contributing to saving water. This is a relevant aspect in processing tomato cultivation in semi-arid environments, where both the cost and availability of irrigation water represent a rising problem in agricultural activities. © 2012 Society of Chemical Industry.

  1. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato.

    Science.gov (United States)

    Richter, Carolin; Dirks, Mareike E; Gronover, Christian Schulze; Prüfer, Dirk; Moerschbacher, Bruno M

    2012-02-01

    Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.

  2. Composition, physicochemical properties and thermal inactivation kinetics of polyphenol oxidase and peroxidase from coconut (Cocos nucifera) water obtained from immature, mature and overly-mature coconut.

    Science.gov (United States)

    Tan, Thuan-Chew; Cheng, Lai-Hoong; Bhat, Rajeev; Rusul, Gulam; Easa, Azhar Mat

    2014-01-01

    Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Impact of high pressure processing on color, bioactive compounds, polyphenol oxidase activity, and microbiological attributes of pumpkin purée.

    Science.gov (United States)

    González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez

    2016-04-01

    Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée. © The Author(s) 2015.

  4. Enzyme characterisation, isolation and cDNA cloning of polyphenol oxidase in the hearts of palm of three commercially important species.

    Science.gov (United States)

    Shimizu, Milton Massao; Melo, Geraldo Aclécio; Brombini Dos Santos, Adriana; Bottcher, Alexandra; Cesarino, Igor; Araújo, Pedro; Magalhães Silva Moura, Jullyana Cristina; Mazzafera, Paulo

    2011-09-01

    Heart of palm (palmito) is the edible part of the apical meristem of palms and is considered a gourmet vegetable. Palmitos from the palms Euterpe edulis (Juçara) and Euterpe oleracea (Açaí) oxidise after harvesting, whereas almost no oxidation is observed in palmitos from Bactris gasipaes (Pupunha). Previous investigations showed that oxidation in Juçara and Açaí was mainly attributable to polyphenol oxidase (PPO; EC 1.14.18.1) activity. In this study, we partially purified PPOs from these three palmitos and analysed them for SDS activation, substrate specificity, inhibition by specific inhibitors, thermal stability, optimum pH and temperature conditions, Km and Ki. In addition, the total phenolic content and chlorogenic acid content were determined. Two partial cDNA sequences were isolated and sequenced from Açaí (EoPPO1) and Juçara (EePPO1). Semi-quantitative RT-PCR expression assays showed that Açaí and Juçara PPOs were strongly expressed in palmitos and weakly expressed in leaves. No amplification was observed for Pupunha samples. The lack of oxidation in the palmito Pupunha might be explained by the low PPO expression, low enzyme activity or the phenolic profile, particularly the low content of chlorogenic acid. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. In silico analysis, mapping of regulatory elements and corresponding dna-protein interaction in polyphenol oxidase gene promoter from different rice varieties

    International Nuclear Information System (INIS)

    Mahmood, T.; Rehman, M.; Aziz, E.

    2015-01-01

    Polyphenol oxidase (PPO) is an important enzyme that has positive impact regarding plant resistance against different biotic and abiotic stresses. In the present study PPO promoter from six different rice varieties was amplified and then analyzed for cis- and trans-acting elements. The study revealed a total of 79 different cis-acting regulatory elements including 11 elements restricted to only one or other variety. Among six varieties Pakhal-Basmati had highest number (5) of these elements, whereas C-622 and Rachna-Basmati have no such sequences. Rachna-Basmati, IR-36-Basmati and Kashmir- Basmati had 1, 2 and 3 unique elements, respectively. Different elementsrelated to pathogen, salt and water stresses were found, which may be helpful in controlling PPO activity according to changing environment. Moreover, HADDOCK was used to understand molecular mechanism of PPO regulation and it was found that DNA-protein interactions are stabilized by many potential hydrogen bonds. Adenine and arginine were the most reactive residues in DNA and proteins respectively.Structural comparison of different protein-DNA complexes show that even a highly conserved transcriptional factor can adopt different conformations when they contact a different DNA binding sequence, however their stable interactions depend on the number of hydrogen bonds formed and distance. (author)

  6. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women.

    Science.gov (United States)

    Cercamondi, Colin I; Egli, Ines M; Zeder, Christophe; Hurrell, Richard F

    2014-02-01

    In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes. In study 1, Fe absorption from meals with 17 mg PP (8·5%) was higher than that from meals with 73 mg PP (3·2%) and 167 mg PP (2·7%; P< 0·001). Fe absorption from meals containing 73 and 167 mg PP did not differ (P= 0·9). In study 2, Fe absorption from NaFeEDTA-fortified meals (167 mg PP) was higher than that from the same meals fortified with FeSO₄ (4·6 v. 2·7%; P< 0·001), but still it was lower than that from FeSO₄-fortified meals with 17 mg PP (10·7%; P< 0·001). In study 3, laccase treatment decreased the levels of PP from 167 to 42 mg, but it did not improve absorption compared with that from meals with 167 mg PP (4·8 v. 4·6%; P= 0·4), whereas adding AA increased absorption to 13·6% (P< 0·001). These findings suggest that PP from brown sorghum contribute to low Fe bioavailability from sorghum foods and that AA and, to a lesser extent, NaFeEDTA, but not laccase, have the potential to overcome the inhibitory effect of PP and improve Fe absorption from sorghum foods.

  7. High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius): Effect on pulp color and inactivation of peroxidase and polyphenol oxidase.

    Science.gov (United States)

    Jesus, Ana Laura Tibério de; Leite, Thiago Soares; Cristianini, Marcelo

    2018-03-01

    The present study evaluated the effect of high isostatic pressure (HIP) on the activity of peroxidase (POD) and polyphenol oxidase (PPO) from açaí. Açaí pulp was submitted to several combinations of pressure (400, 500, 600MPa), temperature (25 and 65°C) for 5 and 15min. The combined effect of HIP technology and high temperatures (690MPa by 2 and 5min at 80°C) was also investigated and compared to the conventional thermal treatment (85°C/1min). POD and PPO enzyme activity and instrumental color were examined after processing and after 24h of refrigerated storage. Results showed stability of POD for all pressures at 25°C, which proved to be heat-resistant and baro-resistant at 65°C. For PPO, the inactivation at 65°C was 71.7% for 600MPa after 15min. In general, the increase in temperature from 25°C to 65°C reduced the PPO relative activity with no changes in color. Although the thermal treatment and the HIP (690MPa) along with high temperature (80°C) reduced the PPO relative activity, and relevant darkening was observed in the processed samples. Thus, it can be concluded that POD is more baro-resistant than PPO in açaí pulp subjected to the same HIP processing conditions and processing at 600MPa/65°C for 5min may be an effective alternative for thermal pasteurization treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Macromolecular crowding enhances the binding of superoxide dismutase to xanthine oxidase: implications for protein-protein interactions in intracellular environments.

    Science.gov (United States)

    Zhou, Yu-Ling; Liao, Jun-Ming; Chen, Jie; Liang, Yi

    2006-01-01

    Physiological medium constitutes a crowded environment that serves as the field of action for protein-protein interaction in vivo. Measuring protein-protein interaction in crowded solutions can mimic this environment. Here we report the application of fluorescence spectroscopy and resonant mirror biosensor to investigate the interactions of bovine milk xanthine oxidase and bovine erythrocyte copper, zinc-superoxide dismutase in crowded solutions. Four nonspecific high molecular mass crowding agents, poly(ethylene glycol) 2000 and 20,000, Ficoll 70, and dextran 70, and one low molecular mass compound, glycerol, are used. Superoxide dismutase shows a strong and macromolecular crowding agent concentration-dependent binding affinity to xanthine oxidase. Addition of high concentrations of such high molecular mass crowding agents increases the binding constant remarkably and thus stabilizes superoxide dismutase activity, compared to those in the absence of crowding agents. In contrast, glycerol has little effect on the binding constant and decreases superoxide dismutase activity over the same concentration range. Such a pattern suggests that the enhancing effects of polymers and polysaccharides on the binding are due to macromolecular crowding. Taken together, these results indicate that macromolecular crowding enhances the binding of superoxide dismutase to xanthine oxidase and is favorable to the function of superoxide dismutase.

  9. Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelia induces apoptosis by increasing intracellular calcium levels and activating JNK and NADPH oxidase-dependent generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Tae Hwan Kim

    Full Text Available Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca(2+ concentration ([Ca(2+](i and activating JNK to generate reactive oxygen species (ROS via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47(phox and p67(phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca(2+](i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47(phox and p67(phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca(2+](i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.

  10. A new sensitive and quantitative chemiluminescent assay to monitor intracellular xanthine oxidase activity for rapid screening of inhibitors in living endothelial cells.

    Science.gov (United States)

    Caliceti, C; Calabria, D; Roda, A

    2016-12-01

    Xanthine oxidase (XO) is an important enzyme, expressed at high levels in the vasculature in endothelial cells, that catalyzes the hydroxylation of hypoxanthine to xanthine and xanthine to uric acid. Excessive production of uric acid results in hyperuricemia linked to gout and cardiovascular diseases. Testing inhibition of XO is important for detection of potentially effective drugs or natural products that could be used to treat diseases caused by increased XO activity. In the present study, for the first time, we developed an in vitro chemiluminescent bioassay to determine XO activity in living endothelial cells and the IC50 value of oxypurinol, the active metabolite of the inhibitor drug allopurinol. Intracellular XO activity was measured in less than 20 min with a luminol/catalyst-based chemiluminescence assay able to measure XO with a limit of 0.4 μU/mL. Oxypurinol addition to 5 × 10 3 cells (ranging from 5.0 to 0.0 μM) caused a linear decrease in XO activity, with an IC50 of 1.0 ± 0.5 μM. The detection system developed was low-cost, rapid, reproducible, and easily miniaturizable so suitable to be used on small quantities of cells.

  11. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce.

    Science.gov (United States)

    Landi, Marco; Degl'Innocenti, Elena; Guglielminetti, Lorenzo; Guidi, Lucia

    2013-06-01

    Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity. © 2012 Society of Chemical Industry.

  12. Polyphenol oxidase-based luminescent enzyme hydrogel

    Indian Academy of Sciences (India)

    shaped composite-basedluminescent enzyme hydrogel network as immobilized scaffold for oxido-reductase efficiency on phenolic substrates includingphenol, resorcinol, catechol and quinol was synthesized and characterized through ...

  13. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells.

    Science.gov (United States)

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2014-07-10

    Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an

  14. A New Laccase Biosensor For Polyphenols Determination

    Directory of Open Access Journals (Sweden)

    M. J.F. Rebelo

    2003-06-01

    Full Text Available The relevance of polyphenols in human health is a well known fact. Prompted by that, a very intensive research has been directed to get a method to detect them, wich will improve the current ones. Laccase (p-diphenol:dioxygen oxidoreductase EC 1.10.3.2 is a multi-copper oxidase, wich couples catalytic oxidation of phenolic substrates with four electron reduction of dioxygen to water [1]. A maximum catalytic response in oxigenated electrolyte was observed between 4.5 and 5.5 [2], while for pH > 6.9 the laccase was found to be inactive [3]. We prepared a biosensor with laccase immobilised on a polyether sulphone membrane, at pH 4.5, wich was applied at Universal Sensors base electrode. Reduction of the product of oxidation of several polyphenols, catalysed by laccase, was done at a potential for wich the polyphenol of interest was found to respond. Reduction of catechol was found to occur at a potential of -200mV, wich is often referred to in the literature for polyphenolic biosensors. However other polyphenols did not respond at that potential. It was observed that (+- catechin produced a very large cathodic current when +100mV were applied to the laccase biosensor, both in aqueous acetate and 12% ethanol acetate buffer, whereas caffeic acid responded at -50mV. Other polyphenols tested were gallic acid, malvidin, quercetin, rutin, trans-resveratrol

  15. Impact of Dietary Polyphenols on Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Kati Hanhineva

    2010-03-01

    Full Text Available Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic b-cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.

  16. Effects of water blanching on polyphenol reaction kinetics and quality of cocoa beans

    Science.gov (United States)

    Menon, A. S.; Hii, C. L.; Law, C. L.; Suzannah, S.; Djaeni, M.

    2015-12-01

    Several studies have been reported on the potential health benefits of cocoa polyphenols. However, drying has an inhibitory effect on the substantial recovery of cocoa polyphenols. This is majorly because of the high degradation of polyphenol compounds as well as the enhanced activity of polyphenol oxidases; a pre-cursor for browning of polyphenols during drying. Pre-treatment technique such as water blanching (80° and 90°C for 5 min, 10 min and 15 min exposure times respectively) can inactivate the polyphenol oxidases enzyme and promote high percent of the polyphenol recovery in dried cocoa bean. The degradation kinetics of cocoa polyphenols during hot water blanching are analyzed; The rate constant for the polyphenol degradation after blanching was found to be ranging from 0.0208 to 0.0340 /min. The results for dried fresh cocoa beans showed an optimal level of polyphenol recovery (118 mg GAE/g) when blanched at 90°C for 5 minutes duration. The antioxidant activity is also analyzed using DPPH scavenging assay.

  17. Polyphenols and Sunburn

    Science.gov (United States)

    Saric, Suzana; Sivamani, Raja K.

    2016-01-01

    Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA) and ultraviolet B (UVB) radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats). Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP), Calluna vulgaris (Cv), grape seeds, honeybush, and Lepidium meyenii (maca). Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols. PMID:27618035

  18. Polyphenols and Sunburn

    Directory of Open Access Journals (Sweden)

    Suzana Saric

    2016-09-01

    Full Text Available Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA and ultraviolet B (UVB radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats. Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP, Calluna vulgaris (Cv, grape seeds, honeybush, and Lepidium meyenii (maca. Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols.

  19. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    Energy Technology Data Exchange (ETDEWEB)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-07-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  20. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    International Nuclear Information System (INIS)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-01-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  1. Polyphenols and Glycemic Control

    Science.gov (United States)

    Kim, Yoona; Keogh, Jennifer B.; Clifton, Peter M.

    2016-01-01

    Growing evidence from animal studies supports the anti-diabetic properties of some dietary polyphenols, suggesting that dietary polyphenols could be one dietary therapy for the prevention and management of Type 2 diabetes. This review aims to address the potential mechanisms of action of dietary polyphenols in the regulation of glucose homeostasis and insulin sensitivity based on in vitro and in vivo studies, and to provide a comprehensive overview of the anti-diabetic effects of commonly consumed dietary polyphenols including polyphenol-rich mixed diets, tea and coffee, chocolate and cocoa, cinnamon, grape, pomegranate, red wine, berries and olive oil, with a focus on human clinical trials. Dietary polyphenols may inhibit α-amylase and α-glucosidase, inhibit glucose absorption in the intestine by sodium-dependent glucose transporter 1 (SGLT1), stimulate insulin secretion and reduce hepatic glucose output. Polyphenols may also enhance insulin-dependent glucose uptake, activate 5′ adenosine monophosphate-activated protein kinase (AMPK), modify the microbiome and have anti-inflammatory effects. However, human epidemiological and intervention studies have shown inconsistent results. Further intervention studies are essential to clarify the conflicting findings and confirm or refute the anti-diabetic effects of dietary polyphenols. PMID:26742071

  2. Flavonoid Glycosides Isolated from Unique Legume Plant Extracts as Novel Inhibitors of Xanthine Oxidase

    OpenAIRE

    Spanou, Chrysoula; Veskoukis, Aristidis S.; Kerasioti, Thalia; Kontou, Maria; Angelis, Apostolos; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros; Kouretas, Dimitrios

    2012-01-01

    Legumes and the polyphenolic compounds present in them have gained a lot of interest due to their beneficial health implications. Dietary polyphenolic compounds, especially flavonoids, exert antioxidant properties and are potent inhibitors of xanthine oxidase (XO) activity. XO is the main contributor of free radicals during exercise but it is also involved in pathogenesis of several diseases such as vascular disorders, cancer and gout. In order to discover new natural, dietary XO inhibitors, ...

  3. Research Strategies in the Study of the Pro-Oxidant Nature of Polyphenol Nutraceuticals

    Directory of Open Access Journals (Sweden)

    Harvey Babich

    2011-01-01

    Full Text Available Polyphenols of phytochemicals are thought to exhibit chemopreventive effects against cancer. These plant-derived antioxidant polyphenols have a dual nature, also acting as pro-oxidants, generating reactive oxygen species (ROS, and causing oxidative stress. When studying the overall cytotoxicity of polyphenols, research strategies need to distinguish the cytotoxic component derived from the polyphenol per se from that derived from the generated ROS. Such strategies include (a identifying hallmarks of oxidative damage, such as depletion of intracellular glutathione and lipid peroxidation, (b classical manipulations, such as polyphenol exposures in the absence and presence of antioxidant enzymes (i.e., catalase and superoxide dismutase and of antioxidants (e.g., glutathione and N-acetylcysteine and cotreatments with glutathione depleters, and (c more recent manipulations, such as divalent cobalt and pyruvate to scavenge ROS. Attention also must be directed to the influence of iron and copper ions and to the level of polyphenols, which mediate oxidative stress.

  4. Allelic variations of functional markers for polyphenol oxidase (PPO)

    Indian Academy of Sciences (India)

    genes in Indian bread wheat (Triticum aestivum L.) cultivars. Rajender Singh, Umesh Goutam, R. K. Gupta, G. C. Pandey, Jag Shoran and Ratan Tiwari. J. Genet. 88, 325–329. Figure 1. Phenol colour reaction of kernels. Kernels without treatment by phenol solution are shown as controls. Phenol colour reaction of kernels; ...

  5. Allelic variations of functional markers for polyphenol oxidase (PPO ...

    Indian Academy of Sciences (India)

    supplementary material at http://www.ias.ac.in/jgenet/). DNA extraction and STS analysis. Seeds were grown in Petri plates under dark conditions to ensure low carbohydrate content. Genomic DNA was ex- tracted from one-week-old seedlings using CTAB method. (Doyle and Doyle 1990). For STS analysis, a polymerase.

  6. Managing hypertension by polyphenols.

    Science.gov (United States)

    Fernández-Arroyo, Salvador; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-06-01

    Some polyphenols, obtained from plants of broad use, induce a favorable endothelial response in hypertension and beneficial effects in the management of other metabolic cardiovascular risks. Previous studies in our laboratories using the calyces of Hibiscus sabdariffa as a source of polyphenols show that significant effects on hypertension are noticeable in humans only when provided in high amounts. Available data are suggestive in animal models and ex vivo experiments, but data in humans are difficult to acquire. Additionally, and despite the low bioavailability of polyphenols, intervention studies provide evidence for the protective effects of secondary plant metabolites. Assumptions on public health benefits are limited by the lack of scientific knowledge, robust data derived from large randomized clinical trials, and an accurate assessment of the bioactive components provided by common foodstuff. Because it is likely that clinical effects are the result of multiple interactions among different polyphenols rather than the isolated action of unique compounds, to provide polyphenol-rich botanical extracts as dietary supplements is a suggestive option. Unfortunately, the lack of patent perspectives for the pharmaceutical industries and the high cost of production and release for alimentary industries will hamper the performance of the necessary clinical trials. Here we briefly discuss whether and how such limitations may complicate the extensive use of plant-derived products in the management of hypertension and which steps are the necessary to deal with the predictable complexity in a possible clinical practice. Georg Thieme Verlag KG Stuttgart · New York.

  7. Anticancer Synergy Between Polyphenols

    Directory of Open Access Journals (Sweden)

    Urszula Lewandowska

    2014-01-01

    Full Text Available Chemoprevention has recently gained a new dimension due to the possibility of studying the mechanisms of action of chemopreventive agents at the molecular level. Many compounds have been proved to inhibit early stages of carcinogenesis in experimental models. These compounds include both recognized drugs (such as tamoxifen and nonsteroidal anti-inflammatory drugs and natural constituents of edible and therapeutic plants, particularly polyphenols. Phenolics are characterized by high structural diversity and, consequently, a very broad spectrum of biological activities. They are increasingly looked upon as a valuable alternative or a support for synthetic drugs, as evidenced by a growing number of clinical trials regarding the use of phenolic compounds and polyphenol-rich extracts in chemoprevention and therapy. In the present work, we discuss the effectiveness of natural polyphenols as cancer preventive and therapeutic agents resulting from their synergy with synthetic or semisynthetic anticancer drugs as well as with other phenolic compounds of plant origin.

  8. Polyphenol compounds and PKC signaling.

    Science.gov (United States)

    Das, Joydip; Ramani, Rashmi; Suraju, M Olufemi

    2016-10-01

    Naturally occurring polyphenols found in food sources provide huge health benefits. Several polyphenolic compounds are implicated in the prevention of disease states, such as cancer. One of the mechanisms by which polyphenols exert their biological actions is by interfering in the protein kinase C (PKC) signaling pathways. PKC belongs to a superfamily of serine-threonine kinase and are primarily involved in phosphorylation of target proteins controlling activation and inhibition of many cellular processes directly or indirectly. Despite the availability of substantial literature data on polyphenols' regulation of PKC, no comprehensive review article is currently available on this subject. This article reviews PKC-polyphenol interactions and its relevance to various disease states. In particular, salient features of polyphenols, PKC, interactions of naturally occurring polyphenols with PKC, and future perspective of research on this subject are discussed. Some polyphenols exert their antioxidant properties by regulating the transcription of the antioxidant enzyme genes through PKC signaling. Regulation of PKC by polyphenols is isoform dependent. The activation or inhibition of PKC by polyphenols has been found to be dependent on the presence of membrane, Ca(2+) ion, cofactors, cell and tissue types etc. Two polyphenols, curcumin and resveratrol are in clinical trials for the treatment of colon cancer. The fact that 74% of the cancer drugs are derived from natural sources, naturally occurring polyphenols or its simple analogs with improved bioavailability may have the potential to be cancer drugs in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  10. ACIDIC SOAKING AND STEAM BLANCHING RETAIN ANTHOCYANINS AND POLYPHENOLS IN PURPLE Dioscorea alata FLOUR

    Directory of Open Access Journals (Sweden)

    Nelis Imanningsih*

    2013-12-01

    Full Text Available Purple Dioscorea alata (DA tuber has health benefits due to its bioactive anthocyanins, which belong to polyphenolic group. Tuber is commonly made into flour to optimize its uses, however, the anthocyanins undergo significant degradation during processing because of the endogenous polyphenol oxidase activities. This research investigated factors that retain anthocyanins and polyphenols in the purple DA flour as well as its antioxidant capacity. The types of treatments during milling process should be taken into account; for instance, soaking in citric acid and blanching in order to preserve the bioactive compounds. To examine the inhibitory effects of acidic soaking and steam blanching on polyphenol oxidase activities, these experiments used four levels of citric acid (0, 0.25, 0.5, and 1% and two levels of steam blanching time course (5 and 10 minutes. It was found that steam blanching for 5 or 10 minutes could reduce the activity of polyphenol oxidase, and consequently, retard the oxidation process and retain the polyphenolic compounds. Soaking the purple DA slices into a 1% citric acid solution followed by steam blanching for 10 min resulted in the highest total anthocyanins (104.36 mg/100 g, polyphenols (198.52 mg equivalent gallic acid/100 g, with an antioxidant capacity of 1.300 mg trolox equivalent/100 g. This study showed that the retention of bioactive compounds of DA tuber through soaking the tuber slices in solution containing inexpensive chemicals like citric acid at low concentrations, combined with 10 minutes of steam blanching resulted in flour containing total anthocyanins and phenolic as high as 44.51 and 62.58% of fresh tuber, respectively.

  11. POLYPHENOL CONTAINING COMPOSITIONS

    NARCIS (Netherlands)

    Schiffelers, Raymond M.; Metselaar, J.M.; Storm, Gerrit

    2008-01-01

    The present invention relates to compositions comprising polyphenol in the interior of a colloidal carrier, and especially to the use of such compositions in the treatment of cancer or in the inhibition of cancer growth and in the treatment of inflammatory and autoimmune conditions. More

  12. Dietary factors affecting polyphenol bioavailability.

    Science.gov (United States)

    Bohn, Torsten

    2014-07-01

    While many epidemiological studies have associated the consumption of polyphenols within fruits and vegetables with a decreased risk of developing several chronic diseases, intervention studies have generally not confirmed these beneficial effects. The reasons for this discrepancy are not fully understood but include potential differences in dosing, interaction with the food matrix, and differences in polyphenol bioavailability. In addition to endogenous factors such as microbiota and digestive enzymes, the food matrix can also considerably affect bioaccessibility, uptake, and further metabolism of polyphenols. While dietary fiber (such as hemicellulose), divalent minerals, and viscous and protein-rich meals are likely to cause detrimental effects on polyphenol bioaccessibility, digestible carbohydrates, dietary lipids (especially for hydrophobic polyphenols, e.g., curcumin), and additional antioxidants may enhance polyphenol availability. Following epithelial uptake, polyphenols such as flavonoids may reduce phase II metabolism and excretion, enhancing polyphenol bioavailability. Furthermore, polyphenols may act synergistically due to their influence on efflux transporters such as p-glycoprotein. In order to understand polyphenol bioactivity, increased knowledge of the factors affecting polyphenol bioavailability, including dietary factors, is paramount. © 2014 International Life Sciences Institute.

  13. Cacao polyphenols ameliorate autoimmune myocarditis in mice.

    Science.gov (United States)

    Zempo, Hirofumi; Suzuki, Jun-ichi; Watanabe, Ryo; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2016-04-01

    Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress.

  14. Polyphenols excreted in urine as biomarkers of total polyphenol intake.

    Science.gov (United States)

    Medina-Remón, Alexander; Tresserra-Rimbau, Anna; Arranz, Sara; Estruch, Ramón; Lamuela-Raventos, Rosa M

    2012-11-01

    Nutritional biomarkers have several advantages in acquiring data for epidemiological and clinical studies over traditional dietary assessment tools, such as food frequency questionnaires. While food frequency questionnaires constitute a subjective methodology, biomarkers can provide a less biased and more accurate measure of specific nutritional intake. A precise estimation of polyphenol consumption requires blood or urine sample biomarkers, although their association is usually highly complex. This article reviews recent research on urinary polyphenols as potential biomarkers of polyphenol intake, focusing on clinical and epidemiological studies. We also report a potentially useful methodology to assess total polyphenols in urine samples, which allows a rapid, simultaneous determination of total phenols in a large number of samples. This methodology can be applied in studies evaluating the utility of urinary polyphenols as markers of polyphenol intake, bioavailability and accumulation in the body.

  15. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    Science.gov (United States)

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  16. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective.

    Science.gov (United States)

    Davatgaran-Taghipour, Yasamin; Masoomzadeh, Salar; Farzaei, Mohammad Hosein; Bahramsoltani, Roodabeh; Karimi-Soureh, Zahra; Rahimi, Roja; Abdollahi, Mohammad

    2017-01-01

    Cancer is defined as the abnormal cell growth that can cause life-threatening malignancies with high financial costs for patients as well as the health care system. Natural polyphenols have long been used for the prevention and treatment of several disorders due to their antioxidant, anti-inflammatory, cytotoxic, antineoplastic, and immunomodulatory effects discussed in the literature; thus, these phytochemicals are potentially able to act as chemopreventive and chemotherapeutic agents in different types of cancer. One of the problems regarding the use of polyphenolic compounds is their low bioavailability. Different types of formulations have been designed for the improvement of bioavailability of these compounds, nanonization being one of the most notable approaches among them. This study aimed to review current data on the nanoformulations of natural polyphenols as chemopreventive and chemotherapeutic agents and to discuss their molecular anticancer mechanisms of action. Nanoformulations of natural polyphenols as bioactive agents, including resveratrol, curcumin, quercetin, epigallocatechin-3-gallate, chrysin, baicalein, luteolin, honokiol, silibinin, and coumarin derivatives, in a dose-dependent manner, result in better efficacy for the prevention and treatment of cancer. The impact of nanoformulation methods for these natural agents on tumor cells has gained wider attention due to improvement in targeted therapy and bioavailability, as well as enhancement of stability. Today, several nanoformulations are designed for delivery of polyphenolic compounds, including nanosuspensions, solid lipid nanoparticles, liposomes, gold nanoparticles, and polymeric nanoparticles, which have resulted in better antineoplastic activity, higher intracellular concentration of polyphenols, slow and sustained release of the drugs, and improvement of proapoptotic activity against tumor cells. To conclude, natural polyphenols demonstrate remarkable anticancer potential in

  17. Extraction of polyphenols

    Directory of Open Access Journals (Sweden)

    Loucif Seiad L.

    2013-07-01

    Full Text Available The aim of the study is to investigate the influence of certain parameters on efficiency of the extraction of polyphenols from an Algerian tree (Pinus Halepensis Mill. Extraction was conducted in a stirred closed extractor. Our study was conducted to optimize the extraction conditions for total phenolic contents (TPC using Folin Ciocalteu method. A response surface methodology (RSM was launched to investigate the influence of process variables on extraction followed by a composite design (CD approach. The statistical analysis revealed that the optimized conditions were for a temperature of 45°C and for the smallest particles.

  18. Nutrikinetic assessment of polyphenol exposure

    NARCIS (Netherlands)

    Duynhoven, van John; Velzen, Van Ewoud J.J.; Jacobs, Doris Maria

    2017-01-01

    The key to link intake of polyphenols to health benefits is the quantitative and kinetic assessment of their metabolites in circulation. Current analytical approaches have only provided limited quantitative coverage of the internal polyphenol metabolome, this in particular pertains to conjugated

  19. Antileishmanial polyphenols from Corymbia maculata

    Indian Academy of Sciences (India)

    Twelve polyphenols including 8-demethyl eucalyptin (1), eucalyptin (2), myrciaphenone A (3), myrciaphe- none B (4) ... teen phloroglucinols and eight other polyphenols and can be applied for qualitative as well as quantitative determination of ..... were added to known amounts of ethyl acetate extract that was then ...

  20. Dietary polyphenol intake in Europe

    DEFF Research Database (Denmark)

    Zamora-Ros, Raul; Knaze, Viktoria; Rothwell, Joseph A

    2016-01-01

    BACKGROUND/OBJECTIVES: Polyphenols are plant secondary metabolites with a large variability in their chemical structure and dietary occurrence that have been associated with some protective effects against several chronic diseases. To date, limited data exist on intake of polyphenols in populatio...

  1. Review Paper: Polyphenolic Antioxidants and Neuronal Regeneration

    Directory of Open Access Journals (Sweden)

    Amin Ataie

    2016-05-01

    Full Text Available Many studies indicate that oxidative stress is involved in the pathophysiology of neurodegenerative diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling and ultimately leads to neuronal death by apoptosis or necrosis. To review antioxidants preventive effects on oxidative stress and neurodegenerative diseases we accumulated data from international medical journals and academic informations' sites. According to many studies, antioxidants could reduce toxic neuronal damages and many studies confirmed the efficacy of polyphenol antioxidants in fruits and vegetables to reduce neuronal death and to diminish oxidative stress. This systematic review showed the antioxidant activities of phytochemicals which play as natural neuroprotectives with low adverse effects against some neurodegenerative diseases as Parkinson or Alzheimer diseases.

  2. Review Paper: Polyphenolic Antioxidants and Neuronal Regeneration

    Directory of Open Access Journals (Sweden)

    Amin Ataie

    2016-04-01

    Full Text Available Many studies indicate that oxidative stress is involved in the pathophysiology of neurodegenerative diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling and ultimately leads to neuronal death by apoptosis or necrosis. To review antioxidants preventive effects on oxidative stress and neurodegenerative diseases we accumulated data from international medical journals and academic informations' sites. According to many studies, antioxidants could reduce toxic neuronal damages and many studies confirmed the efficacy of polyphenol antioxidants in fruits and vegetables to reduce neuronal death and to diminish oxidative stress. This systematic review showed the antioxidant activities of phytochemicals which play as natural neuroprotectives with low adverse effects against some neurodegenerative diseases as Parkinson or Alzheimer diseases.

  3. Pulmonary delivery systems for polyphenols.

    Science.gov (United States)

    Trotta, Valentina; Scalia, Santo

    2017-07-01

    This review reports on the beneficial pharmacological properties of naturally occurring polyphenols for the treatment of inflammatory pulmonary diseases. In addition, it presents an overview of the different types of inhalable formulations which have been developed in order to achieve efficient delivery of polyphenols to the respiratory tract. The main biological activities of polyphenols (anti-oxidant and anti-inflammatory) are covered, with particular emphasis on the studies describing their therapeutic effects on different factors and conditions characteristic of lung pathologies. Special focus is on the technological aspects which influence the pulmonary delivery of drugs. The various polyphenol-based inhalable formulations reported in the literature are examined with specific attention to the preparation methodologies, aerosol performance, lung deposition and in vitro and in vivo polyphenol uptake by the pulmonary epithelial cells.

  4. Polyphenols and brain health

    Directory of Open Access Journals (Sweden)

    Vauzour David

    2017-03-01

    Full Text Available Accumulating evidence suggests that diet and lifestyle can play an important role in delaying the onset or halting the progression of age-related health disorders and to improve cognitive function. A growing number of dietary intervention studies in humans and animals and in particular those using polyphenol-rich diets have been proposed to exert a multiplicity of neuroprotective actions within the brain, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation and a potential to promote memory, learning, and cognitive functions. These effects appear to be underpinned by two common processes. First, they are capable of interactions with critical protein and lipid kinase signalling cascades in the brain, leading to an inhibition of apoptosis triggered by neurotoxic species and to a promotion of neuronal survival and synaptic plasticity. Second, they induce beneficial effects on the vascular system, leading to changes in cerebrovascular blood flow capable of causing enhance vascularisation and neurogenesis, two events important in the maintenance of cognitive performances. Together, these processes act to maintain brain homeostasis and play important roles in neuronal stress adaptation and thus polyphenols might have the potential to prevent the progression of neurodegenerative pathologies.

  5. Facile Method To Prepare Microcapsules Inspired by Polyphenol Chemistry for Efficient Enzyme Immobilization.

    Science.gov (United States)

    Zhang, Shaohua; Jiang, Zhongyi; Wang, Xiaoli; Yang, Chen; Shi, Jiafu

    2015-09-09

    In this study, a method inspired by polyphenol chemistry is developed for the facile preparation of microcapsules under mild conditions. Specifically, the preparation process includes four steps: formation of the sacrificial template, generation of the polyphenol coating on the template surface, cross-linking of the polyphenol coating by cationic polymers, and removal of the template. Tannic acid (TA) is chosen as a representative polyphenol coating precursor for the preparation of microcapsules. The strong interfacial affinity of TA contributes to the formation of polyphenol coating through oxidative oligomerization, while the high reactivity of TA is in charge of reacting/cross-linking with cationic polymer polyethylenimine (PEI) through Schiff base/Michael addition reaction. The chemical/topological structures of the resultant microcapsules are simultaneously characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), etc. The wall thickness of the microcapsules could be tailored from 257±20 nm to 486±46 nm through changing the TA concentration. The microcapsules are then utilized for encapsulating glucose oxidase (GOD), and the immobilized enzyme exhibits desired catalytic activity and enhanced pH and thermal stabilities. Owing to the structural diversity and functional versatility of polyphenols, this study may offer a facile and generic method to prepare microcapsules and other kinds of functional porous materials.

  6. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke.

    Science.gov (United States)

    Cheng, Yu-Chen; Sheen, Jer-Ming; Hu, Wen Long; Hung, Yu-Chiang

    2017-01-01

    Good nutrition could maintain health and life. Polyphenols are common nutrient mainly derived from fruits, vegetables, tea, coffee, cocoa, mushrooms, beverages, and traditional medicinal herbs. They are potential substances against oxidative-related diseases, for example, cardiovascular disease, specifically, atherosclerosis-related ischemic heart disease and stroke, which are health and economic problems recognized worldwide. In this study, we reviewed the risk factors for atherosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette smoking as well as the antioxidative activity of polyphenols, which could prevent the pathology of atherosclerosis, including endothelial dysfunction, low-density lipoprotein oxidation, vascular smooth muscle cell proliferation, inflammatory process by monocytes, macrophages or T lymphocytes, and platelet aggregation. The strong radical-scavenging properties of polyphenols would exhibit antioxidative and anti-inflammation effects. Polyphenols reduce ROS production by inhibiting oxidases, reducing the production of superoxide, inhibiting OxLDL formation, suppressing VSMC proliferation and migration, reducing platelet aggregation, and improving mitochondrial oxidative stress. Polyphenol consumption also inhibits the development of hypertension, diabetes mellitus, hyperlipidemia, and obesity. Despite the numerous in vivo and in vitro studies, more advanced clinical trials are necessary to confirm the efficacy of polyphenols in the treatment of atherosclerosis-related vascular diseases.

  7. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2017-01-01

    Full Text Available Good nutrition could maintain health and life. Polyphenols are common nutrient mainly derived from fruits, vegetables, tea, coffee, cocoa, mushrooms, beverages, and traditional medicinal herbs. They are potential substances against oxidative-related diseases, for example, cardiovascular disease, specifically, atherosclerosis-related ischemic heart disease and stroke, which are health and economic problems recognized worldwide. In this study, we reviewed the risk factors for atherosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette smoking as well as the antioxidative activity of polyphenols, which could prevent the pathology of atherosclerosis, including endothelial dysfunction, low-density lipoprotein oxidation, vascular smooth muscle cell proliferation, inflammatory process by monocytes, macrophages or T lymphocytes, and platelet aggregation. The strong radical-scavenging properties of polyphenols would exhibit antioxidative and anti-inflammation effects. Polyphenols reduce ROS production by inhibiting oxidases, reducing the production of superoxide, inhibiting OxLDL formation, suppressing VSMC proliferation and migration, reducing platelet aggregation, and improving mitochondrial oxidative stress. Polyphenol consumption also inhibits the development of hypertension, diabetes mellitus, hyperlipidemia, and obesity. Despite the numerous in vivo and in vitro studies, more advanced clinical trials are necessary to confirm the efficacy of polyphenols in the treatment of atherosclerosis-related vascular diseases.

  8. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus

    NARCIS (Netherlands)

    Olmedo, Patricio; Moreno, Adrián A.; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C.; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to

  9. Oxidases as Breast Cancer Oncogens

    Science.gov (United States)

    2000-06-01

    the notion that xanthine oxidase (XOX), which is present in milk for possible antimicrobial activity , to keep the milk sterile, plays havoc with the...cancer. Two tasks are currently being pursued. The first deals with the overexpression of xanthine oxidase (XOX) or urate oxidase (UOX) in a non...tumorigenic human mammary epithelial cell line to ascertain whether oxidase overexpressing cells undergo transformation when exposed to substrate xanthine

  10. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane.

    Science.gov (United States)

    Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R

    2018-02-01

    The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.

  11. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase

    Science.gov (United States)

    Rasoulzadeh, Farzaneh; Jabary, Hamideh Nadjarpour; Naseri, Abdolhossein; Rashidi, Mohammad-Reza

    2009-02-01

    Quercetin is a natural flavonoid with many important therapeutic properties. The interaction of this polyphenolic compound bovine milk xanthine oxidase as one of its major target proteins was studied using fluorescence quenching method for the first time. It was found that the fluorescence quenching of xanthine oxidase occurs through a static mechanism. The results revealed the presence of a single binding site on xanthine oxidase with the binding constant value equals to 1.153 × 10 4 l mol -1 at 310 K and pH 7.4. The thermodynamic parameters were also calculated at different temperatures. The enthalpy and entropy changes were found as -10.661 kJ mol -1 and +43.321 J mol -1 K -1 indicating that both hydrogen binding and hydrophobic are involved in the interaction of this polyphenolic natural compound with xanthine oxidase. The results may provide a ground for further studies with different flavonoids to find a safe alternative for allopurinol, the only xanthine oxidase inhibitor with clinical application.

  12. In vitro evaluation of selected benzimidazole derivatives as an antioxidant and xanthine oxidase inhibitors.

    Science.gov (United States)

    Nile, Shivraj H; Kumar, Brajesh; Park, Se W

    2013-09-01

    2-Aryl-1-arylmethyl-1H-benzimidazole derivatives having different side chains on the structure were examined in vitro for their antioxidant abilities by 2,2-diphenyl-1-picryl hydrazine radical scavenging activity, reducing ability, OH radical scavenging activity, inhibition of polyphenol oxidase and xanthine oxidase. Overall, with few exceptions, all the 2-aryl-1-arylmethyl-1H-benzimidazoles showed moderate biological activity with all parameters examined. The 2-aryl-1-arylmethyl-1H-benzimidazoles were found to be reactive toward 2,2-diphenyl-1-picryl hydrazine radical and had considerable reducing ability, with significant xanthine oxidase inhibition. With few exceptions, all the compounds under study were found to possess moderate-to-poor OH radical scavenging activity and inhibited polyphenol oxidase significantly. These findings suggest that these 2-aryl-1-arylmethyl-1H-benzimidazoles can be considered as potential antioxidant and xanthine oxidase inhibitory agents, those might be further, explored for the design of lead antioxidant and antigout drug candidates using in vivo trials. © 2013 John Wiley & Sons A/S.

  13. Role of dietary polyphenols in the management of peptic ulcer.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Abdollahi, Mohammad; Rahimi, Roja

    2015-06-07

    Peptic ulcer disease is a multifactorial and complex disease involving gastric and duodenal ulcers. Despite medical advances, the management of peptic ulcer and its complications remains a challenge, with high morbidity and death rates for the disease. An accumulating body of evidence suggests that, among a broad reach of natural molecules, dietary polyphenols with multiple biological mechanisms of action play a pivotal part in the management of gastric and duodenal ulcers. The current review confirmed that dietary polyphenols possess protective and therapeutic potential in peptic ulcer mediated by: improving cytoprotection, re-epithelialization, neovascularization, and angiogenesis; up-regulating tissue growth factors and prostaglandins; down-regulating anti-angiogenic factors; enhancing endothelial nitric oxide synthase-derived NO; suppressing oxidative mucosal damage; amplifying antioxidant performance, antacid, and anti-secretory activity; increasing endogenous mucosal defensive agents; and blocking Helicobacter pylori colonization associated gastric morphological changes and gastroduodenal inflammation and ulceration. In addition, anti-inflammatory activity due to down-regulation of proinflammatory cytokines and cellular and intercellular adhesion agents, suppressing leukocyte-endothelium interaction, inhibiting nuclear signaling pathways of inflammatory process, and modulating intracellular transduction and transcription pathways have key roles in the anti-ulcer action of dietary polyphenols. In conclusion, administration of a significant amount of dietary polyphenols in the human diet or as part of dietary supplementation along with conventional treatment can result in perfect security and treatment of peptic ulcer. Further well-designed preclinical and clinical tests are recommended in order to recognize higher levels of evidence for the confirmation of bioefficacy and safety of dietary polyphenols in the management of peptic ulcer.

  14. Multifunctions of dietary polyphenols in the regulation of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Makoto Shimizu

    2017-01-01

    Full Text Available Food for specified health use is a type of functional food approved by the Japanese government, with more than 1250 products in 10 health-claim categories being approved as of April 2016. Polyphenols are currently used as functional ingredients in seven of the 10 categories. Although they have not yet been used for the food-for-specified-health-use category of “gut health promotion,” polyphenols are expected to contribute to the future development of gut-modulating food. Intestinal functions include digestion/absorption, acting as a barrier, recognition of external factors, and signal transduction. Owing to incessant exposure to external stress factors including food substances, bacteria, and environmental chemicals, intestines are always inflammatory to some extent, which may cause damage to and dysfunction of intestinal tissues depending on the situation. We identified food factors that could suppress immoderate inflammation in the intestines. In addition to certain amino acids and peptides, polyphenols such as chlorogenic acid and isoflavones were found to suppress inflammation in intestinal cells. Intestinal inflammation is caused by various factors in diverse mechanisms. Recent studies revealed that activation of pattern recognition receptors, such as Toll-like receptors and nucleotide-binding oligomerization domain proteins, in epithelial cells triggers intestinal inflammation. Intracellular receptors or signaling molecules controlling the intestinal detoxification system are also involved in the regulation of inflammation. Differentiation of regulatory T cells by activating a transcription factor Foxp-3 is known to suppress intestinal inflammation. A variety of phytochemicals including polyphenols modulate these receptors and signaling molecules, and are thus anti-inflammatory. Polyphenols affect epigenetic changes occurring in intestinal tissues by interacting with the enzymes responsible for DNA methylation and histone acetylation

  15. Role of dietary polyphenols in the management of peptic ulcer

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    Peptic ulcer disease is a multifactorial and complex disease involving gastric and duodenal ulcers. Despite medical advances, the management of peptic ulcer and its complications remains a challenge, with high morbidity and death rates for the disease. An accumulating body of evidence suggests that, among a broad reach of natural molecules, dietary polyphenols with multiple biological mechanisms of action play a pivotal part in the management of gastric and duodenal ulcers. The current review confirmed that dietary polyphenols possess protective and therapeutic potential in peptic ulcer mediated by: improving cytoprotection, re-epithelialization, neovascularization, and angiogenesis; up-regulating tissue growth factors and prostaglandins; down-regulating anti-angiogenic factors; enhancing endothelial nitric oxide synthase-derived NO; suppressing oxidative mucosal damage; amplifying antioxidant performance, antacid, and anti-secretory activity; increasing endogenous mucosal defensive agents; and blocking Helicobacter pylori colonization associated gastric morphological changes and gastroduodenal inflammation and ulceration. In addition, anti-inflammatory activity due to down-regulation of proinflammatory cytokines and cellular and intercellular adhesion agents, suppressing leukocyte-endothelium interaction, inhibiting nuclear signaling pathways of inflammatory process, and modulating intracellular transduction and transcription pathways have key roles in the anti-ulcer action of dietary polyphenols. In conclusion, administration of a significant amount of dietary polyphenols in the human diet or as part of dietary supplementation along with conventional treatment can result in perfect security and treatment of peptic ulcer. Further well-designed preclinical and clinical tests are recommended in order to recognize higher levels of evidence for the confirmation of bioefficacy and safety of dietary polyphenols in the management of peptic ulcer. PMID:26074689

  16. Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Ivo M B Francischetti

    Full Text Available BACKGROUND: The role of intracellular radical oxygen species (ROS in pathogenesis of cerebral malaria (CM remains incompletely understood. METHODS AND FINDINGS: We undertook testing Tempol--a superoxide dismutase (SOD mimetic and pleiotropic intracellular antioxidant--in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs stimulated by lipopolysaccharide (LPS. This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1 production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants-such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap, MnTe-2-PyP and MnTBAP (Mn-phorphyrin, Mitoquinone (MitoQ and Mitotempo (mitochondrial antioxidants, M30 (an iron chelator, and epigallocatechin gallate (EGCG; polyphenol from green tea did not improve survival. By contrast, these compounds (except PBN inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH oxidase (gp91(phox-/- or mice treated with

  17. Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria.

    Science.gov (United States)

    Francischetti, Ivo M B; Gordon, Emile; Bizzarro, Bruna; Gera, Nidhi; Andrade, Bruno B; Oliveira, Fabiano; Ma, Dongying; Assumpção, Teresa C F; Ribeiro, José M C; Pena, Mirna; Qi, Chen-Feng; Diouf, Ababacar; Moretz, Samuel E; Long, Carole A; Ackerman, Hans C; Pierce, Susan K; Sá-Nunes, Anderson; Waisberg, Michael

    2014-01-01

    The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. We undertook testing Tempol--a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant--in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants-such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91(phox-/-)) or mice treated with inhibitors of SOD (diethyldithiocarbamate

  18. Quercetin and hydroxytyrosol attenuates xanthine/xanthine oxidase-induced toxicity in H9c2 cardiomyocytes by regulation of oxidative stress and stress-sensitive signaling pathways.

    Science.gov (United States)

    Ozbek, Namik; Bali, Elif B; Karasu, Cimen

    2015-10-01

    The increased activity of xanthine/xanthine oxidase (X/XO) has been suggested as a risk factor for heart disease and herbal polyphenols exhibits cardioprotection in vitro and in vivo. To understand the cardioprotective action mechanisms of polyphenol quercetin and hydroxytyrosol, the expression levels of stress-responsive proteins were studied in X/XO-induced toxicity model of H9c2 cardiomyocyocytes. Pretreatment with each polypenol (0.1-10 μg/ml; 24 h) enhanced viability (p < 0.01; MTT test) and inhibited reactive oxygen species (ROS) generation (p < 0.001; H2DCFDA assay) against 12 h exposure to a free radical generating system, X (0.5 mM) and XO (5 mU/ml). Western blotting experiments showed that X/XO increases the phosphorylation of downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK-2), p44/42-MAPK (Erk1/2) and cleaved caspase-3 (p < 0.001, vs. Control), however inhibits the levels of phosphorylated c-Jun and Hsp27 (p < 0.01, vs. Control). Pretreatment with quercetin or hydroxytyrosol attenuated the phosphorylation of MAPKAPK-2 and cleaved caspase-3 in X/XO-exposed cells (p < 0.01, vs. X/XO). Hydroxytyrosol enhanced the reduction of phosphorylation of a transcriptional target c-Jun and led to overphosphorylation in protective proteins, p44/42-MAPK and Hsp27 in X/XO-exposed cells (p < 0.01, vs. X/XO). Our data suggest that quercetin and hydroxytyrosol protects cardiomyocytes against X/XO-induced oxidative toxicity by diminishing intracellular ROS and the regulation of stress-sensitive protein kinase cascades and transcription factors.

  19. Antioxidant and antibacterial activities of polyphenols from ...

    African Journals Online (AJOL)

    Polyphenols from four medicinal plants of Burkina Faso, Combretum micranthum, Khaya senegalensis, Pterocarpus erinaceus and Sida acuta, were screened for their antioxidant and antimicrobial activities against pathogenic bacteria. The medicinal plants displayed different polyphenols contents and antioxidant activities.

  20. Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae).

    Science.gov (United States)

    Lavid, N; Schwartz, A; Lewinsohn, E; Tel-Or, E

    2001-12-01

    This comparative study investigates the mechanism of cadmium accumulation in the semiaquatic plant Nymphoides peltata (Menyanthaceae) and the aquatic plant Nymphaea (Nymphaeaceae). It was conducted as part of an ongoing study of the use of water plants for phytoremediation. Epidermal structures, known as hydropotes, are located on the abaxial epidermis of the leaf laminae of Nymphoides peltata and are shown to contain phenols, peroxidase and polyphenol oxidase activities. When plants are subjected to 50 mg/l of cadmium in the growth medium, these hydropotes accumulate cadmium. Cadmium-induced increases in phenols, peroxidase and polyphenol oxidase activities were determined in plant extracts. Cadmium binding by polymerized phenols was demonstrated in vivo. In comparison with Nymphaeae epidermal glands, N. peltata hydropotes are larger, open, and create bigger crystal, the latter principally composed of calcium and, proportionally, less cadmium. Although both plants showed similar levels of cadmium accumulation, N. peltata was sensitive while Nymphaeae was resistant to this cadmium level. It is suggested that in these water plants the main mechanism for cadmium accumulation is based on the trapping of cadmium crystals by polymerized phenols in specialized epidermal structures and this is due to peroxidase and polyphenol oxidase activities. Nymphaeae, with greater peroxidase activity and more polyphenols, is more resistant to this heavy metal than N. peltata.

  1. Recent advances on tea polyphenols

    Science.gov (United States)

    Kanwar, Jyoti; Taskeen, Mujtaba; Mohammad, Imthiyaz; Huo, Congde; Chan, Tak Hang; Dou, Qing Ping

    2012-01-01

    Over the past decade many scientific and medical studies have focused on green tea for its long-purported health benefits. There is convincing evidence that tea is a cup of life. It has multiple preventive and therapeutic effects. This review thus focuses on the recent advances of tea polyphenols and their applications in the prevention and treatment of human cancers. Of the various polyphenols in tea, (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant, and active compound studied in tea research. EGCG inhibits several molecular targets to inhibit cancer initiation and modulates several essential survival pathways to block cancer progression. Herein, we describe the various mechanisms of action of EGCG and also discuss previous and current ongoing clinical trials of EGCG and green tea polyphenols in different cancer types. PMID:22201858

  2. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase.

    Science.gov (United States)

    Mihajlovic, L; Radosavljevic, J; Nordlund, E; Krstic, M; Bohn, T; Smit, J; Buchert, J; Cirkovic Velickovic, T

    2016-05-18

    Food texture can be improved by enzyme-mediated covalent cross-linking of different food components, such as proteins and carbohydrates. Cross-linking changes the biological and immunological properties of proteins and may change the sensitizing potential of food allergens. In this study we applied a microbial polyphenol oxidase, laccase, to cross-link peanut proteins. The size and morphology of the obtained cross-linked proteins were analyzed by electrophoresis and electron microscopy. Structural changes in proteins were analyzed by CD spectroscopy and by using specific antibodies to major peanut allergens. The bioavailability of peanut proteins was analyzed using a Caco-2 epithelial cell model. The in vivo sensitizing potential of laccase-treated peanut proteins was analyzed using a mouse model of food allergy. Finally, peanut polyphenols were analyzed by UHPLC-MS/MS, before and after the enzymatic reaction with laccase. Laccase treatment of peanut proteins yielded a covalently cross-linked material, with the modified tertiary structure of peanut proteins, improved bioavailability of Ara h 2 (by 70 fold, p polyphenol content and profile by HPLC-MS/MS revealed that laccase treatment depleted the peanut extract of polyphenol compounds leaving mostly isorhamnetin derivatives and procyanidin dimer B-type in detectable amounts. Treatment of complex food extracts rich in polyphenols with laccase results in both protein cross-linking and modification of polyphenol compounds. These extensively cross-linked proteins have unchanged potency to induce allergic sensitization in vivo, but certain immunomodulatory changes were observed.

  3. Dietary polyphenols and chromatin remodeling.

    Science.gov (United States)

    Russo, Gian Luigi; Vastolo, Viviana; Ciccarelli, Marco; Albano, Luigi; Macchia, Paolo Emidio; Ungaro, Paola

    2017-08-13

    Polyphenols are the most abundant phytochemicals in fruits, vegetables, and plant-derived beverages. Recent findings suggest that polyphenols display the ability to reverse adverse epigenetic regulation involved in pathological conditions, such as obesity, metabolic disorder, cardiovascular and neurodegenerative diseases, and various forms of cancer. Epigenetics, defined as heritable changes to the transcriptome, independent from those occurring in the genome, includes DNA methylation, histone modifications, and posttranscriptional gene regulation by noncoding RNAs. Sinergistically and cooperatively, these processes regulate gene expression by changing chromatin organization and DNA accessibility. Such induced epigenetic changes can be inherited during cell division, resulting in permanent maintenance of the acquired phenotype, but they may also occur throughout an individual life-course and may ultimately influence phenotypic outcomes (health and disease risk). In the last decade, a number of studies have shown that nutrients can affect metabolic traits by altering the structure of chromatin and directly regulate both transcription and translational processes. In this context, dietary polyphenol-targeted epigenetics becomes an attractive approach for disease prevention and intervention. Here, we will review how polyphenols, including flavonoids, curcuminoids, and stilbenes, modulate the establishment and maintenance of key epigenetic marks, thereby influencing gene expression and, hence, disease risk and health.

  4. Polyphenol inhibition of benzo[a]pyrene-induced oxidative stress and neoplastic transformation in an in vitro model of carcinogenesis.

    Science.gov (United States)

    Omidian, Kosar; Rafiei, Hossein; Bandy, Brian

    2017-08-01

    While dietary polyphenols are widely recognized for cancer-preventing characteristics, the relative effectiveness and mechanisms of action of different polyphenols is not clear. In the present study, we investigated the protective effects of six different polyphenols against benzo[a]pyrene (B[a]P)-induced oxidative stress and neoplastic transformation in the Bhas 42 cell carcinogenesis assay. All of the polyphenols completely prevented the increased intracellular ROS generation by B[a]P at 12 h, and most inhibited after 3 days. B[a]P increased mitochondrial superoxide generation at 12 h, which was inhibited by the anthocyanins and berberine. B[a]P increased expression of genes related to oxidative stress and inflammation (Nrf2, UCP2, and TNF-α) after 24 h. Polyphenols strongly inhibited the increase in TNF-α and also several polyphenols inhibited the increase in UCP2. At 21 days after 72 h treatment, B[a]P produced a large increase in the number of neoplastic colonies. This transformation was inhibited by most polyphenols, and strongly by resveratrol. In summary, all tested polyphenols were able to inhibit B[a]P-induced increases in markers of oxidative stress and inflammation, and to inhibit cellular transformation, with resveratrol being notable for the strongest preventive effect on cell transformation. The results support a role for dietary polyphenols in protecting against B[a]P-induced carcinogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer.

    Science.gov (United States)

    Yang, Xiaoping; Jiang, Xiaodong

    2015-07-01

    To investigate the antifungal activity and possible mechanism of tea polyphenols (TPs) against Rhizopus stolonifer, the agent of rotting in nectarines and peaches. TP inhibited both mycelial growth and spore germination in vitro in a dose-dependent manner, and the morphological changes of the treated hyphae with TP, such as irregularly swollen, increased branching, wrinkled, entwining, collapse and breakage, and of the treated spores, such as swelling of germ tube tips, exfoliation of the surface layer and disorganization of cell organelles, were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. TP also significantly decreased rhizopus rot on inoculated nectarines and induced the activities of phenylalanine ammonia lyase, polyphenol oxidase, peroxidase, chitinase, and β-1,3-glucanase. The mechanism of action might be attributed to direct damage of the mycelium and spore and indirect induction of defensive enzyme activities. TP has the potential to be developed as an alternative to control post-harvest disease of fruit caused by R. stolonifer.

  6. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  7. Identification of Polyphenol-Specific Innate Epitopes That Originated from a Resveratrol Analogue.

    Science.gov (United States)

    Furuhashi, Mai; Hatasa, Yukinori; Kawamura, Sae; Shibata, Takahiro; Akagawa, Mitsugu; Uchida, Koji

    2017-09-05

    Polyphenols have received a significant amount of attention in disease prevention because of their unique chemical and biological properties. However, the underlying molecular mechanism for their beneficial effects remains unclear. We have now identified a polyphenol as a source of innate epitopes detected in natural IgM and established a unique gain-of-function mechanism in the formation of innate epitopes by polyphenol via the polymerization of proteins. Upon incubation with bovine serum albumin (BSA) under physiological conditions, several polyphenols converted the protein into the innate epitopes recognized by the IgM Abs. Interestingly, piceatannol, a naturally occurring hydroxylated analogue of a red wine polyphenol, resveratrol, mediated the modification of BSA, whose polymerized form was specifically recognized by the IgMs. The piceatannol-mediated polymerization of the protein was associated with the formation of a lysine-derived cross-link, dehydrolysinonorleucine. In addition, an oxidatively deaminated product, α-aminoadipic semialdehyde, was detected as a potential precursor for the cross-link in the piceatannol-treated BSA, suggesting that the polymerization of the protein might be mediated by the oxidation of a lysine residue by piceatannol followed by a Schiff base reaction with the ε-amino group of an unoxidized lysine residue. The results of this study established a novel mechanism for the formation of innate epitopes by small dietary molecules and support the notion that many of the beneficial effects of polyphenols could be attributed, at least in part, to their lysyl oxidase-like activity. They also suggest that resveratrol may have beneficial effects on human health because of its conversion to piceatannol.

  8. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    Science.gov (United States)

    Gu, Fenglin; Huang, Feifei; Wu, Guiping; Zhu, Hongying

    2018-02-09

    Black pepper ( Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  9. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    Directory of Open Access Journals (Sweden)

    Fenglin Gu

    2018-02-01

    Full Text Available Black pepper (Piper nigrum L. is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC and ultraviolet-visible and visible (UV-Vis spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  10. Oxidases as Breast Cancer Oncogens

    National Research Council Canada - National Science Library

    Yeldandi, Anjana

    2000-01-01

    ...) in a non-tumorigenic human mammary epithelial cell line to ascertain whether oxidase overexpressing cells undergo transformation when exposed to substrate xanthine for XOX and uric acid for UOX...

  11. Influence of polyphenol-plasma protein interaction on the antioxidant properties of polyphenols.

    Science.gov (United States)

    Zou, Dengfeng; Xie, Aize

    2013-05-01

    Polyphenols are the most abundant antioxidants. Polyphenols are known to non-covalent interact with plasma proteins in blood through hydrophobic or hydrophilic interactions. It was found that the effect of polyphenol-plasma protein interaction (PpPI) on the bioavailability of polyphenols is not equivocal. Because the conclusion of individual reports are contradictory to each other; therefore, it is very difficult to give a univocal comment on the influence of PpPI on antioxidant property of polyphenols. The influence of PpPI on the antioxidant activity of polyphenols is decided by the antioxidant assay, the structure characteristics of polyphenols, as well as the proteins. This mini review mainly focused on the influence of PpPI on the antioxidant properties of polyphenols.

  12. Cellular Targets of Dietary Polyphenol Resveratrol

    Science.gov (United States)

    2006-09-01

    Resveratrol (trans-3,4 0,5-trihydroxystilbene) is a grape -derived polyphenol under intensive study for its potential in cancer pre- vention. In the case...to be slightly more sensitive to the grape -derived polyphenol thanFig. 1. Effects of resveratrol on growth of Line IV clone 1 and Line IV clone 3 human...melanoma cells [39,40]. Therefore, this grape -derived polyphenol should be further ex- plored for its potential in the prevention of human melanoma

  13. Cellular Targets of Dietary Polyphenol Resveratrol

    National Research Council Canada - National Science Library

    Wu, Joseph M

    2006-01-01

    To test the hypothesis that resveratrol, a grape derived polyphenol, exerts its chemopreventive properties against prostate cancer by interacting with specific cellular targets, denoted resveratrol targeting proteins (RTPs...

  14. Chemoprevention of Breast Cancer by Dietary Polyphenols

    Directory of Open Access Journals (Sweden)

    Maria-Magdalena Mocanu

    2015-12-01

    Full Text Available The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro and in vivo experiments carried out in breast cancer models. Since the therapeutic effects of the administration of a single type of polyphenol might be limited because of the reduced bioavailability of these drugs, investigations on combination of several polyphenols or polyphenols with conventional therapy will also be discussed. In addition, we present recent data focusing on clinical trials with polyphenols and new approaches with nanoparticles in breast cancer. Besides the clinical and translational findings this review systematically summarizes our current knowledge about the molecular mechanisms of anti-cancer effects of polyphenols, which are related to apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways and epigenetic mechanisms. At the same time the effects of polyphenols on primary tumor, metastasis and angiogenesis in breast cancer are discussed. The increasing enthusiasm regarding the combination of polyphenols and conventional therapy in breast cancer might lead to additional efforts to motivate further research in this field.

  15. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  16. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase.

    Directory of Open Access Journals (Sweden)

    Chrysoula Spanou

    Full Text Available Legumes and the polyphenolic compounds present in them have gained a lot of interest due to their beneficial health implications. Dietary polyphenolic compounds, especially flavonoids, exert antioxidant properties and are potent inhibitors of xanthine oxidase (XO activity. XO is the main contributor of free radicals during exercise but it is also involved in pathogenesis of several diseases such as vascular disorders, cancer and gout. In order to discover new natural, dietary XO inhibitors, some polyphenolic fractions and pure compounds isolated from two legume plant extracts were tested for their effects on XO activity. The fractions isolated from both Vicia faba and Lotus edulis plant extracts were potent inhibitors of XO with IC(50 values range from 40-135 µg/mL and 55-260 µg/mL, respectively. All the pure polyphenolic compounds inhibited XO and their K(i values ranged from 13-767 µM. Ten of the compounds followed the non competitive inhibitory model whereas one of them was a competitive inhibitor. These findings indicate that flavonoid isolates from legume plant extracts are novel, natural XO inhibitors. Their mode of action is under investigation in order to examine their potential in drug design for diseases related to overwhelming XO action.

  17. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase.

    Science.gov (United States)

    Spanou, Chrysoula; Veskoukis, Aristidis S; Kerasioti, Thalia; Kontou, Maria; Angelis, Apostolos; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros; Kouretas, Dimitrios

    2012-01-01

    Legumes and the polyphenolic compounds present in them have gained a lot of interest due to their beneficial health implications. Dietary polyphenolic compounds, especially flavonoids, exert antioxidant properties and are potent inhibitors of xanthine oxidase (XO) activity. XO is the main contributor of free radicals during exercise but it is also involved in pathogenesis of several diseases such as vascular disorders, cancer and gout. In order to discover new natural, dietary XO inhibitors, some polyphenolic fractions and pure compounds isolated from two legume plant extracts were tested for their effects on XO activity. The fractions isolated from both Vicia faba and Lotus edulis plant extracts were potent inhibitors of XO with IC(50) values range from 40-135 µg/mL and 55-260 µg/mL, respectively. All the pure polyphenolic compounds inhibited XO and their K(i) values ranged from 13-767 µM. Ten of the compounds followed the non competitive inhibitory model whereas one of them was a competitive inhibitor. These findings indicate that flavonoid isolates from legume plant extracts are novel, natural XO inhibitors. Their mode of action is under investigation in order to examine their potential in drug design for diseases related to overwhelming XO action.

  18. A Review of Polyphenolics in Oak Woods

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-03-01

    Full Text Available Polyphenolics, which are ubiquitous in plants, currently are among the most studied phytochemicals because of their perceptible chemical properties and antioxidant activity. Oak barrels and their alternatives, which are widely used in winemaking nowadays, contribute polyphenolics to wines and are thought to play crucial roles in the development of wines during aging. This study summarizes the detailed information of polyphenolics in oak woods and their products by examining their structures and discussing their chemical reactions during wine aging. This paper evaluates the most recent developments in polyphenolic chemistry by summarizing their extraction, separation, and their identification by the use of chromatographic and spectral techniques. In addition, this paper also introduces polyphenol bioactive ingredients in other plant foods.

  19. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective

    Directory of Open Access Journals (Sweden)

    Davatgaran-Taghipour Y

    2017-04-01

    bioavailability. Different types of formulations have been designed for the improvement of bioavailability of these compounds, nanonization being one of the most notable approaches among them. This study aimed to review current data on the nanoformulations of natural polyphenols as chemopreventive and chemotherapeutic agents and to discuss their molecular anticancer mechanisms of action. Nanoformulations of natural polyphenols as bioactive agents, including resveratrol, curcumin, quercetin, epigallocatechin-3-gallate, chrysin, baicalein, luteolin, honokiol, silibinin, and coumarin derivatives, in a dose-dependent manner, result in better efficacy for the prevention and treatment of cancer. The impact of nanoformulation methods for these natural agents on tumor cells has gained wider attention due to improvement in targeted therapy and bioavailability, as well as enhancement of stability. Today, several nanoformulations are designed for delivery of polyphenolic compounds, including nanosuspensions, solid lipid nanoparticles, liposomes, gold nanoparticles, and polymeric nanoparticles, which have resulted in better antineoplastic activity, higher intracellular concentration of polyphenols, slow and sustained release of the drugs, and improvement of proapoptotic activity against tumor cells. To conclude, natural polyphenols demonstrate remarkable anticancer potential in pharmacotherapy; however, the obstacles in terms of their bioavailability in and toxicity to normal cells, as well as targeted drug delivery to malignant cells, can be overcome using nanoformulation-based technologies, which optimize the bioefficacy of these natural drugs. Keywords: natural products, flavonoid, anthocyanin, tumor, malignancy

  20. Lysyl oxidase in colorectal cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine T

    2013-01-01

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested...... to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has...... advancements in the field of colorectal cancer....

  1. Crystallization of recombinant 1-amino cyclo propane-1-carboxylate (Acc) oxidase

    International Nuclear Information System (INIS)

    Watanabe, L.; Arni, R.K.; Dilley, D.

    1996-01-01

    Full text. Ethylene is an important harmone in plant biology because it activates gene expression with consequences at all phases of plant growth and development spanning seed germination to fruit ripening and senesense of plant organs. In climacteric fruits, the sharp increase in ethylene production at the onset of ripening is throught to trigger the changes in colour, aroma, texture and flavour. The final step in ethylene biosynthesis is catalyzed by ACC oxidase. Biothechnological methods have been used to inhibit ethylene biosynthesis and ripening in tomato by down-regulating ACC synthase and ACC oxidase gene expression using the antisense RNA strategy. A similar goal has been achieved by overexpressing a bacterial ACC deaminase or a viral-S-adenosylmethionine hydrolase gene, which reduces the availability of the ethylene precursors., ACC and S-adenosylmethionine, respectively. C0 2 at concentrations commonly found in the intracellular space of plant tissues is required to active ACC oxidase to produce ethylene and can elevate enzyme activity 20-fold in a concentration dependent manner. Consequently, the intracellular ethylene level is modulated from low inactive levels when C0 2 is not limiting and this may alter gene expression. ACC oxidase undergoes catalytic inactivation as the reaction to make ethylene procedes and this too may involve CO 2 . It has been suggested that CO 2 acts as a modulator of ACC oxidase activity and therby helps regulate ethylene levels in the cell and thus may explain many ethylene related phenomena in plant biology. CO 2 is know to affect O 2 binding in hemoglobin and ribulose bisphosphate carboxylase-oxygenase (Rubisco). Catalytic inactivation is a common phenomena in enzyme turnover, ACC oxidase is a Fe +2 /ascorbate requiring enzyme and this makes it a prime candidate for metal ion oxidation-based inactivation. Charentais melon with an antisense ACC oxidase cDNA. A trangenic line exhibits reduction of ethylene production and

  2. Encapsulation of Natural Polyphenolic Compounds; a Review

    Directory of Open Access Journals (Sweden)

    Florence Edwards-Lévy

    2011-11-01

    Full Text Available Natural polyphenols are valuable compounds possessing scavenging properties towards radical oxygen species, and complexing properties towards proteins. These abilities make polyphenols interesting for the treatment of various diseases like inflammation or cancer, but also for anti-ageing purposes in cosmetic formulations, or for nutraceutical applications. Unfortunately, these properties are also responsible for a lack in long-term stability, making these natural compounds very sensitive to light and heat. Moreover, polyphenols often present a poor biodisponibility mainly due to low water solubility. Lastly, many of these molecules possess a very astringent and bitter taste, which limits their use in food or in oral medications. To circumvent these drawbacks, delivery systems have been developed, and among them, encapsulation would appear to be a promising approach. Many encapsulation methods are described in the literature, among which some have been successfully applied to plant polyphenols. In this review, after a general presentation of the large chemical family of plant polyphenols and of their main chemical and biological properties, encapsulation processes applied to polyphenols are classified into physical, physico-chemical, chemical methods, and other connected stabilization methods. After a brief description of each encapsulation process, their applications to polyphenol encapsulation for pharmaceutical, food or cosmetological purposes are presented.

  3. Lysyl oxidase in cancer research

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we...

  4. Flavoprotein oxidases : classification and applications

    NARCIS (Netherlands)

    Dijkman, Willem P.; de Gonzalo, Gonzalo; Mattevi, Andrea; Fraaije, Marco W.

    This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical

  5. Season-controlled changes in biochemical constituents and oxidase enzyme activities in tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Sen, Supatra; Mukherji, S

    2009-07-01

    Season-controlled changes in biochemical constituents viz. carotenoids (carotene and xanthophyll) and pectic substances along with IAA-oxidase and polyphenol oxidase (PPO) enzyme activities were estimated/assayed in leaves of Lycopersicon esculentum Mill. (tomato) in two developmental stages--pre-flowering (35 days after sowing) and post-flowering (75 days after sowing) in three different seasons--summer rainy and winter Carotenoid content along with pectic substances were highest in winter and declined significantly in summer followed by rainy i.e. winter > summer > rainy. Carotenoid content was significantly higher in the pre-flowering as compared to post-flowering in all three seasons while pectic substances increased in the post-flowering as compared to pre-flowering throughout the annual cycle. IAA oxidase and PPO enzyme activities were enhanced in rainy and decreased sharply in summer and winter i.e. rainy > summer > winter. Both the enzymes exhibited higher activity in the post-flowering stage as compared to pre-flowering in all three seasons. These results indicate winter to be the most favourable season for tomato plants while rainy season environmental conditions prove to be unfavourable (stressful) with diminished content of carotenoid and pectic substances and low activities of IAA oxidase and PPO, ultimately leading to poor growth and productivity.

  6. THE REACTIVITY OF THE METABOLIC PROCESSES OF THE HEp-2p TUMORAL CELLS TO THE ACTION OF SOME ACTIVE CYTOSTATIC BIOPREPARATIONS OF POLYPHENOLIC NATURE

    Directory of Open Access Journals (Sweden)

    Pincu Rotinberg

    2005-08-01

    unsoluble proteins, DNA and RNA biomolecules. The new tumoral cell metabolic behaviour induced by polyphenolic cytostatics – analyzed in comparison with that of the control untreated tumoral cells – can be consequence of an interaction between the bioactive agents either with the membrane receptors or with intracellular receptors.

  7. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression.

    Science.gov (United States)

    Calabriso, Nadia; Scoditti, Egeria; Massaro, Marika; Pellegrino, Mariangela; Storelli, Carlo; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-03-01

    The aim of the study was to evaluate the vascular anti-inflammatory effects of polyphenolic extracts from two typical South Italy red wines, the specific contribution of individual polyphenols and the underlying mechanisms of action. Human endothelial cells were incubated with increasing concentrations (1-50 μg/mL) of Primitivo and Negroamaro polyphenolic extracts (PWPE and NWPE, respectively) or pure polyphenols (1-25 μmol/L), including hydroxycinnamic acids (p-coumaric, caffeic and caftaric acids), flavonols (kaempferol, quercetin, myricetin) or stilbenes (trans-resveratrol, trans-piceid) before stimulation with lipopolysaccharide. Through multiple assays, we analyzed the endothelial-monocyte adhesion, the endothelial expression of adhesion molecules (ICAM-1, VCAM-1 and E-Selectin), monocyte chemoattractant protein-1 (MCP-1) and macrophage colony-stimulating factor (M-CSF), as well as ROS intracellular levels and the activation of NF-κB and AP-1. Both PWPE and NWPE, already at 1 μg/mL, inhibited monocyte adhesion to stimulated endothelial cells, a key event in triggering vascular inflammation. They down-regulated the expression of adhesion molecules, ICAM-1, VCAM-1, E-Selectin, as well as MCP-1 and M-CSF, at mRNA and protein levels. All polyphenols reduced intracellular ROS, and everything, except caftaric acid, inhibited the endothelial expression of adhesion molecules and MCP-1, although with different potency. Flavonols and resveratrol significantly reduced also the endothelial expression and release of M-CSF. The decrease in endothelial inflammatory gene expression was related to the inhibition of NF-κB and AP-1 activation but not to intracellular oxidative stress. This study showed multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts and indentified specific bioactive polyphenols which could counteract inflammatory diseases including atherosclerosis.

  8. Wine Polyphenols: Potential Agents in Neuroprotection

    Science.gov (United States)

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  9. Chromate reduction by rabbit liver aldehyde oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.B.; Cooke, R.T. Jr.

    1986-05-29

    Chromate was reduced during the oxidation of 1-methylnicotinamide chlorine by partially purified rabbit liver aldehyde oxidase. In addition to l-methylnicotinamide, several other electron donor substrates for aldehyde oxidase were able to support the enzymatic chromate reduction. The reduction required the presence of both enzyme and the electron donor substrate. The rate of the chromate reduction was retarded by inhibitors or aldehyde oxidase but was not affected by substrates or inhibitors of xanthine oxidase. These results are consistent with the involvement of aldehyde oxidase in the reduction of chromate by rabbit liver cytosolic enzyme preparations.

  10. A Miniature Graphene-based Biosensor for Intracellular Glucose Measurements

    International Nuclear Information System (INIS)

    Hasan, Kamran ul; Asif, Muhammad H.; Hassan, Muhammad Umair; Sandberg, Mats O.; Nur, O.; Willander, M.; Fagerholm, Siri; Strålfors, Peter

    2015-01-01

    We report on a small and simple graphene-based potentiometric sensor for the measurement of intracellular glucose concentration. A fine borosilicate glass capillary coated with graphene and subsequently immobilized with glucose oxidase (GOD) enzyme is inserted into the intracellular environment of a single human cell. The functional groups on the edge plane of graphene assist the attachment with the free amine terminals of GOD enzyme, resulting in a better immobilization. The sensor exhibits a glucose-dependent electrochemical potential against an Ag/AgCl reference microelectrode which is linear across the whole concentration range of interest (10 – 1000 μM). Glucose concentration in human fat cell measured by our graphene-based sensor is in good agreement with nuclear magnetic resonance (NMR) spectroscopy

  11. Functional Properties of Grape and Wine Polyphenols.

    Science.gov (United States)

    Giovinazzo, Giovanna; Grieco, Francesco

    2015-12-01

    Grape berries polyphenols are mainly synthesized in the skin tissues and seeds and they are extracted during the winemaking process. These substances have a potentially positive effect, on human health, thus giving to grape and red wine "functional properties" that can contribute to prevent a number of human illness. Nevertheless, the research community is showing that the real effect is a result of a combination of different factors, notably daily intake, bioavailability, or in vivo antioxidant activity that are yet to be resolved. Viticulture and winemaking practices, determine the concentration of polyphenols in grape and wine. To date, reduced knowledge is existing on the effects of different yeast strains on the final concentration of polyphenols in red wine. We summarize the recent findings concerning the effects of polyphenols on human chronic disease and the future directions for research to increase the amount of these compounds in wine.

  12. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    USER

    2010-05-17

    May 17, 2010 ... The antioxidant properties and antimicrobial potential of three ethnomedicinal plants, (Momordica charanta, Senna alata and Nauclea lafifolia) extracted with acetone were investigated. Polyphenols from the medicinal plants were screened for their antioxidant and antimicrobial activities against pathogenic.

  13. Red Wine Polyphenols for Cancer Prevention

    Science.gov (United States)

    He, Shan; Sun, Cuirong; Pan, Yuanjiang

    2008-01-01

    Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been implicated in cancer prevention and that promote human health without recognizable side effects. Since resveratrol, a major component of red wine polyphenols, has been studied and reviewed extensively for its chemopreventive activity to interfere with the multi-stage carcinogenesis, this review focuses on recent progress in studies on cancer chemopreventive activities of red wine polyphenol extracts and fractions as well as other red wine polyphenols, like procyanidin B5 analogues and myricetin. PMID:19325788

  14. Red Wine Polyphenols for Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Yuanjiang Pan

    2008-05-01

    Full Text Available Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been implicated in cancer prevention and that promote human health without recognizable side effects. Since resveratrol, a major component of red wine polyphenols, has been studied and reviewed extensively for its chemopreventive activity to interfere with the multi-stage carcinogenesis, this review focuses on recent progress in studies on cancer chemopreventive activities of red wine polyphenol extracts and fractions as well as other red wine polyphenols, like procyanidin B5 analogues and myricetin.

  15. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    the medicinal plants were screened for their antioxidant and antimicrobial activities against pathogenic micro organisms (Staphylococcus aureus, Streptococcus pyogenes, Esherichia coli and Candida albicans). The medicinal plants displayed different polyphenols contents and antioxidant activities. In addition, varying ...

  16. Dietary Polyphenols in the Prevention of Stroke

    Directory of Open Access Journals (Sweden)

    A. Tressera-Rimbau

    2017-01-01

    Full Text Available Polyphenols have an important protective role against a number of diseases, such as atherosclerosis, brain dysfunction, stroke, cardiovascular diseases, and cancer. Cardiovascular diseases are the number one cause of death worldwide: more people die annually from cardiovascular diseases than from any other cause. The most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical inactivity, tobacco use, and excess alcohol intake. The dietary consumption of polyphenols has shown to be inversely associated with morbidity and mortality by cardio- and cerebrovascular diseases. It is well-known that the protective effects of polyphenols in vivo depend on the grade how they are extracted from food and on their intestinal absorption, metabolism, and biological action with target tissues. The aim of this review was to summarise the relation between polyphenols of different plant sources and stroke in human intervention studies, animal models, and in vitro studies.

  17. Dietary Polyphenols in the Prevention of Stroke

    Science.gov (United States)

    Eder, M.

    2017-01-01

    Polyphenols have an important protective role against a number of diseases, such as atherosclerosis, brain dysfunction, stroke, cardiovascular diseases, and cancer. Cardiovascular diseases are the number one cause of death worldwide: more people die annually from cardiovascular diseases than from any other cause. The most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical inactivity, tobacco use, and excess alcohol intake. The dietary consumption of polyphenols has shown to be inversely associated with morbidity and mortality by cardio- and cerebrovascular diseases. It is well-known that the protective effects of polyphenols in vivo depend on the grade how they are extracted from food and on their intestinal absorption, metabolism, and biological action with target tissues. The aim of this review was to summarise the relation between polyphenols of different plant sources and stroke in human intervention studies, animal models, and in vitro studies. PMID:29204249

  18. Study of irradiation effect on curcuma polyphenols

    International Nuclear Information System (INIS)

    Rejeb, Imen

    2008-01-01

    The present study was carried out to evaluate the effect of gamma irradiation on curcumin (Curcuma Longa rhizome) component, particularly the polyphenolic fraction. Powdered rhizome was irradiated at 0, 5, 10 and 15 KGy (dose rate of 6 KGy / H). Polyphenolics were extracted and total polyphenols conent (TPC) was quantified using the Folin-Ciocalteau method. The irradiation effect was also evaluated by the HPLC technique. The chromatographic analysis showed that the irradiated and non-irradiated curcumin spectrum gave similar data. The antioxidant and antibacterial activities of the phenolic extracts were also assessed. the anti oxidative potential of the sample was evaluated using two radical scavenging methods with DPPH and ABTS. The antimicrobial analysis showed that the phenolic extracts of curcumin inhibited the growth of the studied microorganisms. Our results showed that irradiated samples were not affected in terms of polyphenols content and characteristics. (Author)

  19. Polyphenols: skin photoprotection and inhibition of photocarcinogenesis.

    Science.gov (United States)

    Afaq, F; Katiyar, S K

    2011-12-01

    Polyphenols are a large family of naturally occurring plant products and are widely distributed in plant foods, such as, fruits, vegetables, nuts, flowers, bark and seeds, etc. These polyphenols contribute to the beneficial health effects of dietary products. Clinical and epidemiological studies suggest that exposure of the skin to environmental factors/pollutants, such as solar ultraviolet (UV) radiation induce harmful effects and leads to various skin diseases including the risk of melanoma and non-melanoma skin cancers. The incidence of non-melanoma skin cancer, comprising of squamous cell carcinoma and basal cell carcinoma, is a significant public health concern world-wide. Exposure of the skin to solar UV radiation results in inflammation, oxidative stress, DNA damage, dysregulation of cellular signaling pathways and immunosuppression thereby resulting in skin cancer. The regular intake of natural plant products, especially polyphenols, which are widely present in fruits, vegetables, dry legumes and beverages have gained considerable attention as protective agents against the adverse effects of UV radiation. In this article, we first discussed the impact of polyphenols on human health based on their structure-activity relationship and bioavailability. We then discussed in detail the photoprotective effects of some selected polyphenols on UV-induced skin inflammation, proliferation, immunosuppression, DNA damage and dysregulation of important cellular signaling pathways and their implications in skin cancer management. The selected polyphenols include: green tea polyphenols, pomegranate fruit extract, grape seed proanthocyanidins, resveratrol, silymarin, genistein and delphinidin. The new information on the mechanisms of action of these polyphenols supports their potential use in skin photoprotection and prevention of photocarcinogenesis in humans.

  20. Polyphenolic Profiling of Croatian Propolis and Wine

    OpenAIRE

    Mirza Bojić; Vesna Rastija; Josipa Cvek; Marica Medić-Šarić

    2013-01-01

    Polyphenols are ubiquitous natural compounds that show chemopreventive, cytostatic, immunomodulatory, bacteriostatic/bactericidal, antifungal, anti-inflammatory, antioxidant and many other pharmacological activities. Propolis, wine and many medicinal plants used in everyday life as functional food present rich sources of polyphenols. In this paper we focus on their production, chemical analysis (spectrophotometry, HPLC, HPTLC, GC/MS, etc.) of flavonoids and phenolic acids, all of which enable...

  1. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    Science.gov (United States)

    Bhullar, Khushwant S.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. PMID:23840922

  2. NDS27 combines the effect of curcumin lysinate and hydroxypropyl-β-cyclodextrin to inhibit equine PKCδ and NADPH oxidase involved in the oxidative burst of neutrophils

    OpenAIRE

    Derochette, Sandrine; Mouithys-Mickalad, Ange; Franck, Thierry; Collienne, Simon; Ceusters, Justine; Deby-Dupont, Ginette; Neven, Philippe; Serteyn, Didier

    2014-01-01

    Polymorphonuclear neutrophils (PMNs) are involved in host defence against infections by the production of reactive oxygen species (ROS), but excessive PMN stimulation is associated with the development of inflammatory diseases. After appropriate stimuli, protein kinase C (PKC) triggers the assembly of NADPH oxidase (Nox2) which produces superoxide anion (O2●-), from which ROS derive. The therapeutic use of polyphenols is proposed to lower ROS production by limiting Nox2 and PKC activities. Th...

  3. Study of potential xanthine oxidase inhibitors: In silico and in vitro biological activity

    Directory of Open Access Journals (Sweden)

    Muthuswamy Umamaheswari

    2011-06-01

    Full Text Available In an attempt to develop potent anti gout agents, coumarin derivatives and polyphenolic compounds were selected for present study. The docking energy of 2-benzyl coumarin was found to be -7.50 kcal/mol which was less than that of the standard allopurinol (-4.47 kcal/mol. All the selected compounds were found to exhibit lower binding energy (-7.50 to -4.68 kcal/mol than allopurinol. Docking results confirm that selected compounds showed greater inhibition of xanthine oxidase due to their active binding sites. In xanthine oxidase assay, IC50 value of 2-benzyl coumarin was found to be 26 ± 1.16 µg/mL, whereas that of allopurinol was 24 ± 0.28 µg/mL. All the compounds exhibited IC50 values ranging between 26 ± 1.16 to 58 ± 0.74 µg/mL. In enzyme kinetic studies, coumarin derivatives showed competitive and polyphenolic compounds showed non competitive type of enzyme inhibition. It can be concluded that coumarin derivatives could be a remedy for the treatment of gout and related inflammatory disorders.

  4. The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide.

    Science.gov (United States)

    Korshunov, Sergey; Imlay, Karin R C; Imlay, James A

    2016-07-01

    When sulfur compounds are scarce or difficult to process, Escherichia coli adapts by inducing the high-level expression of sulfur-compound importers. If cystine then becomes available, the cystine is rapidly overimported and reduced, leading to a burgeoning pool of intracellular cysteine. Most of the excess cysteine is exported, but some is adventitiously degraded, with the consequent release of sulfide. Sulfide is a potent ligand of copper and heme moieties, raising the prospect that it interferes with enzymes. We observed that when cystine was provided and sulfide levels rose, E. coli became strictly dependent upon cytochrome bd oxidase for continued respiration. Inspection revealed that low-micromolar levels of sulfide inhibited the proton-pumping cytochrome bo oxidase that is regarded as the primary respiratory oxidase. In the absence of the back-up cytochrome bd oxidase, growth failed. Exogenous sulfide elicited the same effect. The potency of sulfide was enhanced when oxygen concentrations were low. Natural oxic-anoxic interfaces are often sulfidic, including the intestinal environment where E. coli dwells. We propose that the sulfide resistance of the cytochrome bd oxidase is a key trait that permits respiration in such habitats. © 2016 John Wiley & Sons Ltd.

  5. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition.

    Science.gov (United States)

    Etxeberria, Usune; Fernández-Quintela, Alfredo; Milagro, Fermín I; Aguirre, Leixuri; Martínez, J Alfredo; Portillo, María P

    2013-10-09

    Gut microbiota plays a key role in host physiology and metabolism. Indeed, the relevance of a well-balanced gut microbiota composition to an individual's health status is essential for the person's well-being. Currently, investigations are focused on analyzing the effects of pre- and probiotics as new therapeutic tools to counteract the disruption of intestinal bacterial balance occurring in several diseases. Polyphenols exert a wide range of beneficial health effects. However, although specific attention has been paid in recent years to the function of this "biological entity" in the metabolism of polyphenols, less is known about the modulatory capacity of these bioactive compounds on gut microbiota composition. This review provides an overview of the latest investigations carried out with pure polyphenols, extracts rich in polyphenols, and polyphenol-rich dietary sources (such as cocoa, tea, wine, soy products, and fruits) and critically discusses the consequences to gut microbiota composition which are produced.

  6. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1

    Directory of Open Access Journals (Sweden)

    Carolina Emilia Storniolo

    2014-01-01

    Full Text Available Epidemiological and clinical studies have reported that olive oil reduces the incidence of cardiovascular disease. However, the mechanisms involved in this beneficial effect have not been delineated. The endothelium plays an important role in blood pressure regulation through the release of potent vasodilator and vasoconstrictor agents such as nitric oxide (NO and endothelin-1 (ET-1, respectively, events that are disrupted in type 2 diabetes. Extra virgin olive oil contains polyphenols, compounds that exert a biological action on endothelial function. This study analyzes the effects of olive oil polyphenols on endothelial dysfunction using an in vitro model that simulates the conditions of type 2 diabetes. Our findings show that high glucose and linoleic and oleic acids decrease endothelial NO synthase phosphorylation, and consequently intracellular NO levels, and increase ET-1 synthesis by ECV304 cells. These effects may be related to the stimulation of reactive oxygen species production in these experimental conditions. Hydroxytyrosol and the polyphenol extract from extra virgin olive oil partially reversed the above events. Moreover, we observed that high glucose and free fatty acids reduced NO and increased ET-1 levels induced by acetylcholine through the modulation of intracellular calcium concentrations and endothelial NO synthase phosphorylation, events also reverted by hydroxytyrosol and polyphenol extract. Thus, our results suggest a protective effect of olive oil polyphenols on endothelial dysfunction induced by hyperglycemia and free fatty acids.

  7. EXPRESSION OF XANTHINE OXIDASE IN TESTICULAR CELLS

    OpenAIRE

    Kawaguchi, Satoshi; Fukuda, Jun; Kumagai, Jin; Shimizu, Yasushi; Kawamura, Kazuhiro; Tanaka, Toshinobu

    2009-01-01

    Objective : Previous studies showed that xanthine oxidase-related active oxygen generation was involved in heat stress-induced apoptosis in testicular cells. Hence, in the present study, the expressionof xanthine oxidase in experimental cryptorchidism and heat-stressed testicular cells was assessed to determine the involvement of xanthine oxidase-related active oxygen generation in heat stress-induced apoptosis in testicular cells. Methods : (1) Immunohistological examinationof xanthine oxida...

  8. Cognac polyphenolic compounds increase bradykinin-induced nitric oxide production in endothelial cells.

    Science.gov (United States)

    Sall Diallo, A; Sarr, M; Mostefai, H A; Carusio, N; Pricci, M; Andriantsitohaina, R

    2008-01-01

    We recently reported that in vitro Cognac polyphenolic compounds (CPC) induce NO-dependent vasorelaxant effects and stimulate cardiac function. In the present study, we aim to investigate the effect of CPC on both nitric oxide (NO) and superoxide anions (O(2)(-)) production in cultured human endothelial cells. In addition, its effect on the bradykinin (BK)-induced NO production was also tested. The role and sources of O(2)(-) in the concomitant effect of BK plus CPC were pharmacologically determined. NO and O(2)(-) signals were measured using electron paramagnetic resonance technique using specific spin trappings. Both, CPC and BK induced an increase in NO production in human endothelial cells. The combination of both further enhanced NO release. The capacity of CPC plus BK to increase NO signal was blunted by the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and was enhanced in the presence either of superoxide dismutase or catalase. Moreover, CPC plus BK response was greater after inhibition of either NADPH oxidase by apocynin or xanthine oxidase by allopurinol but it was not affected by rotenone. CPC did not affect O(2)(-) level either alone or after its increase upon lipopolysaccharide treatment. Finally, the capacity of BK alone to increase NO was enhanced either by apocynin or allopurinol. Altogether, these data demonstrate that CPC is able to directly increase NO production without affecting O(2)(-) and enhances the BK-induced NO production in human endothelial cells. The data highlight the ability of BK to stimulate not only NADPH oxidase- but also xanthine oxidase-inhibitor sensitive mechanisms that reduce its efficiency in increasing NO either alone or in the presence of CPC. These results bring pharmacological evidence for vascular protection by CPC via its potentiating effect of BK response in terms of endothelial NO release.

  9. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus.

    Science.gov (United States)

    de Souza Santos, Marcela; Salomon, Dor; Orth, Kim

    2017-06-01

    The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.

  10. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus.

    Directory of Open Access Journals (Sweden)

    Marcela de Souza Santos

    2017-06-01

    Full Text Available The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS production using the Type III Secretion System 2 (T3SS2 effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.

  11. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism.

    Science.gov (United States)

    Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M

    2011-12-01

    To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.

  12. Wine Polyphenols: Potential Agents in Neuroprotection

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2012-01-01

    Full Text Available There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson’s or Alzheimer’s diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  13. A broad distribution of the alternative oxidase in microsporidian parasites.

    Directory of Open Access Journals (Sweden)

    Bryony A P Williams

    2010-02-01

    Full Text Available Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX, a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1 as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.

  14. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio.

    Science.gov (United States)

    Hernández-Romero, Diana; Sanchez-Amat, Antonio; Solano, Francisco

    2006-01-01

    The sequencing of the genome of Ralstonia solanacearum[Salanoubat M, Genin S, Artiguenave F, et al. (2002) Nature 415, 497-502] revealed several genes that putatively code for polyphenol oxidases (PPOs). This soil-borne pathogenic bacterium withers a wide range of plants. We detected the expression of two PPO genes (accession numbers NP_518458 and NP_519622) with high similarity to tyrosinases, both containing the six conserved histidines required to bind the pair of type-3 copper ions at the active site. Generation of null mutants in those genes by homologous recombination mutagenesis and protein purification allowed us to correlate each gene with its enzymatic activity. In contrast with all tyrosinases so far studied, the enzyme NP_518458 shows higher monophenolase than o-diphenolase activity and its initial activity does not depend on the presence of l-dopa cofactor. On the other hand, protein NP_519622 is an enzyme with a clear preference to oxidize o-diphenols and only residual monophenolase activity, behaving as a catechol oxidase. These catalytic characteristics are discussed in relation to two other characteristics apart from the six conserved histidines. One is the putative presence of a seventh histidine which interacts with the carboxy group on the substrate and controls the preference for carboxylated and decarboxylated substrates. The second is the size of the residue isosteric with the aromatic F261 reported in sweet potato catechol oxidase which acts as a gate to control accessibility to CuA at the active site.

  15. Soil effect on polyphenols content and antioxidant capacity of new ...

    African Journals Online (AJOL)

    Polyphenols have gained much interest recently due to their antioxidant capacity and possible benefits to human health. Cocoa (Theobroma cacao) is a rich source of polyphenols and has higher antioxidant activity than teas and red wines. Cocoa and its derived products contain different types of polyphenols and possess ...

  16. Biological Activities of Polyphenols from Grapes

    Directory of Open Access Journals (Sweden)

    Hua-Bin Li

    2010-02-01

    Full Text Available The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included.

  17. Biological Activities of Polyphenols from Grapes

    Science.gov (United States)

    Xia, En-Qin; Deng, Gui-Fang; Guo, Ya-Jun; Li, Hua-Bin

    2010-01-01

    The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included. PMID:20386657

  18. Polyphenolic Profiling of Croatian Propolis and Wine

    Directory of Open Access Journals (Sweden)

    Mirza Bojić

    2013-01-01

    Full Text Available Polyphenols are ubiquitous natural compounds that show chemopreventive, cytostatic, immunomodulatory, bacteriostatic/bactericidal, antifungal, anti-inflammatory, antioxidant and many other pharmacological activities. Propolis, wine and many medicinal plants used in everyday life as functional food present rich sources of polyphenols. In this paper we focus on their production, chemical analysis (spectrophotometry, HPLC, HPTLC, GC/MS, etc. of flavonoids and phenolic acids, all of which enable authentication and geographical traceability of propolis and wine. This represents the basis for quality control and regulatory framework for any dietary supplement claiming to have beneficial health effectiveness.

  19. Exploring flavin-containing carbohydrate oxidases

    NARCIS (Netherlands)

    Ferrari, Alessandro Renato

    2017-01-01

    Oxidases are enzymes capable of removing one or more electrons from their substrate and transfer them to molecular oxygen, forming hydrogen peroxide. Due to their high regio- and enantioselectivity, their use is preferred over traditional organic chemistry methods. Among the oxidases, flavoprotein

  20. Genetics Home Reference: monoamine oxidase A deficiency

    Science.gov (United States)

    ... Sleep problems, such as trouble falling asleep or night terrors, can also occur in monoamine oxidase A deficiency . Some people with monoamine oxidase A deficiency have episodes of skin flushing, sweating, headaches, ... regulate mood, emotion, sleep, and appetite. Epinephrine and norepinephrine control the body's ...

  1. Main Leaf Polyphenolic Components of Berry Color Variant Grapevines and Their Acclimative Responses to Sunlight Exposure

    Directory of Open Access Journals (Sweden)

    Marianna Kocsis

    2015-12-01

    Full Text Available Grapevine leaf synthesizes a wide variety of bioactive secondary metabolites, including polyphenols, which are also key components in ensuring development and growth of the whole plant even under adverse environmental conditions. Our study evaluates the nonanthocyanin polyphenolic composition in grapevine leaves of three varieties of Gohér conculta (Vitis vinifera L. native to Hungary. A high performance liquid chromatography (HPLC system including a diode array detector (DAD coupled to a time-of-flight mass spectrometer (q-TOFMS was successfully applied to profile intact glycoconjugate forms in samples. In-source fragmentation was utilized in order to provide structural information on the compounds. Using this method, the presence of 16 polyphenolic metabolites were confirmed, and eight of them were subjected to further quantification in sun acclimated and half shaded leaves. Intracellular microimaging detected accumulation of flavonols in cell nuclei, cell wall and chloroplasts. Our findings demonstrated that Gohér conculta—a special grapevine taxon of our viticultural heritage with berry color variants—is a suitable model to study the interaction between genetic and environmental factors in determination of grapevine phenolic composition.

  2. The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Science.gov (United States)

    Fernández-Arroyo, Salvador; Huete-Toral, Fernando; Jesús Pérez de Lara, María; de la Luz Cádiz-Gurrea, María; Legeai-Mallet, Laurence; Micol, Vicente; Segura-Carretero, Antonio; Joven, Jorge; Pintor, Jesús

    2015-01-01

    Background Imbalances in the functional binding of fibroblast growth factors (FGFs) to their receptors (FGFRs) have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R) in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R) mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM) generation, and grade of activation of mitogen-activated protein kinases. Results Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage. PMID:26445212

  3. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  4. The intracellular pharmacokinetics of terminally capped peptides.

    NARCIS (Netherlands)

    Ruttekolk, I.R.R.; Witsenburg, J.J.; Glauner, H.B.; Bovee-Geurts, P.H.M.; Ferro, E.S.; Verdurmen, W.P.R.; Brock, R.E.

    2012-01-01

    With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular

  5. Functional genomics of intracellular bacteria.

    Science.gov (United States)

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  6. of polyphenolic compounds in Ilex Sp.

    Directory of Open Access Journals (Sweden)

    Zwyrzykowska Anna

    2015-11-01

    Full Text Available Natural compounds are an important source of desired biological activity which help to improve nutritional status, enhance productivity and bring many health benefits. The leaves of the Ilex paraguariensis (Aquifoliaceae are used for preparing a beverage known as yerba mate and represent a proven source of natural polyphenols which are known to foster biological activity with the emphasis on antioxidant properties. In present work we focused on the polyphenolic content of air-dried leaves of Ilex aquifolium L., Ilex aquifolium ‘Argentea Mariginata’, Ilex meserveae ‘Blue Angel’, and a commercially available mate as the reference product. Liquid chromatography combined with mass spectrometry (HPLC and LC-MS and thin layer chromatography (TLC, were used to establish polyphenolic substances content in aqueous methanolic extracts obtained from the biological matter. Up to 20 polyphenolic compounds were identified in the extracts, including rutin, quinic acid and its caffeoyl esters, i.e. chlorogenic acid and its isomers as well as dicaffeoyl derivatives. We took chlorogenic acid and rutin as reference compounds to quantify their levels in the extracts. It was determined that in all tested plants, high levels of these antioxidants were present. This led us to the conclusion that their leaves might serve as valuable food additives.

  7. Antiglycation and Hypolipidemic Effects of Polyphenols from ...

    African Journals Online (AJOL)

    HP

    Results: Significant increases (p < 0.05) in blood glucose level (369.26 mg/dL), serum advanced glycation end-products ... Free polyphenol extracts of Z. officinale significantly reduced (p < 0.05) blood glucose (147.96 mg/dL), serum AGEs (1.98 ..... constituent through bioassay-directed fractionation techniques. Life Sci.

  8. Antiglycation and Hypolipidemic Effects of Polyphenols from ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antiglycation and hypolipidemic potential of polyphenols from Zingiber officinale in streptozotocin-induced diabetic rats. Methods: Diabetes was induced in male Wistar rats by single intraperitoneal injection of 50 mg/kg body weight (bw) of streptozotocin. This was followed by oral administration of ...

  9. Total Antioxidant Capacity, Polyphenolic composition and ...

    African Journals Online (AJOL)

    The growing interest in the substitution of synthetic food antioxidants with natural ones in the maintenance of human health has fostered increased research on the screening of plants for the identification of antioxidants. The total antioxidant capacity and polyphenolic content of the extracts of the three varieties of rizga flour ...

  10. Chocolate: (un)healthy source of polyphenols?

    Science.gov (United States)

    Rimbach, Gerald; Egert, Sarah; de Pascual-Teresa, Sonia

    2011-02-01

    There is recent epidemiological evidence that chocolate consumption may improve vascular health. Furthermore, several small-scale human intervention studies indicate that habitual chocolate intake enhances the production of vasodilative nitric oxide and may lower blood pressure. It is hypothesized that potential beneficial effects of chocolate on vascular health are at least partly mediated by cocoa polyphenols including procyanidins. Based on cell culture studies, molecular targets of chocolate polyphenols are endothelial nitric oxide synthetase as well as arginase. However, human bioavailability studies suggest that the plasma concentrations of cocoa polyphenols are manifold lower than those concentrations used in cultured cells in vitro. The experimental evidence for beneficial vascular effects of chocolate in human interventions studies is yet not fully convincing. Some human intervention studies on chocolate and its polyphenols lack a stringent study design. They are sometimes underpowered and not always placebo controlled. Dietary chocolate intake in many of these human studies was up to 100 g per day. Since chocolate is a rich source of sugar and saturated fat, it is questionable whether chocolate could be recommended as part of a nutrition strategy to promote vascular health.

  11. Epigenetic and disease targets by polyphenols.

    Science.gov (United States)

    Pan, Min-Hsiung; Lai, Ching-Shu; Wu, Jia-Ching; Ho, Chi-Tang

    2013-01-01

    An epigenetic change is defined as an alteration in gene expression that does not involve a change in the DNA sequence. Epigenetic modifications, including DNA methylation, histone modification (acetylation, methylation and phosphorylation) and miRNA, are critical for regulating developmental events. However, aberrant epigenetic mechanisms may lead to pathological consequences such as cardiovascular disease (CAD), neurodegenerative disease, obesity, metabolic disorder, bone and skeletal diseases and various cancers. Given that epigenetic modifications are heritable and reversible, in contrast to genetic changes, they have been identified as promising targets for disease prevention strategies. Over the past few decades, polyphenols, which are widely present in foods such as fruits and vegetables, have been shown to exhibit a broad spectrum of biological activities for human health. Polyphenols reverse adverse epigenetic regulation by altering DNA methylation and histone modification, and they modulate microRNA expression or directly interact with enzymes that result in the reactivation of silenced tumor suppressor genes or the inactivation of oncogenes. Therefore, dietary polyphenol- targeted epigenetics becomes an attractive approach for disease prevention and intervention. In this review, we summarize the current knowledge and underlying mechanisms of the most common dietary polyphenols and their influence on major epigenetic mechanisms associated with disease intervention.

  12. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst

    Directory of Open Access Journals (Sweden)

    Speight Robert

    2010-04-01

    Full Text Available Abstract Background Trigonopsis variabilis D-amino acid oxidase (TvDAO is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. Results As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 × 103 U/g wet cell weight (wcw were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of ≥ 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain under conditions of D-methionine conversion using vigorous

  13. Polyphenols produced during red wine ageing.

    Science.gov (United States)

    Brouillard, R; George, F; Fougerousse, A

    1997-01-01

    Over the past few years, it has been accepted that a moderate red wine consumption is a factor beneficial to human health. Indeed, people of France and Italy, the two major wine-producing European countries, eat a lot of fatty foods but suffer less from fatal heart strokes than people in North-America or in the northern regions of Europe, where wine is not consumed on a regular basis. For a time, ethanol was thought to be the "good" chemical species hiding behind what is known as the "French paradox". Researchers now have turned their investigations towards a family of natural substances called "polyphenols", which are only found in plants and are abundant in grapes. It is well known that these molecules behave as radical scavengers and antioxidants, and it has been demonstrated that they can protect cholesterol in the LDL species from oxidation, a process thought to be at the origin of many fatal heart attacks. However, taken one by one, it remains difficult to demonstrate which are the best polyphenols as far as their antioxidant activities are concerned. The main obstacle in that kind of research is not the design of the chemical and biological tests themselves, but surprisingly enough, the limited access to chemically pure and structurally elucidated polyphenolic compounds. In this article, particular attention will be paid to polyphenols of red wine made from Vitis vinifera cultivars. With respect to the "French paradox", we address the following question: are wine polyphenolic compounds identical to those found in grapes (skin, pulp and seed), or are there biochemical modifications specifically taking place on the native flavonoids when a wine ages? Indeed, structural changes occur during wine conservation, and one of the most studied of those changes concerns red wine colour evolution, called "wine ageing". As a wine ages, it has been demonstrated that the initially present grape pigments slowly turn into new more stable red pigments. That phenomenon goes on

  14. Anticancer Efficacy of Polyphenols and Their Combinations

    Directory of Open Access Journals (Sweden)

    Aleksandra Niedzwiecki

    2016-09-01

    Full Text Available Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract with vitamin C, amino acids and other micronutrients (EPQ demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion

  15. Grape and wine polymeric polyphenols: Their importance in enology.

    Science.gov (United States)

    Li, Lingxi; Sun, Baoshan

    2017-09-21

    Phenolic compounds are important constituents of red wine, contributing to its sensory properties and antioxidant activity. Owing to the diversity and structural complexity, study of these compounds was mainly limited, during the last three decades, on their low-molecular-mass compounds or simple phenolic compounds. Only in recent years, much attention has been paid to highly polymerized polyphenols in grape and red wines. The reason for this is largely due to the development of analytical techniques, especially those of HPLC-ESI-MS, permitting the structural characterization of highly polymerized polyphenols. Furthermore, the knowledge on the biological properties of polymeric polyphenols of red wine is very limited. Grape polyphenols mainly consist of proanthocyanidins (oligomers and polymers) and anthocyanins, and low amount of other phenolics. Red wine polyphenols include both grape polyphenols and new phenolic products formed from them during winemaking process. This leads to a great diversity of new polyphenols and makes wine polyphenol composition more complex. The present paper summarizes the advances in the research of polymeric polyphenols in grape and red wine and their important role in Enology. Scientific results indicate that polymeric polyphenols, as the major polyphenols in grape and red wine, play a major role in red wine sensory properties, color stability and antioxidant activities.

  16. Polyphenol-enriched cocoa protects the diabetic retina from glial reaction through the sirtuin pathway.

    Science.gov (United States)

    Duarte, Diego A; Rosales, Mariana Ap B; Papadimitriou, Alexandros; Silva, Kamila C; Amancio, Vitor Hugo O; Mendonça, Jacqueline N; Lopes, Norberto P; de Faria, José B Lopes; de Faria, Jacqueline M Lopes

    2015-01-01

    Cocoa is rich in flavonoids, which are potent antioxidants with established benefits for cardiovascular health but unproven effects on neurodegeneration. Sirtuins (SIRTs), which make up a family of deacetylases, are thought to be sensitive to oxidation. In this study, the possible protective effects of cocoa in the diabetic retina were assessed. Rat Müller cells (rMCs) exposed to normal or high glucose (HG) or H2O2 were submitted to cocoa treatment in the presence or absence of SIRT-1 inhibitor and small interfering RNA The experimental animal study was conducted in streptozotocin-induced diabetic rats randomized to receive low-, intermediate-, or high-polyphenol cocoa treatments via daily gavage for 16 weeks (i.e., 0.12, 2.9 or 22.9 mg/kg/day of polyphenols). The rMCs exposed to HG or H2O2 exhibited increased glial fibrillary acidic protein (GFAP) and acetyl-RelA/p65 and decreased SIRT1 activity/expression. These effects were cancelled out by cocoa, which decreased reactive oxygen species production and PARP-1 activity, augmented the intracellular pool of NAD(+), and improved SIRT1 activity. The rat diabetic retinas displayed the early markers of retinopathy accompanied by markedly impaired electroretinogram. The presence of diabetes activated PARP-1 and lowered NAD(+) levels, resulting in SIRT1 impairment. This augmented acetyl RelA/p65 had the effect of up-regulated GFAP. Oral administration of polyphenol cocoa restored the above alterations in a dose-dependent manner. This study reveals that cocoa enriched with polyphenol improves the retinal SIRT-1 pathway, thereby protecting the retina from diabetic milieu insult. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.

    Science.gov (United States)

    Panoutsopoulos, Georgios I; Kouretas, Demetrios; Beedham, Christine

    2004-10-01

    Aliphatic aldehydes have a high affinity toward aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. In addition, the oxidation of xenobiotic-derived aromatic aldehydes by the latter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase, and xanthine oxidase activities in the oxidation of substituted benzaldehydes in separate preparations. The incubation of vanillin, isovanillin, and protocatechuic aldehyde with either guinea pig liver aldehyde oxidase, bovine milk xanthine oxidase, or guinea pig liver aldehyde dehydrogenase demonstrated that the three aldehyde oxidizing enzymes had a complementary substrate specificity. Incubations were also performed with specific inhibitors of each enzyme (isovanillin for aldehyde oxidase, allopurinol for xanthine oxidase, and disulfiram for aldehyde dehydrogenase) to determine the relative contribution of each enzyme in the oxidation of these aldehydes. Under these conditions, vanillin was rapidly oxidized by aldehyde oxidase, isovanillin was predominantly metabolized by aldehyde dehydrogenase activity, and protocatechuic aldehyde was slowly oxidized, possibly by all three enzymes. Thus, aldehyde oxidase activity may be a significant factor in the oxidation of aromatic aldehydes generated from amines and alkyl benzenes during drug metabolism. In addition, this enzyme may also have a role in the catabolism of biogenic amines such as dopamine and noradrenaline where 3-methoxyphenylacetic acids are major metabolites.

  18. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats.

    Directory of Open Access Journals (Sweden)

    Hasibur Rehman

    Full Text Available Our previous studies showed that an extract from Camellia sinenesis (green tea, which contains several polyphenols, attenuates nephrotoxicity caused by cyclosporine A (CsA. Since polyphenols are stimulators of mitochondrial biogenesis (MB, this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1% starting 3 days prior to CsA treatment (25 mg/kg, i.g. daily for 3 weeks. CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation (OXPHOS protein ATP synthase-β (AS-β by 42%, mitochondrial DNA (mtDNA-encoded OXPHOS protein NADH dehydrogenase-3 (ND3 by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by 78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV, an OXPHOS protein, in tubular cells. Peroxisome proliferator-activated receptor-γ coactivator (PGC-1α, the master regulator of MB, and mitochondrial transcription factor-A (Tfam, the transcription factor that regulates mtDNA replication and transcription, were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-β, ND3, COX-IV, mtDNA copy number, PGC-1α mRNA and protein, decreased acetylated PGC-1α, and increased Tfam mRNA and protein. In association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate Cs

  19. Crystal structures and atomic model of NADPH oxidase.

    Science.gov (United States)

    Magnani, Francesca; Nenci, Simone; Millana Fananas, Elisa; Ceccon, Marta; Romero, Elvira; Fraaije, Marco W; Mattevi, Andrea

    2017-06-27

    NADPH oxidases (NOXs) are the only enzymes exclusively dedicated to reactive oxygen species (ROS) generation. Dysregulation of these polytopic membrane proteins impacts the redox signaling cascades that control cell proliferation and death. We describe the atomic crystal structures of the catalytic flavin adenine dinucleotide (FAD)- and heme-binding domains of Cylindrospermum stagnale NOX5. The two domains form the core subunit that is common to all seven members of the NOX family. The domain structures were then docked in silico to provide a generic model for the NOX family. A linear arrangement of cofactors (NADPH, FAD, and two membrane-embedded heme moieties) injects electrons from the intracellular side across the membrane to a specific oxygen-binding cavity on the extracytoplasmic side. The overall spatial organization of critical interactions is revealed between the intracellular loops on the transmembrane domain and the NADPH-oxidizing dehydrogenase domain. In particular, the C terminus functions as a toggle switch, which affects access of the NADPH substrate to the enzyme. The essence of this mechanistic model is that the regulatory cues conformationally gate NADPH-binding, implicitly providing a handle for activating/deactivating the very first step in the redox chain. Such insight provides a framework to the discovery of much needed drugs that selectively target the distinct members of the NOX family and interfere with ROS signaling.

  20. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  1. Vanillyl-alcohol oxidase, a tasteful biocatalyst

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Mattevi, A.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    The covalent flavoenzyme vanillyl-alcohol oxidase (VAO) is a versatile biocatalyst. It converts a wide range of phenolic compounds by catalysing oxidation, deamination, demethylation, dehydrogenation and hydroxylation reactions. The production of natural vanillin, 4-hydroxybenzaldehyde, coniferyl

  2. Genetics Home Reference: cytochrome c oxidase deficiency

    Science.gov (United States)

    ... features known as Leigh syndrome . The signs and symptoms of Leigh syndrome include loss of mental function, movement problems, hypertrophic cardiomyopathy, eating difficulties, and brain abnormalities. Cytochrome c oxidase ...

  3. Anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides.

    Science.gov (United States)

    Le Sage, Fanny; Meilhac, Olivier; Gonthier, Marie-Paule

    2017-05-01

    In obesity, gut microbiota LPS may translocate into the blood stream and then contribute to adipose tissue inflammation and oxidative stress, leading to insulin resistance. A causal link between periodontal infection, obesity and type 2 diabetes has also been suggested. We evaluated the ability of polyphenols from Antirhea borbonica medicinal plant to improve the inflammatory and redox status of 3T3-L1 adipocytes exposed to LPS of Porphyromonas gingivalis periodontopathogen or Escherichia coli enterobacteria. Our results show that LPS enhanced the production of Toll-like receptor-dependent MyD88 and NFκB signaling factors as well as IL-6, MCP-1, PAI-1 and resistin. Plant polyphenols reduced LPS pro-inflammatory action. Concomitantly, polyphenols increased the production of adiponectin and PPARγ, known as key anti-inflammatory and insulin-sensitizing mediators. Moreover, both LPS increased intracellular ROS levels and the expression of genes encoding ROS-producing enzymes including NOX2, NOX4 and iNOS. Plant polyphenols reversed these effects and up-regulated MnSOD and catalase antioxidant enzyme gene expression. Noticeably, preconditioning of cells with caffeic acid, chlorogenic acid or kaempferol identified among A. borbonica major polyphenols, led to similar protective properties. Altogether, these findings demonstrate the anti-inflammatory and antioxidant effects of A. borbonica polyphenols on adipocytes, in response to P. gingivalis or E. coli LPS. It will be of major interest to assess A. borbonica polyphenol benefits against obesity-related metabolic disorders such as insulin resistance in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. PVPP-polyphenol complexes: a molecular approach.

    Science.gov (United States)

    Laborde, Bénédicte; Moine-Ledoux, Virginie; Richard, Tristan; Saucier, Cédric; Dubourdieu, Denis; Monti, Jean-Pierre

    2006-06-14

    In dry white wines, two different forms of instability occur: (i) substantial yellow or yellow-green deposits are observed principally due to flavonol quercetin; and (ii) protein instability leads to protein casse. Polyvinyl polypyrrolidone (PVPP) is used to adsorb phenols from beverages, and bentonite is used to eliminate heat instable protein. However, in both cases, their effects are still largely unknown. This study uses a multitechnique approach to gain a better molecular understanding of the association of polyphenol aglycones with PVPP compared to that of glucosides with PVPP. The work demonstrates, that with aglycones, three forces drive complex formation: hydrophobic interaction, H bonds, and van der Waals bonds. With glucosides, the sugar moiety removes or reduces these driving forces. Thus, if the interaction between proteins and polyphenols is responsible for haze and precipitates, as is classically assumed, PVPP could prevent quercetin sedimentation.

  5. Dihydro-resveratrol-A potent dietary polyphenol

    Energy Technology Data Exchange (ETDEWEB)

    Gakh, Andrei A [ORNL; Anisimova, Natalia Yu [N.N. Blokhin Russian Cancer Research Center; Kiselevsky, Mikhail V [N.N. Blokhin Russian Cancer Research Center; Sadovnikov, Sergey V [Hefei National Laboratory for the Physical Sciences at Microscale; Stankov, Ivan N [Chemical Diversity Research Institute; Yudin, Mikhail V [Chemical Diversity Research Institute; Rufanov, Konstantin A [Chemical Diversity Research Institute; Krasavin, Mikhail Yu [Chemical Diversity Research Institute; Sosnov, Andrey V [Chemical Diversity Research Institute

    2010-01-01

    Dihydro-resveratrol (dihydro-R), a prominent polyphenol component of red wine, has a profound proliferative effect on hormone-sensitive tumor cell lines such as breast cancer cell line MCF7. We found a significant increase in MCF7 tumor cells growth rates in the presence of picomolar concentrations of this compound. The proliferative effect of dihydro-R was not observed in cell lines that do not express hormone receptors (MDA-MB-231, BT-474, and -562).

  6. Red Wine Polyphenols for Cancer Prevention

    OpenAIRE

    He, Shan; Sun, Cuirong; Pan, Yuanjiang

    2008-01-01

    Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been ...

  7. Polyphenol protection and treatment of hypertension.

    Science.gov (United States)

    Hügel, Helmut M; Jackson, Neale; May, Brian; Zhang, Anthony L; Xue, Charlie C

    2016-02-15

    High blood pressure is the major risk factor for cardiovascular diseases and the rising prevalence of human hypertension precedes the trend toward a global epidemic of unhealthy ageing. A focus on lifestyle and dietary interventions minimizes dependency on pharmacological antihypertensive therapies. Observational studies indicate that the intake of dietary flavonoids is associated with a decreased risk of cardiovascular disease (CVD). The evidence suggests that the dietary intakes of polyphenol-rich foods, herbs and beverages including flavonols, anthocyanidins, proanthocyanidins, flavones, flavanones, isoflavones and flavan-3-ols, improves vascular health, thereby significantly reducing the risk of hypertension and CVD. Consumption is associated with an improvement in endothelial function via vascular eNOS and Akt activation. Increased NO bioavailability improves vasodilation and blood circulation, effects protein kinases, ion channels and phosphodiesterases, counteracting vascular inflammation and LDL oxidative stress. Importantly, some polyphenols also inhibit the activity of matrix metalloproteinases, inhibit angiotensin converting enzyme activity and thereby improving SBP and DSB. We review the improvement of polyphenol intake on blood pressure and endothelial function for the treatment of hypertension, including not only observational but also RCTs and pre-clinical studies. The antihypertensive phytotherapy of polyphenol-rich foods for protection and improving endothelial function with vascular relaxation occurs via the NO-cGMP pathway and ACE inhibition. OPCs stimulate endothelium-dependent vasodilation, suppress vasoconstrictor ET-1 synthesis, activate a laminar shear stress response in endothelial cells and also inhibit the activity of metalloproteinases including ACE lowering blood pressure. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Chocolate: (un)healthy source of polyphenols?

    OpenAIRE

    Rimbach, Gerald; Egert, Sarah; de Pascual-Teresa, Sonia

    2010-01-01

    There is recent epidemiological evidence that chocolate consumption may improve vascular health. Furthermore, several small-scale human intervention studies indicate that habitual chocolate intake enhances the production of vasodilative nitric oxide and may lower blood pressure. It is hypothesized that potential beneficial effects of chocolate on vascular health are at least partly mediated by cocoa polyphenols including procyanidins. Based on cell culture studies, molecular targets of chocol...

  9. Galloylation of polyphenols alters their biological activity

    Czech Academy of Sciences Publication Activity Database

    Karas, D.; Ulrichová, J.; Valentová, Kateřina

    2017-01-01

    Roč. 105, JUL 2017 (2017), s. 223-240 ISSN 0278-6915 R&D Projects: GA MŠk(CZ) LD15082; GA MŠk(CZ) LD15084; GA MŠk(CZ) LO1304 Grant - others:GA ČR(CZ) GAP303/12/G163 Program:GA Institutional support: RVO:61388971 Keywords : Polyphenols * Gallic acid * Galloylation Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.778, year: 2016

  10. Dietary Polyphenols in the Prevention of Stroke

    OpenAIRE

    Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdú-Queralt, A.

    2017-01-01

    Polyphenols have an important protective role against a number of diseases, such as atherosclerosis, brain dysfunction, stroke, cardiovascular diseases, and cancer. Cardiovascular diseases are the number one cause of death worldwide: more people die annually from cardiovascular diseases than from any other cause. The most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical inactivity, tobacco use, and excess alcohol intake. The dietary consumption of po...

  11. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2017-11-14

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity and metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympatho-excitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel

  12. Recent applications of grape polyphenols in foods, beverages and supplements.

    Science.gov (United States)

    Gollücke, Andréa P B

    2010-06-01

    Grape polyphenols are associated with the prevention of diseases caused by oxidative stress. The present review discusses the most abundant polyphenols in red grapes as well as the recent food and beverage products developed with these natural antioxidant substances. Grape phenolic concentration and composition depend on agro-geographic factors and processing conditions. In humans, grape polyphenols demonstrated effects such as maintenance of endothelial function, increase in antioxidant capacity and protection against LDL oxidation. Recent patents regarding grape polyphenols show a tendency to return to natural products with a minimum use of severe extraction processes and organic solvents. The new products tend to use grape juice and wine as raw materials and maximize their polyphenolic contents. Grape derived polyphenolic foods, beverages and supplements suit effectively the current demand for antioxidant substances of nutritional interest.

  13. Impacts of selected dietary polyphenols on caramelization in model systems.

    Science.gov (United States)

    Zhang, Xinchen; Chen, Feng; Wang, Mingfu

    2013-12-15

    This study investigated the impacts of six dietary polyphenols (phloretin, naringenin, quercetin, epicatechin, chlorogenic acid and rosmarinic acid) on fructose caramelization in thermal model systems at either neutral or alkaline pH. These polyphenols were found to increase the browning intensity and antioxidant capacity of caramel. The chemical reactions in the system of sugar and polyphenol, which include formation of polyphenol-sugar adducts, were found to be partially responsible for the formation of brown pigments and heat-induced antioxidants based on instrumental analysis. In addition, rosmarinic acid was demonstrated to significantly inhibit the formation of 5-hydroxymethylfurfural (HMF). Thus this research added to the efforts of controlling caramelization by dietary polyphenols under thermal condition, and provided some evidence to propose dietary polyphenols as functional ingredients to modify the caramel colour and bioactivity as well as to lower the amount of heat-induced contaminants such as 5-hydroxymethylfurfural (HMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Influence of polyphenols on the physiological processes in the skin.

    Science.gov (United States)

    Ratz-Łyko, Anna; Arct, Jacek; Majewski, Sławomir; Pytkowska, Katarzyna

    2015-04-01

    In the last decade antioxidants from a group of polyphenols have been proposed as one of the most effective functional ingredients of anti-ageing properties that counteract the effects of oxidative damage to the skin. It has been shown that the use of polyphenols affects skin protection and mitigates inflammatory conditions of the skin. Numerous studies have confirmed that polyphenols by neutralizing free radicals, antioxidant activity and by their ability to chelate ions of transition metals can effectively reduce the level of nonprotein inflammatory mediators. The biological activity of polyphenols in the skin is primarily determined by their physicochemical properties and the ability to overcome the epidermal barrier as they try to reach appropriate receptors. This study reviews literature on the effects of polyphenols relating to the physiological processes in the skin and role of the major plant polyphenols in cosmetology and dermatology. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Original Research: Polyphenols extracted from grape powder induce lipogenesis and glucose uptake during differentiation of murine preadipocytes.

    Science.gov (United States)

    Torabi, Sheida; DiMarco, Nancy M

    2016-10-01

    Assessing the effects of grapes and grape powder extracted polyphenols on lipogenesis and glucose uptake in adipocytes may clarify the risk/benefit of recommending them to individuals with obesity and insulin resistance. We investigated the effect of grape powder extracted polyphenols (GPEP) on intracellular fat accumulation and glucose uptake during differentiation of 3T3-F442A preadipocytes. Total polyphenols were extracted and measured based on gallic acid equivalents (GAE). There were 2167 mg of GAE polyphenols in 100 g of grape powder. 3T3-F442A cells were incubated with GPEP, extracted from 125-500 µg GP/mL of media, until day 8 of differentiation when the cells were collected for different assays. AdipoRed™ assay and Oil Red O staining showed that GPEP induced, in a dose-dependent manner, an increase in intracellular triacylglycerol (TAG) content of adipocytes. Concomitantly, grape powder extracted polyphenols increased, in a dose-dependent manner, glucose uptake by 3T3-F442A cells, and there was a strong positive correlation between glucose uptake and the amount of TAG accumulation (r = 0.826, n = 24, P ≤ 0.001). No changes in cell viability was measured by Trypan Blue staining, suggesting that these effects were independent of cytotoxicity. Western-blot showed that GPEP upregulated protein level of glucose transport protein 4 (GLUT4), p-PKB/Akt, and p-AMPK in 3T3-F442A adipocytes. LY294002 (10 µmol/L), a phosphatidyl-inositol 3 kinase inhibitor (PI3K), reversed the effects of grape powder extracted polyphenols on cellular lipid content and glucose uptake. Furthermore, quantitative real-time polymerase chain reaction showed that GPEP increased mRNA expression of GLUT4, fatty acid synthase, lipoprotein lipase, adiponectin, and peroxisome proliferator-activated receptor γ, while it decreased mRNA expression of leptin and Insig-1. Our results indicate that GPEP may induce adipocyte differentiation via upregulation of GLUT4, PI3K and

  16. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice.

    Science.gov (United States)

    Murray, Thomas V A; Dong, Xuebin; Sawyer, Greta J; Caldwell, Anna; Halket, John; Sherwood, Roy; Quaglia, Alberto; Dew, Tracy; Anilkumar, Narayana; Burr, Simon; Mistry, Rajesh K; Martin, Daniel; Schröder, Katrin; Brandes, Ralf P; Hughes, Robin D; Shah, Ajay M; Brewer, Alison C

    2015-12-01

    Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system?

    NARCIS (Netherlands)

    van Heerebeek, L.; Meischl, C.; Stooker, W.; Meijer, C. J. L. M.; Niessen, H. W. M.; Roos, D.

    2002-01-01

    Reactive oxygen species play an important role in a variety of (patho)physiological vascular processes. Recent publications have produced evidence of a role for putative non-phagocyte NADP oxidase(s) in the vascular production of reactive oxygen species. In the present review, we discuss the

  18. Polyphenols and β-glucan interactions through linear adsorption models

    Directory of Open Access Journals (Sweden)

    Š. Ukić

    2016-01-01

    Full Text Available The aim of this work was to obtain information about interactions between polyphenols and β-glucan through linear adsorption equilibrium models. Polyphenolic compounds can interact with various food ingredients such as carbohydrates, proteins and lipids and these interactions can affect polyphenol bioactivities. Interactions can be studied through the adsorption process at a constant temperature and adsorption isotherms can be obtained. In this work the interactions between polyphenols like gallic acid, cyanidin-3-galactoside and cyanidin-3-glucoside and β-glucan as a natural dietary fiber were studied through the Freundlich's, Langmuir's, Dubinin-Radushkevich's, Tempkin's and Hill's models. The adsorption was carried out through model solutions of different concentrations of polyphenols and β-glucan for 16 hours at 25 °C. After the adsorption, the unadsorbed polyphenols were separated from the adsorbed ones by ultrafiltration. Concentrations of the unadsorbed polyphenols were determined by the spectrophotometric Folin-Ciocalteu method for gallic acid, and the pH differential method for cyanidin-3-galactoside and cyanidin-3-glucoside. The results of adsorption isotherm parameters showed that adsorption between all polyphenols and β-glucan were physical, and all interactions were favorized. Gallic acid showed the highest maximum adsorption capacity onto β-glucan. This study showed that information about interactions between polyphenols and dietary fibers can be obtained through the linear adsorption equilibrium isotherms.

  19. Cocoa Polyphenols and Inflammatory Markers of Cardiovascular Disease

    Science.gov (United States)

    Khan, Nasiruddin; Khymenets, Olha; Urpí-Sardà, Mireia; Tulipani, Sara; Garcia-Aloy, Mar; Monagas, María; Mora-Cubillos, Ximena; Llorach, Rafael; Andres-Lacueva, Cristina

    2014-01-01

    Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review. PMID:24566441

  20. Polyphenols: well beyond the antioxidant capacity: polyphenol supplementation and exercise-induced oxidative stress and inflammation.

    Science.gov (United States)

    Sureda, Antoni; Tejada, Silvia; Bibiloni, Maria del Mar; Tur, Josep Antoni; Pons, Antoni

    2014-01-01

    Moderate physical exercise leads the organism to adapt to this stressful situation. However, when exercise is exhaustive, it is also known to induce an overproduction of reactive species which can result in oxidative damage to macromolecules and tissues. Many studies have been carried out to evaluate the validity of dietary strategies or micronutrients in order to attenuate exercise-induced oxidative stress. Polyphenols are a large group of compounds widely distributed throughout the plant kingdom. This review summarizes recent evidence in relation to the effects of polyphenols as antioxidant and anti-inflammatory agents, using exercise as a model of study.

  1. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism

    NARCIS (Netherlands)

    Hollman, P.C.H.

    2014-01-01

    Plant metabolism creates complex mixtures of polyphenols in plant foods. Epidemiology and human trials reduced this complexity, by studying specific foods; subclasses of polyphenols; individual polyphenols, or total antioxidant capacity (TAC). This implies the following assumptions: (1) a limited

  2. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Massimo Fantini

    2015-04-01

    Full Text Available Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.

  3. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro.

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation.HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation.Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics.Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.

  4. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  5. Effects of olive leaf polyphenols against H₂O₂ toxicity in insulin secreting β-cells.

    Science.gov (United States)

    Cumaoğlu, Ahmet; Rackova, Lucia; Stefek, Milan; Kartal, Murat; Maechler, Pierre; Karasu, Cimen

    2011-01-01

    In pancreatic β-cells, although H₂O₂ is a metabolic signal for glucose stimulated insulin secretion, it may induce injury in the presence of increased oxidative stress (OS) as in the case of diabetic chronic hyperglycemia. Olea europea L. (olive) leaves contain polyphenolic compounds that may protect insulin-secreting cells against OS. The major polyphenolic compound in ethanolic olive leaf extract (OLE) is oleuropein (about 20%), thus we compared the effects of OLE with the effects of standard oleuropein on INS-1 cells. The cells were incubated with increasing concentrations of OLE or oleuropein for 24 h followed by exposure to H₂O₂ (0.035 mM) for 45 min. H₂O₂ alone resulted in a significantly decreased viability (MTT assay), depressed glucose-stimulated insulin secretion, increased apoptotic and necrotic cell death (AO/EB staining), inhibited glutathione peroxidase activity (GPx) and stimulated catalase activity that were associated with increased intracellular generation of reactive oxygen species (ROS) (fluorescence DCF). OLE and oleuropein partly improved the viability, attenuated necrotic and apoptotic death, inhibited the ROS generation and improved insulin secretion in H₂O₂-exposed cells. The effects of oleuropein on insulin secretion were more pronounced than those of OLE, while OLE exerted a stronger anti-cytotoxic effect than oleuropein. Unlike OLE, oleuropein had no significant preserving effect on GPx; however, both compounds stimulated the activity of catalase in H₂O₂-exposed cells. These findings indicate different modulatory roles of polyphenolic constituents of olive leaves on redox homeostasis that may have a role in the maintenance of β-cell physiology against OS.

  6. Resources and Biological Activities of Natural Polyphenols

    Science.gov (United States)

    Li, An-Na; Li, Sha; Zhang, Yu-Jie; Xu, Xiang-Rong; Chen, Yu-Ming; Li, Hua-Bin

    2014-01-01

    The oxidative stress imposed by reactive oxygen species (ROS) plays an important role in many chronic and degenerative diseases. As an important category of phytochemicals, phenolic compounds universally exist in plants, and have been considered to have high antioxidant ability and free radical scavenging capacity, with the mechanism of inhibiting the enzymes responsible for ROS production and reducing highly oxidized ROS. Therefore, phenolic compounds have attracted increasing attention as potential agents for preventing and treating many oxidative stress-related diseases, such as cardiovascular diseases, cancer, ageing, diabetes mellitus and neurodegenerative diseases. This review summarizes current knowledge of natural polyphenols, including resource, bioactivities, bioavailability and potential toxicity. PMID:25533011

  7. Heritability of polyphenols, anthocyanins and antioxidant capacity of ...

    African Journals Online (AJOL)

    ALL

    No maternal effect was detected in the transmission of polyphenol compounds suggesting a nuclear heritability. Key words: Theobroma cacao, cocoa beans, polyphenolic compounds, anthocyanins, heritability. INTRODUCTION. Cocoa beans are the fruit from the plant Theobroma cacao L., a plant tree originated in the rain ...

  8. The aromatic and polyphenolic composition of Roman camomile tea.

    Science.gov (United States)

    Carnat, A; Carnat, A P; Fraisse, D; Ricoux, L; Lamaison, J L

    2004-01-01

    The qualitative and quantitative composition of the main aromatic and polyphenolic constituents of infusion from Chamaemelum nobile flowers was examined. The camomile tea contained a large amount of polyphenolic compounds (340 mg/l), the most important being chamaemeloside (155 mg/l). Only traces of essential oil were recovered in tea (7 mg/l).

  9. Impact of polyphenolic extracts on resistance to fungal ...

    African Journals Online (AJOL)

    Our results lend support of the creation of varieties bean high in polyphenols, which act as natural preservatives and bio-effective agents, and offer an alternative to chemical agents for protection of harvested beans in storage structures. Keywords: Polyphenols, antifungal activity, dry bean. African Journal of Biotechnology ...

  10. Polyphenols from Cocoa and Vascular Health—A Critical Review

    Directory of Open Access Journals (Sweden)

    Anika E. Wagner

    2009-09-01

    Full Text Available Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design as well as prospective studies are warranted.

  11. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from ...

    African Journals Online (AJOL)

    Purpose: To assess the antioxidant and antimicrobial activities of polyphenolic extracts of three wild red wild berry fruit species from Southeast Serbia, viz, European cornel (Cornus mas), blackthorn (Prunus spinosa L.) and wild blackberry (Rubus fruticosus). Methods: Polyphenol content was determined using ...

  12. Polyphenols content and antioxidant capacity of traditional juices ...

    African Journals Online (AJOL)

    SARAH

    2015-03-31

    Mar 31, 2015 ... lemon presented the lowest TPC but displayed a higher. ACI than ginger and passion fruit juices. These results can be explained by difference in the bioactive compounds of the juices. Among the polyphenols of baobab, some may not exhibit antioxidant activities. In addition, apart from the polyphenols, ...

  13. Population-based nutrikinetic modeling of polyphenol exposure

    NARCIS (Netherlands)

    van Velzen, E.J.J.; Westerhuis, J.A.; Grün, C.H.; Jacobs, D.M.; Eilers, P.H.C.; Mulder, Th.P.; Foltz, M.; Garczarek, U.; Kemperman, R.; Vaughan, E. E.; van Duynhoven, J.P.M.; Smilde, A.K.

    2014-01-01

    The beneficial health effects of fruits and vegetables have been attributed to their polyphenol content. These compounds undergo many bioconversions in the body. Modeling polyphenol exposure of humans upon intake is a prerequisite for understanding the modulating effect of the food matrix and the

  14. Dietary Polyphenols in Prevention and Treatment of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Rahul K. Lall

    2015-02-01

    Full Text Available Prostate cancer is the most prevalent disease affecting males in many Western countries, with an estimated 29,480 deaths in 2014 in the US alone. Incidence rates for prostate cancer deaths have been decreasing since the early 1990s in men of all races/ethnicities, though they remain about 60% higher in African Americans than in any other group. The relationship between dietary polyphenols and the prevention of prostate cancer has been examined previously. Although results are sometimes inconsistent and variable, there is a general agreement that polyphenols hold great promise for the future management of prostate cancer. Various dietary components, including polyphenols, have been shown to possess anti-cancer properties. Generally considered as non-toxic, dietary polyphenols act as key modulators of signaling pathways and are therefore considered ideal chemopreventive agents. Besides possessing various anti-tumor properties, dietary polyphenols also contribute to epigenetic changes associated with the fate of cancer cells and have emerged as potential drugs for therapeutic intervention. Polyphenols have also been shown to affect post-translational modifications and microRNA expressions. This article provides a systematic review of the health benefits of selected dietary polyphenols in prostate cancer, especially focusing on the subclasses of polyphenols, which have a great effect on disease prevention and treatment.

  15. Effect of fermentation and drying on cocoa polyphenols.

    Science.gov (United States)

    Albertini, Barbara; Schoubben, Aurélie; Guarnaccia, Davide; Pinelli, Filippo; Della Vecchia, Mirco; Ricci, Maurizio; Di Renzo, Gian Carlo; Blasi, Paolo

    2015-11-18

    Cocoa seed polyphenols have demonstrated interesting beneficial effects in humans. Most polyphenols contained in fresh seeds are chemically modified during fermentation, drying, and cocoa powder or chocolate production. The improvement of these procedures to obtain a high-polyphenol-content cocoa is highly desirable. To this aim, a field investigation on the effect of fermentation and natural drying on fine flavor National cocoa (cacao Nacional) was performed. Cocoa seeds were fermented for 6 days and, every day, samples were sun-dried and analyzed for polyphenol content and antioxidant power. During the first 2 days of fermentation, Folin-Ciocalteu and FRAP tests evidenced a significant reduction of polyphenol content and antioxidant capacity, respectively. Changes during the following days of fermentation were less significant. Epicatechin, the most studied member of the catechin family, followed a similar pathway of degradation. Data confirmed the high impact of fermentation and drying on cocoa seed polyphenols. Fermentation and drying are, on the one hand, necessary to obtain cocoa flavor and palatability but, on the other hand, are responsible for greatly compromising polyphenol content. To obtain high-polyphenol-content cocoa, the existing fermentation, drying, and manufacturing protocols should be scientifically reviewed to understand and modify the critical steps.

  16. Impact of polyphenolic extracts on resistance to fungal ...

    African Journals Online (AJOL)

    SWEET

    2013-05-15

    May 15, 2013 ... From their significant roles against the biotic and abiotic stresses, polyphenols have aroused a growing interest for a possible application in food industry. The aim of this study was the evaluation of antifungal activity of polyphenols extracted from two varieties of dry bean, presenting white (Tima) and.

  17. Beer Polyphenols and Menopause: Effects and Mechanisms—A Review of Current Knowledge

    Science.gov (United States)

    Sandoval-Ramírez, Berner Andrée; M. Lamuela-Raventós, Rosa; Estruch, Ramon; Sasot, Gemma; Doménech, Monica

    2017-01-01

    Beer is one of the most frequently consumed fermented beverages in the world, and it has been part of the human diet for thousands of years. Scientific evidence obtained from the development of new techniques of food analysis over the last two decades suggests that polyphenol intake derived from moderate beer consumption may play a positive role in different health outcomes including osteoporosis and cardiovascular risk and the relief of vasomotor symptoms, which are commonly experienced during menopause and are an important reason why women seek medical care during this period; here, we review the current knowledge regarding moderate beer consumption and its possible effects on menopausal symptoms. The effect of polyphenol intake on vasomotor symptoms in menopause may be driven by the direct interaction of the phenolic compounds present in beer, such as 8-prenylnaringenin, 6-prenylnaringenin, and isoxanthohumol, with intracellular estrogen receptors that leads to the modulation of gene expression, increase in sex hormone plasma concentrations, and thus modulation of physiological hormone imbalance in menopausal women. Since traditional hormone replacement therapies increase health risks, alternative, safer treatment options are needed to alleviate menopausal symptoms in women. The present work aims to review the current data on this subject. PMID:28904736

  18. Beer Polyphenols and Menopause: Effects and Mechanisms—A Review of Current Knowledge

    Directory of Open Access Journals (Sweden)

    Berner Andrée Sandoval-Ramírez

    2017-01-01

    Full Text Available Beer is one of the most frequently consumed fermented beverages in the world, and it has been part of the human diet for thousands of years. Scientific evidence obtained from the development of new techniques of food analysis over the last two decades suggests that polyphenol intake derived from moderate beer consumption may play a positive role in different health outcomes including osteoporosis and cardiovascular risk and the relief of vasomotor symptoms, which are commonly experienced during menopause and are an important reason why women seek medical care during this period; here, we review the current knowledge regarding moderate beer consumption and its possible effects on menopausal symptoms. The effect of polyphenol intake on vasomotor symptoms in menopause may be driven by the direct interaction of the phenolic compounds present in beer, such as 8-prenylnaringenin, 6-prenylnaringenin, and isoxanthohumol, with intracellular estrogen receptors that leads to the modulation of gene expression, increase in sex hormone plasma concentrations, and thus modulation of physiological hormone imbalance in menopausal women. Since traditional hormone replacement therapies increase health risks, alternative, safer treatment options are needed to alleviate menopausal symptoms in women. The present work aims to review the current data on this subject.

  19. Tea polyphenol epigallocatechin gallate inhibits Escherichia coli by increasing endogenous oxidative stress.

    Science.gov (United States)

    Xiong, Li-Gui; Chen, Yi-Jun; Tong, Jie-Wen; Huang, Jian-An; Li, Juan; Gong, Yu-Shun; Liu, Zhong-Hua

    2017-02-15

    The antibacterial effects of tea polyphenol epigallocatechin gallate (EGCG), a common phytochemical with a number of potential health benefits, are well known. However, the mechanism of its bactericidal action remains unclear. Using E. coli as a model organism, it is argued here that H2O2 synthesis by EGCG is not attributed to its inhibitory effects. In contrast, the bactericidal action of EGCG was a result of increased intracellular reactive oxygen species and blunted adaptive oxidative stress response in E. coli due to the co-administration of antioxidant N-acetylcysteine, and not on account of exogenous catalase. Furthermore, we noted a synergistic bactericidal effect for EGCG when combined with paraquat. However, under anaerobic conditions, the inhibitory effect of EGCG was prevented. In conclusion, EGCG caused an increase in endogenous oxidative stress in E. coli, thereby inhibiting its growth, and hence the use of EGCG as a prooxidant is supported by this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Xanthine oxidase inhibitory and antioxidant potential of Indian Muscodor species

    OpenAIRE

    Kapoor, Neha; Saxena, Sanjai

    2016-01-01

    Xanthine oxidase is a key enzyme responsible for hyperuricemia, a pre-disposing factor for Gout and oxidative stress-related diseases. Only two clinically approved xanthine oxidase inhibitors Allopurinol and Febuxostat are currently used for treatment of hyperuricemia. However, owing to their side effects there is a need for new non-purine-based selective inhibitors of xanthine oxidase. In the process of exploring novel xanthine oxidase inhibitors and anti-oxidants, we screened the culture fi...

  1. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-01-01

    Full Text Available The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs from Chilean raspberries (Rubus geoides, strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis, and currants (Ribes magellanicum and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  2. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells.

    Science.gov (United States)

    Ávila, Felipe; Theoduloz, Cristina; López-Alarcón, Camilo; Dorta, Eva; Schmeda-Hirschmann, Guillermo

    2017-01-01

    The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries ( Rubus geoides ), strawberries ( Fragaria chiloensis ssp. chiloensis f . chiloensis ), and currants ( Ribes magellanicum ) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis . This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  3. Nuclear expression of lysyl oxidase enzyme is an independent prognostic factor in rectal cancer patients

    DEFF Research Database (Denmark)

    Liu, Na; Cox, Thomas R; Cui, Weiyingqi

    2017-01-01

    Emerging evidence has implicated a pivotal role for lysyl oxidase (LOX) in cancer progression and metastasis. Whilst the majority of work has focused on the extracellular matrix cross-linking role of LOX, the exact function of intracellular LOX localisation remains unclear. In this study, we anal...... the nucleus of colon cancer cell lines by confocal microscopy and Western blot. Our results show a powerful link between nuclear LOX expression in tumours and patient survival, and offer a promising prognostic biomarker for rectal cancer patients....... analysed the LOX expression patterns in the nuclei of rectal cancer patient samples and determined the clinical significance of this expression. Nuclear LOX expression was significantly increased in patient lymph node metastases compared to their primary tumours. High nuclear LOX expression in tumours......Emerging evidence has implicated a pivotal role for lysyl oxidase (LOX) in cancer progression and metastasis. Whilst the majority of work has focused on the extracellular matrix cross-linking role of LOX, the exact function of intracellular LOX localisation remains unclear. In this study, we...

  4. Polyphenols as dietary supplements: A double-edged sword

    Directory of Open Access Journals (Sweden)

    Keith R Martin

    2009-12-01

    Full Text Available Keith R Martin, Christy L AppelNutrition Program, Healthy Lifestyles Research Center, College of Nursing and Health Innovation, Arizona State University, Mesa, AZ, USAAbstract: Increased consumption of fruits and vegetables is associated with a lower risk of chronic disease such as cardiovascular disease, some forms of cancer, and neurodegeneration. Pro-oxidant-induced oxidative stress contributes to the pathogenesis of numerous chronic diseases and, as such, dietary antioxidants can quench and/or retard such processes. Dietary polyphenols, ie, phenolic acids and flavonoids, are a primary source of antioxidants for humans and are derived from plants including fruits, vegetables, spices, and herbs. Based on compelling evidence regarding the health effects of polyphenol-rich foods, new dietary supplements and polyphenol-rich foods are being developed for public use. Consumption of such products can increase dietary polyphenol intake and subsequently plasma concentrations beyond expected levels associated with dietary consumption and potentially confer additional health benefits. Furthermore, bioavailability can be modified to further increase absorption and ultimately plasma concentrations of polyphenols. However, the upper limit for plasma concentrations of polyphenols before the elaboration of adverse effects is unknown for many polyphenols. Moreover, a considerable amount of evidence is accumulating which supports the hypothesis that high-dose polyphenols can mechanistically cause adverse effects through pro-oxidative action. Thus, polyphenol-rich dietary supplements can potentially confer additional benefits but high-doses may elicit toxicity thereby establishing a double-edge sword in supplement use.Keywords: antioxidant, bioavailability, flavonoids, polyphenols, supplement

  5. Intracellular ion channels and cancer

    Directory of Open Access Journals (Sweden)

    Luigi eLeanza

    2013-09-01

    Full Text Available Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3, Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC and the Permeability Transition Pore (MPTP contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER-located inositol 1,4,5-trisphosphate (IP3 receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1, a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

  6. Kinetic mechanism of putrescine oxidase from Rhodococcus erythropolis

    NARCIS (Netherlands)

    Kopacz, Malgorzata; Heuts, Dominic P. H. M.; Fraaije, Marco W.

    2014-01-01

    Putrescine oxidase from Rhodococcus erythropolis (PuO) is a flavin-containing amine oxidase from the monoamine oxidase family that performs oxidative deamination of aliphatic diamines. In this study we report pre-steady-state kinetic analyses of the enzyme with the use of single-and double-mixing

  7. THERMOSTABILITY OF RESPIRATORY TERMINAL OXIDASES IN THE LIPID ENVIRONMENT

    NARCIS (Netherlands)

    Elferink, Marieke G.L.; Bosmal, Tjibbe; Lolkema, Juke S.; Gleiszner, Michael; Driessen, Arnold J.M.; Konings, Wil N.

    1995-01-01

    The effect of the lipid environment on the thermostability of three respiratory terminal oxidases was determined. Cytochrome-e oxidase from beef heart and Bacillus stearothermophilus were used as representative proteins from mesophilic and thermophilic origin, respectively. Quinol oxidase from the

  8. Nox family NADPH oxidases: Molecular mechanisms of activation.

    Science.gov (United States)

    Brandes, Ralf P; Weissmann, Norbert; Schröder, Katrin

    2014-11-01

    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Immunomodulating Activity of Aronia melanocarpa Polyphenols

    Directory of Open Access Journals (Sweden)

    Giang T. T. Ho

    2014-06-01

    Full Text Available The immunomodulating effects of isolated proanthocyanidin-rich fractions, procyanidins C1, B5 and B2 and anthocyanins of Aronia melanocarpa were investigated. In this work, the complement-modulating activities, the inhibitory activities on nitric oxide (NO production in LPS-induced RAW 264.7 macrophages and effects on cell viability of these polyphenols were studied. Several of the proanthocyanidin-rich fractions, the procyanidins C1, B5 and B2 and the cyanidin aglycone possessed strong complement-fixing activities. Cyanidin 3-glucoside possessed stronger activity than the other anthocyanins. Procyanidins C1, B5 and B2 and proanthocyanidin-rich fractions having an average degree of polymerization (PD of 7 and 34 showed inhibitory activities on NO production in LPS-stimulated RAW 264.7 mouse macrophages. All, except for the fraction containing proanthocyanidins with PD 34, showed inhibitory effects without affecting cell viability. This study suggests that polyphenolic compounds of A. melanocarpa may have beneficial effects as immunomodulators and anti-inflammatory agents.

  10. Nigerian foodstuffs with prostate cancer chemopreventive polyphenols

    Science.gov (United States)

    2011-01-01

    Dietary polyphenols are antioxidants that can scavenge biological free radicals, and chemoprevent diseases with biological oxidation as their main etiological factor. In this paper, we review our laboratory data vis-ὰ-vis available literature on prostate cancer chemopreventive substances in Nigerian foodstuffs. Dacryodes edulis fruit, Moringa oleifera and Syzygium aromaticum contained prostate active polyphenols like ellagic acid, gallate, methylgallate, catechol, kaempferol quercetin and their derivatives. Also Canarium schweinfurthii Engl oil contained ten phenolic compounds and lignans, namely; catechol, p-hydroxybenzaldehyde, dihydroxyphenylacetic acid, tyrosol, p-hydroxybenzoic acid, dihydroxybenzoic acid, vanillic acid, phloretic acid, pinoresinol, secoisolariciresinol. In addition, tomatoes (Lycopersicon esculentum Mill) which contains the powerful antioxidant and anti-prostate cancer agent, lycopene; cabbage (Brassica oleracea) containing indole-3-carbinol; citrus fruits containing pectin; Soursop (Annona muricata) containing annonaceous acetogenins; soya beans (Glycine max) containing isoflavones; chilli pepper (Capsicum annuum) containing capsaicin, and green tea (Camellia sinensis) containing (-) epigallocatechin gallate (EGCG), (-) epicatechin, (-) epicatechin-3-gallate and (-) epigallocatechin -3-gallate which are widely reported to posses prostate cancer chemopreventive compounds are also grown in Nigeria and other African countries. Thus, the high incidence of prostate cancer among males of African extraction can be dramatically reduced, and the age of onset drastically increased, if the population at risk consumes the right kinds of foods in the right proportion, beginning early in life, especially as prostate cancer has a latency period of about 50 years. PMID:21992488

  11. Nigerian foodstuffs with prostate cancer chemopreventive polyphenols.

    Science.gov (United States)

    Atawodi, Sunday Eneojo

    2011-09-23

    Dietary polyphenols are antioxidants that can scavenge biological free radicals, and chemoprevent diseases with biological oxidation as their main etiological factor. In this paper, we review our laboratory data vis-ὰ-vis available literature on prostate cancer chemopreventive substances in Nigerian foodstuffs. Dacryodes edulis fruit, Moringa oleifera and Syzygium aromaticum contained prostate active polyphenols like ellagic acid, gallate, methylgallate, catechol, kaempferol quercetin and their derivatives. Also Canarium schweinfurthii Engl oil contained ten phenolic compounds and lignans, namely; catechol, p-hydroxybenzaldehyde, dihydroxyphenylacetic acid, tyrosol, p-hydroxybenzoic acid, dihydroxybenzoic acid, vanillic acid, phloretic acid, pinoresinol, secoisolariciresinol. In addition, tomatoes (Lycopersicon esculentum Mill) which contains the powerful antioxidant and anti-prostate cancer agent, lycopene; cabbage (Brassica oleracea) containing indole-3-carbinol; citrus fruits containing pectin; Soursop (Annona muricata) containing annonaceous acetogenins; soya beans (Glycine max) containing isoflavones; chilli pepper (Capsicum annuum) containing capsaicin, and green tea (Camellia sinensis) containing (-) epigallocatechin gallate (EGCG), (-) epicatechin, (-) epicatechin-3-gallate and (-) epigallocatechin -3-gallate which are widely reported to posses prostate cancer chemopreventive compounds are also grown in Nigeria and other African countries. Thus, the high incidence of prostate cancer among males of African extraction can be dramatically reduced, and the age of onset drastically increased, if the population at risk consumes the right kinds of foods in the right proportion, beginning early in life, especially as prostate cancer has a latency period of about 50 years.

  12. Biochemical degradation and physical migration of polyphenolic compounds in osmotic dehydrated blueberries with pulsed electric field and thermal pretreatments.

    Science.gov (United States)

    Yu, Yuanshan; Jin, Tony Z; Fan, Xuetong; Wu, Jijun

    2018-01-15

    Fresh blueberries were pretreated by pulsed electric fields (PEF) or thermal pretreatment and then were subject to osmotic dehydration. The changes in contents of anthocyanins, predominantly phenolic acids and flavonols, total phenolics, polyphenol oxidase (PPO) activity and antioxidant activity in the blueberry samples during pretreatment and osmotic dehydration were investigated. Biochemical degradation and physical migration of these nutritive compounds from fruits to osmotic solutions were observed during the pretreatments and osmotic dehydration. PEF pretreated samples had the least degradation loss but the most migration loss of these compounds compared to thermally pretreated and control samples. Higher rates of water loss and solid gain during osmotic dehydration were also obtained by PEF pretreatment, reducing the dehydration time from 130 to 48h. PEF pretreated and dehydrated fruits showed superior appearance to thermally pretreated and control samples. Therefore, PEF pretreatment is a preferred technology that balances nutritive quality, appearance, and dehydration rate. Published by Elsevier Ltd.

  13. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  14. Occurrence and Biocatalytic Potential of Carbohydrate Oxidases.

    NARCIS (Netherlands)

    Hellemond, van E.W.; Leferink, N.G.H.; Heuts, D.P.H.M.; Fraaije, M.W.; Berkel, van W.J.H.

    2006-01-01

    Carbohydrate oxidases are found in all kingdoms of life but are mostly found in fungi. Their natural role is not always clear. Usage of molecular oxygen as electron acceptor is not a logical choice when the enzyme is part of a catabolic pathway. This chapter provides an overview of the occurrence

  15. Genetic defects of cytochrome c oxidase assembly

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Houšťková, H.; Hansíková, H.; Zeman, J.; Houštěk, Josef

    2004-01-01

    Roč. 53, Suppl. 1 (2004), s. S213-S223 ISSN 0862-8408 R&D Projects: GA ČR GA303/03/0749 Institutional research plan: CEZ:AV0Z5011922 Keywords : cytochrome c oxidase * mitochondrial disorders Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.140, year: 2004

  16. Investigation of antihemolytic, xanthine oxidase inhibition ...

    African Journals Online (AJOL)

    Abbreviations: SVEs: Salvia Verbenaca L. aerial part Extracts; CrE: Crud Extract; ChE: Chloroform Extract ; EAE: Ethyl Acetate Extract; AqE : Aqueous Extract ; ROS: Reactive Oxygen Spices; AAPH : 2,2, -Azobis (2-AmidinoPropane) Dihydrochloride ; DPPH: DiPhenyl- Picryl-Hydrazyl; XO: Xanthine Oxidase; Gen: Gentamicin ...

  17. Interaction of plant amine oxidases with diaminoethers

    Czech Academy of Sciences Publication Activity Database

    Šebela, M.; Jarkovská, K.; Lenobel, René; Medda, R.; Padiglia, A.; Floris, G.; Peč, P.

    Part 7, - (2007), s. 222-232 ISSN 1424-6376 Institutional research plan: CEZ:AV0Z50380511 Keywords : diamine oxidase * diaminoether * inhibition Subject RIV: CE - Biochemistry Impact factor: 1.253, year: 2007 http://content.arkat-usa.org/ARKIVOC/JOURNAL_CONTENT/manuscripts/2007/UR-2149CP%20as%20published%20mainmanuscript.pdf

  18. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    Tarchonanthus camphoratus (camphor bush) has been widely used for numerous medicinal purposes. The aim of the present study was to evaluate the antioxidant properties, cytotoxicity and monoamine oxidase inhibition activities of the crude dichloromethane leaf extract of T. camphoratus. The antioxidant activities were ...

  19. Polyphenol Concentrate from Kazakhstan Cabernet Sauvignon Collection of Grapes

    Directory of Open Access Journals (Sweden)

    Zarina Shulgau

    2014-12-01

    Full Text Available Introduction. Nowadays, most of the research in the field of gerontology is focused on the effects of the grape polyphenols. In particular, resveratrol has been shown to increase life expectancy of various living organisms, including mammals. Resveratrol also plays an important role in cancer prevention and decreases the risk of developing cardiovascular disease. In our research, we proposed the development of the therapeutic product from Cabernet Sauvignon grapes that would exhibit the beneficial properties of polyphenols. Standard operating procedures were developed in our laboratories to collect alcohol free concentrate of polyphenols from the Kazakhstan Cabernet Sauvignon collection of grapes. The purpose of the study was to investigate the composition, biological safety, and potential therapeutic effects of the polyphenol concentrate.Methods. The total polyphenol amount was determined using the Enology Analyzer Y15 (BioSystems, Spain. HPLC analysis of the polyphenol composition was performed using Agilent 1290 chromatograph. The polyphenol concentrate was analyzed for the microbiological purity and the presence of the toxic elements. The cytoprotective effect of the polyphenol concentrate was studied in experimental models of diabetes, toxic hepatitis, doxorubicin cardiomyopathy, and acute radiation sickness.Results. The total polyphenol amount in one sample was 12,819 mg/l. Polyphenol composition analysis showed presence of the following polyphenols: catechin, epicatechin, gallic acid, quercetin, miricetin, 3-glucosylkaempferol, epicatechin gallate, 3-(3,4-Dihydroxyphenyl-2-propenoic acid, catechin gallate, pitseid, kaempferol, n-hydroxy-cinnamic acid, resveratrol and chlorogenic acid. The concentrate was proven to be biologically safe and acceptable for use as a dietary supplement. The polyphenol concentrate demonstrated high antioxidant activity against ABTS and DPPH radicals in vitro. It also showed the following impacts on the various

  20. Resveratrol Interferes with Fura-2 Intracellular Calcium Measurements.

    Science.gov (United States)

    Kopp, Richard F; Leech, Colin A; Roe, Michael W

    2014-03-01

    Resveratrol, a naturally occurring polyphenol found in some fruits and especially in grapes, has been reported to provide diverse health benefits. Resveratrol's mechanism of action is the subject of many investigations, and some studies using the ratiometric calcium indicator Fura-2 suggest that it modulates cellular calcium responses. In the current study, contradictory cellular calcium responses to resveratrol applied at concentrations exceeding 10 μM were observed during in vitro imaging studies depending on the calcium indicator used, with Fura-2 indicating an increase in intracellular calcium while Fluo-4 and the calcium biosensor YC3.60 indicated no response. When cells loaded with Fura-2 were treated with 100 μM resveratrol, excitation at 340 nm resulted in a large intensity increase at 510 nm, but the expected concurrent decline with 380 nm excitation was not observed. Pre-treatment of cells with the calcium chelator BAPTA-AM did not prevent a rise in the 340/380 ratio when resveratrol was present, but it did prevent an increase in 340/380 when ATP was applied, suggesting that the resveratrol response was an artifact. Cautious data interpretation is recommended from imaging experiments using Fura-2 concurrently with resveratrol in calcium imaging experiments.

  1. Evaluation of polyphenol content in different parts of physalis ixocarpa

    International Nuclear Information System (INIS)

    Bakht, J.; Shafi, M.

    2016-01-01

    In the current study extracts of leaf, stem, fruit and calyx with different polarity was investigated for their phenolic content using high performance liquid chromatography and spectrophotometric assay. Among different parts, stem contain high concentration of total polyphenol and gallic acid. The effect of extraction solvent on polyphenol quantification was observed in both assays. Spectrophotometric analysis of the data regarding polyphenol content indicated that among different extracts from the stem, leaf and fruit tissues; ethyl acetate extracted fraction of stem measured maximum polyphenol content of 110.376 mgGAE/g of dry extract. The ethyl acetate extracted sample of leaf showed high polyphenol (Gallic acid) content of 95 mg GAE/g of dry extract using high performance liquid chromatography assay. The amounts of phenolic content (Gallic acid) extracted from the parts of the plant with the different solvent ranged from 0.0354- 95 mg GAE/g of the dry extract using HPLC, however, spectrophotometric assay indicated total polyphenol ranged from 38-110.37 mgGAE g-1 of the dry extract. The current study suggested that ethyl acetate is an effective solvent for the extraction of polyphenol in different parts of P. ixocarapa. (author)

  2. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics

    Directory of Open Access Journals (Sweden)

    Andrea J. Braakhuis

    2016-09-01

    Full Text Available Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli, and fruit (apples, citrus. At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5–10 g daily and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched.

  3. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Eva Brglez Mojzer

    2016-07-01

    Full Text Available Being secondary plant metabolites, polyphenols represent a large and diverse group of substances abundantly present in a majority of fruits, herbs and vegetables. The current contribution is focused on their bioavailability, antioxidative and anticarcinogenic properties. An overview of extraction methods is also given, with supercritical fluid extraction highlighted as a promising eco-friendly alternative providing exceptional separation and protection from degradation of unstable polyphenols. The protective role of polyphenols against reactive oxygen and nitrogen species, UV light, plant pathogens, parasites and predators results in several beneficial biological activities giving rise to prophylaxis or possibly even to a cure for several prevailing human diseases, especially various cancer types. Omnipresence, specificity of the response and the absence of or low toxicity are crucial advantages of polyphenols as anticancer agents. The main problem represents their low bioavailability and rapid metabolism. One of the promising solutions lies in nanoformulation of polyphenols that prevents their degradation and thus enables significantly higher concentrations to reach the target cells. Another, more practiced, solution is the use of mixtures of various polyphenols that bring synergistic effects, resulting in lowering of the required therapeutic dose and in multitargeted action. The combination of polyphenols with existing drugs and therapies also shows promising results and significantly reduces their toxicity.

  4. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins.

    Directory of Open Access Journals (Sweden)

    Pantelis Georgiades

    Full Text Available Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria.

  5. Potential Health Benefits of Olive Oil and Plant Polyphenols

    Directory of Open Access Journals (Sweden)

    Monika Gorzynik-Debicka

    2018-02-01

    Full Text Available Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate, as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.

  6. Potential Health Benefits of Olive Oil and Plant Polyphenols.

    Science.gov (United States)

    Gorzynik-Debicka, Monika; Przychodzen, Paulina; Cappello, Francesco; Kuban-Jankowska, Alicja; Marino Gammazza, Antonella; Knap, Narcyz; Wozniak, Michal; Gorska-Ponikowska, Magdalena

    2018-02-28

    Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.

  7. Carob Pods (Ceratonia siliqua L. as a Source of Polyphenolic Antioxidants

    Directory of Open Access Journals (Sweden)

    Panagiotis Kefalas

    2004-01-01

    Full Text Available The possibility of utilising chopped and deseeded carob pods (kibbles as a source of polyphenolic antioxidants was examined by performing extractions with various solvent systems, in order to evaluate and optimize the conditions for the recovery of polyphenols. Maximum quantities of polyphenolic components were found in 80 % acetone extracts, as evaluated by measuring total polyphenol and total flavanol content. By contrast, ethyl acetate was inefficient in extracting polyphenols. The assessment of the antioxidant potency of carob pod extracts employing two characteristic in vitro models showed that carobs contain polyphenols with appreciable antiradical and reducing properties. The values obtained were compared to the data on red wines and pure polyphenolic antioxidants.

  8. Mitigation of radiation injury by polyphenolic acetates

    International Nuclear Information System (INIS)

    Venkateswaran, Kavya; Singh, Saurabh; Agrawala, Paban K.

    2014-01-01

    Polyphenols are naturally occurring heterocyclic compounds, which have diverse biological and pharmacological implications. Calreticulin mediated protein acetylation (CRTase) system has been recently demonstrated by our groups using semi-synthetic polyphenolic acetates (PA) as the acetyl group donor. Owing to the anti-oxidant property of the parental moiety (polyphenols) coupled with the acetyl group donating ability; PAs have the potential to be developed as countermeasure agents against radiation damage. Therefore, we investigated the protective and mitigative potential of PAs namely 7,8-diacetoxy-4-methylcoumarin (DAMC) and 7,8-diacetoxy-4-methylthiocoumarin (DAMTC) in total body irradiated (TBI) mice. These compounds exhibited protective as well as mitigative potential against lethal dose of radiation, with ∼ 80% survival conferred by DAMTC when administered 24 h post TBl. A 3.8 fold increase in the number of splenic colonies at day 10 post TBI in the DAMTC treated mice as visualised by the endogenous spleen colony forming assay suggested amelioration of radiation induced hematopoietic injury. A significant recovery in the numbers of WBCs and lymphocytes was noted on day 21 post TBI by DAMTC with a ∼ 2.6 fold increase for WBCs and ∼ 6.5 for lymphocytes. DAMTC reduced the radiation induced apoptosis and increased cell proliferation in the bone marrow and spleen at days 3 and 21 post TBI corroborating its potency in stimulating hematopoietic recovery after TBl. Histopathology revealed ∼ 3 fold and ∼ 2.2 fold increases in the numbers of intestinal crypts on days 3 and 7 respectively in the DAMTC treated mice. A significant increase (∼ 3.5 and ∼ 2.9 fold) in the villi length was observed on days 3 and 7 respectively, accompanied by a concomitant increase in the crypt height by ∼ 3.5 folds. These results establish the potential of DAMTC to mitigate acute effects of radiation that appear to stem from its ability to ameliorate radiation induced

  9. EFFECT OF CROSSLINKING ON MITOCHONDRIAL CYTOCHROME c OXIDASE

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Maurice; Packer, Lester

    1979-12-01

    Purified and reconstituted cytochrome {und c} oxidase and mitochondria were crosslinked with biimidates in the presence and absence of cytochrome {und c}. These experiments indicate that oxidase subunit interactions are required for activity and that cytochrome {und c} mobility may be required for electron transport activity. Biimidate treatment of purified and reconstituted oxidase crosslinks all of the oxidase protomers except subunit I when {ge} 20% of the free amines are modified and inhibits steady state oxidase activity. Transient kinetics of ferrocytochrome {und c} oxidation and ferricytochrome {und a} reduction indicates inhibition of electron transfer from heme {und a} to heme {und a}{sub 3}. Crosslinking oxidase molecules to form large aggregates displaying rotational correlation times {ge} 1 ms does not affect oxidase activity. Crosslinking of mitochondria covalently binds the bc{sub 1} and {und aa}{sub 3} complexes to cytochrome {und c}, and inhibits steady-state oxidase activity considerably more than in the case of the purified oxidase. Addition of cytochrome {und c} to the purified oxidase or to {und c}-depleted mitoplasts increases inhibition slightly. Cytochrome {und c} oligomers act as competitive inhibitors of native {und c}, however, crosslinking of cytochrome {und c} to {und c}-depleted mitoplasts or purified oxidase (with dimethyl suberimidate or hetrobifunctional crosslinking reagents) results in a catalytically inactive complex.

  10. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa.

    Directory of Open Access Journals (Sweden)

    Abdelali Agouni

    Full Text Available BACKGROUND: Obesity is associated with increased risks for development of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. We studied the potential beneficial effects of dietary supplementation of red wine polyphenol extract, Provinols, on obesity-associated alterations with respect to metabolic disturbances and cardiovascular functions in Zucker fatty (ZF rats. METHODOLOGY/PRINCIPAL FINDINGS: ZF rats or their lean littermates received normal diet or supplemented with Provinols for 8 weeks. Provinols improved glucose metabolism by reducing plasma glucose and fructosamine in ZF rats. Moreover, it reduced circulating triglycerides and total cholesterol as well as LDL-cholesterol in ZF rats. Echocardiography measurements demonstrated that Provinols improved cardiac performance as evidenced by an increase in left ventricular fractional shortening and cardiac output associated with decreased peripheral arterial resistances in ZF rats. Regarding vascular function, Provinols corrected endothelial dysfunction in aortas from ZF rats by improving endothelium-dependent relaxation in response to acetylcholine (Ach. Provinols enhanced NO bioavailability resulting from increased nitric oxide (NO production through enhanced endothelial NO-synthase (eNOS activity and reduced superoxide anion release via decreased expression of NADPH oxidase membrane sub-unit, Nox-1. In small mesenteric arteries, although Provinols did not affect the endothelium-dependent response to Ach; it enhanced the endothelial-derived hyperpolarizing factor component of the response. CONCLUSIONS/SIGNIFICANCE: Use of red wine polyphenols may be a potential mechanism for prevention of cardiovascular and metabolic alterations associated with obesity.

  11. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  12. Interactions of polyphenols with carbohydrates, lipids and proteins.

    Science.gov (United States)

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Natural Polyphenols for Prevention and Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    Yue Zhou

    2016-08-01

    Full Text Available There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.

  14. Consumption of polyphenol plants may slow aging and associated diseases.

    Science.gov (United States)

    Uysal, Utku; Seremet, Sila; Lamping, Jeffrey W; Adams, Jerome M; Liu, Deede Y; Swerdlow, Russell H; Aires, Daniel J

    2013-01-01

    Slowing aging is a widely shared goal. Plant-derived polyphenols, which are found in commonly consumed food plants such as tea, cocoa, blueberry and grape, have been proposed to have many health benefits, including slowing aging. In-vivo studies have demonstrated the lifespan-extending ability of six polyphenol-containing plants. These include five widely consumed foods (tea, blueberry, cocoa, apple, pomegranate) and a flower commonly used as a folk medicine (betony). These and multiple other plant polyphenols have been shown to have beneficial effects on aging-associated changes across a variety of organisms from worm and fly to rodent and human.

  15. The Polyphenolics and Health Effects of Pomegranate

    Directory of Open Access Journals (Sweden)

    Sonya Titin Nge

    2015-06-01

    Full Text Available Pomegranate (Punica granatum L. is a useful fruit which mostly consumed as fresh fruit and can also be used as a various of processed products. Reports proved pomegranate were beneficial to health. Polyphenolic compounds in pomegranate especially ellagitannin (hydrolyzed, anthocyanins, gallotannin,and ellagic acid can maintain oral hygiene, healthy skin from the effects of free radicals caused by UV radiation, has the ability to synthesize cholesterol, destroying free radicals in the human vascular system and can prevent prostate cancer. In vitro and in vivo test has shown the fruit is acting as anti diabetic drug, and hypolipidemic, anticarcinogenic, antibacterial, anti inflamation, and antiviral. This review presenting an overview about the bioactive compound contents, physiological and health function of the fruit.

  16. Role of polyphenols and polyphenol-rich foods in the modulation of PON1 activity and expression.

    Science.gov (United States)

    Martini, Daniela; Del Bo', Cristian; Porrini, Marisa; Ciappellano, Salvatore; Riso, Patrizia

    2017-10-01

    Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated enzyme involved in the protection of low-density lipoprotein and HDLs against lipid peroxidation. Several studies documented the capacity of polyphenols to stimulate PON1 transcription activation. The objective of the present review is to provide the main evidence about the role and the potential mechanism of action of polyphenols and polyphenol-rich foods in the modulation of PON1 gene expression and activity. A total of 76 in vitro and in vivo studies were included in the review. Overall, while evidence obtained in vitro is limited to quercetin and resveratrol, those deriving from animal models seem more convincing for a wide range of polyphenols but only at pharmacological doses. Evidence from human studies is promising but deserves more substantiation about the role of polyphenol-rich foods in the regulation of PON1 activity and expression. Research focused on the understanding of the structure-activity relationship of polyphenols with PON1 and on the mechanisms at the base of PON1 modulation is warranted. Well-designed human intervention studies are encouraged to corroborate the findings of polyphenols also at physiological doses. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    International Nuclear Information System (INIS)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-01-01

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor

  18. NADPH oxidase is internalized by clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Christensen, Dan Ploug; Beyaie, David

    2012-01-01

    Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b(558)) from the plasma membrane to an intracellular stimulus-responsive storage...... compartment. Cryo-immunogold labeling of gp91(phox) and CeCl(3) cytochemistry showed the presence of gp91(phox) and oxidant production in numerous small (...

  19. Role of pH in oxidase variability of Aeromonas hydrophila.

    OpenAIRE

    Hunt, L K; Overman, T L; Otero, R B

    1981-01-01

    Some strains of Aeromonas hydrophila may be oxidase negative or only weakly oxidase positive by the Kovacs method taken from the surface of a differential medium, such as MacConkey agar. Six strains of A. hydrophila, two oxidase variable, one oxidase constant, and three weakly oxidase positive on MacConkey agar, were studied to determine the cause of oxidase variability. The bacteriostatic dyes in MacConkey agar were considered possible inhibitors of the oxidase reaction. The concentration of...

  20. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  1. Effects of Zizyphus lotus L. (Desf.) polyphenols on Jurkat cell signaling and proliferation.

    Science.gov (United States)

    Abdoul-Azize, Souleymane; Bendahmane, Malika; Hichami, Aziz; Dramane, Gado; Simonin, Anne-Marie; Benammar, Chahid; Sadou, Hassimi; Akpona, Simon; El Boustani, Es-Saddik; Khan, Naim A

    2013-02-01

    We assessed the effects of Zizyphus lotus L. (Desf.) polyphenols (ZLP) on T-cell signaling and proliferation. Our results showed that ZLP exerted no effect on the increases in intracellular free calcium concentrations, [Ca(2+)]i, in human Jurkat T-cells. However, ZLP modulated the thapsigargin-induced increases in [Ca(2+)]i in these cells. ZLP treatment was found to decrease the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, ZLP induced a rapid (t1/2=33s) and dose-dependent decrease in intracellular pH (pHi) in human Jurkat T-cells. Furthermore, ZLP significantly curtailed T-cell proliferation by diminishing their progression from S to G2/M phase of cell cycle, and the expression of interleukin-2 (IL-2) mRNA. Taken together, the results of the present study demonstrate that ZLP modulate cell signaling and exert immunosuppressive effects in human T-cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effect on Green Tea Polyphenols on Breast Cancer Signaling

    National Research Council Canada - National Science Library

    Cobrinik, David

    1999-01-01

    .... Using the EGF dependent growth of MCF1OA epithelial cells as a model, we found that the major polyphenol in green tea, EGCG, inhibited progression through the late Gi cell cycle restriction point...

  3. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?

    Directory of Open Access Journals (Sweden)

    Tarique Hussain

    2016-01-01

    Full Text Available Oxidative stress is viewed as an imbalance between the production of reactive oxygen species (ROS and their elimination by protective mechanisms, which can lead to chronic inflammation. Oxidative stress can activate a variety of transcription factors, which lead to the differential expression of some genes involved in inflammatory pathways. The inflammation triggered by oxidative stress is the cause of many chronic diseases. Polyphenols have been proposed to be useful as adjuvant therapy for their potential anti-inflammatory effect, associated with antioxidant activity, and inhibition of enzymes involved in the production of eicosanoids. This review aims at exploring the properties of polyphenols in anti-inflammation and oxidation and the mechanisms of polyphenols inhibiting molecular signaling pathways which are activated by oxidative stress, as well as the possible roles of polyphenols in inflammation-mediated chronic disorders. Such data can be helpful for the development of future antioxidant therapeutics and new anti-inflammatory drugs.

  4. Minerals and Total Polyphenolic Content of Some Vegetal Powders

    Directory of Open Access Journals (Sweden)

    Roxana E. TUFEANU

    2017-11-01

    Full Text Available The total polyphenolic content and minerals were determined for chia seeds, Psyllium husks and watermelon rind powder. The minerals content was performed by using the Inductively Coupled Plasma Optical Emissions Spectrometer and Atomic Absorption Spectrometer, technique FIAS-Furnace (for Se. The sample with the highest content of polyphenols was chia (2.69 mg GAE/g s. followed by the watermelon rind powder. Reduced amounts of polyphenols were found in the Psyllium husks. Also, the total polyphenol concentration increased with the increase of the extraction time on the ultrasonic water bath. Minerals analysis indicated that powders obtained from chia seeds and watermelon rind contained large amounts of potassium, calcium, phosphorus and magnesium. The most abundant mineral in the Psyllium husks powder was found potassium, followed by calcium. In conclusion, these powders can be used as ingredients for functional food and food supplements production due to the high nutritional content and bioactive properties.

  5. Polyphenol-Rich Lentils and Their Health Promoting Effects

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-11-01

    Full Text Available Lentil (Lens culinaris; Family: Fabaceae is a potential functional dietary ingredient which has polyphenol-rich content. Several studies have demonstrated that the consumption of lentil is immensely connected to the reduction in the incidence of diseases such as diabetes, obesity, cancers and cardiovascular diseases due to its bioactive compounds. There has been increasing scientific interest in the study area of lentils as the functional food due to its high nutritive value, polyphenols, and other bioactive compounds. These polyphenols and the bioactive compounds found in lentil play an important role in the prevention of those degenerative diseases in humans. Besides that, it has health-promoting effects. Based on the in vitro, in-vivo and clinical studies, the present review focuses to provide more information on the nutritional compositions, bioactive compounds including polyphenols and health-promoting effects of lentils. Health-promoting information was gathered and orchestrated at a suitable place in the review.

  6. Effects of tannins and polyphenols of some medicinal plants on ...

    African Journals Online (AJOL)

    Five medicinal plants, Enantia chloranthia, Kigelia africana, Bridelia ferruginea, Trema nitems and Drypetes gossweilerri were screened for phytochemical components. The plants were found to contain tannins, phlobatannins, alkaloids, cardiac glycosides, anthranoids, anthraquinones, saponins and polyphenols.

  7. Xanthine oxidase biosensor for monitoring meat spoilage

    Science.gov (United States)

    Vanegas, D. C.; Gomes, C.; McLamore, E. S.

    2014-05-01

    In this study, we have designed an electrochemical biosensor for real-time detection of specific biomarkers of bacterial metabolism related to meat spoilage (hypoxanthine and xanthine). The selective biosensor was developed by assembling a `sandwich' of nanomaterials and enzymes on a platinum-iridium electrode (1.6 mm tip diameter). The materials deposited on the sensor tip include amorphous platinum nanoclusters (i.e. Pt black), reduced graphene oxide, nanoceria, and xanthine oxidase. Xanthine oxidase was encapsulated in laponite hydrogel and used for the biorecognition of hypoxanthine and xanthine (two molecules involved in the rotting of meat by spoilage microorganisms). The developed biosensor demonstrated good electrochemical performance toward xanthine with sensitivity of 2.14 +/- 1.48 μA/mM, response time of 5.2 +/- 1.5 sec, lower detection limit of 150 +/- 39 nM, and retained at least 88% of its activity after 7 days of continuous use.

  8. Tetrahydrophthalimidobenzoates as protoporphyrinogen IX oxidase inhibiting herbicides.

    Science.gov (United States)

    Chen, Lin; Zhang, Yong; Yu, Haibo; Cui, Dongliang; Li, Bin

    2017-06-01

    Tetrahydrophthalimidobenzoates are a class of protoporphyrinogen oxidase herbicides acting on the protoporphyrinogen oxidase enzyme. After the discovery of compound 1, a series of novel tetrahydrophthalimidobenzoate derivatives were designed and synthesized, and some synthesized compounds exhibited good herbicidal activity in controlling broadleaf weeds. The structure activity relationship of the synthesized compounds was also determined. Substitution of a fluorine atom at the 4-position of benzene ring resulted in better herbicidal activity than that with non-substitution. Among the conjunctional groups, methylene group with more methyl substitutions was the best. Consequently, compound 9 was found as the best of all in the synthesized compounds, and it is worthy of being developed not only because of its good herbicidal activity against broadleaf weeds with selectivity for maize, but also for its low toxicity to mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Modulation of lysyl oxidase by dietary copper in rats.

    Science.gov (United States)

    Rucker, R B; Romero-Chapman, N; Wong, T; Lee, J; Steinberg, F M; McGee, C; Clegg, M S; Reiser, K; Kosonen, T; Uriu-Hare, J Y; Murphy, J; Keen, C L

    1996-01-01

    Lysyl oxidase levels were estimated in rat tissues using an enzyme-linked immunosorption assay (ELISA) and a functional assay standardized against known amounts of purified lysyl oxidase. High concentrations of lysyl oxidase (> or = 150 micrograms/g of tissue or packed cells) were detected in connective tissues, such as tendon and skin. Values for aorta, kidney, lung and liver ranged from 30 to 150 micrograms/g of tissue; values for skeletal muscle and diaphragm were tendon (r2 > 0.9). When egg white-based experimental diets containing 2 or 10 micrograms/g added copper were fed to weanling rats, values for skin lysyl oxidase functional activity in the group fed 2 micrograms/g added copper were one-third to one-half the values for skin lysyl oxidase functional activity in rats fed 10 micrograms/g copper. This reduction in lysyl oxidase activity, however, had minimal effect on indices of collagen maturation in rat skin, e.g., collagen solubility in neutral salt and dilute acid or the levels of acid stable cross-links. Moreover, copper deficiency did not influence the steady-state levels of lysyl oxidase specific mRNA in rat skin or the apparent amounts of lysyl oxidase in rat skin as determined by ELISA. These observations underscore that the concentration of lysyl oxidase is relatively high in dense corrective tissues, and although decreasing dietary copper influences functional activity, there is little apparent effect on the production of lysyl oxidase protein.

  10. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  11. NADPH oxidases in Microglia oxidant production

    DEFF Research Database (Denmark)

    Haslund-Vinding, J; McBean, G; Jaquet, V

    2017-01-01

    Microglia are the resident immune cells of the central nervous system (CNS) and constitute a self-sustaining population of CNS-adapted tissue macrophages. As mononuclear phagocytic cells, they express high levels of superoxide-producing NADPH oxidases (NOX). The sole function of members of the NOX...... excessive, badly-timed, or misplaced NOX activation in microglia may affect neuronal homeostasis in physiological or pathological conditions certainly merits further investigation. This article is protected by copyright. All rights reserved....

  12. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-01-01

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  13. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols

    International Nuclear Information System (INIS)

    Lei Rong; Xu Xiao; Xu Da; Zhu Gang; Li Na; Liu Huwei; Li Kean

    2008-01-01

    Anodic Ru(bpy) 3 2+ electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy) 3 2+ in alkaline solution, and oxidation of quercetin enhanced Ru(bpy) 3 2+ ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols

  14. Analytical techniques for the study of polyphenol-protein interactions.

    Science.gov (United States)

    Poklar Ulrih, Nataša

    2017-07-03

    This mini review focuses on advances in biophysical techniques to study polyphenol interactions with proteins. Polyphenols have many beneficial pharmacological properties, as a result of which they have been the subject of intensive studies. The most conventional techniques described here can be divided into three groups: (i) methods used for screening (in-situ methods); (ii) methods used to gain insight into the mechanisms of polyphenol-protein interactions; and (iii) methods used to study protein aggregation and precipitation. All of these methods used to study polyphenol-protein interactions are based on modifications to the physicochemical properties of the polyphenols or proteins after binding/complex formation in solution. To date, numerous review articles have been published in the field of polyphenols. This review will give a brief insight in computational methods and biosensors and cell-based methods, spectroscopic methods including fluorescence emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass spectrometry, nuclear magnetic resonance, X-ray diffraction, and light scattering techniques including small-angle X-ray scattering and small-angle neutron scattering, and calorimetric techniques (isothermal titration calorimetry and differential scanning calorimetry), microscopy, the techniques which have been successfully used for polyphenol-protein interactions. At the end the new methods based on single molecule detection with high potential to study polyphenol-protein interactions will be presented. The advantages and disadvantages of each technique will be discussed as well as the thermodynamic, kinetic or structural parameters, which can be obtained. The other relevant biophysical experimental techniques that have proven to be valuable, such electrochemical methods, hydrodynamic techniques and chromatographic techniques will not be described here.

  15. Phenological variations of polyphenols in Smilax campestris (Smilacaceae)

    OpenAIRE

    RUGNA, Ana Zulema; GURNI, Alberto Angel; WAGNER, Marcelo Luis

    2013-01-01

    Polyphenol profiles can suffer quali-quantitative modifications as the plant modifies its phenological condition. The objective of this work was to determine if there is a rhythm of production in the synthesis of polyphenols according to the phenological condition in the leaves, roots, and rhizomes of Smilax campestris Griseb. The plant material analysed corresponded to individuals of a colony of S. campestris collected in different phenological conditions. Standard methodology was used for t...

  16. Tea Polyphenols and Their Roles in Cancer Prevention and Chemotherapy

    OpenAIRE

    Chen, Di; Dou, Q. Ping

    2008-01-01

    Many plant-derived, dietary polyphenols have been studied for their chemopreventive and chemotherapeutic properties against human cancers, including green tea polyphenols, genistein (found in soy), apigenin (celery, parsley), luteolin (broccoli), quercetin (onions), kaempferol (broccoli, grapefruits), curcumin (turmeric), etc. The more we understand their involved molecular mechanisms and cellular targets, the better we could utilize these “natural gifts†for the prevention and treat...

  17. Polyphenol supplementation: benefits for exercise performance or oxidative stress?

    Science.gov (United States)

    Myburgh, Kathryn H

    2014-05-01

    Supplement use among athletes is widespread, including non-traditional and biological compounds. Despite increasing research, a comprehensive and critical review on polyphenol supplementation and exercise is still lacking. This review is relevant for researchers directly involved in the topic, as well as those with a broad interest in athletic performance enhancement and sports nutrition. The purpose of this review is to present background information on groups of polyphenols and their derivatives because their differing chemical structures influence mechanisms of action; to discuss the potential of plant, fruit and vegetable-based biological supplements, high in polyphenol content, to affect exercise performance and biomarkers of oxidative stress and exercise-induced muscle damage; and to critically discuss the exercise studies and biomarkers used. Subjects in the studies reviewed were either sedentary, healthy individuals, or active, recreationally trained or well-trained athletes. Polyphenol supplementation in exercise studies included mainly extracts (multicomponent or purified), juices, infusions or an increased intake of polyphenol-rich foods. This review includes details of supplement doses and exercise test protocols. Many studies considered only the performance or one or two selected biomarkers of antioxidant capacity instead of a comprehensive choice of biomarkers to assess damage to lipids or proteins. Evidence is insufficient to make recommendations for or against the use of polyphenol supplementation (neither specific polyphenols nor specific doses) for either recreational, competitive or elite athletes. Polyphenols have multiple biological effects, and future exercise studies must be designed appropriately and specifically to determine physiological interactions between exercise and the selected supplement, rather than considering performance alone.

  18. Homocysteine restricts copper availability leading to suppression of cytochrome C oxidase activity in phenylephrine-treated cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Xiao Zuo

    Full Text Available Cardiomyocyte hypertrophy induced by phenylephrine (PE is accompanied by suppression of cytochrome c oxidase (CCO activity, and copper (Cu supplementation restores CCO activity and reverses the hypertrophy. The present study was aimed to understand the mechanism of PE-induced decrease in CCO activity. Primary cultures of neonatal rat cardiomyocytes were treated with PE at a final concentration of l00 µM in cultures for 72 h to induce cell hypertrophy. The CCO activity was determined by enzymatic assay and changes in CCO subunit COX-IV as well as copper chaperones for CCO (COX17, SCO2, and COX11 were determined by Western blotting. PE treatment increased both intracellular and extracellular homocysteine concentrations and decreased intracellular Cu concentrations. Studies in vitro found that homocysteine and Cu form complexes. Inhibition of the intracellular homocysteine synthesis in the PE-treated cardiomyocytes prevented the increase in the extracellular homocysteine concentration, retained the intracellular Cu concentration, and preserved the CCO activity. PE treatment decreased protein concentrations of the COX-IV, and the Cu chaperones COX17, COX11, and SCO2. These PE effects were prevented by either inhibition of the intracellular homocysteine synthesis or Cu supplementation. Therefore, PE-induced elevation of homocysteine restricts Cu availability through its interaction with Cu and suppression of Cu chaperones, leading to the decrease in CCO enzyme activity.

  19. Hydrogen peroxide inhibition of bicupin oxalate oxidase.

    Science.gov (United States)

    Goodwin, John M; Rana, Hassan; Ndungu, Joan; Chakrabarti, Gaurab; Moomaw, Ellen W

    2017-01-01

    Oxalate oxidase is a manganese containing enzyme that catalyzes the oxidation of oxalate to carbon dioxide in a reaction that is coupled with the reduction of oxygen to hydrogen peroxide. Oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx) is the first fungal and bicupin enzyme identified that catalyzes this reaction. Potential applications of oxalate oxidase for use in pancreatic cancer treatment, to prevent scaling in paper pulping, and in biofuel cells have highlighted the need to understand the extent of the hydrogen peroxide inhibition of the CsOxOx catalyzed oxidation of oxalate. We apply a membrane inlet mass spectrometry (MIMS) assay to directly measure initial rates of carbon dioxide formation and oxygen consumption in the presence and absence of hydrogen peroxide. This work demonstrates that hydrogen peroxide is both a reversible noncompetitive inhibitor of the CsOxOx catalyzed oxidation of oxalate and an irreversible inactivator. The build-up of the turnover-generated hydrogen peroxide product leads to the inactivation of the enzyme. The introduction of catalase to reaction mixtures protects the enzyme from inactivation allowing reactions to proceed to completion. Circular dichroism spectra indicate that no changes in global protein structure take place in the presence of hydrogen peroxide. Additionally, we show that the CsOxOx catalyzed reaction with the three carbon substrate mesoxalate consumes oxygen which is in contrast to previous proposals that it catalyzed a non-oxidative decarboxylation with this substrate.

  20. Anti-Hypertensive Effects of Acacia Polyphenol in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Nobutomo Ikarashi

    2018-03-01

    Full Text Available We have previously demonstrated that acacia polyphenol (AP exerts strong anti-obesity, anti-diabetic, and anti-atopic dermatitis effects. In the present study, we investigated the anti-hypertensive effects of AP. Spontaneously hypertensive rats (SHR with hypertension and control Wistar Kyoto rats (WKY were used. WKY and SHR were fed AP-containing food or AP-free food (control group ad libitum for 4 weeks, and their blood pressures were measured. After AP administration, both systolic and diastolic blood pressures were significantly lower in the SHR group than in the control group. There were no differences in the systolic or diastolic blood pressure of WKY between the AP group and the control group. Angiotensin-converting enzyme (ACE activity, nicotinamide adenine dinucleotide phosphate (NADPH oxidase expression, and superoxide dismutase (SOD activity in SHR kidneys were not altered by AP administration. Blood SOD activity in SHR was significantly higher in the AP group than in the control group. AP exerts anti-hypertensive effects on hypertension but has almost no effect on normal blood pressure. The anti-hypertensive effects of AP may be related to the anti-oxidative effects of increased blood SOD activity.

  1. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    Science.gov (United States)

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  2. The Role of Polyphenols in Rosacea Treatment: A Systematic Review.

    Science.gov (United States)

    Saric, Suzana; Clark, Ashley K; Sivamani, Raja K; Lio, Peter A; Lev-Tov, Hadar A

    2017-12-01

    Various treatment options are available for the management of rosacea symptoms such as facial erythema, telangiectasia, papules and pustules, burning, stinging, and itching. Botanical therapies are commonly used to treat the symptoms. The objective of this review is to evaluate the use of polyphenols in rosacea treatment. PubMed, Embase, Biosis, Web of Knowledge, and Scopus databases were systematically searched for clinical studies evaluating polyphenols in the management of rosacea. Of 814 citations, 6 met the inclusion criteria. The studies evaluated licochalcone (n = 2), silymarin (n = 2), Crysanthellum indicum extract (n = 1), and quassia extract (n = 1). The studies only evaluated topical formations of stated polyphenols. Main results were summarized. There is evidence that polyphenols may be beneficial for the treatment of rosacea symptoms. Polyphenols appear to be most effective at reducing facial erythema and papule and pustule counts. However, studies included have significant methodological limitations and therefore large-scale, randomized, placebo-controlled trials are warranted to further assess the efficacy and safety of polyphenols in the treatment of rosacea.

  3. Tea Polyphenols and Their Roles in Cancer Prevention and Chemotherapy

    Directory of Open Access Journals (Sweden)

    Q. Ping Dou

    2008-07-01

    Full Text Available Many plant-derived, dietary polyphenols have been studied for their chemopreventive and chemotherapeutic properties against human cancers, including green tea polyphenols, genistein (found in soy, apigenin (celery, parsley, luteolin (broccoli, quercetin (onions, kaempferol (broccoli, grapefruits, curcumin (turmeric, etc. The more we understand their involved molecular mechanisms and cellular targets, the better we could utilize these “natural gifts” for the prevention and treatment of human cancer. Furthermore, better understanding of their structure-activity relationships will guide synthesis of analog compounds with improved bio-availability, stability, potency and specificity. This review focuses on green tea polyphenols and seeks to summarize several reported biological effects of tea polyphenols in human cancer systems, highlight the molecular targets and pathways identified, and discuss the role of tea polyphenols in the prevention and treatment of human cancer. The review also briefly describes several other dietary polyphenols and their biological effects on cancer prevention and chemotherapy.

  4. New insights into seaweed polyphenols on glucose homeostasis.

    Science.gov (United States)

    Murugan, Amarchand Chordia; Karim, Md Rezaul; Yusoff, Mashitah Binti Mohd; Tan, Suat Hian; Asras, Mohd Fazli Bin Farida; Rashid, Shah Samiur

    2015-08-01

    Polyphenol-rich marine macroalgae are gaining dietary importance due to their influence over diabetes mellitus and the role as a vital source of high-value nutraceuticals. Their assorted beneficial effects on human health include competitive inhibition of digestive enzymes, varying the activity of hepatic glucose-metabolizing enzymes, lowering the plasma glucose levels, and lipid peroxidation, delaying the aging process. In this paper, we review the health beneficial effects of polyphenols and phlorotannins from brown seaweeds with special emphasis on their inhibitory effects on carbohydrate-metabolizing enzymes. A survey of literature from databases such as Sciencedirect, Scopus, Pubmed, Springerlink, and Google Scholar from the year 1973 to 2013 was done to bring together the information relating to drug discovery from brown seaweeds as a source for diabetes treatment. Over the past two decades, 20 different bioactive polyphenols/phlorotannins have been isolated and studied from 10 different brown algae. Discussion of the positive effect on the inhibition of enzymes metabolizing carbohydrates in both in vitro and in vivo experiments are included. Despite the recent advancements in isolating bioactive compounds from seaweeds with potential health benefit or pharmaceutical behavior, studies on the polyphenol effectiveness on glucose homeostasis in human beings are very few in response to their functional characterization. Added research in this area is required to confirm the close connection of polyphenol rich seaweed-based diet consumption with glucose homeostasis and the exciting possibility of prescribing polyphenols to treat the diabetes pandemic.

  5. A Survey of Modulation of Gut Microbiota by Dietary Polyphenols

    Directory of Open Access Journals (Sweden)

    Montserrat Dueñas

    2015-01-01

    Full Text Available Dietary polyphenols present in a broad range of plant foods have been related to beneficial health effects. This review aims to update the current information about the modulation of the gut microbiota by dietary phenolic compounds, from a perspective based on the experimental approaches used. After referring to general aspects of gut microbiota and dietary polyphenols, studies related to this topic are presented according to their experimental design: batch culture fermentations, gastrointestinal simulators, animal model studies, and human intervention studies. In general, studies evidence that dietary polyphenols may contribute to the maintenance of intestinal health by preserving the gut microbial balance through the stimulation of the growth of beneficial bacteria (i.e., lactobacilli and bifidobacteria and the inhibition of pathogenic bacteria, exerting prebiotic-like effects. Combination of in vitro and in vivo models could help to understand the underlying mechanisms in the polyphenols-microbiota-host triangle and elucidate the implications of polyphenols on human health. From a technological point of view, supplementation with rich-polyphenolic stuffs (phenolic extracts, phenolic-enriched fractions, etc. could be an effective option to improve health benefits of functional foods such as the case of dairy fermented foods.

  6. Use of Modified Phenolic Thyme Extracts (Thymus vulgaris) with Reduced Polyphenol Oxidase Substrates as Anthocyanin Color and Stability Enhancing Agents.

    Science.gov (United States)

    Aguilar, Oscar; Hernández-Brenes, Carmen

    2015-12-14

    Residual enzymatic activity in certain foods, particularly of polyphenoloxidase (PPO), is responsible for the majority of anthocyanin degradation in food systems, causing also parallel losses of other relevant nutrients. The present work explored the feasibility of modifying phenolic profiles of thyme extracts, by use of chromatographic resins, to obtain phenolic extracts capable of enhancing anthocyanin colour and stability in the presence of PPO activity. Results indicated that pretreatment of thyme extracts with strong-anion exchange resins (SAE) enhanced their copigmentation abilities with strawberry juice anthocyanins. Phenolic chromatographic profiles, by HPLC-PDA, also demonstrated that thyme extracts subjected to SAE treatments had significantly lower concentrations of certain phenolic compounds, but extracts retained their colour enhancing and anthocyanin stabilization capacities though copigmentation. Additional testing also indicated that SAE modified extract had a lower ability (73% decrease) to serve as PPO substrate, when compared to the unmodified extract. Phenolic profile modification process, reported herein, could be potentially used to manufacture modified anthocyanin-copigmentation food and cosmetic additives for colour-stabilizing applications with lower secondary degradation reactions in matrixes that contain PPO activity.

  7. Crystallization and preliminary X-ray crystallographic analysis of polyphenol oxidase from Juglans regia (jrPPO1)

    Energy Technology Data Exchange (ETDEWEB)

    Zekiri, Florime; Bijelic, Aleksandar; Molitor, Christian; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2014-05-28

    The crystallization and preliminary X-ray crystallographic analysis of a plant PPO exhibiting monophenolase activity from J. regia (jrPPO1) in its active form (Asp{sup 101}–Arg{sup 445}) are reported. Tyrosinase is a type 3 copper enzyme that catalyzes the ortho-hydroxylation of monophenols to diphenols as well as their subsequent oxidation to quinones, which are precursors for the biosynthesis of melanins. The first plant tyrosinase from walnut leaves (Juglans regia) was purified to homogeneity and crystallized. During the purification, two forms of the enzyme differing only in their C-termini [jrPPO1(Asp{sup 101}–Pro{sup 444}) and jrPPO1(Asp{sup 101}–Arg{sup 445})] were obtained. The most abundant form jrPPO1(Asp{sup 101}–Arg{sup 445}), as described in Zekiri et al. [Phytochemistry (2014 ▶), 101, 5–15], was crystallized, resulting in crystals that belonged to space group C121, with unit-cell parameters a = 115.56, b = 91.90, c = 86.87 Å, α = 90, β = 130.186, γ = 90°, and diffracted to 2.39 Å resolution. Crystals were only obtained from solutions containing at least 30% polyethylene glycol 5000 monomethyl ether in a close-to-neutral pH range.

  8. Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent developmentin the moss Physcomitrella patens

    Czech Academy of Sciences Publication Activity Database

    Richter, H.; Lieberei, R.; Strnad, Miroslav; Novák, Ondřej; Grúz, Jiří; Rensing, S. A.; von Schwartzenberg, K.

    2012-01-01

    Roč. 63, č. 14 (2012), s. 5121-5135 ISSN 0022-0957 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Cytokinins * gene family * gene replacement Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.242, year: 2012

  9. Use of Modified Phenolic Thyme Extracts (Thymus vulgaris with Reduced Polyphenol Oxidase Substrates as Anthocyanin Color and Stability Enhancing Agents

    Directory of Open Access Journals (Sweden)

    Oscar Aguilar

    2015-12-01

    Full Text Available Residual enzymatic activity in certain foods, particularly of polyphenoloxidase (PPO, is responsible for the majority of anthocyanin degradation in food systems, causing also parallel losses of other relevant nutrients. The present work explored the feasibility of modifying phenolic profiles of thyme extracts, by use of chromatographic resins, to obtain phenolic extracts capable of enhancing anthocyanin colour and stability in the presence of PPO activity. Results indicated that pretreatment of thyme extracts with strong-anion exchange resins (SAE enhanced their copigmentation abilities with strawberry juice anthocyanins. Phenolic chromatographic profiles, by HPLC-PDA, also demonstrated that thyme extracts subjected to SAE treatments had significantly lower concentrations of certain phenolic compounds, but extracts retained their colour enhancing and anthocyanin stabilization capacities though copigmentation. Additional testing also indicated that SAE modified extract had a lower ability (73% decrease to serve as PPO substrate, when compared to the unmodified extract. Phenolic profile modification process, reported herein, could be potentially used to manufacture modified anthocyanin-copigmentation food and cosmetic additives for colour-stabilizing applications with lower secondary degradation reactions in matrixes that contain PPO activity.

  10. Intracellular Polyamines Enhance Astrocytic Coupling

    Science.gov (United States)

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V.; Rivera, Yomarie; Kucheryavykh, Lilia Y.; Nichols, Colin G.; Eaton, Misty J.; Skatchkov, Serguei N.

    2013-01-01

    Spermine (SPM) and spermidine (SPD), endogenous polyamines (PA) with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant and other effects in vivo such as increasing longevity. These PA are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. Results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21–25 day old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions (ICS) without SPM. However, there was a robust increase in the spreading of Lucifer yellow via gap junctions to neighboring astrocytes when the cells were patched with ICS containing 1 mM SPM; a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM via gap junctions and further suggest a new role of polyamines in the regulation of the astroglial network in both normal and pathological conditions. PMID:23076119

  11. Comparison of kinetic properties of amine oxidases from sainfoin and lentil and immunochemical characterization of copper/quinoprotein amine oxidases.

    Science.gov (United States)

    Zajoncová, L; Frébort, I; Luhová, L; Sebela, M; Galuszka, P; Pec, P

    1999-01-01

    Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed.

  12. Gravity Responsive NADH Oxidase of the Plasma Membrane

    Science.gov (United States)

    Morre, D. James (Inventor)

    2002-01-01

    A method and apparatus for sensing gravity using an NADH oxidase of the plasma membrane which has been found to respond to unit gravity and low centrifugal g forces. The oxidation rate of NADH supplied to the NADH oxidase is measured and translated to represent the relative gravitational force exerted on the protein. The NADH oxidase of the plasma membrane may be obtained from plant or animal sources or may be produced recombinantly.

  13. Regulation of NADPH oxidase 5 by protein kinase C isoforms.

    Directory of Open Access Journals (Sweden)

    Feng Chen

    Full Text Available NADPH oxidase5 (Nox5 is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular

  14. Decoding NADPH oxidase 4 expression in human tumors

    Directory of Open Access Journals (Sweden)

    Jennifer L. Meitzler

    2017-10-01

    Full Text Available NADPH oxidase 4 (NOX4 is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients, esophagus (12/18 patients, bladder (10/19 patients, ovary (6/17 patients, and prostate (7/19 patients, as well as malignant melanoma (7/15 patients when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.

  15. An amperometric cholesterol biosensor based on epoxy resin membrane bound cholesterol oxidase.

    Science.gov (United States)

    Pundir, C S; Narang, Jagriti; Chauhan, Nidhi; Sharma, Preety; Sharma, Renu

    2012-10-01

    The use of epoxy resin membrane as a support for immobilization of enzyme has resulted into improved sensitivity and stability of biosensors for uric acid, ascorbic acid and polyphenols. The present work was aimed to prepare an improved amperometric biosensor for determination of serum cholesterol required in the diagnostics and management of certain pathological conditions. Epoxy resin membrane with immobilized cholesterol oxidase was mounted on the cleaned platinum (Pt) electrode with a parafilm to construct a working electrode. This working electrode along with Ag/AgCl as reference and Ag wire as an auxiliary electrode were connected through a three terminal electrometer to construct a cholesterol biosensor. The sensor showed optimum response within 25 sec at pH 7.0 and 45°C. The linear working range of biosensor was 1.0 to 8.0 mM cholesterol. K m and I max for cholesterol were 5.0 mM and 9.09 μA, respectively. The biosensor measured serum cholesterol. The minimum detection limit of the sensor was 1.0 mM. The mean analytical recoveries of added cholesterol in serum (2.84 and 4.13 mM) were 91.4 ± 2.8 and 92.3 ± 3.1 per cent (n=6), respectively. Within and between assay coefficient of variation (CV) were epoxy resin membrane as a support for immobilization of cholesterol oxidase has resulted into an improved amperometric cholesterol biosensor. The present biosensor had an advantage over the existing biosensors as it worked at comparatively lower potential.

  16. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  17. Grape polyphenols do not affect vascular function in healthy men.

    Science.gov (United States)

    van Mierlo, Linda A J; Zock, Peter L; van der Knaap, Henk C M; Draijer, Richard

    2010-10-01

    Data suggest that polyphenol-rich products may improve endothelial function and other cardiovascular health risk factors. Grape and wine contain high amounts of polyphenols, but effects of these polyphenols have hardly been investigated in isolation in randomized controlled studies. Our objective in this study was to test the chronic effect of polyphenol-rich solids derived from either a wine grape mix or grape seed on flow-mediated dilation (FMD). Blood pressure and other vascular function measures, platelet function, and blood lipids were secondary outcomes. Thirty-five healthy males were randomized in a double-blind, placebo-controlled crossover study consisting of three 2-wk intervention periods separated by 1-wk washout periods. The test products, containing 800 mg of polyphenols, were consumed as capsules. At the end of each intervention period, effects were measured after consumption of a low-fat breakfast (~751 kJ, 25% fat) and a high-fat lunch (~3136 kJ, 78% fat). After the low-fat breakfast, the treatments did not significantly affect FMD. The absolute difference after the wine grape solid treatment was -0.4% (95% CI = -1.8 to 0.9; P = 0.77) and after grape seed solids, 0.2% (95% CI = -1.2 to 1.5; P = 0.94) compared with after the placebo treatment. FMD effects after the high-fat lunch and effects on secondary outcomes also showed no consistent differences between both of the grape solids and placebo treatment. In conclusion, consumption of grape polyphenols has no major impact on FMD in healthy men. Future studies should address whether grape polyphenols can improve FMD and other cardiovascular health risk factors in populations with increased cardiovascular risk.

  18. Green Tea and Other Tea Polyphenols: Effects on Sebum Production and Acne Vulgaris

    Directory of Open Access Journals (Sweden)

    Suzana Saric

    2016-12-01

    Full Text Available Polyphenols are antioxidant molecules found in many foods including nuts, fruits, vegetables, chocolate, wine, and tea. Polyphenols have antimicrobial, anti-inflammatory, and antineoplastic properties. Recent studies suggest that tea polyphenols may be used for reducing sebum production in the skin and for treatment of acne vulgaris. This review examines the evidence for use of topically and orally ingested tea polyphenols against sebum production and for acne treatment and prevention. The PubMed database was searched for studies on tea polyphenols, sebum secretion, and acne vulgaris. Of the 59 studies found, eight met the inclusion criteria. Two studies evaluated tea polyphenol effects on sebum production; six studies examined tea polyphenol effects on acne vulgaris. Seven studies evaluated topical tea polyphenols; one study examined systemic tea polyphenols. None of the studies evaluated both topical and systemic tea polyphenols. Tea polyphenol sources included green tea (six studies and tea, type not specified (two studies. Overall, there is some evidence that tea polyphenols in topical formulation may be beneficial in reducing sebum secretion and in treatment of acne. Research studies of high quality and with large sample sizes are needed to assess the efficacy of tea polyphenols in topical and oral prevention of acne vulgaris and lipid synthesis by the sebaceous glands.

  19. Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese.

    Science.gov (United States)

    Taguchi, Chie; Fukushima, Yoichi; Kishimoto, Yoshimi; Suzuki-Sugihara, Norie; Saita, Emi; Takahashi, Yoshinari; Kondo, Kazuo

    2015-12-09

    Estimating polyphenol intake contributes to the understanding of polyphenols' health benefits. However, information about human polyphenol intake is scarce, especially in the elderly. This study aimed to estimate the dietary intake and major sources of polyphenols and to determine whether there is any relationship between polyphenol intake and micronutrient intake in healthy elderly Japanese. First, 610 subjects (569 men, 41 women; aged 67.3 ± 6.1 years) completed food frequency questionnaires. We then calculated their total polyphenol intake using our polyphenol content database. Their average total polyphenol intake was 1492 ± 665 mg/day, the greatest part of which was provided by beverages (79.1%). The daily polyphenol intake differed largely among individuals (183-4854 mg/day), also attributable mostly to beverage consumption. Coffee (43.2%) and green tea (26.6%) were the major sources of total polyphenol; the top 20 food items accounted for >90%. The polyphenol intake did not strongly correlate with the intake of any micronutrient, suggesting that polyphenols may exert health benefits independently of nutritional intake. The polyphenol intake in this elderly population was slightly higher than previous data in Japanese adults, and beverages such as coffee and green tea contributed highly to the intake.

  20. Hydrophobic-ionic chromatography: its application to microbial glucose oxidase, hyaluronidase, cholesterol oxidase, and cholesterol esterase.

    Science.gov (United States)

    Sasaki, I; Gotoh, H; Yamamoto, R; Tanaka, H; Takami, K; Yamashita, K; Yamashita, J; Horio, T

    1982-05-01

    Glucose oxidase from Aspergillus niger, hyaluronidase from Streptomyces hyalurolyticus, and cholesterol oxidase and cholesterol esterase from Pseudomonas fluorescens were effectively adsorbed on an Amberlite CG-50 column, when the cell-free cultured medium or the cultured medium with cell extract and without cell debris was applied without desalting but at pH less than or equal to 4.5. At the acidic pH, all the ion-exchange groups (-COOH) exist in the protonated form; the adsorption is not due to electrostatic attraction, but to hydrophobic interaction. The enzymes thus adsorbed were effectively eluted by increasing pH, at which the ion-exchange groups became dissociated. This type of adsorption-elution is called hydrophobic-ionic chromatography. By a single run of chromatography, glucose oxidase, hyaluronidase, cholesterol oxidase, and cholesterol esterase were purified 30-fold, 12-fold, 45-fold, and 20-fold with yields of 82%, 83%, 80%, and 90%, respectively. This indicates that hydrophobic-ionic chromatography on an Amberlite CG-50 column is effective for the purification of various enzymes, provided that they are stable at the acidic pH.

  1. Nox NADPH oxidases and the endoplasmic reticulum.

    Science.gov (United States)

    Laurindo, Francisco R M; Araujo, Thaís L S; Abrahão, Thalita B

    2014-06-10

    Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.

  2. Development of polyphenol-enriched vacuum and atmospheric fried matrices: Evaluation of quality parameters and in vitro bioavailability of polyphenols.

    Science.gov (United States)

    Dueik, V; Bouchon, P

    2016-10-01

    Polyphenols are very unstable and may be degraded when exposed to harsh conditions, such as those found in frying. The inclusion of vacuum seems to be a reasonable solution to avoid these adverse effects. Accordingly, the purpose of this study was to analyze the effect of olive-leaf polyphenol extract on quality parameters of vacuum and atmospheric fried gluten-starch matrices. Matrices were prepared using 12% (d.b.) gluten and 88% (d.b.) starch, using either native or a mixture of native (90%) and pre-gelatinized starch (10%). Polyphenols were added as a freeze-dried powder. Atmospheric and vacuum (91.4kPa, T water boiling point =46°C) frying were compared using an equivalent thermal driving force, which is defined as the difference between oil temperature and water boiling point at the working pressure. Bioavailability of polyphenols was evaluated using simulated digestion and caco-2 cells absorption. The addition of pre-gelatinized starch significantly decreased oil absorption in vacuum fried matrices, however, no significant differences were noted when added into atmospheric fried ones. Polyphenols retention was higher than 70% in vacuum fried matrices. Their bioavailability was ~15%, much higher than in atmospheric fried ones (~8%), and that the one reported in other studies. Interestingly, polyphenol addition reduced the oil content of vacuum fried snacks by 20%. This could be attributed to the hydrating effect of polyphenols, which may facilitate starch gelatinization, improving structure formation during vacuum frying, which will be the focus of future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries

    Directory of Open Access Journals (Sweden)

    Hwayoung Noh

    2017-07-01

    Full Text Available We identified urinary polyphenol metabolite patterns by a novel algorithm that combines dimension reduction and variable selection methods to explain polyphenol-rich food intake, and compared their respective performance with that of single biomarkers in the European Prospective Investigation into Cancer and Nutrition (EPIC study. The study included 475 adults from four European countries (Germany, France, Italy, and Greece. Dietary intakes were assessed with 24-h dietary recalls (24-HDR and dietary questionnaires (DQ. Thirty-four polyphenols were measured by ultra-performance liquid chromatography–electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS-MS in 24-h urine. Reduced rank regression-based variable importance in projection (RRR-VIP and least absolute shrinkage and selection operator (LASSO methods were used to select polyphenol metabolites. Reduced rank regression (RRR was then used to identify patterns in these metabolites, maximizing the explained variability in intake of pre-selected polyphenol-rich foods. The performance of RRR models was evaluated using internal cross-validation to control for over-optimistic findings from over-fitting. High performance was observed for explaining recent intake (24-HDR of red wine (r = 0.65; AUC = 89.1%, coffee (r = 0.51; AUC = 89.1%, and olives (r = 0.35; AUC = 82.2%. These metabolite patterns performed better or equally well compared to single polyphenol biomarkers. Neither metabolite patterns nor single biomarkers performed well in explaining habitual intake (as reported in the DQ of polyphenol-rich foods. This proposed strategy of biomarker pattern identification has the potential of expanding the currently still limited list of available dietary intake biomarkers.

  4. A Critical Appraisal of Solubility Enhancement Techniques of Polyphenols

    Directory of Open Access Journals (Sweden)

    Harkiran Kaur

    2014-01-01

    Full Text Available Polyphenols constitute a family of natural substances distributed widely in plant kingdom. These are produced as secondary metabolites by plants and so far 8000 representatives of this family have been identified. Recently, there is an increased interest in the polyphenols because of the evidence of their role in prevention of degenerative diseases such as neurodegenerative diseases, cancer, and cardiovascular diseases. Although a large number of drugs are available in the market for treatment of these diseases, however, the emphasis these days is on the exploitation of natural principles derived from plants. Most polyphenols show low in vivo bioavailability thus limiting their application for oral drug delivery. This low bioavailability could be associated with low aqueous solubility, first pass effect, metabolism in GIT, or irreversible binding to cellular DNA and proteins. Therefore, there is a need to devise strategies to improve oral bioavailability of polyphenols. Various approaches like nanosizing, self-microemulsifying drug delivery systems (SMEDDS, microencapsulation, complexation, and solid dispersion can be used to increase the bioavailability. This paper will highlight the various methods that have been employed till date for the solubility enhancement of various polyphenols so that a suitable drug delivery system can be formulated.

  5. Symposium on Plant Polyphenols: Nutrition, Health and Innovations, June 2009.

    Science.gov (United States)

    Chang, Ann S; Yeong, Boon-Yee; Koh, Woon-Puay

    2010-04-01

    Reported here is a summary of the proceedings of the Symposium on Plant Polyphenols: Nutrition, Health and Innovations, which was cosponsored by the Southeast Asia Region branch of the International Life Sciences Institute and the Nutrition Society of Malaysia in Kuala Lumpur, Malaysia, June 22-23, 2009. The symposium provided a timely update of research regarding the protective effects of polyphenols in chronic diseases, such as cardiovascular disease and cancer, as well as the development of innovative polyphenol-containing food products with enhanced nutritive and health properties. Presentations covered polyphenols from a wide range of food sources such as tea, coffee, nuts and seeds, cocoa and chocolate, soy, and Asian fruits, vegetables, and spices. The symposium was attended by a large and diverse group of nutritionists, dietitians, researchers and allied health professionals, as well as management, research and development, and marketing personnel from the food and beverage industry. Their enthusiastic participation was a testament to the increasing awareness and interest in polyphenols in the prevention and control of chronic diseases. Presented here are some of the highlights and important information from the symposium.

  6. Content of polyphenol compound in mangrove and macroalga extracts

    Science.gov (United States)

    Takarina, N. D.; Patria, M. P.

    2017-07-01

    Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.

  7. Effects of resveratrol and other polyphenols in hepatic steatosis.

    Science.gov (United States)

    Aguirre, Leixuri; Portillo, Maria Puy; Hijona, Elizabeth; Bujanda, Luis

    2014-06-21

    Non-alcoholic fatty liver disease covers a wide spectrum of liver pathologies which range from simple steatosis to non-alcoholic steatohepatitis. Polyphenols are members of a very large family of plant-derived compounds that can have beneficial effects on human health, and thus their study has become an increasingly important area of human nutrition research. The aim of the present review is to compile published data concerning the effects of both isolated polyphenols as well as polyphenol extracts, on hepatocyte and liver fat accumulation under different steatosis-inducing conditions. The results reported clearly show that this group of biomolecules is able to reduce fat accumulation, but further studies are needed to establish the optimal dose and treatment period length. With regard to the potential mechanisms of action, there is a good consensus. The anti-lipidogenic effect of polyphenols is mainly due to reduced fatty acid and triacylglycerol synthesis, increased in fatty acid oxidation, and reduced of oxidative stress and inflammation. As a general conclusion, it can be stated that polyphenols are biomolecules which produce hepatoprotective effects. To date, these beneficial effects have been demonstrated in cultured cells and animal models. Thus, studies performed in humans are needed before these molecules can be considered as truly useful tools in the prevention of liver steatosis.

  8. Plant polyphenols against UV-C-induced cellular death.

    Science.gov (United States)

    Kostyuk, Vladimir; Potapovich, Alla; Suhan, Tatiana; De Luca, Chiara; Pressi, Giovanna; Dal Toso, Roberto; Korkina, Liudmila

    2008-04-01

    The glycosylated phenylpropanoid verbascoside isolated from cultured cells of the medicinal plant Syringa vulgaris (Oleaceae) has previously been characterized as an effective scavenger of biologically active free radicals such as hydroxyl, superoxide, and nitric oxide, as a chelator of redox active transition metal ions (Fe (2+), Fe (3+), Cu (2+), and Ni (2+)), and an inhibitor of lipid peroxidation. In the present work, we have compared the cytoprotective effects of the biotechnologically produced verbascoside with two commercially available polyphenols (the glycosylated flavonoid rutin and its aglycone quercetin) against free radical-mediated UVC-induced cellular death in cultures of human keratinocytes (HaCaT) and breast cancer cells (MCF 7). We have shown that all the polyphenols studied afforded effective protection against UVC-induced necrosis and did not prevent UVC-induced apoptosis in both normal and tumor cell lines. The cytoprotection did not correlate either with UVC absorbance by polyphenols or with their superoxide radical scavenging properties. However, UVC protection strongly depended on the lipid peroxidation inhibiting and Fe (2+) chelating properties of polyphenols. We suggest that these plant polyphenols could be feasible for a photoprotection of human skin.

  9. Anti-inflammatory effects of polyphenols in arthritis.

    Science.gov (United States)

    Oliviero, Francesca; Scanu, Anna; Zamudio-Cuevas, Yessica; Punzi, Leonardo; Spinella, Paolo

    2018-03-01

    Polyphenols have been extensively investigated with regard to their antioxidant, anti-inflammatory, and immunomodulant properties in many inflammatory chronic conditions. The aim of this review is to summarise how these compounds can modulate the inflammatory pathways which characterise the most prevalent arthropathies including osteoarthritis, rheumatoid arthritis and crystal-induced arthritis. Among polyphenols, epigallocatechin gallate, carnosol, hydroxytyrosol, curcumin, resveratrol, kaempferol and genistein have been the most widely investigated in arthritis. The most important results of the studies outlined in this article show how polyphenolic compounds are able to inhibit the expression and the release of a number of pro-inflammatory mediators and proteolytic enzymes, the activity of different transcriptional factors and the production of reactive oxygen species in vitro. Studies on animal models of rheumatoid arthritis, osteoarthritis and gout show interesting results in terms of reduced tissue damage, restored cartilage homeostasis, and decreased levels of uric acid, respectively. Despite the multiple protective effects of polyphenols, there are no dietary recommendations for patients affected by rheumatic diseases. Future studies, including intervention trials, should be conducted to determine the relevance of polyphenols consumption or supplementation in arthritis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Plant Polyphenols and Their Anti-Cariogenic Properties: A Review

    Directory of Open Access Journals (Sweden)

    Gabriele Pinto

    2011-02-01

    Full Text Available Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which have been obtained from several in vitro studies investigating the effects of these bioactive molecules against Streptococcus mutans, as well as in vivo studies. The analysis of the literature supports the anti-bacterial role of polyphenols on cariogenic streptococci, suggesting (1 a direct effect against S. mutans; (2 an interaction with microbial membrane proteins inhibiting the adherence of bacterial cells to the tooth surface; and (3 the inhibition of glucosyl transferase and amylase. However, more studies, particularly in vivo and in situ, are necessary to establish conclusive evidence for the effectiveness and the clinical applications of these compounds in the prevention of dental caries. It is essential to better determine the nature and distribution of these compounds in our diet and to identify which of the hundreds of existing polyphenols are likely to provide the greatest effects.

  11. Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols.

    Science.gov (United States)

    Trifković, Kata T; Milašinović, Nikola Z; Djordjević, Verica B; Krušić, Melina T Kalagasidis; Knežević-Jugović, Zorica D; Nedović, Viktor A; Bugarski, Branko M

    2014-10-13

    In this work chitosan microbeads were prepared by emulsion technique and loaded with thyme polyphenols by diffusion from an external aqueous solution of Thymus serpyllum L. The effects of concentrations of chitosan (1.5-3% (w/v)) and GA (glutaraldehyde) (0.1-0.4% (v/v)), as a crosslinking agent on the main properties of microbeads were assessed. The obtained microgel beads from ∼ 220 to ∼ 790 μm in diameter were exposed to controlled drying process at air (at 37 °C) after which they contracted to irregular shapes (∼ 70-230 μm). The loading of dried microbeads with polyphenols was achieved by swelling in the acidic medium. The swelling rate of microbeads decreased with the increase in GA concentration. Upon this rehydration, thyme polyphenols were effectively encapsulated (active load of 66-114 mg GAE g(beads)(-1)) and the microbeads recovered a spherical shape. Both, the increase in the amount of the crosslinking agent and the presence of polyphenols, contributed to a more pronounced surface roughness of microbeads. The release of encapsulated polyphenols in simulated gastrointestinal fluids was prolonged to 3h. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Doublier, Sophie; Miraglia, Erica; Polimeni, Manuela; Bosia, Amalia; Ghigo, Dario

    2008-01-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-κB and decreased intracellular level of its inhibitor IkBα. These effects, accompanied by increased production of H 2 O 2 , were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-κB activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed

  13. Endoplasmic Reticulum Thiol Oxidase Deficiency Leads to Ascorbic Acid Depletion and Noncanonical Scurvy in Mice

    Science.gov (United States)

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S.H.; Fujii, Junichi; Ron, David

    2012-01-01

    Summary Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H2O2-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy. PMID:22981861

  14. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    Directory of Open Access Journals (Sweden)

    Tugba Ozdal

    2016-02-01

    Full Text Available As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health.

  15. Interactions of blacktea polyphenols with human gut microbiota: implications for gut and cardiovascular health

    NARCIS (Netherlands)

    Duynhoven, van J.P.M.; Vaughan, E.E.; Dorsten, van F.; Gomez-Roldan, V.; Vos, de R.; Vervoort, J.J.M.; Hooft, van der J.J.J.; Roger, L.; Draijer, R.; Jacobs, D.M.

    2013-01-01

    Epidemiologic studies have convincingly associated consumption of black tea with reduced cardiovascular risk. Research on the bioactive molecules has traditionally been focused on polyphenols, such as catechins. Black tea polyphenols (BTPs), however, mainly consist of high-molecular-weight species

  16. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    Science.gov (United States)

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  17. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso

    NARCIS (Netherlands)

    Karou, D.; Dicko, M.H.; Simpore, J.; Traore, A.S.

    2005-01-01

    Polyphenols from four medicinal plants of Burkina Faso, Combretum micranthum, Khaya senegalensis, Pterocarpus erinaceus and Sida acuta, were screened for their antioxidant and antimicrobial activities against pathogenic bacteria. The medicinal plants displayed different polyphenols contents and

  18. Investigating Internalization and Intracellular Trafficking of GPCRs

    DEFF Research Database (Denmark)

    Foster, Simon R; Bräuner-Osborne, Hans

    2017-01-01

    for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal...... independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies...... that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader...

  19. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  20. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Berg, van den W.A.M.; Rovida, S.; Berkel, van W.J.H.

    2004-01-01

    The flavoenzyme vanillyl-alcohol oxidase was subjected to random mutagenesis to generate mutants with enhanced reactivity to creosol (2-methoxy-4-methylphenol). The vanillyl-alcohol oxidase-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol

  1. Application of glucose oxidase for the production of metal ...

    African Journals Online (AJOL)

    The present study deals with the application of glucose oxidase (GOX) for the production of metal gluconates by fermentation method. It provides a method for the conversion of glucose into gluconic acid and its derivatives using the enzyme glucose oxidase (GOX). Due to the presence of calcium carbonate in fermentation ...

  2. Physiological roles of plastid terminal oxidase in plant stress ...

    Indian Academy of Sciences (India)

    The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the ...

  3. Xanthine oxidoreductase and xanthine oxidase in human cornea

    OpenAIRE

    Cejkova, J.; Ardan, T.; Filipec, M.; Midelfart, A.

    2002-01-01

    Xanthine oxidoreductase (xanthine dehydrogenase + xanthine oxidase) is a complex enzyme that catalyzes the oxidation of hypoxanthine to xanthine, subsequently producing uric acid. The enzyme complex exists in separate but interconvertible forms, xanthine dehydrogenase and xanthine oxidase, which generate reactive oxygen species (ROS), a well known causative factor in ischemia/reperfusion injury and also in some other pathological states and diseases. Because th...

  4. Xanthine oxidase inhibitory activity of some Leguminosae plants

    OpenAIRE

    Leomel E. Argulla; Christine L. Chichioco-Hernandez

    2014-01-01

    Objective: To evaluate the xanthine oxidase inhibitory activity of the methanol leaf extracts of following Cassia javanica, Cynometra ramiflora, Cassia fistula, Senna siamea, Tamarindus indicus, Intsia bijuga, Cassia spectabilis, Saraca thaipingensis (S. thaipingensis), Caesalpinia pulcherrima (C. pulcherrima) and Bauhinia purpurea. Method: The xanthine oxidase inhibitory activity was tested spectrophotometically under aerobic conditions. Absorption increments was monitored eve...

  5. Purification and characterization of amine oxidase from Vigna ...

    African Journals Online (AJOL)

    Amine oxidases (AO) are a group of enzymes that catalyze oxidative deamination of various amines and thus are of potential use in analytical applications. Amine oxidase from five-day-old Vigna mungo L. seedlings (VAO) was purified using ammonium sulfate fractionation and Q-Sepharose chromatography to 544 ...

  6. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase...

  7. Cytochemical Localization of Glucose Oxidase in Peroxisomes of Aspergillus niger

    NARCIS (Netherlands)

    Veenhuis, Marten; Dijken, Johannes Pieter van

    1980-01-01

    The subcellular localization of glucose oxidase (E.C. 1.1.3.4) in mycelia of Aspergillus niger has been investigated using cytochemical staining techniques. Mycelia from fermenter cultures, which produced gluconic acid from glucose, contained elevated levels of glucose oxidase and catalase. Both

  8. Oxidation of polysaccharides by galactose oxidase.

    Science.gov (United States)

    Parikka, Kirsti; Leppänen, Ann-Sofie; Pitkänen, Leena; Reunanen, Markku; Willför, Stefan; Tenkanen, Maija

    2010-01-13

    Galactose oxidase was used as a catalyst to oxidize selectively the C-6 hydroxyls of terminal galactose to carbonyl groups. The polysaccharides studied included spruce galactoglucomannan, guar galactomannan, larch arabinogalactan, corn fiber arabinoxylan, and tamarind seed xyloglucan, with terminal galactose contents varying from 6% to 40%. A multienzyme system was used, with catalase and horseradish peroxidase to enhance the action of galactose oxidase. An analysis technique was developed for the quantification of the reactive aldehydes with GC-MS, utilizing NaBD4 reduction and acidic methanolysis. The best oxidation degrees of terminal galactosyls were obtained with xyloglucan (85% of galactose) and spruce galactoglucomannan (65% of galactose). The highest oxidation degree based on total carbohydrates was achieved with guar gum (28%), which had the highest galactose content. The oxidation resulted in changes in the physicochemical properties of the polysaccharide solutions, and the changes observed varied between the polysaccharides. The clearest change was in tamarind xyloglucan, which formed a gel after the oxidation. After the oxidation, larger particles were present in the solution of spruce galactoglucomannan, but changes in its rheological properties were not observed.

  9. Xanthine oxidase inhibitors from Garcinia esculenta twigs.

    Science.gov (United States)

    Zhu, Lun-Lun; Fu, Wen-Wei; Watanabe, Shimpei; Shao, Yi-Nuo; Tan, Hong-Sheng; Zhang, Hong; Tan, Chang-Heng; Xiu, Yan-Feng; Norimoto, Hisayoshi; Xu, Hong-Xi

    2014-12-01

    The EtOAc-soluble portion of the 80 % (v/v) EtOH extract from the twigs of Garcinia esculenta exhibited strong xanthine oxidase inhibition in vitro. Bioassay-guided purification led to the isolation of 1,3,6,7-tetrahydroxyxanthone (3) and griffipavixanthone (8) as the main xanthine oxidase inhibitors, along with six additional compounds (1, 2, 4-7), including two new compounds (1 and 2). This enzyme inhibition was dose dependent with an IC50 value of approximately 1.2 µM for 3 and 6.3 µM for 8. The inhibitory activity of 3 was stronger than the control allopurinol (IC50 value: 5.3 µM). To our knowledge, compound 8 is the first bixanthone that demonstrated potent XO inhibitory activity in vitro. The structures of the new compounds were established by spectroscopic analysis, and the optical properties and absolute stereochemistry of racemic (±) esculentin A (2) were further determined by the calculation of the DP4 probability and analysis of its MTPA ester derivatives. Georg Thieme Verlag KG Stuttgart · New York.

  10. Effects of Greek legume plant extracts on xanthine oxidase, catalase and superoxide dismutase activities.

    Science.gov (United States)

    Spanou, Chrysoula I; Veskoukis, Aristidis S; Stagos, Dimitrios; Liadaki, Kalliopi; Aligiannis, Nectarios; Angelis, Apostolos; Skaltsounis, Alexios-Leandros; Anastasiadi, Maria; Haroutounian, Serkos A; Kouretas, Dimitrios

    2012-03-01

    Legumes are considered to have beneficial health implications, which have been attributed to their phytochemical content. Polyphenols are considered the most important phytochemical compounds extensively studied for their antioxidant properties. The aim of the present study was to examine the effects of potent antioxidant legume plant extracts on xanthine oxidase (XO), catalase (CAT) and superoxide dismutase (SOD) activities. XO exerts a dual role, as it is the major contributor of free radicals during exercise while it generates uric acid, the most potent antioxidant molecule in plasma. CAT and SOD are two of the main enzymes of the antioxidant defence of tissues. We demonstrate that the majority of the extracts inhibited XO activity, but they had no effect on CAT inhibition and SOD induction when used at low concentrations. These results imply that the tested extracts may be considered as possible source of novel XO inhibitors. However, we have shown that allopurinol administration, a known XO inhibitor, before exercise reduces performance and induces oxidative stress in rats. Considering the fact that the extracts examined had an inhibitory effect on XO activity, possibly posing a restriction in their characterization as antioxidants, phytochemical antioxidant administration before exercise should probably be reconsidered.

  11. Polyphenol content of plasma and litter after the oral administration of green tea and tea polyphenols in chickens.

    Science.gov (United States)

    Zhou, Yi-Bin; Wan, Xiao-Chun; Shang, Yan-Yan; Hu, Jing-Wei; Shao, Lei; Chen, Wei; Li, Da-Xiang

    2012-02-22

    Metabolic profiles of broiler chickens were examined after the ingestion of green tea, tea polyphenols, and (-)-epigallocatechin-3-gallate (EGCG). Solid-phase extraction of serum and litters yielded free catechins and their metabolites, which were then identified and quantified by liquid chromatography-tandem mass spectrometry. In plasma samples, (-)-gallocatechin, (+)-catechin, and EGCG were detected in the green tea group; pyrogallol acid, (epi)catechin-O-sulfate, 4'-O-methyl-(epi)gallocatechin-O-glucuronide, and (epi)catechin-3'-O-glucuronide were detected in the tea polyphenols group; and EGCG, (-)-gallocatechin gallate (GCG), and 4'-O-methyl-(epi)gallocatechin-O-glucuronides were detected in the EGCG group. In litters, gallic acid, EGCG, GCG, and ECG were detected in the green tea and tea polyphenols groups; EGCG and ECG were detected in the EGCG group. The conjugated metabolites, 4'-O-methyl-(epi)gallocatechin-O-glucuronide, (epi)catechin-3'-glucuronide, and 4'-O-methyl-(epi)catechin-O-sulfate, were identified in the green tea group; 4'-O-methyl-(epi)catechin-O-sulfate and 4'-O-methyl-(epi)gallocatechin-O-sulfate were identified in the tea polyphenols group; only 4'-O-methyl-(epi)gallocatechin-O-sulfate was detected in the EGCG group. The excretion of tea catechins was 95.8, 87.7, and 97.7% for the green tea, tea polyphenols, and EGCG groups, respectively.

  12. Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols

    OpenAIRE

    Flamini, Riccardo

    2013-01-01

    Polyphenols are the principal compounds associated with health benefic effects of wine consumption and in general are characterized by antioxidant activities. Mass spectrometry is shown to play a very important role in the research of polyphenols in grape and wine and for the quality control of products. The soft ionization of LC/MS makes these techniques suitable to study the structures of polyphenols and anthocyanins in grape extracts and to characterize polyphenolic derivatives formed in w...

  13. Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese

    OpenAIRE

    Taguchi, Chie; Fukushima, Yoichi; Kishimoto, Yoshimi; Suzuki-Sugihara, Norie; Saita, Emi; Takahashi, Yoshinari; Kondo, Kazuo

    2015-01-01

    Estimating polyphenol intake contributes to the understanding of polyphenols’ health benefits. However, information about human polyphenol intake is scarce, especially in the elderly. This study aimed to estimate the dietary intake and major sources of polyphenols and to determine whether there is any relationship between polyphenol intake and micronutrient intake in healthy elderly Japanese. First, 610 subjects (569 men, 41 women; aged 67.3 ± 6.1 years) completed food frequency questionnaire...

  14. The scavenging effects of tea polyphenol and quercetin on active oxygen species

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiechen; Dong Jirong; Wang Wenfeng; Lin Nianyun

    1993-01-01

    The abilities of scavenging active oxygen species, O 2 free radical and OH., by tea polyphenols and quercetin have been studied by chemiluminescence, ESR and pulse radiolysis. Tea polyphenols and quercetin are all phenolic antioxidants. The synergetic studies show that both tea polyphenols and quercetin are strong free radical scavengers. Tea polyphenols are better than quercetin. the results from CL studies are in good accord with those from ESR and PR studies

  15. Green Tea and Other Tea Polyphenols: Effects on Sebum Production and Acne Vulgaris

    OpenAIRE

    Saric, Suzana; Notay, Manisha; Sivamani, Raja K.

    2016-01-01

    Polyphenols are antioxidant molecules found in many foods including nuts, fruits, vegetables, chocolate, wine, and tea. Polyphenols have antimicrobial, anti-inflammatory, and antineoplastic properties. Recent studies suggest that tea polyphenols may be used for reducing sebum production in the skin and for treatment of acne vulgaris. This review examines the evidence for use of topically and orally ingested tea polyphenols against sebum production and for acne treatment and prevention. The Pu...

  16. Consumer Labels can Convey Polyphenolic Content: Implications for Public Health

    Directory of Open Access Journals (Sweden)

    Andrew L. Waterhouse

    2005-01-01

    Full Text Available Polyphenolics are a large group of related substances. Many of these, in fact much of that found in food, is composed of processing-derived substances too complex for complete identification. Recent studies have suggested likely benefits for diets high in polyphenols, particular in reducing heart disease mortality, but other benefits have also been suggested. A consumer label based on the major polyphenolic classes is both manageable and fairly informative as most foods do not contain all possible classes. Differences between class member can be significant, but data on individual substances is impractical and no data is certainly less informative. Equivalency scales may be useful but may skew content of many foods towards the high-equivalency substances, even while the full beneficial effects of each individual substance is poorly described.

  17. Grape Polyphenols' Effects in Human Cardiovascular Diseases and Diabetes.

    Science.gov (United States)

    Rasines-Perea, Zuriñe; Teissedre, Pierre-Louis

    2017-01-01

    The consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals, has increased due to consumers' interest in the relevance of food composition for human health. Considerable recent interest has focused on bioactive phenolic compounds in grape, as they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, anti-ageing and antimicrobial properties. Observational studies indicate that the intake of polyphenol-rich foods improves vascular health, thereby significantly reducing the risk of hypertension, and cardiovascular disease (CVD). Other researchers have described the benefits of a grape polyphenol-rich diet for other types of maladies such as diabetes mellitus. This is a comprehensive review on the consumption of polyphenolic grape compounds, concerning their potential benefits for human health in the treatment of cardiovascular diseases and diabetes.

  18. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach.

    Science.gov (United States)

    Fernando, I P Shanura; Kim, Misook; Son, Kwang-Tae; Jeong, Yoonhwa; Jeon, You-Jin

    2016-07-01

    Polyphenolic compounds isolated from marine algae exhibit a broad spectrum of beneficial biological properties, including antioxidant, anticancer, antimicrobial, anti-inflammatory, and antidiabetic activities, along with several other bioactivities centered on their antioxidant properties. Consequently, polyphenolic compounds are increasingly being investigated for their potential use in food, cosmetic, and pharmaceutical applications. The antioxidant activities of these compounds have been explored widely through experimental studies. Nonetheless, a theoretical understanding of the structural and electronic properties could broaden research perspectives, leading to the identification and synthesis of efficient structural analogs with prophylactic uses. This review briefly summarizes the current state of knowledge regarding antioxidant polyphenolic compounds in marine algae with an attempt to describe the structure-activity relationship.

  19. Sensorial properties of red wine polyphenols: Astringency and bitterness.

    Science.gov (United States)

    Soares, Susana; Brandão, Elsa; Mateus, Nuno; de Freitas, Victor

    2017-03-24

    Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.

  20. SEARCH PRODUCERS OF POLYPHENOLS AND SOME PIGMENTS AMONG BASIDIOMYCETES

    Directory of Open Access Journals (Sweden)

    Fedotov О. V.

    2014-02-01

    Full Text Available General content of polyphenols, carotenoids and melanin in basidiomycetes carpophorus was determined. 50 species were studied, 27 of which belong to the Polyporales form and 23 are to the Agaricales form. In order to determine the total content of phenolic substances spectrophotometric methods were used. Polyphenols were studied in alcoholic extracts through the modified Folin-Chokalteu procedure; melanin — by alkaline hydrolysis and calculated using a calibration curve (by pyrocatechol, carotenoids were studied in acetone extracts and calculated by the Vetshteyn formula. Statistical and cluster analysis of the data enabled to identify species of basidiomycetes that are perspective for biotechnology. The most promising in terms of total polyphenols, carotenoids and melanins of poliporal basidiomycetes are species Fomes fomentarius, Ganoderma applanatum, Ganoderma lucidum and Laetiporus sulphureus, and among agarikal fungi — Fistulina hepatica, Flammulina velutipes, Pleurotus ostreatus, Stropharia rugosoannulata, Agrocybe cylindracea and Tricholoma flavovirens. These species of Basidiomycetes were isolated in pure mycelia culture to find out their biosynthetic activity.

  1. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    1. The present study tested the hypothesis that the level of xanthine oxidase is elevated in injured human skeletal muscle in association with inflammatory events. Seven male subjects performed five bouts of strenuous one-legged eccentric exercise. Muscle biopsies from both the exercised...... and the control leg, together with venous blood samples, were obtained prior to exercise and at 45 min, 24, 48 and 96 h after exercise. The time courses of xanthine oxidase immunoreactivity and indicators of muscle damage and inflammation were examined. 2. The number of xanthine oxidase structures observed...... by immunohistological methods in the exercised muscle was up to eightfold higher than control from day 1 to day 4 after exercise (P xanthine oxidase in microvascular endothelial cells and an invasion of leucocytes containing xanthine oxidase. 3...

  2. SNARE zippering is hindered by polyphenols in the neuron

    International Nuclear Information System (INIS)

    Yang, Yoosoo; Kim, Se-Hyun; Heo, Paul; Kong, Byoungjae; Shin, Jonghyeok; Jung, Young-Hun; Yoon, Keejung; Chung, Woo-Jae; Shin, Yeon-Kyun; Kweon, Dae-Hyuk

    2014-01-01

    Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca 2+ -independent manner. • Myricetin inhibits Ca 2+ -dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca 2+ -independent manner, while myricetin inhibits Ca 2+ -dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo

  3. Mass spectrometry in grape and wine chemistry. Part I: polyphenols.

    Science.gov (United States)

    Flamini, Riccardo

    2003-01-01

    Mass spectrometry, had and still has, a very important role for research and quality control in the viticulture and enology field, and its analytical power is relevant for structural studies on aroma and polyphenolic compounds. Polyphenols are responsible for the taste and color of wine, and confer astringency and structure to the beverage. The knowledge of the anthocyanic structure is very important to predict the aging attitude of wine, and to attempt to resolve problems about color stability. Moreover, polyphenols are the main compounds related to the benefits of wine consumption in the diet, because of their properties in the treatment of circulatory disorders such as capillary fragility, peripheral chronic venous insufficiency, and microangiopathy of the retina. Liquid Chromatography-Mass Spectrometry (LC-MS) techniques are nowadays the best analytical approach to study polyphenols in grape extracts and wine, and are the most effective tool in the study of the structure of anthocyanins. The MS/MS approach is a very powerful tool that permits anthocyanin aglycone and sugar moiety characterization. LC-MS allows the characterization of complex structures of grape polyphenols, such as procyanidins, proanthocyanidins, prodelphinidins, and tannins, and provides experimental evidence for structures that were previously only hypothesized. The matrix-assisted-laser-desorption-ionization-time-of-flight (MALDI-TOF) technique is suitable to determine the presence of molecules of higher molecular weight with high accuracy, and it has been applied with success to study procyanidin oligomers up to heptamers in the reflectron mode, and up to nonamers in the linear mode. The levels of resveratrol in wine, an important polyphenol well-known for its beneficial effects, have been determined by SPME and LC-MS, and the former approach led to the best results in terms of sensitivity. Copyright 2003 Wiley Periodicals, Inc.

  4. SNARE zippering is hindered by polyphenols in the neuron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yoosoo [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Se-Hyun; Heo, Paul; Kong, Byoungjae; Shin, Jonghyeok; Jung, Young-Hun; Yoon, Keejung; Chung, Woo-Jae [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Yeon-Kyun [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Kweon, Dae-Hyuk, E-mail: dhkweon@skku.edu [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-18

    Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca{sup 2+}-independent manner. • Myricetin inhibits Ca{sup 2+}-dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca{sup 2+}-independent manner, while myricetin inhibits Ca{sup 2+}-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.

  5. The influence of virus diseases on grape polyphenols of cv. 'Refosk'

    International Nuclear Information System (INIS)

    Tomazic, I.; Vrhovsek, U.; Korosec-Koruza, Z.

    2003-01-01

    External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors can modulate the synthesis of polyphenols in the plants. Cv. 'Refosk' was used to show the influence of the GLRaV-1 and rugose wood (RW) on the polyphenols in grape. The infection shifted polyphenols from seeds to grape skins but had no impact on anthocyanins

  6. Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese

    Directory of Open Access Journals (Sweden)

    Chie Taguchi

    2015-12-01

    Full Text Available Estimating polyphenol intake contributes to the understanding of polyphenols’ health benefits. However, information about human polyphenol intake is scarce, especially in the elderly. This study aimed to estimate the dietary intake and major sources of polyphenols and to determine whether there is any relationship between polyphenol intake and micronutrient intake in healthy elderly Japanese. First, 610 subjects (569 men, 41 women; aged 67.3 ± 6.1 years completed food frequency questionnaires. We then calculated their total polyphenol intake using our polyphenol content database. Their average total polyphenol intake was 1492 ± 665 mg/day, the greatest part of which was provided by beverages (79.1%. The daily polyphenol intake differed largely among individuals (183–4854 mg/day, also attributable mostly to beverage consumption. Coffee (43.2% and green tea (26.6% were the major sources of total polyphenol; the top 20 food items accounted for >90%. The polyphenol intake did not strongly correlate with the intake of any micronutrient, suggesting that polyphenols may exert health benefits independently of nutritional intake. The polyphenol intake in this elderly population was slightly higher than previous data in Japanese adults, and beverages such as coffee and green tea contributed highly to the intake.

  7. Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy

    Directory of Open Access Journals (Sweden)

    Justyna Godos

    2017-08-01

    Conclusions: Mean polyphenol intake was higher in individuals more adherent to the Mediterranean diet compared to less adherent. However, dietary sources of polyphenols not included in the traditional foods comprised in the Mediterranean diet may contribute to total and specific classes of polyphenols irrespectively of their inclusion within the context of the Mediterranean diet.

  8. Comparison in antioxidant and antitumor activities of pine polyphenols and its seven biotransformation extracts by fungi

    OpenAIRE

    Hui Li; Zhenyu Wang

    2017-01-01

    Microbial transformation can strengthen the antioxidant and antitumor activities of polyphenols. Polyphenols contents, antioxidant and antitumor activities of pine polyphenols and its biotransformation extracts by Aspergillus niger, Aspergillus oryzae, Aspergillus carbonarius, Aspergillus candidus, Trichodermas viride, Mucor wutungkiao and Rhizopus sp were studied. Significant differences were noted in antioxidant and antitumor activities. The highest antioxidant activities in Trolox equivale...

  9. Modulation of NADPH oxidase activity by known uraemic retention solutes.

    Science.gov (United States)

    Schulz, Anna Marta; Terne, Cindy; Jankowski, Vera; Cohen, Gerald; Schaefer, Mandy; Boehringer, Falko; Tepel, Martin; Kunkel, Desiree; Zidek, Walter; Jankowski, Joachim

    2014-08-01

    Uraemia and cardiovascular disease appear to be associated with an increased oxidative burden. One of the key players in the genesis of reactive oxygen species (ROS) is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Based on initial experiments demonstrating a decreased inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. Mononuclear leucocytes isolated from buffy coats of healthy volunteers were isolated, lysed and incubated with NADH in the presence of plasma from healthy controls and patients with CKD-5D. Furthermore, the leucocytes were lysed and incubated in the presence of uraemic retention solute of interest and diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase. The effect on enzymatic activity of NADPH oxidase was quantified within an incubation time of 120 min. Thirty-nine of the 48 uraemic retention solutes tested had a significant decreasing effect on NADPH oxidase activity. Oxalate has been characterized as the strongest inhibitor of NADPH oxidase (90% of DPI inhibition). Surprisingly, none of the uraemic retention solutes we investigated was found to increase NADPH oxidase activity. Furthermore, plasma from patients with CKD-5D before dialysis caused significantly higher inhibitory effect on NADPH oxidase activity compared with plasma from healthy subjects. However, this effect was significantly decreased in plasma from patients with CKD-5D after dialysis. The results of this study show that uraemic retention solutes modulated the activity of the NADPH oxidase. The results of this study might be the basis for the development of inhibitors applicable as drug in the situation of increased oxidative stress. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  10. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  11. Modulation of neurotrophic signaling pathways by polyphenols

    Directory of Open Access Journals (Sweden)

    Moosavi F

    2015-12-01

    Full Text Available Fatemeh Moosavi,1,2 Razieh Hosseini,1,2 Luciano Saso,3 Omidreza Firuzi1 1Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 2Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; 3Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy Abstract: Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK and phosphoinositide 3-kinase (PI3K/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate

  12. Intracellular transport of cholesterol in mammalian cells

    International Nuclear Information System (INIS)

    Brasaemle, D.L.

    1989-01-01

    The erythrocyte was selected as a simple cell for the study of transbilayer movement of cholesterol. Cholesterol oxidase was used to measure the distribution of [ 3 H]cholesterol across the erythrocyte membrane. Cholesterol oxidase was also used to estimate the rate of transport of low density lipoprotein (LDL) cholesterol to the plasma membrane of cultured Chinese hamster ovary (CHO) fibroblasts; the half-time of this process was 42 minutes. The rate of transport of LDL cholesterol to the plasma membrane was confirmed by a second procedure using amphotericin B. Amphotericin B was also used to estimate the rate of transport of endogenously synthesized cholesterol to the plasma membrane of CHO cells. New methodology was developed including improvements of the previously published cholesterol oxidase assay for plasma membrane cholesterol. A new method for detecting transport of cholesterol to the plasma membrane in cultured cells was developed using amphotericin B. Preliminary studies investigated the use of fluorescent polyenes, pimaricin and etruscomycin, as probes for plasma membrane cholesterol in transport studies. Finally, a modification of a previously published cell staining protocol yielded a simple, quantitative assay for cell growth

  13. Simultaneous ultrasound-assisted water extraction and β-cyclodextrin encapsulation of polyphenols from Mangifera indica stem bark in counteracting TNFα-induced endothelial dysfunction.

    Science.gov (United States)

    Mura, Marzia; Palmieri, Daniela; Garella, Davide; Di Stilo, Antonella; Perego, Patrizia; Cravotto, Giancarlo; Palombo, Domenico

    2015-01-01

    This study proposes an alternative technique to prevent heat degradation induced by classic procedures of bioactive compound extraction, comparing classical maceration/decoction in hot water of polyphenols from Mango (Mangifera indica L.) (MI) with ultrasound-assisted extraction (UAE) in a water solution of β-cyclodextrin (β-CD) at room temperature and testing their biological activity on TNFα-induced endothelial dysfunction. Both extracts counteracted TNFα effects on EAhy926 cells, down-modulating interleukin-6, interleukin-8, cyclooxygenase-2 and intracellular adhesion molecule-1, while increasing endothelial nitric oxide synthase levels. β-CD extract showed higher efficacy in improving endothelial function. These effects were abolished after pre-treatment with the oestrogen receptor inhibitor ICI1182,780. Moreover, the β-CD extract induced Akt activation and completely abolished the TNFα-induced p38MAPK phosphorylation. UAE and β-CD encapsulation provide an efficient extraction protocol that increases polyphenol bioavailability. Polyphenols from MI play a protective role on endothelial cells and may be further considered as oestrogen-like molecules with vascular protective properties.

  14. The proton spin-flip lines of Mo(V) EPR signals from sulfite oxidase and xanthine oxidase

    Science.gov (United States)

    George, Graham Neil

    The proton spin-flip transitions in Mo(V) EPR spectra of the different reduced forms of the enzymes xanthine oxidase and sulfite oxidase have been examined. The proton spin-flip transitions of xanthine oxidase originate from weakly coupled nonexchangeable nuclei, probably carbon-bound protons of amino acid ligands or of the molybdenum cofactor. The sulfite oxidase high-pH signal, on the other hand, in addition to proton spin-flip transitions similar to those of xanthine oxidase, shows transitions from an exchangeable, relatively strongly coupled proton. The hyperfine coupling of this proton is not resolved in the powder lineshape because of noncolinearity of A( 1H) and g, and because of the largely anisotropic nature of its coupling. The possible significance in relation to the catalytic mechanism of this latter finding is discussed.

  15. Development of polyphenolic nanoparticles for biomedical applications

    Science.gov (United States)

    Cheng, Huaitzung Andrew

    Polymeric nanoparticles have a wide range of applications, particularly as drug delivery and diagnostic agents, and tannins have been regarded as a promising building block for redox and pH responsive systems. Tannins are a class of naturally occurring polyphenols commonly produced by plants and are found in many of our consumables like teas, spices, fresh fruits, and vegetables. Many of the health benefits associated with these foods are a result of their high tannin contents and the many different types of tannins found in various plants have demonstrated therapeutic potentials for conditions ranging from cardiovascular disease and diabetes to ulcers and cancer. Diets rich in tannins have been associated with lower blood pressure in patients with hypertension. The plurality of phenols in tannins also makes them powerful antioxidants and as a result, there is a lot of interest in taking advantage of their self-assembling abilities to make redox and pH responsive drug delivery systems. However, the benefit of natural tannins is limited by their instability in physiological conditions. Furthermore, there is limited control over molecular weight and reactivity of the phenolic content of plant extracts. Herein we report the novel synthesis of pseudotannins with control over molecular weight and reactivity of phenolic moieties. These pseudotannins have can form nanoscale interpolymer complexes under physiological conditions and have demonstrated antioxidative potential. Furthermore, pseudotannin IPCs have been shown to be responsive to physiologically relevant oxidation as well as the ability to easily incorporate cell targeting peptides, fluorescent tags, and MRI contrast agents. The work presented here describes how pseudotannins would be ideally suited to minimally invasive techniques for diagnosing atherosclerotic plaques and targeting triple negative breast cancer. We demonstrate that pseudotannin can very easily and quickly form nanoscale particles that are small

  16. Chromatographic Methods for the Analysis of Polyphenols in Wines

    Directory of Open Access Journals (Sweden)

    Medić-Šarić, M.

    2009-03-01

    Full Text Available Wine is an excellent source of various classes of polyphenols, including phenolic acids, flavonoids, and trihydroxystilbene resveratrol (Fig.1. Polyphenols play a major role in wine quality since they contribute to the sensory characteristics of wine, particularly color and astringency. A recent interest in these substances has been stimulated by abundant evidence of their beneficial effects on human health, such as anticarcinogenic, antiinflamatory and antimicrobial activities. Therefore, numerous studies have been performed in the attempt to analyze polyphenols in wine. This paper reviews the current advances in the determination of polyphenols in wine by the major chromatographic techniques such as thin-layer chromatography (TLC and high-performance liquid chromatography (HPLC.The great complexity of the polyphenolic content of wine and the difficulty in obtaining some of the standards usually require sample preparation before analysis. Two methods for sample preparation, liquid-liquid extraction and solid-phase extraction, are most commonly applied. Hydrolysis is applied frequently, but not exclusively, to remove the sugar moieties from glycosides.TLC on silica gel plates is useful for the rapid and low-cost separation and identification of the polyphenols present in wine (Fig. 2. Densitometric quantitative analysis of polyphenols in wine extracts is usually performed by scanning the TLC plates with UV light at wavelengths of 350–365 nm or 250–260 nm (Fig. 3. For the evaluation of the most efficient mobile phase and an optimal choice of the combination of two or more mobile phases, two methods may be applied: information theory and numerical taxonomy. HPLC currently represents the most popular technique for the analysis of polyphenols in wine. For this purpose, a reversed-phase HPLC method that uses gradient elution with binary elution system is usually employed. Routine detection is based on measurement of UV-Vis absorption with a diode

  17. Kinetics and specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase towards substituted benzaldehydes.

    Science.gov (United States)

    Panoutsopoulos, Georgios I; Beedham, Christine

    2004-01-01

    Molybdenum-containing enzymes, aldehyde oxidase and xanthine oxidase, are important in the oxidation of N-heterocyclic xenobiotics. However, the role of these enzymes in the oxidation of drug-derived aldehydes has not been established. The present investigation describes the interaction of eleven structurally related benzaldehydes with guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase, since they have similar substrate specificity to human molybdenum hydroxylases. The compounds under test included mono-hydroxy and mono-methoxy benzaldehydes as well as 3,4-dihydroxy-, 3-hydroxy-4-methoxy-, 4-hydroxy-3-methoxy-, and 3,4-dimethoxy-benzaldehydes. In addition, various amines and catechols were tested with the molybdenum hydroxylases as inhibitors of benzaldehyde oxidation. The kinetic constants have shown that hydroxy-, and methoxy-benzaldehydes are excellent substrates for aldehyde oxidase (Km values 5x10(-6) M to 1x10(-5) M) with lower affinities for xanthine oxidase (Km values around 10(-4) M). Therefore, aldehyde oxidase activity may be a significant factor in the oxidation of the aromatic aldehydes generated from amines and alkyl benzenes during drug metabolism. Compounds with a 3-methoxy group showed relatively high Vmax values with aldehyde oxidase, whereas the presence of a 3-hydroxy group resulted in minimal Vmax values or no reaction. In addition, amines acted as weak inhibitors, whereas catechols had a more pronounced inhibitory effect on the aldehyde oxidase activity. It is therefore possible that aldehyde oxidase may be critical in the oxidation of the analogous phenylacetaldehydes derived from dopamine and noradrenaline.

  18. Estimation of dietary intake and patterns of polyphenol consumption in Polish adult population.

    Science.gov (United States)

    Zujko, M E; Witkowska, A M; Waśkiewicz, A; Sygnowska, E

    2012-01-01

    Polyphenols play an important role in the prevention of degenerative diseases, particularly cardiovascular diseases and cancers. The purpose was to estimate dietary polyphenol intake in Polish adults, using own database of food polyphenols, and to establish main dietary sources of polyphenols. Polish men and women (6661) aged 20-74 years were randomly selected from the Polish National Multicenter Health Survey (WOBASZ). Subjects` daily food consumption was estimated by the 24-hour recall method and was continued for 3 years. It was determined on this basis, that 96 plant foods and plant food products were consumed. The own dietary database of polyphenol contents in food was used to calculate polyphenol intakes in the subjects. The daily total polyphenol intakes were calculated for both genders in individual age categories: 20-40 years, 41-60 years and 61-74 years. The average polyphenol consumption for the men was 1172 mg/day, and for the women it made 1031 mg/day. Plant food categories such as beverages, vegetables, fruits and cereals were found to be significant sources of polyphenols, of which tea, coffee, potatoes, apples and white bread were the main contributors. The amount of polyphenol consumption in Polish adult population is similar to the polyphenol intake in other countries populations, accounting roughly for 1g of polyphenols for both genders and different age groups. Patterns of polyphenol consumption, however, vary for genders and age groups. Polyphenols are characterized by a spectrum of antioxidant capabilities, therefore future studies should focus on dietary intakes of individual polyphenols.

  19. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance

    Directory of Open Access Journals (Sweden)

    Giang T. Nguyen

    2017-08-01

    Full Text Available Reactive oxygen species (ROS generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs, toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs. Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation

  20. NADPH Oxidases, Angiogenesis, and Peripheral Artery Disease

    Directory of Open Access Journals (Sweden)

    Pradeep Manuneedhi Cholan

    2017-07-01

    Full Text Available Peripheral artery disease (PAD is caused by narrowing of arteries in the limbs, normally occurring in the lower extremities, with severe cases resulting in amputation of the foot or leg. A potential approach for treatment is to stimulate the formation of new blood vessels to restore blood flow to limb tissues. This is a process called angiogenesis and involves the proliferation, migration, and differentiation of endothelial cells. Angiogenesis can be stimulated by reactive oxygen species (ROS, with NADPH oxidases (NOX being a major source of ROS in endothelial cells. This review summarizes the recent evidence implicating NOX isoforms in their ability to regulate angiogenesis in vascular endothelial cells in vitro, and in PAD in vivo. Increasing our understanding of the involvement of the NOX isoforms in promoting therapeutic angiogenesis may lead to new treatment options to slow or reverse PAD.

  1. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia.

    Science.gov (United States)

    Taylor, Cormac T; Moncada, Salvador

    2010-04-01

    Cytochrome c oxidase (CcO; complex IV of the mitochondrial electron transport chain) is the primary site of cellular oxygen consumption and, as such, is central to oxidative phosphorylation and the generation of adenosine-triphosphate. Nitric oxide (NO), an endogenously-generated gas, modulates the activity of CcO. Depending on the intracellular oxygen concentration and the resultant dominant redox state of CcO, the interaction between CcO and NO can have a range of signaling consequences for cells in the perception of changes in oxygen concentration and the initiation of adaptive responses. At higher oxygen concentrations, when CcO is predominantly in an oxidized state, it consumes NO. At lower oxygen concentrations, when CcO is predominantly reduced, NO is not consumed and accumulates in the microenvironment, with implications for both the respiratory rate of cells and the local vascular tone. Changes in the availability of intracellular oxygen and in the generation of reactive oxygen species that accompany these interactions result in cell signaling and in regulation of oxygen-sensitive pathways that ultimately determine the nature of the cellular response to hypoxia.

  2. [Isolation and identification of bacteria with ferro-oxidase activity].

    Science.gov (United States)

    Zheng, Hong; Zhang, Wensen; Zhang, Xiaorong; Wu, Xiaomei; Zhan, Xingdai; Deng, Jiacong

    2014-12-04

    We screened and isolated Ferro-oxidase producing bacteria, for adsorbing iron and manganese. The strains producing Ferro-oxidase were isolated from three samples of water. Ferro-oxidase producing strains were screened in shake flask culture, and identified according to morphological features, physiological and biochemical analysis as well as 16S rRNA gene sequence analysis. We isolated a bacterium S9. The strain was identified as Sphaerotilus natans. This strain had strongest adsorption on iron and manganese among the strains we identified, with 29.02 mg/g iron adsorption amount in water, and 66.77% adsorption rate for 4 hours' adsorption. When the adsorption time is 6 h, the adsorption amount of manganese was 34.49 mg/g, and the adsorption rate was 70.68%. The optimum temperature and pH value of Ferro-oxidase were 30 degrees C and 7.5, respectively. Mg2+, Na+, K+ could activate Ferro-oxidase, whereas Cu2+ had little impact. While Mn2+, Zn2+ could strongly inhibit Ferro-Oxidase, Pb2+, Ag+ had only modest inhibitory effect. Strain S9 had a high Ferro-oxidase activity, and has application potential in sewage treatment.

  3. Loss of Cytochrome c Oxidase Activity and Acquisition of Resistance to Quinone Analogs in a Laccase-Positive Variant of Azospirillum lipoferum

    Science.gov (United States)

    Alexandre, Gladys; Bally, René; Taylor, Barry L.; Zhulin, Igor B.

    1999-01-01

    Laccase, a p-diphenol oxidase typical of plants and fungi, has been found recently in a proteobacterium, Azospirillum lipoferum. Laccase activity was detected in both a natural isolate and an in vitro-obtained phase variant that originated from the laccase-negative wild type. In this study, the electron transport systems of the laccase-positive variant and its parental laccase-negative forms were compared. During exponential (but not stationary) growth under fully aerobic (but not under microaerobic) conditions, the laccase-positive variant lost a respiratory branch that is terminated in a cytochrome c oxidase of the aa3 type; this was most likely due to a defect in the biosynthesis of a heme component essential for the oxidase. The laccase-positive variant was significantly less sensitive to the inhibitory action of quinone analogs and fully resistant to inhibitors of the bc1 complex, apparently due to the rearrangements of its respiratory system. We propose that the loss of the cytochrome c oxidase-containing branch in the variant is an adaptive strategy to the presence of intracellular oxidized quinones, the products of laccase activity. PMID:10542175

  4. evaluation of antioxidant activity and polyphenolic contents of two

    African Journals Online (AJOL)

    A. Djouadi*, T. Lanez and C. Boubekri

    2016-05-01

    May 1, 2016 ... 2.1. Total phenolic content. Polyphenols, the large group of phytochemicals, are known to act as antioxidants [11,12]. Table 1 shows the total phenolic content of different parts of two eggplant varieties (FDPE and FWE) from Algeria. The Total amounts of phenolics values of different parts extract ranged from ...

  5. rich extract on total polyphenols and antioxidant activity obtained by ...

    African Journals Online (AJOL)

    Z. Ghouila

    USTHB, Organic Functional Analysis Laboratory, 16111 Bab Ezzouar, Algiers, Algeria. 3. Department of General ... Keywords: Ahmeur Bouamer, extraction, grape seeds, total polyphenols, antioxidant activity. ... in food and pharmaceutical industry like BHA and BHT, which their undesirable effect on health was often ...

  6. Antioxidant, antibacterial and cell toxicity effects of polyphenols ...

    African Journals Online (AJOL)

    In this work and for the first time, significant concentrations of total polyphenols and flavonoids from Vitis vinifera L. grape seed extracts were obtained (256.15 ± 17.40 mg GAE/gdm and 14.08 ± 0.64 mg CE/gdm, respectively).The LC/MS analysis revealed richness in procyanidins. For antioxidant, antimicrobial and ...

  7. Psychiatric Disorders and Polyphenols: Can They Be Helpful in Therapy?

    Directory of Open Access Journals (Sweden)

    Jana Trebatická

    2015-01-01

    Full Text Available The prevalence of psychiatric disorders permanently increases. Polyphenolic compounds can be involved in modulation of mental health including brain plasticity, behaviour, mood, depression, and cognition. In addition to their antioxidant ability other biomodulating properties have been observed. In the pathogenesis of depression disturbance in neurotransmitters, increased inflammatory processes, defects in neurogenesis and synaptic plasticity, mitochondrial dysfunction, and redox imbalance are observed. Ginkgo biloba, green tea, and Quercus robur extracts and curcumin can affect neuronal system in depressive patients. ADHD patients treated with antipsychotic drugs, especially stimulants, report significant adverse effects; therefore, an alternative treatment is searched for. An extract from Ginkgo biloba and from Pinus pinaster bark, Pycnogenol, could become promising complementary supplements in ADHD treatment. Schizophrenia is a devastating mental disorder, with oxidative stress involved in its pathophysiology. The direct interference of polyphenols with schizophrenia pathophysiology has not been reported yet. However, increased oxidative stress caused by haloperidol was inhibited ex vivo by different polyphenols. Curcumin, extract from green tea and from Ginkgo biloba, may have benefits on serious side effects associated with administration of neuroleptics to patients suffering from schizophrenia. Polyphenols in the diet have the potential to become medicaments in the field of mental health after a thorough study of their mechanism of action.

  8. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy

    Directory of Open Access Journals (Sweden)

    Eleonora Turrini

    2015-01-01

    Full Text Available Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes.

  9. Antibacterial action of an aqueous grape seed polyphenolic extract ...

    African Journals Online (AJOL)

    The potential of a polyphenolic grape seed extract for use as a natural antibacterial agent was evaluated. Pure catechin (CS) and a previously LC-MS characterized grape seed phenolic extract (PE) were evaluated as antibacterial agents against Escherichia coli and Brevibacterium linens on solid and in liquid culture media ...

  10. Rich extract on total polyphenols and antioxidant activity obtained by ...

    African Journals Online (AJOL)

    Conventional and non-conventional extraction methods were applied in the first time for the determination of total polyphenols from Ahmeur Bouamer, an anthoctonous variety grape seeds. Independently of the time and temperature, a positive effect of particle size parameter on maceration has been noted and relativly high ...

  11. rich extract on total polyphenols and antioxidant activity obtained by ...

    African Journals Online (AJOL)

    Z. Ghouila

    Received: 04 March 2016 / Accepted: 06 August 2016 / Published online: 01 Septembre 2016. ABSTRACT: Conventional and non-conventional extraction methods were applied in the first time for the determination of total polyphenols from Ahmeur Bouamer, an anthoctonous variety grape seeds. Independently of the time ...

  12. Impact of polyphenolic extracts on resistance to fungal ...

    African Journals Online (AJOL)

    SWEET

    2013-05-15

    May 15, 2013 ... Extraction of total polyphenols was carried by a polar solvent and their quantification was based on the reaction of Folin ... with this method, the moulds development is stimulated by incubating eight grains of each batch (HG .... xins is very wide; mutagen, necrosing, neurotoxic, heap- totoxic and hematotoxic ...

  13. Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents

    Directory of Open Access Journals (Sweden)

    Sue-Siang Teh

    2014-02-01

    Full Text Available Defatted hemp, flax and canola seed cakes were extracted with different solvent systems namely methanol, ethanol, acetone, methanol 80%, acetone 80% and mixed solvent of methanol:acetone:water (MAW, 7:7:6, v/v/v. Each extract was analyzed for antioxidant capacity using ferric reducing/antioxidant power (FRAP and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assays. MAW exhibited the highest extraction of phenolic and flavonoid contents in the seed cakes, followed by acetone 80% and methanol 80%. The antioxidant capacity was proportional to the polyphenols recovery in the extracts. Canola seed cakes possessed the highest recovery of polyphenols and antioxidant capacity, followed by hemp and flax seed cakes. MAW extract of canola contained total phenolic content, 2104.67 ± 2.52 mg GAE/100 g fresh weight; total flavonoids, 37.79 ± 0.04 mg LUE/100 g fresh weight; percentage inhibition of DPPH•, 33.03 ± 0.38%; FRAP assay, 8.78 ± 0.07 μmol Fe (II/g fresh weight. Identification of individual polyphenol compounds were performed HPLC. MAW extract of canola had the highest (P < 0.05 concentration of all individual polyphenols except gallic acid and catechin. Highest concentration of quercetin and luteolin in MAW extract of hemp was obtained among all solvent systems.

  14. Total polyphenolic content and antioxidant properties of Moringa ...

    African Journals Online (AJOL)

    The study was carried out to evaluate the relative antioxidant properties and polyphenol contents of partially purified fractions of Moringa oleifera leaves extracts. The total phenolic, total flavonoid, anthocyanin, proanthocyanidine and tannin contents of the crude methanolic extract, aqueous fraction and ethyl acetate fraction ...

  15. Polyphenols as Possible Markers of Botanical Origin of Honey.

    Science.gov (United States)

    Gašić, Uroš M; Milojković-Opsenica, Dušanka M; Tešić, Živoslav Lj

    2017-07-01

    In recent years, the botanical and geographical origin of food has become an important topic in the context of food quality and safety, as well as consumer protection, in accordance with international standards. Finding chemical markers, especially phytochemicals, characteristic for some kind of food is the subject of interest of a significant number of researchers in the world. This paper is focused on the use of polyphenols as potential markers for the determination of botanical origin of honey. It includes a review of the polyphenols present in various honey samples and the methods for their separation and identification. Special emphasis in this paper is placed on the identification of honey polyphenols using advanced LC-MS techniques in order to find specific markers of botanical origin of honey. In this regard, this study gives an overview of the literature that describes the use of LC-MS techniques for the isolation and determination of honey polyphenols. This review focuses on the research performed in the past two decades.

  16. Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark

    Directory of Open Access Journals (Sweden)

    Nellie Francezon

    2017-12-01

    Full Text Available Reported for its antioxidant, anti-inflammatory and non-toxicity properties, the hot water extract of Picea mariana bark was demonstrated to contain highly valuable bioactive polyphenols. In order to improve the recovery of these molecules, an optimization of the extraction was performed using water. Several extraction parameters were tested and extracts obtained analyzed both in terms of relative amounts of different phytochemical families and of individual molecules concentrations. As a result, low temperature (80 °C and low ratio of bark/water (50 mg/mL were determined to be the best parameters for an efficient polyphenol extraction and that especially for low molecular mass polyphenols. These were identified as stilbene monomers and derivatives, mainly stilbene glucoside isorhapontin (up to 12.0% of the dry extract, astringin (up to 4.6%, resveratrol (up to 0.3%, isorhapontigenin (up to 3.7% and resveratrol glucoside piceid (up to 3.1% which is here reported for the first time for Picea mariana. New stilbene derivatives, piceasides O and P were also characterized herein as new isorhapontin dimers. This study provides novel information about the optimal extraction of polyphenols from black spruce bark, especially for highly bioactive stilbenes including the trans-resveratrol.

  17. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy.

    Science.gov (United States)

    Turrini, Eleonora; Ferruzzi, Lorenzo; Fimognari, Carmela

    2015-01-01

    Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes.

  18. Polyphenolic constituents and antioxidant/antiradical activity in ...

    African Journals Online (AJOL)

    Alstonia scholaris (Linn.) leaves extracted in aqueous, dichloromethane (DCM), methanolic and ethanolic solvents were assessed for different polyphenolic constituents endowed with antioxidant/antiradical activity. Total phenolic, flavonoids and tannin contents were significantly (P<0.05) higher in ethanolic extract as ...

  19. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications.

    Science.gov (United States)

    Hu, Qiaobin; Luo, Yangchao

    2016-10-20

    Chitosan, the only positively charged polysaccharide in the world, is very attractive for food, medicinal and pharmaceutical applications because of its promising properties, including non-toxicity, superb biodegradability, high biocompatibility, abundant availability and low cost. In order to overcome the poor water solubility and widen the applications of chitosan, various polyphenol-chitosan conjugates have been synthesized in recent years. The present review focuses on the chitosan-based conjugates formed using different polyphenols, including gallic acid, caffeic acid, ferulic acid, salicylic acid, catechin, and EGGE, etc. Three major synthesis techniques, namely, activated ester-mediated modification, enzyme-mediated strategy, and free radical induced grafting approach are introduced in detail. In addition, the new physicochemical and biological properties of polyphenol-chitosan conjugates are introduced, including water solubility, thermo stability, in vitro and in vivo antioxidant activity, antimicrobial and anticancer activity. Furthermore, the novel applications of each conjugate are discussed in detail. Lastly, the challenges and prospective areas of study related to polyphenol-chitosan are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Polyphenol derivatives inhibit human neutrophil activity by suppressing oxidative burst

    Czech Academy of Sciences Publication Activity Database

    Drábiková, K.; Perečko, T.; Nosáľ, R.; Harmatha, Juraj; Šmidrkal, J.; Jančinová, V.

    2012-01-01

    Roč. 5, Suppl.1 (2012), s. 31-31 ISSN 1337-6853. [Interdisciplinary Toxicological Conference & Advanced Toxicological Course /17./. 27.08.2012-31.08.2012, Stará Lesná] Institutional research plan: CEZ:AV0Z40550506 Keywords : polyphenol derivatives * neutrophil activity * pinosylvin Subject RIV: CC - Organic Chemistry

  1. Polyphenolic constituents and antioxidant/antiradical activity in ...

    African Journals Online (AJOL)

    USER

    2015-11-25

    Nov 25, 2015 ... The crushed leaves boiled in the edible oil have been used ... polyphenolic constituents endowed with high antioxidant/ antiradical activity in different extracts of A. scholaris leaves. MATERIALS AND METHODS. Collection and ... container of soxhlet apparatus according to method described by. Harborne ...

  2. Polyphenolic acetates: A newer anti-Mycobacterial therapeutic option

    African Journals Online (AJOL)

    Anti acetyl lysine polyclonal antibody was purchased from Cell Signaling. ... acetyl group from various polyphenolic peracetate (PA) to certain receptor proteins such as cytochromes P-450, NADPH cytochrome reductase, nitric oxide synthase (NOS) has been established in various eukaryotic as well as prokaryotic sources.

  3. Antioxidant, antimicrobial and synergistic activities of tea polyphenols

    African Journals Online (AJOL)

    Microbial resistance to antibiotics has become an increasing global problem and there is a need to find out novel potent antimicrobial agents with alternative modes of action as accessories to antibiotic therapy. This study investigated the antioxidant, antimicrobial and synergistic properties of tea polyphenols. The tea ...

  4. Protective role of green tea polyphenols against paraquat induced ...

    African Journals Online (AJOL)

    Protective role of green tea polyphenols against paraquat induced oxidative stress in rat liver. Sabah G El-Banna. Abstract. No Abstract. The Egyptian Journal of Biochemistry and Molecular Biology Vol. 24(1) 2006: 1-12. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  5. New Polyphenols Identified in Artemisiae abrotani herba Extract

    Directory of Open Access Journals (Sweden)

    Elisabeta Baiceanu

    2015-06-01

    Full Text Available Artemisia abrotanum L. (“southernwood” belongs to the Artemisia genus and it is used in traditional medicine for the treatment of a variety of illnesses. Scarce data is available on the chemical composition of this medicinal plant, most research being focused on the quantitative and qualitative analyses of its essential oil. Our aim was to investigate the content and profile of polyphenols, flavonoids and hydroxycinnamic derivatives present in the Artemisiae abrotani herba extract. We conducted LC/MS analysis and we screened for 19 polyphenols, flavonoids and hydroxycinnamic derivatives. We determined the total content of these compounds and we screened for antioxidant activity. Most polyphenol acids, hydroxycinnamic derivatives and flavonoids were identified and quantified for the first time in this study. We found an original polyphenol distribution profile with high concentration of sinapic acid, rutin, quercetol, ferulic acid and patuletin. We measured the antioxidant activity, the ethanolic extract presenting a modest radical scavenging activity. The value of this study consists in its novelty as it adds new data on the chemical composition of A. abrotanum L. and it opens novel perspectives for medical and nutritional applications of this plant.

  6. evaluation of antioxidant activity and polyphenolic contents of two ...

    African Journals Online (AJOL)

    A. Djouadi*, T. Lanez and C. Boubekri

    2016-05-01

    May 1, 2016 ... Polyphenolic compounds and antioxidant activity in eggplants (Solanum melongena L.) seem to depend on cultivar, ... two eggplant varieties studied, significant differences in total phenolic content were found in ... In general, the phenolic content of different parts of ethanolic extracts decreased as follows:.

  7. Investigation of Argania spinosa L. (Skeels) polyphenols growing in ...

    African Journals Online (AJOL)

    Argania spinosa L. Skeels, belonging to the Argania genus of the Sapotaceae family, is a species native to Morocco and Algeria. Due to its perfect adaptation to soil and climate, this tree plays an important ecological role in a constantly threatened encroached desert region. To understand the biological role of polyphenols ...

  8. A New Kinetic Spectrophotometric Method for Total Polyphenols ...

    African Journals Online (AJOL)

    NICO

    This paper describes a new, simple and sensitive catalytic kinetic spectrophotometric method for the determination of total polyphenols in white wines. The method was based on the catalytic effect of Cu(II) on the oxidation of phenolic compounds by H2O2 in acid media. The reaction was followed spectrophotometrically by ...

  9. The immunomodulatory role of plant polyphenols 

    Directory of Open Access Journals (Sweden)

    Małgorzata Paszkiewicz

    2012-09-01

    Full Text Available Polyphenols, plant secondary metabolites, are present in human diet and have been widely used for medical and cosmetic purposes. They possess beneficial features such as antioxidant, immunomodulatory, anti-cancer and antibacterial activity. There is some evidence that these phytochemicals can improve wound healing. However, more and more data suggest that, under certain conditions, they can act in a different, often unpredictable way. Some investigations indicate that polyphenols, generally known as antioxidants, can exhibit pro-oxidant, and therefore cytotoxic, activity. Hence, the ability of phytochemicals to induce apoptosis of cancer cells and bacterial cell damage may be, at least partly, due to their prooxidant properties. Phytocompounds enter the body through the digestive system where they undergo metabolic processes that often change their chemical features. The gastrointestinal microbiome interacts with phytochemicals and influences their bioavailability and absorption in the gut. Except for biochemical changes of plant polyphenols in the host, the achievement of therapeutic concentration in vivo may be the main problem in the determination of their real efficacy. Ambiguous results of some studies demonstrate the need for the development of more accurate and standardized methods for the evaluation of polyphenols’ properties. Better understanding of human body-polyphenol interactions is crucial for more effective use of these phytochemicals in disease prevention and therapy. 

  10. Safety evaluation of polyphenol-rich extract from bamboo shavings ...

    African Journals Online (AJOL)

    Safety evaluation of polyphenol-rich extract from bamboo shavings. ... (i) Acute toxicity test: The oral maximum tolerated dose (MTD) of EEBS was above 20 g/kg body weight for mice, thus the amount can be seen as practically non-toxic ... In conclusion, EEBS is safe and the results support the use of EEBS for various foods.

  11. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications.

    Science.gov (United States)

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.

  12. Polyphenols content and antioxidant capacity of traditional juices ...

    African Journals Online (AJOL)

    Objective: This study aims at determining the total phenol content and antioxidant potency of traditional juices consumed as soft beverages in Côte d'Ivoire. Methodology and Results: The total polyphenol content (TPC) of juices of baobab fruit pulp, passion fruit pulp, lemon, tamarind pulp, also Roselle calices and ginger ...

  13. Influence of Yeast on Polyphenol Composition of Wine

    Directory of Open Access Journals (Sweden)

    Andrea Caridi

    2004-01-01

    Full Text Available Two strains of Saccharomyces cerevisiae were employed for winemaking of must from red grapes. Twenty-two parameters were determined in the red wines produced. Very significant (p<0.01 differences were observed for colour intensity, total polyphenols, and non-anthocyanic flavonoids. Moreover, significant (p<0.05 differences were observed for colour and monomeric anthocyanins.

  14. Biopolymers produced from gelatin and other sustainable resources using polyphenols

    Science.gov (United States)

    Several researchers have recently demonstrated the feasibility of producing biopolymers from the reaction of polyphenolics with gelatin in combination with other proteins (e.g. whey) or with carbohydrates (e.g. chitosan and pectin). These combinations would take advantage of the unique properties o...

  15. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antioxidant and antifungal activities of polyphenol-rich extracts of the dried fruit pulp of Garcinia pedunculata (GP) and Garcinia morella (GM) to determine their traditional claims of therapeutic activity against certain diseases. Methods: Analysis of total phenolic (TP) and flavonoid (TF) contents of the ...

  16. Anchovy mince (Engraulis ringens) enriched with polyphenol-rich grape pomace dietary fibre: In vitro polyphenols bioaccessibility, antioxidant and physico-chemical properties.

    Science.gov (United States)

    Solari-Godiño, A; Pérez-Jiménez, J; Saura-Calixto, F; Borderías, A J; Moreno, H M

    2017-12-01

    The aim of this study was to evaluate technological and antioxidant properties, including in vitro bioaccessibility of polyphenols, conferred on raw anchovy mince by the addition of polyphenol-rich grape pomace dietary fibre at different concentrations. For this purpose, headed and gutted anchovy was heat-flayed, deboned and mixed with 0%, 2%, 3%, 4% grape pomace dietary fibre. A significant increase (Panchovy as a means of increasing dietary intake of polyphenols with antioxidant capacity, especially considering the high concentration of polyphenols bioaccessible in the large intestine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Orange juice (poly)phenols are highly bioavailable in humans.

    Science.gov (United States)

    Pereira-Caro, Gema; Borges, Gina; van der Hooft, Justin; Clifford, Michael N; Del Rio, Daniele; Lean, Michael E J; Roberts, Susan A; Kellerhals, Michele B; Crozier, Alan

    2014-11-01

    We assessed the bioavailability of orange juice (poly)phenols by monitoring urinary flavanone metabolites and ring fission catabolites produced by the action of the colonic microbiota. Our objective was to identify and quantify metabolites and catabolites excreted in urine 0-24 h after the acute ingestion of a (poly)phenol-rich orange juice by 12 volunteers. Twelve volunteers [6 men and 6 women; body mass index (in kg/m(2)): 23.9-37.2] consumed a low (poly)phenol diet for 2 d before first drinking 250 mL pulp-enriched orange juice, which contained 584 μmol (poly)phenols of which 537 μmol were flavanones, and after a 2-wk washout, the procedure was repeated, and a placebo drink was consumed. Urine collected for a 24-h period was analyzed qualitatively and quantitatively by using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS). A total of 14 metabolites were identified and quantified in urine by using HPLC-MS after orange juice intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main metabolites. The overall urinary excretion of flavanone metabolites corresponded to 16% of the intake of 584 μmol (poly)phenols. The GC-MS analysis revealed that 8 urinary catabolites were also excreted in significantly higher quantities after orange juice consumption. These catabolites were 3-(3'-methoxy-4'-hydroxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 3'-methoxy-4'-hydroxyphenylacetic acid, hippuric acid, 3'-hydroxyhippuric acid, and 4'-hydroxyhippuric acid. These aromatic acids originated from the colonic microbiota-mediated breakdown of orange juice (poly)phenols and were excreted in amounts equivalent to 88% of (poly)phenol intake. When combined with the 16% excretion of metabolites, this percentage raised the overall urinary excretion to ∼ 100% of

  18. Polyphenol estimated intake and dietary sources among older adults from Mallorca Island.

    Science.gov (United States)

    Karam, Joanne; Bibiloni, Maria Del Mar; Tur, Josep A

    2018-01-01

    The aim was the assessment of the polyphenol estimated intake and dietary sources among older adults from Mallorca Island. The study was carried out (2013-2014) in 211 participants dwelling women (n = 112) and men (n = 99). Polyphenol intake was calculated from two non-consecutive 24-h recall diets using the Polyphenol Explorer. The mean daily intake of polyphenol was 332.7 mg/d (SD: 237.9; median: 299 mg/d). Highest polyphenol intake was observed among females, 64-67 y.o. people, higher income and educational level, alcohol consumers, and physically active people. Most polyphenols consumed were flavonoids, and among them the major subclass was flavanols. Alcoholic beverages were the major contributors to the total polyphenol intake (118.3 mg/d, SD: 127.5), and red wine contributed 17.7% of total polyphenols consumed. Polyphenol intake was highest among alcohol drinkers, high educational level, high income, and physical active people. Flavonoids were the highest ingested polyphenols. Alcoholic beverages were the major contributors to the total polyphenol intake, mainly red wine.

  19. The effect of enzymatically polymerised polyphenols on CD4 binding and cytokine production in murine splenocytes.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamanaka

    Full Text Available High-molecular weight polymerised polyphenols have been shown to exhibit anti-influenza virus, anti-HIV, and anti-cancer activities. The purpose of this study was to evaluate the immunomodulating activities of enzymatically polymerised polyphenols, and to clarify the underlying mechanisms of their effects. The cytokine-inducing activity of the enzymatically polymerised polyphenols derived from caffeic acid (CA, ferulic acid (FA, and p-coumaric acid (CoA was investigated using murine splenocytes. Polymerised polyphenols, but not non-polymerised polyphenols, induced cytokine synthesis in murine splenocytes. Polymerised polyphenols induced several cytokines in murine splenocytes, with interferon-γ (IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF being the most prominent. The underlying mechanisms of the effects of the polymerised polyphenols were then studied using neutralising antibodies and fluorescent-activated cell sorting (FACS analysis. Our results show that polymerised polyphenols increased IFN-γ and GM-CSF production in splenocytes. In addition, the anti-CD4 neutralised monoclonal antibody (mAb inhibited polymerised polyphenol-induced IFN-γ and GM-CSF secretion. Moreover, polymerised polyphenols bound directly to a recombinant CD4 protein, and FACS analysis confirmed that interaction occurs between polymerised polyphenols and CD4 molecules expressed on the cell surface. In this study, we clearly demonstrated that enzymatic polymerisation confers immunoactivating potential to phenylpropanoic acids, and CD4 plays a key role in their cytokine-inducing activity.

  20. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence

    Directory of Open Access Journals (Sweden)

    Marta Guasch-Ferré

    2017-01-01

    Full Text Available Dietary polyphenols come mainly from plant-based foods including fruits, vegetables, whole grains, coffee, tea, and nuts. Polyphenols may influence glycemia and type 2 diabetes (T2D through different mechanisms, such as promoting the uptake of glucose in tissues, and therefore improving insulin sensitivity. This review aims to summarize the evidence from clinical trials and observational prospective studies linking dietary polyphenols to prediabetes and T2D, with a focus on polyphenol-rich foods characteristic of the Mediterranean diet. We aimed to describe the metabolic biomarkers related to polyphenol intake and genotype-polyphenol interactions modulating the effects on T2D. Intakes of polyphenols, especially flavan-3-ols, and their food sources have demonstrated beneficial effects on insulin resistance and other cardiometabolic risk factors. Several prospective studies have shown inverse associations between polyphenol intake and T2D. The Mediterranean diet and its key components, olive oil, nuts, and red wine, have been inversely associated with insulin resistance and T2D. To some extent, these associations may be attributed to the high amount of polyphenols and bioactive compounds in typical foods conforming this traditional dietary pattern. Few studies have suggested that genetic predisposition can modulate the relationship between polyphenols and T2D risk. In conclusion, the intake of polyphenols may be beneficial for both insulin resistance and T2D risk.

  1. The Effect of Enzymatically Polymerised Polyphenols on CD4 Binding and Cytokine Production in Murine Splenocytes

    Science.gov (United States)

    Yamanaka, Daisuke; Tamiya, Yumi; Motoi, Masuro; Ishibashi, Ken-ichi; Miura, Noriko N.; Adachi, Yoshiyuki; Ohno, Naohito

    2012-01-01

    High-molecular weight polymerised polyphenols have been shown to exhibit anti-influenza virus, anti-HIV, and anti-cancer activities. The purpose of this study was to evaluate the immunomodulating activities of enzymatically polymerised polyphenols, and to clarify the underlying mechanisms of their effects. The cytokine-inducing activity of the enzymatically polymerised polyphenols derived from caffeic acid (CA), ferulic acid (FA), and p-coumaric acid (CoA) was investigated using murine splenocytes. Polymerised polyphenols, but not non-polymerised polyphenols, induced cytokine synthesis in murine splenocytes. Polymerised polyphenols induced several cytokines in murine splenocytes, with interferon-γ (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) being the most prominent. The underlying mechanisms of the effects of the polymerised polyphenols were then studied using neutralising antibodies and fluorescent-activated cell sorting (FACS) analysis. Our results show that polymerised polyphenols increased IFN-γ and GM-CSF production in splenocytes. In addition, the anti-CD4 neutralised monoclonal antibody (mAb) inhibited polymerised polyphenol-induced IFN-γ and GM-CSF secretion. Moreover, polymerised polyphenols bound directly to a recombinant CD4 protein, and FACS analysis confirmed that interaction occurs between polymerised polyphenols and CD4 molecules expressed on the cell surface. In this study, we clearly demonstrated that enzymatic polymerisation confers immunoactivating potential to phenylpropanoic acids, and CD4 plays a key role in their cytokine-inducing activity. PMID:22540016

  2. Polyphenol estimated intake and dietary sources among older adults from Mallorca Island.

    Directory of Open Access Journals (Sweden)

    Joanne Karam

    Full Text Available The aim was the assessment of the polyphenol estimated intake and dietary sources among older adults from Mallorca Island. The study was carried out (2013-2014 in 211 participants dwelling women (n = 112 and men (n = 99. Polyphenol intake was calculated from two non-consecutive 24-h recall diets using the Polyphenol Explorer. The mean daily intake of polyphenol was 332.7 mg/d (SD: 237.9; median: 299 mg/d. Highest polyphenol intake was observed among females, 64-67 y.o. people, higher income and educational level, alcohol consumers, and physically active people. Most polyphenols consumed were flavonoids, and among them the major subclass was flavanols. Alcoholic beverages were the major contributors to the total polyphenol intake (118.3 mg/d, SD: 127.5, and red wine contributed 17.7% of total polyphenols consumed. Polyphenol intake was highest among alcohol drinkers, high educational level, high income, and physical active people. Flavonoids were the highest ingested polyphenols. Alcoholic beverages were the major contributors to the total polyphenol intake, mainly red wine.

  3. Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE19 cell cultures and mice.

    Science.gov (United States)

    Lee, Bom-Lee; Kang, Jung-Hwan; Kim, Hye-Mi; Jeong, Se-Hee; Jang, Dae-Sik; Jang, Young-Pyo; Choung, Se-Young

    2016-12-01

    Polyphenols exert beneficial effects on vision. We hypothesized that polyphenol components of Vaccinium uliginosum L. (V.U.) extract protect retinal pigment epithelial (RPE) cells against blue light-induced damage. Our aim was to test extracts containing polyphenol components to ascertain effects to reduce damage against blue light in RPEs. We measured the activity in fractions eluted from water, ethanol, and HP20 resin (FH), and found that the FH fraction had the highest beneficial activity. We isolated the individual active compounds from the FH fraction using chromatographic techniques, and found that FH contained flavonoids, anthocyanins, phenyl propanoids, and iridoids. Cell cultures of A2E-laden ARPE-19 exposed to blue light after treatment with V.U. extract fractions and their individual constituents indicated improvement. V uliginosum L extract fractions and constituent compounds significantly reduced A2E photo-oxidation-induced RPE cell death and inhibited intracellular A2E accumulation. Furthermore, Balb/c male mice were exposed to blue light at 10000 lux for 1 h/d for 2 weeks to induce retinal damage. One week after the final blue light exposure, retinal damage evaluated revealed that the outer nuclear layer thickness and nuclei count were improved. Histologic examination of murine photoreceptor cells demonstrated that FH, rich in polyphenols, inhibited the loss of outer nuclear layer thickness and nuclei. Our findings suggest that V.U. extract and eluted fractions are a potential source of bioactive compounds that potentially serve a therapeutic approach for age-related macular degeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Intracellular transport: from physics to ... biology.

    Science.gov (United States)

    Roux, Aurélien; Cuvelier, Damien; Bassereau, Patricia; Goud, Bruno

    2008-03-01

    Considerable effort over the past three decades has allowed the identification of the protein families that control the cellular machinery responsible for intracellular transport within eukaryotic cells. These proteins are estimated to represent about 10-20% of the human "proteome." The complexity of intracellular transport makes useful the development of model membranes. We describe here experimental systems based on lipid giant unilamellar vesicles (GUVs), which are attached to kinesin molecules. These systems give rise to thin membrane tubes and to complex tubular networks when incubated in vitro with microtubules and ATP. This type of assay, which mimics key events occurring during intracellular transport, allows physicists and biologists to understand how the unique mechanical properties of lipid membranes could be involved in the budding process, the sorting of cargo proteins and lipids, and the separation of the buds from a donor membrane.

  5. Micro- and nanotechnologies for intracellular delivery.

    Science.gov (United States)

    Yan, Li; Zhang, Jinfeng; Lee, Chun-Sing; Chen, Xianfeng

    2014-11-01

    The majority of drugs and biomolecules need to be delivered into cells to be effective. However, the cell membranes, a biological barrier, strictly resist drugs or biomolecules entering cells, resulting in significantly reduced intracellular delivery efficiency. To overcome this barrier, a variety of intracellular delivery approaches including chemical and physical ways have been developed in recent years. In this review, the focus is on summarizing the nanomaterial routes involved in making use of a collection of receptors for the targeted delivery of drugs and biomolecules and the physical ways of applying micro- and nanotechnologies for high-throughput intracellular delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fluorescent nanothermometers for intracellular thermal sensing.

    Science.gov (United States)

    Jaque, Daniel; Rosal, Blanca Del; Rodríguez, Emma Martín; Maestro, Laura Martínez; Haro-González, Patricia; Solé, José García

    2014-05-01

    The importance of high-resolution intracellular thermal sensing and imaging in the field of modern biomedicine has boosted the development of novel nanosized fluorescent systems (fluorescent nanothermometers) as the next generation of probes for intracellular thermal sensing and imaging. This thermal mapping requires fluorescent nanothermometers with good biocompatibility and high thermal sensitivity in order to obtain submicrometric and subdegree spatial and thermal resolutions, respectively. This review describes the different nanosized systems used up to now for intracellular thermal sensing and imaging. We also include the later advances in molecular systems based on fluorescent proteins for thermal mapping. A critical overview of the state of the art and the future perspective is also included.

  7. Antibacterial properties of xanthine oxidase in human milk.

    Science.gov (United States)

    Stevens, C R; Millar, T M; Clinch, J G; Kanczler, J M; Bodamyali, T; Blake, D R

    2000-09-02

    Formula-fed babies contract gastroenteritis more than breast-fed babies, which is of concern to mothers who cannot breastfeed or, as with HIV-infected mothers, are discouraged from breastfeeding. The ability of endogenous breastmilk xanthine oxidase to generate the antimicrobial radical nitric oxide has been measured and its influence on the growth of Escherichia coli and Salmonella enteritides examined. Breastmilk, but not formula feed, generated nitric oxide. Xanthine oxidase activity substantially inhibited the growth of both bacteria. An important natural antibiotic system is missing in formula feeds; the addition of xanthine oxidase may improve formula for use when breastfeeding is not a safe option.

  8. Bovine milk intake and xanthine oxidase activity in blood serum.

    Science.gov (United States)

    McCarthy, R D; Long, C A

    1976-06-01

    Xanthine oxidase activity in blood serum was measured by a sensitive radio-enzymatic assay. Pigs receiving 7.6 liters of milk daily for 100 days did not show any detectable enzymatic activity in their blood Xanthine oxidase activity in blood serum of 25 human volunteers had an average of 6.7 milliunits per liter with a range of 0 to 34.6 milliunits per liter. Neither a causal nor statistically significant relationship existed between xanthine oxidase activity in blood and average daily milk consumption, age, or sex.

  9. Platelet monoamine oxidase: specific activity and turnover number in headache

    International Nuclear Information System (INIS)

    Summers, K.M.; Brown, G.K.; Craig, I.W.; Peatfield, R.; Rose, F.C.

    1982-01-01

    Monoamine oxidase turnover numbers (molecules of substrate converted to product per minute per active site) have been calculated for the human platelet enzyme using [ 3 H]pargyline. Headache patients with high and low monoamine oxidase specific activities relative to controls were found to have turnover numbers very close to those for controls. This finding suggests that their specific activities vary because of differences in the concentration of active monoamine oxidase molecules, rather than differences in the ability of those enzyme molecules to catalyse the deamination reaction. (Auth.)

  10. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Science.gov (United States)

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-08

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  11. Metabolism of plant polyphenols in the skin: beneficial versus deleterious effects.

    Science.gov (United States)

    Korkina, Liudmila G; Pastore, Saveria; De Luca, Chiara; Kostyuk, Vladimir A

    2008-10-01

    Polyphenols are produced by all higher plants in order to protect them against biotic and abiotic stress such as UV radiation, temperature changes, infections, wounding, and herbivores. When in contact with human skin, polyphenols exert either curative or damaging action depending on their physical-chemical properties, bioavailability through cutaneous barrier, metabolism in the skin, and individual sensitivity. This review will focus on 1) synthesis and metabolism of polyphenols and their role in the plant physiology, 2) non-enzymatic and enzymatic polyphenol transformation in the skin, 3) polyphenols as inhibitors or inducers of inflammatory response in the skin, and 4) photo-protective versus photo-toxic effects of polyphenols. The potential consequences of these controversial effects on the use of plant polyphenols in dermatology and cosmetology will be also discussed.

  12. Applications of Flavoprotein Oxidases in Organic Synthesis : Novel Reactivities that Go Beyond Amine and Alcohol Oxidations

    NARCIS (Netherlands)

    Winter, R.T.; Fraaije, M.W.

    2012-01-01

    Oxidases represent a distinct and interesting class of oxidative biocatalysts. A major portion of the known oxidases contain a flavin as cofactor, with glucose oxidase as best known example. While a number of oxidases are well known in the field of biocatalysis, the total number of available

  13. Macrophage defense mechanisms against intracellular bacteria.

    Science.gov (United States)

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. © 2015 The Authors

  14. Macrophage defense mechanisms against intracellular bacteria

    Science.gov (United States)

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  15. Polyphenols: planting the seeds of treatment for the metabolic syndrome.

    Science.gov (United States)

    Cherniack, E Paul

    2011-06-01

    Greater understanding about the pathogenesis of metabolic syndrome and potential causes suggests that plant polyphenols might be useful as a treatment. Dietary excess energy can be stored in adipocytes, leading to the release of proinflammatory cytokines and adipose-related hormones that cause vascular injury. Plant polyphenols, organic compounds found in numerous plant species and their fruits, are being actively studied as potential treatments for components of the metabolic syndrome. Individual polyphenols that have been examined include resveratrol, quercetin, epigallocathechin-3-gallate, and curcumin. Resveratrol lowers weight, blood pressure, glucose, and insulin resistance in rodents, and a human trial is currently underway. Quercetin decreases lipid and glucose levels in obese rats, and in a human investigation of subjects with the metabolic syndrome has lowered blood pressure without significant alteration of lipids. Epigallocathechin-3-gallate-induced weight loss has attenuated glucose levels and insulin resistance in rodents and improved hemoglobin A(1c) and lipid in human studies. Plant extracts also can be used. Grape seed and chokeberry extracts have decreased blood pressure and lipid levels in small human trials. Other human investigations have shown the beneficial effects of cocoa, coffee, carob, and Momordica charantia. Thus far, most studies have involved a small number of subjects and have been of short duration. Future studies should be designed to account for a disease process in which the pathogenic factors may take place for years before disease manifestations take place, the possibly limited bioavailability of polyphenols, and the potential need to provide combinations or modifications of polyphenols. Published by Elsevier Inc.

  16. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery

    International Nuclear Information System (INIS)

    Paini, Marco; Aliakbarian, Bahar; Casazza, Alessandro A.; Perego, Patrizia; Ruggiero, Carmelina; Pastorino, Laura

    2015-01-01

    Polysaccharide-based nanostructured polymeric microcapsules were fabricated by the electrostatic layer-by-layer self-assembly technique and used to encapsulate mixtures of four different polyphenols in order to achieve their controlled release. The real-time fabrication of the dextran/chitosan multilayer was monitored by quartz crystal microbalance with dissipation monitoring, and the morphology of the nanostructured polymeric capsules was characterized by scanning electron microscopy. The polyphenol encapsulation was obtained by reversible permeability variation of the capsule shell in ethanol:water mixtures. The loading efficiency in different water:ethanol mixtures and the release rate in acidic conditions were characterized by UV spectroscopy and HPLC. The higher loading efficiency was obtained with an ethanol:water 35:65 phenolic solution, equal to 42.0 ± 0.6%, with a total release of 11.5 ± 0.7 mg of total polyphenols per 11.3 μL of microcapsules after 240 min of incubation in acidic environment. The results suggest that polysaccharide-based capsules can be successfully used to encapsulate and release low water-soluble molecules, such as polyphenols. - Highlights: • Chitosan/dextran nanocapsules were made by layer-by-layer self-assembly technique. • Different ethanol:water mixtures of four polyphenols were encapsulated. • An encapsulation efficiency of 42.0 ± 0.6% was obtained using ethanol:water 35:65. • Release profiles in acidic environment were monitored by UV spectroscopy and HPLC. • Nanocapsules had shown a complete release after 60 min in acidic environment

  17. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery

    Energy Technology Data Exchange (ETDEWEB)

    Paini, Marco, E-mail: marco.paini@unige.it [Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa (Italy); Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity (BELONG), Via Montallegro 1, 16145 Genoa (Italy); Aliakbarian, Bahar; Casazza, Alessandro A.; Perego, Patrizia [Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa (Italy); Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity (BELONG), Via Montallegro 1, 16145 Genoa (Italy); Ruggiero, Carmelina; Pastorino, Laura [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa (Italy)

    2015-01-01

    Polysaccharide-based nanostructured polymeric microcapsules were fabricated by the electrostatic layer-by-layer self-assembly technique and used to encapsulate mixtures of four different polyphenols in order to achieve their controlled release. The real-time fabrication of the dextran/chitosan multilayer was monitored by quartz crystal microbalance with dissipation monitoring, and the morphology of the nanostructured polymeric capsules was characterized by scanning electron microscopy. The polyphenol encapsulation was obtained by reversible permeability variation of the capsule shell in ethanol:water mixtures. The loading efficiency in different water:ethanol mixtures and the release rate in acidic conditions were characterized by UV spectroscopy and HPLC. The higher loading efficiency was obtained with an ethanol:water 35:65 phenolic solution, equal to 42.0 ± 0.6%, with a total release of 11.5 ± 0.7 mg of total polyphenols per 11.3 μL of microcapsules after 240 min of incubation in acidic environment. The results suggest that polysaccharide-based capsules can be successfully used to encapsulate and release low water-soluble molecules, such as polyphenols. - Highlights: • Chitosan/dextran nanocapsules were made by layer-by-layer self-assembly technique. • Different ethanol:water mixtures of four polyphenols were encapsulated. • An encapsulation efficiency of 42.0 ± 0.6% was obtained using ethanol:water 35:65. • Release profiles in acidic environment were monitored by UV spectroscopy and HPLC. • Nanocapsules had shown a complete release after 60 min in acidic environment.

  18. Role of intracellular infections in premature childbirth.

    Science.gov (United States)

    Zurabishvili, S; Mamamtavrishvili, I; Apridonidze, K; Shanidze, L

    2005-09-01

    Vaginal Smear taken by sterile Folkman spoon from 15 women with premature birth was studied. The study was performed by the direct immune fluorescence method with the luminescence microscope. We aimed to study the effect of intracellular infections: ureaplasma urealitikum, mycoplasma hominis, Chlamydia trachomatis, herpes simplex virus of I and II type and cytomegalovirus. Intracellular infections were detected in at about 82% of cases, which included mono infections with cytomegalovirus and in 9 cases in the form of bi-component associations. The obtained results may be interesting from the etiologic point of view of premature births in Georgian population.

  19. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    Science.gov (United States)

    Jänne, J; Morris, D R

    1984-03-15

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.

  20. Propionyl-L-carnitine improves postischemic blood flow recovery and arteriogenetic revascularization and reduces endothelial NADPH-oxidase 4-mediated superoxide production.

    Science.gov (United States)

    Stasi, Maria Antonietta; Scioli, Maria Giovanna; Arcuri, Gaetano; Mattera, Giovan Giuseppe; Lombardo, Katia; Marcellini, Marcella; Riccioni, Teresa; De Falco, Sandro; Pisano, Claudio; Spagnoli, Luigi Giusto; Borsini, Franco; Orlandi, Augusto

    2010-03-01

    The beneficial effect of the natural compound propionyl-l-carnitine (PLC) on intermittent claudication in patients with peripheral arterial disease is attributed to its anaplerotic function in ischemic tissues, but inadequate information is available concerning action on the vasculature. We investigated the effects of PLC in rabbit hind limb collateral vessels after femoral artery excision, mouse dorsal air pouch, chicken chorioallantoic membrane, and vascular cells by angiographic, Doppler flow, and histomorphometrical and biomolecular analyses. PLC injection accelerated hind limb blood flow recovery after 4 days (Pproduction in human umbilical vascular endothelial cells; NADPH-oxidase 4 also regulated NF-kappaB-independent intracellular adhesion molecule-1 expression. Our results provided strong evidence that PLC improves postischemic flow recovery and revascularization and reduces endothelial NADPH-oxidase-related superoxide production. We recommend that PLC should be included among therapeutic interventions that target endothelial function.

  1. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries.

    Science.gov (United States)

    Edmands, William Mb; Ferrari, Pietro; Rothwell, Joseph A; Rinaldi, Sabina; Slimani, Nadia; Barupal, Dinesh K; Biessy, Carine; Jenab, Mazda; Clavel-Chapelon, Françoise; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Katzke, Verena A; Kühn, Tilman; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Vineis, Paolo; Mattiello, Amalia; Romieu, Isabelle; Scalbert, Augustin

    2015-10-01

    An improved understanding of the contribution of the diet to health and disease risks requires accurate assessments of dietary exposure in nutritional epidemiologic studies. The use of dietary biomarkers may improve the accuracy of estimates. We applied a metabolomic approach in a large cohort study to identify novel biomarkers of intake for a selection of polyphenol-containing foods. The large chemical diversity of polyphenols and their wide distribution over many foods make them ideal biomarker candidates for such foods. Metabolic profiles were measured with the use of high-resolution mass spectrometry in 24-h urine samples from 481 subjects from the large European Prospective Investigation on Cancer and Nutrition cohort. Peak intensities were correlated to acute and habitual dietary intakes of 6 polyphenol-rich foods (coffee, tea, red wine, citrus fruit, apples and pears, and chocolate products) measured with the use of 24-h dietary recalls and food-frequency questionnaires, respectively. Correlation (r > 0.3, P 0.3, VIP > 1.5] analyses showed that >2000 mass spectral features from urine metabolic profiles were significantly associated with the consumption of the 6 selected foods. More than 80 polyphenol metabolites associated with the consumption of the selected foods could be identified, and large differences in their concentrations reflecting individual food intakes were observed within and between 4 European countries. Receiver operating characteristic curves showed that 5 polyphenol metabolites, which are characteristic of 5 of the 6 selected foods, had a high predicting ability of food intake. Highly diverse food-derived metabolites (the so-called food metabolome) can be characterized in human biospecimens through this powerful metabolomic approach and screened to identify novel biomarkers for dietary exposures, which are ultimately essential to better understand the role of the diet in the cause of chronic diseases. © 2015 American Society for Nutrition.

  2. Expression of a 1-aminocyclopropane-1-carboxylate (ACC) oxidase ...

    African Journals Online (AJOL)

    Expression of a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene in peach ( Prunus persica L.) fruit in response to treatment with carbon dioxide and 1-methylcyclopropene: possible role of ethylene.

  3. Optimization of glucose oxidase production by Aspergillus niger

    African Journals Online (AJOL)

    user

    2011-02-28

    . Microbiol. 89: 85-89. Hamid M, khalil-ur-Rehman, Zia MA, Asghar M (2003). Optimization of various parameters for the production of glucose oxidase from rice polishing using Aspergillus niger. Asian network Sci. Infor.

  4. Molecular activation-deactivation of xanthine oxidase in human milk.

    Science.gov (United States)

    Brown, A M; Benboubetra, M; Ellison, M; Powell, D; Reckless, J D; Harrison, R

    1995-10-19

    Enzymic activity and protein levels of xanthine oxidase were measured in serial samples of breast milk donated by each of 14 mothers, starting, in all but two cases, within 7 days following parturition. Enzyme activity varied widely, usually reaching peak values during the first 15 days and falling thereafter, by as much as 98%, to basal levels that were subsequently largely maintained. Corresponding changes in xanthine oxidase protein levels were not observed and, consequently, the specific activity of xanthine oxidase followed the above pattern. The capacity of human xanthine oxidase to undergo activation-deactivation cycles at the molecular level has important implications, not only for its role in breast milk, but also for its potential as a source of reactive oxygen species in other human tissues.

  5. Aldehyde-induced xanthine oxidase activity in raw milk.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  6. Improved Oxidase Mimetic Activity by Praseodymium Incorporation into Ceria Nanocubes.

    Science.gov (United States)

    Jiang, Lei; Fernandez-Garcia, Susana; Tinoco, Miguel; Yan, Zhaoxia; Xue, Qi; Blanco, Ginesa; Calvino, Jose J; Hungria, Ana B; Chen, Xiaowei

    2017-06-07

    Ceria nanocubes (NC) modified with increasing concentrations of praseodymium (5, 10, 15, and 20 mol %) have been successfully synthesized by a hydrothermal method. The as-synthesized Pr-modified ceria nanocubes exhibit an enhanced oxidase-like activity on the organic dye TMB within a wide range of concentrations and durations. The oxidase activity increases with increasing Pr amounts in Pr-modified ceria nanocubes within the investigated concentration range. Meanwhile, these Pr-modified ceria nanocubes also show higher reducibility than pure ceria nanocubes. The kinetics of their oxidase mimetic activity is fitted with the Michaelis-Menten equation. A mechanism has been proposed on how the Pr incorporation could affect the energy level of the bands in ceria and hence facilitate the TMB oxidation reaction. The presence of Pr 3+ species on the surface also contributes to the increasing activity of the Pr-modified ceria nanocubes present higher oxidase activity than pure ceria nanocubes.

  7. Hepatitis C virus intracellular host interactions

    NARCIS (Netherlands)

    Liefhebber, Johanna Maaike Pieternella

    2010-01-01

    Hepatitis C virus (HCV) infects about 170 million people worldwide causing a major healthcare problem. The virus lifecycle is greatly dependent on the host-cell for effective replication. In this thesis, the intracellular interactions of the non-structural HCV proteins with the host-cell were

  8. Enhanced production of intracellular dextran dextrinase from ...

    African Journals Online (AJOL)

    Enhanced production of intracellular dextran dextrinase from Gluconobacter oxydans using statistical experimental methods. ... the Plackett-Burman screening. A four-factor five-level central composite design (CCD) was chosen to explain the combined effects of the four medium constituents. The optimum medium consisted ...

  9. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    ... nontoxic, safe, biocompatible and environmentally acceptable. In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent ...

  10. Efficient intracellular delivery of native proteins

    NARCIS (Netherlands)

    D'Astolfo, Diego S; Pagliero, Romina J; Pras, Anita; Karthaus, Wouter R; Clevers, Hans; Prasad, Vikram; Lebbink, Robert Jan; Rehmann, Holger; Geijsen, Niels

    2015-01-01

    Modulation of protein function is used to intervene in cellular processes but is often done indirectly by means of introducing DNA or mRNA encoding the effector protein. Thus far, direct intracellular delivery of proteins has remained challenging. We developed a method termed iTOP, for induced

  11. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... [Ganguli P, Chowdhury S, Bhowmick R and Sarkar RR 2015 Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: A ... cells and tissues by studying different signalling pathways, such as Hedgehog ...... Murray JD 2003 On the mechanochemical theory of biological.

  12. Comparism of xanthine oxidase activities in cow and goat milks ...

    African Journals Online (AJOL)

    The activities of xanthine oxidase were studied in cow and goat milks. The optimum temperature and pH values were 10 oC and 7.5; and 20 oC and 7.2 – 7.4 for cow and goat milk samples respectively. The substrate effect on xanthine oxidase from both milk samples followed the popular Michealis Menten's (Km) equation.

  13. INCREASED XANTHINE OXIDASE IN THE SKIN OF PREECLAMPTIC WOMEN

    OpenAIRE

    Bainbridge, Shannon A.; Deng, Jau-Shyong; Roberts, James M.

    2009-01-01

    Xanthine oxioreductase is the holoenzyme responsible for terminal purine catabolism. Under conditions of metabolic stress or heightened pro-inflammatory cytokine production this enzyme is preferentially in it’s oxidized form, xanthine oxidase, with catalytic action that generates uric acid and the free radical superoxide. As preeclampsia is characterized by heightened inflammation, oxidative stress and hyperuricemia it has been proposed that xanthine oxidase plays a pivotal role in this hyper...

  14. Xanthine Oxidase: Isolation, Assays of Activity, and Inhibition

    OpenAIRE

    Kostić, Danijela A.; Dimitrijević, Danica S.; Stojanović, Gordana S.; Palić, Ivan R.; Đorđević, Aleksandra S.; Ickovski, Jovana D.

    2015-01-01

    Xanthine oxidase (XO) is an important enzyme catalyzing the hydroxylation of hypoxanthine to xanthine and xanthine to uric acid which is excreted by kidneys. Excessive production and/or inadequate excretion of uric acid results in hyperuricemia. This paper presents a detailed review of methods of isolation, determination of xanthine oxidase activity, and the effect of plant extracts and their constituents on it. Determining the content and activities of XO can be used for diagnostic purposes....

  15. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    OpenAIRE

    A Abdullahi; RU Hamzah; AA Jigam; A Yahya; AY Kabiru; H Muhammad; S Sakpe; FS Adefolalu; MC Isah; MZ Kolo

    2012-01-01

    Objective: To study the inhibitory effect of various extracts from Crateva adansonii (C. adansonii) used traditionally against several inflammatory diseases such as rheumatism, arthritis, and gout, was investigated on purified bovine milk xanthine oxidase (XO) activity. Methods: Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Enzy...

  16. The isolation of demolybdo xanthine oxidase from bovine milk.

    OpenAIRE

    Ventom, A M; Deistung, J; Bray, R C

    1988-01-01

    It was deduced many years ago from indirect evidence that demolybdo xanthine oxidase is present in normal bovine milk. This has now been confirmed by isolation of this enzyme form by a method based on the folate-gel affinity-chromatography procedure described Nishino & Tsushima [(1986) J. Biol. Chem. 261, 11242-11246]. Enzymic and spectroscopic properties of demolybdo xanthine oxidase, which retains flavin and iron-sulphur centres, are generally in accordance with expectations. Like the norma...

  17. Secondary metabolites of Hypericum L. species as xanthine oxidase inhibitors

    OpenAIRE

    Šmelcerović, Andrija; Šmelcerović, Žaklina; Tomović, Katarina; Kocić, Gordana; Đorđević, Aleksandra

    2017-01-01

    Nine Hypericum species (H. barbatum, H. hirsutum, H. linarioides, H. olympicum, H. perforatum, H. rochelii, H. rumeliacum, H. tetrapterum and H. umbellatum) collected in Serbia were assayed for inhibitory potential against xanthine oxidase in vitro, on the commercial enzyme, and compared with allopurinol. Seven studied Hypericum species (H. barbatum, H. rochelii, H. rumeliacum, H. umbellatum, H. perforatum, H. tetrapterum and H. olympicum) inhibit commercial xanthine oxidase with an IC50 belo...

  18. Inhibition of xanthine oxidase by Puerto Rican plant extracts.

    Science.gov (United States)

    Guerrero, R O; Guzman, A L

    1998-12-01

    This study was conducted to search for xanthine oxidase inhibitors in natural products obtained from plants collected in Puerto Rico and to assess the influence of these extracts in the prevention of cataractogenesis. Allopurinol is currently a xanthine oxidase inhibitor used in the treatment of gout. New alternatives with increased therapeutic activity and less side effects should be investigated. Preclusion of cataractogenesis in diabetic rats is also the focus of this investigation. Natural products in the form of plant extracts from Puerto Rico offer a rich and relatively untapped source for the discovery of new drugs that may address these kind of problems. Nineteen collections of Myrtaceae plant extracts were screened for xanthine oxidase inhibition. A spectrophotometrical method was used employing allopurinol as positive control and a blank as negative control. A protocol of the assay with slight modifications was followed from the literature. Two extracts with the highest percentages of xanthine oxidase inhibition were evaluated for possible prevention of cataractogenesis in streptozotocin diabetic rats. The animals were given to drink these plant extracts ad libitum for three months while controls received water. The appearance of cataracts was assessed physically. Two of the nineteen plant extracts showed high inhibition percentages of xanthine oxidase. Eucalyptus deglupta and Syzygium malaccense displayed 51% and 64% inhibitions (IC50 44.5 micrograms/ml and IC50 51 micrograms/ml), respectively. As for the cataractogenesis inhibition, laboratory animals that drank E. deglupta for three months did not develop cataracts. Two plant extracts provided positive results with varying degrees of inhibition of xanthine oxidase. S. malaccense demonstrated the greatest xanthine oxidase inhibitory activity whereas E. deglupta presented the best finding for cataractogenesis prevention. The procedures used in this investigation are useful for the in vitro screening of

  19. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  20. Histochemistry of reactive oxygen-species (ROS)-generating oxidases in cutaneous and mucous epithelia of laboratory rodents with special reference to xanthine oxidase

    NARCIS (Netherlands)

    Gossrau, R.; Frederiks, W. M.; van Noorden, C. J.

    1990-01-01

    Cutaneous and mucous epithelia of various organs of laboratory rodents were analysed histochemically for reactive oxygen species (ROS)-generating oxidases using cerium methods. High activities of xanthine oxidase and also superoxide dismutase were present in orthokeratotic stratified squamous

  1. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    International Nuclear Information System (INIS)

    Janolino, V.G.; Morrison-Rowe, S.J.; Swaisgood, H.E.

    1990-01-01

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with [ 14 C]iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 (± 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked

  2. Therapeutic Antibodies against Intracellular Tumor Antigens

    Directory of Open Access Journals (Sweden)

    Iva Trenevska

    2017-08-01

    Full Text Available Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8–10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I molecules. These tumor-associated peptide–MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm or T-cell receptor (TCR-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.

  3. Plant Polyphenolic Antioxidants in Management of Chronic Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    R.K. Das

    2017-12-01

    Full Text Available With the over growing global population, degenerative diseases are on rise, despite using modern medicine for its cure. People prefer alternative systems of medicine like natural therapy and polyherbal therapy due to adverse effects of allopathic medication. According to W.H.O. report about 70% of world population relying on natural plant-based therapy. For a suitable, sustainable and cost effective cure use of polyphenolic natural antioxidants may be an appropriate tool. Now a day’s most food and pharmaceutical products contain synthetic antioxidants. But recent data indicating that, long term use of synthetic antioxidants could have carcinogenic effects on human cells. Thus, search for new natural and efficient antioxidants is need of the hour. Phenolic compounds (polyphenols are products of secondary metabolites and constitute one of the most widely distributed groups of substance in plant kingdom with more than 10,000 phenolic structures. Polyphenols are structurally characterized by the presence of one or more aromatic benzene ring compounds with one or more functional hydroxyl groups. Polyphenols are naturally occurring and most abundant antioxidants in human diets found largely in the fruits, vegetables and beverages. Plant flavonoids are the largest and best studied class of polyphenols which include more than 4000 compounds. Numerous studies confirm that, flavonoids exert a protective action on human health and are key components of a healthy and balanced diet. Epidemiological studies and associated meta-analysis correlate and strongly   suggest that, long term consumption of diets rich in plant flavonoids offer protection against development of chronic and degenerative diseases, such as cardiovascular diseases , diabetes , cancer, osteoporosis and neurodegenerative diseases. One of the main reasons for the age related diseases is linked with reduction in cellular oxidative stress. The involvement of reactive oxygen species (ROS in

  4. Polyphenols content and antioxidant activity of paprika and pepper spices

    Directory of Open Access Journals (Sweden)

    Soňa Škrovánková

    2017-01-01

    Full Text Available Paprika spices (Capsicium annuum and black pepper spices (Piper nigrum are very popular seasonings for culinary and industrial utilization due to the change of sensory quality (taste, aroma, color of foods and meals with their addition; their health promoting properties; and also, relevant antioxidant activity. Polyphenols are often responsible for the antioxidant capacity of plant products therefore in our study the content of polyphenols (TP and antioxidant activity (TAA were assessed in two common culinary spices - paprika spices (12, ground powder spices and pepper spices (20, unground and ground, black, green, white and colored spices of Czech, Austrian, and Slovak producers. These parameters were determined using spectrometric method, for total polyphenols method with Folin-Ciocaulteu reagent; the antioxidant activity (TAA of aqueous and ethanolic extracts of spices was measured by DPPH method with IC50 evaluation. For paprika the total polyphenol content ranged from 14.67 to 28.78 mg GAE.g-1. However, there is only weak connection between the pungency of the spices and the polyphenolic amount, the hotter samples of paprika spices have slightly higher values of TP than sweet types. Also, more pungent paprika products showed a higher potency in scavenging of DPPH free radical than sweeter ones; and ethanolic extracts had slightly higher TAA values (8.73 to 16.17 mg AAE.g-1 than aqueous spice extracts (4.45 to 16.24 mg AAE.g-1. Phenolic amount for pepper spices was assessed in the range of 12.03 to 22.88 mg GAE.g-1. Generally, paprika spices contained more polyphenols than pepper spices. The values of TAA of pepper spices were in the range from 7.07 to 15.81 mg AAE.g-1 for aqueous extracts and from 8.25 to 15.93 mg AAE.g-1 for ethanolic extracts respectively. The highest TAA values were observed for white ground pepper and unground black pepper spices. Unground black pepper samples had higher TAA than ground black pepper. The extent of

  5. Impairment by hypoxia or hypoxia/reoxygenation of nitric oxide-mediated relaxation in isolated monkey coronary artery: the role of intracellular superoxide.

    Science.gov (United States)

    Tawa, Masashi; Yamamizu, Kohei; Geddawy, Ayman; Shimosato, Takashi; Imamura, Takeshi; Ayajiki, Kazuhide; Okamura, Tomio

    2011-01-01

    To investigate the effect of hypoxia or hypoxia/reoxygenation on vascular smooth muscle function, mechanical response of monkey coronary artery without endothelium was studied under normoxia, hypoxia, and hypoxia/reoxygenation. Hypoxia or hypoxia/reoxygenation impaired the relaxation by nitroglycerin or isosorbide dinitrate but not that by 8-bromoguanosine-3',5'-cyclic monophosphate or isoproterenol. Tempol restored the impaired relaxation by nitroglycerin or isosorbide dinitrate, but superoxide dismutase had no effect. Apocynin, an NADPH oxidase inhibitor, improved the nitroglycerin-induced relaxation under hypoxia, but not under reoxygenation. Under combined treatment of apocynin with oxypurinol (xanthine oxidase inhibitor), rotenone (mitochondria electron transport inhibitor), or both, hypoxic impairment of vasorelaxation was restored more effectively. Similarly, impairment of the nitroglycerin-induced vasorelaxation under hypoxia/reoxygenation was restored by combined treatment with three inhibitors, apocynin, oxypurinol, and rotenone. Increase in superoxide production under hypoxia tended to be inhibited by apocynin and that under hypoxia/reoxygenation was abolished by combined treatment with three inhibitors. These findings suggest that increased intracellular superoxide production under hypoxia or hypoxia/reoxygenation attenuates vasodilation mediated with a nitric oxide/soluble guanylyl cyclase, but not adenylyl cyclase, signaling pathway. The main source of superoxide production under hypoxia seems to be different from that under reoxygenation: superoxide is produced by NADPH oxidase during hypoxia, whereas it is produced by xanthine oxidase, mitochondria, or both during reoxygenation.[Supplementary Figure: available only at http://dx.doi.org/10.1254/jphs.11031FP].

  6. Effects of food processing on polyphenol contents: a systematic analysis using Phenol-Explorer data.

    Science.gov (United States)

    Rothwell, Joseph A; Medina-Remón, Alexander; Pérez-Jiménez, Jara; Neveu, Vanessa; Knaze, Viktoria; Slimani, Nadia; Scalbert, Augustin

    2015-01-01

    The Phenol-Explorer web database (http://www.phenol-explorer.eu) was recently updated with new data on polyphenol retention due to food processing. Here, we analyze these data to investigate the effect of different variables on polyphenol content and make recommendations aimed at refining estimation of intake in epidemiological studies. Data on the effects of processing upon 161 polyphenols compiled for the Phenol-Explorer database were analyzed to investigate the effects of polyphenol structure, food, and process upon polyphenol loss. These were expressed as retention factors (RFs), fold changes in polyphenol content due to processing. Domestic cooking of common plant foods caused considerable losses (median RF = 0.45-0.70), although variability was high. Food storage caused fewer losses, regardless of food or polyphenol (median RF = 0.88, 0.95, 0.92 for ambient, refrigerated, and frozen storage, respectively). The food under study was often a more important determinant of retention than the process applied. Phenol-Explorer data enable polyphenol losses due to processing from many different foods to be rapidly compared. Where experimentally determined polyphenol contents of a processed food are not available, only published RFs matching at least the food and polyphenol of interest should be used when building food composition tables for epidemiological studies. © 2014 The Authors Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Ji Xiao-Jun

    2013-01-01

    Full Text Available Abstract Background Acetoin is an important bio-based platform chemical. However, it is usually existed as a minor byproduct of 2,3-butanediol fermentation in bacteria. Results The present study reports introducing an exogenous NAD+ regeneration sysytem into a 2,3-butanediol producing strain Klebsiella pneumoniae to increse the accumulation of acetoin. Batch fermentation suggested that heterologous expression of the NADH oxidase in K. pneumoniae resulted in large decreases in the intracellular NADH concentration (1.4 fold and NADH/NAD+ ratio (2.0 fold. Metabolic flux analysis revealed that fluxes to acetoin and acetic acid were enhanced, whereas, production of lactic acid and ethanol were decreased, with the accumualation of 2,3-butanediol nearly unaltered. By fed-batch culture of the recombinant, the highest reported acetoin production level (25.9 g/L by Klebsiella species was obtained. Conclusions The present study indicates that microbial production of acetoin could be improved by decreasing the intracellular NADH/NAD+ ratio in K. pneumoniae. It demonstrated that the cofactor engineering method, which is by manipulating the level of intracellular cofactors to redirect cellular metabolism, could be employed to achieve a high efficiency of producing the NAD+-dependent microbial metabolite.

  8. MONOAMINE OXIDASE: RADIOTRACER DEVELOPMENT AND HUMAN STUDIES.

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER,J.S.; LOGAN,J.; VOLKOW,N.D.; WANG,G.J.; MACGREGOR,R.R.; DING,Y.S.

    2000-09-28

    PET is uniquely capable of providing information on biochemical transformations in the living human body. Although most of the studies of monoamine oxidase (MAO) have focused on measurements in the brain, the role of peripheral MAO as a phase 1 enzyme for the metabolism of drugs and xenobiotics is gaining attention (Strolin Benedetti and Tipton, 1998; Castagnoli et al., 1997.). MAO is well suited for this role because its concentration in organs such as kidneys, liver and digestive organs is high sometimes exceeding that in the brain. Knowledge of the distribution of the MAO subtypes within different organs and different cells is important in determining which substrates (and which drugs and xenobiotics) have access to which MAO subtypes. The highly variable subtype distribution with different species makes human studies even more important. In addition, the deleterious side effects of combining MAO inhibitors with other drugs and with foodstuffs makes it important to know the MAO inhibitory potency of different drugs both in the brain and in peripheral organs (Ulus et al., 2000). Clearly PET can play a role in answering these questions, in drug research and development and in discovering some of the factors which contribute to the highly variable MAO levels in different individuals.

  9. Kinetics, mechanism, and inhibition of monoamine oxidase.

    Science.gov (United States)

    Ramsay, Rona R; Albreht, Alen

    2018-03-07

    Monoamine oxidases (MAOs) catalyse the oxidation of neurotransmitter amines and a wide variety of primary, secondary and tertiary amine xenobiotics, including therapeutic drugs. While inhibition of MAO activity in the periphery removes protection from biogenic amines and so is undesirable, inhibition in the brain gives vital antidepressant and behavioural advantages that make MAO a major pharmaceutical target for inhibitor design. In neurodegenerative diseases, MAO inhibitors can help to maintain neurotransmitter levels, making it a common feature in novel multi-target combinations designed to combat Alzheimer's disease, albeit not yet proven clinically. Vital information for inhibitor design comes from an understanding of the structure, mechanism, and kinetics of the catalyst. This review will summarize the kinetic behaviour of MAO A and B and the kinetic evaluation of reversible inhibitors that transiently decrease catalysis. Kinetic parameters and crystal structures have enabled computational approaches to ligand discovery and validation of hits by docking. Kinetics and a wide variety of substrates and inhibitors along with theoretical modelling have also contributed to proposed schemes for the still debated chemical mechanism of amine oxidation. However, most of the marketed MAO drugs are long-lasting irreversible inactivators. The mechanism of irreversible inhibition by hydrazine, cyclopropylamine, and propargylamine drugs will be discussed. The article finishes with some examples of the propargylamine moiety in multi-target ligand design to combat neurodegeneration.

  10. Study of Drug Metabolism by Xanthine Oxidase

    Directory of Open Access Journals (Sweden)

    Lizhou Sun

    2012-04-01

    Full Text Available In this work, we report the studies of drug metabolism by xanthine oxidase (XOD with electrochemical techniques. Firstly, a pair of stable, well-defined and quasi-reversible oxidation/reduction peaks is obtained with the formal potential at −413.1 mV (vs. SCE after embedding XOD in salmon sperm DNA membrane on the surface of pyrolytic graphite electrode. Then, a new steady peak can be observed at −730 mV (vs. SCE upon the addition of 6-mercaptopurine (6-MP to the electrochemical system, indicating the metabolism of 6-MP by XOD. Furthermore, the chronoamperometric response shows that the current of the catalytic peak located at −730 mV increases with addition of 6-MP in a concentration-dependent manner, and the increase of the chronoamperometric current can be inhibited by an XOD inhibitor, quercetin. Therefore, our results prove that XOD/DNA modified electrode can be efficiently used to study the metabolism of 6-MP, which may provide a convenient approach for in vitro studies on enzyme-catalyzed drug metabolism.

  11. Monoamine oxidase inhibitory activities of heterocyclic chalcones.

    Science.gov (United States)

    Minders, Corné; Petzer, Jacobus P; Petzer, Anél; Lourens, Anna C U

    2015-11-15

    Studies have shown that natural and synthetic chalcones (1,3-diphenyl-2-propen-1-ones) possess monoamine oxidase (MAO) inhibition activities. Of particular importance to the present study is a report that a series of furanochalcones acts as MAO-B selective inhibitors. Since the effect of heterocyclic substitution, other than furan (and more recently thiophene, piperidine and quinoline) on the MAO inhibitory properties of the chalcone scaffold remains unexplored, the aim of this study was to synthesise and evaluate further heterocyclic chalcone analogues as inhibitors of the human MAOs. For this purpose, heterocyclic chalcone analogues that incorporate pyrrole, 5-methylthiophene, 5-chlorothiophene and 6-methoxypyridine substitution were examined. Seven of the nine synthesised compounds exhibited IC50 values chalcones are reversible and competitive MAO inhibitors. 4h, however, may exhibit tight-binding to MAO-B, a property linked to its thiophene moiety. We conclude that high potency chalcones such as 4h represent suitable leads for the development of MAO-B inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.L.; Rajagopalan, K.V. (Duke Univ. Medical Center, Durham, NC (USA)); London, R.E. (National Institute of Environmental Health Science, Research Triangle Park, NC (USA))

    1989-09-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and {sup 31}P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well.

  13. Role of red grape polyphenols as antidiabetic agents

    Directory of Open Access Journals (Sweden)

    Kanti Bhooshan Pandey

    2014-09-01

    Full Text Available The worldwide incidence of diabetes mellitus has reached alarming proportions. Persistent hyperglycemia due to impaired insulin activity and/or insulin resistance inversely affects the retina, cerebrovascular system, kidney, peripheral limbs, and other parts of the body, which leads to life-threatening complications. The causal role of oxidative stress in the development and progression of diabetic complications has been emphasized. Polyphenols present in natural products have gained much attention in recent decades in preventive studies against diabetes-associated pathologies. In the present review, we provide a comparative update on the role of quercetin, myricetin, and resveratrol—the major polyphenols present in red grapes—in intervening with diabetic complications, and a brief highlight on the molecular mechanisms underlying oxidative stress mediated hyperglycemia.

  14. Correlations between polyphenolic composition and antioxidant activity of Venetian propolis.

    Science.gov (United States)

    Gregoris, Elena; Stevanato, Roberto

    2010-01-01

    Four propolis samples have been picked up in the Venetian region, from different orography and habitative density areas with the purpose to: (i) evaluate propolis' antioxidant activity, measured by inhibition of lipid peroxidation; (ii) determine the polyphenolic components--flavonoids and caffeic acid derivatives--which give antioxidant activity to propolis; (iii) verify the potential correlations between antioxidant activity, polyphenolic content, that has been determined by Folin-Ciocalteu, enzymatic, DPPH quenching, TEAC-like assays, and spectroscopic characteristics of propolis and (iv) correlate chemical structure and antioxidant efficacy of each of the major components. The possible localization of the lipophylic components of propolis into the phospholipidic bilayer by thermal analysis (DSC) and spin label EPR techniques has also been investigated. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Antioxidant activity of polyphenols from green and toasted mate tea.

    Science.gov (United States)

    Coentrão, Patricia de Abreu Marques; Teixeira, Valéria Laneuville; Netto, Annibal Duarte Pereira

    2011-05-01

    The production and distribution of toasted mate tea in Brazil has increased, which has resulted in its greater consumption. Mate tea is obtained by roasting non-fermented erva-mate in order to produce toasted erva-mate or toasted mate tea. However, although the product is much appreciated, studies of its chemical composition and the concentration of polyphenols, particularly flavonols present in toasted mate tea, are few and often controversial. This paper elucidates some misunderstandings involving the nomenclature of erva-mate and toasted mate, and mainly provides an overview of the composition of polyphenols and antioxidant capacity of toasted mate tea and its raw material, erva-mate, in comparison with other teas, the compositions of which were found in the literature.

  16. Curcumin: a Polyphenol with Molecular Targets for Cancer Control.

    Science.gov (United States)

    Qadir, Muhammad Imran; Naqvi, Syeda Tahira Qousain; Muhammad, Syed Aun

    2016-01-01

    Curcumin, is a polyphenol from Curcuma longa (turmeric plant), is a polyphenol that belongs to the ginger family which has long been used in Ayurveda medicines to treat various diseases such as asthma, anorexia, coughing, hepatic diseases, diabetes, heart diseases, wound healing and Alzheimer's. Various studies have shown that curcumin has anti-infectious, anti-inflammatory, anti-oxidant, hepatoprotective, thrombosuppressive, cardio protective, anti-arthritic, chemo preventive and anti-carcinogenic activities. It may suppress both initiation and progression stages of cancer. Anticancer activity of curcumin is due to negative regulation of inflammatory cytokines, transcription factors, protein kinases, reactive oxygen species (ROS) and oncogenes. This review focuses on the different targets of curcumin to treat cancer.

  17. Cytochemical localization of catalase and several hydrogen peroxide-producing oxidases in the nucleoids and matrix of rat liver peroxisomes

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.E.

    1979-01-01

    The distribution of catalase, amino acid oxidase, α-hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based

  18. Microwave-assisted water extraction of green tea polyphenols.

    Science.gov (United States)

    Nkhili, Ezzohra; Tomao, Valerie; El Hajji, Hakima; El Boustani, Es-Seddik; Chemat, Farid; Dangles, Olivier

    2009-01-01

    Green tea, a popular drink with beneficial health properties, is a rich source of specific flavanols (polyphenols). There is a special interest in the water extraction of green tea polyphenols since the composition of the corresponding extracts is expected to reflect the one of green tea infusions consumed worldwide. To develop a microwave-assisted water extraction (MWE) of green tea polyphenols. MWE of green tea polyphenols has been investigated as an alternative to water extraction under conventional heating (CWE). The experimental conditions were selected after consideration of both temperature and extraction time. The efficiency and selectivity of the process were determined in terms of extraction time, total phenolic content, chemical composition (HPLC-MS analysis) and antioxidant activity of the extracts. By MWE (80 degrees C, 30 min), the flavanol content of the extract reached 97.46 (+/- 0.08) mg of catechin equivalent/g of green tea extract, vs. only 83.06 (+/- 0.08) by CWE (80 degrees C, 45 min). In particular, the concentration of the most bioactive flavanol EGCG was 77.14 (+/- 0.26) mg of catechin equivalent/g of green tea extract obtained by MWE, vs 64.18 (+/- 0.26) mg/g by CWE. MWE appears more efficient than CWE at both 80 and 100 degrees C, particularly for the extraction of flavanols and hydroxycinnamic acids. Although MWE at 100 degrees C typically affords higher yields in total phenols, MWE at 80 degrees C appears more convenient for the extraction of the green tea-specific and chemically sensitive flavanols.

  19. Polyphenol Concentrate from Kazakhstan Cabernet Sauvignon Collection of Grapes

    OpenAIRE

    Zarina Shulgau; Vladislav Tritek; Alexander Gulyaev; Gulsim Adilgozhina; Talgat Nurgozhin

    2014-01-01

    Introduction. Nowadays, most of the research in the field of gerontology is focused on the effects of the grape polyphenols. In particular, resveratrol has been shown to increase life expectancy of various living organisms, including mammals. Resveratrol also plays an important role in cancer prevention and decreases the risk of developing cardiovascular disease. In our research, we proposed the development of the therapeutic product from Cabernet Sauvignon grapes that would exhibit the benef...

  20. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties.

    Science.gov (United States)

    Noratto, Giuliana D; Bertoldi, Michele C; Krenek, Kimberley; Talcott, Stephen T; Stringheta, Paulo C; Mertens-Talcott, Susanne U

    2010-04-14

    Many polyphenolics contained in mango have shown anticancer activity. The objective of this study was to compare the anticancer properties of polyphenolic extracts from several mango varieties (Francis, Kent, Ataulfo, Tommy Atkins, and Haden) in cancer cell lines, including Molt-4 leukemia, A-549 lung, MDA-MB-231 breast, LnCap prostate, and SW-480 colon cancer cells and the noncancer colon cell line CCD-18Co. Cell lines were incubated with Ataulfo and Haden extracts, selected on the basis of their superior antioxidant capacity compared to the other varieties, where SW-480 and MOLT-4 were statistically equally most sensitive to both cultivars followed by MDA-MB-231, A-549, and LnCap in order of decreasing efficacy as determined by cell counting. The efficacy of extracts from all mango varieties in the inhibition of cell growth was tested in SW-480 colon carcinoma cells, where Ataulfo and Haden demonstrated superior efficacy, followed by Kent, Francis, and Tommy Atkins. At 5 mg of GAE/L, Ataulfo inhibited the growth of colon SW-480 cancer cells by approximately 72% while the growth of noncancer colonic myofibroblast CCD-18Co cells was not inhibited. The growth inhibition exerted by Ataulfo and Haden polyphenolics in SW-480 was associated with an increased mRNA expression of pro-apoptotic biomarkers and cell cycle regulators, cell cycle arrest, and a decrease in the generation of reactive oxygen species. Overall, polyphenolics from several mango varieties exerted anticancer effects, where compounds from Haden and Ataulfo mango varieties possessed superior chemopreventive activity.