WorldWideScience

Sample records for intracellular calcium increase

  1. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Bjerrum, Poul J; Jessen, Torben E

    2011-01-01

    BACKGROUND The vitamin D receptor (VDR) is expressed in human spermatozoa, and VDR-knockout mice and vitamin D (VD) deficiency in rodents results in impaired fertility, low sperm counts and a low number of motile spermatozoa. We investigated the role of activated VD (1,25(OH)(2)D(3)) in human...... spermatozoa and whether VD serum levels are associated with semen quality. METHODS Cross-sectional association study of semen quality and VD serum level in 300 men from the general population, and in vitro studies on spermatozoa from 40 men to investigate the effects of VD on intracellular calcium, sperm......M). 1,25(OH)(2)D(3) increased intracellular calcium concentration in human spermatozoa through VDR-mediated calcium release from an intracellular calcium storage, increased sperm motility and induced the acrosome reaction in vitro. CONCLUSIONS 1,25(OH)(2)D(3) increased intracellular calcium...

  2. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    was inhibited by buffering of intracellular calcium with BAPTA, by the antioxidant N-acetylcysteine and by uncoupling of mitochondrial oxidative phosphorylation from respiration with CCCP. These results indicate that Cd generate a prompt initiation of ROS production from mitochondria due to an increase......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... dynamics in living cells in response to hormonal signal events in the A6 cell culture. A6 cells have a divalent cation-sensing receptor (the extracellular calcium receptor) that can be stimulated with cadmium (Cd) and thereby induce a fast and transient liberation of calcium from intracellular stores, due...

  3. 3-Methylcholanthrene inhibits lymphocyte proliferation and increases intracellular calcium levels in common carp (Cyprinus carpio L)

    International Nuclear Information System (INIS)

    Reynaud, S.; Duchiron, C.; Deschaux, P.

    2003-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. Many authors have focused on macrophage activities in fish exposed to PAHs. However, fewer studies have reported decrease in specific immunity in such fish. We investigated the intracellular mechanisms by which the 3-methylcholanthrene (3-MC) decreased lymphocyte proliferation in carp. T- and B-lymphocyte proliferation induced by Concanavalin A (Con A) and lipopolysaccharide (LPS) were inhibited by 3-MC (0.5-50 μM). 3-MC also produced a rapid and a sustained increase in intracellular calcium concentration ([Ca 2+ ] i ) (2 h minimum). However, the cytochrome P450 1A and Ah receptor inhibitor, α-naphtoflavone (a-NF), also inhibited lymphocyte proliferation and did not reverse the effects of 3-MC. Moreover, since a-NF and 3-MC increased [Ca 2+ ] i and inhibited lymphocyte proliferation it was possible that calcium release played a role in 3-MC-inhibited lymphocyte proliferation. The rise in [Ca 2+ ] i induced by 3-MC was potentiated by the inhibitor of the endoplasmic reticulum calcium ATPases, thapsigargin. Treating cells with 3-MC decreased calcium mobilization caused by thapsigargin. These results suggest that 3-MC acts on the endoplasmic reticulum, perhaps directly on calcium ATPases, to increase intracellular calcium levels in carp leucocytes

  4. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production...

  5. Nicotine-induced embryonic malformations mediated by apoptosis from increasing intracellular calcium and oxidative stress.

    Science.gov (United States)

    Zhao, Zhiyong; Reece, E Albert

    2005-10-01

    Tobacco smoking by women during pregnancy increases the risk of congenital birth defects in the infants. Among the smoke products, nicotine is believed to be the major teratogenic factor that perturbs embryonic development. However, the role of nicotine in embryonic malformations has not been addressed, and the mechanisms by which nicotine affects embryonic development remain to be delineated. To investigate the effects of nicotine on early embryogenesis, murine embryos at embryonic day (E) 8.5 were dissected out of the uteri, cultured in a roller bottle system, and treated with nicotine (0.6-6 microM) or vehicle. Embryonic morphogenesis and growth were examined in terms of structural morphology and crown/rump length, respectively. Programmed cell death (apoptosis) was assessed using LysoTracker Red staining of whole mount embryos and TUNEL assay of tissue sections. Changes in intracellular calcium concentration ([Ca2+]i) and reactive oxygen species (ROS) production were assessed using fluorescent dyes (Flu-4, AM; H2DCFDA, respectively) under a confocal microscope. To further investigate the role of intracellular calcium and ROS in nicotine-induced embryopathy, embryos were treated with BAPTA-AM (2 microM) to inhibit [Ca2+]i elevation and ascorbic acid (vitamin C; 100 microg/ml) to scavenge ROS in presence of nicotine (6 microM). The embryos treated with nicotine in 3-6 microM were smaller than those treated with vehicle. Most of the embryos had open neural tube in the anterior (brain) regions. The embryos treated with 6 microM nicotine also exhibited severe defects in the posterior trunk, resembling caudal dysplasia. Excessive apoptosis was observed in the deformed structures. Significant increases in [Ca2+]i and ROS were seen in the tissues that had higher levels of apoptosis. Furthermore, inhibition of [Ca2+]i and scavenging of ROS significantly reduced embryonic malformation and apoptotic rates in the embryos. Nicotine affects embryonic development in a

  6. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins

    OpenAIRE

    Lauckner, Jane E.; Hille, Bertil; Mackie, Ken

    2005-01-01

    Central nervous system responses to cannabis are primarily mediated by CB1 receptors, which couple preferentially to Gi/o G proteins. Here, we used calcium photometry to monitor the effect of CB1 activation on intracellular calcium concentration. Perfusion with 5 μM CB1 aminoalkylindole agonist, WIN55,212-2 (WIN), increased intracellular calcium by several hundred nanomolar in human embryonic kidney 293 cells stably expressing CB1 and in cultured hippocampal neurons. The increase was blocked ...

  7. p53 increases intra-cellular calcium release by transcriptional regulation of calcium channel TRPC6 in GaQ3-treated cancer cells.

    Directory of Open Access Journals (Sweden)

    Esha Madan

    Full Text Available p53 and calcium signaling are inter-dependent and are known to show both synergistic and antagonistic effects on each other in the cellular environment. However, no molecular mechanism or cellular pathway is known which shows direct regulation between these important cellular signaling molecules. Here we have shown that in cancer cells treated with anti-neoplastic drug GaQ3, p53, there is an increase in intracellular calcium levels by transcriptional regulation of a novel calcium channel gene TRPC6. p53 directly binds to a 22 bp response element in the TRPC6 gene promoter and increase its mRNA and protein expression. Over-expression of TRPC6 results in calcium-dependent apoptotic death and activation of apoptotic genes in a variety of cancer cells. This research work shows that p53 and its transcriptional activity is critical in regulation of calcium signaling and an increase in the intracellular calcium level might be one of the anti-cancer strategies to induce apoptosis in cancer cells.

  8. p53 increases intra-cellular calcium release by transcriptional regulation of calcium channel TRPC6 in GaQ3-treated cancer cells.

    Science.gov (United States)

    Madan, Esha; Gogna, Rajan; Keppler, Bernhard; Pati, Uttam

    2013-01-01

    p53 and calcium signaling are inter-dependent and are known to show both synergistic and antagonistic effects on each other in the cellular environment. However, no molecular mechanism or cellular pathway is known which shows direct regulation between these important cellular signaling molecules. Here we have shown that in cancer cells treated with anti-neoplastic drug GaQ3, p53, there is an increase in intracellular calcium levels by transcriptional regulation of a novel calcium channel gene TRPC6. p53 directly binds to a 22 bp response element in the TRPC6 gene promoter and increase its mRNA and protein expression. Over-expression of TRPC6 results in calcium-dependent apoptotic death and activation of apoptotic genes in a variety of cancer cells. This research work shows that p53 and its transcriptional activity is critical in regulation of calcium signaling and an increase in the intracellular calcium level might be one of the anti-cancer strategies to induce apoptosis in cancer cells.

  9. Acanthamoeba castellanii metabolites increase the intracellular calcium level and cause cytotoxicity in wish cells.

    Science.gov (United States)

    Mattana, A; Bennardini, F; Usai, S; Fiori, P L; Franconi, F; Cappuccinelli, P

    1997-08-01

    Previous studies have shown that trophozoites of the pathogenic free-living amoeba Acanthamoeba castellanii rapidly lyse a variety of cells in vitro. However, the role played by cytolitic molecules that may participate in Acanthamoebal cytopathogenicity has yet to be completely elucidated. The aim of this work was to study whether soluble molecules released by A. castellanii trophozoites could induce cytopathic effect in human epithelial cells in vitro. The results obtained indicate that A. castellanii trophozoites constitutively elaborate and release soluble factors that immediately elicit a cytosolic free-calcium increase in target cells. This phenomenon is induced by low molecular weight amoebic metabolites and depends on a transmembrane influx of extracellular calcium. Morphological changes, cytoskeletal damage, cell death and cytolysis followed the elevation of cytosolic free-calcium levels. Calcium ions are very important for cell homeostasis, in fact, they control the functions of a variety of cellular responses, including secretion, cell proliferation and apoptosis. Our results suggest that the substained elevation of the cytosolic free-calcium in response to A. castellanii metabolites might play a fundamental role in target cell damage during Acanthamoeba infections.

  10. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells.

    Science.gov (United States)

    Klíma, Petr; Laňková, Martina; Vandenbussche, Filip; Van Der Straeten, Dominique; Petrášek, Jan

    2018-03-03

    Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO 3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO 3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca 2+ ) as shown by comparison of transport assays in Ca 2+ -rich and Ca 2+ -free buffers and upon treatment with inhibitors of plasma membrane Ca 2+ -permeable channels Al 3+ and ruthenium red, both abolishing the effect of AgNO 3 . Confocal microscopy of Ca 2+ -sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca 2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca 2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca 2+ -permeable channels at the plasma membrane.

  11. Inhibitory effect of donepezil on bradykinin-induced increase in the intracellular calcium concentration in cultured cortical astrocytes.

    Science.gov (United States)

    Makitani, Kouki; Nakagawa, Shota; Izumi, Yasuhiko; Akaike, Akinori; Kume, Toshiaki

    2017-05-01

    Donepezil is a potent and selective acetylcholinesterase inhibitor developed for the treatment of Alzheimer's disease. In the present study, we investigated the responses of astrocytes to bradykinin, an inflammatory mediator, and the effect of donepezil on these responses using cultured cortical astrocytes. Bradykinin induced a transient increase of intracellular calcium concentration ([Ca 2+ ] i ) in cultured astrocytes. Bradykinin-induced [Ca 2+ ] i increase was inhibited by the exposure to thapsigargin, which depletes Ca 2+ stores on endoplasmic reticulum, but not by the exclusion of extracellular Ca 2+ . Twenty four hours pretreatment of donepezil reduced the bradykinin-induced [Ca 2+ ] i increase. This reduction was inhibited not only by mecamylamine, a nAChR antagonist, but also by PI3K and Akt inhibitors. In addition, donepezil inhibited bradykinin-induced increase of the intracellular reactive oxygen species level in astrocytes. These results suggest that donepezil inhibits the inflammatory response induced by bradykinin via nAChR and PI3K-Akt pathway in astrocytes. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. Inhibitory effect of donepezil on bradykinin-induced increase in the intracellular calcium concentration in cultured cortical astrocytes

    Directory of Open Access Journals (Sweden)

    Kouki Makitani

    2017-05-01

    Full Text Available Donepezil is a potent and selective acetylcholinesterase inhibitor developed for the treatment of Alzheimer's disease. In the present study, we investigated the responses of astrocytes to bradykinin, an inflammatory mediator, and the effect of donepezil on these responses using cultured cortical astrocytes. Bradykinin induced a transient increase of intracellular calcium concentration ([Ca2+]i in cultured astrocytes. Bradykinin-induced [Ca2+]i increase was inhibited by the exposure to thapsigargin, which depletes Ca2+ stores on endoplasmic reticulum, but not by the exclusion of extracellular Ca2+. Twenty four hours pretreatment of donepezil reduced the bradykinin-induced [Ca2+]i increase. This reduction was inhibited not only by mecamylamine, a nAChR antagonist, but also by PI3K and Akt inhibitors. In addition, donepezil inhibited bradykinin-induced increase of the intracellular reactive oxygen species level in astrocytes. These results suggest that donepezil inhibits the inflammatory response induced by bradykinin via nAChR and PI3K-Akt pathway in astrocytes.

  13. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins.

    Science.gov (United States)

    Lauckner, Jane E; Hille, Bertil; Mackie, Ken

    2005-12-27

    Central nervous system responses to cannabis are primarily mediated by CB(1) receptors, which couple preferentially to G(i/o) G proteins. Here, we used calcium photometry to monitor the effect of CB(1) activation on intracellular calcium concentration. Perfusion with 5 microM CB(1) aminoalkylindole agonist, WIN55,212-2 (WIN), increased intracellular calcium by several hundred nanomolar in human embryonic kidney 293 cells stably expressing CB(1) and in cultured hippocampal neurons. The increase was blocked by coincubation with the CB(1) antagonist, SR141716A, and was absent in nontransfected human embryonic kidney 293 cells. The calcium rise was WIN-specific, being essentially absent in cells treated with other classes of cannabinoid agonists, including Delta(9)-tetrahydrocannabinol, HU-210, CP55,940, 2-arachidonoylglycerol, methanandamide, and cannabidiol. The increase in calcium elicited by WIN was independent of G(i/o), because it was present in pertussis toxin-treated cells. Indeed, pertussis toxin pretreatment enhanced the potency and efficacy of WIN to increase intracellular calcium. The calcium increases appeared to be mediated by G(q) G proteins and phospholipase C, because they were markedly attenuated in cells expressing dominant-negative G(q) or treated with the phospholipase C inhibitors U73122 and ET-18-OCH(3) and were accompanied by an increase in inositol phosphates. The calcium increase was blocked by the sarco/endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin, the inositol trisphosphate receptor inhibitor xestospongin D, and the ryanodine receptor inhibitors dantrolene and 1,1'-diheptyl-4,4'-bipyridinium dibromide, but not by removal of extracellular calcium, showing that WIN releases calcium from intracellular stores. In summary, these results suggest that WIN stabilizes CB(1) receptors in a conformation that enables G(q) signaling, thus shifting the G protein specificity of the receptor.

  14. Ciliary neurotrophic factor-treated astrocyte-conditioned medium increases the intracellular free calcium concentration in rat cortical neurons.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Min, Shengping; Wang, Hongtao; Wang, Xiaojing

    2016-04-01

    Ciliary neurotrophic factor (CNTF) is involved in the activation of astrocytes. A previous study showed that CNTF-treated astrocyte-conditioned medium (CNTF-ACM) contributed to the increase of the calcium current and the elevation of corresponding ion channels in cortical neurons. On this basis, it is reasonable to assume that CNTF-ACM may increase the intracellular free calcium concentration ([Ca 2+ ] i ) in neurons. In the present study, the effects of CNTF-ACM on [Ca 2+ ] i in rat cortical neurons were determined, and on this basis, the aim was to investigate the potential active ingredients in ACM that are responsible for this biological process. As expected, the data indicated that CNTF-ACM resulted in a clear elevation of [Ca 2+ ] i in neurons. Additionally, the fibroblast growth factor-2 (FGF-2) contained in the CNTF-ACM was found to participate in the upregulation of [Ca 2+ ] i . Taken together, CNTF induces the production of active factors (at least including FGF-2) released from astrocytes, which finally potentiate the increase of [Ca 2+ ] i in cortical neurons.

  15. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  16. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    Directory of Open Access Journals (Sweden)

    G. Albertoni

    2015-01-01

    Full Text Available Resveratrol (Resv is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA in immortalized human mesangial cells (ihMCs. ihMCs were preincubated with Resv (12.5 µM for 1 h and treated with UA (10 mg/dL for 6 or 12 h. The intracellular calcium concentration [Ca2+]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT and pre-pro endothelin-1 (ppET-1 mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII and endothelin-1 (ET-1 were assayed by ELISA. UA significantly increased [Ca2+]i. Pre-incubation with Resv significantly reduced the change in [Ca2+]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca2+]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

  17. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Albertoni, G.; Schor, N. [Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-10-24

    Resveratrol (Resv) is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA) in immortalized human mesangial cells (ihMCs). ihMCs were preincubated with Resv (12.5 µM) for 1 h and treated with UA (10 mg/dL) for 6 or 12 h. The intracellular calcium concentration [Ca{sup 2+}]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT) and pre-pro endothelin-1 (ppET-1) mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII) and endothelin-1 (ET-1) were assayed by ELISA. UA significantly increased [Ca{sup 2+}]i. Pre-incubation with Resv significantly reduced the change in [Ca{sup 2+}]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca{sup 2+}]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

  18. Is Increased Intracellular Calcium in Red Blood Cells a Common Component in the Molecular Mechanism Causing Anemia?

    Directory of Open Access Journals (Sweden)

    Laura Hertz

    2017-09-01

    Full Text Available For many hereditary disorders, although the underlying genetic mutation may be known, the molecular mechanism leading to hemolytic anemia is still unclear and needs further investigation. Previous studies revealed an increased intracellular Ca2+ in red blood cells (RBCs from patients with sickle cell disease, thalassemia, or Gardos channelopathy. Therefore we analyzed RBCs' Ca2+ content from 35 patients with different types of anemia (16 patients with hereditary spherocytosis, 11 patients with hereditary xerocytosis, 5 patients with enzymopathies, and 3 patients with hemolytic anemia of unknown cause. Intracellular Ca2+ in RBCs was measured by fluorescence microscopy using the fluorescent Ca2+ indicator Fluo-4 and subsequent single cell analysis. We found that in RBCs from patients with hereditary spherocytosis and hereditary xerocytosis the intracellular Ca2+ levels were significantly increased compared to healthy control samples. For enzymopathies and hemolytic anemia of unknown cause the intracellular Ca2+ levels in RBCs were not significantly different. These results lead us to the hypothesis that increased Ca2+ levels in RBCs are a shared component in the mechanism causing an accelerated clearance of RBCs from the blood stream in channelopathies such as hereditary xerocytosis and in diseases involving defects of cytoskeletal components like hereditary spherocytosis. Future drug developments should benefit from targeting Ca2+ entry mediating molecular players leading to better therapies for patients.

  19. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium.

    Science.gov (United States)

    Wang, Hongbo; Wang, Xiaolong; Li, Yan; Yu, Hao; Wang, Changliang; Feng, Chunmei; Xu, Guohui; Chen, Jiajun; You, Jiabin; Wang, Pengfei; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2018-04-01

    It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.

  20. Neurosteroids block the increase in intracellular calcium level induced by Alzheimer’s β-amyloid protein in long-term cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Midori Kato-Negishi

    2008-03-01

    Full Text Available Midori Kato-Negishi1, Masahiro Kawahara21Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183- 8526, Japan; 2Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki 882-8508, JapanAbstract: The neurotoxicity of β-amyloid protein (AβP is implicated in the etiology of Alzheimer’s disease. We previously have demonstrated that AβP forms Ca2+-permeable pores on neuronal membranes, causes a marked increase in intracellular calcium level, and leads to neuronal death. Here, we investigated in detail the features of AβP-induced changes in intracellular Ca2+ level in primary cultured rat hippocampal neurons using a multisite Ca2+- imaging system with fura-2 as a fluorescent probe. Only a small fraction of short-term cultured hippocampal neurons (ca 1 week in vitro exhibited changes in intracellular Ca2+ level after AβP exposure. However, AβP caused an acute increase in intracellular Ca2+ level in long-term cultured neurons (ca 1 month in vitro. The responses to AβP were highly heterogeneous, and immunohistochemical analysis using an antibody to AβP revealed that AβP is deposited on some but not all neurons. Considering that the disruption of Ca2+ homeostasis is the primary event in AβP neurotoxicity, substances that protect neurons from an AβP-induced intracellular Ca2+ level increase may be candidates as therapeutic drugs for Alzheimer’s disease. In line with the search for such protective substances, we found that the preadministration of neurosteroids including dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone significantly inhibits the increase in intracellular calcium level induced by AβP. Our results suggest the possible significance of neurosteroids, whose levels are reduced in the elderly, in preventing AβP neurotoxicity

  1. Cadmium Induces Transcription Independently of Intracellular Calcium Mobilization

    Science.gov (United States)

    Tvermoes, Brooke E.; Bird, Gary S.; Freedman, Jonathan H.

    2011-01-01

    Background Exposure to cadmium is associated with human pathologies and altered gene expression. The molecular mechanisms by which cadmium affects transcription remain unclear. It has been proposed that cadmium activates transcription by altering intracellular calcium concentration ([Ca2+]i) and disrupting calcium-mediated intracellular signaling processes. This hypothesis is based on several studies that may be technically problematic; including the use of BAPTA chelators, BAPTA-based fluorescent sensors, and cytotoxic concentrations of metal. Methodology/Principal Finding In the present report, the effects of cadmium on [Ca2+]i under non-cytotoxic and cytotoxic conditions was monitored using the protein-based calcium sensor yellow cameleon (YC3.60), which was stably expressed in HEK293 cells. In HEK293 constitutively expressing YC3.60, this calcium sensor was found to be insensitive to cadmium. Exposing HEK293::YC3.60 cells to non-cytotoxic cadmium concentrations was sufficient to induce transcription of cadmium-responsive genes but did not affect [Ca2+]i mobilization or increase steady-state mRNA levels of calcium-responsive genes. In contrast, exposure to cytotoxic concentrations of cadmium significantly reduced intracellular calcium stores and altered calcium-responsive gene expression. Conclusions/Significance These data indicate that at low levels, cadmium induces transcription independently of intracellular calcium mobilization. The results also support a model whereby cytotoxic levels of cadmium activate calcium-responsive transcription as a general response to metal-induced intracellular damage and not via a specific mechanism. Thus, the modulation of intracellular calcium may not be a primary mechanism by which cadmium regulates transcription. PMID:21694771

  2. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  3. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  4. P2Y13 receptor-mediated rapid increase in intracellular calcium induced by ADP in cultured dorsal spinal cord microglia.

    Science.gov (United States)

    Zeng, Junwei; Wang, Gaoxia; Liu, Xiaohong; Wang, Chunmei; Tian, Hong; Liu, Aidong; Jin, Huan; Luo, Xiaomei; Chen, Yuanshou

    2014-11-01

    P2Y receptors have been implicated in the calcium mobilization by the response to neuroexcitatory substances in neurons and astrocytes, but little is known about P2Y receptors in microglia cells. In the present study, the effects of ADP on the intracellular calcium concentration ([Ca(2+)]i) in cultured dorsal spinal cord microglia were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescence indicator that could monitor real-time alterations of [Ca(2+)]i. Here we show that ADP (0.01-100 μM) causes a rapid increase in [Ca(2+)]i with a dose-dependent manner in cultured microglia. The action of ADP on [Ca(2+)]i was significantly blocked by MRS2211 (a selective P2Y13 receptor antagonist), but was unaffected by MRS2179 (a selective P2Y1 receptor antagonist) or MRS2395 (a selective P2Y12 receptor antagonist), which suggest that P2Y13 receptor may be responsible for ADP-evoked Ca(2+) mobilization in cultured microglia. P2Y13-evoked Ca(2+) response can be obviously inhibited by BAPTA-AM and U-73122, respectively. Moreover, removal of extracellular Ca(2+) (by EGTA) also can obvious suppress the Ca(2+) mobilization. These results means both intracellular calcium and extracellular calcium are potentially important mechanisms in P2Y13 receptor-evoked Ca(2+) mobilization. However, P2Y13 receptor-evoked Ca(2+) response was not impaired after CdCl2 and verapamil administration, which suggest that voltage-operated Ca(2+) channels may be not related with P2Y13-evoked Ca(2+) response. In addition, Ca(2+) mobilization induced by ADP was abolished by different store-operated Ca(2+) channels (SOCs) blocker, 2-APB (50 μM) and SKF-96365 (1 mM), respectively. These observations suggest that the activation of P2Y13 receptor might be involved in the effect of ADP on [Ca(2+)]i in cultured dorsal spinal cord microglia. Furthermore, our results raise a possibility that P2Y13 receptor activation causes Ca(2+) release from Ca(2+) store, which leads to the

  5. Intracellular calcium levels can regulate Importin-dependent nuclear import

    International Nuclear Information System (INIS)

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-01-01

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca 2+ on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery

  6. Intracellular sphingosine releases calcium from lysosomes

    Science.gov (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  7. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells

    Czech Academy of Sciences Publication Activity Database

    Klíma, Petr; Laňková, Martina; Vandenbussche, F.; Van Der Straeten, D.; Petrášek, Jan

    2018-01-01

    Roč. 37, č. 5 (2018), s. 809-818 ISSN 0721-7714 R&D Projects: GA ČR GA16-10948S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : Auxin * Calcium * Ethylene * Silver ions * Tobacco BY-2 cells * Transmembrane transport Subject RIV: ED - Physiology OBOR OECD: Cell biology Impact factor: 2.869, year: 2016

  8. FLIPR assays of intracellular calcium in GPCR drug discovery

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Bräuner-Osborne, Hans

    2009-01-01

    Fluorescent dyes sensitive to changes in intracellular calcium have become increasingly popular in G protein-coupled receptor (GPCR) drug discovery for several reasons. First of all, the assays using the dyes are easy to perform and are of low cost compared to other assays. Second, most non...

  9. Hexabromocyclododecane inhibits depolarization-induced increase in intracellular calcium levels and neurotransmitter release in PC12 cells.

    NARCIS (Netherlands)

    Dingemans, M.M.L.; Heusinkveld, H.J.; de Groot, A.; Bergman, A.; van den Berg, M.; Westerink, R.H.S.

    2009-01-01

    Environmental levels of the brominated flame retardant (BFR) hexabromocyclododecane (HBCD) have been increasing. HBCD has been shown to cause adverse effects on learning and behavior in mice, as well as on dopamine uptake in rat synaptosomes and synaptic vesicles. For other BFRs, alterations in the

  10. Resveratrol Interferes with Fura-2 Intracellular Calcium Measurements.

    Science.gov (United States)

    Kopp, Richard F; Leech, Colin A; Roe, Michael W

    2014-03-01

    Resveratrol, a naturally occurring polyphenol found in some fruits and especially in grapes, has been reported to provide diverse health benefits. Resveratrol's mechanism of action is the subject of many investigations, and some studies using the ratiometric calcium indicator Fura-2 suggest that it modulates cellular calcium responses. In the current study, contradictory cellular calcium responses to resveratrol applied at concentrations exceeding 10 μM were observed during in vitro imaging studies depending on the calcium indicator used, with Fura-2 indicating an increase in intracellular calcium while Fluo-4 and the calcium biosensor YC3.60 indicated no response. When cells loaded with Fura-2 were treated with 100 μM resveratrol, excitation at 340 nm resulted in a large intensity increase at 510 nm, but the expected concurrent decline with 380 nm excitation was not observed. Pre-treatment of cells with the calcium chelator BAPTA-AM did not prevent a rise in the 340/380 ratio when resveratrol was present, but it did prevent an increase in 340/380 when ATP was applied, suggesting that the resveratrol response was an artifact. Cautious data interpretation is recommended from imaging experiments using Fura-2 concurrently with resveratrol in calcium imaging experiments.

  11. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Charles Godbout

    Full Text Available Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.

  12. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that AP

  13. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.; Gandia, Luis; Escubedo, Elena; Pubill, David

    2010-01-01

    Previous work by our group demonstrated that homomeric α7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca 2+ increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific α7 agonist PNU 282987 with IC 50 values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human α7 but not with α4β2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and α-bungarotoxin but not by dihydro-β-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on α7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca 2+ release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca 2+ levels and induced an increase in α-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and α7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca 2+ -dependent enzymes such as

  14. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism.

    Science.gov (United States)

    Petrou, Terry; Olsen, Hervør L; Thrasivoulou, Christopher; Masters, John R; Ashmore, Jonathan F; Ahmed, Aamir

    2017-02-01

    Free intracellular calcium ([Ca 2+ ] i ), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca 2+ ] i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca 2+ ] i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca 2+ ] i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca 2+ ] i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca 2+ ] i in response to Ami, Fur, Lox, and Min was reduced significantly (P calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca 2+ ] i We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. Copyright © 2017 by The Author(s).

  15. Role of intracellular calcium in cellular volume regulation

    International Nuclear Information System (INIS)

    Wong, S.M.; Chase, H.S. Jr.

    1986-01-01

    We investigated the role of intracellular calcium in epithelial cell volume regulation using cells isolated from the toad urinary bladder. A suspension of cells was prepared by treatment of the bladder with collagenase followed by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid. The cells retained their ion-transporting capabilities: ouabain (1 mM) and amiloride (10 microM) inhibited cellular uptake of 86 Rb and 22 Na, respectively. Using a Coulter counter to measure cellular volume, we found that we could swell cells either by reducing the extracellular osmolality or by adding the permeant solute urea (45 mM) isosmotically. Under both conditions, cells first swelled and then returned to their base-line volume, in spite of the continued presence of the stimulus to swell. Volume regulation was inhibited when cells were swelled at low extracellular [Ca] (100 nM) and was retarded in cells preloaded with the calcium buffer quin 2. Swelling increased the intracellular free calcium concentration ([Ca]i), as measured by quin 2 fluorescence: [Ca]i increased 35 +/- 9 nM (n = 6) after hypotonic swelling and 42 +/- 3 nM (n = 3) after urea swelling. Reducing extracellular [Ca] to less than 100 nM prevented the swelling-induced increase in [Ca]i, suggesting that the source of the increase in [Ca]i was extracellular. This result was confirmed in measurements of cellular uptake of 45Ca: the rate of uptake was significantly higher in swollen cells compared with control (1.1 +/- 0.2 vs. 0.4 +/- 0.1 fmol . cell-1 X 5 min-1). Our experiments provide the first demonstration that cellular swelling increases [Ca]i. This increase is likely to play a critical role in cellular volume regulation

  16. Calcium, channels, intracellular signaling and autoimmunity.

    Science.gov (United States)

    Izquierdo, Jorge-Hernán; Bonilla-Abadía, Fabio; Cañas, Carlos A; Tobón, Gabriel J

    2014-01-01

    Calcium (Ca²⁺) is an important cation able to function as a second messenger in different cells of the immune system, particularly in B and T lymphocytes, macrophages and mastocytes, among others. Recent discoveries related to the entry of Ca²⁺ through the store-operated calcium entry (SOCE) has opened a new investigation area about the cell destiny regulated by Ca²⁺ especially in B and T lymphocytes. SOCE acts through calcium-release-activated calcium (CRAC) channels. The function of CRAC depends of two recently discovered regulators: the Ca²⁺ sensor in the endoplasmic reticulum or stromal interaction molecule (STIM-1) and one subunit of CRAC channels called Orai1. This review focuses on the role of Ca²⁺ signals in B and T lymphocytes functions, the signalling pathways leading to Ca²⁺ influx, and the relationship between Ca²⁺ signals and autoimmune diseases. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  17. Transport phenomena in intracellular calcium dynamics driven by non-Gaussian noises

    Science.gov (United States)

    Lin, Ling; Duan, Wei-Long

    2018-02-01

    The role of non-Gaussian noises on transport characteristic of Ca2+ in intracellular calcium oscillation system driven by non-Gaussian noises is studied by means of second-order stochastic Runge-Kutta type algorithm. The statistical properties of velocity of cytosolic and calcium store's Ca2+ concentration are simulated. The results exhibit, as parameter p(which is used to control the degree of the departure from the non-Gaussian noise and Gaussian noise.)increases, calcium in cytosol shows positive, zero, and negative transport, but in calcium store always hold positive value. As non-Gaussian noises increase, calcium in cytosol appears negative and zero transport, and in calcium store appears positive transport. As correlation time of non-Gaussian noises varies, calcium in both cytosol and calcium store occur negative, zero, and positive transport.

  18. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    OpenAIRE

    Petrou, Terry; Olsen, Herv?r L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.; Ahmed, Aamir

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including the cell membrane potential, proliferation and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We sho...

  19. Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises.

    Science.gov (United States)

    Duan, Wei-Long; Zeng, Chunhua

    2016-04-28

    Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca(2+) is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store's Ca(2+) concentration, the results exhibit: (i) intracellular calcium dynamics's time coherence disappears and stability strengthens as τ → 0.1s; (ii) for the case of τ short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store.

  20. Effect of calcium electroporation in combination with metformin in vivo and correlation between viability and intracellular ATP level after calcium electroporation in vitro

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gehl, Julie

    2017-01-01

    was limited when investigated in a 3D in vitro spheroid model. We aimed to investigate the effect of calcium electroporation in combination with metformin, a drug that affects intracellular ATP level. We also aimed to study the relationship between the viability and intracellular ATP levels after calcium...... electroporation in vitro. METHODS: In this study, we investigated the effect of calcium electroporation with metformin on NMRI-Foxn1nu mice in vivo on tumor size, survival, and intracellular ATP. We further investigated viability and intracellular ATP level in vitro after calcium electroporation in two human...... electroporation significantly reduced the size and ATP level of bladder cancer tumors treated in vivo but no increased effect of metformin combined with calcium electroporation was shown on neither tumor size, survival, nor ATP level. Calcium electroporation in vitro significantly decreased viability compared...

  1. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Directory of Open Access Journals (Sweden)

    Maria Consolata Miletta

    Full Text Available Butyrate is a short-chain fatty acid (SCFA closely related to the ketone body ß-hydroxybutyrate (BHB, which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR, GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  2. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Science.gov (United States)

    Miletta, Maria Consolata; Petkovic, Vibor; Eblé, Andrée; Ammann, Roland A; Flück, Christa E; Mullis, Primus-E

    2014-01-01

    Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  3. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients.

    Science.gov (United States)

    Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao

    2017-10-01

    Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Directory of Open Access Journals (Sweden)

    Stefanie Ryglewski

    2007-04-01

    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  5. Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients

    Science.gov (United States)

    Espino, Javier; Mediero, Matías; Lozano, Graciela M; Bejarano, Ignacio; Ortiz, Águeda; García, Juan F; Pariente, José A; Rodríguez, Ana B

    2009-01-01

    Background Asthenozoospermia is one of the most common findings present in infertile males characterized by reduced or absent sperm motility, but its aetiology remains unknown in most cases. In addition, calcium is one of the most important ions regulating sperm motility. In this study we have investigated the progesterone-evoked intracellular calcium signal in ejaculated spermatozoa from men with normospermia or asthenozoospermia. Methods Human ejaculates were obtained from healthy volunteers and asthenospermic men by masturbation after 4–5 days of abstinence. For determination of cytosolic free calcium concentration, spermatozoa were loaded with the fluorescent ratiometric calcium indicator Fura-2. Results Treatment of spermatozoa from normospermic men with 20 micromolar progesterone plus 1 micromolar thapsigargin in a calcium free medium induced a typical transient increase in cytosolic free calcium concentration due to calcium release from internal stores. Similar results were obtained when spermatozoa were stimulated with progesterone alone. Subsequent addition of calcium to the external medium evoked a sustained elevation in cytosolic free calcium concentration indicative of capacitative calcium entry. However, when progesterone plus thapsigargin were administered to spermatozoa from patients with asthenozoospermia, calcium signal and subsequent calcium entry was much smaller compared to normospermic patients. As expected, pretreatment of normospermic spermatozoa with both the anti-progesterone receptor c262 antibody and with progesterone receptor antagonist RU-38486 decreased the calcium release induced by progesterone. Treatment of spermatozoa with cytochalasin D or jasplakinolide decreased the calcium entry evoked by depletion of internal calcium stores in normospermic patients, whereas these treatments proved to be ineffective at modifying the calcium entry in patients with asthenozoospermia. Conclusion Our results suggest that spermatozoa from

  6. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus.

    Science.gov (United States)

    Sole, Sushant Shivdas; Srinivasan, B P

    2012-08-01

    Tamarindus indica Linn. has been in use for a long time in Asian food and traditional medicine for different diseases including diabetes and obesity. However, the molecular mechanisms of these effects have not been fully understood. In view of the multidimensional activity of tamarind seeds due to their having high levels of polyphenols and flavonoids, we hypothesized that the insulin mimetic effect of aqueous tamarind seed extract (TSE) might increase glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family and sterol regulatory element-binding proteins (SREBP) 1c messenger RNA (mRNA) in the liver. Daily oral administration of TSE to streptozotocin (STZ)-induced (90 mg/kg intraperitoneally) type 2 diabetic male Wistar rats at different doses (120 and 240 mg/kg body weight) for 4 weeks showed positive correlation with intracellular calcium and insulin release in isolated islets of Langerhans. Tamarind seed extract supplementation significantly improved the GLUT-2 protein and SREBP-1c mRNA expression in the liver and GLUT-4 protein and mRNA expression in the skeletal muscles of diabetic rats. The elevated levels of serum nitric oxide (NO), glycosylated hemoglobin level (hemoglobin (A1c)) and tumor necrosis factor α (TNF-α) decreased after TSE administration. Immunohistochemical findings revealed that TSE abrogated STZ-induced apoptosis and increased β-cell neogenesis, indicating its effect on islets and β-cell mass. In conclusion, it was found that the antidiabetic effect of TSE on STZ-induced diabetes resulted from complex mechanisms of β-cell neogenesis, calcium handling, GLUT-2, GLUT-4, and SREBP-1c. These findings show the scope for formulating a new herbal drug for diabetes therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo.

    Science.gov (United States)

    Steinhardt, R A; Alderton, J

    1988-03-24

    Cytosolic free calcium has recently been implicated in the regulation of mitosis in plant and animal cells. We have previously found correlations between increases in the levels of intracellular free calcium [Ca2+]i and visible transitions of structure at nuclear envelope breakdown (NEBD) and the onset of anaphase during mitosis in sea urchin embryos and tissue culture cells. To go beyond correlations it is necessary to manipulate [Ca2+]i, and in sea urchin embryos this requires the injection of calcium-chelator buffer solutions as the changes in free calcium in the cell cycle are dependent on intracellular stores. We report here that blocking the increase in [Ca2+]i which just precedes NEBD prevents this from taking place and halts mitosis. Subsequent injections which momentarily increase [Ca2+]i, or a natural recovery of the higher calcium levels, result in NEBD and the successful continuation of mitosis. Similarly, artificially increasing calcium by early injections results in early NEBD. We conclude that the increase in [Ca2+]i preceding NEBD is an essential regulatory step required for entry into mitosis.

  8. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  9. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.

    Science.gov (United States)

    Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.

  10. [Effects of grape procyanidins on the concentration of intracellular calcium and the proliferation activity of the hepatoma cells].

    Science.gov (United States)

    Zhong, Jin-Yi; Li, Jie; Liu, Hui; Zhang, She-Hua

    2006-09-01

    To investigate the effects of grape procyanidins (GPC) on concentration of intracellular calcium and the proliferation activity of normal hepatic cells and the hepatic cell injuried by alcohol. Rat hepatic cells and the cell injuried by alcohol were cultured with different concentration of GPC. The proliferation activity and concentration of intracellular calcium of the hepatic cells were measured by MTT assay and Fura-2 fluorescence methods. (1) The concentration of intracellular calcium of the normal control group and alcohol injury group were (108.26 +/- 14.17) and (651.24 +/- 47.95) nmol/L respectively, and that of both the high and the medium dose GPC groups were lower than the alcohol injury group, all differences are significant (P calcium in the normal hepatic cells treated with GPC is the group with calcium of extracellular fluid > the group free from calcium of extracellular fluid > the normal control group. (3) The proliferation activity of the high and the medium dose GPC group of normal hepatic cell and the cell injuried by alcohol were higher than the normal control group and alcohol injury group, all differences are significant (P calcium concentration of normal hepatic cell by increasing extracellular fluidca introaffluxion and release from calcium pool, and enhance the proliferation activity of hepatic cells. It also can inhibit the abnormal rise (overload) of intracellular calcium concentration and the proliferation activity injury of hepatic cell induced by alcohol.

  11. Opposing Roles of Calcium and Intracellular ATP on Gating of the Purinergic P2X2 Receptor Channel

    Directory of Open Access Journals (Sweden)

    Milos B. Rokic

    2018-04-01

    Full Text Available P2X2 receptors (P2X2R exhibit a slow desensitization during the initial ATP application and a progressive, calcium-dependent increase in rates of desensitization during repetitive stimulation. This pattern is observed in whole-cell recordings from cells expressing recombinant and native P2X2R. However, desensitization is not observed in perforated-patched cells and in two-electrode voltage clamped oocytes. Addition of ATP, but not ATPγS or GTP, in the pipette solution also abolishes progressive desensitization, whereas intracellular injection of apyrase facilitates receptor desensitization. Experiments with injection of alkaline phosphatase or addition of staurosporine and ATP in the intracellular solution suggest a role for a phosphorylation-dephosphorylation in receptor desensitization. Mutation of residues that are potential phosphorylation sites identified a critical role of the S363 residue in the intracellular ATP action. These findings indicate that intracellular calcium and ATP have opposing effects on P2X2R gating: calcium allosterically facilitates receptor desensitization and ATP covalently prevents the action of calcium. Single cell measurements further revealed that intracellular calcium stays elevated after washout in P2X2R-expressing cells and the blockade of mitochondrial sodium/calcium exchanger lowers calcium concentrations during washout periods to basal levels, suggesting a role of mitochondria in this process. Therefore, the metabolic state of the cell can influence P2X2R gating.

  12. The decompensated detrusor I: the effects of bladder outlet obstruction on the use of intracellular calcium stores.

    Science.gov (United States)

    Rohrmann, D; Levin, R M; Duckett, J W; Zderic, S A

    1996-08-01

    As in other smooth muscle groups, extracellular calcium influx as well as the release of calcium from intracellular storage sites or sarcoplasmic reticulum occur in response to receptor stimulation. The relative participation of extracellular influx versus intracellular release has recently been shown to be influenced by developmental stage and obstruction. Partial bladder outlet obstruction results in marked hypertrophy of the bladder and produces alterations in contractile function. To understand better how this contractile dysfunction after outlet obstruction is influenced by intracellular calcium handling we tested the effects of 2 drugs with known effects on the sarcoplasmic reticulum. We evaluated ryanodine, which blocks the release of calcium from the sarcoplasmic reticulum, and thapsigargin, which blocks the ability of the sarcoplasmic reticulum to pump cytosolic calcium back into the storage sites. Rabbit bladders were obstructed for different periods, after which detrusor muscle strips were harvested and contractile performance was evaluated in the absence and presence of ryanodine and thapsigargin. In the early phases of outlet obstruction the release of intracellular calcium increased significantly. With prolonged obstruction and detrusor decompensation the intracellular storage sites lost the ability to contribute to the generation of contractile force. Alterations in the calcium handling ability of the smooth muscle cell appear to have an important role in the process of decompensation of bladder function in infravesical obstruction.

  13. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain.

    Directory of Open Access Journals (Sweden)

    Pasupathi Sundaramoorthy

    Full Text Available Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+ supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa, its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+ levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain in a dose-dependent manner. Phosphorylated FAK (p-FAK was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.

  14. Effects of arachnotoxin on intracellular pH and calcium in human spermatozoa.

    Science.gov (United States)

    Romero, Fernando; Cunha, Maria Adelaide; Sanchez, Raul; Ferreira, Alice Teixeira; Schor, Nestor; Oshiro, Maria Etsuko Miyamoto

    2007-06-01

    To determine the effect of arachnotoxin (ATx), a venom extracted from the Chilean spider Latrodectus mactans, on intracellular calcium ([Ca(2+)](i)) and pH (pH(i)) in capacitated human spermatozoa. Spermatozoa were collected from fertile adult men (n = 8). Mobile spermatozoa were collected by the "swim up" technique and stimulated with the crude extract of ATx and with progesterone (P). Hospital of the Federal University of São Paulo, São Paulo, Brazil. [Ca(2+)](i) was measured in fura2-AM-loaded spermatozoa, and pH(i) was measured in spermatozoa loaded with the pH-sensitive dye [(2',7')-bis (carboxymethyl)-(5,6)-carboxyfluorescein]-AM (BCECF). The ATx and P induced a biphasic change in [Ca(2+)](i) consisting of a peak followed by a small but sustained elevation. The response to ATx was greatly reduced by pretreatment with P. The ATx caused intracellular acidification, whereas P induced alkalinization. Blockade of the NA(+)/H(+) exchanger with ethylisopropylamiloride (EIPA) sharply increased ATx-induced acidification. Arachnotoxin increased [Ca(2+)](i) through the opening of calcium channels and release of calcium from intracellular stores. The ATx reduced pH(i) in human sperm, possibly by inhibiting the Na(+)/H(+) exchanger.

  15. Intracellular calcium stores in beta-escin skinned rat and guinea-pig bladders.

    Science.gov (United States)

    Tugba Durlu-Kandilci, N; Brading, Alison F

    2007-07-02

    Intracellular Ca2+ stores in rat and guinea-pig bladders and taenia caecum were studied in beta-escin skinned smooth muscle strips. 30 min of skinning with 40 microM and 80 microM beta-escin were the best parameters found to obtain good calcium response curves (10(-7)-10(-4) M) in rat and guinea pig, respectively. Calmodulin (1 microM) increased the calcium contractions significantly. pCa 6 was used to load intracellular stores and application of carbachol (50 microM) in all tissues then only contracted the tissues in the presence of guanosine-5'-triphosphate (GTP; 100 microM). Inositol triphosphate (IP3; 50 microM), applied after pCa 6, contracted all tissues. Carbachol added after IP3 or heparin (1 mg/ml) no longer caused a contraction in any of them. In bladders, caffeine (30 mM) but not ryanodine (5 microM) prevented the subsequent carbachol contraction. A slowly rising contraction with carbachol was elicited after caffeine (30 mM) or ryanodine (5 microM) in the taenia and after ryanodine in the bladders. Caffeine (30 mM) suppressed the calcium response curves in all tissues. Procaine (30 mM) blocked the carbachol (50 microM) contractions in bladders but not in taenia. These results suggest that calcium induced calcium release (CICR) and IP3 induced calcium release (IICR) release calcium from a common store in bladder but two different compartments in taenia.

  16. Cannabinoid Receptor Activation Modifies NMDA Receptor Mediated Release of Intracellular Calcium: Implications for Endocannabinoid Control of Hippocampal Neural Plasticity

    Science.gov (United States)

    Hampson, Robert E.; Miller, Frances; Palchik, Guillermo; Deadwyler, Sam A.

    2011-01-01

    Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can modulate intracellular ion channels, including channels which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations via modulation of release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e. rimonabant), and inhibited by CB1 agonists (i.e. WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1 receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory. PMID:21288475

  17. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    Directory of Open Access Journals (Sweden)

    Brown David M

    2005-10-01

    Full Text Available Abstract Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter. Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively, such as elemental carbon (EC90, commercial carbon (Printex 90, diesel particulate matter (DEP and urban dust (UD, were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.

  18. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    International Nuclear Information System (INIS)

    Sze, Heven

    2008-01-01

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular (Ca2+) during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  19. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  20. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission.

    Directory of Open Access Journals (Sweden)

    Shirin Jalini

    Full Text Available Oxygen-glucose deprivation (OGD leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs. Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging, increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX, also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery.

  1. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission.

    Science.gov (United States)

    Jalini, Shirin; Ye, Hui; Tonkikh, Alexander A; Charlton, Milton P; Carlen, Peter L

    2016-01-01

    Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery.

  2. Fluorochloridone induces primary cultured Sertoli cells apoptosis: Involvement of ROS and intracellular calcium ions-mediated ERK1/2 activation.

    Science.gov (United States)

    Liu, Luqing; Chang, Xiuli; Zhang, Yubin; Wu, Chunhua; Li, Rui; Tang, Liming; Zhou, Zhijun

    2018-03-01

    Fluorochloridone (FLC) is a widely used pyrrolidone selective herbicide and reported to induce testis injuries in male rats, but the underlying mechanism is largely unknown. In the present study, primary-cultured Sertoli cells were exposed to FLC at the concentration of 0-10.00μM to study the mechanism of FLC-induced apoptosis. The roles of ROS, intracellular calcium, endoplasmic reticulum (ER), and ERK1/2 were looked at with ROS scavenger N-acetyl-cysteine (NAC), intracellular calcium chelator BAPTA-AM, ER calcium depleting agent thapsigargin (TG), and ERK1/2 inhibitor U0126, respectively. FLC induced dose-dependent apoptosis increase as well as the elevation in levels of ROS, intracellular calcium, and ERK1/2 activation. FLC treatment led to constantly increasing apoptotic rates and ERK1/2 activation over time, while inversed-V shaped change tendencies of ROS and intracellular calcium levels were observed. FLC-induced ROS generation disrupted the intracellular calcium homeostasis by attacking the ER, and the elevated intracellular calcium levels resulted in ERK1/2 over-phosphorylation and consequently promoted Sertoli cell apoptosis. Taken together, ROS and intracellular calcium-mediated ERK1/2 activation led to FLC-induced Sertoli cell apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  4. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C.; Dalzell, Danielle R.; Kuipers, Marjorie; Ibey, Bennett L.

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  5. Effect of Tetrodotoxin from Crude Puffer Fish (Tetraodon fluviatilis Liver Extract on Intracellular Calcium Level and Apoptosis of HeLa Cell Culture

    Directory of Open Access Journals (Sweden)

    Natanael Untario

    2017-01-01

    Full Text Available Cervical cancer is the third most commonly diagnosed cancer and fourth leading cause of women death with 8% of total death caused by cancer in women in 2008. Tetrodotoxin (TTX is a potent neurotoxin found in inner organs puffer fish, with the specific mechanism of sodium channel blocking, and widely used for research purposes. Previous reports claimed that TTX has the capability of inhibiting the metastatic process of cancer and apoptotic effect. Studies also show that apoptosis is a process involving the increase of intracellular calcium level, yet the connection between TTX and increase of intracellular calcium level, therefore triggering apoptosis, has not been established. This is an experimental study with post test only control group design, carried out by exposing HeLa cell culture to a crude liver extract of a puffer fish species, Tetraodon fluviatilis. Crude puffer fish liver extract is administered into HeLa cell culture well in different concentrations 10-4, 10-2, and 10-1. Intracellular calcium level and apoptosis were then measured after 18 hours of incubation. Measurements of intracellular calcium level were done by using CLSM with Fura-2AM staining, and apoptosis by using flowcytometry with Annexin V/PI.  The result shows that there is a significant difference between samples both in intracellular calcium (p < 0.05 and apoptosis (p < 0,05. Both intracellular calcium and apoptosis levels are proportional to liver fish extract concentration. Pearson’s correlation test shows correlation between treatment and intracellular calcium levels (p = 0.000, between treatment and apoptosis (p = 0.002, but not between intracellular calcium and apoptosis (p = 0.05. These results suggest that TTX induces an increase in intracellular calcium level and apoptosis, but calcium pathway is not the sole cause of the apoptosis.

  6. Antagonists of the TMEM16A calcium-activated chloride channel modulate airway smooth muscle tone and intracellular calcium.

    Science.gov (United States)

    Danielsson, Jennifer; Perez-Zoghbi, Jose; Bernstein, Kyra; Barajas, Matthew B; Zhang, Yi; Kumar, Satish; Sharma, Pawan K; Gallos, George; Emala, Charles W

    2015-09-01

    Perioperative bronchospasm refractory to β agonists continues to challenge anesthesiologists and intensivists. The TMEM16A calcium-activated chloride channel modulates airway smooth muscle (ASM) contraction. The authors hypothesized that TMEM16A antagonists would relax ASM contraction by modulating membrane potential and calcium flux. Human ASM, guinea pig tracheal rings, or mouse peripheral airways were contracted with acetylcholine or leukotriene D4 and then treated with the TMEM16A antagonists: benzbromarone, T16Ainh-A01, N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid, or B25. In separate studies, guinea pig tracheal rings were contracted with acetylcholine and then exposed to increasing concentrations of isoproterenol (0.01 nM to 10 μM) ± benzbromarone. Plasma membrane potential and intracellular calcium concentrations were measured in human ASM cells. Benzbromarone was the most potent TMEM16A antagonist tested for relaxing an acetylcholine -induced contraction in guinea pig tracheal rings (n = 6). Further studies were carried out to investigate the clinical utility of benzbromarone. In human ASM, benzbromarone relaxed either an acetylcholine- or a leukotriene D4-induced contraction (n = 8). Benzbromarone was also effective in relaxing peripheral airways (n = 9) and potentiating relaxation by β agonists (n = 5 to 10). In cellular mechanistic studies, benzbromarone hyperpolarized human ASM cells (n = 9 to 12) and attenuated intracellular calcium flux from both the plasma membrane and the sarcoplasmic reticulum (n = 6 to 12). TMEM16A antagonists work synergistically with β agonists and through a novel pathway of interrupting ion flux at both the plasma membrane and sarcoplasmic reticulum to acutely relax human ASM.

  7. Intracellular calcium movements of boar spermatozoa during 'in vitro' capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model.

    Science.gov (United States)

    Yeste, M; Fernández-Novell, J M; Ramió-Lluch, L; Estrada, E; Rocha, L G; Cebrián-Pérez, J A; Muiño-Blanco, T; Concha, I I; Ramírez, A; Rodríguez-Gil, J E

    2015-07-01

    This work analysed intracellular calcium stores of boar spermatozoa subjected to 'in vitro' capacitation (IVC) and subsequent progesterone-induced acrosome exocytosis (IVAE). Intracellular calcium was analysed through two calcium markers with different physico-chemical properties, Fluo-3 and Rhod-5N. Indicative parameters of IVC and IVAE were also evaluated. Fluo-3 was located at both the midpiece and the whole head. Rhod-5N was present at the sperm head. This distribution did not change in any of the assayed conditions. Induction of IVC was concomitant with an increase in both head and midpiece Ca(2+) signals. Additionally, while IVC induction was concurrent with a significant (p spermatozoa in the absence of calcium showed a loss of both Ca(2+) labellings concomitantly with the sperm's inability to achieve IVC. The absence of extracellular calcium also induced a severe decrease in the percentage of spermatozoa exhibiting high mitochondrial membrane potential (hMMP). The IVAE was accompanied by a fast increase in both Ca(2+) signalling in control spermatozoa. These peaks were either not detected or much lessened in the absence of calcium. Remarkably, Fluo-3 marking at the midpiece increased after progesterone addition to sperm cells incubated in a medium without Ca(2+) . The simultaneous addition of progesterone with the calcium chelant EGTA inhibited IVAE, and this was accompanied by a significant (p spermatozoa present different calcium deposits with a dynamic equilibrium among them and with the extracellular environment. Additionally, the modulation role of the intracellular calcium in spermatozoa function seems to rely on its precise localization in boar spermatozoa. © 2015 American Society of Andrology and European Academy of Andrology.

  8. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells

    Science.gov (United States)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei

    2012-05-01

    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  9. Abortive and propagating intracellular calcium waves: analysis from a hybrid model.

    Directory of Open Access Journals (Sweden)

    Nara Guisoni

    Full Text Available The functional properties of inositol(1,4,5-triphosphate (IP3 receptors allow a variety of intracellular Ca(2+ phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+ waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+ pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+ signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.

  10. [Progress of Researches on Protective Effect of Acupuncture and Moxibustion in Relieving Intracellular Calcium Overload of Cradiomyocytes].

    Science.gov (United States)

    Xiao, Yan; Gu, Yi-Huang; Chen, Hao

    2016-06-25

    Myocardial contraction and relaxation are regulated by increases and decreases of the intracellular cytoplasmic calcium (Ca 2+ ) concentration. Intracellular calcium ion is also a ubiquitous second messenger, and its related signal transduction pathways involve a variety of physiological activities and pathological changes. It has been well documented that intracellular calcium overload is involved in myocardial cellular injury. In the present paper, the authors make a review about experimental researches on the underlying mechanisms of acupuncture and moxibustion in the prevention and treatment of ischemic myocardial injury from reducing calcium overload in recent 10 years. Results of recent studies indicate that acupuncture and moxibustion interventions have a cardioprotective effect by raising Ca 2+ -ATPase activity and nitric oxide content, lowering L-type voltage depen-dent calcium channel activity, and ameliorating calcium overload in ischemic cardiomyocytes mainly through cytomembrane, sarcoplasmic reticulum membrane and mitochondrial membrane pathways. However, the current studies on the mechanisms of acupuncture in the improvement of the ischemic myocardial injury are far unclear up to now and do not closely combine the clinical application.

  11. The effect of intracellular calcium oscillations on fluid secretion in airway epithelium.

    Science.gov (United States)

    Warren, N J; Tawhai, M H; Crampin, E J

    2010-08-07

    Airway epithelium has been shown to elicit fluid secretion after a rise in intracellular calcium. This rise in intracellular calcium has been shown to display complex oscillations in many species after the binding of particular agonists to extracellular receptors. Fluid secreted by the airway epithelium is used to maintain the depth of the periciliary liquid (PCL) above the apical membrane of the epithelial cells lining the bronchial airways. Previous mathematical models have been published which separately consider the electrophysiology involved in regulating periciliary liquid depth, and the transmission of intracellular calcium waves in airway epithelial tissue. In this paper we present a mathematical model that combines these previous models and allows the effect of oscillations in intracellular calcium on fluid secretion by airway epithelial cells to be investigated. We show that an oscillatory calcium response produces different fluid secretion properties to that elicited by a tonic rise in intracellular calcium. These differences are shown to be due to saturation of the Ca(2+) activated ion channels. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Voltage-dependent mobilization of intracellular calcium in skeletal muscle.

    Science.gov (United States)

    Schneider, M F

    1986-01-01

    In skeletal muscle calcium is released from the sarcoplasmic reticulum (SR), an internal organelle, in response to changes in the voltage across the transverse tubule (T-tubule) membrane, an external membrane system that is distinct from the SR but in close proximity to it. For T-tubule voltage changes within the physiological range, calcium release can be turned on or off on a time scale of milliseconds. The control of calcium release from the SR appears to involve at least three functional components: a voltage sensor in the T-tubule membrane, a calcium channel in the SR, and a mechanism for coupling the voltage sensor to the channel. Movement of charged or dipolar molecules within the T-tubule membrane is thought to serve as the voltage sensor. Such intramembrane charge movement (Q) can be monitored electrically and can be compared with the rate of calcium release from the SR. Calcium release is calculated from cytosolic calcium transients measured with a metallochromic indicator. Comparison of Q and the rate of release in the same isolated muscle fibre indicates that this rate is directly proportional to the amount of charge displaced in excess of a 'threshold' amount. The nature of the coupling mechanism between T-tubules and SR remains to be established but present observations impose some restrictions on possible mechanisms.

  13. Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice

    Energy Technology Data Exchange (ETDEWEB)

    Zemel, M.B.; Kim, J.H. [Univ. of Tennessee, Knoxville, TN (United States); Woychik, R.P.; Michaud, E.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hadwell, S.H.; Patel, I.R.; Wilkison, W.O. [Research Institute, Research Triangle Park, NC (United States)

    1995-05-23

    Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca{sup 2+} is believed to play a role in mediating insulin action and dysregulation of Ca{sup 2+} flux is observed in diabetic animals and humans, we examined the status of intracellular Ca{sup 2+} in mice carrying the dominant agouti allele, viable yellow (A{sup vy}). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca{sup 2+}]{sub i}) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca{sup 2+}]{sub i} in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca{sup 2+}]{sub i}. 36 refs., 3 figs., 2 tabs.

  14. Evaluation of a novel method for measurement of intracellular calcium ion concentration in fission yeast.

    Science.gov (United States)

    Ogata, Fumihiko; Satoh, Ryosuke; Kita, Ayako; Sugiura, Reiko; Kawasaki, Naohito

    2017-01-01

    The distribution of metal and metalloid species in each of the cell compartments is termed as "metallome". It is important to elucidate the molecular mechanism underlying the beneficial or toxic effects exerted by a given metal or metalloid on human health. Therefore, we developed a method to measure intracellular metal ion concentration (particularly, intracellular calcium ion) in fission yeast. We evaluated the effects of nitric acid (HNO 3 ), zymolyase, and westase treatment on cytolysis in fission yeast. Moreover, we evaluated the changes in the intracellular calcium ion concentration in fission yeast in response to treatment with/without micafungin. The fission yeast undergoes lysis when treated with 60% HNO 3 , which is simpler and cheaper compared to the other treatments. Additionally, the intracellular calcium ion concentration in 60% HNO 3 -treated fission yeast was determined by inductively coupled plasma atomic emission spectrometry. This study yields significant information pertaining to measurement of the intracellular calcium ion concentration in fission yeast, which is useful for elucidating the physiological or pathological functions of calcium ion in the biological systems. This study is the first step to obtain perspective view on the effect of the metallome in biological systems.

  15. Biochemical and ultrastructural studies suggest that the effects of thapsigargin on human platelets are mediated by changes in intracellular calcium but not by intracellular histamine

    DEFF Research Database (Denmark)

    Saxena, S P; McNicol, A; Becker, A B

    1992-01-01

    -fluoromethyl histidine (alpha-FMH) failed to inhibit Tg-induced aggregation. The intracellular histamine receptor antagonist, N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine. HCl (DPPE), inhibited Tg-induced aggregation but with IC50 values dependent on the concentration of agonist used. The inhibitory effects...... of DPPE on Tg-induced aggregation were not reversed by the addition of histamine to saponin-permeabilized platelets suggesting non-histamine mediated effects of DPPE on Tg-induced aggregation. Tg stimulated an increase in the cytosolic free calcium concentration which was unaffected by DPPE indicating...... that the effects of DPPE are also not due to the inhibition of mobilization of cytosolic calcium. The ultrastructural studies suggest that the major Tg-induced changes (pseudopod formation and granule centralization) are consistent with a primary role for Tg to mobilize calcium; DPPE had very little effect...

  16. Azelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis

    Directory of Open Access Journals (Sweden)

    Kain Vasundhara

    2011-11-01

    Full Text Available Abstract Background Numerous evidences suggest that diabetic heart is characterized by compromised ventricular contraction and prolonged relaxation attributable to multiple causative factors including calcium accumulation, oxidative stress and apoptosis. Therapeutic interventions to prevent calcium accumulation and oxidative stress could be therefore helpful in improving the cardiac function under diabetic condition. Methods This study was designed to examine the effect of long-acting calcium channel blocker (CCB, Azelnidipine (AZL on contractile dysfunction, intracellular calcium (Ca2+ cycling proteins, stress-activated signaling molecules and apoptosis on cardiomyocytes in diabetes. Adult male Wistar rats were made diabetic by a single intraperitoneal (IP injection of streptozotocin (STZ. Contractile functions were traced from live diabetic rats to isolated individual cardiomyocytes including peak shortening (PS, time-to-PS (TPS, time-to-relengthening (TR90, maximal velocity of shortening/relengthening (± dL/dt and intracellular Ca2+ fluorescence. Results Diabetic heart showed significantly depressed PS, ± dL/dt, prolonged TPS, TR90 and intracellular Ca2+ clearing and showed an elevated resting intracellular Ca2+. AZL itself exhibited little effect on myocyte mechanics but it significantly alleviated STZ-induced myocyte contractile dysfunction. Diabetes increased the levels of superoxide, enhanced expression of the cardiac damage markers like troponin I, p67phox NADPH oxidase subunit, restored the levels of the mitochondrial superoxide dismutase (Mn-SOD, calcium regulatory proteins RyR2 and SERCA2a, and suppressed the levels of the anti-apoptotic Bcl-2 protein. All of these STZ-induced alterations were reconciled by AZL treatment. Conclusion Collectively, the data suggest beneficial effect of AZL in diabetic cardiomyopathy via altering intracellular Ca2+ handling proteins and preventing apoptosis by its antioxidant property.

  17. Intracellular Calcium Decreases Upon Hyper Gravity-Treatment of Arabidopsis Thaliana Cell Cultures

    Science.gov (United States)

    Neef, Maren; Denn, Tamara; Ecke, Margret; Hampp, Rüdiger

    2016-06-01

    Cell cultures of Arabidopsis thaliana ( A. t.) respond to changes in the gravitational field strength with fluctuations of the amount of cytosolic calcium (Ca2+). In parabolic flight experiments, where hyper- and μg phases follow each other, μg clearly increased Ca2+, while hyper-g caused a slight reduction. Since the latter observation had not been reported before, we studied this effect in more detail. Using a special centrifuge for heavy items (ZARM, Bremen, Germany), we determined the hyper-g-dependent intracellular Ca2+ level with transgenic cell lines expressing the Ca2+ sensor, cameleon. This sensor exhibits a shift in fluorescence from 480 to 530 nm in response to Ca2+ binding. The data show a drop in the intracellular Ca2+ concentration with a threshold gravity of around 3 g. This is above hypergravity levels achieved during parabolic flights (1.8 g). The use of mutants with different sub-cellular targets of cameleon expression (nucleus, tonoplast, plasma membrane) gave the same results, i.e. Ca2+ is obviously exported from several intracellular compartments.

  18. Atomic structure of intracellular amorphous calcium phosphate deposits.

    Science.gov (United States)

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-06-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed.

  19. Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelia induces apoptosis by increasing intracellular calcium levels and activating JNK and NADPH oxidase-dependent generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Tae Hwan Kim

    Full Text Available Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca(2+ concentration ([Ca(2+](i and activating JNK to generate reactive oxygen species (ROS via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47(phox and p67(phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca(2+](i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47(phox and p67(phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca(2+](i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.

  20. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  1. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    Science.gov (United States)

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  2. Transgenic plants with increased calcium stores

    Science.gov (United States)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  3. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  4. Muscarinic signalling affects intracellular calcium concentration during the first cell cycle of sea urchin embryos.

    Science.gov (United States)

    Harrison, P K; Falugi, C; Angelini, C; Whitaker, M J

    2002-06-01

    The existence of a response to acetylcholine (ACh) and cholinomimetic drugs in sea urchin eggs and zygotes was investigated in two sea urchin species: Paracentrotus lividus and Lytechinus pictus. The calcium sensitive fluorescent probe, Fura-2 dextran, was employed to investigate the regulation of cytosolic free calcium concentration ([Ca(2+)](i)) by cholinomimetic drugs in unfertilised and fertilised eggs of both the sea urchin species. Exposure to cholinomimetic agonists/antagonists, either extracellularly or intracellularly, had no effect either on resting [Ca(2+)](i) levels in the unfertilised sea urchin egg, or on the transient [Ca(2+)](i) increase at fertilisation. However, following fertilisation, extracellular application of ACh receptors agonists, such as ACh and carbachol, predominantly muscarinic agonist, but not nicotine, induced a significant increase in [Ca(2+)](i), which was partially inhibited by atropine. As a consequence of exposure after fertilisation to the agonists of ACh receptors, chromatin structure was transiently affected. The hypothesis is proposed that muscarinic receptors may be involved in the (presumably Ca(2+)-dependent) modulation of the nuclear status during the first cell cycles.

  5. Axotomy depletes intracellular calcium stores in primary sensory neurons.

    Science.gov (United States)

    Rigaud, Marcel; Gemes, Geza; Weyker, Paul D; Cruikshank, James M; Kawano, Takashi; Wu, Hsiang-En; Hogan, Quinn H

    2009-08-01

    The cellular mechanisms of neuropathic pain are inadequately understood. Previous investigations have revealed disrupted Ca signaling in primary sensory neurons after injury. The authors examined the effect of injury on intracellular Ca stores of the endoplasmic reticulum, which critically regulate the Ca signal and neuronal function. Intracellular Ca levels were measured with Fura-2 or mag-Fura-2 microfluorometry in axotomized fifth lumbar (L5) dorsal root ganglion neurons and adjacent L4 neurons isolated from hyperalgesic rats after L5 spinal nerve ligation, compared to neurons from control animals. Endoplasmic reticulum Ca stores released by the ryanodine-receptor agonist caffeine decreased by 46% in axotomized small neurons. This effect persisted in Ca-free bath solution, which removes the contribution of store-operated membrane Ca channels, and after blockade of the mitochondrial, sarco-endoplasmic Ca-ATPase and the plasma membrane Ca ATPase pathways. Ca released by the sarco-endoplasmic Ca-ATPase blocker thapsigargin and by the Ca-ionophore ionomycin was also diminished by 25% and 41%, respectively. In contrast to control neurons, Ca stores in axotomized neurons were not expanded by neuronal activation by K depolarization, and the proportionate rate of refilling by sarco-endoplasmic Ca-ATPase was normal. Luminal Ca concentration was also reduced by 38% in axotomized neurons in permeabilized neurons. The adjacent neurons of the L4 dorsal root ganglia showed modest and inconsistent changes after L5 spinal nerve ligation. Painful nerve injury leads to diminished releasable endoplasmic reticulum Ca stores and a reduced luminal Ca concentration. Depletion of Ca stores may contribute to the pathogenesis of neuropathic pain.

  6. Biochemical and ultrastructural studies suggest that the effects of thapsigargin on human platelets are mediated by changes in intracellular calcium but not by intracellular histamine

    DEFF Research Database (Denmark)

    Saxena, S P; McNicol, A; Becker, A B

    1992-01-01

    was observed at 1 microM Tg. Preincubation of platelets with inhibitors of histamine metabolizing enzymes had little effect on intracellular histamine levels in platelets stimulated by 0.5 microM Tg. In addition, the inhibitors of histidine decarboxylase (HDC), alpha-methyl histidine (alpha-MH) and alpha......-fluoromethyl histidine (alpha-FMH) failed to inhibit Tg-induced aggregation. The intracellular histamine receptor antagonist, N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine. HCl (DPPE), inhibited Tg-induced aggregation but with IC50 values dependent on the concentration of agonist used. The inhibitory effects...... of DPPE on Tg-induced aggregation were not reversed by the addition of histamine to saponin-permeabilized platelets suggesting non-histamine mediated effects of DPPE on Tg-induced aggregation. Tg stimulated an increase in the cytosolic free calcium concentration which was unaffected by DPPE indicating...

  7. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization

    Science.gov (United States)

    Bates, Ryan C.; Fees, Colby P.; Holland, William L.; Winger, Courtney C.; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J.

    2014-01-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC- γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca]i). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 minute after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca]i and other fertilization events. As compared to 14 other lipids, PA strongly bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca]i, PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca]i release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca]i release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904

  8. Cytosolic calcium homeostasis in fungi: Roles of plasma membrane transport and intracellular sequestration of calcium

    International Nuclear Information System (INIS)

    Miller, A.J.; Vogg, G.; Sanders, D.

    1990-01-01

    Cytosolic free calcium ([Ca 2+ ] c ) has been measured in the mycelial fungus Neurospora crassa with Ca 2+ - selective microelectrodes. The mean value of [Ca 2+ ] c is 92 ± 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca 2+ across the plasma membrane to be estimated as about -60 kJmol -1 - a value that cannot be sustained either by a simple Ca 2+ - ATPase, or, in alkaline conditions, by straightforward H + /Ca 2+ exchange with a stoichiometric ratio of + /Ca 2+ . The authors propose that the most likely alternative mechanism of Ca 2+ efflux is ATP-driven H + /Ca 2+ exchange, with a stoichiometric ratio of at least 2 H + /Ca 2+ . The increase in [Ca 2+ ] c in the presence of CN - at pH 8.4 is compared with 45 Ca 2+ influx under the same conditions. The proportion of entering Ca 2+ remaining free in the cytosol is only 8 x 10 -5 , and since the concentration of available chelation sites on Ca 2+ binding proteins is unlikely to exceed 100 μM, a major role for the fungal vacuole in short-term Ca 2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca 2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force for Ca 2+ uptake into fungal vacuoles

  9. The influence of statins on the free intracellular calcium concentration in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Figulla Hans R

    2004-05-01

    Full Text Available Abstract Background Statins are cholesterol-lowering drugs that are widely used to reduce the risk of cardiac infarction. Their beneficial clinical effects, however, are not restricted to their influence on cholesterol production. As several studies have shown that they have a potency of relaxing blood vessels. Methods We measured the effects of statins on the intracellular free calcium concentration ([Ca2+]i in human umbilical vein endothelial cells (HUVEC after acute application and 24-h-preincubation of statins. Results Incubation of the cells for 24 h with cerivastatin or fluvastatin significantly increased the resting [Ca2+]i. For cerivastatin this effect manifested at a concentration of 1 μM. Increase of resting [Ca2+]i in the presence of cerivastatin also occurred when the nitric oxide synthase was inhibited. Transient Ca2+ release induced by histamine was not affected. Conclusions The increase of resting [Ca2+]i after incubation with cerivastatin or fluvastatin may provide an explanation for the direct effects of statins on the endothelial-dependent vasodilatation and restoration of endothelial activity in vivo.

  10. Dystrophin gene expression and intracellular calcium changes in the giant freshwater prawn, Macrobrachium rosenbergii, in response to white spot symptom disease infection

    Directory of Open Access Journals (Sweden)

    Anees Fathima Noor

    2017-12-01

    Discussion: Both the functionality of the dystrophin protein and the intracellular calcium concentration were affected by WSSV infection which resulted in progressive muscle degeneration. An increased understanding of the role of dystrophin-calcium in MrDys and the interactions between these two components is necessary to prevent or reduce occurrences of muscle degeneration caused by WSSV infection, thereby reducing economic losses in the prawn farming industry from such disease.

  11. Intracellular Ca2+ Regulation in Calcium Sensitive Phenotype of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HERMANSYAH

    2010-03-01

    Full Text Available Intracellular cytosolic Ca2+ concentration accumulation plays an essential information in Saccharomyces cerevisiae i.e. to explain cellular mechanism of Ca2+ sensitive phenotype. Disruption both S. cerevisiae PPase PTP2 and MSG5 genes showed an inhibited growth in the presence of Ca2+. On the other hand, by using Luminocounter with apoaequorin system, a method based upon luminescent photoprotein aequorin, intracellular Ca2+ concentration was accumulated as a consequence of calcium sensitive phenotype of S. cerevisiae. This fact indicated that PPase ptp2Δ and msg5Δ were involved in intracellular Ca2+ transport in addition their already known pathways i.e Mitogen Activated Protein Kinase cell wall integrity pathway, high osmolarity glycerol (HOG pathway, and pheromone response FUS3 pathway.

  12. Intracellular calcium spikes in rat suprachiasmatic nucleus neurons induced by BAPTA-based calcium dyes.

    Directory of Open Access Journals (Sweden)

    Jin Hee Hong

    Full Text Available BACKGROUND: Circadian rhythms in spontaneous action potential (AP firing frequencies and in cytosolic free calcium concentrations have been reported for mammalian circadian pacemaker neurons located within the hypothalamic suprachiasmatic nucleus (SCN. Also reported is the existence of "Ca(2+ spikes" (i.e., [Ca(2+](c transients having a bandwidth of 10 approximately 100 seconds in SCN neurons, but it is unclear if these SCN Ca(2+ spikes are related to the slow circadian rhythms. METHODOLOGY/PRINCIPAL FINDINGS: We addressed this issue based on a Ca(2+ indicator dye (fluo-4 and a protein Ca(2+ sensor (yellow cameleon. Using fluo-4 AM dye, we found spontaneous Ca(2+ spikes in 18% of rat SCN cells in acute brain slices, but the Ca(2+ spiking frequencies showed no day/night variation. We repeated the same experiments with rat (and mouse SCN slice cultures that expressed yellow cameleon genes for a number of different circadian phases and, surprisingly, spontaneous Ca(2+ spike was barely observed (<3%. When fluo-4 AM or BAPTA-AM was loaded in addition to the cameleon-expressing SCN cultures, however, the number of cells exhibiting Ca(2+ spikes was increased to 13 approximately 14%. CONCLUSIONS/SIGNIFICANCE: Despite our extensive set of experiments, no evidence of a circadian rhythm was found in the spontaneous Ca(2+ spiking activity of SCN. Furthermore, our study strongly suggests that the spontaneous Ca(2+ spiking activity is caused by the Ca(2+ chelating effect of the BAPTA-based fluo-4 dye. Therefore, this induced activity seems irrelevant to the intrinsic circadian rhythm of [Ca(2+](c in SCN neurons. The problems with BAPTA based dyes are widely known and our study provides a clear case for concern, in particular, for SCN Ca(2+ spikes. On the other hand, our study neither invalidates the use of these dyes as a whole, nor undermines the potential role of SCN Ca(2+ spikes in the function of SCN.

  13. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca 2+ ) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca 2+ ) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca 2+ concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca 2+ concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca 2+ could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  14. Intracellular Calcium Plays a Critical Role in the Microcystin-LR-Elicited Neurotoxicity Through PLC/IP3 Pathway.

    Science.gov (United States)

    Cai, Fei; Liu, Jue; Li, Cairong; Wang, Jianghua

    2015-01-01

    Neurotoxicity of microcystin-leucine-arginine (MCLR) has been widely reported. However, the mechanism is not fully understood. Using primary hippocampal neurons, we tested the hypothesis that MCLR-triggered activation in intracellular free calcium concentration ([Ca(2+)](i)) induces the death of neurons. Microcystin-leucine-arginine inhibited cell viability at a range of 0.1 to 30 μmol/L and caused a dose-dependent increase in [Ca(2+)](i). This increase in [Ca(2+)](i) was observed in Ca(2+)-free media and blocked by an endoplasmic reticulum Ca(2+) pump inhibitor, suggesting intracellular Ca(2+) release. Moreover, pretreatment of hippocampal neurons with intracellular Ca(2+) chelator (O,O'-bis (2-aminophenyl) ethyleneglycol-N,N,N',N'-tetraacetic acid, tetraacetoxy-methyl ester) and inositol 1,4,5-trisphosphate receptor antagonist (2-aminoethoxydiphenyl borate) could block both the Ca(2+) mobilization and the neuronal death following MCLR exposure. In contrast, the ryanodine receptor inhibitor (dantrolene) did not ameliorate the effect of MCLR. In conclusion, MCLR disrupts [Ca(2+)](i) homeostasis in neurons by releasing Ca(2+) from intracellular stores, and this increase in [Ca(2+)](i) may be a key determinant in the mechanism underlying MCLR-induced neurotoxicity. © The Author(s) 2015.

  15. Differential intracellular calcium influx, nitric oxide production, ICAM-1 and IL8 expression in primary bovine endothelial cells exposed to nonesterified fatty acids.

    Science.gov (United States)

    Loaiza, Anitsi; Carretta, María D; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2016-02-25

    Nonesterified fatty acids (NEFAs) are involved in proinflammatory processes in cattle, including in the increased expression of adhesion molecules in endothelial cells. However, the mechanisms underlying these effects are still unknown. The aim of this study was to assess the effects of NEFAs on the intracellular calcium (Ca(2+) i) influx, nitric oxide production, and ICAM-1 and IL-8 expression in primary bovine umbilical vein endothelial cells (BUVECs). Myristic (MA), palmitic (PA), stearic (SA), oleic (OA) and linoleic acid (LA) rapidly increased Ca(2+) i. The calcium response to all tested NEFAs showed an extracellular calcium dependence and only the LA response was significantly inhibited until the intracellular calcium was chelated. The EC50 values for MA and LA were 125 μM and 37 μM, respectively, and the MA and LA effects were dependent on calcium release from the endoplasmic reticulum stores and on the L-type calcium channels. Only the calcium response to MA was significantly reduced by GW1100, a selective G-protein-coupled free fatty acid receptor (GPR40) antagonist. We also detected a functional FFAR1/GPR40 protein in BUVECs by using western blotting and the FFAR1/GPR40 agonist TAK-875. Only LA increased the cellular nitric oxide levels in a calcium-dependent manner. LA stimulation but not MA stimulation increased ICAM-1 and IL-8-expression in BUVECs. This effect was inhibited by GW1100, an antagonist of FFAR1/GPR40, but not by U-73122, a phospholipase C inhibitor. These findings strongly suggest that each individual NEFA stimulates endothelial cells in a different way, with clearly different effects on intracellular calcium mobilization, NO production, and IL-8 and ICAM-1 expression in primary BUVECs. These findings not only extend our understanding of NEFA-mediated diseases in ruminants, but also provide new insight into the different molecular mechanisms involved during endothelial cell activation by NEFAs.

  16. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    Science.gov (United States)

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  17. Differences between negative inotropic and vasodilator effects of calcium antagonists acting on extra- and intracellular calcium movements in rat and guinea-pig cardiac preparations

    NARCIS (Netherlands)

    Hugtenburg, J. G.; Mathy, M. J.; Boddeke, H. W.; Beckeringh, J. J.; van Zwieten, P. A.

    1989-01-01

    In order to get more insight into the utilization of calcium in the mammalian heart and the influence of calcium antagonists on this process we have evaluated the negative inotropic and vasodilator effect of nifedipine, diltiazem, verapamil, bepridil and lidoflazine as well as of the intracellularly

  18. Intracellular calcium modulates basolateral K(+)-permeability in frog skin epithelium

    DEFF Research Database (Denmark)

    Brodin, Birger; Rytved, K A; Nielsen, R

    1994-01-01

    Cytosolic calcium ([Ca2+]i) has been suggested as a key modulator in the regulation of active sodium transport across electrically "tight" (high resistance) epithelia. In this study we investigated the effects of calcium on cellular electrophysiological parameters in a classical model tissue, the......, the frog skin. [Ca2+]i was measured with fura-2 in an epifluorescence microscope setup. An inhibition of basolateral potassium permeability was observed when cytosolic calcium was increased. This inhibition was reversible upon removal of calcium from the serosal solution....

  19. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells.

    Science.gov (United States)

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2014-07-10

    Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an

  20. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy.

    Science.gov (United States)

    Hobai, Ion A; Edgecomb, Jessica; LaBarge, Kara; Colucci, Wilson S

    2015-01-01

    Sepsis-induced cardiomyopathy (SIC) develops as the result of myocardial calcium (Ca) dysregulation. Here we reviewed all published studies that quantified the dysfunction of intracellular Ca transporters and the myofilaments in animal models of SIC. Cardiomyocytes isolated from septic animals showed, invariably, a decreased twitch amplitude, which is frequently caused by a decrease in the amplitude of cellular Ca transients (ΔCai) and sarcoplasmic reticulum (SR) Ca load (CaSR). Underlying these deficits, the L-type Ca channel is downregulated, through mechanisms that may involve adrenomedullin-mediated redox signaling. The SR Ca pump is also inhibited, through oxidative modifications (sulfonylation) of one reactive thiol group (on Cys) and/or modulation of phospholamban. Diastolic Ca leak of ryanodine receptors is frequently increased. In contrast, Na/Ca exchange inhibition may play a partially compensatory role by increasing CaSR and ΔCai. The action potential is usually shortened. Myofilaments show a bidirectional regulation, with decreased Ca sensitivity in milder forms of disease (due to troponin I hyperphosphorylation) and an increase (redox mediated) in more severe forms. Most deficits occurred similarly in two different disease models, induced by either intraperitoneal administration of bacterial lipopolysaccharide or cecal ligation and puncture. In conclusion, substantial cumulative evidence implicates various Ca transporters and the myofilaments in SIC pathology. What is less clear, however, are the identity and interplay of the signaling pathways that are responsible for Ca transporters dysfunction. With few exceptions, all studies we found used solely male animals. Identifying sex differences in Ca dysregulation in SIC becomes, therefore, another priority.

  1. Dysregulation of intracellular calcium transporters in animal models of sepsis induced cardiomyopathy

    Science.gov (United States)

    Hobai, Ion A.; Edgecomb, Jessica; LaBarge, Kara; Colucci, Wilson S.

    2014-01-01

    Sepsis induced cardiomyopathy (SIC) develops as the result of myocardial calcium (Ca2+) dysregulation. Here we reviewed all published studies that quantified the dysfunction of intracellular Ca2+ transporters and the myofilaments in animal models of SIC. Cardiomyocytes isolated from septic animals showed, invariably, a decreased twitch amplitude, which is frequently caused by a decrease in the amplitude of cellular Ca2+ transients (ΔCai) and sarcoplasmic reticulum (SR) Ca2+ load (CaSR). Underlying these deficits, the L-type Ca2+ channel is downregulated, through mechanisms that may involve adrenomedullin-mediated redox signaling. SR Ca2+ pump (SERCA) is also inhibited, through oxidative modifications (sulphonylation) of one reactive thiol group (on Cys674), and/or modulation of phospholamban. Diastolic Ca2+ leak of ryanodine receptors is frequently increased. In contrast, Na+/Ca2+ exchange inhibition may play a partially compensatory role by increasing CaSR and ΔCai. The action potential is usually shortened. Myofilaments show a bidirectional regulation, with decreased Ca2+ sensitivity in milder forms of disease (due to troponin I hyperphosphorylation) and a (redox mediated) increase in more severe forms. Most deficits occurred similarly in two different disease models, induced by either intraperitoneal administration of bacterial lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). In conclusion, substantial cumulative evidence implicates various Ca2+ transporters and the myofilaments in SIC pathology. What is less clear, however, is the identity and interplay of the signaling pathways that are responsible for Ca2+ transporters dysfunction. With few exceptions, all studies we found used solely male animals. Identifying sex differences in Ca2+ dysregulation in SIC becomes, therefore, another priority. PMID:25186837

  2. BDNF-Induced Potentiation of Spontaneous Twitching in Innervated Myocytes Requires Calcium Release From Intracellular Stores

    Science.gov (United States)

    KLEIMAN, ROBIN J.; TIAN, NING; KRIZAJ, DAVID; HWANG, THOMAS N.; COPENHAGEN, DAVID R.; REICHARDT, LOUIS F.

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) can potentiate synaptic release at newly developed frog neuromuscular junctions. Although this potentiation depends on extracellular Ca2+ and reflects changes in acetylcholine release, little is known about the intracellular transduction or calcium signaling pathways. We have developed a video assay for neurotrophin-induced potentiation of myocyte twitching as a measure of potentiation of synaptic activity. We use this assay to show that BDNF-induced synaptic potentiation is not blocked by cadmium, indicating that Ca2+ influx through voltage-gated Ca2+ channels is not required. TrkB autophosphorylation is not blocked in Ca2+-free conditions, indicating that TrkB activity is not Ca2+ dependent. Additionally, an inhibitor of phospholipase C interferes with BDNF-induced potentiation. These results suggest that activation of the TrkB receptor activates phospholipase C to initiate intracellular Ca2+ release from stores which subsequently potentiates transmitter release. PMID:10899220

  3. Up-regulation of Intracellular Calcium Handling Underlies the Recovery of Endotoxemic Cardiomyopathy in Mice.

    Science.gov (United States)

    Morse, Justin C; Huang, Joanne; Khona, Natasha; Miller, Edward J; Siwik, Deborah A; Colucci, Wilson S; Hobai, Ion A

    2017-06-01

    In surviving patients, sepsis-induced cardiomyopathy is spontaneously reversible. In the absence of any experimental data, it is generally thought that cardiac recovery in sepsis simply follows the remission of systemic inflammation. Here the authors aimed to identify the myocardial mechanisms underlying cardiac recovery in endotoxemic mice. Male C57BL/6 mice were challenged with lipopolysaccharide (7 μg/g, intraperitoneally) and followed for 12 days. The authors assessed survival, cardiac function by echocardiography, sarcomere shortening, and calcium transients (with fura-2-acetoxymethyl ester) in electrically paced cardiomyocytes (5 Hz, 37°C) and myocardial protein expression by immunoblotting. Left ventricular ejection fraction, cardiomyocyte sarcomere shortening, and calcium transients were depressed 12 h after lipopolysaccharide challenge, started to recover by 24 h (day 1), and were back to baseline at day 3. The recovery of calcium transients at day 3 was associated with the up-regulation of the sarcoplasmic reticulum calcium pump to 139 ± 19% (mean ± SD) of baseline and phospholamban down-regulation to 35 ± 20% of baseline. At day 6, calcium transients were increased to 123 ± 31% of baseline, associated with increased sarcoplasmic reticulum calcium load (to 126 ± 32% of baseline, as measured with caffeine) and inhibition of sodium/calcium exchange (to 48 ± 12% of baseline). In mice surviving lipopolysaccharide challenge, the natural recovery of cardiac contractility was associated with the up-regulation of cardiomyocyte calcium handling above baseline levels, indicating the presence of an active myocardial recovery process, which included sarcoplasmic reticulum calcium pump activation, the down-regulation of phospholamban, and sodium/calcium exchange inhibition.

  4. Effect of Cu2+ and pH on intracellular calcium content and lipid peroxidation in winter wheat roots

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-06-01

    Full Text Available The study investigates the effect of copper ions and pH of external solution on intracellular calcium homeostasis and lipid peroxidation in winter wheat roots. Experiment was carried out with winter wheat. Sterile seeds were germinated in Petri dishes on the filter paper soaked with acetic buffer (pH 4.7 and 6.2 at 20 °Cin the dark for 48 hours. Copper was added as CuSO4. It’s concentrations varied from 0 to 50 µM. The Ca2+-fluorescent dye Fluo-3/AM ester was loaded on 60 hour. Root fluorescence with Fluo-3 loading was detected using X-Cite Series 120 Q unit attached to microscope Olympus BX53 with camera Olympus DP72. Imaging of root cells was achieved after exciting with 488 nm laser and collection of emission signals above 512 nm. Preliminary analysis of the images was performed using software LabSens; brightness (fluorescence intensity analysis was carried out by means of ImageJ. Peroxidation of lipids was determined according to Kumar and Knowles method. It was found that pH of solution had effect on release of calcium from intracellular stores. Low pH provokes an increase of [Ca2+]cyt which may be reaction of roots to acidic medium. Copper induces increase in non-selective permeability of plasma membrane and leads to its faster depolarization. This probably initiates Ca-dependent depolarization channels which are responsible for the influx of calcium from apoplast into the cell. Changing of the membrane permeability may occur due to interaction between Cu2+ ions and Ca-binding sites on plasma membrane or may be due to binding of copper with sulfhydryl groups and increasing of POL. Copper may also damage lipid bilayer and change the activity of some non-selective channels and transporters. Reactive oxygen species which are formed under some types of stress factors, especially the effect of heavy metals, can be activators of Ca-channels. Cu2+ ions rise MDA content and promote the oxidative stress. Low medium pH also induces its

  5. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  6. Hearts of surviving MLP-KO mice show transient changes of intracellular calcium handling.

    Science.gov (United States)

    Kemecsei, Péter; Miklós, Zsuzsanna; Bíró, Tamás; Marincsák, Rita; Tóth, Balázs I; Komlódi-Pásztor, Edina; Barnucz, Eniko; Mirk, Eva; Van der Vusse, Ger J; Ligeti, László; Ivanics, Tamás

    2010-09-01

    The muscle Lim protein knock-out (MLP-KO) mouse model is extensively used for studying the pathophysiology of dilated cardiomyopathy. However, explanation is lacking for the observed long survival of the diseased mice which develop until adulthood despite the gene defect, which theoretically predestines them to early death due to heart failure. We hypothesized that adaptive changes of cardiac intracellular calcium (Ca(i)(2+)) handling might explain the phenomenon. In order to study the progression of changes in cardiac function and Ca(i)(2+) cycling, myocardial Ca(i)(2+)-transients recorded by Indo-1 surface fluorometry were assessed with concomitant measurement of hemodynamic performance in isolated Langendorff-perfused hearts of 3- and 9-month old MLP-KO animals. Hearts were challenged with beta-agonist isoproterenol and the sarcoplasmic reticular Ca(2+)-ATPase (SERCA2a) inhibitor cyclopiazonic acid (CPA). Cardiac mRNA content and levels of key Ca(2+) handling proteins were also measured. A decline in lusitropic function was observed in 3-month old, but not in 9-month old MLP-KO mice under unchallenged conditions. beta-adrenergic responses to isoproterenol were similar in all the studied groups. The CPA induced an increase in end-diastolic Ca(i)(2+)-level and a decrease in Ca(2+)-sequestration capacity in 3-month old MLP-KO mice compared to age-matched controls. This unfavorable condition was absent at 9 months of age. SERCA2a expression was lower in 3-month old MLP-KO than in the corresponding controls and in 9-month old MLP-KO hearts. Our results show time-related recovery of hemodynamic function and an age-dependent compensatory upregulation of Ca(i)(2+) handling in hearts of MLP-KO mice, which most likely involve the normalization of the expression of SERCA2a in the affected hearts.

  7. Activation of Intracellular Calcium by Multiple Wnt Ligands and Translocation of β-Catenin into the Nucleus

    Science.gov (United States)

    Thrasivoulou, Christopher; Millar, Michael; Ahmed, Aamir

    2013-01-01

    Ca2+ and β-catenin, a 92-kDa negatively charged transcription factor, transduce Wnt signaling via the non-canonical, Wnt/Ca2+ and canonical, Wnt/β-catenin pathways independently. The nuclear envelope is a barrier to large protein entry, and this process is regulated by intracellular calcium [Ca2+]i and trans-nuclear potential. How β-catenin traverses the nuclear envelope is not well known. We hypothesized that Wnt/Ca2+ and Wnt/β-catenin pathways act in a coordinated manner and that [Ca2+]i release facilitates β-catenin entry into the nucleus in mammalian cells. In a live assay using calcium dyes in PC3 prostate cancer cells, six Wnt peptides (3A, 4, 5A, 7A, 9B, and 10B) mobilized [Ca2+]i but Wnt11 did not. Based upon dwell time (range = 15–30 s) of the calcium waveform, these Wnts could be classified into three classes: short, 3A and 5A; long, 7A and 10B; and very long, 4 and 9B. Wnt-activated [Ca2+]i release was followed by an increase in intranuclear calcium and the depolarization of both the cell and nuclear membranes, determined by using FM4-64. In cells treated with Wnts 5A, 9B, and 10B, paradigm substrates for each Wnt class, increased [Ca2+]i was followed by β-catenin translocation into the nucleus in PC3, MCF7, and 253J, prostate, breast, and bladder cancer cell lines; both the increase in Wnt 5A, 9B, and 10B induced [Ca2+]i release and β-catenin translocation are suppressed by thapsigargin in PC3 cell line. We propose a convergent model of Wnt signaling network where Ca2+ and β-catenin pathways may act in a coordinated, interdependent, rather than independent, manner. PMID:24158438

  8. Regulation of neural cell adhesion molecule polysialylation: evidence for nontranscriptional control and sensitivity to an intracellular pool of calcium.

    Science.gov (United States)

    Brusés, J L; Rutishauser, U

    1998-03-09

    The up- and downregulation of polysialic acid-neural cell adhesion molecule (PSA-NCAM) expression on motorneurons during development is associated respectively with target innervation and synaptogenesis, and is regulated at the level of PSA enzymatic biosynthesis involving specific polysialyltransferase activity. The purpose of this study has been to describe the cellular mechanisms by which that regulation might occur. It has been found that developmental regulation of PSA synthesis by ciliary ganglion motorneurons is not reflected in the levels of polysialyltransferase-1 (PST) or sialyltransferase-X (STX) mRNA. On the other hand, PSA synthesis in both the ciliary ganglion and the developing tectum appears to be coupled to the concentration of calcium in intracellular compartments. This study documents a calcium dependence of polysialyltransferase activity in a cell-free assay over the range of 0.1-1 mM, and a rapid sensitivity of new PSA synthesis, as measured in a pulse-chase analysis of tissue explants, to calcium ionophore perturbation of intracellular calcium levels. Moreover, the relevant calcium pool appears to be within a specific intracellular compartment that is sensitive to thapsigargin and does not directly reflect the level of cytosolic calcium. Perturbation of other major second messenger systems, such as cAMP and protein kinase-dependent pathways, did not affect polysialylation in the pulse chase analysis. These results suggest that the shuttling of calcium to different pools within the cell can result in the rapid regulation of PSA synthesis in developing tissues.

  9. PeakCaller: an automated graphical interface for the quantification of intracellular calcium obtained by high-content screening.

    Science.gov (United States)

    Artimovich, Elena; Jackson, Russell K; Kilander, Michaela B C; Lin, Yu-Chih; Nestor, Michael W

    2017-10-16

    Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.

  10. Increased serum serotonin improves parturient calcium homeostasis in dairy cows

    DEFF Research Database (Denmark)

    Hernandez Castellano, Lorenzo E; Hernandez, Laura L. Hernandez; Weaver, Samantha

    2017-01-01

    Hypocalcemia in dairy cows is caused by the sudden increase in calcium demand by the mammary gland for milk production at the onset of lactation. Serotonin (5-HT) is a key factor for calcium homeostasis, modulating calcium concentration in blood. Therefore, it is hypothesized that administration...

  11. Japanese Cedar (Cryptomeria japonica) pollen allergen induces elevation of intracellular calcium in human keratinocytes and impairs epidermal barrier function of human skin ex vivo.

    Science.gov (United States)

    Kumamoto, Junichi; Tsutsumi, Moe; Goto, Makiko; Nagayama, Masaharu; Denda, Mitsuhiro

    2016-01-01

    Cry j1 is the major peptide allergen of Japanese cedar (Sugi), Cryptomeria japonica. Since some allergens disrupt epidermal permeability barrier homeostasis, we hypothesized that Cry j1 might have a similar effect. Intracellular calcium level in cultured human keratinocytes was measured with a ratiometric fluorescent probe, Fura-2 AM. Application of Cry j1 significantly increased the intracellular calcium level of keratinocytes, and this increase was inhibited by trypsin inhibitor or a protease-activated receptor 2 (PAR-2) antagonist. We found that Cry j1 itself did not show protease activity, but application of Cry j1 to cultured keratinocytes induced a rapid (within 30 s) and transient increase of protease activity in the medium. This transient increase was blocked by trypsin inhibitor or PAR-2 antagonist. The effect of Cry j1 on transepidermal water loss (TEWL) of cultured human skin was measured in the presence and absence of a trypsin inhibitor and PAR-2 antagonist. Cry j1 significantly impaired the barrier function of human skin ex vivo, and this action was blocked by co-application of trypsin inhibitor or PAR-2 antagonist. Our results suggested that interaction of Cry j1 with epidermal keratinocytes leads to the activation of PAR-2, which induces elevation of intracellular calcium and disruption of barrier function. Blocking the interaction of Cry j1 with epidermal keratinocytes might ameliorate allergic reaction and prevent disruption of epidermal permeability barrier homeostasis.

  12. Detection and Measurement of the Intracellular Calcium Variation in Follicular Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Herrera-Navarro

    2014-01-01

    Full Text Available This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i the detection of the cell’s nuclei and (ii the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca2+. Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal.

  13. The Role of Intracellular Calcium for the Development and Treatment of Neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh, Noothan Jyothi; Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weill Cornell Medical College in Qatar, Qatar Foundation-Education City, POB 24144, Doha (Qatar)

    2015-05-22

    Neuroblastoma is the second most common paediatric cancer. It develops from undifferentiated simpatico-adrenal lineage cells and is mostly sporadic; however, the aetiology behind the development of neuroblastoma is still not fully understood. Intracellular calcium ([Ca{sup 2+}]{sub i}) is a secondary messenger which regulates numerous cellular processes and, therefore, its concentration is tightly regulated. This review focuses on the role of [Ca{sup 2+}]{sub i} in differentiation, apoptosis and proliferation in neuroblastoma. It describes the mechanisms by which [Ca{sup 2+}]{sub i} is regulated and how it modulates intracellular pathways. Furthermore, the importance of [Ca{sup 2+}]{sub i} for the function of anti-cancer drugs is illuminated in this review as [Ca{sup 2+}]{sub i} could be a target to improve the outcome of anti-cancer treatment in neuroblastoma. Overall, modulations of [Ca{sup 2+}]{sub i} could be a key target to induce apoptosis in cancer cells leading to a more efficient and effective treatment of neuroblastoma.

  14. Association of serine protease with the rise of intracellular calcium in cytotoxic T lymphocytes.

    Science.gov (United States)

    Koo, G C; Luk, Y; Talento, A; Wu, J; Sirotina, A; Fischer, P A; Blake, J T; Nguyen, M P; Parsons, W; Poe, M

    1996-12-15

    The precise role of the granular enzyme A (granzyme A), a serine protease, in the lytic process of cytotoxic T lymphocytes (CTL) is not clear. We have recently constructed a CTL line transfected with the antisense gene of granzyme A (a-GrA). These a-GrA CTL had lower GrA activity as well as decreased lytic activities, as measured by 51Cr and by DNA degradation assays. Furthermore, at low effector:target ratio (1:8) in prolonged lytic assays, they could not lyse targets as rapidly as the control CTL. When we examined their ability to exocytose BLT (CBZ-L-lys-thiobenzyl)-esterase in the presence of anti-CD3 antibody, the a-GrA CTL exocytosed poorly compared to the parental CTL or control transfectant with a CAT gene. Most strikingly, a-GrA cells could not release intracellular stores of Ca2+ in response to anti-CD3 induction, although the Ca2+ flux was normal when they were stimulated with ionomycin. When the parental CTL was treated with a specific benzyllactam inhibitor of BLT-esterase or N-tosyl-L-phenylalanylchloromethyl ketone, the Ca2+ flux induced by anti-CD3 was also suppressed. We propose that granzyme A is involved in the signal transduction pathway that causes the rise of the intracellular calcium.

  15. Dehydroepiandrosterone inhibits intracellular calcium release in beta-cells by a plasma membrane-dependent mechanism.

    Science.gov (United States)

    Liu, Dongmin; Ren, Min; Bing, Xinyu; Stotts, Corey; Deorah, Sundeep; Love-Homan, Laurie; Dillon, Joseph S

    2006-08-01

    Both dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) affect glucose stimulated insulin secretion, though their cellular mechanisms of action are not well characterized. We tested the hypothesis that human physiological concentrations of DHEA alter insulin secretion by an action initiated at the plasma membrane of beta-cells. DHEA alone had no effect on intracellular calcium concentration ([Ca(2+)](i)) in a rat beta-cell line (INS-1). However, it caused an immediate and dose-dependent inhibition of carbachol-induced Ca(2+) release from intracellular stores, with a 25% inhibition at zero. One nanometer DHEA. DHEA also inhibited the Ca(2+) mobilizing effect of bombesin (29% decrease), but did not inhibit the influx of extracellular Ca(2+) evoked by glyburide (100 microM) or glucose (15 mM). The steroids (androstenedione, 17-alpha-hydroxypregnenolone, and DHEAS) had no inhibitory effect on carbachol-induced intracellular Ca(2+) release. The action of DHEA depended on a signal initiated at the plasma membrane, since membrane impermeant DHEA-BSA complexes also inhibited the carbachol effect on [Ca(2+)](i) (39% decrease). The inhibition of carbachol-induced Ca(2+) release by DHEA was blocked by pertussis toxin (PTX). DHEA also inhibited the carbachol induction of phosphoinositide generation, with a maximal inhibition at 0.1 nM DHEA. Furthermore, DHEA inhibited insulin secretion induced by carbachol in INS-1 cells by 25%, and in human pancreatic islets by 53%. Taken together, this is the first report showing that human physiological concentrations of DHEA decrease agonist-induced Ca(2+) release by a rapid, non-genomic mechanism in INS-1 cells. Furthermore, these data provide evidence consistent with the existence of a specific plasma membrane DHEA receptor, mediating this signal transduction pathway by pertussis toxin-sensitive G-proteins.

  16. The effect and mechanism of endothelin-1-induced intracellular free calcium in human lung adenocarcinoma cells SPC-A1

    Directory of Open Access Journals (Sweden)

    Juan ZHOU

    2008-08-01

    Full Text Available Background and objective Endothelin-1 (ET-1 is a potent mitogen involved in cell growth in human lung adenocarcinoma cells SPC-A1. The increase in intracellular free calcium ([Ca2+]i plays a great role in this process. The aim of this study is to investigate the ET-1-induced [Ca2+]i responses in SPC-A1 cells and to explore its cellular mechanism. Methods [Ca2+]i was measured by Fura-2/AM fluorescent assay. Endothelin receptors antagonists, calcium channel blockers and intracellular signal transduction blockers were used to study the underlying mechanism of ET-1-induced [Ca2+]i responses in SPC-A1 cells. Results At the concentration of 1×10-15 mol/L-1×10-8 mol/L, ET-1 caused a dose-dependent increase of [Ca2+]i in SPC-A1 cells (P0.05, a highly selective endothelin receptor B (ETBR antagonist. Depletion of extracellular Ca2+ with free Ca2+ solution and 0.1mmol/L ethyleneglycol bis (2-aminoethyl ether tetraacetic acid (EGTA or blockade of voltage dependent calcium channel with nifedipine at 1×10-6 mol/L significantly reduced the ET-1-induced increase of [Ca2+]i. The ET-1-induced (1×10-10 mol/L increase of [Ca2+]i was also significantly attenuated by U73122 at 1×10-5 mol/L (P<0.05, a phospholipase C inhibitor, and by Ryanodine at 50×10-6 mol/L. However, Staurosporine (2×10-9 mol/L, a protein kinas C inhibitor, exerted no significant effect on the ET-1-induced (1×10-10 mol/L increase of [Ca2+]i. Conclusion ET-1 elevates [Ca2+]i via activation of ETA receptor. Both phospholipase C/Ca2+ pathway and Ca2+ influx through voltage dependent Ca2+ channel activate by ETAR contribute to this process.

  17. [Mechanism of 17β-estrogen on intracellular free calcium regulation in smooth muscle cells at the endometrial-myometrial interface in uteri with adenomyosis].

    Science.gov (United States)

    Wang, Sha; Duan, Hua; Zhang, Ying; Wang, Liping; Zhang, Henghui; Li, Guoli

    2015-07-01

    To investigate the regulation mechanism of estrogen on the free calcium of smooth muscle cells at the endometrial-myometrial interface (EMI) in uteri with adenomyosis. From September 2011 to November 2012, 59 uterine myometrial specimens were obtained from 59 cases underwent hysterectomy, including 28 adenomyosis patients as adenomyosis (ADS) group and 31 patients with cervical intraepithelial neoplasia III as control group. EMI smooth muscle cells were cultured and loaded with calcium ion fluorescent probe fluo-4/AM. After treated with trisphosphate (IP3) receptor antagonist, blocker of sarcoplasmic reticulum calcium-adenosine triphosphate (ATP), depleted agent of the ryanodine receptor-operated Ca(2+), inhibitor of L-type calcium channel, inhibitor of Na(+)-Ca(2+) exchanger, the labeled cells were stimulated with estrogen. The changes of intracellular Ca(2+) fluorescence intensity were detected by laser scanning microscopy. The changes of intracellular Ca(2+) concentration was indicated by △F[Ca(2+)](i). (1) Under normal calcium conditions, after the stimulation of estrogen, intracellular Ca(2+) fluorescence intensity in ADS group and control group both increased than those without estrogen. The △F[Ca(2+)](i) in ADS group was 384 ± 26, and in the control group △F[Ca(2+)](i) was 235 ± 20. The △F[Ca(2+)](i) in ADS group was higher than that in the control (P calcium conditions, the △F[Ca(2+)](i) in ADS group was 207 ± 17, and in the control group △F[Ca(2+)](i) was 221 ± 19. The △F[Ca(2+)](i) in ADS group was almost the same with the increase in the control (P = 0.731). The △F[Ca(2+)](i) in ADS group was significantly decreased compared with the calcium condition (P calcium conditions (P = 0.060). (2) After treated with IP3 receptor antagonist, blocker of sarcoplasmic reticulum calcium-ATP, depleted agent of the ryanodine receptor-operated Ca(2+), the △F[Ca(2+)]i in both groups were significantly reduced (P calcium channel, the △F[Ca(2+)](i

  18. Modulation of L-type calcium current by intracellular magnesium in differentiating cardiomyocytes derived from induced pluripotent stem cells.

    Science.gov (United States)

    Nguemo, Filomain; Semmler, Judith; Reppel, Michael; Hescheler, Jürgen

    2014-06-15

    Intracellular Mg(2+), which is implicated in arrhythmogenesis and transient cardiac ischemia, inhibits L-type Ca(2+) calcium channel current (ICaL) of adult cardiomyocytes (CMs). We take the advantage of an in vitro model of CMs based on induced pluripotent stem cells to investigate the effects of intracellular Mg(2+) on the phosphorylation or dephosphorylation processes of L-type Ca(2+) channels (LTCCs) at early and late stages of cardiac cell differentiation. Using the whole-cell patch-clamp technique, we demonstrate that increasing intracellular Mg(2+) concentration [Mg(2+)]i from 0.2 to 5 mM markedly reduced the peak of ICaL density, showing less effect on both the activation and inactivation properties in the late differentiation stage (LDS) of CMs more so than in the early differentiation stage (EDS). Increasing the [Mg(2+)]i from 0.2 to 2 mM in the presence of cAMP-dependent protein kinase A significantly decreased ICaL in LDS (70%) and in EDS (36%) CMs. In addition, the effect of forskolin was greatly attenuated in the presence of 2 mM [Mg(2+)]i in LDS but not in EDS CMs. The effect of forskolin was enhanced in the presence of ATP-γ-S in LDS CMs compared with EDS CMs. The exposure of both EDS and LDS CMs to 2 mM [Mg(2+)]i considerably reduced the effects of isobutylmethylxanthine (IBMX) and okadaic acid on ICaL. Our results provide evidence for differential regulation of LTCCs activities by cytosolic Mg(2+) concentration in developing cardiac cells and confirm that Mg(2+) acts under conditions that favor opening of the LTCCs caused by channel phosphorylation.

  19. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction.

    Science.gov (United States)

    Cuíñas, Andrea; García-Morales, Verónica; Viña, Dolores; Gil-Longo, José; Campos-Toimil, Manuel

    2016-06-15

    We investigated the implication of PKA and Epac proteins in the endothelium-independent vasorelaxant effects of cyclic AMP (cAMP). Cytosolic Ca(2+) concentration ([Ca(2+)]c) was measured by fura-2 imaging in rat aortic smooth muscle cells (RASMC). Contraction-relaxation experiments were performed in rat aortic rings deprived of endothelium. In extracellular Ca(2+)-free solution, cAMP-elevating agents induced an increase in [Ca(2+)]c in RASMC that was reproduced by PKA and Epac activation and reduced after depletion of intracellular Ca(2+) reservoirs. Arginine-vasopressin (AVP)-evoked increase of [Ca(2+)]c and store-operated Ca(2+) entry (SOCE) were inhibited by cAMP-elevating agents, PKA or Epac activation in these cells. In aortic rings, the contractions induced by phenylephrine in absence of extracellular Ca(2+) were inhibited by cAMP-elevating agents, PKA or Epac activation. In these conditions, reintroduction of Ca(2+) induced a contraction that was inhibited by cAMP-elevating agents, an effect reduced by PKA inhibition and reproduced by PKA or Epac activators. Our results suggest that increased cAMP depletes intracellular, thapsigargin-sensitive Ca(2+) stores through activation of PKA and Epac in RASMC, thus reducing the amount of Ca(2+) released by IP3-generating agonists during the contraction of rat aorta. cAMP rise also inhibits the contraction induced by depletion of intracellular Ca(2+), an effect mediated by reduction of SOCE after PKA or Epac activation. Both effects participate in the cAMP-induced endothelium-independent vasorelaxation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Calcium and caffeine interaction in increased calcium balance in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Sandra Tavares da Silva

    2013-06-01

    Full Text Available OBJECTIVE: This study investigated the effects of caffeine intake associated with inadequate or adequate calcium intake in laparotomized or ovariectomized rats by means of the calcium balance. Forty adults Wistar rats were ovariectomized or laparotomized. METHODS: The animals (n=40 were randomly placed in eight groups receiving the AIN-93 diet with 100% or 50% of the recommended calcium intake with or without added caffeine (6mg/kg/day. The animals were kept in individuals metabolic cages at a temperature of 24°±2ºC, light/dark cycles of 12/12 hours, and deionized water available ad libitum. On the 8th week of the experiment, food consumption was measured and 24-hour urine and 4-day feces were collected to determine calcium balance [Balance=Ca intake-(Urinary Ca+Fecal Ca]. RESULTS: Animals with adequate calcium intake presented higher balances and rates of calcium absorption and retention (p<0.05 than those with inadequate calcium intake, regardless of caffeine intake (p<0.05. Caffeine intake did not affect urinary calcium excretion but increased balance (p<0.05 in the groups with adequate calcium intake. CONCLUSION: Adequate calcium intake attenuated the negative effects of estrogen deficiency and improved calcium balance even in the presence of caffeine.

  1. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  2. Genetic analysis of hyperemesis gravidarum reveals association with intracellular calcium release channel (RYR2).

    Science.gov (United States)

    Fejzo, Marlena Schoenberg; Myhre, Ronny; Colodro-Conde, Lucía; MacGibbon, Kimber W; Sinsheimer, Janet S; Reddy, M V Prasad Linga; Pajukanta, Päivi; Nyholt, Dale R; Wright, Margaret J; Martin, Nicholas G; Engel, Stephanie M; Medland, Sarah E; Magnus, Per; Mullin, Patrick M

    2017-01-05

    Hyperemesis Gravidarum (HG), severe nausea/vomiting in pregnancy (NVP), can cause poor maternal/fetal outcomes. Genetic predisposition suggests the genetic component is essential in discovering an etiology. We performed whole-exome sequencing of 5 families followed by analysis of variants in 584 cases/431 controls. Variants in RYR2 segregated with disease in 2 families. The novel variant L3277R was not found in any case/control. The rare variant, G1886S was more common in cases (p = 0.046) and extreme cases (p = 0.023). Replication of G1886S using Norwegian/Australian data was supportive. Common variants rs790899 and rs1891246 were significantly associated with HG and weight loss. Copy-number analysis revealed a deletion in a patient. RYR2 encodes an intracellular calcium release channel involved in vomiting, cyclic-vomiting syndrome, and is a thyroid hormone target gene. Additionally, RYR2 is a downstream drug target of Inderal, used to treat HG and CVS. Thus, herein we provide genetic evidence for a pathway and therapy for HG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Enhanced NMDA receptor-mediated intracellular calcium signaling in magnocellular neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Stern, Javier E; Potapenko, Evgeniy S

    2013-08-15

    An enhanced glutamate excitatory function within the hypothalamic supraoptic and paraventricluar nuclei is known to contribute to increased neurosecretory and presympathetic neuronal activity, and hence, neurohumoral activation, during heart failure (HF). Still, the precise mechanisms underlying enhanced glutamate-driven neuronal activity in HF remain to be elucidated. Here, we performed simultaneous electrophysiology and fast confocal Ca²⁺ imaging to determine whether altered N-methyl-d-aspartate (NMDA) receptor-mediated changes in intracellular Ca²⁺ levels (NMDA-ΔCa²⁺) occurred in hypothalamic magnocellular neurosecretory cells (MNCs) in HF rats. We found that activation of NMDA receptors resulted in a larger ΔCa²⁺ in MNCs from HF when compared with sham rats. The enhanced NMDA-ΔCa²⁺ was neither dependent on the magnitude of the NMDA-mediated current (voltage clamp) nor on the degree of membrane depolarization or firing activity evoked by NMDA (current clamp). Differently from NMDA receptor activation, firing activity evoked by direct membrane depolarization resulted in similar changes in intracellular Ca²⁺ in sham and HF rats. Taken together, our results support a relatively selective alteration of intracellular Ca²⁺ homeostasis and signaling following activation of NMDA receptors in MNCs during HF. The downstream functional consequences of such altered ΔCa²⁺ signaling during HF are discussed.

  4. Single organelle fret-based analysis of intracellular calcium: different effects of presinilis carrying Familial Alzheimer's Disease mutations

    OpenAIRE

    wong, andrea kuan cie

    2014-01-01

    Calcium (Ca2+) is one of the major intracellular messengers that impacts nearly every aspect of cell life. In particular, it plays essential roles in neuronal development, synaptic transmission and plasticity, as well as in the regulation of metabolic pathways and cell fate decisions. The first goal of my work was to study more in details the Golgi apparatus (GA), as an intracellular Ca2+ store. The Golgi complex may store up to 5% of the total cellular Ca2+ at higher concentrations an...

  5. Dystrophin gene expression and intracellular calcium changes in the giant freshwater prawn,Macrobrachium rosenbergii, in response to white spot symptom disease infection.

    Science.gov (United States)

    Noor, Anees Fathima; Soo, Tze Chiew Christie; Ghani, Farhana Mohd; Goh, Zee Hong; Khoo, Li Teng; Bhassu, Subha

    2017-12-01

    Dystrophin, an essential protein functional in the maintenance of muscle structural integrity is known to be responsible for muscle deterioration during white spot syndrome virus (WSSV) infection among prawn species. Previous studies have shown the upregulation of dystrophin protein in Macrobrachium rosenbergii (the giant freshwater prawn) upon white spot syndrome virus (WSSV) infection. The literature has also suggested the important role of calcium ion alterations in causing such muscle diseases. Thus, the interest of this study lies within the linkage between dystrophin functioning, intracellular calcium and white spot syndrome virus (WSSV) infection condition. In this study, the dystrophin gene from M. rosenbergii (MrDys) was first characterised followed by the characterization of dystrophin gene from a closely related shrimp species, Penaeus monodon (PmDys). Dystrophin sequences from different phyla were then used for evolutionary comparison through BLAST analysis, conserved domain analysis and phylogenetic analysis. The changes in mRNA expression levels of dystrophin and the alteration of intracellular calcium concentrations in WSSV infected muscle cells were then studied. A 1246 base pair long dystrophin sequence was identified in the giant freshwater prawn, Macrobrachium rosenbergii ( MrDys ) followed by 1082 base pair long dystrophin sequence in P. monodon ( PmDys ). Four conserved domains were identified from the thirteen dystrophin sequences compared which were classified into 5 different phyla. From the phylogenetic analysis, aside from PmDys, the characterised MrDys was shown to be most similar to the invertebrate phylum of Nematoda. In addition, an initial down-regulation of dystrophin gene expression followed by eventual up-regulation, together with an increase in intracellular calcium concentration [Ca 2+ ] i were shown upon WSSV experimental infection. Both the functionality of the dystrophin protein and the intracellular calcium concentration were

  6. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    Science.gov (United States)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  7. Developmental regulation of intracellular calcium by N-methyl-D-aspartate and noradrenaline in rat visual cortex.

    Science.gov (United States)

    Kobayashi, M; Imamura, K; Kaub, P A; Nakadate, K; Watanabe, Y

    1999-01-01

    The effects of N-methyl-D-aspartate and noradrenaline on intracellular Ca2+ concentration in slices of rat visual cortex were studied using a fluorescent indicator, Fura-2. Bath application of N-methyl-D-aspartate (1-100 microM) increased intracellular Ca2+ concentration in a dose-dependent manner, especially in layers II/III. Noradrenaline (1-100 microM) also increased intracellular Ca2+ concentration in a dose-dependent manner, especially in layers I and IV. However, the maximum increase in intracellular Ca2+ concentration after 100 microM noradrenaline application was less than half of that after 100 microM N-methyl-D-aspartate application in slices obtained from animals in the sensitive period. The effect of noradrenaline was most prominent in slices of the sensitive period, whereas the N-methyl-D-aspartate-induced intracellular Ca2+ concentration response decreased with age. Additive effects from application of both N-methyl-D-aspartate and noradrenaline on intracellular Ca2+ concentration were found only in the neonatal stage. Pharmacological experiments showed that alpha1-adrenergic receptors play a major role in the noradrenaline-induced intracellular Ca2+ concentration response, although both alpha2- and beta-adrenergic receptors were also partially involved. The release of Ca2+ from intracellular storage underlay the early phase of the noradrenaline-induced intracellular Ca2+ concentration response, while extracellular Ca2+ influxes contributed to the sustained phase. Experiments using a gliotoxin, fluorocitric acid, suggested that the function of glial cells is involved in the noradrenaline-induced increase of intracellular Ca2+ concentration. The larger intracellular Ca2+ concentration response to noradrenaline during the sensitive period may modulate the increase in intracellular Ca2+ concentration by N-methyl-D-aspartate to maintain a higher level of cortical plasticity during this period.

  8. Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in MCF-7 Human Breast Cancer Cells

    OpenAIRE

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N.; Dietzgen, Ralf G.; Roberts-Thomson, Sarah J.; Gidley, Michael J.; Monteith, Gregory R.

    2015-01-01

    The assessment of human cancer cell proliferation is a common approach in identifying plant extracts that have potential bioactive effects. In this study, we tested the hypothesis that methanolic extracts of peel and flesh from three archetypal mango cultivars, Irwin (IW), Nam Doc Mai (NDM), and Kensington Pride (KP), differentially affect proliferation, extracellular signal-regulated kinase (ERK) activity, and intracellular calcium ([Ca2+]I) signalling in MCF-7 human breast cancer cells. Man...

  9. Cell growth, intracellular calcium concentration and metabolic cooperation measured in cells exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Skauli, K.S.

    1996-08-01

    Colony-forming efficiency, DNA/protein and DNA/cell were measured in cells exposed to magnetic fields of 0.2 and 1 mT at a frequency of 50 Hz. Intracellular calcium concentrations were measured in cells exposed to 0.3 and 1 mT at 50 Hz. Metabolic cooperation was measured in cells exposed to 1 mT at 50 Hz. No significant effects of the fields were observed. 20 refs., 10 figs

  10. Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales.

    Directory of Open Access Journals (Sweden)

    Lucía eLopez

    2012-09-01

    Full Text Available Many natural phenomena display "self-organized criticality'' (SOC. This refers to spatially extended systems for which patterns of activity characterized by different lengthscales can occur with a probability density that follows a power law with pattern size. Differently from power laws at phase transitions, systems displaying SOC do not need the tuning of an external parameter. Here we analyze intracellular calcium Ca2+ signals, a key component of the signaling toolkit of almost any cell type. Ca2+ signals can either be spatially restricted (local or propagate throughout the cell (global. Different models have suggested that the transition from local to global signals is similar to that of directed percolation. Directed percolation has been associated, in turn, to the appearance of self-organized criticality. In this paper we discuss these issues within the framework of simple models of Ca2+ signal propagation. We also analyze the size distribution of local signals ("puffs'' observed in immature Xenopus Laevis oocytes. The puff amplitude distribution obtained from observed local signals is not Gaussian with a noticeable fraction of large size events. The experimental distribution of puff areas in the spatio-temporal record of the image has a long tail that is approximately log-normal. The distribution can also be fitted with a power law relationship albeit with a smaller goodness of fit. The power law behavior is encountered within a simple model that includes some coupling among individual signals for a wide range of parameter values. An analysis of the model shows that a global elevation of the Ca2+ concentration plays a major role in determining whether the puff size distribution is long-tailed or not. This suggests that Ca2+-clearing from the cytosol is key to determine whether IP3-mediated Ca2+ signals can display a SOC-like behavior or not.

  11. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Zhenghang Zhao

    Full Text Available Recent studies have suggested that mitochondria may play important roles in the Ca(2+ homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+ flux can regulate the generation of Ca(2+ waves (CaWs and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+ (Cai (2+ was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR Ca(2+ release and CaWs were induced in the presence of high (4 mM external Ca(2+ (Cao (2+. The protonophore carbonyl cyanide p-(trifluoromethoxyphenylhydrazone (FCCP reversibly raised basal Cai (2+ levels even after depletion of SR Ca(2+ in the absence of Cao (2+ , suggesting Ca(2+ release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m or Ru360 (a mitochondrial Ca(2+ uniporter inhibitor, but not by oligomycin (an ATP synthase inhibitor or iodoacetic acid (a glycolytic inhibitor, excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+ uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+ release and uptake exquisitely control the local Ca(2+ level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.

  12. Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: implications for smoke angiopathy.

    Science.gov (United States)

    Misonou, Yoshiko; Asahi, Michio; Yokoe, Shunichi; Miyoshi, Eiji; Taniguchi, Naoyuki

    2006-03-01

    Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be

  13. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca{sup 2+}]{sub i}) in MCF-7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Elizabeth; Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha (Qatar)

    2014-11-06

    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca{sup 2+}]{sub i}) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca{sup 2+}]{sub i} in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca{sup 2+}]{sub i}. Overall, elevation of [Ca{sup 2+}]{sub i} by Auranofin might be crucial for triggering Ca{sup 2+}-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca{sup 2+}]{sub i} should be considered as a crucial factor for the induction of cell death in cancer cells.

  15. Altered Mitochondrial Metabolism and Mechanosensation in the Failing Heart: Focus on Intracellular Calcium Signaling

    Directory of Open Access Journals (Sweden)

    Aderville Cabassi

    2017-07-01

    Full Text Available The heart consists of millions of cells, namely cardiomyocytes, which are highly organized in terms of structure and function, at both macroscale and microscale levels. Such meticulous organization is imperative for assuring the physiological pump-function of the heart. One of the key players for the electrical and mechanical synchronization and contraction is the calcium ion via the well-known calcium-induced calcium release process. In cardiovascular diseases, the structural organization is lost, resulting in morphological, electrical, and metabolic remodeling owing the imbalance of the calcium handling and promoting heart failure and arrhythmias. Recently, attention has been focused on the role of mitochondria, which seem to jeopardize these events by misbalancing the calcium processes. In this review, we highlight our recent findings, especially the role of mitochondria (dysfunction in failing cardiomyocytes with respect to the calcium machinery.

  16. ERK1/2 mediates sperm acrosome reaction through elevation of intracellular calcium concentration.

    Science.gov (United States)

    Jaldety, Yael; Breitbart, Haim

    2015-10-01

    Mammalian sperm acquire fertilization capacity after residing in the female reproductive tract for a few hours in a process called capacitation. Only capacitated sperm can bind the zona pellucida (ZP) of the egg and undergo the acrosome reaction, a process that allows penetration and fertilization. Extracellular signal regulated kinase (ERK1/2) mediates signalling in many cell types, however its role in sperm function is largely unknown. Here we show that ERK1/2 is highly phosphorylated/activated after a short incubation of mouse sperm under capacitation conditions and that this phosphorylation is reduced after longer incubation. Further phosphorylation was observed upon addition of crude extract of egg ZP or epidermal growth factor (EGF). The mitogen-activated ERK-kinase (MEK) inhibitor U0126 abolished ERK1/2 phosphorylation, in vitro fertilization rate and the acrosome reaction induced by ZP or EGF but not by the Ca2+-ionophore A23187. Moreover, inhibition of ERK1/2 along the capacitation process diminished almost completely the sperm's ability to go through the acrosome reaction, while inhibition at the end of capacitation attenuated the acrosome reaction rate by only 45%. The fact that the acrosome reaction, induced by the Ca2+ -ionophore A23187, was not inhibited by U0126 suggests that ERK1/2 mediates the acrosome reaction by activating Ca2+ transport into the cell. Direct determination of intracellular [Ca2+] revealed that Ca2+ influx induced by EGF or ZP was completely blocked by U0126. Thus, it has been established that the increase in ERK1/2 phosphorylation/activation in response to ZP or by activation of the EGF receptor (EGFR) by EGF, is a key event for intracellular Ca2+ elevation and the subsequent occurrence of the acrosome reaction.

  17. Impact of human D398N single nucleotide polymorphism on intracellular calcium response mediated by α3β4α5 nicotinic acetylcholine receptors

    Science.gov (United States)

    Tammimäki, Anne; Herder, Penelope; Li, Ping; Esch, Caroline; Laughlin, James R.; Akk, Gustav; Stitzel, Jerry A.

    2013-01-01

    The human CHRNA5 D398N polymorphism (rs16969968) causes an aspartic acid to asparagine change in the nicotinic acetylcholine receptor (nAChR) α5 subunit gene. The N398 variant of CHRNA5 is linked to increased risk for nicotine dependence. In this study, we explored the effect of the CHRNA5 D398N polymorphism on the properties of human α3β4* nicotinic acetylcholine receptors in human embryonic kidney (HEK) cells. Addition of either D398 or N398 variant of α5 subunit in the α3β4* receptor did not affect total [125I]-epibatidine binding or surface expression of the receptor. However, addition of α5D398 into α3β4* receptor decreased the maximal response to agonist without significantly affecting EC50 in aequorin intracellular calcium assay. α3β4α5N398 nAChRs showed further decreased maximal response. The differences in agonist efficacy between the receptor subtypes were found to be dependent upon the concentration of external calcium but independent of external sodium. Moreover, activation of α3β4α5 nAChRs led to significantly greater intracellular calcium release from IP3 stores relative to α3β4 nAChRs although no effect of the α5 polymorphism was observed. Finally, inclusion of the α5 variant caused a small shift to the left in IC50 for some of the antagonists tested, depending upon α5 variant but did not affect sensitivity of α3β4* receptors to desensitization in response to incubation with nicotine. In conclusion, addition of either variant of a5 into an α3β4α5 receptor similarly effects receptor pharmacology and function. However, the N398 variant exhibits a reduced response to agonists when extracellular calcium is high and it may lead to distinct downstream cellular signaling. PMID:22820273

  18. Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications

    Science.gov (United States)

    Vicencio, J.M.; Estrada, M.; Galvis, D.; Bravo, R.; Contreras, A.E.; Rotter, D.; Szabadkai, G.; Hill, J.A.; Rothermel, B.A.; Jaimovich, E.; Lavandero, S.

    2015-01-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses. PMID:21443511

  19. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Science.gov (United States)

    Cabral, Wayne A; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N; Sargent, Brandi M; Weis, MaryAnn; Barnes, Aileen M; Webb, Emma A; Shaw, Nicholas J; Ala-Kokko, Leena; Lacbawan, Felicitas L; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S; Zimmerberg, Joshua; Eyre, David R; Yamada, Yoshihiko; Marini, Joan C

    2016-07-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  20. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  1. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  2. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    International Nuclear Information System (INIS)

    Liu, P.-S.; Chiung, Y.-M.; Kao, Y.-Y.

    2006-01-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca 2+ ] c ) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca 2+ mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca 2+ ] c by releasing Ca 2+ from the intracellular stores and extracellular Ca 2+ influx. 500 μM TDI induced a net [Ca 2+ ] c increase of 112 ± 8 and 78 ± 6 nM in the presence and absence of extracellular Ca 2+ , respectively. In Ca 2+ -free buffer, TDI induced Ca 2+ release from internal stores to reduce their Ca 2+ content and this reduction was evidenced by a suppression occurring on the [Ca 2+ ] c rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca 2+ , simultaneous exposure to TDI and methacholine led a higher level of [Ca 2+ ] c compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca 2+ ] c homeostasis including releasing Ca 2+ from internal stores and inducing extracellular Ca 2+ influx. The interaction of this novel character and bronchial hyperreactivity need further investigation

  3. Correlation between oxidative stress and alteration of intracellular calcium handling in isoproterenol-induced myocardial infarction.

    Science.gov (United States)

    Díaz-Muñoz, Mauricio; Alvarez-Pérez, Marco Antonio; Yáñez, Lucía; Vidrio, Susana; Martínez, Lidia; Rosas, Gisele; Yáñez, Mario; Ramírez, Sotero; de Sánchez, Victoria Chagoya

    2006-09-01

    Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.

  4. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium

    Science.gov (United States)

    Ma, R. N.; Feng, H. Q.; Liang, Y. D.; Zhang, Q.; Tian, Y.; Su, B.; Zhang, J.; Fang, J.

    2013-07-01

    A non-thermal plasma is known to induce apoptosis of various cells but the mechanism is not yet clear. A eukaryotic model organism Saccharomyces cerevisiaewas used to investigate the cellular and biochemical regulations of cell apoptosis and cell cycle after an atmospheric-pressure cold plasma treatment. More importantly, intracellular calcium (Ca2+) was first involved in monitoring the process of plasma-induced apoptosis in this study. We analysed the cell apoptosis and cell cycle by flow cytometry and observed the changes in intracellular reactive oxygen species (ROS) and Ca2+ concentration, cell mitochondrial membrane potential (Δψm) as well as nuclear DNA morphology via fluorescence staining assay. All experimental results indicated that plasma-generated ROS leads to the accumulation of intracellular ROS and Ca2+ that ultimately contribute to apoptosis associated with cell cycle arrest at G1 phase through depolarization of Δψm and fragmenting nuclear DNA. This work provides a novel insight into the physical and biological mechanism of apoptosis induced by a plasma which could benefit for promoting the development of plasmas applied to cancer therapy.

  5. The transduction channel TRPM5 is gated by intracellular calcium in taste cells.

    Science.gov (United States)

    Zhang, Zheng; Zhao, Zhen; Margolskee, Robert; Liman, Emily

    2007-05-23

    Bitter, sweet, and umami tastants are detected by G-protein-coupled receptors that signal through a common second-messenger cascade involving gustducin, phospholipase C beta2, and the transient receptor potential M5 (TRPM5) ion channel. The mechanism by which phosphoinositide signaling activates TRPM5 has been studied in heterologous cell types with contradictory results. To resolve this issue and understand the role of TRPM5 in taste signaling, we took advantage of mice in which the TRPM5 promoter drives expression of green fluorescent protein and mice that carry a targeted deletion of the TRPM5 gene to unequivocally identify TRPM5-dependent currents in taste receptor cells. Our results show that brief elevation of intracellular inositol trisphosphate or Ca2+ is sufficient to gate TRPM5-dependent currents in intact taste cells, but only intracellular Ca2+ is able to activate TRPM5-dependent currents in excised patches. Detailed study in excised patches showed that TRPM5 forms a nonselective cation channel that is half-activated by 8 microM Ca2+ and that desensitizes in response to prolonged exposure to intracellular Ca2+. In addition to channels encoded by the TRPM5 gene, we found that taste cells have a second type of Ca2+-activated nonselective cation channel that is less sensitive to intracellular Ca2+. These data constrain proposed models for taste transduction and suggest a link between receptor signaling and membrane potential in taste cells.

  6. High Cell Density Upregulates Calcium Oscillation by Increasing Calcium Store Content via Basal Mitogen-Activated Protein Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Morita

    Full Text Available Calcium releases of non-excitable cells are generally a combination of oscillatory and non-oscillatory patterns, and factors affecting the calcium dynamics are still to be determined. Here we report the influence of cell density on calcium increase patterns of clonal cell lines. The majority of HeLa cells seeded at 1.5 x 104/cm2 showed calcium oscillations in response to histamine and ATP, whereas cells seeded at 0.5 x 104/cm2 largely showed transient and sustained calcium increases. Cell density also affected the response of HEK293 cells to ATP in a similar manner. High cell density increased the basal activity of the mitogen-activated protein (MAP kinase and calcium store content, and both calcium oscillation and calcium store content were down-regulated by a MAP kinase inhibitor, U0126. Thus, MAP kinase-mediated regulation of calcium store likely underlie the effect of cell density on calcium oscillation. Calcium increase patterns of HeLa cells were conserved at any histamine concentrations tested, whereas the overexpression of histamine H1 receptor, which robustly increased histamine-induced inositol phospholipid hydrolysis, converted calcium oscillations to sustained calcium increases only at high histamine concentrations. Thus, the consequence of modulating inositol phospholipid metabolism was distinct from that of changing cell density, suggesting the effect of cell density is not attributed to inositol phospholipid metabolism. Collectively, our results propose that calcium increase patterns of non-excitable cells reflect calcium store, which is regulated by the basal MAP kinase activity under the influence of cell density.

  7. Decreased intracellular pH is not due to increased H+ extrusion in preconditioned rat hearts.

    Science.gov (United States)

    Gabel, S A; Cross, H R; London, R E; Steenbergen, C; Murphy, E

    1997-11-01

    Ischemic preconditioning reduces intracellular acidification during a subsequent, prolonged period of ischemia. This may reflect decreased anaerobic glycolysis or increased H+ efflux. To distinguish between these hypotheses, we monitored intracellular and extracellular pH during a sustained period of ischemia to determine whether the preconditioned hearts had increased H+ efflux compared with nonpreconditioned hearts. At the end of 20 min of ischemia, intracellular pH in nonpreconditioned hearts was 5.90 +/- 0.08 and extracellular pH was 5.51 +/- 0.21, whereas in preconditioned hearts, intracellular pH was 6.50 +/- 0.06 and extracellular pH was 6.62 +/- 0.06. To investigate whether an Na+/H+ exchange inhibitor would alter the reduced acidification during ischemia, we preconditioned hearts with and without dimethylamiloride (DMA). Intracellular pH during ischemia was similar in preconditioned hearts with and without DMA treatment (pH 6.42 +/- 0.02 vs. 6.45 +/- 0.03, respectively). These data do not support the hypothesis that enhanced proton efflux is responsible for the more alkaline intracellular pH during sustained ischemia in preconditioned hearts.

  8. The effect of tetraethylammonium on intracellular calcium concentration in Alzheimer's disease fibroblasts with APP, S182 and E5-1 missense mutations.

    Science.gov (United States)

    Failli, P; Tesco, G; Ruocco, C; Ginestroni, A; Amaducci, L; Giotti, A; Sorbi, S

    1996-04-26

    It has been proposed that the lack of intracellular calcium concentration ([Ca2+]i) increase induced by the potassium channel blocker tetraethylammonium (TEA) in skin fibroblast cell lines identifies patients with both sporadic and familial Alzheimer's disease (AD). In order to verify this hypothesis, the effect of TEA on [Ca2+]i was studied in single fura-2-loaded skin fibroblast cell lines available in the Tissue Bank of the Italian Research Council. Four out of eight familial AD patients (one patient with S182 mutation, one patient with E5-1 mutation and two patients with 717 Val-->Ile APP mutation) and two out of five sporadic AD patients showed a positive response to TEA, whereas five out of 11 control lines were unresponsive. Our data suggest that the absence of the TEA-induced increase in [Ca2+]i in skin fibroblast cell lines does not identify all AD patients.

  9. Increasing of Mechanical Parameters of Clay soil Using Calcium Chloride

    Science.gov (United States)

    Beheshty, Seyyed Amir Hossein; Moosa Aniran, Mir; Firoozfar, Alireza; Kiamehr, Ramin

    2017-04-01

    Research on roads to increase the resistance of weak soils to build structures on it has been increased in recent years. The present article provide the effects of different mixtures containing calcium chloride solution and clay soil on mechanical parameters such as, compressibility, compressive strength, shear strength and durability characteristic. In this study also is investigated evaluation the effect of road subgrade based on proposed material. The used clay soil in this research was obtained from zanjan city where is located in northwestern of Iran. The obtained results show that the calcium chloride solution could play a major role in reducing the cost and required time for building roads and also building foundation on these types of soils.

  10. Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm.

    Science.gov (United States)

    Li, Kun; Xue, Yamei; Chen, Aijun; Jiang, Youfang; Xie, Haifeng; Shi, Qixian; Zhang, Songying; Ni, Ya

    2014-01-01

    Heat shock protein 90 plays critical roles in client protein maturation, signal transduction, protein folding and degradation, and morphological evolution; however, its function in human sperm is not fully understood. Therefore, our objective in this study was to elucidate the mechanism by which heat shock protein 90 exerts its effects on human sperm function. By performing indirect immunofluorescence staining, we found that heat shock protein 90 was localized primarily in the neck, midpiece, and tail regions of human sperm, and that its expression increased with increasing incubation time under capacitation conditions. Geldanamycin, a specific inhibitor of heat shock protein 90, was shown to inhibit this increase in heat shock protein 90 expression in western blotting analyses. Using a multifunctional microplate reader to examine Fluo-3 AM-loaded sperm, we observed for the first time that inhibition of heat shock protein 90 by using geldanamycin significantly decreased intracellular calcium concentrations during capacitation. Moreover, western blot analysis showed that geldanamycin enhanced tyrosine phosphorylation of several proteins, including heat shock protein 90, in a dose-dependent manner. The effects of geldanamycin on human sperm function in the absence or presence of progesterone was evaluated by performing chlortetracycline staining and by using a computer-assisted sperm analyzer. We found that geldanamycin alone did not affect sperm capacitation, hyperactivation, and motility, but did so in the presence of progesterone. Taken together, these data suggest that heat shock protein 90, which increases in expression in human sperm during capacitation, has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-stimulated sperm function. In this study, we provide new insights into the roles of heat shock protein 90 in sperm function.

  11. Manganese (Mn oxidation increases intracellular Mn in Pseudomonas putida GB-1.

    Directory of Open Access Journals (Sweden)

    Andy Banh

    Full Text Available Bacterial manganese (Mn oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS. Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection.

  12. Influence of dietary cholesterol on 26-hydroxycholesterol and the effect of 26-hydroxycholesterol on the intracellular free calcium level

    International Nuclear Information System (INIS)

    Kou, I.L.

    1987-01-01

    The purpose of this study was to investigate the factors influencing serum level of 26-hydroxycholesterol after long-term consumption of cholesterol by animals. It is also to examine the effect of this sterol on intracellular free calcium level. Purified 26-hydroxycholesterol was synthesized from kryptogenin by the Clemmemsen and Wolff-Kishner reduction method. 26-Hydroxycholesterol was also used for fatty acid esters syntheses, and to study its influence on membranes. Tritiated 26-hydroxycholesterol which was synthesized by an enzymatic method, was used to monitor the 26-hydroxycholesterol loss during the procedure. The ester form of 26-hydroxycholesterol was also synthesized, and used to investigate its effects on membranes. The HPLC method that was developed for the analysis of 26-hydroxycholesterol levels in animal tissues was accurate, efficient, and reproducible for the determination of 26-hydroxycholesterol in plasma. However, it was not suitable for the analysis of other tissues, due to the overlapping of peaks making quantitation difficult

  13. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  14. Increased intracellular Th1 cytokines in scid mice with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Claesson, Mogens Helweg

    1998-01-01

    by intracellular staining. A 4-5-fold increase in the fraction of IFN-gamma-producing CD4+ lamina propria T cells was found in moderately and severely diseased mice when compared to healthy congenic C.B-17 control mice. The number of IL-2-producing T cells was increased by approximately 2-fold when comparing mice...

  15. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    Science.gov (United States)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  16. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  17. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  18. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology.

    Science.gov (United States)

    Loverde, Joseph R; Pfister, Bryan J

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  19. Intracellular S-adenosylhomocysteine increased levels are associated with DNA hypomethylation in HUVEC.

    NARCIS (Netherlands)

    Castro, R.; Rivera, I.; Martins, C.; Struys, E.A.; Jansen, E.E.; Clode, N.; Graca, L.M.; Blom, H.J.; Jakobs, C.; Tavares de Almeida, I.

    2005-01-01

    Hyperhomocysteinemia is a risk factor for atherosclerosis and vascular disease; however, the mechanism underlying this association remains poorly understood. Increased levels of intracellular S-adenosylhomocysteine (AdoHcy), secondary to homocysteine-mediated reversal of the AdoHcy hydrolase

  20. Glucocorticoids can affect Pseudomonas aeruginosa (ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells.

    Science.gov (United States)

    Hussain, Rashida; Shahror, Rami; Karpati, Ferenc; Roomans, Godfried M

    2015-01-01

    Glucocorticoids (GCs) are anti-inflammatory agents, but their use in cystic fibrosis (CF) is controversial. In CF, the early colonization with Pseudomonas aeruginosa is mainly due to nonmucoid strains that can internalize, and induce apoptosis in the epithelial cells. Uptake of P. aeruginosa by the epithelial cells and subsequent apoptosis may prevent colonization of P. aeruginosa in CF airways. In the airway epithelia, several other biological effects, including an anti-secretory role by decreasing intracellular Ca(2+) concentration have been described for this anti-inflammatory drug. However, the effects of GCs on the nonmucoid P. aeruginosa internalization and intracellular Ca(2+) in CF bronchial epithelial cells have not been evaluated. We used cultured human CF bronchial airway epithelial cell (CFBE) monolayers to determine P. aeruginosa internalization, apoptosis, and intracellular Ca(2+)concentration in CF bronchial epithelial cells. Cells were treated with IL-6, IL-8, dexamethasone, betamethasone, or budesonide. GCs in co-treatments with IL-6 reversed the effect of IL-6 by decreasing the internalization of P. aeruginosa in the CFBE cells. GCs decreased the extent of apoptosis in CFBE cells infected with internalized P. aeruginosa, and increased the intracellular Ca(2+) concentration. These findings suggest that if internalization of P. aeruginosa reduces infection, GC therapy would increase the risk of pulmonary infection by decreasing the internalization of P. aeruginosa in CF cells, but GCs may improve airway hydration by increasing the intracellular Ca(2+) concentration. Whether the benefits of GC treatment outweigh the negative effects is questionable, and further clinical studies need to be carried out.

  1. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells

    KAUST Repository

    Ren, Jian

    2012-03-06

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E 2) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E 2 elevated [Ca 2+] i and increased Ca 2+ oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E 2 mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E 2 activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E 2 induces the non-genomic responses Ca 2+ release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E 2 responses. © 2012 Springer Science+Business Media, LLC.

  2. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans.

    Science.gov (United States)

    Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Passos, Renata L Freitas; Fonseca, Michele Atalla; Oliveira, Kenya Paula Moreira; Lima, Milene Rodrigues Malheiros; Guimarães, Juliana Bohen; Ferreira-Júnior, João Batista; Martini, Angelo R P; Lima, Nilo R V; Soares, Danusa Dias; Oliveira, Edilamar Menezes; Rodrigues, Luiz Oswaldo Carneiro

    2010-11-01

    In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL(-1); p  0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p  0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = -0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.

  3. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  4. Calcium soil amendment increases resistance of potato to blackleg ...

    African Journals Online (AJOL)

    Soft rot incidence in the progeny tubers was also significantly reduced by the calcium treatment. In addition, calcium amendment significantly reduced (P < 0.05) soft rot losses of tubers in storage. Calcium nitrate was effective in reducing blackleg and soft rot diseases in combination with either compound D or compound S.

  5. Effect of Increased Dietary Calcium on Body Weight, Food and ...

    African Journals Online (AJOL)

    Food and water intake, body weight, cardiac weight index, left ventricular weight index, renal weight index and serum calcium level were determined. The result shows that OC treated rats had significantly lower serum calcium concentration, body weight gain, food, water and calcium intake than those of the control rats.

  6. Rapid increases in inositol trisphosphate and intracellular Ca++ after heat shock

    International Nuclear Information System (INIS)

    Stevenson, M.A.; Calderwood, S.K.; Hahn, G.M.

    1986-01-01

    Heat shock (45 0 C) caused a rapid ( ++ . In addition to the heat induced rise in intracellular free Ca ++ , an increase in 45 Ca ++ influx was observed following nonlethal heat shock (45 0 C/10 min). The heat-induced increase in 45 Ca ++ influx was linearly related to membrane accumulation of phosphatidic acid, phosphoinositide metabolite that may be involved in Ca ++ gating (1). These results suggest that the membrane may be the proximal target of heat shock

  7. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  8. Extra and intracellular calcium signaling pathway(s) differentially regulate histamine-induced myometrial contractions during early and mid-pregnancy stages in buffaloes (Bubalus bubalis).

    Science.gov (United States)

    Sharma, Abhishek; Nakade, Udayraj P; Choudhury, Soumen; Yadav, Rajkumar Singh; Garg, Satish Kumar

    2017-04-01

    This study examines the differential role of calcium signaling pathway(s) in histamine-induced uterotonic action during early and mid-pregnancy stages in buffaloes. Compared to mid pregnancy, tonic contraction, amplitude and mean-integral tension were significantly increased by histamine to produce myometrial contraction during early pregnancy with small effects on phasic contraction and frequency. Although uterotonic action of histamine during both stages of pregnancy is sensitive to nifedipine (a L-type Ca 2+ channels blocker) and NNC55-0396 (T-type Ca 2+ channels blocker), the role of extracellular calcium seems to be more significant during mid-pregnancy as in this stage histamine produced only 9.38±0.96% contraction in Ca 2+ free-RLS compared to 21.60±1.45% in uteri of early pregnancy stage. Intracellular calcium plays major role in histamine-induced myometrial contraction during early pregnancy as compared to mid pregnancy, as in the presence of cyclopiazonic acid (CPA) Ca 2+ -free RLS, histamine produced significantly higher contraction in myometrial strips of early-pregancy in comparison to mid-pregnancy (10.59±1.58% and 3.13±0.46%, respectively). In the presence of U-73122, the DRC of histamine was significantly shifted towards right with decrease in maximal effect (E max ) only in early pregnancy suggesting the predominant role of phospholipase-C (PL-C) in this stage of pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy bone formation correlates with intracellular calcium homeostasis regulation.

    Science.gov (United States)

    Zhao, Rui; Xie, Pengfei; Zhang, Kun; Tang, Zhurong; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Yang, Xiao; Zhang, Xingdong

    2017-09-01

    Adequate bone substitutes osseointegration has been difficult to achieve in osteoporosis. Hydroxyapatite of the osteoporotic bone, secreted by pathologic osteoblasts, had a smaller crystal size and lower crystallinity than that of the normal. To date, little is known regarding the interaction of synthetic hydroxyapatite nanoparticles (HANPs) with osteoblasts born in bone rarefaction. The present study investigated the biological effects of HANPs on osteoblastic cells derived from osteoporotic rat bone (OVX-OB), in comparison with the healthy ones (SHM-OB). A selective effect of different concentrations of HANPs on the two cell lines was observed that the osteoporotic osteoblasts had a higher tolerance. Reductions in cell proliferation, ALP activity, collagen secretion and osteoblastic gene expressions were found in the SHM-OB when administered with HANPs concentration higher than 25µg/ml. In contrast, those of the OVX-OB suffered no depression but benefited from 25 to 250µg/ml HANPs in a dose-dependent manner. We demonstrated that the different effects of HANPs on osteoblasts were associated with the intracellular calcium influx into the endoplasmic reticulum. The in vivo bone defect model further confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more and mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. Collectively, the observed epigenetic regulation of osteoblastic cell function by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials. In this study, we investigated the biological effects of hydroxyapatite nanoparticles (HANPs) on osteoporotic rat bone and the derived osteoblast. Our findings revealed a previously unrecognized phenomenon that the osteoporotic individuals could benefit from higher concentrations of HANPs, as compared with the healthy individuals. The in

  10. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  11. GABAA increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels

    Directory of Open Access Journals (Sweden)

    Stephanie Z Young

    2010-04-01

    Full Text Available In the adult neurogenic subventricular zone (SVZ, the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca2+ levels and tonic GABAA receptor activation. However, it is unknown whether, and if so how, GABAA receptor activity regulates intracellular Ca2+ dynamics in SVZ astrocytes. To monitor Ca2+ activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP promoter. GABAA receptor activation induced Ca2+ increases in 40-50% of SVZ astrocytes. GABAA-induced Ca2+ increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC. The L-type Ca2+ channel activator BayK 8644 increased the percentage of GABAA-responding astrocyte-like cells to 75%, suggesting that the majority of SVZ astrocytes express functional VGCCs. SVZ astrocytes also displayed spontaneous Ca2+ activity, the frequency of which was regulated by tonic GABAA receptor activation. These data support a role for ambient GABA in tonically regulating intracellular Ca2+ dynamics through GABAA receptors and VGCC in a subpopulation of astrocyte-like cells in the postnatal SVZ.

  12. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women

    DEFF Research Database (Denmark)

    Baeksgaard, L; Andersen, K P; Hyldstrup, Lars

    1998-01-01

    We undertook a double-masked, randomized, placebo-controlled trial to evaluate the effect of a calcium and vitamin D supplement and a calcium supplement plus multivitamins on bone loss at the hip, spine and forearm. The study was performed in 240 healthy women, 58-67 years of age. Duration...... of treatment was 2 years. Bone mineral density (BMD) was measured at the lumbar spine, hip and forearm. A dietary questionnaire was administered twice during the study and revealed a fairly good calcium and vitamin D intake (919 mg calcium/day; 3.8 micrograms vitamin D/day). An increase in lumbar spine BMD....... Together with significant changes in serum calcium and serum parathyroid hormone, this indicates that a long-term calcium and vitamin supplement of 1 g elementary calcium (calcium carbonate) and 14 micrograms vitamin D3 increases intestinal calcium absorption. A positive effect on BMD was demonstrated...

  13. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women

    DEFF Research Database (Denmark)

    Baeksgaard, L; Andersen, K P; Hyldstrup, Lars

    1998-01-01

    . Together with significant changes in serum calcium and serum parathyroid hormone, this indicates that a long-term calcium and vitamin supplement of 1 g elementary calcium (calcium carbonate) and 14 micrograms vitamin D3 increases intestinal calcium absorption. A positive effect on BMD was demonstrated......We undertook a double-masked, randomized, placebo-controlled trial to evaluate the effect of a calcium and vitamin D supplement and a calcium supplement plus multivitamins on bone loss at the hip, spine and forearm. The study was performed in 240 healthy women, 58-67 years of age. Duration...... of treatment was 2 years. Bone mineral density (BMD) was measured at the lumbar spine, hip and forearm. A dietary questionnaire was administered twice during the study and revealed a fairly good calcium and vitamin D intake (919 mg calcium/day; 3.8 micrograms vitamin D/day). An increase in lumbar spine BMD...

  14. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    OpenAIRE

    Eder, Anja; Bading, Hilmar

    2007-01-01

    Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nuc...

  15. Ingestion of guar gum hydrolysate, a soluble fiber, increases calcium absorption in totally gastrectomized rats.

    Science.gov (United States)

    Hara, H; Suzuki, T; Kasai, T; Aoyama, Y; Ohta, A

    1999-01-01

    Gastrectomy induces osteopenia. We examined the effects of feeding a diet containing soluble dietary fiber, guar gum hydrolysate (GGH, 50 g/kg diet), on intestinal calcium absorption and bone mineralization in totally gastrectomized (Roux-en-Y esophagojejunostomy) rats by comparing them with those in two control groups (laparotomized and bypassed rats). In the bypassed rats, chyme bypassed the duodenum and upper jejunum without gastrectomy. In a second separate experiment, we compared calcium absorption and bone mineralization in the gastrectomized rats fed diets containing soluble and insoluble calcium salts and in bypassed rats fed insoluble calcium. In Experiment 1, apparent absorption of calcium supplied as a water-insoluble salt was more than 50% lower in gastrectomized rats than in the intact (laparotomized) or bypassed rats 3 wk after the start of feeding the test diets (P Calcium absorption was higher (P Experiment 2, absorption of soluble calcium in the gastrectomized rats did not differ from the absorption of calcium from calcium carbonate by bypassed rats. The soluble calcium pool in the cecal contents was significantly lower in gastrectomized rats (Experiment 1) than in intact or bypassed control rats, and was higher (P calcium absorption correlated most closely (r = 0.787, P calcium content was significantly lower in gastrectomized rats fed insoluble calcium than in bypassed rats fed the same diet, but was partially restored in the rats fed soluble calcium (Experiment 2). Bone calcium was not increased by feeding GGH in gastrectomized rats (Experiment 1). We conclude that the severely diminished calcium absorption following total gastrectomy is totally due to a decrease in calcium solubilization, and feeding GGH partially restores calcium absorption. The decrease in bone calcium that occurs as a result of gastrectomy is mainly due to diminished intestinal calcium absorption.

  16. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  17. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Science.gov (United States)

    Eder, Anja; Bading, Hilmar

    2007-01-01

    Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events. PMID:17663775

  18. Role of intracellular calcium in the spermicidal action of 2',4'-dichlorobenzamil, a novel contact spermicide.

    Science.gov (United States)

    Patni, A K; Gupta, S; Sharma, A; Tiwary, A K; Garg, S K

    2001-10-01

    The Na+-Ca2+ exchanger and Ca2+-ATPase pumps reported to be present on the sperm membrane are responsible for maintaining the intracellular Ca2+ concentration that is involved in regulation of sperm function. We have investigated the role of intracellular Ca2+ in the presence of 2',4'-dichlorobenzamil hydrochloride (benzamil), a Na+-Ca2+ exchange inhibitor, on human sperm motility. The mechanism of the complementary spermicidal action produced by a combination of benzamil and propranolol on human spermatozoa has been investigated also. When administered alone benzamil and propranolol produced a dose- and time-dependent decrease in motility of sperm in ejaculated semen and spermatozoa separated from semen. A combination of benzamil and propranolol exhibited a complementary spermicidal action, thereby resulting in dose reduction of both drugs for obtaining total immotility within 1 min of administration. An increase in the intracellular Ca2+ level was found to contribute to the spermicidal activity. Inhibition of the Na+-Ca2+ exchange system on sperm membrane by benzamil and membrane stabilization by propranolol resulted in accumulation of Ca2+ inside the sperm cells. When the two drugs were used in combination the time required for the total loss of motility of spermatozoa was significantly reduced due to a similar mechanism of action of both drugs.

  19. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Danielsen, Bente Pia; Garcia, André Castilho

    2018-01-01

    . The supersaturated solutions had a pH around 4.7, and calcium binding to hydrogencitrate as the dominant citrate species during precipitation was found to be exothermic with a determined association constant of 357 L mol-1 at 25 °C for unit ionic strength, and δH° = -22 ± 2 kJ mol-1, δS° = -26 ± 8 J K-1 mol-1......The sparingly soluble calcium hydrogenphosphate dihydrate, co-dissolving in water during dissolution of freely soluble sodium hydrogencitrate sesquihydrate as caused by proton transfer from hydrogencitrate to hydrogenphosphate, was found to form homogenous solutions supersaturated by a factor up...... to 8 in calcium citrate tetrahydrate. A critical hydrogencitrate concentration for formation of homogeneous solutions was found to depend linearly on dissolved calcium hydrogenphosphate: [HCitr2-] = 14[CaHPO4] - 0.05 at 25 °C. The lag phase for precipitation of calcium citrate tetrahydrate...

  20. Cyclic AMP counteracts mitogen-induced inositol phosphate generation and increases in intracellular Ca2+ concentrations in human lymphocytes

    NARCIS (Netherlands)

    van Tits, L. J.; Michel, M. C.; Motulsky, H. J.; Maisel, A. S.; Brodde, O. E.

    1991-01-01

    1. The effects of increases in intracellular adenosine 3':5'-cyclic monophosphate (cyclic AMP) on mitogen-induced generation of inositol phosphates and increases in intracellular Ca2+ concentration were investigated in human peripheral blood mononuclear leukocytes (MNL). 2. The mitogens concanavalin

  1. Bradykinin and histamine-induced cytosolic calcium increase in capillary endothelial cells of bovine adrenal medulla.

    Science.gov (United States)

    Vinet, Raúl; Cortés, Magdalena P; Alvarez, Rocío; Delpiano, Marco A

    2014-09-01

    We have assessed the effect of bradykinin and histamine on the cytosolic free calcium concentration ([Ca(2+)]i ) of bovine adrenal medulla capillary endothelial cells (BAMCECs). To measure [Ca(2+)]i changes in BAMCECs the intracellular fluorescent probe, fluo-3 AM, was used. Bradykinin (3 µM) produced a transient monophasic increase in [Ca(2+)]i , which was depressed by B1650 (0.1 µM), a B2-bradykinin receptor antagonist (D-Arg-[Hyp(3), Thi(5,8) , D-Phe(7)]-Bradykinin). Similarly, increase in [Ca(2+)]i induced by histamine was also depressed by tripolidine (0.1 µM), an H1-histamine receptor antagonist. [Ca(2+)]i increase induced by both agonists was unaffected in the absence of extracellular Ca(2+) or presence of antagonists of voltage operated Ca(2+) channels (VOCCs). Thapsigargin (1 µM) did not abolish the increase of [Ca(2+)]i produced by bradykinin, but abolished that of histamine. In contrast, caffeine (100 µM), abolished the [Ca(2+)]i response induced by bradykinin (3 µM), but did not affect the [Ca(2+)]i increase induced by histamine (100 µM). The results indicate the presence of B2 bradykinin- and H1 histamine-receptors in BAMCECs. Liberation of Ca(2+) induced by both agonists occurs through 2 different intracellular mechanisms. While bradykinin activates a sarco(endo) plasmic reticulum (SER) containing a SER Ca(2+) -ATPase (SERCA) thapsigargin-insensitive, histamine activates a SER containing a SERCA thapsigargin-sensitive. We suggest that the increase in [Ca(2+)]i induced by bradykinin and histamine could be of physiological relevance, modulating adrenal gland microcirculation. © 2014 International Federation for Cell Biology.

  2. Intracellular calcium is a target of modulation of apoptosis in MCF-7 cells in the presence of IgA adsorbed to polyethylene glycol

    Science.gov (United States)

    Honorio-França, Adenilda Cristina; Nunes, Gabriel Triches; Fagundes, Danny Laura Gomes; de Marchi, Patrícia Gelli Feres; Fernandes, Rubian Trindade da Silva; França, Juliana Luzia; França-Botelho, Aline do Carmo; Moraes, Lucélia Campelo Albuquerque; Varotti, Fernando de Pilla; França, Eduardo Luzía

    2016-01-01

    Purpose Clinical and epidemiological studies have indicated that breastfeeding has a protective effect on breast cancer risk. Protein-based drugs, including antibodies, are being developed to attain better forms of cancer therapy. Secretory IgA (SIgA) is the antibody class in human breast milk, and its activity can be linked to the protective effect of breastfeeding. The aim of this study was to investigate the effect of polyethylene glycol (PEG) microspheres with adsorbed SIgA on MCF-7 human breast cancer cells. Methods The PEG microspheres were characterized by flow cytometry and fluorescence microscopy. The MCF-7 cells were obtained from American Type Culture Collection. MCF-7 cells were pre-incubated for 24 hours with or without SIgA (100 ng/mL), PEG microspheres or SIgA adsorbed in PEG microspheres (100 ng/mL). Viability, intracellular calcium release, and apoptosis in MCF-7 cells were determined by flow cytometry. Results Fluorescence microscopy and flow cytometry analyses revealed that SIgA was able to adsorb to the PEG microspheres. The MCF-7 cells that were incubated with PEG microspheres with adsorbed SIgA showed decreased viability. MCF-7 cells that were incubated with SIgA or PEG microspheres with adsorbed SIgA had increased intracellular Ca2+ levels. In the presence of SIgA, an increase in the percentage of apoptotic cells was observed. The highest apoptosis index was observed when the cells were treated with PEG microspheres with adsorbed SIgA. Conclusion These data suggest that colostral SIgA adsorbed to PEG microspheres has antitumor effects on human MCF-7 breast cancer cells and that the presence of large amounts of this protein in secreted breast milk may provide protection against breast tumors in women who breastfed. PMID:26893571

  3. Modulation of membrane conductance in rods of Bufo marinus by intracellular calcium ion.

    Science.gov (United States)

    Oakley, B; Pinto, L H

    1983-06-01

    Double-barrel micropipettes were used to pressure-inject EGTA into the outer segments of rods in the isolated retina of Bufo marinus. We used these pipettes to point voltage clamp the cell to its resting membrane voltage during the injection of EGTA in order to prevent changes in membrane voltage from occurring. The input conductance of the rod was assessed by measuring the incremental membrane current required to hyperpolarize the membrane by less than or equal to 10 mV. When the retina was bathed in normal Ringer solution, the injection of EGTA during point voltage clamp evoked an inward membrane current and in increase in input conductance. This observation is consistent with an EGTA-evoked increase in conductance for an ion with an equilibrium potential more depolarized than the resting membrane potential. Injections of control solutions that did not contain EGTA had no effect. The effects of injected EGTA were not altered by variations in the pH or buffering capacity of the injection solution, or by the addition of equimolar Mg2+. Furthermore, injections of a solution containing equimolar Ca2+ and EGTA were without effect. Thus, the observed effects of injected EGTA were due to the lowering of the [Ca2+]i. Replacement of extracellular Na+ with choline+ abolished both the response to light and the EGTA-evoked increase in input conductance. A low [Na+]o solution containing 10(-8) M-Ca2+ reduced the response to injected EGTA by approximately the same amount as it reduced the response to light. Replacement of extracellular Cl- by methanesulphonate was without significant effect on either the response to light or to injected EGTA. These results are consistent with the interpretation that a lowered [Ca2+]i increases primarily the sodium conductance, gNa, of the plasma membrane of the rod outer segment. The conductance that is affected by a lowered [Ca2+]i appears to have the same specificity as the light-dependent conductance. This conclusion is consistent with a

  4. Monitoring intracellular calcium ion dynamics in hair cell populations with Fluo-4 AM.

    Directory of Open Access Journals (Sweden)

    Kateri J Spinelli

    Full Text Available We optimized Fluo-4 AM loading of chicken cochlea to report hair-bundle Ca(2+ signals in populations of hair cells. The bundle Ca(2+ signal reported the physiological state of the bundle and cell; extruding cells had very high bundle Fluo-4 fluorescence, cells with intact bundles and tip links had intermediate fluorescence, and damaged cells with broken tip links had low fluorescence. Moreover, Fluo-4 fluorescence in the bundle correlated with Ca(2+ entry through transduction channels; mechanically activating transduction channels increased the Fluo-4 signal, while breaking tip links with Ca(2+ chelators or blocking Ca(2+ entry through transduction channels each caused bundle and cell-body Fluo-4 fluorescence to decrease. These results show that when tip links break, bundle and soma Ca(2+ decrease, which could serve to stimulate the hair cell's tip-link regeneration process. Measurement of bundle Ca(2+ with Fluo-4 AM is therefore a simple method for assessing mechanotransduction in hair cells and permits an increased understanding of the interplay of tip links, transduction channels, and Ca(2+ signaling in the hair cell.

  5. Impaired recovery of intracellular calcium and force after activation in isolated myometrial and subcutaneous resistance arteries from women with preeclampsia.

    Science.gov (United States)

    Wimalasundera, Ruwan C; Wijetunge, Sumangali; Thom, Simon M; Regan, Lesley; Hughes, Alun D

    2010-03-01

    Preeclampsia is a major cause of maternal and perinatal morbidity and mortality, but its cause is poorly understood. This study investigated whether there is an abnormality of intracellular calcium ([Ca2=]i) and tension during recovery from activation in isolated resistance arteries in preeclampsia and investigated the underlying mechanisms. Subcutaneous and myometrial resistance arteries from preeclamptic, normotensive pregnant and nonpregnant women were mounted on an isometric myograph and loaded with fura-2 to allow simultaneous measurement of force and [Ca2+]i. Arteries were activated by a high-potassium solution or noradrenaline, and the rate of decline in force and [Ca2+]i examined following washout. Basal tone and [Ca2+]i and rise in force and [Ca2+]i induced by high-potassium solution did not differ between groups but the rate of decline after washout was significantly slowed in both subcutaneous and myometrial arteries from preeclamptic women as compared with normotensive pregnant or nonpregnant women. The rate of decline in force after noradrenaline was also slowed in arteries from preeclamptic women. In subcutaneous resistance arteries from nonpregnant women, removal of the endothelium did not affect the rate of decline in force after high-potassium solution. However, inhibition of the plasma membrane Ca ATPase with carboxyeosin mimicked the findings seen in preeclampsia. In contrast, inhibition of the sarcoplasmic endoreticulum Ca ATPase with cyclopiazonic acid had no effect on the rate of decline in force or [Ca2+]i. The rate of relaxation and decline in [Ca2+]i in resistance arteries are impaired in preeclampsia. This may be mediated by decreased activity of plasma membrane Ca2+ ATPase and could be a mechanism contributing to elevated peripheral resistance and raised blood pressure in preeclampsia.

  6. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  7. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Sato

    2014-01-01

    Full Text Available Epalrestat (EPS, approved in Japan, is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Here we report that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH, which is important for protection against oxidative injury, through transcription regulation. Treatment of Schwann cells with EPS caused a dramatic increase in intracellular GSH levels. EPS increased the mRNA levels of γ-glutamylcysteine synthetase (γ-GCS, the enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that plays a central role in regulating the expression of γ-GCS. ELISA revealed that EPS increased nuclear Nrf2 levels. Knockdown of Nrf2 by siRNA suppressed the EPS-induced GSH biosynthesis. Furthermore, pretreatment with EPS reduced the cytotoxicity induced by H2O2, tert-butylhydroperoxide, 2,2'-azobis (2-amidinopropane dihydrochloride, and menadione, indicating that EPS plays a role in protecting against oxidative stress. This is the first study to show that EPS induces GSH biosynthesis via the activation of Nrf2. We suggest that EPS has new beneficial properties that may prevent the development and progression of disorders caused by oxidative stress.

  8. Membrane Estrogen Receptor-α Interacts with Metabotropic Glutamate Receptor Type 1a to Mobilize Intracellular Calcium in Hypothalamic Astrocytes

    Science.gov (United States)

    Kuo, John; Hariri, Omid R.; Bondar, Galyna; Ogi, Julie; Micevych, Paul

    2009-01-01

    Estradiol, acting on a membrane-associated estrogen receptor-α (mERα), induces an increase in free cytoplasmic calcium concentration ([Ca2+]i) needed for progesterone synthesis in hypothalamic astrocytes. To determine whether rapid estradiol signaling involves an interaction of mERα with metabotropic glutamate receptor type 1a (mGluR1a), changes in [Ca2+]i were monitored with the calcium indicator, Fluo-4 AM, in primary cultures of female postpubertal hypothalamic astrocytes. 17β-Estradiol over a range of 1 nm to 100 nm induced a maximal increase in [Ca2+]i flux measured as a change in relative fluorescence [ΔF Ca2+ = 615 ± 36 to 641 ± 47 relative fluorescent units (RFU)], whereas 0.1 nm of estradiol stimulated a moderate [Ca2+]i increase (275 ± 16 RFU). The rapid estradiol-induced [Ca2+]i flux was blocked with 1 μm of the estrogen receptor antagonist ICI 182,780 (635 ± 24 vs. 102 ± 11 RFU, P estradiol-induced membrane signaling in astrocytes. PMID:18948402

  9. Taurine prevention of calcium paradox-related damage in cardiac muscle. Its regulatory action on intracellular cation contents.

    Science.gov (United States)

    Yamauchi-Takihara, K; Azuma, J; Kishimoto, S; Onishi, S; Sperelakis, N

    1988-07-01

    The present study was designed to investigate in chick heart whether oral pretreatment with taurine or taurine added directly to the perfusate has any effect upon calcium paradox-induced heart failure. In both protocols, taurine significantly reduced the mechanical dysfunction resulting from the calcium paradox. Taurine pretreatment partially inhibited the excess accumulation of calcium in the myocardium that occurs upon calcium repletion, and microscopy revealed almost normal structure. This protective effect of taurine was accompanied by (a) reduction of the gain of sodium content that occurs during calcium depletion, and (b) reduction of the late gain in calcium that occurs during calcium repletion. It is proposed that taurine plays a role in the regulation of calcium homeostasis and membrane stabilization.

  10. Evidence for a role of intracellular stored parathyroid hormone in producing hysteresis of the PTH-calcium relationship in normal humans

    DEFF Research Database (Denmark)

    Schwarz, Peter; Madsen, J C; Rasmussen, A Q

    1998-01-01

    OBJECTIVE: Despite the clear recognition that extracellular ionized calcium controls PTH secretion, there have been suggestions of hysteresis in the relationship between extracellular ionized calcium and PTH during recovery from induced hypo- and hypercalcaemia in vivo in humans. In this study, we...... examined the possibility that release of intracellular stored PTH during induced hypocalcaemia may explain hysteresis. VOLUNTEERS: Eleven volunteers, five women and six men, were recruited to participate in the study. DESIGN: A series of three protocols of repeated induction of hypocalcaemia or sequential...... induction of hypo- and hypercalcaemia. RESULTS: We observed in a total of 13 trials that a drastic lowering of blood ionized calcium by 0.20 mmol/l within 30 min elicited an immediate large, transient peak release of PTH amounting to 6-16 times the baseline concentration. However, following a steady...

  11. Intracellular angiotensin II elicits Ca2+ increases in A7r5 vascular smooth muscle cells

    NARCIS (Netherlands)

    Filipeanu, CM; Brailoiu, E; Kok, JW; Henning, RH; De Zeeuw, D; Nelemans, SA

    2001-01-01

    Recent studies show that angiotensin II can act within the cell, possibly via intracellular receptors pharmacologically different from typical plasma membrane angiotensin II receptors. The signal transduction of intracellular angiotensin LI is unclear. Therefore. we investigated the effects of

  12. Eurycoma longifolia extract increases intracellular production activity of luteinizing hormone (LH) in pituitary

    Science.gov (United States)

    Pratomo, H.

    2017-07-01

    Administration of the boiled water (extract) of Eurycoma longifolia (E. Longifolia) 18 mg/200 g body weight (bw) actually increases basophil cells in the anterior pituitary. Meanwhile, it is observed that basophil cells in anterior pituitary are producer cells of LH and FSH. Cell activity rate producing intracellular FSH does not increase in the amount significantly after administration of the E. longifolia onto the third day. The research attempts to prove the performance of E. longifolia to producer cells of luteinizing hormone (LH) in the anterior pituitary. Applied approach by a technical method of immunohistochemistry staining uses an antibody anti-LH. Observation is established to the treatment group of the E longifolia in a dose of 18 mg/200 g a bw on the 1st day and 3rd day, compared to control group of 1 ml distilled water on the 1st day and 3rd day. Research results that administration of the extract of E longifolia onto the third day has increased the activity of producer cells of LH in the pituitary, the synthesizing intracellular LH obviously. It can be concluded that E longifolia constitutes strong trigger in producer cells of LH to synthesize LH hormone.

  13. Increase in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell

    International Nuclear Information System (INIS)

    Lalier, Lisenn; Pedelaborde, François; Braud, Christophe; Menanteau, Jean; M Vallette, François; Olivier, Christophe

    2011-01-01

    NSAIDs exhibit protective properties towards some cancers, especially colon cancer. Yet, it is not clear how they play their protective role. PGE 2 is generally shown as the only target of the NSAIDs anticancerous activity. However, PGE 2 known targets become more and more manifold, considering both the molecular pathways involved and the target cells in the tumour. The role of PGE 2 in tumour progression thus appears complex and multipurpose. To gain understanding into the role of PGE 2 in colon cancer, we focused on the activity of PGE 2 in apoptosis in colon cancer cell lines. We observed that an increase in intracellular PGE 2 induced an apoptotic cell death, which was dependent on the expression of the proapoptotic protein Bax. This increase was induced by increasing PGE 2 intracellular concentration, either by PGE 2 microinjection or by the pharmacological inhibition of PGE 2 exportation and enzymatic degradation. We present here a new sight onto PGE 2 in colon cancer cells opening the way to a new prospective therapeutic strategy in cancer, alternative to NSAIDs

  14. Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages

    Directory of Open Access Journals (Sweden)

    Verbrugghe Elin

    2011-12-01

    Full Text Available Abstract Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.

  15. Intracellular modulation, extracellular disposal and serum increase of MiR-150 mark lymphocyte activation.

    Directory of Open Access Journals (Sweden)

    Paola de Candia

    Full Text Available Activated lymphocytes release nano-sized vesicles (exosomes containing microRNAs that can be monitored in the bloodstream. We asked whether elicitation of immune responses is followed by release of lymphocyte-specific microRNAs. We found that, upon activation in vitro, human and mouse lymphocytes down-modulate intracellular miR-150 and accumulate it in exosomes. In vivo, miR-150 levels increased significantly in serum of humans immunized with flu vaccines and in mice immunized with ovalbumin, and this increase correlated with elevation of antibody titers. Immunization of immune-deficient mice, lacking MHCII, resulted neither in antibody production nor in elevation of circulating miR-150. This study provides proof of concept that serum microRNAs can be detected, with minimally invasive procedure, as biomarkers of vaccination and more in general of adaptive immune responses. Furthermore, the prompt reduction of intracellular level of miR-150, a key regulator of mRNAs critical for lymphocyte differentiation and functions, linked to its release in the external milieu suggests that the selective extracellular disposal of microRNAs can be a rapid way to regulate gene expression during lymphocyte activation.

  16. A Strategy to Increase Microbial Hydrogen Production, Facilitating Intracellular Energy Reserves.

    Science.gov (United States)

    Lee, Hyo Jung; Park, Jihoon; Lee, Joo-Young; Kim, Pil

    2016-08-28

    Overexpression of the genes encoding phosphoeneolpyruvate carboxykinase (pckA) and NAD-dependent malic enzyme (maeA) facilitates higher intracellular ATP and NAD(P)H concentrations, respectively, under aerobic conditions in Escherichia coli. To verify a hypothesis that higher intracellular energy reserves might contribute to H2 fermentation, wild-type E. coli strains overexpressing pckA and maeA were cultured under anaerobic conditions in a glucose minimal medium. Overexpression of pckA and maeA enabled E. coli to produce 3- times and 4-times greater H2 (193 and 284 nmol, respectively) than the wild type (66 nmol H2). The pckA and maeA genes were further overexpressed in a hydrogenase-3-enhanced E. coli strain. The hydrogenase-3-enhanced strain (W3110+fhlA) produced 322 nmol H2, whereas the ATP-enhanced strain (W3110+fhlA+pckA) produced 50% increased H2 (443 nmol). Total H2 in the NAD(P)H-enhanced strain (W3110+fhlA+maeA) was similar to that in the control strain at 319 nmol H2. Possible explanations for the contribution of the increased cellular energy reserves to the enhanced hydrogen fermentation observed are discussed based on the viewpoint of metabolic engineering strategy.

  17. Increased intracellular Th1 cytokines in scid mice with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Claesson, Mogens Helweg

    1998-01-01

    Severe combined immunodeficient (scid) mice engrafted with small pieces of full thickness gut wall from immunocompetent syngenic donors develop a chronic and lethal colitis. Lymphocytes from the lamina propria of engrafted mice were analyzed for phorbol ester/ionomycin-induced cytokine production...... by intracellular staining. A 4-5-fold increase in the fraction of IFN-gamma-producing CD4+ lamina propria T cells was found in moderately and severely diseased mice when compared to healthy congenic C.B-17 control mice. The number of IL-2-producing T cells was increased by approximately 2-fold when comparing mice...... suffering from severe disease to healthy control mice. The fraction of TNF-alpha positive CD4+ T cells was increased by a factor of two in both moderately and severely diseased mice. When analyzing Th2 cytokines, it was found that the levels of IL-4-producing CD4+ T cells was not altered in diseased animals...

  18. Annual Feedback Is an Effective Tool for a Sustained Increase in Calcium Intake among Older Women

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Nicholson

    2010-09-01

    Full Text Available We aimed to optimize calcium intake among the 2,000+ older women taking part in the Vital D study. Calcium supplementation was not included in the study protocol. Our hypothesis was that annual feedback of calcium intake and informing women of strategies to improve calcium intake can lead to a sustained increase in the proportion of women who consume adequate levels of the mineral. Calcium intake was assessed on an annual basis using a validated short food frequency questionnaire (FFQ. Supplemental calcium intake was added to the dietary estimate. Participants and their nominated doctor were sent a letter that the participant’s estimated daily calcium intake was adequate or inadequate based on a cutoff threshold of 800 mg/day. General brief statements outlining the importance of an adequate calcium intake and bone health were included in all letters. At baseline, the median daily consumption of calcium was 980 mg/day and 67 percent of 1,951 participants had calcium intake of at least 800 mg per day. Of the 644 older women advised of an inadequate calcium intake at baseline (< 800 mg/day, 386 (60% had increased their intake by at least 100 mg/day when re-assessed twelve months later. This desirable change was sustained at 24 months after baseline with almost half of these women (303/644 consuming over 800 mg calcium per day. This study devised an efficient method to provide feedback on calcium intake to over 2,000 older women. The improvements were modest but significant and most apparent in those with a low intake at baseline. The decreased proportion of these women with an inadequate intake of calcium 12- and 24-months later, suggests this might be a practical, low cost strategy to maintain an adequate calcium intake among older women.

  19. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes.

    Science.gov (United States)

    Palee, Siripong; Apaijai, Nattayaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-01-01

    Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh) has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2) treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker) and mecamylamine (a nicotinic acetylcholine receptor blocker) significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Calcium

    Science.gov (United States)

    ... absorb calcium as well. Sufficient calcium intake from food, and supplements if needed, can slow the rate of bone loss. Women of childbearing ... calcium absorption. People who eat a variety of foods don't have to consider ... include consumption of alcohol- and caffeine-containing beverages as well ...

  1. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells.

    Science.gov (United States)

    Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-04-01

    Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Effect of atorvastatin on intracellular calcium uptake in coronary smooth muscle cells from diabetic pigs fed an atherogenic diet.

    Science.gov (United States)

    Hill, B J; Dixon, J L; Sturek, M

    2001-11-01

    Intracellular Ca(2+) store loading has been shown to alter proliferation and apoptosis of several cell types. In addition, HMG-CoA reductase inhibitors (i.e. atorvastatin) are effective in treating diabetic dyslipidemic patients. Thus, we hypothesized that chronic atorvastatin treatment would prevent increased Ca(2+) uptake into intracellular Ca(2+) stores in vascular smooth muscle cells from diabetic dyslipidemic pigs. Male Yucatan pigs were divided into four groups for 20 weeks-- (1) low fat fed (control); (2) hyperlipidemic (F); (3) alloxan-induced diabetic dyslipidemic (DF); and (4) diabetic dyslipidemic pigs treated with atorvastatin (DFA). The F, DF, and DFA groups were fed a high fat/cholesterol diet. Cells were isolated from the coronary artery and the myoplasmic Ca(2+) (Ca(m)) response measured using single cell fura-2 imaging. The Ca(m) response to caffeine (5 mM to release Ca(2+) from the sarcoplasmic reticulum, SR) and ionomycin (10 microM; to release the total Ca(2+) store) was determined in either the presence of low Na (19Na; inhibits Na(+)-Ca(2+) exchange), thapsigargin (TSG; inhibits the SR Ca(2+) pump), and a 19Na+TSG solution. Low Na induced the uptake of Ca(2+) into both SR and non-SR Ca(2+) stores in the DF group, but not the DFA group. Furthermore, after depletion of the SR Ca(2+) store with TSG, 19Na evoked Ca(2+) uptake into non-SR Ca(2+) stores in all three groups except in the DFA group. In summary, this study demonstrates that atorvastatin prevents the enhanced uptake of Ca(2+) by SR and non-SR Ca(2+) stores in diabetic dyslipidemic pigs.

  3. Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets.

    Directory of Open Access Journals (Sweden)

    Emily R Wendt

    Full Text Available Calcium flux is a rapid and sensitive measure of cell activation whose utility could be enhanced with better techniques for data extraction. We describe a technique to monitor calcium flux by flow cytometry, measuring Fura Red calcium dye by ratiometric analysis. This technique has several advantages: 1 using a single calcium dye provides an additional channel for surface marker characterization, 2 allows robust detection of calcium flux by minority cell populations within a heterogeneous population of primary T cells and monocytes 3 can measure total calcium flux and additionally, the proportion of responding cells, 4 can be applied to studying the effects of drug treatment, simultaneously stimulating and monitoring untreated and drug treated cells. Using chemokine receptor activation as an example, we highlight the utility of this assay, demonstrating that only cells expressing a specific chemokine receptor are activated by cognate chemokine ligand. Furthermore, we describe a technique for simultaneously stimulating and monitoring calcium flux in vehicle and drug treated cells, demonstrating the effects of the Gαi inhibitor, pertussis toxin (PTX, on chemokine stimulated calcium flux. The described real time calcium flux assay provides a robust platform for characterizing cell activation within primary cells, and offers a more accurate technique for studying the effect of drug treatment on receptor activation in a heterogeneous population of primary cells.

  4. Increases in cellular calcium concentration stimulate pepsinogen secretion from dispersed chief cells

    International Nuclear Information System (INIS)

    Raufman, J.P.; Berger, S.; Cosowsky, L.; Straus, E.

    1986-01-01

    Intracellular calcium concentration ([Ca]i) and pepsinogen secretion from dispersed chief cells from guinea pig stomach were determined before and after stimulation with calcium ionophores. [Ca]i was measured using the fluorescent probe quin2. Basal [Ca]i was 105 +/- 4 nM. Pepsinogen secretion was measured with a new assay using 125 I-albumin substrate. This assay is 1000-fold more sensitive than the widely-used spectrophotometric assay, technically easy to perform, rapid, and relatively inexpensive. The kinetics and stoichiometry of ionophore-induced changes in [Ca]i and pepsinogen secretion were similar. These data support a role for calcium as a cellular mediator of pepsinogen secretion

  5. Store-Operated Calcium Channel and Cancer

    OpenAIRE

    Yang S; Chang WC

    2012-01-01

    The increase of intracellular Ca2+ concentration is an important mechanism that regulates a variety of physiological processes ranging from exocytosis to gene regulation and cell proliferation [1]. Calcium release from intracellular stores (mainly endoplasmic reticulum, ER) or calcium entry through calcium channels can be used by cells to evoke a higher level of cytosolic Ca2+ concentration. In non-excitable cells, a major pathway for Ca2+ influx is via store-operated Ca2+ channels (also know...

  6. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells.

    Science.gov (United States)

    Mahdi, Shah H A; Cheng, Huanyi; Li, Jinfeng; Feng, Renqing

    2015-10-01

    The contribution of Ca(2+) in TGF-β-induced EMT is poorly understood. We aimed to confirm the effect of TGF-β on the gene expression of intracellular calcium-handling proteins and to investigate the potential underlying mechanisms in TGF-β-induced EMT. T47D and MCF-7 cells were cultured in vitro and treated with TGF-β. The mRNA expression of EMT marker genes and intracellular calcium-handling proteins were quantified by qRT-PCR. qRT-PCR and Western blot analysis results verified the changes of EMT marker gene expression. Furthermore, we found that TGF-β induced cell morphological changes significantly with an increase of cell surface area and cell length. These results indicated that TGF-β induced EMT. The mRNA expression levels of SPCA1, SPCA2 and MCU were not influenced by TGF-β treatment, while NCX1 expression was decreased in T47D cells. In addition, the mRNA levels of SERCAs and IP3Rs were significantly changed due to TGF-β-induced EMT. The TGF-β-treated T47D cells exhibited markedly greater response to ATP than the control cells, and the descent velocity of cytosolic calcium concentration was faster in TGF-β-treated cells than in control cells. This is the first report to demonstrate that TGF-β-induced EMT in human breast cancer cells is associated with alterations in endoplasmic reticulum calcium homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Rhein triggers apoptosis via induction of endoplasmic reticulum stress, caspase-4 and intracellular calcium in primary human hepatic HL-7702 cells

    Energy Technology Data Exchange (ETDEWEB)

    KoraMagazi, Arouna [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Wang, Dandan [Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Yousef, Bashir; Guerram, Mounia [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu (China); Yu, Feng, E-mail: yufengcpu14@yahoo.com [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, Jiangsu (China)

    2016-04-22

    Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-like ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.

  8. GABAAα1 and GABAAρ1 subunits are expressed in cultured human RPE cells and GABAA receptor agents modify the intracellular calcium concentration.

    Science.gov (United States)

    Cheng, Zhen-Ying; Wang, Xu-Ping; Schmid, Katrina L; Han, Xu-Guang; Song, Hui; Tang, Xin

    2015-01-01

    Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.

  9. Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signaling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel.

    Science.gov (United States)

    Sakallı Çetin, Esin; Nazıroğlu, Mustafa; Çiğ, Bilal; Övey, İshak Suat; Aslan Koşar, Pınar

    2017-02-01

    In breast cancers, calcium signaling is a main cause of proliferation and apoptosis of breast cancer cells. Although previous studies have implicated the transient receptor potential vanilloid 1 (TRPV1) cation channel, the synergistic inhibition effects of selenium (Se) and cisplatin in cancer and the suppression of ongoing apoptosis have not yet been investigated in MCF-7 breast cancer cells. This study investigates the anticancer properties of Se through TRPV1 channel activity in MCF-7 breast cancer cell line cultures when given alone or in combination with cisplatin. The MCF-7 cells were divided into four groups: the control group, the Se-treated group (200 nM), the cisplatin-treated group (40 μM) and the Se + cisplatin-treated group. The intracellular free calcium ion concentration and current densities increased with TRPV1 channel activator capsaicin (0.01 mM), but they decreased with the TRPV1 blocker capsazepine (0.1 mM), Se, cisplatin, and Se + cisplatin incubations. However, mitochondrial membrane depolarization, apoptosis, and the caspase 3, and caspase 9 values increased in the Se-treated group and the cisplatin-treated group, although Western blot (procaspase 3 and 9) results and the cell viability levels decreased with the Se and Se + cisplatin treatments. Apoptosis and caspase-3 were further increased with the Se + cisplatin treatment. Intracellular reactive oxygen species production increased with the cisplatin treatment, but not with the Se treatment. This study's results report, for the first time, that at a cellular level, Se and cisplatin interact on the same intracellular toxic cascade, and the combination of these two drugs can result in a remarkable anticancer effect through modulation of the TRPV1.

  10. Carbon Tetrachloride Increases Intracellular Calcium in Rat Liver and Hepatocyte Cultures

    Science.gov (United States)

    1986-05-12

    protected from CC14 ’s effects. Scavengers of free radicals and antioxidants such as alpha-tocopherol ( vitamin E), diphenyl-p-phenylenediamine, and...A. L. Melvin, P. Shaw, W. T. Melvin, and M. D. Burke. (1985) Studies on the Maintenance of Cytochrome& P-450 and b5 Monooxygenases and Cytochrome

  11. Regulation of NKG2D-ligand cell surface expression by intracellular calcium after HDAC-inhibitor treatment

    DEFF Research Database (Denmark)

    Jensen, Helle; Hagemann-Jensen, Michael Henrik; Lauridsen, Felicia Kathrine Bratt

    2013-01-01

    cell surface expression on melanoma cells and Jurkat T-cells. A NKG2D-dependent cytolytic assay and staining with a recombinant NKG2D-Fc fusion protein showed that calcium chelation impaired the functional ability of NKG2D-ligands induced by HDAC-inhibitor treatment. The HDAC-inhibitor induced cell...... surface expression of ULBP2, but not MICA/B, was sensitive to treatment calmidazolium and trifluoperazine, two agents known to block calcium signaling. siRNA-mediated knock-down of the calcium-regulated proteins calmodulin or calpain did however not affect NKG2D-ligand cell surface expression on Jurkat T...

  12. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chua, Song Lin; Liu, Yang; Li, Yingying

    2017-01-01

    Cyclic-di-GMP (c-di-GMP) is an intracellular secondary messenger which controls the biofilm life cycle in many bacterial species. High intracellular c-di-GMP content enhances biofilm formation via the reduction of motility and production of biofilm matrix, while low c-di-GMP content in biofilm...... cells leads to increased motility and biofilm dispersal. While the effect of high c-di-GMP levels on bacterial lifestyles is well studied, the physiology of cells at low c-di-GMP levels remains unclear. Here, we showed that Pseudomonas aeruginosa cells with high and low intracellular c-di-GMP contents...... possessed distinct transcriptome profiles. There were 535 genes being upregulated and 432 genes downregulated in cells with low c-di-GMP, as compared to cells with high c-di-GMP. Interestingly, both rhl and pqs quorum-sensing (QS) operons were expressed at higher levels in cells with low intracellular c...

  13. Calcium

    Science.gov (United States)

    ... and blood vessels contract and expand, to secrete hormones and enzymes and to send messages through the nervous system. It is important to get plenty of calcium in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with ...

  14. Increased Binding of Calcium Ions at Positively Curved Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Magarkar, Aniket; Jurkiewicz, Piotr; Allolio, Christoph; Hof, Martin; Jungwirth, Pavel

    2017-01-01

    Roč. 8, č. 2 (2017), s. 518-523 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GA16-01074S; GA ČR(CZ) GAP207/12/0919 Grant - others:AV ČR(CZ) AP1102 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61388963 ; RVO:61388955 Keywords : molecular dynamics * fluorescence spectroscopy * calcium * phospholipids Subject RIV: CF - Physical ; Theoretical Chemistry ; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Physical chemistry ; Physical chemistry (UFCH-W) Impact factor: 9.353, year: 2016

  15. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  16. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Samuel D Robinson

    2015-10-01

    Full Text Available NMDA receptors (NMDARs play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM but not high (50 μM concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-AP. Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and RAP, a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.

  17. Tellurite-exposed Escherichia coli exhibits increased intracellular α-ketoglutarate

    International Nuclear Information System (INIS)

    Reinoso, Claudia A.; Auger, Christopher; Appanna, Vasu D.; Vásquez, Claudio C.

    2012-01-01

    Highlights: ► Tellurite-exposed E. coli exhibits decreased α-KG dehydrogenase activity. ► Cells lacking α-KGDH genes are more sensitive to ROS than isogenic, wt E. coli. ► KG accumulation may serve to face tellurite-mediated oxidative damage in E. coli. -- Abstract: The tellurium oxyanion tellurite is toxic to most organisms because of its ability to generate oxidative stress. However, the detailed mechanism(s) how this toxicant interferes with cellular processes have yet to be fully understood. As part of our effort to decipher the molecular interactions of tellurite with living systems, we have evaluated the global metabolism of α-ketoglutarate a known antioxidant in Escherichia coli. Tellurite-exposed cells displayed reduced activity of the KG dehydrogenase complex (KGDHc), resulting in increased intracellular KG content. This complex’s reduced activity seems to be due to decreased transcription in the stressed cells of sucA, a gene that encodes the E1 component of KGDHc. Furthermore, it was demonstrated that the increase in total reactive oxygen species and superoxide observed upon tellurite exposure was more evident in wild type cells than in E. coli with impaired KGDHc activity. These results indicate that KG may be playing a pivotal role in combating tellurite-mediated oxidative damage.

  18. Calcium supplementation increases blood creatinine concentration in a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Barry

    Full Text Available Calcium supplements are widely used among older adults for osteoporosis prevention and treatment. However, their effect on creatinine levels and kidney function has not been well studied.We investigated the effect of calcium supplementation on blood creatinine concentration in a randomized controlled trial of colorectal adenoma chemoprevention conducted between 2004-2013 at 11 clinical centers in the United States. Healthy participants (N = 1,675 aged 45-75 with a history of colorectal adenoma were assigned to daily supplementation with calcium (1200 mg, as carbonate, vitamin D3 (1000 IU, both, or placebo for three or five years. Changes in blood creatinine and total calcium concentration were measured after one year of treatment and multiple linear regression was used to estimate effects on creatinine concentrations.After one year of treatment, blood creatinine was 0.013±0.006 mg/dL higher on average among participants randomized to calcium compared to placebo after adjustment for other determinants of creatinine (P = 0.03. However, the effect of calcium treatment appeared to be larger among participants who consumed the most alcohol (2-6 drinks/day or whose estimated glomerular filtration rate (eGFR was less than 60 ml/min/1.73 m2 at baseline. The effect of calcium treatment on creatinine was only partially mediated by a concomitant increase in blood total calcium concentration and was independent of randomized vitamin D treatment. There did not appear to be further increases in creatinine after the first year of calcium treatment.Among healthy adults participating in a randomized clinical trial, daily supplementation with 1200 mg of elemental calcium caused a small increase in blood creatinine. If confirmed, this finding may have implications for clinical and public health recommendations for calcium supplementation.ClinicalTrials.gov NCT00153816.

  19. Low-concentration hydrogen peroxide can upregulate keratinocyte intracellular calcium and PAR-2 expression in a human keratinocyte-melanocyte co-culture system.

    Science.gov (United States)

    Li, Jian; Tang, Lu-Yan; Fu, Wen-Wen; Yuan, Jin; Sheng, You-Yu; Yang, Qin-Ping

    2016-12-01

    Hydrogen peroxide (H 2 O 2 ) may have a biphasic effect on melanin synthesis and melanosome transfer. High H 2 O 2 concentrations are involved in impaired melanosome transfer in vitiligo. However, low H 2 O 2 concentration promotes the beneficial proliferation and migration of melanocytes. The aim of this study was to explore low H 2 O 2 and its mechanism in melanosome transfer, protease-activated receptor-2 (PAR-2) expression and calcium balance. Melanosomes were fluorescein-labeled for clear visualization of their transfer. The expression of protease-activated receptor-2 (PAR-2) in keratinocytes was determined by western blot analysis. Flow cytometry was employed to evaluate the effects of H 2 O 2 on calcium levels in keratinocytes. Fluorescence microscopy showed the upregulation of melanosome transfer into keratinocytes following 0.3 mM H 2 O 2 treatment in the co-cultures rather than in the untreated control groups, which was associated with higher expression of PAR-2 protein and increased calcium concentration. The addition of a PAR-2 antagonist inhibited the positive activity of H 2 O 2 and calcium flow in keratinocytes. When calcium flow was blocked by a calcium chelator, the addition of H 2 O 2 did not increase the PAR-2 expression level in keratinocytes, therefore, inhibiting dendrite formation and melanosome transfer. Low H 2 O 2 concentration promotes melanosome transfer with increased PAR-2 expression level and calcium concentration in keratinocytes. In addition, the interaction between melanocytes and keratinocytes is more beneficial to enhance calcium levels in keratinocytes which mediate melanin transfer. Moreover, low H 2 O 2 concentration promotes dendrite formation, in which extracellular calcium and Par-2 were involved.

  20. Magnetic separation of algae genetically modified for increased intracellular iron uptake.

    Science.gov (United States)

    Buck, Amy; Moore, Lee R; Lane, Christopher D; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J; Zborowski, Maciej

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides ( A. p. ) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  1. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  2. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Science.gov (United States)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  3. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    International Nuclear Information System (INIS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  4. Contribution of α4β2 nAChR in nicotine-induced intracellular calcium response and excitability of MSDB neurons.

    Science.gov (United States)

    Wang, Jiangang; Wang, Yali; Wang, Yang; Wang, Ran; Zhang, Yunpeng; Zhang, Qian; Lu, Chengbiao

    2014-12-10

    The neurons of medial septal diagonal band of broca (MSDB) project to hippocampus and play an important role in MSDB-hippocampal synaptic transmission, plasticity and network oscillation. Nicotinic acetylcholine receptor (nAChR) subunits, α4β2 and α7 nAChRs, are expressed in MSDB neurons and permeable to calcium ions, which may modulate the function of MSDB neurons. The aims of this study are to determine the roles of selective nAChR activation on the calcium responses and membrane currents in MSDB neurons. Our results showed that nicotine increased calcium responses in the majority of MSDB neurons, pre-treatment of MSDB slices with a α4β2 nAChR antagonist, DhβE but not a α7 nAChR antagonist, MLA prevented nicotine-induced calcium responses. The whole cell patch clamp recordings showed that nicotine-induced inward current and acetylcholine (ACh) induced-firing activity can be largely reduced or prevented by DhβE in MSDB neurons. Surprisingly, post-treatment of α4β2 or α7 nAChR antagonists failed to block nicotine׳s role, they increased calcium responses instead. Application of calcium chelator EGTA reduced calcium responses in all neurons tested. These results suggest that there was a subtype specific modulation of nAChRs on calcium signaling and membrane currents in MSDB neurons and nAChR antagonists were also able to induce calcium responses involving a distinct mechanism.

  5. DMS triggers apoptosis associated with the inhibition of SPHK1/NF-κB activation and increase in intracellular Ca2+ concentration in human cancer cells.

    Science.gov (United States)

    Chen, Kan; Pan, Qiuwei; Gao, Ying; Yang, Xinyan; Wang, Shibing; Peppelenbosch, Maikel P; Kong, Xiangdong

    2014-01-01

    N,N-Dimethyl-D-erythro-sphingosine (DMS) is known to induce cell apoptosis by specifically inhibiting sphingosine kinase 1 (SPHK1) and modulating the activity of cellular ceramide levels. The present study investigated the effects and the mechanism(s) of action of DMS in human lung cancer cells. We found that DMS dose-dependently suppressed cell proliferation and induced cell apoptosis in the human lung cancer cell line, A549. Mechanistically, treatment with DMS suppressed the activation of SPHK1 and nuclear factor-κB (NF-κB) p65, but increased intracellular [Ca2+]i in A549 cells. This study demonstrates that DMS triggers the apoptosis of human lung cancer cells through the modulation of SPHK1, NF-κB and calcium signaling. These molecules may represent targets for anticancer drug design.

  6. Y1 receptors for neuropeptide Y are coupled to mobilization of intracellular calcium and inhibition of adenylate cyclase

    DEFF Research Database (Denmark)

    Aakerlund, L; Gether, U; Fuhlendorff, J

    1990-01-01

    Two types of binding sites have previously been described for neuropeptide Y (NPY), called Y1 and Y2 receptors. The intracellular events following Y1 receptor activation was studied in the human neuroblastoma cell line SK-N-MC. Both NPY and the specific Y1 receptor ligand, [Leu31,Pro34]-NPY, caused...

  7. Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/β-catenin pathways.

    Science.gov (United States)

    Thrasivoulou, Christopher; Millar, Michael; Ahmed, Aamir

    2013-12-13

    Ca(2+) and β-catenin, a 92-kDa negatively charged transcription factor, transduce Wnt signaling via the non-canonical, Wnt/Ca(2+) and canonical, Wnt/β-catenin pathways independently. The nuclear envelope is a barrier to large protein entry, and this process is regulated by intracellular calcium [Ca(2+)]i and trans-nuclear potential. How β-catenin traverses the nuclear envelope is not well known. We hypothesized that Wnt/Ca(2+) and Wnt/β-catenin pathways act in a coordinated manner and that [Ca(2+)]i release facilitates β-catenin entry into the nucleus in mammalian cells. In a live assay using calcium dyes in PC3 prostate cancer cells, six Wnt peptides (3A, 4, 5A, 7A, 9B, and 10B) mobilized [Ca(2+)]i but Wnt11 did not. Based upon dwell time (range = 15-30 s) of the calcium waveform, these Wnts could be classified into three classes: short, 3A and 5A; long, 7A and 10B; and very long, 4 and 9B. Wnt-activated [Ca(2+)]i release was followed by an increase in intranuclear calcium and the depolarization of both the cell and nuclear membranes, determined by using FM4-64. In cells treated with Wnts 5A, 9B, and 10B, paradigm substrates for each Wnt class, increased [Ca(2+)]i was followed by β-catenin translocation into the nucleus in PC3, MCF7, and 253J, prostate, breast, and bladder cancer cell lines; both the increase in Wnt 5A, 9B, and 10B induced [Ca(2+)]i release and β-catenin translocation are suppressed by thapsigargin in PC3 cell line. We propose a convergent model of Wnt signaling network where Ca(2+) and β-catenin pathways may act in a coordinated, interdependent, rather than independent, manner.

  8. Intracellular calcium measurements as a method in studies on activity of purinergic P2X receptor channels

    Czech Academy of Sciences Publication Activity Database

    He, M. L.; Zemková, Hana; Koshimizu, T.; Tomič, M.; Stojilkovic, S. S.

    2003-01-01

    Roč. 285, č. 2 (2003), s. C467-C479 ISSN 0363-6143 Institutional research plan: CEZ:AV0Z5011922 Keywords : P2X purinergic receptor * calcium signaling * membrane current Subject RIV: ED - Physiology Impact factor: 4.103, year: 2003

  9. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    Science.gov (United States)

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  10. Calcium metabolism and cardiovascular function after spaceflight

    Science.gov (United States)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P metabolism (P metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  11. Ca analysis: An Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis☆

    Science.gov (United States)

    Greensmith, David J.

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908

  12. Ca analysis: an Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis.

    Science.gov (United States)

    Greensmith, David J

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Calcium intake is not associated with increased coronary artery calcification: the Framingham Study.

    Science.gov (United States)

    Samelson, Elizabeth J; Booth, Sarah L; Fox, Caroline S; Tucker, Katherine L; Wang, Thomas J; Hoffmann, Udo; Cupples, L Adrienne; O'Donnell, Christopher J; Kiel, Douglas P

    2012-12-01

    Adequate calcium intake is known to protect the skeleton. However, studies that have reported adverse effects of calcium supplementation on vascular events have raised widespread concern. We assessed the association between calcium intake (from diet and supplements) and coronary artery calcification, which is a measure of atherosclerosis that predicts risk of ischemic heart disease independent of other risk factors. This was an observational, prospective cohort study. Participants included 690 women and 588 men in the Framingham Offspring Study (mean age: 60 y; range: 36-83 y) who attended clinic visits and completed food-frequency questionnaires in 1998-2001 and underwent computed tomography scans 4 y later in 2002-2005. The mean age-adjusted coronary artery-calcification Agatston score decreased with increasing total calcium intake, and the trend was not significant after adjustment for age, BMI, smoking, alcohol consumption, vitamin D-supplement use, energy intake, and, for women, menopause status and estrogen use. Multivariable-adjusted mean Agatston scores were 2.36, 2.52, 2.16, and 2.39 (P-trend = 0.74) with an increasing quartile of total calcium intake in women and 4.32, 4.39, 4.19, and 4.37 (P-trend = 0.94) in men, respectively. Results were similar for dietary calcium and calcium supplement use. Our study does not support the hypothesis that high calcium intake increases coronary artery calcification, which is an important measure of atherosclerosis burden. The evidence is not sufficient to modify current recommendations for calcium intake to protect skeletal health with respect to vascular calcification risk.

  14. Intracellular calcium oscillations in strongly metastatic human breast and prostate cancer cells: control by voltage-gated sodium channel activity.

    Science.gov (United States)

    Rizaner, Nahit; Onkal, Rustem; Fraser, Scott P; Pristerá, Alessandro; Okuse, Kenji; Djamgoz, Mustafa B A

    2016-10-01

    The possible association of intracellular Ca 2+ with metastasis in human cancer cells is poorly understood. We have studied Ca 2+ signaling in human prostate and breast cancer cell lines of strongly versus weakly metastatic potential in a comparative approach. Intracellular free Ca 2+ was measured using a membrane-permeant fluorescent Ca 2+ -indicator dye (Fluo-4 AM) and confocal microscopy. Spontaneous Ca 2+ oscillations were observed in a proportion of strongly metastatic human prostate and breast cancer cells (PC-3M and MDA-MB-231, respectively). In contrast, no such oscillations were observed in weakly/non metastatic LNCaP and MCF-7 cells, although a rise in the resting Ca 2+ level could be induced by applying a high-K + solution. Various parameters of the oscillations depended on extracellular Ca 2+ and voltage-gated Na + channel activity. Treatment with either tetrodotoxin (a general blocker of voltage-gated Na + channels) or ranolazine (a blocker of the persistent component of the channel current) suppressed the Ca 2+ oscillations. It is concluded that the functional voltage-gated Na + channel expression in strongly metastatic cancer cells makes a significant contribution to generation of oscillatory intracellular Ca 2+ activity. Possible mechanisms and consequences of the Ca 2+ oscillations are discussed.

  15. Increase of intracellular cisplatin levels and radiosensitization by ultrasound in combination with microbubbles

    NARCIS (Netherlands)

    Lammertink, Bart H A; Bos, Clemens; van der Wurff-Jacobs, Kim M.; Storm, G; Moonen, Chrit T.; Deckers, Roel

    2016-01-01

    The possibility to enhance drug delivery by using ultrasound in combination with microbubbles (USMB) is extensively studied. So far, these studies have focused on the delivery and efficacy of a single drug, e.g. in chemotherapy. In this study, we investigated the intracellular delivery of cisplatin

  16. Intracellular calcium movements during excitation–contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers

    Science.gov (United States)

    Hollingworth, Stephen

    2012-01-01

    In skeletal muscle fibers, action potentials elicit contractions by releasing calcium ions (Ca2+) from the sarcoplasmic reticulum. Experiments on individual mouse muscle fibers micro-injected with a rapidly responding fluorescent Ca2+ indicator dye reveal that the amount of Ca2+ released is three- to fourfold larger in fast-twitch fibers than in slow-twitch fibers, and the proportion of the released Ca2+ that binds to troponin to activate contraction is substantially smaller. PMID:22450485

  17. Vcx1 and ESCRT components regulate intracellular pH homeostasis in the response of yeast cells to calcium stress

    Czech Academy of Sciences Publication Activity Database

    Papoušková, Klára; Jiang, L.; Sychrová, Hana

    2015-01-01

    Roč. 15, č. 2 (2015), fov007 ISSN 1567-1356 R&D Projects: GA ČR(CZ) GAP503/10/0307; GA MŠk(CZ) LH14297; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : calcium * ESCRT * pHin * Vcx1 Subject RIV: EE - Microbiology, Virology Impact factor: 2.479, year: 2015

  18. Src Dependent Pancreatic Acinar Injury Can Be Initiated Independent of an Increase in Cytosolic Calcium.

    Directory of Open Access Journals (Sweden)

    Vivek Mishra

    Full Text Available Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825 on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated

  19. Pharmacological characterization of the involvement of protein kinase C in oscillatory and non-oscillatory calcium increases in astrocytes

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Morita

    2015-09-01

    Full Text Available Evidence increasingly shows that astrocytes play a pivotal role in brain physiology and pathology via calcium dependent processes, thus the characterization of the calcium dynamics in astrocytes is of growing importance. We have previously reported that the epidermal growth factor and basic fibroblast growth factor up-regulate the oscillation of the calcium releases that are induced by stimuli, including glutamate in cultured astrocytes. This calcium oscillation is assumed to involve protein kinase C (PKC, which is activated together with the calcium releases as a consequence of inositol phospholipid hydrolysis. In the present study, this issue has been investigated pharmacologically by using astrocytes cultured with and without the growth factors. The pharmacological activation of PKC largely reduced the glutamate-induced oscillatory and non-oscillatory calcium increases. Meanwhile, PKC inhibitors increased the total amounts of both calcium increases without affecting the peak amplitudes and converted the calcium oscillations to non-oscillatory sustained calcium increases by abolishing the falling phases of the repetitive calcium increases. Furthermore, the pharmacological effects were consistent between both glutamate- and histamine-induced calcium oscillations. These results suggest that PKC up-regulates the removal of cytosolic calcium in astrocytes, and this up-regulation is essential for calcium oscillation in astrocytes cultured with growth factors.

  20. Photodynamic Action of LED-Activated Curcumin against Staphylococcus aureus Involving Intracellular ROS Increase and Membrane Damage

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of photodynamic action of LED-activated curcumin on cell viability, membrane permeability, and intracellular reactive oxygen species of Staphylococcus aureus. Methods. Staphylococcus aureus was incubated with the different concentrations of curcumin for 60 min and then irradiated by blue light with the wavelength of 470 nm and with light dose of 3 J/cm2. The colony forming unit assay was used to investigate photocytotoxicity of curcumin on Staphylococcus aureus, confocal laser scanning microscopy (CLSM and flow cytometry (FCM for assaying membrane permeability, FCM analysis with DCFH-DA staining for measuring the intracellular ROS level, and transmission electron microscopy (TEM for observing morphology and structure. Results. Blue light-activated curcumin significantly killed Staphylococcus aureus in a curcumin dose-dependent manner. TEM observed remarkable structural damages in S. aureus after light-activated curcumin. More red fluorescence of PI dye was found in S. aureus treated by blue light-activated curcumin than in those of the controlled bacterial cells. Intracellular ROS increase was observed after light-activated curcumin. Conclusion. Blue light-activated curcumin markedly damaged membrane permeability, resulting in cell death of Staphylococcus aureus and highlighted that intracellular ROS increase might be an important event in photodynamic killing of Staphylococcus aureus in the presence of curcumin.

  1. Inhibition of Intracellular Triglyceride Lipolysis Suppresses Cold-Induced Brown Adipose Tissue Metabolism and Increases Shivering in Humans.

    Science.gov (United States)

    Blondin, Denis P; Frisch, Frédérique; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E; Haman, François; Richard, Denis; Carpentier, André C

    2017-02-07

    Indirect evidence from human studies suggests that brown adipose tissue (BAT) thermogenesis is fueled predominantly by fatty acids hydrolyzed from intracellular triglycerides (TGs). However, no direct experimental evidence to support this assumption currently exists in humans. The aim of this study was to determine the role of intracellular TG in BAT thermogenesis, in cold-exposed men. Using positron emission tomography with 11 C-acetate and 18 F-fluorodeoxyglucose, we showed that oral nicotinic acid (NiAc) administration, an inhibitor of intracellular TG lipolysis, suppressed the cold-induced increase in BAT oxidative metabolism and glucose uptake, despite no difference in BAT blood flow. There was a commensurate increase in shivering intensity and shift toward a greater reliance on glycolytic muscle fibers without modifying total heat production. Together, these findings show that intracellular TG lipolysis is critical for BAT thermogenesis and provides experimental evidence for a reciprocal role of BAT thermogenesis and shivering in cold-induced thermogenesis in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A novel role of the L-type calcium channel α1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave.

    Directory of Open Access Journals (Sweden)

    Satoru Yamasaki

    Full Text Available Recent studies have shown that zinc ion (Zn can behave as an intracellular signaling molecule. We previously demonstrated that mast cells stimulated through the high-affinity IgE receptor (FcεRI rapidly release intracellular Zn from the endoplasmic reticulum (ER, and we named this phenomenon the "Zn wave". However, the molecules responsible for releasing Zn and the roles of the Zn wave were elusive. Here we identified the pore-forming α(1 subunit of the Cav1.3 (α(1D L-type calcium channel (LTCC as the gatekeeper for the Zn wave. LTCC antagonists inhibited the Zn wave, and an agonist was sufficient to induce it. Notably, α(1D was mainly localized to the ER rather than the plasma membrane in mast cells, and the Zn wave was impaired by α(1D knockdown. We further found that the LTCC-mediated Zn wave positively controlled cytokine gene induction by enhancing the DNA-binding activity of NF-κB. Consistent with this finding, LTCC antagonists inhibited the cytokine-mediated delayed-type allergic reaction in mice without affecting the immediate-type allergic reaction. These findings indicated that the LTCC α(1D subunit located on the ER membrane has a novel function as a gatekeeper for the Zn wave, which is involved in regulating NF-κB signaling and the delayed-type allergic reaction.

  3. Calcium amendment may increase hydraulic efficiency and forest evapotranspiration

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle

    2013-01-01

    Green et al. (1) report 2 y of increased evapotranspiration (ET; calculated as the difference between total precipitation and total runoff) and decreased water yield following watershed-scale amendment of soil with wollastonite (CaSiO3) at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire. The...

  4. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake.

    Science.gov (United States)

    Schooley, James F; Namboodiri, Aryan M A; Cox, Rachel T; Bünger, Rolf; Flagg, Thomas P

    2014-12-09

    There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1-10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca(2+) uptake. Moreover, pretreatment of cells with the mitochondrial Ca(2+) uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca(2+) uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.

  5. Increased intracellular iron and mineralization of cultured hFOB 1.19 cells following hepcidin activation through ferroportin

    International Nuclear Information System (INIS)

    Zhang P; Xu Y; Ma Zhao Y; Fend Y; Du B

    2010-01-01

    To address whether hepcidin functions in bone metabolism. This study was carried out in the Laboratory of Radiation Medicine and Public Health of Soochow University, and the Laboratory of the Second Affiliated Hospital of Soochow University, Suzhou, China, from September 2009 to July 2010. The positive expression of ferroportin-1 (Fpn-1) was detected by reverse transcriptase-polymerase chain reaction. After the treatment with distilled water (control group) and hepcidin (25noml/L, 50noml/L, 100noml/L), the fluorescence intensity related to intracellular iron concentration of a human fetal osteoblast cell line (hFOB 1.19) was measured by a confocal laser scanning microscope. A 3-(4,5- dimethylthiazol-2-yl) -2-5-diphenyltetrazolium bromide assay, and Von Kossa staining was performed to evaluate cell proliferation and mineralization in cultured hFOB 1.19 cells. This study revealed a high level expression of Fpn-1 in hFOB 1.19. On the basis of which, it was found that 25noml/L, 50noml/L, 100noml/L hepcidin could promote the fluorescence intensity related to intracellular iron concentration and mineralization in hFOB 1.19 in a dose-dependent manner (p 0.05). The hepcidin-ferroportin signal pathway may function in the osteoblast cell line of hFOB 1.19 cells. It is also suggested that cross-talk between iron and calcium homeostasis may play a role in bone metabolism in responding to hepcidin activation (Author).

  6. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    Science.gov (United States)

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. © 2015 Society for Endocrinology.

  7. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores.

    Science.gov (United States)

    Maggio, N; Vlachos, A

    2014-12-05

    Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Increased intracellular Ca2+decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells.

    Science.gov (United States)

    Yu, Yang; Xie, Qi; Liu, Weimin; Guo, Yuting; Xu, Na; Xu, Lu; Liu, Shibing; Li, Songyan; Xu, Ye; Sun, Liankun

    2017-02-01

    Previous studies have reported that intracellular Ca 2+ signals and inducible nitric oxide synthase (iNOS) are involved in cell apoptosis. However, the role of iNOS in cisplatin resistance in ovarian cancer remains unclear. Here, we demonstrate that SKOV3/DDP ovarian cancer cells were more resistant to cisplatin than were SKOV3 ovarian cancer cells. The expression of intracellular Ca 2+ and iNOS was more strongly induced by cisplatin in SKOV3 cells than in SKOV3/DDP cells. TAT-conjugated IP3R-derived peptide (TAT-IDP S ) increased cisplatin-induced iNOS expression and apoptosis in SKOV3/DDP cells. 2-Aminoethoxydiphenyl borate (2-APB) decreased cisplatin-induced iNOS expression and apoptosis in SKOV3 cells. Thus, iNOS induction may be a valuable strategy for improving the anti-tumor efficacy of cisplatin in ovarian cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Methylmercury-induced toxicity is mediated by enhanced intracellular calcium through activation of phosphatidylcholine-specific phospholipase C

    International Nuclear Information System (INIS)

    Kang, Mi Sun; Jeong, Ju Yeon; Seo, Ji Heui; Jeon, Hyung Jun; Jung, Kwang Mook; Chin, Mi-Reyoung; Moon, Chang-Kiu; Bonventre, Joseph V.; Jung, Sung Yun; Kim, Dae Kyong

    2006-01-01

    Methylmercury (MeHg) is a ubiquitous environmental toxicant to which humans can be exposed by ingestion of contaminated food. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of free intracellular Ca 2+ levels ([Ca 2+ ] i ). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity in MDCK cells. D609, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner with concomitant inhibition of the diacylglycerol (DAG) generation and the phosphatidylcholine (PC)-breakdown. MeHg activated the group IV cytosolic phospholipase A 2 (cPLA 2 ) and acidic form of sphingomyelinase (A-SMase) downstream of PC-PLC, but these enzymes as well as protein kinase C (PKC) were not linked to the toxicity by MeHg. Furthermore, MeHg produced ROS, which did not affect the toxicity. Addition of EGTA to culture media resulted in partial decrease of [Ca 2+ ] i and partially blocked the toxicity. In contrast, when the cells were treated with MeHg in the presence of Ca 2+ in the culture media, D609 completely prevented cell death with parallel decrease in [Ca 2+ ] i . Our results demonstrated that MeHg-induced toxicity was linked to elevation of [Ca 2+ ] i through activation of PC-PLC, but not attributable to the signaling pathways such as cPLA 2 , A-SMase, and PKC, or to the generation of ROS

  10. Subcellular distribution of calcium during spermatogenesis of zebrafish, Danio rerio.

    Science.gov (United States)

    Golpour, Amin; Pšenička, Martin; Niksirat, Hamid

    2017-08-01

    Calcium plays a variety of vital regulatory functions in many physiological and biochemical events in the cell. The aim of this study was to describe the ultrastructural distribution of calcium during different developmental stages of spermatogenesis in a model organism, the zebrafish (Danio rerio), using a combined oxalate-pyroantimonate technique. Samples were treated by potassium oxalate and potassium pyroantimonate during two fixation stages and examined using transmission electron microscopy to detect electron dense intracellular calcium. The subcellular distribution of intracellular calcium was characterized in spermatogonium, spermatocyte, spermatid, and spermatozoon stages. The area which is covered by intracellular calcium in different stages was quantified and compared using software. Isolated calcium deposits were mainly detectable in the cytoplasm and the nucleus of the spermatogonium and spermatocyte. In the spermatid, calcium was partially localized in the cytoplasm as isolated deposits. However, most calcium was transformed from isolated deposits into an unbound pool (free calcium) within the nucleus of the spermatid and the spermatozoon. Interestingly, in the spermatozoon, calcium was mainly localized in a form of an unbound pool which was detectable as an electron-dense mass within the nucleus. Also, sporadic calcium deposits were scattered in the midpiece and flagellum. The proportional area which was covered by intracellular calcium increased significantly from early to late stages of spermatogenesis. The extent of the area which was covered by intracellular calcium in the spermatozoon was the highest compared to earlier stages. Calcium deposits were also observed in the somatic cells (Sertoli, myoid, Leydig) of zebrafish testis. The notable changes in the distribution of intracellular calcium of germ cells during different developmental stages of zebrafish spermatogenesis suggest its different homeostasis and physiological functions during the

  11. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

    LENUS (Irish Health Repository)

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX\\/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.

  12. Urinary calcium and magnesium excretion relates to increase in blood pressure during pregnancy.

    Science.gov (United States)

    Nielsen, Thorkild F; Rylander, Ragnar

    2011-03-01

    Pregnancy-induced hypertension and preeclampsia are serious clinical manifestations during late pregnancy and the cause for increased maternal and foetal morbidity and mortality. The pathogenesis is unknown but experience from treatment schemes suggests that minerals may be of importance. Mineral homeostasis is influenced by acid-base conditions. The aim of the study was to elucidate the relation between acid-base balance, urinary mineral excretion and blood pressure during pregnancy. A prospective observational study of a general population. The study was performed at the Midwife Health Center in Borås, Sweden, where practically all pregnant subjects in the catchment area are registered. First time pregnant subjects (n = 123) were voluntarily recruited without exclusion criteria. A 24 h urine sample was collected at pregnancy week 12 and analyzed for creatinine, calcium, magnesium, and urea as a proxy for acid conditions. Blood pressure was recorded every 2-3 weeks until delivery. There was a relation between the excretion of urea and calcium and magnesium at week 12. A blood pressure increase was found after pregnancy week 30 but only among subjects who had a high excretion of calcium and magnesium at week 12. If an increase in blood pressure during the later part of pregnancy a risk indicator for preeclampsia, the results suggest that an excessive secretion of calcium leading to a functional deficit might be a risk indicator for gestational hypertension and preeclampsia. Intervention experiments are required to assess this hypothesis.

  13. Increasing temperature speeds intracellular PO2 kinetics during contractions in single Xenopus skeletal muscle fibers.

    Science.gov (United States)

    Koga, S; Wüst, R C I; Walsh, B; Kindig, C A; Rossiter, H B; Hogan, M C

    2013-01-01

    Precise determination of the effect of muscle temperature (T(m)) on mitochondrial oxygen consumption kinetics has proven difficult in humans, in part due to the complexities in controlling for T(m)-related variations in blood flow, fiber recruitment, muscle metabolism, and contractile properties. To address this issue, intracellular Po(2) (P(i)(O(2))) was measured continuously by phosphorescence quenching following the onset of contractions in single Xenopus myofibers (n = 24) while controlling extracellular temperature. Fibers were subjected to two identical contraction bouts, in random order, at 15°C (cold, C) and 20°C (normal, N; n = 12), or at N and 25°C (hot, H; n = 12). Contractile properties were determined for every contraction. The time delay of the P(i)(O(2)) response was significantly greater in C (59 ± 35 s) compared with N (35 ± 26 s, P = 0.01) and H (27 ± 14 s, P = 0.01). The time constant for the decline in P(i)(O(2)) was significantly greater in C (89 ± 34 s) compared with N (52 ± 15 s; P kinetics and T(m) (r = 0.322, P = 0.03). Estimated ATP turnover was significantly greater in H than in C (P kinetics among conditions. These results demonstrate that P(i)(O(2)) kinetics in single contracting myofibers are dependent on T(m), likely caused by temperature-induced differences in metabolic demand and by temperature-dependent processes underlying mitochondrial activation at the start of muscle contractions.

  14. Genetically modified Medicago truncatula lacking calcium oxalate has increased calcium bioavailability and partially rescues vitamin D receptor knockout mice phenotypes

    Science.gov (United States)

    How the distribution and sequestered form of plant macro/micro-nutrients influence their bioavailability, and ultimately impact human health, is poorly understood. The legume Medicago truncatula has a portion of its tissue calcium sequestered in the form of the calcium oxalate crystal, which reduces...

  15. Supplementation trials with calcium citrate malate: evidence in favor of increasing the calcium RDA during childhood and adolescence.

    Science.gov (United States)

    Andon, M B; Lloyd, T; Matkovic, V

    1994-08-01

    The vast majority of peak adult bone mass is accumulated by the time longitudinal growth is complete. As peak bone mass is an important determinant of future fracture risk, the goal of the current calcium recommended dietary allowance during youth is to provide a calcium intake that allows individuals to reach their full genetic potential for acquiring skeletal mass. The advent of controlled trials of calcium supplementation and total body bone mass measurements in children and adolescents provide the first direct way of determining the amount of calcium necessary to achieve optimal skeletal accretion. These studies indicate that the current RDAs are insufficient to support optimal bone mass gain during growth and development. Based on the recent intervention trials, recommendations are made for an RDA of 1250 mg during childhood and 1450 mg during adolescence. These values are consistent with established calcium balance intake thresholds for growth during pre-adolescence and adolescence.

  16. Calcium antagonist induced vasodilation in peripheral, coronary and cerebral vasculature as important factors in the treatment of elderly hypertensives

    OpenAIRE

    Erne, P.; Conen, D.; Kiowski, W.; Bolli, P.; Müller, F. B.; Bühler, F. R.

    2017-01-01

    Increased arteriolar tone is the pathophysiological hallmark of essential hypertension and is determined by the intracellular free calcium concentration in the vascular smooth muscle cell. Calcium influx is an important determinant of vasoconstriction and excess calcium influx-dependent vasoconstriction has been shown by plethysmographical studies in patients with essential hypertension. Calcium antagonists acutely lower BP by reducing calcium influx, calcium concentration and peripheral resi...

  17. Impact of Increasing Dietary Calcium Levels on Calcium Excretion and Vitamin D Metabolites in the Blood of Healthy Adult Cats.

    Directory of Open Access Journals (Sweden)

    Nadine Paßlack

    Full Text Available Dietary calcium (Ca concentrations might affect regulatory pathways within the Ca and vitamin D metabolism and consequently excretory mechanisms. Considering large variations in Ca concentrations of feline diets, the physiological impact on Ca homeostasis has not been evaluated to date. In the present study, diets with increasing concentrations of dicalcium phosphate were offered to ten healthy adult cats (Ca/phosphorus (P: 6.23/6.02, 7.77/7.56, 15.0/12.7, 19.0/17.3, 22.2/19.9, 24.3/21.6 g/kg dry matter. Each feeding period was divided into a 10-day adaptation and an 8-day sampling period in order to collect urine and faeces. On the last day of each feeding period, blood samples were taken.Urinary Ca concentrations remained unaffected, but faecal Ca concentrations increased (P < 0.001 with increasing dietary Ca levels. No effect on whole and intact parathyroid hormone levels, fibroblast growth factor 23 and calcitriol concentrations in the blood of the cats were observed. However, the calcitriol precursors 25(OHD2 and 25(OHD3, which are considered the most useful indicators for the vitamin D status, decreased with higher dietary Ca levels (P = 0.013 and P = 0.033. Increasing dietary levels of dicalcium phosphate revealed an acidifying effect on urinary fasting pH (6.02 and postprandial pH (6.01 (P < 0.001, possibly mediated by an increase of urinary phosphorus (P concentrations (P < 0.001.In conclusion, calcitriol precursors were linearly affected by increasing dietary Ca concentrations. The increase in faecal Ca excretion indicates that Ca homeostasis of cats is mainly regulated in the intestine and not by the kidneys. Long-term studies should investigate the physiological relevance of the acidifying effect observed when feeding diets high in Ca and P.

  18. miR-92a enhances recombinant protein productivity in CHO cells by increasing intracellular cholesterol levels.

    Science.gov (United States)

    Loh, Wan Ping; Yang, Yuansheng; Lam, Kong Peng

    2017-04-01

    MicroRNAs (miRNAs) have emerged as promising targets for engineering of CHO cell factories to enhance recombinant protein productivity. Manipulation of miRNA levels in CHO cells have been shown to improve product yield by increasing proliferation and specific productivity (qP), resisting apoptosis and enhancing oxidative metabolism. The authors previously demonstrated that over-expressing miR-92a results in increases in qP and titer of CHO-IgG cells. However, the mechanisms by which miR-92a enhances qP in CHO cells are still uninvestigated. Here, the authors report the identification of insig1, a regulator of cholesterol biosynthesis, as a target of miR-92a using computational prediction. Both transient and stable over-expression of miR-92a decreased the expression levels of insig1. Insig1 was further validated as a target of miR-92a using 3' UTR reporter assay. Intracellular cholesterol concentration of two high-producing miR-92a clones were significantly increased by ≈30% compared to the blank-transfected pool. Relative Golgi surface area was also found to be 18-26% higher in these clones. Our findings suggest that miR-92a may affect cholesterol metabolism by repressing insig1, resulting in raised intracellular cholesterol levels and Golgi volume and hence enhanced protein secretion. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    Directory of Open Access Journals (Sweden)

    Peifer Susanne

    2012-10-01

    Full Text Available Abstract Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1. Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1 derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.

  20. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine.

    Science.gov (United States)

    Peifer, Susanne; Barduhn, Tobias; Zimmet, Sarah; Volmer, Dietrich A; Heinzle, Elmar; Schneider, Konstantin

    2012-10-24

    Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol g(CDW)⁻¹. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol g(CDW)⁻¹). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol g(CDW)⁻¹) derived from IMP degradation. The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.

  1. Simultaneous investigation of intracellular Ca2+ increase and morphological events upon fertilization in the sand dollar egg.

    Science.gov (United States)

    Hamaguchi, Y; Hamaguchi, M S

    1990-06-01

    An increase in intracellular Ca2+ concentration ([Ca2+]) and morphological were simultaneously observed by epifluorescence and differential interference contrast (DIC) microscopy during fertilization of the sand dollar, Clypeaster japonicus. [Ca2+], which was detected by a Ca2+ indicator, Fluo-3, initially increased just beneath the sperm-attached site on the egg surface 8.6 sec after attachment. The increase spread into the egg as a concentric sphere to the egg center and, thereafter, propagated in the egg cytoplasm as a planar wave rather than a spherical wave. It reached the site opposite the initiation site across the egg 24.2 sec after initiation. The fertilization envelope (FE) began to elevate 10.3 sec after the initiation of the increase in [Ca2+] and 21.2 sec after sperm attachment.

  2. Intracellular calcium elevation during plateau potentials mediated by extrasynaptic NMDA receptor activation in rat hippocampal CA1 pyramidal neurons is primarily due to calcium entry through voltage-gated calcium channels.

    Science.gov (United States)

    Oda, Yoshiaki; Kodama, Satoshi; Tsuchiya, Sadahiro; Inoue, Masashi; Miyakawa, Hiroyoshi

    2014-05-01

    We reported previously that plateau potentials mediated by extrasynaptic N-methyl-d-aspartate receptors (NMDARs) can be induced either by synaptic stimulation in the presence of glutamate transporter antagonist or by iontophoresis of NMDA in rat hippocampal CA1 pyramidal neurons. To examine whether the plateau potentials are accompanied by an elevation of intracellular Ca2+ and to determine the source of Ca2+ elevation, we performed Ca2+ imaging during the plateau potential. Neurons were loaded with Ca2+ indicator fluo-4, and the plateau potentials were generated either synaptically in the presence of glutamate transporter antagonist or by iontophoretically applying NMDA. We have found that a transient elevation in intracellular Ca2+ accompanies the plateau potential. The synaptically induced plateau potential and the Ca2+ elevation were blocked by 5,7-dichlorokynurenic acid (5,7-dCK), an antagonist for the glycine-binding sites of NMDAR. A mixture of Cd2+ and tetrodotoxin did not block NMDA-induced plateau potentials, but completely abolished the accompanying Ca2+ elevation in both the presence and absence of Mg2+ ions in the bathing solution. The NMDA-induced plateau potential was blocked by further adding 5,7-dCK. Our results show that the NMDAR-mediated plateau potential is accompanied by elevation of intracellular Ca2+ that is primarily caused by the influx of Ca2+ through voltage-gated Ca2+ channels. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Increase of a Calcium Independent Transglutaminase Activity in the Erythrocyte during the Infection with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Wasserman Moisés

    1999-01-01

    Full Text Available We have studied the activity of a calcium dependent transglutaminase (EC 2.3.2.13 during the growth of the parasite Plasmodium falciparum inside the infected human erythrocyte. There is only one detectable transglutaminase in the two-cell-system, and its origin is erythrocytic. No activity was detected in preparations of the parasite devoid of erythrocyte cytoplasm. The Michaelis Menten constants (Km of the enzyme for the substrates N'N'dimethylcaseine and putrescine were undistinguishable whether the cell extracts used in their determination were obtained from normal or from infected red cells. The total activity of transglutaminase in stringently synchronized cultures, measured at 0.5mM Ca2+, decreased with the maturation of the parasite. However, a fraction which became irreversibly activated and independent of calcium concentration was detected. The proportion of this fraction grew with maturation; it represented only 20% of the activity in 20 hr-old-trophozoites while in 48-hr-schizonts it was more than 85% of the total activity. The activation of this fraction of transglutaminase did not depend on an increase in the erythrocyte cytoplasmic calcium, since most of the calcium was shown to be located in the parasite.

  4. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes.

    Science.gov (United States)

    Kern, Beate; Jain, Utkarsh; Utsch, Ciara; Otto, Andreas; Busch, Benjamin; Jiménez-Soto, Luisa; Becher, Dörte; Haas, Rainer

    2015-12-01

    The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures. © 2015 John Wiley & Sons Ltd.

  5. Human mast cell line-1 (HMC-1) cells exhibit a membrane capacitance increase when dialysed with high free-Ca(2+) and GTPγS containing intracellular solution.

    Science.gov (United States)

    Balletta, Andrea; Lorenz, Dorothea; Rummel, Andreas; Gerhard, Ralf; Bigalke, Hans; Wegner, Florian

    2013-11-15

    An increase in cytosolic free calcium concentration [Ca(2+)]i initiates the exocytotic activity in various types of secretory cells. The guanosine 5'-O-[3-thio]triphosphate (GTPγS), a non-hydrolysable analogue of GTP (guanosine 5'-triphosphate), is an effective secretagogue for different cell types of different species, like mast cells, neutrophils or eosinophils. Consequently, the internal administration of GTPγS causes degranulation of mouse and rat mast cells. Regarding rat mast cells, it is proved that Ca(2+) can cooperate with GTP or GTPγS in accelerating and increasing amplitude of the secretory response. All the previous studies with respect to capacitance recordings and mast cells were performed using mouse or rat mast cells, usually derived from peritoneum or the rat basophilic leukaemia cell line RBL. In this study, we applied the capacitance measurement technique to the human mast cell line-1 (HMC-1) cells, an immature cell line established from a patient with mast cell leukaemia. Patch-clamp dialysis experiments revealed that high intracellular free Ca(2+) and GTPγS concentrations are both required for considerable capacitance increases in HMC-1 cells. During degranulation of HMC-1 cells, the total membrane capacitance (Cm) increase appeared continuously and, in some cases, as a discrete capacitance change, developing in a stepwise manner. Then, we tested the effect of latrunculin B upon HMC-1 cell capacitance increase as well as of some classic mast cell stimulators like PMA, A23187 and IL-1β in hexosaminidase release. Finally, we could conclude that the HMC-1 cell line represents a suitable model for the study of human mast cell degranulation. © 2013 Published by Elsevier B.V.

  6. 17beta-estradiol rapidly mobilizes intracellular calcium from ryanodine-receptor-gated stores via a PKC-PKA-Erk-dependent pathway in the human eccrine sweat gland cell line NCL-SG3.

    LENUS (Irish Health Repository)

    Muchekehu, Ruth W

    2008-09-01

    We describe a novel rapid non-genomic effect of 17beta-estradiol (E2) on intracellular Ca2+ ([Ca2+]i) signalling in the eccrine sweat gland epithelial cell line NCL-SG3. E2 had no observable effect on basal [Ca2+]i, however exposure of cells to E2 in the presence of the microsomal Ca2+ ATPase pump inhibitor, thapsigargin, produced a secondary, sustained increase in [Ca2+]i compared to thapsigargin treatment alone, where cells responded with a transient single spike-like increase in [Ca2+]i. The E2-induced increase in [Ca2+]i was not dependent on the presence of extracellular calcium and was completely abolished by ryanodine (100 microM). The estrogen receptor antagonist ICI 182,780 (1 microM) prevented the E2-induced effects suggesting a role for the estrogen receptor in the release of [Ca2+]i from ryanodine-receptor-gated stores. The E2-induced effect on [Ca2+]i could also be prevented by the protein kinase C delta (PKCdelta)-specific inhibitor rottlerin (10 microM), the protein kinase A (PKA) inhibitor Rp-adenosine 3\\

  7. Calcium gluconate in phosphate buffered saline increases gene delivery with adenovirus type 5.

    Directory of Open Access Journals (Sweden)

    Marko T Ahonen

    Full Text Available BACKGROUND: Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. METHODS/RESULTS: We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. CONCLUSION: In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline.

  8. Increased Numbers of Ion Channels Promoted by an Intracellular Second Messenger

    Science.gov (United States)

    Gunning, Richard

    1987-01-01

    The anomalous rectifier potassium current in Aplysia neurons was examined to determine the immediate cause of an increase in conductance induced by serotonin and mediated by adenosine 3' ,5' -monophosphate. Voltage-dependent cesium ion block and steady-state current power spectral density were measured under voltage clamp before and after application of serotonin. The amplitude of the anomalous rectifier conductance was increased by adding serotonin, but the shapes of the conductance-voltage curve and the power spectrum were not altered. Calculation of the number of functional channels and of the single-channel conductance from the power spectra indicates that the serotonin-induced increase in conductance resulted from an increase in the number of functional channels, while the single-channel conductance and the open-channel probability were unchanged.

  9. Evidence that increased calcium intake does not prevent early postmenopausal bone loss

    DEFF Research Database (Denmark)

    Hosking, D J; Ross, P D; Thompson, D E

    1998-01-01

    intake was recorded, and bone mineral density (BMD) (in the lumbar spine, total body, forearm, and hip) and biochemical markers of bone turnover (serum total alkaline phosphatase, serum osteocalcin, and urinary N-telopeptide crosslink levels) were measured at baseline and annually thereafter. Women whose....... In addition to adequate calcium intake, more effective therapy appears to be required when the therapeutic goal is to increase or maintain BMD....

  10. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp [Juntendo University Faculty of International Liberal Arts, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Miyamoto, Yuki [Juntendo University Faculty of Health Care and Nursing, Takasu 2-5-1, Urayasu-shi, Chiba 279-0023 (Japan); Itoh, Seigo; Daida, Hiroyuki [Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Nakazato, Yuji [Center for Environmental Research, Department of Cardiology, Juntendo University Faculty of Medicine Urayasu Hospital, Tomioka 2-1-1, Urayasu-shi, Chiba 279-0022 (Japan); Okada, Takao [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption may accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation. - Highlights:

  11. Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile

    Directory of Open Access Journals (Sweden)

    Kristina M. Herbert

    2013-11-01

    Full Text Available During miRNA biogenesis, the microprocessor complex (MC, which is composed minimally of Drosha, an RNase III enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary miRNA (pri-miRNA in order to release the pre-miRNA stem-loop structure. Using phosphoproteomics, we mapped 23 phosphorylation sites on full-length human DGCR8 expressed in insect or mammalian cells. DGCR8 can be phosphorylated by mitogenic ERK/MAPK, indicating that DGCR8 phosphorylation may respond to and integrate extracellular cues. The expression of phosphomimetic DGCR8 or inhibition of phosphatases increased the cellular levels of DGCR8 and Drosha proteins. Increased levels of phosphomimetic DGCR8 were not due to higher mRNA levels, altered DGCR8 localization, or DGCR8’s ability to self-associate, but rather to an increase in protein stability. MCs incorporating phosphomutant or phosphomimetic DGCR8 were not altered in specific processing activity. However, HeLa cells expressing phosphomimetic DGCR8 exhibited a progrowth miRNA expression profile and increased proliferation and scratch closure rates relative to cells expressing phosphomutant DGCR8.

  12. Calcium-related processes involved in the inhibition of depolarization-evoked calcium increase by hydroxylated PBDEs in PC12 cells.

    NARCIS (Netherlands)

    Dingemans, M.M.L.|info:eu-repo/dai/nl/304834564; van den Berg, M.|info:eu-repo/dai/nl/08660466X; Bergman, A.; Westerink, R.H.S.|info:eu-repo/dai/nl/239425952

    2010-01-01

    In vitro studies indicated that hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have an increased toxic potential compared to their parent congeners. An example is the OH-PBDE-induced increase of basal intracellular Ca(2+) concentration ([Ca(2+)](i)) by release of Ca(2+) from endoplasmic

  13. Intracellular pH in increased after transformation of Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Ober, S.S.; Pardee, A.B.

    1987-01-01

    These studies reveal that a series of tumorigenic Chinese hamster embryo fibroblast (CHEF) cell lines maintain an internal pH (pH/sub i/) that is 0.12 +/- 0.04 pH unit above that of the nontumorigenic CHEF/18 parental line. pH measurements were made with [ 14 C]-benzoic acid. This increase of pH/sub i/ in the tumorigenic CHEF cells is not due to autocrine growth factor production or to the persistent activation of pathways previously shown to modulate Na + /H + -antiporter activity present in the CHEF/18 line. These findings suggest that the defect in pH/sub i/ regulation in the tumorigenic CHEF/18 derivatives lies in the Na + /H + antiporter itself. Further studies to determine the biological significance of an increased pH/sub i/ show that the external pH (pH 0 )-dependence curve for initiation of DNA synthesis in the tumorigenic CHEF lines is shifted by approximately 0.2 pH unit toward acidic values relative to that of the nontumorigenic CHEF/18 parent. These data show a critical role for pH/sub i/ in the regulation of DNA synthesis in Chinese hamster embryo fibroblasts and demonstrate that aberrations in pH/sub i/ can contribute to the acquisition of altered growth properties

  14. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages.Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp.HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  15. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  16. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells.

    Science.gov (United States)

    Qian, Yanrong; Wang, Xuan; Liu, Yi; Li, Yunsheng; Colvin, Robert A; Tong, Lingying; Wu, Shiyong; Chen, Xiaozhuo

    2014-09-01

    ATP plays central roles in cancer metabolism and the Warburg effect. Intratumoral ATP concentrations are up to 10(4) times higher than those of interstitial ATP in normal tissues. However, extracellular ATP is not known to enter cancer cells. Here we report that human A549 lung cancer cells internalized extracellular ATP by macropinocytosis as demonstrated by colocalization of a nonhydrolyzable fluorescent ATP and a macropinocytosis tracer high-molecular-weight dextran, as well as by a macropinocytosis inhibitor study. Extracellular ATP also induced increase of intracellular ATP levels, without involving transcription and translation at significant levels, and cancer cells' resistance to ATP-competitor anticancer drugs, likely through the mechanism of ATP internalization. These findings, described for the first time, have profound implications in ATP-sharing among cancer cells in tumors and highlight a novel anticancer target. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Lens epithelial cell apoptosis and intracellular Ca2+ increase in the presence of xanthurenic acid

    Directory of Open Access Journals (Sweden)

    Richter Christoph

    2002-04-01

    Full Text Available Abstract Background Xanthurenic acid is an endogenous product of tryptophan degradation by indoleamine 2,3-dioxygenase (IDO. We have previously reported that IDO is present in mammalian lenses, and xanthurenic acid is accumulated in the lenses with aging. Here, we studied the involvement of xanthurenic acid in the human lens epithelial cell physiology. Methods Human lens epithelial cells primary cultures were used. Control cells, and cells in the presence of xanthurenic acid grow in the dark. Western blot analysis and immunofluorescence studies were performed. Results In the presence of xanthurenic acid human lens epithelial cells undergo apoptosis-like cell death. In the control cells gelsolin stained the perinuclear region, whereas in the presence of 10 μM xanthurenic acid gelsolin is translocated to the cytoskeleton, but does not lead to cytoskeleton breakdown. In the same condition caspase-3 activation, and DNA fragmentation was observed. At low (5 to 10 μM of xanthurenic acid concentration, the elongation of the cytoskeleton was associated with migration of mitochondria and cytochrome c release. At higher concentrations xanthurenic acid (20 μM and 40 μM damaged mitochondria were observed in the perinuclear region, and nuclear DNA cleavage was observed. We observed an induction of calpain Lp 82 and an increase of free Ca2+ in the cells in a xanthurenic acid concentration-dependent manner. Conclusions The results show that xanthurenic acid accumulation in human lens epithelial cells disturbs the normal cell physiology and leads to a cascade of pathological events. Xanthurenic acid induces calpain Lp82 and caspases in the cells growing in the dark and can be involved in senile cataract development.

  18. ORALLY LACTATE CALCIUM AND SWIMMING DECREASE OSTEOCLAST AND INCREASE OSTEOBLAST IN RADIAL PERIMENOPAUSAL MICE (MUS MUSCULUS BONE

    Directory of Open Access Journals (Sweden)

    Muliani **

    2013-04-01

    Full Text Available Calcium and moderate intensity swimming exercise can increase bone density. The aim of this research is to see the effect of orally calcium consumption and swimming activity to decrease osteoclast and increase osteoblast in radial perimenopausal mice (Mus musculus bone. Pretest and pos#est control group design was used in this research. Research subject used 15-16 aged mice (Mus musculus which divided into 4 groups (each group consisted of 13 mice, that was control, lactate calcium, swimming and lactate calcium and swimming. Treatment was given 90 days. This study showed a significant difference of the mean of the pos#est osteoblast between control and experimental groups (P<0.05. There was no significant difference between lactate calcium and swimming groups (P>0.05. Enhancement of osteoblast mean in combination group was greater than the other experimental groups. There was a significant difference of the mean of the pos#est  osteoclast between control and experimental groups (P<0.05, without significant difference between lactate calcium,   swimming groups and combination of lactate calcium and swimming group (P>0.05.  Conclusion: either lactate calcium or swimming decreases osteoclast and increases osteoblast of the mice but the osteoblast enhancement will be bigger when they are given together at once

  19. Functional proteins involved in regulation of intracellular Ca(2+) for drug development: the extracellular calcium receptor and an innovative medical approach to control secondary hyperparathyroidism by calcimimetics.

    Science.gov (United States)

    Nagano, Nobuo; Nemeth, Edward F

    2005-03-01

    Circulating levels of calcium ion (Ca(2+)) are maintained within a narrow physiological range mainly by the action of parathyroid hormone (PTH) secreted from parathyroid cells. Parathyroid cells can sense small fluctuations in plasma Ca(2+) levels by virtue of a cell surface Ca(2+) receptor (CaR) that belongs to the superfamily of G-protein-coupled receptors. Calcimimetics are positive allosteric modulators that activate the CaR on parathyroid cells and thereby immediately suppress PTH secretion. Pre-clinical studies with NPS R-568, a first generation calcimimetic compound, have demonstrated that daily oral administration inhibits the elevation of plasma PTH levels and parathyroid gland hyperplasia and ameliorates impaired bone qualities in rats with chronic renal insufficiency. The results of clinical trials with cinacalcet hydrochloride, a second generation calcimimetic compound, have shown that calcimimetics possess lowering effects not only on serum PTH levels but also on serum calcium x phosphorus product levels, a hallmark of an increased risk for cardiovascular death in dialysis patients with end-stage renal disease (ESRD). Thus, calcimimetics have considerable potential as an innovative medical approach to manage secondary hyperparathyroidism associated with ESRD. Indeed, cinacalcet hydrochloride has been approved in several countries and is the first positive allosteric modulator of any G protein-coupled receptor to reach the market.

  20. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  1. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction.

    Science.gov (United States)

    Coathup, Melanie J; Hing, Karin A; Samizadeh, Sorousheh; Chan, Oliver; Fang, Yvette S; Campion, Charlie; Buckland, Thomas; Blunn, Gordon W

    2012-06-01

    The effect of increasing strut porosity on the osteoinductivity of porous calcium phosphate (CaP) and silicate-substituted calcium phosphate (SiCaP) bone substitute materials was investigated in an ovine ectopic model. One to two millimeter-sized granules or block implants with strut porosities of 10, 20, or 30% were inserted into the left and right paraspinalis muscle. At 12 weeks, histological sections were prepared through the center of each implant and bone contact, bone area and implant area quantified. Backscattered scanning electron microscopy (bSEM) was used to visualize bone within small pores in the struts of the scaffolds. Increased bone formation was measured in the SiCaP with 30% strut porosity (5.482% ± 1.546%) when compared with the nonsilicate CaP with the same morphology (1.160% ± 0.502%, p = 0.02), indicating that silicate substitution may increase osteoinduction. Greater bone formation was seen in scaffolds with increased strut porosity. No bone growth was found in any of the SiCaP scaffold with 10% porosity. There was no significant difference between block and granule specimens. Scanning electron microscopy and EDX in combination with histology demonstrated bone formation within pores <5 μm in size. The use of silicate-substituted CaP material with increased strut porosity may further augment repair and regeneration in bony sites. Copyright © 2012 Wiley Periodicals, Inc.

  2. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia.

    Science.gov (United States)

    Slepchenko, Kira G; Lu, Qiping; Li, Yang V

    2017-10-01

    Both zinc (Zn 2+ ) and reactive oxygen species (ROS) have been shown to accumulate during hypoxic-ischemic stress and play important roles in pathological processes. To understand the cross talk between the two of them, here we studied Zn 2+ and ROS accumulation by employing fluorescent probes in HeLa cells to further the understanding of the cause and effect relationship of these two important cellular signaling systems during chemical-ischemia, stimulated by oxygen and glucose deprivation (OGD). We observed two Zn 2+ rises that were divided into four phases in the course of 30 min of OGD. The first Zn 2+ rise was a transient, which was followed by a latent phase during which Zn 2+ levels recovered; however, levels remained above a basal level in most cells. The final phase was the second Zn 2+ rise, which reached a sustained plateau called Zn 2+ overload. Zn 2+ rises were not observed when Zn 2+ was removed by TPEN (a Zn 2+ chelator) or thapsigargin (depleting Zn 2+ from intracellular stores) treatment, indicating that Zn 2+ was from intracellular storage. Damaging mitochondria with FCCP significantly reduced the second Zn 2+ rise, indicating that the mitochondrial Zn 2+ accumulation contributes to Zn 2+ overload. We also detected two OGD-induced ROS rises. Two Zn 2+ rises preceded two ROS rises. Removal of Zn 2+ reduced or delayed OGD- and FCCP-induced ROS generation, indicating that Zn 2+ contributes to mitochondrial ROS generation. There was a Zn 2+ -induced increase in the functional component of NADPH oxidase, p47 phox , thus suggesting that NADPH oxidase may mediate Zn 2+ -induced ROS accumulation. We suggest a new mechanism of cross talk between Zn 2+ and mitochondrial ROS through positive feedback processes that eventually causes excessive free Zn 2+ and ROS accumulations during the course of ischemic stress. Copyright © 2017 the American Physiological Society.

  3. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten Joan

    2013-01-01

    loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased...... on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave...... activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology....

  4. Electroconvulsive stimulations prevent chronic stress-induced increases in L-type calcium channel mRNAs in the hippocampus and basolateral amygdala

    DEFF Research Database (Denmark)

    Maigaard, Katrine; Pedersen, Ida Hageman; Jørgensen, Anders

    2012-01-01

    in the brain. We find that stress tended to upregulate Ca(v)1.2 and Ca(v)1.3 channels in a brain region specific manner, while ECS tended to normalise this effect. This was more pronounced for Ca(v)1.2 channels, where stress clearly increased expression in both the basolateral amygdala, dentate gyrus and CA3......, while stress only upregulated Ca(v)1.3 channel expression significantly in the dentate gyrus. ECS effects on Ca(v)1.2 channel expression were generally specific to stressed animals. Our findings are consistent with and extent previous studies on the involvement of intracellular calcium ion dysfunction...

  5. Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5.

    Science.gov (United States)

    Seo, Woo-Duck; Lee, Ji Hae; Jia, Yaoyao; Wu, Chunyan; Lee, Sung-Joon

    2015-11-15

    This study investigated the molecular mechanism of saponarin, a flavone glucoside, in the regulation of insulin sensitivity. Saponarin suppressed the rate of gluconeogenesis and increased cellular glucose uptake in HepG2 and TE671 cells by regulating AMPK. Using an in vitro kinase assay, we showed that saponarin did not directly interact with the AMPK protein. Instead, saponarin increased intracellular calcium levels and induced AMPK phosphorylation, which was diminished by co-stimulation with STO-609, an inhibitor of CAMKKβ. Transcription of hepatic gluconeogenesis genes was upregulated by nuclear translocation of CRTC2 and HDAC5, coactivators of CREB and FoxO1 transcription factors, respectively. This nuclear translocation was inhibited by increased phosphorylation of CRTC2 and HDAC5 by saponarin-induced AMPK in HepG2 cells and suppression of CREB and FoxO1 transactivation activities in cells stimulated by saponarin. The results from a chromatin immunoprecipitation assay confirmed the reduced binding of CRTC2 on the PEPCK and G6Pase promoters. In TE671 cells, AMPK phosphorylated HDAC5, which suppressed nuclear penetration and upregulated GLUT4 transcription, leading to enhanced glucose uptake. Collectively, these results suggest that saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The small molecule triclabendazole decreases the intracellular level of cyclic AMP and increases resistance to stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yong Joo Lee

    Full Text Available The Ras-adenylyl cyclase-protein kinase A nutrient-sensing pathway controls metabolism, proliferation and resistance to stress in Saccharomyces cerevisiae. The genetic disruption of this pathway increases resistance to a variety of stresses. We show here that the pharmacological inhibition of this pathway by the drug triclabendazole increases resistance to oxidants, heat stress and extends the chronological life. Evidence is presented that triclabendazole decreases the intracellular level of cyclic AMP by inhibiting adenylyl cyclase and triggers the parallel rapid translocation of the stress-resistance transcription factor Msn2 from the cytosol into the nucleus, as deduced from experiments employing a strain in which MSN2 is replaced with MSN2-GFP (GFP, green fluorescent protein. Msn2 and Msn4 are responsible for activating the transcription of numerous genes that encode proteins that protect cells from stress. The results are consistent with triclabendazole either inhibiting the association of Ras with adenylyl cyclase or directly inhibiting adenylyl cyclase, which in turn triggers Msn2/4 to enter the nucleus and activate stress-responsible element gene expression.

  7. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Bae, Sun Sik [Department of Pharmacology, College of Medicine, Pusan National University, Busan (Korea, Republic of); Yun, Jeanho, E-mail: yunj@dau.ac.kr [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  8. Des-Arg9-bradykinin increases intracellular Ca2+ in bronchoalveolar eosinophils from ovalbumin-sensitized and -challenged mice.

    Science.gov (United States)

    Eric, Jadranka; Bkaily, Ghassan; Bkaily, Ghassan B; Volkov, Leonid; Gabra, Bichoy H; Sirois, Pierre

    2003-08-15

    The effects of the selective bradykinin B1 receptor agonist, des-Arg9-bradykinin and the bradykinin B2 receptor agonist, bradykinin were studied on the intracellular free Ca2+ concentration ([Ca2+]i) in murine bronchoalveolar lavage cells from control and ovalbumin-sensitized mice using fura-2 microfluorimetry. The bronchoalveolar lavage cells of control mice, which were predominantly alveolar macrophages, showed an increase in [Ca2+]i in response to bradykinin (1 microM) but not to des-Arg9-bradykinin (1 microM), indicating the presence of functional bradykinin B2 receptors and the absence of B1 receptors. Such elevation in [Ca2+]i induced by bradykinin was totally inhibited by the selective bradykinin B2 receptor antagonist, D-Arg0-Hyp3-Thi5-D-Tic7-Oic8-bradykinin (HOE-140; 10 microM). In contrast, bronchoalveolar lavage cells from ovalbumin-sensitized and -challenged mice significantly responded to both bradykinin and des-Arg9-bradykinin, indicating the presence of both functional bradykinin B1 and B2 receptors. Eosinophils exhibited higher response to des-Arg9-bradykinin (1 microM; 485% increase in [Ca2+]i) compared to bradykinin (1 microM; 163% increase in [Ca2+]i). This des-Arg9-bradykinin-induced [Ca2+]i increase was markedly inhibited by the selective bradykinin B1 receptor antagonist, Ac-Lys-[D-betaNal7, Ile8]des-Arg9-bradykinin (R-715; 10 microM). Des-Arg9-bradykinin neither modified the basal [Ca2+]i in lymphocytes nor in mononuclear cells from ovalbumin-sensitized and challenged mice, while bradykinin produced a [Ca2+]i increase in both cell types. Our results further support the implication of the inducible bradykinin B1 receptors in airway inflammatory response in ovalbumin-sensitized and challenged mice.

  9. Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    M' Bemba-Meka, Prosper [Universite de Montreal, Human Toxicology Research Group (TOXHUM), Department of Environmental and Occupational Health, Main Station, P.O. Box 6128, Montreal, QC (Canada); University of Louisville, Department of Pharmacology and Toxicology, Center for Genetics and Molecular Medicine, Louisville, KY (United States); Lemieux, Nicole [Universite de Montreal, Department of Pathology and Cellular Biology, Faculty of Medicine, Main Station, P.O. Box 6128, Montreal, QC (Canada); Chakrabarti, Saroj K. [Universite de Montreal, Human Toxicology Research Group (TOXHUM), Department of Environmental and Occupational Health, Main Station, P.O. Box 6128, Montreal, QC (Canada)

    2007-02-15

    Human peripheral lymphocytes from whole blood cultures were exposed to either soluble form of nickel carbonate hydroxide (NiCH) (0-60 {mu}M), or of nickel subsulfide (Ni{sub 3}S{sub 2}) (0-120 {mu}M), or of nickel oxide (NiO) (0-120 {mu}M), or nickel sulfate (NiSO{sub 4}) (0-120 {mu}M) for a short duration of 2 h. The treatments occurred 46 h after the beginning of the cultures. The cultures were harvested after a total incubation of 72 h, and sister-chromatid exchange (SCE), replication index (RI), and mitotic index (MI) were measured for each nickel compound. The soluble form of NiCH at 30 {mu}M but those of Ni{sub 3}S{sub 2} and NiO at 120 {mu}M produced significant increase in the SCE per cell compared to the control value, whereas NiSO{sub 4} failed to produce any such significant increase. Except NiSO{sub 4}, the soluble forms of NiCH, Ni{sub 3}S{sub 2}, and NiO produced significant cell-cycle delay (as measured by the inhibition of RI) as well as significant inhibition of the MI at respective similar concentrations as mentioned above. Pretreatment of human blood lymphocytes with catalase (H{sub 2}O{sub 2} scavenger), or superoxide dismutase (superoxide anion scavenger), or dimethylthiourea (hydroxyl radical scavenger), or deferoxamine (iron chelator), or N-acetylcysteine (general antioxidant) inhibited NiCH-induced SCE, and changes in RI and MI. This suggests the participation of oxidative stress involving H{sub 2}O{sub 2}, the superoxide anion radical, the hydroxyl radical, and iron in the NiCH-induced genotoxic responses. Cotreatment of NiCH with either verapamil (inhibitor of intracellular calcium ion ([Ca{sup 2+}]{sub i}) movement through plasma membranes), or dantrolene (inhibitor of [Ca{sup 2+}]{sub i} release from sarcoplasmic reticulum), or BAPTA (Ca{sup 2+} chelator) also inhibited the NiCH-induced responses. These results suggest that [Ca{sup 2+}]{sub i} is also implicated in the genotoxicity of NiCH. Overall these data indicate that various types

  10. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Asaph Zylbertal

    2017-09-01

    Full Text Available Changes in intracellular Na+ concentration ([Na+]i are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.

  11. Localization of calcium changes in stimulated rat mast cells.

    Science.gov (United States)

    Horoyan, M; Soler, M; Benoliel, A M; Fraterno, M; Passerel, M; Subra, H; Martin, J M; Bongrand, P; Foa, C

    1992-01-01

    We studied intracellular free, bound, and sequestered calcium in rat mast cells after various stimulations. The use of a fluorescent probe combined with digitized imaging on individual living cells demonstrated transient increases of free Ca2+ in the micromolar range. The use of histochemical techniques (K pyroantimonate and anhydrous fixation), together with X-ray microanalysis, energy electron-loss spectroscopy, and electron spectroscopic imaging, revealed large amounts of stored calcium within the cells (in the millimolar range). Chelation experiments and stimulations enabled us to identify at least two pools of bound calcium which exhibited different dynamic behaviors. Stimulation in the presence of EGTA did not modify calcium from granules, granule membranes, and heterochromatin, whereas it decreased calcium from other cell compartments. Stimulation triggered variations in the amount of bound calcium but they did not parallel free calcium movements. Hence, whereas free calcium is implicated in exocytosis, bound calcium may be involved in altogether different cell functions.

  12. Preeclampsia serum-induced collagen I expression and intracellular calcium levels in arterial smooth muscle cells are mediated by the PLC-γ1 pathway.

    Science.gov (United States)

    Jiang, Rongzhen; Teng, Yincheng; Huang, Yajuan; Gu, Jinghong; Ma, Li; Li, Ming; Zhou, Yuedi

    2014-09-26

    In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-γ1-1,4,5-trisphosphate (PLC-γ1-IP3) signaling, thereby increasing protein kinase C-α (PKC-α) activity, collagen I expression and intracellular Ca(2+) concentrations ([Ca(2+)]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-γ1 silencing. Increased PLC-γ1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (P<0.05). In addition, PE serum significantly increased HUASMC viability and reduced their apoptosis (P<0.05); these effects were abrogated with PLC-γ1 silencing. Compared with normal sera, PE sera increased [Ca(2+)]i in cocultured HUASMCs (P<0.05), which was inhibited by PLC-γ1 and IP3R silencing. Finally, PE sera-induced PKC-α activity and collagen I expression was inhibited by PLC-γ1 small interfering RNA (siRNA) (P<0.05). These results suggest that vasoactive substances in the PE serum may induce deposition in the extracellular matrix through the activation of PLC-γ1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia-ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca(2+)]i and induced PKC-α activation and collagen I expression in cocultured HUASMCs via the PLC-γ1 pathway.

  13. Association Between Thoracic Aorta Calcium and Thoracic Aorta Geometry in a Cohort of Asymptomatic Participants at Increased Cardiovascular Risk.

    Science.gov (United States)

    Craiem, Damian; Alsac, Jean-Marc; Casciaro, Mariano E; El Batti, Salma; Mousseaux, Elie; Sirieix, Marie-Emmanuelle; Simon, Alain

    2016-09-01

    Thoracic aorta calcium detection is known to improve cardiovascular risk prediction for cardiac and noncardiac events beyond traditional risk factors. We investigated the influence of thoracic aorta morphometry on the presence and extent of aortic calcifications. Nonenhanced computed tomography heart scans were performed in 970 asymptomatic participants at increased cardiovascular risk. An automated algorithm estimated the geometry of the entire thoracic aorta and quantified the aortic calcium Agatston score. A nonparametric model was used to analyze the percentiles of calcium score by age. Logistic regression models were calculated to identify anatomical associations with calcium levels. Calcifications were concentrated in the aortic arch and descending portions. Higher amounts of calcium were associated with an enlarged, unfolded, less tapered and more tortuous aorta. The size of the ascending aorta was not correlated with aortic calcium score, whereas enlargement of the descending aorta had the strongest association: the risk of having a global calcium score > 90th percentile was 3.62 times higher (confidence interval, 2.30-5.91; P < .001) for each 2.5-mm increase in descending aorta diameter. Vessel taper, tortuosity, unfolding and aortic arch and descending volumes were also correlated with higher amounts of calcium. Thoracic aorta calcium was predominantly found at the arch and descending aorta and was positively associated with the size of the descending aorta and the aortic arch, but not with the size of the ascending aorta. These findings suggest that aortic dilatation may have different mechanisms and may consequently require different preventive strategies according to the considered segments. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Aniracetam restores the effects of amyloid-beta protein or ageing on membrane fluidity and intracellular calcium concentration in mice synaptosomes.

    Science.gov (United States)

    Li, Y; Wang, J-J; Cai, J-X

    2007-01-01

    In the present study, we observed the in vitro effect of aniracetam on membrane fluidity and free calcium concentrations ([Ca(2+)]i) of frontal cortical (FC) and hippocampal (HP) synaptosomes of aged mice and young mice treated with amyloid-beta protein (Abeta) Membrane fluidity was measured by using fluorescence anisotropy of the lipophilic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). [Ca(2+)]i was measured by using Fura 2-AM fluorescent spectrophotometry. We found that membrane fluidity of the FC and HP synaptosomes was decreased in 14 months old mice compared with that in 3 months old mice. Similarly, Abeta25-35 (1 microM) decreased the membrane fluidity in 3 months old mice. These effects of ageing and Abeta25-35 on membrane fluidity were restored by aniracetam in a concentration-dependent manner. Furthermore, Abeta25-35 (1 microM) largely increased [Ca(2+)]i in FC and HP synaptosomes in 3 months old mice, but this effect on HP synaptosomes was effectively reversed by aniracetam (1-4 mM). The present findings suggest that aniracetam restores age- and Abeta-induced alterations in membrane fluidity or Abeta-induced increase in [Ca(2+)]i, demonstrating a possible beneficial role of aniracetam in the clinic treatment for senile dementia or Alzheimer's disease.

  15. Evidence that increased calcium intake does not prevent early postmenopausal bone loss

    DEFF Research Database (Denmark)

    Hosking, D J; Ross, P D; Thompson, D E

    1998-01-01

    Calcium's ability to prevent bone loss in early postmenopausal women is controversial. We used data on 394 women from the placebo group of the Early Postmenopausal Interventional Cohort study, a clinical trial of alendronate, to investigate the relation of calcium intake to bone loss. Calcium...... intake was recorded, and bone mineral density (BMD) (in the lumbar spine, total body, forearm, and hip) and biochemical markers of bone turnover (serum total alkaline phosphatase, serum osteocalcin, and urinary N-telopeptide crosslink levels) were measured at baseline and annually thereafter. Women whose...... were not significantly associated with changes in BMD or bone turnover. Even women whose total calcium intake was >1333 mg/d (the highest tertile of total calcium intake) showed a decline in BMD of almost 2%, similar to declines in the lower two tertiles of total calcium intake (

  16. Reducing toxicity and increasing efficiency: aconitine with liquiritin ...

    African Journals Online (AJOL)

    Reducing toxicity and increasing efficiency: aconitine with liquiritin and glycyrrhetinic acid regulate calcium regulatory proteins in rat myocardial cell. ... Liquiritin and Glycyrrhetinic Acid) of Radix Aconiti Carmichaeli and Liquorice could result in regulating intracellular calcium homeostasis and calcium cycling, and thereby ...

  17. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death.

    Science.gov (United States)

    Martin Muñoz, Patricia; Ortega Ferrusola, Cristina; Vizuete, Guillermo; Plaza Dávila, Maria; Rodriguez Martinez, Heriberto; Peña, Fernando J

    2015-12-01

    Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P spermatozoa without active caspase 3 (r = 0.996, P spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted. © 2015 by the Society for the Study of Reproduction, Inc.

  18. Interleukin-2 stimulates osteoclastic activity: Increased acid production and radioactive calcium release

    International Nuclear Information System (INIS)

    Ries, W.L.; Seeds, M.C.; Key, L.L.

    1989-01-01

    Recombinant human interleukin-2 (IL-2) was studied to determine effects on acid production by individual osteoclasts in situ on mouse calvarial bones. This analysis was performed using a microspectrofluorimetric technique to quantify acid production in individual cells. Radioactive calcium release was determined using calvarial bones in a standard tissue culture system. This allowed us to correlate changes in acid production with a measure of bone resorption. IL-2 stimulated acid production and bone resorbing activity. Both effects were inhibited by calcitonin. No stimulation of bone resorption occurred when IL-2-containing test media was incubated with a specific anti-IL-2 antibody and ultrafiltered. Our data demonstrated a correlation between acid production and bone resorbing activity in mouse calvaria exposed to parathyroid hormone (PTH). The data obtained from cultured mouse calvaria exposed to IL-2 demonstrated similar stimulatory effects to those seen during PTH exposure. These data suggest that calvaria exposed to IL-2 in vitro have increased osteoclastic acid production corresponding with increased bone resorption. (author)

  19. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium

    International Nuclear Information System (INIS)

    Zhu Xuhui; Yao Honghong; Peng Fuwang; Callen, Shannon; Buch, Shilpa

    2009-01-01

    The human immunodeficiency virus (HIV-1) protein Tat has been implicated in mediating neuronal apoptosis, one of the hallmark features of HIV-associated dementia (HAD). Mitigation of the toxic effects of Tat could thus be a potential mechanism for reducing HIV toxicity in the brain. In this study we demonstrated that Tat-induced neurotoxicity was abolished by NMDA antagonist-MK801, suggesting the role of glutamate in this process. Furthermore, we also found that pretreatment of SH-SY5Y cells with PDGF exerted protection against Tat toxicity by decreasing extracellular glutamate levels. We also demonstrated that extracellular calcium chelator EGTA was able to abolish PDGF-mediated neuroprotection, thereby underscoring the role of calcium signaling in PDGF-mediated neuroprotection. We also showed that Erk signaling pathway was critical for PDGF-mediated protection of cells. Additionally, blocking calcium entry with EGTA resulted in suppression of PDGF-induced Erk activation. These findings thus underscore the role of PDGF-mediated calcium signaling and Erk phosphorylation in the protection of cells against HIV Tat toxicity.

  20. Substituting milk for apple juice does not increase kidney stone risk in most normocalciuric adults who form calcium oxalate stones.

    Science.gov (United States)

    Massey, L K; Kynast-Gales, S A

    1998-03-01

    Increasing intake of dietary calcium from less than 400 mg to 800 mg daily may decrease the absorption of dietary oxalate, which in turn would decrease urinary oxalate excretion. The effect of substituting milk for apple juice on urine composition and risk of calcium oxalate precipitability was studied. Twenty-one normocalciuric adults with a history of at least 1 calcium oxalate stone and urinary oxalate excretion exceeding 275 micromol/day on their self-selected diet. Randomized crossover trial. Each participant consumed two moderate-oxalate (2,011 micromol/day) study diets, which were identical except that one contained 360 mL milk and the other contained 540 mL apple juice as the beverage with meals. Four days free-living then 2 days in the metabolic unit of a university nutrition department. Tiselius risk index for calcium oxalate precipitability calculated from urine composition. Paired t tests. Twenty-four hour urinary oxalate excretion was 18% lower (Papple juice with meals in a diet containing moderate amounts of dietary oxalate from whole grains, legumes, fruits, and vegetables does not increase the risk index of calcium oxalate precipitability in most normocalciuric adults who form stones.

  1. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β.

    Science.gov (United States)

    Basson, Marc D; Zeng, Bixi; Downey, Christina; Sirivelu, Madhu P; Tepe, Jetze J

    2015-02-01

    Large tumors exhibit high interstitial pressure heightened by growth against the constraining stroma. Such pressures could stimulate tumor proliferation via a mechanosensitive ion channel. We studied the effects of 0-80 mmHg increased extracellular pressure for 24 h on proliferation of SW620, Caco-2, and CT-26 colon; MCF-7 breast; and MLL and PC3 prostate cancer cells, and delineated its mechanism in SW620 cells with specific inhibitors and siRNA. Finally, we compared NF-kB, phospho-IkB and cyclin D1 immunoreactivity in the high pressure centers and low pressure peripheries of human tumors. Pressure-stimulated proliferation in all cells. Pressure-driven SW620 proliferation required calcium influx via the T-type Ca(2+) channel Cav3.3, which stimulated PKC-β to invoke the IKK-IkB-NF-kB pathway to increase proliferation and S-phase fraction. The mitotic index and immunoreactivity of NF-kB, phospho-IkB, and cyclin D1 in the center of 28 large human colon, lung, and head and neck tumors exceeded that in tumor peripheries. Extracellular pressure increases [Ca(2+)]i via Cav3.3, driving a PKC-β- IKK- IkB-NF-kB pathway that stimulates cancer cell proliferation. Rapid proliferation in large stiff tumors may increase intratumoral pressure, activating this pathway to stimulate further proliferation in a feedback cycle that potentiates tumor growth. Targeting this pathway may inhibit proliferation in large unresectable tumors. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Doolen Suzanne

    2012-07-01

    Full Text Available Abstract Background Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of peripheral neuropathic pain. Results Bath-applied glutamate robustly increased [Ca2+]i in 14.4 ± 2.6 cells per dorsal horn within a 440 x 330 um field-of-view, with an average time-to-peak of 27 s and decay of 112 s. Repeated application produced sequential responses of similar magnitude, indicating the absence of sensitization, desensitization or tachyphylaxis. Ca2+ transients were glutamate concentration-dependent with a Kd = 0.64 mM. Ca2+ responses predominantly occurred on neurons since: 1 Over 95% of glutamate-responsive cells did not label with the astrocyte marker, SR-101; 2 62% of fura-2 AM loaded cells exhibited spontaneous action potentials; 3 75% of cells that responded to locally-applied glutamate with a rise in [Ca2+]i also showed a significant increase in AP frequency upon a subsequent glutamate exposure; 4 In experiments using simultaneous on-cell recordings and Ca2+ imaging, glutamate elicited a Ca2+ response and an increase in AP frequency. AMPA/kainate (CNQX- and AMPA (GYKI 52466-selective receptor antagonists significantly attenuated glutamate-evoked increases in [Ca2+]i, while NMDA (AP-5, kainate (UBP-301 and class I mGluRs (AIDA did not. Compared to sham controls, peripheral nerve injury

  3. Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons.

    Science.gov (United States)

    Doolen, Suzanne; Blake, Camille B; Smith, Bret N; Taylor, Bradley K

    2012-07-28

    Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of peripheral neuropathic pain. Bath-applied glutamate robustly increased [Ca2+]i in 14.4 ± 2.6 cells per dorsal horn within a 440 x 330 um field-of-view, with an average time-to-peak of 27 s and decay of 112 s. Repeated application produced sequential responses of similar magnitude, indicating the absence of sensitization, desensitization or tachyphylaxis. Ca2+ transients were glutamate concentration-dependent with a Kd = 0.64 mM. Ca2+ responses predominantly occurred on neurons since: 1) Over 95% of glutamate-responsive cells did not label with the astrocyte marker, SR-101; 2) 62% of fura-2 AM loaded cells exhibited spontaneous action potentials; 3) 75% of cells that responded to locally-applied glutamate with a rise in [Ca2+]i also showed a significant increase in AP frequency upon a subsequent glutamate exposure; 4) In experiments using simultaneous on-cell recordings and Ca2+ imaging, glutamate elicited a Ca2+ response and an increase in AP frequency. AMPA/kainate (CNQX)- and AMPA (GYKI 52466)-selective receptor antagonists significantly attenuated glutamate-evoked increases in [Ca2+]i, while NMDA (AP-5), kainate (UBP-301) and class I mGluRs (AIDA) did not. Compared to sham controls, peripheral nerve injury significantly decreased mechanical paw

  4. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    ), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p...-malignant as well as normal. CONCLUSION: In conclusion, calcium electroporation seems to be more effective in inducing cell death in cancer cell spheroids than in a normal fibroblast spheroid, even though intracellular ATP level is depleted in all spheroid types after treatment. These results may indicate......BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...

  5. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    Directory of Open Access Journals (Sweden)

    Grant S. Nichols

    2015-01-01

    Full Text Available Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX, the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults.

  6. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles

    Science.gov (United States)

    Pareta, Rajesh A.; Taylor, Erik; Webster, Thomas J.

    2008-07-01

    Bone diseases (including osteoporosis, osteoarthritis and bone cancer) are of great concern to the medical world. Drugs are available to treat such diseases, but often these drugs are not specifically targeted to the site of the disease and, thus, lack an immediate directed therapeutic effect. The optimal drug delivery system should enhance healthy bone growth with high specificity to the site of bone disease. It has been previously shown that magnetic nanoparticles can be directed in the presence of a magnetic field to any part of the body, allowing for site-specific drug delivery and possibly an immediate increase in bone density. The objective of the present study was to build off of this evidence and determine the density of osteoblasts (bone forming cells) in the presence of various uncoated and coated magnetic nanoparticles that could eventually be used in drug delivery applications. Results showed that some magnetic nanoparticles (specifically, γ-Fe2O3) significantly promoted osteoblast density (that is, cells per well) after 5 and 8 days of culture compared to controls (no particles). These magnetic nanoparticles were further coated with calcium phosphate (CaP; the main inorganic component of bone) to tailor them for treating various bone diseases. The coatings were conducted in the presence of either bovine serum albumin (BSA) or citric acid (CA) to reduce magnetic nanoparticle agglomeration, a common problem resulting from the use of nanoparticles which decreases their effectiveness. Results with these coatings showed that magnetic nanoparticles, specifically (γ-Fe2O3), coated in the presence of BSA significantly increased osteoblast density compared to controls after 1 day. In this manner, this study provided unexpected evidence that CaP-coated γ-Fe2O3 magnetic nanoparticles increased osteoblast density (compared to no particles) and, thus, should be further studied to treat numerous bone diseases.

  7. Verapamil inhibits L-type calcium channel mediated apoptosis in human colon cancer cells.

    Science.gov (United States)

    Zawadzki, Antoni; Liu, Qing; Wang, Yusheng; Melander, Arne; Jeppsson, Bengt; Thorlacius, Henrik

    2008-11-01

    Treatment with calcium channel blockers have been associated with increased colon cancer mortality in epidemiologic studies. We examined the potential expression and function of calcium channels in two human colon cancer cell lines. Both primary (collected at operation) and commercially-available human colon cancer cell lines were used. The colon cancer cells were incubated with a calcium channel blocker (verapamil) and a calcium channel agonist (BayK 8644) at clinically relevant concentrations. L-type calcium channel mRNA was determined by reverse-transcription polymerase chain reaction. Intracellular calcium ion levels were measured with fluorometry and apoptosis with flow cytometry. Both types of cells expressed L-type calcium channel mRNA, comprising an alpha-1D and a beta-3 subunit, whereas the cells were negative for N-type and P-type channels. The selective calcium channel agonist (BayK 8644), dose-dependently increased intracellular calcium ion levels and the level of apoptosis in primary human colon cancer cells. Pretreatment with verapamil completely abolished both calcium channel agonist-induced influx of calcium and apoptosis in these cells. These data demonstrate that human colon cancer cells express L-type calcium channels that mediate calcium influx and apoptosis, which warrants further studies to determine whether calcium channel blockers may promote colon cancer growth.

  8. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial.

    Science.gov (United States)

    Jakeman, Steven A; Henry, Courtney N; Martin, Berdine R; McCabe, George P; McCabe, Linda D; Jackson, George S; Peacock, Munro; Weaver, Connie M

    2016-09-01

    Dietary soluble corn fiber (SCF) significantly improves calcium absorption in adolescents and the bone strength and architecture in rodent models. In this study, we aimed to determine the skeletal benefits of SCF in postmenopausal women. We used our novel technology of determining bone calcium retention by following the urinary appearance of (41)Ca, a rare long-lived radioisotope, from prelabeled bone to rapidly and sensitively evaluate the effectiveness of SCF in reducing bone loss. A randomized-order, crossover, double-blinded trial was performed in 14 healthy postmenopausal women to compare doses of 0, 10, and 20 g fiber from SCF/d for 50 d. A dose-response effect was shown with 10 and 20 g fiber from SCF/d, whereby bone calcium retention was improved by 4.8% (P fiber from SCF/d (8%; P = 0.035). Daily SCF consumption significantly increased bone calcium retention in postmenopausal women, which improved the bone calcium balance by an estimated 50 mg/d. This study was registered at clinicaltrials.gov as NCT02416947. © 2016 American Society for Nutrition.

  9. Fitness attenuates the prevalence of increased coronary artery calcium in individuals with metabolic syndrome.

    Science.gov (United States)

    Ekblom-Bak, Elin; Ekblom, Örjan; Fagman, Erika; Angerås, Oskar; Schmidt, Caroline; Rosengren, Annika; Börjesson, Mats; Bergström, Göran

    2018-02-01

    Background The association between cardiorespiratory fitness, physical activity and coronary artery calcium (CAC) is unclear, and whether higher levels of fitness attenuate CAC prevalence in subjects with metabolic syndrome is not fully elucidated. The present study aims to: a) investigate the independent association of fitness on the prevalence of CAC, after adjustment for moderate-to-vigorous physical activity and sedentary time, and b) study the possible attenuation of increased CAC by higher fitness, in participants with metabolic syndrome. Design Cross-sectional. Methods In total 678 participants (52% women), 50-65 years old, from the SCAPIS pilot study were included. Fitness (VO 2 max) was estimated by submaximal cycle ergometer test and moderate-to-vigorous physical activity and sedentary time were assessed using hip-worn accelerometers. CAC score (CACS) was quantified using the Agatston score. Results The odds of having a significant CACS (≥100) was half in participants with moderate/high fitness compared with their low fitness counterparts. Further consideration of moderate-to-vigorous physical activity, sedentary time and number of components of the metabolic syndrome did only slightly alter the effect size. Those with metabolic syndrome had 47% higher odds for significant CAC compared with those without metabolic syndrome. However, moderate/high fitness seems to partially attenuate this risk, as further joint analysis indicated an increased odds for having significant CAC only in the unfit metabolic syndrome participants. Conclusions Being fit is associated with a reduced risk of having significant CAC in individuals with metabolic syndrome. While still very much underutilized, fitness should be taken into consideration in everyday clinical risk prediction in addition to the traditional risk factors of the metabolic syndrome.

  10. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization.

    Science.gov (United States)

    Edel, Kai H; Kudla, Jörg

    2015-03-01

    Calcium serves as a versatile messenger in adaptation reactions and developmental processes in plants and animals. Eukaryotic cells generate cytosolic Ca(2+) signals via Ca(2+) conducting channels. Ca(2+) signals are represented in form of stimulus-specific spatially and temporally defined Ca(2+) signatures. These Ca(2+) signatures are detected, decoded and transmitted to downstream responses by an elaborate toolkit of Ca(2+) binding proteins that function as Ca(2+) sensors. In this article, we examine the distribution and evolution of Ca(2+)-conducting channels and Ca(2+) decoding proteins in the plant lineage. To this end, we have in addition to previously studied genomes of plant species, identified and analyzed the Ca(2+)-signaling components from species that hold key evolutionary positions like the filamentous terrestrial algae Klebsormidium flaccidum and Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants. Plants and animals exhibit substantial differences in their complements of Ca(2+) channels and Ca(2+) binding proteins. Within the plant lineage, remarkable differences in the evolution of complexity between different families of Ca(2+) signaling proteins are observable. Using the CBL/CIPK Ca(2+) sensor/kinase signaling network as model, we attempt to link evolutionary tendencies to functional predictions. Our analyses, for example, suggest Ca(2+) dependent regulation of Na(+) homeostasis as an evolutionary most ancient function of this signaling network. Overall, gene families of Ca(2+) signaling proteins have significantly increased in their size during plant evolution reaching an extraordinary complexity in angiosperms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Intracellular putrescine and spermidine deprivation induces increased uptake of the natural polyamines and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Alhonen-Hongisto, L; Seppänen, P; Jänne, J

    1980-01-01

    Inhibition of polyamine synthesis by alpha-difluoromethylornithine in cultured Ehrlich ascites-carcinoma cells rapidly enhanced the uptake of exogenous putrescine, spermidine and spermine from the culture medium. In tumour cells exposed to the drug for 2 days, the intracellular concentration of spermidine was decreased to less than 10% of that found in untreated cells. However, the strikingly stimulated transport system brought the concentration of spermidine to the control values in less than 2h after supplementation of the cells with micromolar concentrations of the polyamine. In the absence of polyamine deprivation, tumour cells did not accumulate extracellular polyamines to any appreciable extent. Ascites-tumour cells deprived of putrescine and spermidine likewise concentrated methylglyoxal bis(guanylhydrazone) [1,1'-[methylethanedylidine)dinitrilo]diguanidine] at a greatly enhanced rate. A previous "priming of tumour cells with difluoromethylornithine followed by an exposure of the cells to methylglyoxal bis(guanylhydrazone) resulted in a marked and rapid anti-proliferative effect. PMID:6786285

  12. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita.

    Science.gov (United States)

    Moscatiello, Roberto; Sello, Simone; Novero, Mara; Negro, Alessandro; Bonfante, Paola; Navazio, Lorella

    2014-08-01

    Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to lactose and increase in calcium absorption leading to an increase in calcium retention (ID 668) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to lactose and increase in calcium absorption leading to an increase in calcium retention. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has received from Member...... States or directly from stakeholders. The food constituent that is the subject of the health claim is lactose. The Panel considers that lactose is sufficiently characterised. The claimed effect is “calcium absorption”. The target population is assumed to be the general population. The Panel notes...... between the consumption of lactose and an increase in calcium absorption leading to an increase in calcium retention....

  14. Low calcium intake is related to increased risk of tooth loss in men

    DEFF Research Database (Denmark)

    Adegboye, Amanda R A; Fiehn, Nils-Erik; Twetman, Svante

    2010-01-01

    Our aim was to investigate the association between calcium (Ca) intake and number of teeth and tooth loss. The Danish Monica (Monitoring Trends and Determinants in Cardiovascular Disease) study is a prospective observational study from 1982-83 to 1993-94. The study population included 1602 adults...

  15. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications.

    Science.gov (United States)

    De Mello, Walmor C

    2014-01-01

    HighlightsIntracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication - an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10(-9) M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10(-8) M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  16. Ascorbic acid, but not dehydroascorbic acid increases intracellular vitamin C content to decrease Hypoxia Inducible Factor -1 alpha activity and reduce malignant potential in human melanoma.

    Science.gov (United States)

    Fischer, Adam P; Miles, Sarah L

    2017-02-01

    Accumulation of hypoxia inducible factor-1 alpha (HIF-1α) in malignant tissue is known to contribute to oncogenic progression and is inversely associated with patient survival. Ascorbic acid (AA) depletion in malignant tissue may contribute to aberrant normoxic activity of HIF-1α. While AA supplementation has been shown to attenuate HIF-1α function in malignant melanoma, the use of dehydroascorbic acid (DHA) as a therapeutic means to increase intracellular AA and modulate HIF-1α function is yet to be evaluated. Here we compared the ability of AA and DHA to increase intracellular vitamin C content and decrease the malignant potential of human melanoma by reducing the activity of HIF-1α. HIF-1α protein accumulation was evaluated by western blot and transcriptional activity was evaluated by reporter gene assay using a HIF-1 HRE-luciferase plasmid. Protein expressions and subcellular localizations of vitamin C transporters were evaluated by western blot and confocal imaging. Intracellular vitamin C content following AA, ascorbate 2-phosphate (A2P), or DHA supplementation was determined using a vitamin C assay. Malignant potential was accessed using a 3D spheroid Matrigel invasion assay. Data was analyzed by One or Two-way ANOVA with Tukey's multiple comparisons test as appropriate with pascorbic acid as an adjuvant cancer therapy remains under investigated. While AA and A2P were capable of modulating HIF-1α protein accumulation/activity, DHA supplementation resulted in minimal intracellular vitamin C activity with decreased ability to inhibit HIF-1α activity and malignant potential in advanced melanoma. Restoring AA dependent regulation of HIF-1α in malignant cells may prove beneficial in reducing chemotherapy resistance and improving treatment outcomes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Fujita, Norihisa, E-mail: nori@ph.ritsumei.ac.jp [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); School of Pharmacy, Ristumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delay of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.

  18. Nuclear magnetic resonance studies of intracellular ions in perfused from heart

    International Nuclear Information System (INIS)

    Burnstein, D.; Fossel, E.T.

    1987-01-01

    Intracellular sodium, potassium, and lithium were observed in a perfused frog heart by nuclear magnetic resonance (NMR) spectroscopy. A perfusate buffer containing the shift reagent, dysprosium tripolyphosphate, was used in combination with mathematical filtering or presaturation of the extracellular resonance to separate the intra- and extracellular sodium NMR signals. Addition of 10 μM ouabain to the perfusate, perfusion with a zero potassium, low-calcium buffer, and replacement of 66% of the perfusate sodium with lithium resulted in changes in the intracellular sodium levels. An increase of 45% in the intracellular sodium was observed when changing the pacing rate from 0 to 60 beats/min (with proportional changes for intermediate pacing rates). The ratio of intracellular potassium to sodium concentration was determined to be 2.3 by NMR, indicating that a substantial amount of the intracellular potassium is undetectable with these NMR method. In addition, intracellular lithium was observed during perfusion with a lithium-containing perfusate

  19. The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes.

    Science.gov (United States)

    Ramadan, James W; Steiner, Stephen R; O'Neill, Christina M; Nunemaker, Craig S

    2011-12-01

    The appropriate regulation of intracellular calcium is a requirement for proper cell function and survival. This review focuses on the effects of proinflammatory cytokines on calcium regulation in the insulin-producing pancreatic beta-cell and how normal stimulus-secretion coupling, organelle function, and overall beta-cell viability are impacted. Proinflammatory cytokines are increasingly thought to contribute to beta-cell dysfunction not only in type 1 diabetes (T1D), but also in the progression of type 2 diabetes (T2D). Cytokine-induced disruptions in calcium handling result in reduced insulin release in response to glucose stimulation. Cytokines can alter intracellular calcium levels by depleting calcium from the endoplasmic reticulum (ER) and by increasing calcium influx from the extracellular space. Depleting ER calcium leads to protein misfolding and activation of the ER stress response. Disrupting intracellular calcium may also affect organelles, including the mitochondria and the nucleus. As a chronic condition, cytokine-induced calcium disruptions may lead to beta-cell death in T1D and T2D, although possible protective effects are also discussed. Calcium is thus central to both normal and pathological cell processes. Because the tight regulation of intracellular calcium is crucial to homeostasis, measuring the dynamics of calcium may serve as a good indicator of overall beta-cell function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Calcium ion currents mediating oocyte maturation events

    Directory of Open Access Journals (Sweden)

    Tosti Elisabetta

    2006-05-01

    Full Text Available Abstract During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed.

  1. Dopamine Release Suppression Dependent on an Increase of Intracellular Ca2+ Contributed to Rotenone-induced Neurotoxicity in PC12 Cells

    Science.gov (United States)

    Sai, Yan; Chen, Junfeng; Ye, Feng; Zhao, Yuanpeng; Zou, Zhongmin; Cao, Jia; Dong, Zhaojun

    2013-01-01

    Rotenone is an inhibitor of mitochondrial complex I that produces a model of Parkinson’s disease (PD), in which neurons undergo dopamine release dysfunction and other features. In neurons, exocytosis is one of the processes associated with dopamine release and is dependent on Ca2+ dynamic changes of the cell. In the present study, we have investigated the exocytosis of dopamine and the involvement of Ca2+ in dopamine release in PC12 cells administrated with rotenone. Results demonstrated that rotenone led to an elevation of intracellular Ca2+ through Ca2+ influx by opening of the voltage-gated Ca2+ channel and influenced the soluble N-ethylmaleimide attachment protein receptor (SNARE) proteins expression (including syntaxin, vesicle-associated membrane protein 2 (VAMP2) and synaptosome-associated protein 25 (SNAP-25)); pretreatment with a blocker of L-type voltage-activated Ca2+ channels (nifedipine) decreased the intracellular dopamine levels and ROS formation, increased the cell viability and enhanced the neurite outgrowth and exocytosis of synaptic vesicles. These results indicated that the involvement of intracellular Ca2+ was one of the factors resulting in suppression of dopamine release suppression in PC12 cells intoxicated with rotenone, which was associated with the rotenone-induced dopamine neurotoxicity. PMID:23914057

  2. The intracellular pharmacokinetics of terminally capped peptides.

    NARCIS (Netherlands)

    Ruttekolk, I.R.R.; Witsenburg, J.J.; Glauner, H.B.; Bovee-Geurts, P.H.M.; Ferro, E.S.; Verdurmen, W.P.R.; Brock, R.E.

    2012-01-01

    With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular

  3. Evolution to a Chronic Disease Niche Correlates with Increased Sensitivity to Tryptophan Availability for the Obligate Intracellular Bacterium Chlamydia pneumoniae

    Science.gov (United States)

    Huston, Wilhelmina M.; Barker, Christopher J.; Chacko, Anu

    2014-01-01

    The chlamydiae are obligate intracellular parasites that have evolved specific interactions with their various hosts and host cell types to ensure their successful survival and consequential pathogenesis. The species Chlamydia pneumoniae is ubiquitous, with serological studies showing that most humans are infected at some stage in their lifetime. While most human infections are asymptomatic, C. pneumoniae can cause more-severe respiratory disease and pneumonia and has been linked to chronic diseases such as asthma, atherosclerosis, and even Alzheimer's disease. The widely dispersed animal-adapted C. pneumoniae strains cause an equally wide range of diseases in their hosts. It is emerging that the ability of C. pneumoniae to survive inside its target cells, including evasion of the host's immune attack mechanisms, is linked to the acquisition of key metabolites. Tryptophan and arginine are key checkpoint compounds in this host-parasite battle. Interestingly, the animal strains of C. pneumoniae have a slightly larger genome, enabling them to cope better with metabolite restrictions. It therefore appears that as the evolutionarily more ancient animal strains have evolved to infect humans, they have selectively become more “susceptible” to the levels of key metabolites, such as tryptophan. While this might initially appear to be a weakness, it allows these human C. pneumoniae strains to exquisitely sense host immune attack and respond by rapidly reverting to a persistent phase. During persistence, they reduce their metabolic levels, halting progression of their developmental cycle, waiting until the hostile external conditions have passed before they reemerge. PMID:24682324

  4. In vivo calcium imaging of evoked calcium waves in the embryonic cortex

    Directory of Open Access Journals (Sweden)

    Mikhail eYuryev

    2016-01-01

    Full Text Available The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this approach we demonstrate induction of calcium waves by laser stimulation. These waves are sensitive to ATP-receptor blockade and are significantly increased by pharmacological facilitation of intracellular-calcium release. This approach is the closest to physiological conditions yet achieved for imaging of calcium in the embryonic brain and as such opens new avenues for the study of prenatal brain development. Furthermore, the developed method could open the possibilities of preclinical translational studies in embryos particularly important for developmentally related diseases such as schizophrenia and autism.

  5. Galectin-1-binding glycoforms of haptoglobin with altered intracellular trafficking, and increase in metastatic breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Michael C Carlsson

    Full Text Available Sera from 25 metastatic breast cancer patients and 25 healthy controls were subjected to affinity chromatography using immobilized galectin-1. Serum from the healthy subjects contained on average 1.2 mg per ml (range 0.7-2.2 galectin-1 binding glycoproteins, whereas serum from the breast cancer patients contained on average 2.2 mg/ml (range 0.8-3.9, with a higher average for large primary tumours. The major bound glycoproteins were α-2-macroglobulin, IgM and haptoglobin. Both the IgM and haptoglobin concentrations were similar in cancer compared to control sera, but the percentage bound to galectin-1 was lower for IgM and higher for haptoglobin: about 50% (range 20-80 in cancer sera and about 30% (range 25-50 in healthy sera. Galectin-1 binding and non-binding fractions were separated by affinity chromatography from pooled haptoglobin from healthy sera. The N-glycans of each fraction were analyzed by mass spectrometry, and the structural differences and galectin-1 mutants were used to identify possible galectin-1 binding sites. Galectin-1 binding and non-binding fractions were also analyzed regarding their haptoglobin function. Both were similar in forming complex with haemoglobin and mediate its uptake into alternatively activated macrophages. However, after uptake there was a dramatic difference in intracellular targeting, with the galectin-1 non-binding fraction going to a LAMP-2 positive compartment (lysosomes, while the galectin-1 binding fraction went to larger galectin-1 positive granules. In conclusion, galectin-1 detects a new type of functional biomarker for cancer: a specific type of glycoform of haptoglobin, and possibly other serum glycoproteins, with a different function after uptake into tissue cells.

  6. Brief report: Does PTH increase with age, independent of 25-hydroxyvitamin D, phosphate, renal function, and ionized calcium?

    Science.gov (United States)

    Carrivick, Simon J; Walsh, John P; Brown, Suzanne J; Wardrop, Robert; Hadlow, Narelle C

    2015-05-01

    Circulating PTH concentrations increase with age. It is uncertain whether an age-related PTH increase occurs independent of changes in circulating 25-hydroxyvitamin D, phosphate, renal function, and ionized calcium. The purpose of this article was to analyze the relationship between PTH and age, controlling for 25-hydroxyvitamin D, phosphate, renal function, and ionized calcium. This was a retrospective, cross-sectional study analyzing the relationship between PTH and age in 2 independent datasets (laboratory 1, n = 17 275 and laboratory 2, n = 4878). We further analyzed subgroups after excluding participants with estimated glomerular filtration rate of PTH (95% confidence interval [CI], 4.4%-5.6%; P PTH (95% CI, 5.5%-6.8%; P PTH concentrations increase with age, independent of 25-hydroxyvitamin D, ionized calcium, phosphate, and renal function. Further research is required to explore the underlying mechanisms and clinical relevance and to determine whether the use of age-related PTH reference ranges improves diagnostic accuracy, particularly in elderly individuals.

  7. Intrarenal transfer of an intracellular fluorescent fusion of angiotensin II selectively in proximal tubules increases blood pressure in rats and mice

    Science.gov (United States)

    Li, Xiao C.; Cook, Julia L.; Rubera, Isabelle; Tauc, Michel; Zhang, Fan

    2011-01-01

    The present study tested the hypothesis that intrarenal adenoviral transfer of an intracellular cyan fluorescent fusion of angiotensin II (ECFP/ANG II) selectively in proximal tubules of the kidney increases blood pressure by activating AT1 (AT1a) receptors. Intrarenal transfer of ECFP/ANG II was induced in the superficial cortex of rat and mouse kidneys, and the sodium and glucose cotransporter 2 (sglt2) promoter was used to drive ECFP/ANG II expression selectively in proximal tubules. Intrarenal transfer of ECFP/ANG II induced a time-dependent, proximal tubule-selective expression of ECFP/ANG II in the cortex, which peaked at 2 wk and was sustained for 4 wk. ECFP/ANG II expression was low in the glomeruli and the entire medulla and was absent in the contralateral kidney or extrarenal tissues. At its peak of expression in proximal tubules at day 14, ANG II was increased by twofold in the kidney (P tubules (P kidney, and proximal tubule ANG II, or sodium excretion. These results provide evidence that proximal tubule-selective transfer of an intracellular ANG II fusion protein increases blood pressure by activating AT1a receptors and increasing sodium reabsorption in proximal tubules. PMID:21307128

  8. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Passier, Robert [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); MIRA, University of Twente (Netherlands); Tertoolen, Leon G.J.; Mummery, Christine L. [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Casini, Simona, E-mail: s.casini@amc.uva.nl [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands)

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.

  9. The effect of pulsed electric fields on the electrotactic migration of human neural progenitor cells through the involvement of intracellular calcium signaling.

    Science.gov (United States)

    Hayashi, Hisamitsu; Edin, Fredrik; Li, Hao; Liu, Wei; Rask-Andersen, Helge

    2016-12-01

    Endogenous electric fields (EFs) are required for the physiological control of the central nervous system development. Application of the direct current EFs to neural stem cells has been studied for the possibility of stem cell transplantation as one of the therapies for brain injury. EFs generated within the nervous system are often associated with action potentials and synaptic activity, apparently resulting in a pulsed current in nature. The aim of this study is to investigate the effect of pulsed EF, which can reduce the cytotoxicity, on the migration of human neural progenitor cells (hNPCs). We applied the mono-directional pulsed EF with a strength of 250mV/mm to hNPCs for 6h. The migration distance of the hNPCs exposed to pulsed EF was significantly greater compared with the control not exposed to the EF. Pulsed EFs, however, had less of an effect on the migration of the differentiated hNPCs. There was no significant change in the survival of hNPCs after exposure to the pulsed EF. To investigate the role of Ca 2+ signaling in electrotactic migration of hNPCs, pharmacological inhibition of Ca 2+ channels in the EF-exposed cells revealed that the electrotactic migration of hNPCs exposed to Ca 2+ channel blockers was significantly lower compared to the control group. The findings suggest that the pulsed EF induced migration of hNPCs is partly influenced by intracellular Ca 2+ signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Analysis of Intracellular and Intercellular Calcium Signaling in Human Anterior Lens Capsule Epithelial Cells with Regard to Different Types and Stages of the Cataract.

    Directory of Open Access Journals (Sweden)

    Marko Gosak

    Full Text Available In this work we investigated how modifications of the Ca2+ homeostasis in anterior lens epithelial cells (LECs are associated with different types of cataract (cortical or nuclear and how the progression of the cataract (mild or moderate affects the Ca2+ signaling. We systematically analyzed different aspects of intra- and inter-cellular Ca2+ signaling in the human LECs, which are attached to surgically isolated lens capsule (LC, obtained during cataract surgery. We monitored the temporal and spatial changes in intracellular Ca2+ concentration after stimulation with acetylcholine by means of Fura-2 fluorescence captured with an inverted microscope. In our analysis we compared the features of Ca2+ signals in individual cells, synchronized activations, spatio-temporal grouping and the nature of intercellular communication between LECs. The latter was assessed by using the methodologies of the complex network theory. Our results point out that at the level of individual cells there are no significant differences when comparing the features of the signals with regard either to the type or the stage of the cataract. On the other hand, noticeable differences are observed at the multicellular level, despite inter-capsule variability. LCs associated with more developed cataracts were found to exhibit a slower collective response to stimulation, a less pronounced spatio-temporal clustering of LECs with similar signaling characteristics. The reconstructed intercellular networks were found to be sparser and more segregated than in LCs associated with mild cataracts. Moreover, we show that spontaneously active LECs often operate in localized groups with quite well aligned Ca2+ activity. The presence of spontaneous activity was also found to affect the stimulated Ca2+ responses of individual cells. Our findings indicate that the cataract progression entails the impairment of intercellular signaling thereby suggesting the functional importance of altered Ca2

  11. Presymptomatically applied AMPA receptor antagonist prevents calcium increase in vulnerable type of motor axon terminals of mice modeling amyotrophic lateral sclerosis.

    Science.gov (United States)

    Patai, Roland; Paizs, Melinda; Tortarolo, Massimo; Bendotti, Caterina; Obál, Izabella; Engelhardt, József I; Siklós, László

    2017-07-01

    Increased intracellular calcium (Ca), which might be the consequence of an excess influx through Ca-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, plays a crucial role in degeneration of motor neurons. Previously we demonstrated that the presymptomatic application of AMPA receptor antagonist, talampanel, could reduce Ca elevation in spinal motor neurons of mice carrying the G93A mutation of superoxide dismutase 1 (SOD1), modeling amyotrophic lateral sclerosis (ALS). It remained to be examined whether the remote, functionally semi-autonomous motor axon terminals could be rescued from the Ca overload, or if the terminals, where the degeneration possibly starts, already experience intractable changes at early time points. Thus using electron microscopic techniques, we measured the Ca level of motor axon terminals in the interosseus muscle of the SOD1 mutant animals, which are prototypes of vulnerable nerve endings in ALS. In line with the results obtained in the perikarya, talampanel treatment could reduce Ca increase evoked by the presence of mutant SOD1 in the axon terminals if the treatment was started presymptomatically but not at an early symptomatic stage. We also tested the Ca level in the cell bodies and axon terminals of the oculomotor neurons, which are resistant to the disease. Neither Ca increase, nor talampanel effect could be demonstrated at either time point. This is consistent with the observations that oculomotor neurons contain increased level of Ca buffer, which could reduce excess Ca load, and they also express glutamate receptor subunit type 2, which renders AMPA receptors impermeable to Ca. Copyright © 2017. Published by Elsevier B.V.

  12. Suppression of the increasing level of acetylcholine-stimulated intracellular Ca2+ in guinea pig airway smooth muscle cells by mabuterol.

    Science.gov (United States)

    Song, Xirui; Zhao, Chao; Dai, Cailing; Ren, Yanxin; An, Nan; Wen, Huimin; Pan, L I; Cheng, Maosheng; Zhang, Yuyang

    2015-11-01

    The present study aimed to establish an effective method for the in vitro culture of guinea pig airway smooth muscle (ASM) cells, and also investigate the suppressive effect of mabuterol hydrochloride (Mab) on the increased level of intracellular Ca 2+ in ASM cells induced with acetylcholine (Ach). Two different methods, i.e. with or without collagenase to pretreat tracheal tissues, were applied to the manufacture of ASM cells. Cell viability was determined with the 3-(4,5-dimethylthinazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Immunocytochemistry and immunofluorescence were used for the identification of ASM cells. Different concentration levels (10 -3 , 10 -4 , 10 -5 , 10 -6 and 10 -7 mmol/l) of Mab were administered 5 min before Ach (10 -4 M) treatment, respectively. The Ca 2+ fluorescent probe, Fura-2/AM or Fluo-3/AM were applied to the inspection of Ca 2+ fluorescent intensity with Varioskan Flash, immunocytometry systems and an inverted system microscope, respectively. The results showed that the fresh method, in which isolated tracheal tissues were previously treated with collagenase for 20 min, was more advantageous for the preparation of guinea pig ASM cells compared to when the enzyme was not used. The time for the ASM cells to initially migrate out of the 'tissue blocks' and the culture having to be generated due to the thick cell density was significantly less. On identification with immunocytochemistry or immunofluorescent staining, >95% of the cells were ASM cells. Mab (10 -3 -10 -7 mmol/l) significantly suppressed the elevation of intracellular Ca 2+ induced by Ach in a concentration-dependent manner. The inhibitory rates of intracellular Ca 2+ by different concentrations of Mab, from low to high, were 14.93, 24.73, 40.06, 48.54 and 57.13%, respectively, when Varioskan Flash was used for determination. In conclusion, this novel method has a shorter harvesting period for ASM cells. Mab can suppress the increasing level of intracellular Ca 2

  13. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    Science.gov (United States)

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells.

  14. Increase of Intracellular BAFF in B Cells of Sjögren’s Patients Is Not Affected by Decrease of BAFFR

    Directory of Open Access Journals (Sweden)

    Jan Krejsek

    2015-07-01

    Full Text Available The presence of a broad spectrum of autoantibodies in Sjögren’s syndrome (SjS patients is the result of abnormal B-cell regulation that can be at least partially explained by abnormal BAFF/BAFFR regulation. The objective of this study was to determine both membrane and intracellular expression of BAFF/BAFFR in monocytes and B-cells in peripheral blood of 19 primary Sjögren’s syndrome patients and 20 healthy controls using flow cytometry. We also measured sBAFF in serum. Compared to healthy controls, both surface and intracellular expression of BAFF was significantly increased in monocytes and B-cells of SjS patients. Also serum sBAFF level was elevated. Expression of BAFFR on B-cells of SjS patients was surprisingly decreased, but there was no clear increase or decrease within monocytes. Our results indicate that activated monocytes communicate with B-cells via BAFF and BAFFR, so that B-cells are stimulated, but BAFF is also produced to stimulate cells in autocrine way. The decrease of BAFFR expression in SjS patients suggests that there is the mechanism that attempts to take over in order to balance the high level of BAFF.

  15. Stimulation of epidermal calcium gradient loss increases the expression of hyaluronan and CD44 in mouse skin.

    Science.gov (United States)

    Lee, S-E; Jun, J-E; Choi, E-H; Ahn, S-K; Lee, S-H

    2010-08-01

    Hyaluronan (HA), a major extracellular matrix component in epidermis, has been found to accumulate in the epidermis after disruption of the epidermal barrier; however, the precise mechanisms underlying this process are not yet clear. Alterations in the epidermal calcium gradient are an important signal for permeability-barrier homeostasis. Thus, we hypothesized that epidermal calcium-ions might regulate HA expression. To investigate whether changes in the epidermal calcium gradient and subsequent induction of cytokines regulate HA, HA synthase (HAS) and HA receptor (CD44) expression in mouse epidermis, and to clarify the mechanisms of HA induction. Sonophoresis of 1.5 mmol/L Ca(2+)-containing gel or Ca(2+)-free gel was performed to manipulate the epidermal Ca(2+) content without disrupting the permeability barrier. We also manipulated the Ca(2+) gradient by tape-stripping with or without 2 h immersion in 1.2 mmol/L Ca(2+)-containing solutions. Next we inhibited cytokine activity using tumour necrosis factor (TNF)-alpha or interleukin (IL)-1 inhibitors before sonophoresis. Six hours after each treatment, the expression of HA, HAS and CD44 were analysed using reverse transcription PCR and immunohistochemical stains. Sonophoresis of Ca(2+)-free gel significantly increased HA, HAS3 and CD44 expression in epidermis and in tape-stripped skin. However, the inhibition of Ca(2+) decrease in the upper epidermis by sonophoresis of Ca(2+)-containing gel or immersion of barrier-disrupted skin into a Ca(2+)-containing solution attenuated these inductions. Specific inhibitors of TNF-alpha and IL-1 specific inhibitors also abolished the sonophoresis-induced expression of HA, HAS3 and CD44. These results suggest that modulations in epidermal calcium regulate HA and CD44 expression directly or via induction of cytokines.

  16. Potassium Bicarbonate Attenuates the Urinary Nitrogen Excretion That Accompanies an Increase in Dietary Protein and May Promote Calcium Absorption

    Science.gov (United States)

    Ceglia, Lisa; Harris, Susan S.; Abrams, Steven A.; Rasmussen, Helen M.; Dallal, Gerard E.; Dawson-Hughes, Bess

    2009-01-01

    Context: Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system, particularly in older individuals with declining renal function. Objective: We sought to determine whether adding an alkaline salt, potassium bicarbonate (KHCO3), allows protein to have a more favorable net impact on intermediary indices of muscle and bone conservation than it does in the usual acidic environment. Design: We conducted a 41-d randomized, placebo-controlled, double-blind study of KHCO3 or placebo with a 16-d phase-in and two successive 10-d metabolic diets containing low (0.5 g/kg) or high (1.5 g/kg) protein in random order with a 5-d washout between diets. Setting: The study was conducted in a metabolic research unit. Participants: Nineteen healthy subjects ages 54–82 yr participated. Intervention: KHCO3 (up to 90 mmol/d) or placebo was administered for 41 d. Main Outcome Measures: We measured 24-h urinary nitrogen excretion, IGF-I, 24-h urinary calcium excretion, and fractional calcium absorption. Results: KHCO3 reduced the rise in urinary nitrogen excretion that accompanied an increase in protein intake (P = 0.015) and was associated with higher IGF-I levels on the low-protein diet (P = 0.027) with a similar trend on the high-protein diet (P = 0.050). KHCO3 was also associated with higher fractional calcium absorption on the low-protein diet (P = 0.041) with a similar trend on the high-protein diet (P = 0.064). Conclusions: In older adults, KHCO3 attenuates the protein-induced rise in urinary nitrogen excretion, and this may be mediated by IGF-I. KHCO3 may also promote calcium absorption independent of the dietary protein content. PMID:19050051

  17. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    International Nuclear Information System (INIS)

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-01-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ([Ca2+]i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased [Ca2+] significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of [Ca2+]i depended on the intracellular Ca pool, since an AVP-induced rise in [Ca2+]i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased 45 Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells

  18. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-09-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ((Ca2+)i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased (Ca2+) significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of (Ca2+)i depended on the intracellular Ca pool, since an AVP-induced rise in (Ca2+)i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased /sup 45/Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells.

  19. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent.

    Science.gov (United States)

    Davis, F M; Azimi, I; Faville, R A; Peters, A A; Jalink, K; Putney, J W; Goodhill, G J; Thompson, E W; Roberts-Thomson, S J; Monteith, G R

    2014-05-01

    Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of

  20. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment

    OpenAIRE

    Takaiwa, Fumio

    2013-01-01

    Seeds must maintain a constant level of nitrogen in order to germinate. When recombinant proteins are produced while endogenous seed protein expression is suppressed, the production levels of the foreign proteins increase to compensate for the decreased synthesis of endogenous proteins. Thus, exchanging the production of endogenous seed proteins for that of foreign proteins is a promising approach to increase the yield of foreign recombinant proteins. Providing a space for the deposition of r...

  1. Role of Calcium and Calmodulin in Plant Cell Regulation

    Science.gov (United States)

    Cormier, M. J.

    1983-01-01

    The role of calcium and calmodulin in plant cell regulation is discussed. Experiments are done to discover the level of calcium in plants and animals. The effect of intracellular calcium on photosynthesis is discussed.

  2. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to beta-palmitate and increased calcium absorption pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    triglycerides may increase calcium absorption by decreasing faecal calcium excretion as calcium soaps, albeit a significant effect on calcium absorption was demonstrated in one study only. The Panel concludes that the evidence provided is insufficient to establish a cause and effect relationship between...

  3. Increase vs. decrease of calcium uptake by isolated heart cells induced by H2O2 vs. HOCl

    International Nuclear Information System (INIS)

    Kaminishi, T.; Matsuoka, T.; Yanagishita, T.; Kako, K.J.

    1989-01-01

    Adult rat heart myocytes were labeled rapidly with exogenous [45Ca2+]. Addition of 2.5 mM H2O2 to the heart cell suspension raised the content of rapidly exchangeable intracellular Ca2+ twofold, whereas addition of 1-30 mM HOCl decreased the Ca2+ content. The H2O2-induced increase in Ca2+ content was dependent on the medium Na+, pH, and temperature but was not significantly affected by addition of verapamil, diltiazem, amiloride, or 3-aminobenzamide. The [3H]ouabain binding to myocytes was suppressed by H2O2, whereas the Ca2+ efflux from myocytes was not influenced. An uncoupler, carbonyl cyanide m-chlorophenylhydrazone, reduced Ca2+ content, implying that the H2O2-induced change in Ca2+ content was not directly related to ATP depletion. On the other hand, the H2O2-induced Ca2+ accumulation in myocytes was prevented by deferoxamine or o-phenanthroline. These results suggest that H2O2 inhibited Na+-K+-ATPase, resulting in an increase in intracellular Na+ concentration and stimulation of sarcolemmal Na+-Ca2+ exchange activity, which caused a transient net Ca2+ influx into myocytes. By contrast, HOCl decreased the Ca2+ content of the rapidly exchangeable pool below control levels and this action of HOCl was antagonized by 1,4-dithiothreitol. HOCl accelerated Ca2+ efflux from myocytes. Ca2+ uptake and Ca2+-ATPase of the isolated sarcoplasmic reticular (SR) fraction were highly sensitive to the action of HOCl. Ca2+ uptake by intracellular sites, studied with myocytes permeabilized with digitonin, was inhibited by both H2O2 and HOCl. Thus these results suggest that HOCl inhibits the SR Ca2+ pump, resulting in the observed acceleration of Ca2+ efflux from and decline in Ca2+ content of myocytes

  4. Vasomotion dynamics following calcium spiking depend on both cell signalling and limited constriction velocity in rat mesenteric small arteries

    NARCIS (Netherlands)

    VanBavel, Ed; van der Meulen, Esther T.; Spaan, Jos A. E.

    2008-01-01

    Vascular smooth muscle cell contraction depends on intracellular calcium. However, calcium-contraction coupling involves a complex array of intracellular processes. Quantitating the dynamical relation between calcium perturbations and resulting changes in tone may help identifying these processes.

  5. Synthesis of interleukin 6 (interferon-. beta. /sub 2//B cell stimulatory factor 2) in human fibroblasts is triggered by an increase in intracellular cyclic AMP

    Energy Technology Data Exchange (ETDEWEB)

    Zhange, Y.; Lin, J.X.; Vilcek, J.

    1988-05-05

    Interleukin 6 (IL-6; also referred to as interferon-..beta../sub 2/, 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. The authors examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. The results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1.

  6. Synthesis of interleukin 6 (interferon-β2/B cell stimulatory factor 2) in human fibroblasts is triggered by an increase in intracellular cyclic AMP

    International Nuclear Information System (INIS)

    Zhange, Y.; Lin, J.X.; Vilcek, J.

    1988-01-01

    Interleukin 6 (IL-6; also referred to as interferon-β 2 , 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. The authors examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. The results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1

  7. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  8. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata – Tropiduridae strengthen classification in lizard evolution

    Directory of Open Access Journals (Sweden)

    Garcia Célia RS

    2007-08-01

    Full Text Available Abstract Background We have previously reported that a Teiid lizard red blood cells (RBCs such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs, for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

  9. The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells.

    Science.gov (United States)

    Jiménez-Aspee, Felipe; Theoduloz, Cristina; Ávila, Felipe; Thomas-Valdés, Samanta; Mardones, Claudia; von Baer, Dietrich; Schmeda-Hirschmann, Guillermo

    2016-03-01

    The Chilean raspberry Rubus geoides Sm. (Rosaceae) is a native species occurring in the Patagonia. Five R. geoides samples were assessed for phenolic content and composition, antioxidant activity, effect on total reduced glutathione (GSH) synthesis and protective effect against H2O2 and methylglyoxal (MGO)-induced stress in epithelial gastric AGS cells. The HPLC-DAD/ESI-MS profiles allowed the tentative identification of 39 phenolics including flavonol glycosides and tannins. R. geoides presented higher total phenolic and flavonoid content than Rubus idaeus. Two out of the five phenolic enriched R. geoides extracts (PEEs) exhibited better antioxidant activity than R. idaeus in the DPPH, FRAP and TEAC assays. A significant cytoprotective activity was observed when AGS cells were pre-incubated with extracts and subsequently challenged with H2O2 or MGO. Treatment with the PEEs increased the intracellular GSH content. R. geoides fruit extracts may induce the activation of intracellular protection mechanisms against oxidative and dicarbonyl-induced stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. An anaphase calcium signal controls chromosome disjunction in early sea urchin embryos.

    Science.gov (United States)

    Groigno, L; Whitaker, M

    1998-01-23

    A transient increase in intracellular calcium concentration [Ca2+]i occurs throughout the cell as sea urchin embryos enter anaphase of the first cell cycle. The transient just precedes chromatid disjunction and spindle elongation. Microinjection of calcium chelators or heparin, an InsP3 receptor antagonist, blocks chromosome separation. Photorelease of calcium or InsP3 can reverse the block. Nuclear reformation is merely delayed by calcium antagonists at concentrations that block chromatid separation. Thus, the calcium signal triggers the separation of chromatids, while calcium-independent pathways can bring about the alterations in microtubule dynamics and nuclear events associated with anaphase progression. That calcium triggers chromosome disjunction alone is unexpected. It helps explain previous conflicting results and allows the prediction that calcium plays a similar role at anaphase in other cell types.

  11. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  12. An orally active calcium-sensing receptor antagonist that transiently increases plasma concentrations of PTH and stimulates bone formation.

    Science.gov (United States)

    Kumar, Sanjay; Matheny, Christopher J; Hoffman, Sandra J; Marquis, Robert W; Schultz, Maggie; Liang, Xiaoguang; Vasko, Janice A; Stroup, George B; Vaden, Vernal R; Haley, Hyking; Fox, John; DelMar, Eric G; Nemeth, Edward F; Lago, Amparo M; Callahan, James F; Bhatnagar, Pradip; Huffman, William F; Gowen, Maxine; Yi, Bingming; Danoff, Theodore M; Fitzpatrick, Lorraine A

    2010-02-01

    Daily subcutaneous administration of exogenous parathyroid hormone (PTH) promotes bone formation in patients with osteoporosis. Here we describe two novel, short-acting calcium-sensing receptor antagonists (SB-423562 and its orally bioavailable precursor, SB-423557) that elicit transient PTH release from the parathyroid gland in several preclinical species and in humans. In an ovariectomized rat model of bone loss, daily oral administration of SB-423557 promoted bone formation and improved parameters of bone strength at lumbar spine, proximal tibia and midshaft femur. Chronic administration of SB-423557 did not increase parathyroid cell proliferation in rats. In healthy human volunteers, single doses of intravenous SB-423562 and oral SB-423557 elicited transient elevations of endogenous PTH concentrations in a profile similar to that observed with subcutaneously administered PTH. Both agents were well tolerated in humans. Transient increases in serum calcium, an expected effect of increased parathyroid hormone concentrations, were observed post-dose at the higher doses of SB-423557 studied. These data constitute an early proof of principle in humans and provide the basis for further development of this class of compound as a novel, orally administered bone-forming treatment for osteoporosis. (c) 2009 Elsevier Inc. All rights reserved.

  13. Does Increased Expression of the Plasma Membrane Calcium-ATPase Isoform 2 Confer Resistance to Apoptosis on Breast Cancer Cells?

    National Research Council Canada - National Science Library

    VanHouten, Joshua N

    2008-01-01

    The plasma membrane calcium ATPase isoform 2 (PMCA2) is highly expressed on the apical membrane of mammary epithelial cells during lactation, and is the predominant pump responsible for calcium transport into milk...

  14. Distribution of calcium pyroantimonate precipitates in Xenotoca Mauthner cells at normal and increased functional activity.

    Science.gov (United States)

    Moshkov, D A; Santalova, I M

    1995-04-01

    The pyroantimonate method was used for the ultrastructural localization of calcium ions (Ca2+) in Xenotoca Mauthner cells under normal conditions and after prolonged natural stimulation. In normal state, the highest concentration of these ions was observed as compact electron-dense precipitates inside the synaptic cleft exactly at the synaptic active zones. Some amount of dotted precipitates was revealed in the synaptic boutons. In the extracellular space and in the cytoplasm the precipitates are seen mainly as single membrane-bound dots. After prolonged stimulation significant redistribution of the precipitates was observed. They were entirely absent in the presynaptic areas, became diffuse and discontinuous or disappeared completely at the synaptic active zones. On the contrary, in the cytoplasmic organelles (subsynaptic cisternae, vacuoles, smooth reticulum, mitochondria) the precipitates were aggregated into continuous dense clusters inside the membranous compartments or on their surfaces. Also, large amounts of granules, not associated with membranes, were localized inside the cytoplasm directly at the cytoskeletal elements. It is suggested that membrane subsynaptic organelles are the primary structures which sequestrate, accumulate and retain Ca2+. Thus, these elements, together with deeper elements of smooth cytoplasmic reticulum, may control the cytoplasmic activity of Ca2+ and, as a consequence, control many physiologically significant reactions of the neurons.

  15. GABA(A) Increases Calcium in Subventricular Zone Astrocyte-Like Cells Through L- and T-Type Voltage-Gated Calcium Channels

    DEFF Research Database (Denmark)

    Young, Stephanie Z; Platel, Jean-Claude; Nielsen, Jakob V

    2010-01-01

    intracellular Ca(2+) dynamics in SVZ astrocytes. To monitor Ca(2+) activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP) promoter. GABA(A) receptor activation......In the adult neurogenic subventricular zone (SVZ), the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca(2+) levels and tonic GABA(A) receptor activation. However, it is unknown whether, and if so how, GABA(A) receptor activity regulates......-like cells to 75%, suggesting that the majority of SVZ astrocytes express functional VGCCs. SVZ astrocytes also displayed spontaneous Ca(2+) activity, the frequency of which was regulated by tonic GABA(A) receptor activation. These data support a role for ambient GABA in tonically regulating intracellular Ca...

  16. Increases in Intracellular Zinc Enhance Proliferative Signaling as well as Mitochondrial and Endolysosomal Activity in Human Melanocytes.

    Science.gov (United States)

    Rudolf, Emil; Rudolf, Kamil

    2017-01-01

    Zinc (Zn) is an important microelement required by skin cells for a variety of biological processes. The role of Zn in melanocyte proliferation and homeostasis has to date not been investigated. Human dermal melanocytes were isolated from patients and their proliferative activity determined along with both total and labile Zn content. Subsequently, changes in proliferation as well as in Zn content were determined upon exposure of the dermal melanocytes to external Zn. Further in-depth analyses were undertaken aimed at measuring the expression of proliferation-related proteins (determined by immunoblotting and densitometry), as well as changes in mitochondrial biogenesis and membrane potential (assessed by fluorescence-based cellometry) along with endolysosomal activity (determined by spectrofluorimetrically-measured elevation in fluorescence of lysosomal-aimed non-fuorescent substrate). Human skin melanocytes accumulate externally added Zn, a process which dose-dependently enhances their injury or proliferative activity. Enhanced proliferation is accompanied by an increased expression of the proteins AKT3, ERK1/2, c-MYC and CYCD. In addition, Zn-enriched melanocytes exhibit enhanced mitochondrial biogenesis, with individual mitochondria possessing stabilized mitochondrial membrane potential as well as showing elevated ATP and superoxide levels. Moreover, upon external exposure, Zn enters lysosomes/melanosomes, the activity of which is stimulated along with the process of autophagy. The determination of the unique Zn-dependent stimulation of melanocytes and in particular the enhancement of the cells' mitochondrial as well as lysosomal/melanosomal activities may prove important in tracing the sequence of steps in the process of melanomagenesis. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Increases in Intracellular Zinc Enhance Proliferative Signaling as well as Mitochondrial and Endolysosomal Activity in Human Melanocytes

    Directory of Open Access Journals (Sweden)

    Emil Rudolf

    2017-08-01

    Full Text Available Background/Aims: Zinc (Zn is an important microelement required by skin cells for a variety of biological processes. The role of Zn in melanocyte proliferation and homeostasis has to date not been investigated. Methods: Human dermal melanocytes were isolated from patients and their proliferative activity determined along with both total and labile Zn content. Subsequently, changes in proliferation as well as in Zn content were determined upon exposure of the dermal melanocytes to external Zn. Further in-depth analyses were undertaken aimed at measuring the expression of proliferation-related proteins (determined by immunoblotting and densitometry, as well as changes in mitochondrial biogenesis and membrane potential (assessed by fluorescence-based cellometry along with endolysosomal activity (determined by spectrofluorimetrically-measured elevation in fluorescence of lysosomal-aimed non-fuorescent substrate. Results: Human skin melanocytes accumulate externally added Zn, a process which dose-dependently enhances their injury or proliferative activity. Enhanced proliferation is accompanied by an increased expression of the proteins AKT3, ERK1/2, c-MYC and CYCD. In addition, Zn-enriched melanocytes exhibit enhanced mitochondrial biogenesis, with individual mitochondria possessing stabilized mitochondrial membrane potential as well as showing elevated ATP and superoxide levels. Moreover, upon external exposure, Zn enters lysosomes/melanosomes, the activity of which is stimulated along with the process of autophagy. Conclusion: The determination of the unique Zn-dependent stimulation of melanocytes and in particular the enhancement of the cells’ mitochondrial as well as lysosomal/melanosomal activities may prove important in tracing the sequence of steps in the process of melanomagenesis.

  18. Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Domingues

    2017-01-01

    Full Text Available Calcium phosphate cement (CPC that is based on α-tricalcium phosphate (α-TCP is considered desirable for bone tissue engineering because of its relatively rapid degradation properties. However, such cement is relatively weak, restricting its use to areas of low mechanical stress. Wollastonite fibers (WF have been used to improve the mechanical strength of biomaterials. However, the biological properties of WF remain poorly understood. Here, we tested the response of osteoblast-like cells to being cultured on CPC reinforced with 5% of WF (CPC-WF. We found that both types of cement studied achieved an ion balance for calcium and phosphate after 3 days of immersion in culture medium and this allowed subsequent long-term cell culture. CPC-WF increased cell viability and stimulated cell differentiation, compared to nonreinforced CPC. We hypothesize that late silicon release by CPC-WF induces increased cell proliferation and differentiation. Based on our findings, we propose that CPC-WF is a promising material for bone tissue engineering applications.

  19. Increase in cone biomass and terpenophenolics in hops ( Humulus lupulus L.) by treatment with prohexadione-calcium.

    Science.gov (United States)

    Kavalier, Adam R; Pitra, Nicholi J; Koelling, Jared M; Coles, Mark C; Kennelly, Edward J; Matthews, Paul D

    2011-06-22

    Humulus lupulus L. (hop), a specialty crop bred for flavor characteristics of the inflorescence, is an essential ingredient in beer. Hop inflorescences, commonly known as hop cones, contain terpenophenolic compounds, which are important for beer flavoring and of interest in biomedical research. Hop breeders focus their efforts on increasing cone biomass and terpenophenolic content. As an alternative to traditional breeding, hops were treated with prohexadione-calcium (Pro-Ca), a growth inhibitor previously shown to have positive agronomic effects in several crops. Application of Pro-Ca to hop plants during cone maturation induced increases in cone biomass production by 1.5-19.6% and increased terpenophenolic content by 9.1-87.3%; however, some treatments also induced significant decreases in terpenophenolic content. Induced changes in cone biomass production and terpenophenolic accumulation were most dependent on cultivar and the developmental stage at which plants were treated.

  20. Intracellular mediators of potassium-induced aldosterone secretion

    International Nuclear Information System (INIS)

    Ganguly, A.; Chiou, S.; Davis, J.S.

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) in 3 H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium

  1. The platinum (II) complex [Pt(O,O'-acac)(γ-acac)(DMS)] alters the intracellular calcium homeostasis in MCF-7 breast cancer cells.

    Science.gov (United States)

    Muscella, Antonella; Calabriso, Nadia; Vetrugno, Carla; Fanizzi, Francesco Paolo; De Pascali, Sandra Angelica; Storelli, Carlo; Marsigliante, Santo

    2011-01-01

    It was previously demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] exerted toxic effects at high doses, whilst sub-cytotoxic concentrations induced anoikis and decreased cell migration. Aim of this study was to investigate the hypothesis that [Pt(O,O'-acac)(γ-acac)(DMS)] alters the [Ca(2+)](i) and that this is linked to its ability to trigger rapid apoptosis in MCF-7 cells. Thus, cells were treated with [Pt(O,O'-acac)(γ-acac)(DMS)] and its effects on some of the systems regulating Ca(2+) homeostasis were studied, also in cells dealing with the complex changes occurring during the Ca(2+) signalling evoked by extracellular stimuli. [Pt(O,O'-acac)(γ-acac)(DMS)] caused the decrease of PMCA activity (but not SERCA or SPCA) and Ca(2+) membrane permeability. These two opposite effects on [Ca(2+)](i) resulted in its overall increase from 102±12nM to 250±24nM after 15min incubation. The effects of [Pt(O,O'-acac)(γ-acac)(DMS)] were also evident when cells were stimulated with ATP: the changes in Ca(2+) levels caused by purinergic stimulation resulted altered due to decreased PMCA activity and to the closure of Ca(2+) channels opened by purinergic receptor. Conversely, [Pt(O,O'-acac)(γ-acac)(DMS)] did not affect the store-operated Ca(2+) channels opened by thapsigargin or by ATP. [Pt(O,O'-acac)(γ-acac)(DMS)] provoked the activation of PKC-α and the production of ROS that were responsible for the Ca(2+) permeability and PMCA activity decrease, respectively. The overall effect of [Pt(O,O'-acac)(γ-acac)(DMS)] is to increase the [Ca(2+)](i), an effect that is likely to be linked to its ability to trigger rapid apoptosis in MCF-7 cells. These data reinforce the notion that [Pt(O,O'-acac)(γ-acac)(DMS)] would be a promising drug in cancer treatment. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Thimerosal increases the responsiveness of the calcium receptor in human parathyroid and rMTC6-23 cells.

    Science.gov (United States)

    Mihai, R; Lai, T; Schofield, G; Farndon, J R

    1999-01-01

    Parathyroid cells express a plasma membrane calcium receptor (CaR), which is stimulated by a rise in extracellular calcium concentration ([Ca2+]ext). A decreased sensitivity to [Ca2+]ext occurs in adenomatous parathyroid cells in patients with primary hyperparathyroidism, but the underlying functional mechanism is not yet fully understood. This study explored whether CaR responsiveness is influenced by increasing the affinity of IP3 receptors--a major signalling component of other G-protein-coupled receptors. The sulphydryl reagent thimerosal was used to increase the responsiveness of IP3-receptors. Quantitative fluorescence microscopy in Fura-2-loaded cells was used to investigate the effects of thimerosal on the cytoplasmic calcium concentrations ([Ca2+]i) in human parathyroid cells and to compare its effects in a rat medullary thyroid carcinoma cell line (rMTC6-23) also expressing CaR. During incubation in Ca(2+)-free medium, thimerosal 5 microM induced a rapid sustained rise in [Ca2+]i in human parathyroid cells and no further [Ca2+]i increase appeared in response to the CaR agonist Gd3+ (100 microM). Thimerosal 1 microM induced only slow and minimal changes of basal [Ca2+]i and allowed a rapid response to Gd3+ 20 nM (a concentration without effect in control cells). The slope of the thimerosal-induced [Ca2+]i responses was steeper following exposure to CaR agonists. In the presence of 1 mM [Ca2+]ext, thimerosal (0.5 microM) induced a sharp increase in [Ca2+]i to a peak (within 60 s), followed either by return to basal [Ca2+]i or by a plateau of slightly higher amplitude. Similar results were obtained using rMTC6-23 cells. Thimerosal increases the responsiveness to CaR agonists through modulation of the sensitivity of the IP3 receptor in both parathyroid and rMTC6-23 cells.

  3. Effects of the in vitro administered ethanol and lipopolysaccharide toxin on membrane properties, intracellular free calcium and phagocytic function of isolated rat kupffer cells

    Energy Technology Data Exchange (ETDEWEB)

    Victorov, A.; Smith, T.; Abril, E.; Hamlin, E.; Earnest, D. (Univ. of Arizona, Tucson (United States))

    1991-03-11

    Low concentrations of ethanol slightly stimulated phagocytosis of cultured Kupffer cells (KC), producing practically no effect on membrane microviscosity and cytosolic free (Ca{sup 2+}){sub i}. On the contrary, high concentrations of ethanol significantly suppressed phagocytic function, increased fluidity of membrane lipids and caused a sustained rise in (Ca{sup 2}){sub i}; above the resting level of 41-85 nM. Treatment of KC with colchicine and cytochalasin B dramatically destructurized the plasma membrane lipids. Short term preincubation of KC with high doses of alcohol stimulated the disordering effects of both drugs, suggesting direct interaction of ethanol with microtubule and microfilament structures. The authors hypothesize that ethanol impairs phagocytosis of KC by concerted actions on membrane lipid fluidity, cytosolic free Ca{sup 2+} and functioning of cytoskeleton. On the other hand, incubation of KC with low concentrations of lipopolysaccharide (LPS) produced no changes in (Ca{sup 2+}){sub i}; or plasma membrane fluidity but reduced by several fold the fluidizing effect of subsequently added ethanol. They suggested that low doses of LPS, by activating second messengers other than Ca{sup 2+}, alter the functioning of the cytoskeleton and cause reorganization of the plasma membrane thus making KC membranes more resistent to the fluidizing action of ethanol and partially restoring the phagocytic function.

  4. A shell-formation related carbonic anhydrase in Crassostrea gigas modulates intracellular calcium against CO2 exposure: Implication for impacts of ocean acidification on mollusk calcification.

    Science.gov (United States)

    Wang, Xiudan; Wang, Mengqiang; Jia, Zhihao; Song, Xiaorui; Wang, Lingling; Song, Linsheng

    2017-08-01

    Ocean acidification (OA) could decrease the shells and skeletons formation of mollusk by reducing the availability of carbonate ions at calcification sites. Carbonic anhydrases (CAs) convert CO 2 to HCO 3 - and play important roles in biomineralization process from invertebrate to vertebrate. In the present study, a CA (designated as CgCA) was identified and characterized in Pacific oyster C. gigas. The cDNA of CgCA was of 927bp encoding a predicted polypeptide of 308 amino acids with a signal peptide and a CA catalytic function domain. The mRNA transcripts of CgCA were constitutively expressed in all tested tissues with the highest levels in mantle and hemocytes. During the early development period, the mRNA transcripts of CgCA could be detected in all the stages with the highest level in D-veliger larvae. Elevated CO 2 increased the mRNA transcripts of CgCA in muscle, mantle, hepatopancreas, gill and hemocytes significantly (pcalcium and CgCA, implying reduced calcification rate and dissolved shells under OA. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens.

    Science.gov (United States)

    Czyż, Daniel M; Potluri, Lakshmi-Prasad; Jain-Gupta, Neeta; Riley, Sean P; Martinez, Juan J; Steck, Theodore L; Crosson, Sean; Shuman, Howard A; Gabay, Joëlle E

    2014-07-29

    We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. Importance: Although antibiotic treatment is often successful, it is becoming clear that alternatives to conventional pathogen-directed therapy must be developed in the face of increasing antibiotic resistance. Moreover, the costs and timing associated with the development of novel antimicrobials make repurposed FDA-approved drugs attractive host-targeted therapeutics. This paper describes a novel approach of identifying such host-targeted therapeutics against intracellular bacterial pathogens. We identified several FDA-approved drugs that inhibit the growth of intracellular bacteria, thereby implicating host intracellular pathways presumably utilized by bacteria during infection. Copyright © 2014 Czyż et al.

  6. Increase of calcium and reduction of lactose concentration in milk by treatment with kefir grains and eggshell.

    Science.gov (United States)

    Fina, Brenda L; Brun, Lucas R; Rigalli, Alfredo

    2016-01-01

    Dairy products are the main source of calcium (Ca), but the loss of the consumption habit contributes to low consumption in adulthood, which leads to osteoporosis and increased fracture risk. Domestic use of kefir is straightforward and the eggshell is a natural discarded source of Ca. This paper proposes the development of an enriched Ca reduced lactose milk using eggshell and kefir. During the in vitro preparation, the pH, Ca and lactose contents were measured. Ca intestinal absorption of untreated milk and milk with kefir was compared. Finally, human volunteers consumed this dairy product and 24-h urine Ca was measured. Results showed that the beverage has lower lactose and higher Ca than untreated milk and milk with kefir. Intestinal Ca absorption was not different between both milks and an increase in urinary Ca excretion was observed in humans. This study provides a methodology to prepare at home a dairy product that could contribute to improve the Ca intake in adults.

  7. The effect of GlycoPEGylation on the physical stability of human rFVIIa with increasing calcium chloride concentration

    DEFF Research Database (Denmark)

    Plesner, Bitten; Westh, Peter; Hvidt, Søren

    2011-01-01

    FVIIa, whereas the concentration of CaCl(2) has to be raised to 100mM in order to see the same effect on the GlycoPEGylated rFVIIa compounds. The temperature of aggregation of rFVIIa, T(agg), increased as the CaCl(2) concentration increased from 35 mM to 100 mM, while T(agg) for the GlycoPEGylated r......The effects of calcium chloride on the structural, kinetic and thermal stability of recombinant human factor VIIa (rFVIIa) were investigated using rFVIIa and two GlycoPEGylated recombinant human FVIIa derivatives, a linear 10 kDa PEG and a branched 40 kDa PEG, respectively. Three different CaCl(2...

  8. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton

    Science.gov (United States)

    Calcium absorption and whole-body bone mineral content are greater in young adolescents who receive 8 g/d of Synergy, a mixture of inulin-type fructans (ITF), compared with those who received a maltodextrin control. Not all adolescents responded to this intervention, however. We evaluated 32 respond...

  9. Aspirin rectifies calcium homeostasis, decreases reactive oxygen species, and increases NO production in high glucose-exposed human endothelial cells.

    Science.gov (United States)

    Dragomir, Elena; Manduteanu, Ileana; Voinea, Manuela; Costache, Gabi; Manea, Adrian; Simionescu, Maya

    2004-01-01

    Aspirin's pharmacological action is mainly related to its property to inhibit prostaglandin synthesis; apart from this, aspirin has some beneficial side effects that are not completely understood, yet. Since aspirin possesses antioxidant properties and antioxidants prevent high d-glucose enhanced endothelial [Ca(2+)](i), we questioned whether aspirin also has an effect on this process as well as on high-glucose-impaired nitric oxide (NO) production. For these purposes, human endothelial cells (HECs) were cultured in normal concentration (5 mM) glucose (NG) or high concentration (33 mM) glucose (HG) and after confluence, exposed for 48 h to HG in the absence or presence of 1 mM aspirin. Then, the [Ca(2+)](i) was measured fluorimetrically using fura-2, NO production was determined by Griess reaction, superoxide anions (O(2)) was evaluated by ferricytochrome c reduction, the intracellular reactive oxygen species (ROS) were evaluated by fluorimetry, and the levels of protein kinase C (PKC) by Western blot. The results showed that HECs exposed to HG displayed: (i) increased [Ca(2+)](i); (ii) enhanced O(2) release; (iii) augmented level of intracellular ROS; and (iv) PKC translocation to the membrane fraction. By comparison, exposure to cells grown in HG to 1 mM aspirin resulted in: (i) a reduction of histamine stimulated [Ca(2+)](i) release to control level and of [Ca(2+)](i) entry by 30%; (ii) a twofold increase in NO production; (iii) a decrease of O(2)(-) accumulation in both culture medium and cell homogenate (by 60.4% and 70%, respectively); (iv) a decline of ROS to the control levels; and (v) a reduction of PKC translocation to the control levels. These data indicate that aspirin corrects the high-glucose-induced changes in cellular Ca(2+) homeostasis and NO production, via a mechanism involving the reduction of the O(2)(-) levels possible by acting on PKC-induced NADPH activity.

  10. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting.

    Directory of Open Access Journals (Sweden)

    Manoocher Soleimani

    Full Text Available Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2 and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2 in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of

  11. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels.

    Science.gov (United States)

    Ciapa, B; Pesando, D; Wilding, M; Whitaker, M

    1994-04-28

    Transient changes in intracellular calcium ([Ca2+]i) have been shown to punctuate the cell cycle in various types of cells in culture and in early embryos. The [Ca2+]i transients are correlated with cell-cycle events: pronuclear migration, nuclear envelope breakdown, the metaphase-anaphase transition of mitosis, and cytokinesis. Mitotic events can be induced by injecting calcium and prevented by injecting calcium chelators into the sea urchin embryo. Cell-cycle calcium transients differ from the transients linked to membrane signal transduction pathways: they are generated by an endogenous mechanism, not by plasma membrane receptor complexes, and their trigger is unknown. We report here that the phosphoinositide messenger system oscillates during the early embryonic cell cycle in the sea urchin, leading to cyclic increases in inositol trisphosphate that trigger cell-cycle [Ca2+]i transients and mitosis by calcium release from intracellular stores.

  12. The AMP-Dependent Protein Kinase (AMPK Activator A-769662 Causes Arterial Relaxation by Reducing Cytosolic Free Calcium Independently of an Increase in AMPK Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yi Huang

    2017-10-01

    Full Text Available Although recent studies reveal that activation of the metabolic and Ca2+ sensor AMPK strongly inhibits smooth muscle contraction, there is a paucity of information about the potential linkage between pharmacological AMPK activation and vascular smooth muscle (VSM contraction regulation. Our aim was to test the general hypothesis that the allosteric AMPK activator A-769662 causes VSM relaxation via inhibition of contractile protein activation, and to specifically determine which activation mechanism(s is(are affected. The ability of A-769662 to cause endothelium-independent relaxation of contractions induced by several contractile stimuli was examined in large and small musculocutaneous and visceral rabbit arteries. For comparison, the structurally dissimilar AMPK activators MET, SIM, and BBR were assessed. A-769662 displayed artery- and agonist-dependent differential inhibitory activities that depended on artery size and location. A-769662 did not increase AMPK-pT172 levels, but did increase phosphorylation of the downstream AMPK substrate, acetyl-CoA carboxylase (ACC. A-769662 did not inhibit basal phosphorylation levels of several contractile protein regulatory proteins, and did not alter the activation state of rhoA. A-769662 did not inhibit Ca2+- and GTPγS-induced contractions in β-escin-permeabilized muscle, suggesting that A-769662 must act by inhibiting Ca2+ signaling. In intact artery, A-769662 immediately reduced basal intracellular free calcium ([Ca2+]i, inhibited a stimulus-induced increase in [Ca2+]i, and inhibited a cyclopiazonic acid (CPA-induced contraction. MET increased AMPK-pT172, and caused neither inhibition of contraction nor inhibition of [Ca2+]i. Together, these data support the hypothesis that the differential inhibition of stimulus-induced arterial contractions by A-769662 was due to selective inhibition of a Ca2+ mobilization pathway, possibly involving CPA-dependent Ca2+ entry via an AMPK-independent pathway. That

  13. Reduction of exchangeable calcium and magnesium in soil with increasing pH

    Directory of Open Access Journals (Sweden)

    Miyazawa Mário

    2001-01-01

    Full Text Available A laboratory study was conducted with soil samples and synthetic solutions to investigate possible mechanisms related with reduction in KCl exchangeable Ca and Mg with increasing pH. Increasing soil pH over 5.3 with CaCO3 added to the soil and with NaOH solution added to soil/KCl suspension increased adsorptions of Ca and Mg. The reduction of Mg was greater than Ca and was related to the concentration of soil exchangeable Al. The decreases of soluble Ca and Mg following addition of Al in synthetic solution were at pH > 7.5. The isomorphic coprecipitation reaction with Al compounds may be the most possible mechanism responsible for the decrease of exchangeable Ca and Mg with increasing pH. Possible chemical reactions are presented.

  14. Effects of Calcium Ion, Calpains, and Calcium Channel Blockers on Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Mitsuru Nakazawa

    2011-01-01

    Full Text Available Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP. These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.

  15. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    Science.gov (United States)

    Tokmakov, Alexander A.; Stefanov, Vasily E.; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2014-01-01

    Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation. PMID:25322156

  16. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  17. Calcium regulation of EGF-induced ERK5 activation: role of Lad1-MEKK2 interaction.

    Directory of Open Access Journals (Sweden)

    Zhong Yao

    Full Text Available The ERK5 cascade is a MAPK pathway that transmits both mitogenic and stress signals, yet its mechanism of activation is not fully understood. Using intracellular calcium modifiers, we found that ERK5 activation by EGF is inhibited both by the depletion and elevation of intracellular calcium levels. This calcium effect was found to occur upstream of MEKK2, which is the MAP3K of the ERK5 cascade. Co-immunoprecipitation revealed that EGF increases MEKK2 binding to the adaptor protein Lad1, and this interaction was reduced by the intracellular calcium modifiers, indicating that a proper calcium concentration is required for the interactions and transmission of EGF signals to ERK5. In vitro binding assays revealed that the proper calcium concentration is required for a direct binding of MEKK2 to Lad1. The binding of these proteins is not affected by c-Src-mediated phosphorylation on Lad1, but slightly affects the Tyr phosphorylation of MEKK2, suggesting that the interaction with Lad1 is necessary for full Tyr phosphorylation of MEKK2. In addition, we found that changes in calcium levels affect the EGF-induced nuclear translocation of MEKK2 and thereby its effect on the nuclear ERK5 activity. Taken together, these findings suggest that calcium is required for EGF-induced ERK5 activation, and this effect is probably mediated by securing proper interaction of MEKK2 with the upstream adaptor protein Lad1.

  18. Ocean Acidification Causes Increased Calcium Carbonate Turnover during Larval Shell Formation

    Science.gov (United States)

    Frieder, C.; Pan, F.; Applebaum, S.; Manahan, D. T.

    2016-02-01

    Mollusca is a major taxon for studies of the evolution and mechanisms of calcification. Under current and future ocean change scenarios, decreases in shell size have been observed in many molluscan species during early development. The mechanistic basis for these decreases are of significant interest. In this study, Pacific oyster larvae (Crassostrea gigas) reared at aragonite undersaturation (Ω > 1). Coupling radioisotope tracer assays with mineral mass measurements allowed calculation of calcification budgets for first shell formation in veliger stage larvae. Three primary mechanisms (in order of increasing effect) contributed to the change in shell mass at undersaturation: delayed onset of calcification, increased dissolution rates, and decreased net calcification rates. The observation of dissolution indicates turnover of the newly formed shell, and physicochemical constraints of undersaturation provide a mechanistic basis for decreased calcification.

  19. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 the intracellular dialysis of renin (100nM disrupts chemical communication-an effect enhanced by simultaneous administration of angiotensinogen (100nM; 3 enalaprilat (10-9M administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; 4 aliskiren (10-8M inhibited the effect of renin on chemical communication;5 the possible role of intracellular renin independently of angiotensin II (Ang II was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; 6 the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed;7 the present results indicate that intracellular renin due to internalization or in situ synthesis, causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  20. Calcium phosphate cement augmentation after volar locking plating of distal radius fracture significantly increases stability.

    Science.gov (United States)

    Kainz, Hans; Dall'Ara, Enrico; Antoni, Anna; Redl, Heinz; Zysset, Philippe; Weninger, Patrick

    2014-08-01

    Distal radius fractures represent the most common fractures in adults. Volar locking plating to correct unstable fractures has become increasingly popular. Although reasonable primary reduction is possible in most cases, maintenance of reduction until the fracture is healed is often problematic in osteoporotic bone. To our knowledge, no biomechanical studies have compared the effect of enhancement with biomaterial on two different volar fixed-angle plates. Human fresh-frozen cadaver pairs of radii were used to simulate an AO/OTA 23-A3 fracture. In a total of four groups (n = 7 for each group), two volar fixed-angle plates (Aptus 2.5 mm locking fracture plate, Medartis, Switzerland and VA-LCP two-column distal radius plate 2.4, volar, Synthes, Switzerland) with or without an additional injection of a biomaterial (Hydroset Injectable HA Bone Substitute, Stryker, Switzerland) into the dorsal comminution zone were used to fix the distal metaphyseal fragment. Each specimen was tested load-controlled under cyclic loading with a servo-hydraulic material testing machine. Displacement, stiffness, dissipated work and failure mode were recorded. Improved mechanical properties (decreased displacement, increased stiffness, decreased dissipated work) were found in both plates if the biomaterial was additionally injected. Improvement of mechanical parameters after biomaterial injection was more evident in the Synthes plate compared to the Aptus plate. Pushing out of the screws was noticed as a failure mode only in samples lacking supplementary biomaterial. Injection of a biomaterial into the dorsal comminution zone increases stability after volar locking plating of distal radius fractures in vitro.

  1. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    -saccharate becomes spontaneously supersaturated with both d-gluconate and d-saccharate calcium salts, from which only calcium d-saccharate slowly precipitates. Calcium d-saccharate is suggested to act as a stabilizer of supersaturated solutions of other calcium hydroxycarboxylates with endothermic complex formation......Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc...

  2. Extracellular ATP, as an energy and phosphorylating molecule, induces different types of drug resistances in cancer cells through ATP internalization and intracellular ATP level increase.

    Science.gov (United States)

    Wang, Xuan; Li, Yunsheng; Qian, Yanrong; Cao, Yanyang; Shriwas, Pratik; Zhang, Haiyun; Chen, Xiaozhuo

    2017-10-20

    Cancer cells are able to uptake extracellular ATP (eATP) via macropinocytosis to elevate intracellular ATP (iATP) levels, enhancing their survival in drug treatment. However, the involved drug resistance mechanisms are unknown. Here we investigated the roles of eATP as either an energy or a phosphorylating molecule in general drug resistance mediated by ATP internalization and iATP elevation. We report that eATP increased iATP levels and promoted drug resistance to various tyrosine kinase inhibitors (TKIs) and chemo-drugs in human cancer cell lines of five cancer types. In A549 lung cancer cells, the resistance was downregulated by macropinocytosis inhibition or siRNA knockdown of PAK1, an essential macropinocytosis enzyme. The elevated iATP upregulated the efflux activity of ABC transporters in A549 and SK-Hep-1 cells as well as phosphorylation of PDGFRα and proteins in the PDGFR-mediated Akt-mTOR and Raf-MEK signaling pathways in A549 cells. Similar phosphorylation upregulations were found in A549 tumors. These results demonstrate that eATP induces different types of drug resistance by eATP internalization and iATP elevation, implicating the ATP-rich tumor microenvironment in cancer drug resistance, expanding our understanding of the roles of eATP in the Warburg effect and offering new anticancer drug resistance targets.

  3. Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults [corrected].

    Science.gov (United States)

    Lemann, J; Pleuss, J A; Gray, R W; Hoffmann, R G

    1991-05-01

    This study was undertaken to evaluate the effects of dietary K intake, independent of whether the accompanying anion is Cl- or HCO3-, on urinary Ca excretion in healthy adults. The effects of KCl, KHCO3, NaCl and NaHCO3 supplements, 90 mmol/day for four days, were compared in ten subjects fed normal constant diets. Using synthetic diets, the effects of dietary KCl-deprivation for five days followed by recovery were assessed in four subjects and of KHCO3-deprivation for five days followed by recovery were assessed in four subjects. On the fourth day of salt administration, daily urinary Ca excretion and fasting UCa V/GFR were lower during the administration of KCl than during NaCl supplements (delta = -1.11 +/- 0.28 SEM mmol/day; P less than 0.005 and -0.0077 +/- 0.0022 mmol/liter GFR; P less than 0.01), and lower during KHCO3 than during control (-1.26 +/- 0.29 mmol/day; P less than 0.005 and -0.0069 +/- 0.0019 mmol/liter GFR; P = 0.005). Both dietary KCl and KHCO3 deprivation (mean reduction in dietary K intake -67 +/- 8 mmol/day) were accompanied by an increase in daily urinary Ca excretion and fasting UCaV/GFR that averaged on the fifth day +1.31 +/- 0.25 mmol/day (P less than 0.005) and +0.0069 +/- 0.0012 mmol/liter GFR (P less than 0.005) above control. Both daily urinary Ca excretion and fasting UCaV/GFR returned toward or to control at the end of recovery. These observations indicate that: 1) KHCO3 decreases fasting and 24-hour urinary Ca excretion; 2) KCl nor NaHCO3, unlike NaCl, do not increase fasting or 24-hour Ca excretion and 3) K deprivation increases both fasting and 24-hour urinary Ca excretion whether the accompanying anion is Cl- or HCO3-. The mechanisms for this effect of K may be mediated by: 1) alterations in ECF volume, since transient increases in urinary Na and Cl excretion and weight loss accompanied KCl or KHCO3 administration, while persistent reductions in urinary Na and Cl excretion and a trend for weight gain accompanied K deprivation

  4. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes

    Science.gov (United States)

    O'Donnell, John C.; Jackson, Joshua G.

    2016-01-01

    Recently, mitochondria have been localized to astrocytic processes where they shape Ca2+ signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca2+ channel blocker), two inhibitors of reversed Na+/Ca2+ exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca2+ indicator Lck-GCaMP-6S, we observed two types of Ca2+ signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by ∼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca2+ through reversed Na+/Ca2+ exchange triggers mitochondrial loss and dramatic increases in Ca2+ signaling in astrocytic processes. SIGNIFICANCE STATEMENT Astrocytes, the most abundant cell type in the

  5. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  6. Potential role of sodium-proton exchangers in the low concentration arsenic trioxide-increased intracellular pH and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Carmen Aravena

    Full Text Available Arsenic main inorganic compound is arsenic trioxide (ATO presented in solution mainly as arsenite. ATO increases intracellular pH (pHi, cell proliferation and tumor growth. Sodium-proton exchangers (NHEs modulate the pHi, with NHE1 playing significant roles. Whether ATO-increased cell proliferation results from altered NHEs expression and activity is unknown. We hypothesize that ATO increases cell proliferation by altering pHi due to increased NHEs-like transport activity. Madin-Darby canine kidney (MDCK cells grown in 5 mmol/L D-glucose-containing DMEM were exposed to ATO (0.05, 0.5 or 5 µmol/L, 0-48 hours in the absence or presence of 5-N,N-hexamethylene amiloride (HMA, 5-100 µmol/L, NHEs inhibitor, PD-98059 (30 µmol/L, MAPK1/2 inhibitor, Gö6976 (10 µmol/L, PKCα, βI and μ inhibitor, or Schering 28080 (10 µmol/L, H(+/K(+ATPase inhibitor plus concanamycin (0.1 µmol/L, V type ATPases inhibitor. Incorporation of [(3H]thymidine was used to estimate cell proliferation, and counting cells with a hemocytometer to determine the cell number. The pHi was measured by fluorometry in 2,7-bicarboxyethyl-5,6-carboxyfluorescein loaded cells. The Na(+-dependent HMA-sensitive NHEs-like mediated proton transport kinetics, NHE1 protein abundance in the total, cytoplasm and plasma membrane protein fractions, and phosphorylated and total p42/44 mitogen-activated protein kinases (p42/44(mapk were also determined. Lowest ATO (0.05 µmol/L, ~0.01 ppm used in this study increased cell proliferation, pHi, NHEs-like transport and plasma membrane NHE1 protein abundance, effects blocked by HMA, PD-98059 or Gö6976. Cell-buffering capacity did not change by ATO. The results show that a low ATO concentration increases MDCK cells proliferation by NHEs (probably NHE1-like transport dependent-increased pHi requiring p42/44(mapk and PKCα, βI and/or μ activity. This finding could be crucial in diseases where uncontrolled cell growth occurs, such as tumor growth, and

  7. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  8. Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells.

    Directory of Open Access Journals (Sweden)

    Nurdan Ozkucur

    Full Text Available BACKGROUND: Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10-15 V/cm and weak (< or = 5 V/cm dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs are involved in dcEF-induced intracellular calcium elevation. CONCLUSION/SIGNIFICANCE: Taken together, these data form a time scale of the morphological and physiological

  9. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating.

    Science.gov (United States)

    Klymov, Alexey; Song, Jiankang; Cai, Xinjie; Te Riet, Joost; Leeuwenburgh, Sander; Jansen, John A; Walboomers, X Frank

    2016-02-01

    The current work evaluated the influence of nanoscale surface-topographies in combination with a calcium phosphate (CaP) coating on acellular and cellular surface mineralization. Four groups of substrates were produced, including smooth, grooved (940nm pitch, 430nm groove width, 185nm depth), smooth coated, and grooved coated. The substrates were characterized by scanning/transmission electron microscopy and atomic force microscopy. Osteoblast-like MC3T3 cells were cultured on the substrates for a period up to 35days under osteogenic conditions. Differentiation was observed by alkaline phosphatase assay and PCR of collagen I (COLI), osteopontin (OPN), osteocalcin (OC), bone-morphogenic protein 2 (BMP2), and bone sialoprotein (BSP). Mineralization was quantified by a calcium assay and Alizarin Red staining. In addition, acellular mineralization was determined after incubation of substrates in just cell culture medium without cells. Results showed that a reproducible nano-metric (∼50nm) CaP-layer could be applied on the substrates, without losing the integrity of the topographical features. While no relevant differences were found for cell viability, cells on smooth surfaces proliferated for a longer period than cells on grooved substrates. In addition, differentiation was affected by topographies, as indicated by an increased expression of OC, OPN and ALP activity. Deposition of a CaP coating significantly increased the acellular mineralization of smooth as well grooved substrate-surfaces. However, this mineralizing effect was strongly reduced in the presence of cells. In the cell seeded situation, mineralization was significantly increased by the substrate topography, while only a minor additive effect of the coating was observed. In conclusion, the model presented herein can be exploited for experimental evaluation of cell-surface interaction processes and optimization of bone-anchoring capability of implants. The model showed that substrates modified with Ca

  10. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  11. Small increases in dietary calcium above normal requirements exacerbate magnesium deficiency in rats fed a low magnesium diet.

    Science.gov (United States)

    Bertinato, Jesse; Lavergne, Christopher; Plouffe, Louise J; El Niaj, Hiba Abou

    2014-01-01

    In North America, the calcium (Ca):magnesium (Mg) intake ratio has increased over the last several decades raising concerns about possible adverse effects of Ca intakes on Mg status. The primary objective of this study was to investigate whether small decreases or increases in dietary Ca from normal requirements worsen Mg status in rats fed a low Mg diet. Weanling male Sprague-Dawley rats were fed 1 of 8 diets for 6 weeks. The 7 test diets were supplemented with low Mg (0.18 g/kg diet) and either 1 (1Ca), 3 (3Ca), 5 (5Ca), 7.5 (7.5Ca), 10 (10Ca), 15 (15Ca) or 20 (20Ca) g Ca/kg diet. The control diet was supplemented with normal Mg (0.5 g/kg) and Ca (5 g/kg). Rats fed higher Ca gained less weight and had lower fat mass and energy efficiency. Compared to rats fed normal Ca (5Ca), Mg concentrations in serum and femur were lower in rats fed the higher Ca diets. Haemoglobin and haematocrit were also lower in rats fed the 15Ca and 20Ca diets. Rats fed the 10Ca, 15Ca and 20Ca diets had higher urine Ca compared to rats fed the 5Ca diet. Increase in urine Ca was associated with a rise in urine Mg. The higher Ca diets increased the Ca:Mg molar ratio in serum, femur, heart and kidney. These results suggest that small increases in dietary Ca exacerbate Mg deficiency in rats fed an inadequate Mg diet by reducing intestinal Mg absorption and also by impairing renal Mg reabsorption at higher Ca intakes.

  12. High vitamin D and calcium intakes increase bone mineral (Ca and P) content in high-fat diet-induced obese mice.

    Science.gov (United States)

    Song, Qingming; Sergeev, Igor N

    2015-02-01

    Vitamin D and calcium are essential for bone formation, mineralization, and remodeling. Recent studies demonstrated that an increased body mass can be detrimental to bone health. However, whether an increase in dietary vitamin D and calcium intakes in obesity is beneficial to bone health has not been established. The aim of this study was to examine the effects of increased vitamin D and calcium intakes, alone or in combination, on bone status in a high-fat diet-induced obesity (DIO) mouse model. We hypothesized that DIO in growing mice affects bone mineral status and that high vitamin D and calcium intakes will promote mineralization of the growing bone in obesity via Ca(2+) regulatory hormones, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH). Male mice were fed high vitamin D3 (10 000 IU/kg), high calcium (1.2%), or high vitamin D3 plus high-calcium diets containing 60% energy as fat for 10 weeks. Bone weight, specific gravity, mineral (Ca and P), and collagen (hydroxyproline) content were measured in the femur and the tibia. Regulators of Ca(2+) metabolism and markers of bone status (PTH, 25-hydroxyvitamin D [25(OH)D], 1,25(OH)2D3, and osteocalcin) were measured in blood plasma. Diet-induced obese mice exhibited lower bone Ca and P content and relative bone weight compared with the normal-fat control mice, whereas collagen (hydroxyproline) content was not different between the two groups. High vitamin D3 and calcium intakes significantly increased bone Ca and P content and relative bone weight in DIO mice, which was accompanied by an increase in 1,25(OH)2D3 and a decrease in PTH and osteocalcin concentrations in blood. The findings obtained indicate that increased vitamin D and calcium intakes are effective in increasing mineral (Ca and P) content in the growing bone of obese mice and that the hormonal mechanism of this effect may involve the vitamin D-PTH axis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Intracellular co-localization of SPLUNC1 protein with nanobacteria in nasopharyngeal carcinoma epithelia HNE1 cells depended on the bactericidal permeability increasing protein domain.

    Science.gov (United States)

    Zhou, Hou-De; Li, Gui-Yuan; Yang, Yi-Xin; Li, Xiao-Ling; Sheng, Shou-Rong; Zhang, Wen-Ling; Zhao, Jin

    2006-04-01

    Epithelial surfaces constitute natural immunobarriers against environmental threats. These barriers are brimming with fluids that bind, transport, cleave or degrade bacterial cells and their endotoxic by-products. Saliva and the airway surface-lining fluid (ASL) comprise the important fluid constituents. Short palate, lung and nasal epithelium clone 1 (SPLUNC1) is a potential host defensive protein that is secreted from the submucosal gland to the saliva and nasal lavage fluid. However, its antimicrobial spectrum and antimicrobial mechanism is not clear. Through green fluorescence protein (GFP) mediated subcellular localization experiments in nasopharyngeal carcinoma (NPC) HNE1 cell line, we determined that the intracellular GFP-tagged SPLUNC1 protein binds to a miniscule microorganisms, approximately 50-400nm in size, after the bactericidal permeability increasing protein (BPI) domain was deleted, GFP-tagged truncated SPLUNC1 protein lost its function of binding to the miniscule microorganisms. We verified that these microorganisms are nanobacteria (NB) with a negative staining using transmitted electronic microscope (TEM) and immunofluorescent analysis using an NB-specific antibody. We isolated and cultured the NB from the cultured nasopharyngeal carcinoma epithelia HNE1 cell supernatant. We found that the NB did not absorb the Hoechst stain, even when we extended the staining time to 35min. However, with the time extension the larger sized NB (larger than 300nm) did stain positively. From the biopsy specimen of NPC, we also detected the NB, which can lead to the swelling of mitochondria in the infected host cells. We hypothesize that SPLUNC1 and NB co-localization is due to the GFP-tagged SPLUNC1 protein binding to the lipopolysaccharide (LPS) of the Gram-negative NB, which can play an important role in the host defense of nasopharyngeal epithelium. This research sheds new light on the mechanism of SPLUNC1 involvement in the host upper respiratory tract defense

  14. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the ...

  15. Modularized study of human calcium signalling pathway

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    The idea is used here to break human calcium signalling pathway into simple entities known as ... [Nayak L and De R K 2007 Modularized study of human calcium signalling pathway; J. Biosci. 32 1009–1017] http://www.ias.ac.in/ ..... cellular physiology of intracellular calcium stores; Physiol. Rev. 74 595–636. Bertram R ...

  16. Action of serotonin antagonists on cytoplasmic calcium levels in early embryos of sea urchin Lytechinus pictus.

    Science.gov (United States)

    Shmukler, Y B; Buznikov, G A; Whitaker, M J

    1999-03-01

    Possible interaction of the serotonergic system with intracellular calcium mechanisms was investigated using techniques of ratio imaging measurement of intracellular Ca2+ and confocal microscopy in cleaving embryos of sea urchin Lytechinus pictus. Some serotonin antagonists specifically increase free intracellular Ca2+ and evoke transient regression of the first cleavage furrow, suggesting possible linkage of serotonergic and calcium mechanisms in the regulation of cellular events during cleavage divisions. These effects were more pronounced in the experiments with hydrophilic 5-HT-antagonists, quarternary ammonium salts that do not penetrate the cell membrane. Thus, it appears that 5-HT-receptors which mediate these effects are localised on the cell membrane, whereas previously studied receptors mediating the cytostatic action of lipophilic 5-HT-antagonists are localised intracellularly.

  17. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance.

    Science.gov (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin

    2013-08-01

    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  18. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    Science.gov (United States)

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Porous calcium carbonate as a carrier material to increase the dissolution rate of poorly soluble flavouring compounds.

    Science.gov (United States)

    Lundin Johnson, Maria; Noreland, David; Gane, Patrick; Schoelkopf, Joachim; Ridgway, Cathy; Millqvist Fureby, Anna

    2017-04-19

    Two different food grade functionalised porous calcium carbonates (FCC), with different pore size and pore size distributions, were characterised and used as carrier materials to increase the dissolution rate of poorly soluble flavouring compounds in aqueous solution. The loading level was varied between 1.3% by weight (wt%) and 35 wt%, where the upper limit of 35 wt% was the total maximum loading capacity of flavouring compound in FCC based on the fraction of the total weight of FCC plus flavouring compound. Flavouring compounds (l-carvone, vanillin, and curcumin) were selected based on their difference in hydrophilicity and capacity to crystallise. Release kinetic studies revealed that all flavouring compounds showed an accelerated release when loaded in FCC compared to dissolution of the flavouring compound itself in aqueous medium. The amorphous state and/or surface enlargement of the flavouring compound inside or on FCC explains the faster release. The flavouring compounds capable of crystallising (vanillin and curcumin) were almost exclusively amorphous within the porous FCC material as determined by X-ray powder diffraction one week after loading and after storing the loaded FCC material for up to 9 months at room temperature. A small amount of crystalline vanillin and curcumin was detected in the FCC material with large pores and high flavouring compound loading (≥30 wt%). Additionally, two different loading strategies were evaluated, loading by dissolving the flavouring compound in acetone or loading by a hot melt method. Porosimetry data showed that the melt method was more efficient in filling the smallest pores (<100 nm). The main factor influencing the release rate appears to be the amorphous state of the flavouring compound and the increase in exposed surface area. The confinement in small pores prevents crystallisation of the flavouring compounds during storage, providing a stable amorphous form retaining high release rate also after storage.

  20. Soluble Corn Fiber Increases Calcium Absorption Associated with Shifts in the Gut Microbiome: A Randomized Dose-Response Trial in Free-Living Pubertal Females.

    Science.gov (United States)

    Whisner, Corrie M; Martin, Berdine R; Nakatsu, Cindy H; Story, Jon A; MacDonald-Clarke, Claire J; McCabe, Linda D; McCabe, George P; Weaver, Connie M

    2016-07-01

    Soluble corn fiber (SCF; 12 g fiber/d) is shown to increase calcium absorption efficiency, associated with shifts in the gut microbiota in adolescent males and females who participated in a controlled feeding study. We evaluated the dose response of 0, 10, and 20 g fiber/d delivered by PROMITOR SCF 85 (85% fiber) on calcium absorption, biochemical bone properties, and the fecal microbiome in free-living adolescents. Healthy adolescent females (n = 28; aged 11-14 y) randomly assigned into a 3-phase, double-blind, crossover study consumed SCF for 4 wk at each dose (0, 10, and 20 g fiber/d from SCF) alongside their habitual diet and were followed by 3-d clinical visits and 3-wk washout periods. Stable isotope ((44)Ca and (43)Ca) enrichment in pooled urine was measured by inductively coupled plasma mass spectrometry. Fecal microbial community composition was assessed by high-throughput sequencing (Illumina) of polymerase chain reaction-amplified 16S rRNA genes. Mixed model ANOVA and Friedman analysis were used to determine effects of SCF on calcium absorption and to compare mean microbial proportions, respectively. Calcium absorption increased significantly with 10 (13.3% ± 5.3%; P = 0.042) and 20 g fiber/d (12.9% ± 3.6%; P = 0.026) from SCF relative to control. Significant differences in fecal microbial community diversity were found after consuming SCF (operational taxonomic unit measures of 601.4 ± 83.5, 634.5 ± 83.8, and 649.6 ± 75.5 for 0, 10, and 20 g fiber/d, respectively; P fiber/d from SCF, respectively; P < 0.05). Increases in calcium absorption positively correlated with increases in Clostridium (r = 0.44, P = 0.023) and unclassified Clostridiaceae (r = 0.40, P = 0.040). SCF, a nondigestible carbohydrate, increased calcium absorption in free-living adolescent females. Two groups of bacteria may be involved, one directly fermenting SCF and the second fermenting SCF metabolites further, thereby promoting increased calcium absorption. This trial was

  1. Calcium signaling in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dreses-Werringloer Ute

    2009-05-01

    Full Text Available Abstract Calcium is a key signaling ion involved in many different intracellular and extracellular processes ranging from synaptic activity to cell-cell communication and adhesion. The exact definition at the molecular level of the versatility of this ion has made overwhelming progress in the past several years and has been extensively reviewed. In the brain, calcium is fundamental in the control of synaptic activity and memory formation, a process that leads to the activation of specific calcium-dependent signal transduction pathways and implicates key protein effectors, such as CaMKs, MAPK/ERKs, and CREB. Properly controlled homeostasis of calcium signaling not only supports normal brain physiology but also maintains neuronal integrity and long-term cell survival. Emerging knowledge indicates that calcium homeostasis is not only critical for cell physiology and health, but also, when deregulated, can lead to neurodegeneration via complex and diverse mechanisms involved in selective neuronal impairments and death. The identification of several modulators of calcium homeostasis, such as presenilins and CALHM1, as potential factors involved in the pathogenesis of Alzheimer's disease, provides strong support for a role of calcium in neurodegeneration. These observations represent an important step towards understanding the molecular mechanisms of calcium signaling disturbances observed in different brain diseases such as Alzheimer's, Parkinson's, and Huntington's diseases.

  2. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated...... into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...

  3. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    Science.gov (United States)

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-05

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Amino Acid Medical Foods Provide a High Dietary Acid Load and Increase Urinary Excretion of Renal Net Acid, Calcium, and Magnesium Compared with Glycomacropeptide Medical Foods in Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Bridget M. Stroup

    2017-01-01

    Full Text Available Background. Skeletal fragility is a complication of phenylketonuria (PKU. A diet containing amino acids compared with glycomacropeptide reduces bone size and strength in mice. Objective. We tested the hypothesis that amino acid medical foods (AA-MF provide a high dietary acid load, subsequently increasing urinary excretion of renal net acid, calcium, and magnesium, compared to glycomacropeptide medical foods (GMP-MF. Design. In a crossover design, 8 participants with PKU (16–35 y provided food records and 24-hr urine samples after consuming a low-Phe diet in combination with AA-MF and GMP-MF for 1–3 wks. We calculated potential renal acid load (PRAL of AA-MF and GMP-MF and determined bone mineral density (BMD measurements using dual X-ray absorptiometry. Results. AA-MF provided 1.5–2.5-fold higher PRAL and resulted in 3-fold greater renal net acid excretion compared to GMP-MF (p=0.002. Dietary protein, calcium, and magnesium intake were similar. GMP-MF significantly reduced urinary excretion of calcium by 40% (p=0.012 and magnesium by 30% (p=0.029. Two participants had low BMD-for-age and trabecular bone scores, indicating microarchitectural degradation. Urinary calcium with AA-MF negatively correlated with L1–L4 BMD. Conclusion. Compared to GMP-MF, AA-MF increase dietary acid load, subsequently increasing urinary calcium and magnesium excretion, and likely contributing to skeletal fragility in PKU. The trial was registered at clinicaltrials.gov as NCT01428258.

  5. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  6. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes.

    Science.gov (United States)

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2014-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers-which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal-has hitherto been technically impossible. With the aim of quantifying both Ca(2+) currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 pA and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 μM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  7. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A histochemical and X-ray microanalysis study of calcium changes in insect flight muscle degeneration in Solenopsis, the queen fire ant

    International Nuclear Information System (INIS)

    Jones, R.G.; Davis, W.L.; Vinson, S.B.

    1982-01-01

    Potassium pyroantimonate histochemistry, coupled with ethyleneglycoltetraacetic acid (EGTA)-chelation and X-ray microprobe analysis, was employed to localize intracellular calcium binding sites in the normal and degenerating flight musculature in queens of Solenopsis, the fire ant. In normal animals, calcium distribution was light to moderate within myofibrils and mitochondria. In the early contracture stages of the insemination-induced degeneration, both myofilament and mitochondrial calcium loading was markedly increased. In the terminal stages of myofibril breakdown, only Z-lines (isolated or in clusters) with an associated filamentous residue persisted. These complexes were also intensely calcium positive. This study further documents the presence of increased sarcoplasmic calcium during muscle necrosis. Surface membrane defects, mitochondrial calcium overload, and calcium-activated proteases may all be involved in this ''normal'' breakdown process

  9. Amino Acid Medical Foods Provide a High Dietary Acid Load and Increase Urinary Excretion of Renal Net Acid, Calcium, and Magnesium Compared with Glycomacropeptide Medical Foods in Phenylketonuria

    OpenAIRE

    Stroup, Bridget M.; Sawin, Emily A.; Murali, Sangita G.; Binkley, Neil; Hansen, Karen E.; Ney, Denise M.

    2017-01-01

    Background. Skeletal fragility is a complication of phenylketonuria (PKU). A diet containing amino acids compared with glycomacropeptide reduces bone size and strength in mice. Objective. We tested the hypothesis that amino acid medical foods (AA-MF) provide a high dietary acid load, subsequently increasing urinary excretion of renal net acid, calcium, and magnesium, compared to glycomacropeptide medical foods (GMP-MF). Design. In a crossover design, 8 participants with PKU (16?35?y) provided...

  10. Calcium supplementation and inflammation increase mortality in rheumatoid arthritis: A 15-year cohort study in 609 patients from the Oslo Rheumatoid Arthritis Register.

    Science.gov (United States)

    Provan, Sella A; Olsen, Inge C; Austad, Cathrine; Haugeberg, Glenn; Kvien, Tore K; Uhlig, Till

    2017-02-01

    To investigate whether osteoporosis or use of calcium supplementations predict all-cause mortality, or death from CVD, in a longitudinal cohort of patients with rheumatoid arthritis (RA). Patients in the Oslo RA register (ORAR) were examined, and bone mineral density was measured in 1996. The cohort was linked to the Norwegian Cause of Death registry on December 31, 2010. Death from CVD was defined in 3 following different outcomes: (1) primary atherosclerotic death, (2) atherosclerotic death as one of the 5 listed causes of death, and (3) CVD according to World Health Organization (WHO) definition as primary cause of death. Baseline predictors of all-cause mortality and death from CVD were identified in separate Cox regression models, using backwards selection. Sensitivity analyses were performed including analyses of interactions and competing risk. A total of 609 patients were examined in 1996/1997. By December 31, 2010, 162 patients (27%) had died, resulting in 7439 observed patient-years. Of the deceased, 40 (24.7%) had primary atherosclerotic death. In the final model of all-cause mortality increased baseline ESR [hazard ratio (HR) 1.02 per mm/h, 95% CI: 1.01-1.03], calcium supplementation (1.74, 1.07-2.84), and osteoporosis, defined as a T score ≤2.5 SD at any location, (1.58, 1.07-2.32) predicted higher mortality rates, in models adjusted for age, gender, and a propensity score. In the final model of primary atherosclerotic death, increased ESR (1.03 per mm/h, 1.01-1.05) and calcium supplementation (3.39, 1.41-8.08), predicted higher mortality. Increased baseline ESR and use of calcium supplementation were predictors of increased all-cause mortality and risk of death from CVD in this longitudinal study of patients with RA. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hiroyuki [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Kanaya, Sousuke; Hamaji, Nozomu; Sato, Hisae; Shimauchi, Hidetoshi [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2010-04-16

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stability of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.

  12. Stress enhanced calcium kinetics in a neuron.

    Science.gov (United States)

    Kant, Aayush; Bhandakkar, Tanmay K; Medhekar, Nikhil V

    2018-02-01

    Accurate modeling of the mechanobiological response of a Traumatic Brain Injury is beneficial toward its effective clinical examination, treatment and prevention. Here, we present a stress history-dependent non-spatial kinetic model to predict the microscale phenomena of secondary insults due to accumulation of excess calcium ions (Ca[Formula: see text]) induced by the macroscale primary injuries. The model is able to capture the experimentally observed increase and subsequent partial recovery of intracellular Ca[Formula: see text] concentration in response to various types of mechanical impulses. We further establish the accuracy of the model by comparing our predictions with key experimental observations.

  13. A home-based nutrition intervention to increase consumption of fruits, vegetables, and calcium-rich foods in community dwelling elders.

    Science.gov (United States)

    Bernstein, A; Nelson, Miriam E; Tucker, Katherine L; Layne, Jennifer; Johnson, Elizabeth; Nuernberger, Andrea; Castaneda, Carmen; Judge, James O; Buchner, David; Singh, Maria Fiatarone

    2002-10-01

    To increase fruit, vegetable, and calcium-rich food consumption in community-dwelling, functionally impaired elderly. Six-month, home-based nutrition intervention study. Seventy men and women older than age 69 years were randomized to either a nutrition education intervention (n = 38) or a control group that received an exercise intervention (n = 32). Nutrition education was designed to increase fruit, vegetable, and calcium-rich food consumption. Food intake was assessed by a food frequency questionnaire. Fasting blood measures of nutrients and carotenoids were performed. Statistical Analysis Two-group randomized controlled trial with pre-test and post-test design and intention-to-treat analysis. Analysis of covariance to was used to assess differences between the two groups. Baseline and change partial correlation coefficients were performed between intake and blood nutrient levels. Paired t tests were conducted to test within-group changes. Compared with the exercise group, subjects in nutrition group increased their self-reported intake of fruits by 1.1 +/- 0.2 (mean +/- SEM) servings per day (2.8 to 3.9, P = .01), vegetables 1.1 +/- 0.2 servings per day (2.3 to 3.4, P = .001), and milk/dairy 0.9 +/- 0.2 servings per day (3.0 to 3.9, P = .001). There was an increase in the dietary intake of alpha-carotene and beta-carotene in the nutrition group and this correlated with the increase in blood concentrations of alpha-carotene and beta-carotene (P foods. Recommendations for increasing consumption of fruits, vegetables, and calcium-rich foods should be specific and individualized to meet the dietary pattern and lifestyle of the individual. Compliance should be encouraged with record keeping as well as through continuous monitoring and positive reinforcement.

  14. Phosphorylation of erythrocyte membrane liberates calcium

    International Nuclear Information System (INIS)

    Chauhan, V.P.S.; Brockerhoff, H.

    1986-01-01

    Phosphorylation of permeabilized erythrocyte ghost membranes with ATP results in an increase free calcium level as measured with the help of Ca 2+ electrode and 45 Ca. This effect could not be observed in the presence of p - chloromercuric benzoate, an inhibitor of kinases. The rise in the free calcium due to phosphorylation of the membrane was accompanied by a decrease in the level of phosphatidylinositol (PI) and an increase in phosphatidylinositolmonophosphate (PIP) and phosphatidylinositolbisphosphate (PIP 2 ). These results support the proposal that an inositol shuttle, PI ↔ PIP ↔ PIP 2 , operates to maintain the intracellular calcium concentration. The cation is believed to be sequestered in a cage formed by the head groups of two acidic phospholipid molecules, e.g., phosphatidylserine and phosphatidylinositol, with the participation of both PO and fatty acid ester CO groups. When the inositol group of such a cage is phosphorylated, inter-headgroup hydrogen bonding between the lipids is broken. As a result the cage opens and calcium is released

  15. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence.

    Directory of Open Access Journals (Sweden)

    Sujatha Venkataraman

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence. CONCLUSIONS AND SIGNIFICANCE: Here we report the novel regulation of reactive oxygen species (ROS by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states.

  16. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J

    2000-01-01

    1. The involvement of intracellular calcium and calmodulin in the modulation of plateau potentials in motoneurones was investigated using intracellular recordings from a spinal cord slice preparation. 2. Chelation of intracellular calcium with BAPTA-AM or inactivation of calmodulin with W-7 or tr...

  17. Structure-activity relationship study and discovery of indazole 3-carboxamides as calcium-release activated calcium channel blockers

    OpenAIRE

    Bai, Sha; Nagai, Masazumi; Koerner, Steffi K.; Veves, Aristidis; Sun, Lijun

    2016-01-01

    Aberrant activation of mast cells contributes to the development of numerous diseases including cancer, autoimmune disorders, as well as diabetes and its complications. The influx of extracellular calcium via the highly calcium selective calcium-release activated calcium (CRAC) channel controls mast cell functions. Intracellular calcium homeostasis in mast cells can be maintained via the modulation of the CRAC channel, representing a critical point for therapeutic interventions. We describe t...

  18. Inhibiting MAP kinase activity prevents calcium transients and mitosis entry in early sea urchin embryos.

    Science.gov (United States)

    Philipova, Rada; Larman, Mark G; Leckie, Calum P; Harrison, Patrick K; Groigno, Laurence; Whitaker, Michael

    2005-07-01

    A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently, MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos, both kinases show a similar activation profile, peaking at the time of mitosis entry. We tested whether the activity of both kinases is required for mitosis entry and whether either kinase controls mitotic calcium signals. We found that reducing the activity of either mitotic kinase prevents nuclear envelope breakdown, despite the presence of a calcium transient, when cdk1/cyclin B kinase activity is alone inhibited. When MAP kinase activity alone was inhibited, the calcium signal was absent, suggesting that MAP kinase activity is required to generate the calcium transient that triggers nuclear envelope breakdown. However, increasing intracellular free calcium by microinjection of calcium buffers or InsP(3) while MAP kinase was inhibited did not itself induce nuclear envelope breakdown, indicating that additional MAP kinase-regulated events are necessary. After MAP kinase inhibition early in the cell cycle, the early events of the cell cycle (pronuclear migration/fusion and DNA synthesis) were unaffected, but chromosome condensation and spindle assembly are prevented. These data indicate that in sea urchin embryos, MAP kinase activity is part of a signaling complex alongside two components previously shown to be essential for entry into mitosis: the calcium transient and the increase in cdk1/cyclinB kinase activity.

  19. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone...... in the renal tubule and then discuss why not all gene defects that cause renal tubular acidosis are associated with hypercalciuria and nephrocalcinosis....

  20. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    Science.gov (United States)

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  1. Intracellular ion channels and cancer

    Directory of Open Access Journals (Sweden)

    Luigi eLeanza

    2013-09-01

    Full Text Available Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3, Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC and the Permeability Transition Pore (MPTP contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER-located inositol 1,4,5-trisphosphate (IP3 receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1, a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

  2. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor.

    Science.gov (United States)

    Joeckel, Elke; Haber, Tobias; Prawitt, Dirk; Junker, Kerstin; Hampel, Christian; Thüroff, Joachim W; Roos, Frederik C; Brenner, Walburgis

    2014-02-28

    The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.

  3. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice.

    Science.gov (United States)

    Cui, Min; Li, Qiang; Johnson, Robert; Fleet, James C

    2012-10-01

    Transient receptor potential cation channel, subfamily V, member 6 (TRPV6) is an apical membrane calcium (Ca) channel in the small intestine proposed to be essential for vitamin D-regulated intestinal Ca absorption. Recent studies have challenged the proposed role for TRPV6 in Ca absorption. We directly tested intestinal TRPV6 function in Ca and bone metabolism in wild-type (WT) and vitamin D receptor knockout (VDRKO) mice. TRPV6 transgenic mice (TG) were made with intestinal epithelium-specific expression of a 3X Flag-tagged human TRPV6 protein. TG and VDRKO mice were crossed to make TG-VDRKO mice. Ca and bone metabolism was examined in WT, TG, VDRKO, and TG-VDRKO mice. TG mice developed hypercalcemia and soft tissue calcification on a chow diet. In TG mice fed a 0.25% Ca diet, Ca absorption was more than three-fold higher and femur bone mineral density (BMD) was 26% higher than WT. Renal 1α hydroxylase (CYP27B1) mRNA and intestinal expression of the natural mouse TRPV6 gene were reduced to intestine calbindin-D(9k) expression was elevated >15 times in TG mice. TG-VDRKO mice had high Ca absorption that prevented the low serum Ca, high renal CYP27B1 mRNA, low BMD, and abnormal bone microarchitecture seen in VDRKO mice. In addition, small intestinal calbindin D(9K) mRNA and protein levels were elevated in TG-VDRKO. Transgenic TRPV6 expression in intestine is sufficient to increase Ca absorption and bone density, even in VDRKO mice. VDR-independent upregulation of intestinal calbindin D(9k) in TG-VDRKO suggests this protein may buffer intracellular Ca during Ca absorption. © 2012 American Society for Bone and Mineral Research. Copyright © 2012 American Society for Bone and Mineral Research.

  4. Hearts from mice fed a non-obesogenic high-fat diet exhibit changes in their oxidative state, calcium and mitochondria in parallel with increased susceptibility to reperfusion injury.

    Science.gov (United States)

    Littlejohns, Ben; Pasdois, Philippe; Duggan, Simon; Bond, Andrew R; Heesom, Kate; Jackson, Christopher L; Angelini, Gianni D; Halestrap, Andrew P; Suleiman, M-Saadeh

    2014-01-01

    High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults.

  5. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels.

    Science.gov (United States)

    Li, Dong; Zhang, Shu-Zhuo; Yao, Yu-Hong; Xiang, Yun; Ma, Xiao-Yun; Wei, Xiao-Li; Yan, Hai-Tao; Liu, Xiao-Yan

    2017-12-01

    Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca 2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases. © 2017 John Wiley & Sons Ltd.

  6. Prohexadione calcium reduces vegetative growth and increases fruit set of ‘Smith’ pear trees, in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Bruno Carra

    Full Text Available ABSTRACT Prohexadione calcium (P-Ca has been reported to effectively control shoot growth in several pear cultivars, but with a few reports about its efficiency under the climatic conditions of southern Brazil. Therefore, the objective of this study was to evaluate vegetative growth, production, and fruit quality of ‘Smith’ pear trees in response to the use of different rates of P-Ca in the climatic conditions of southern Brazil. The experiment was conducted during the 2013/2014 and 2014/2015 seasons, in a 6-year-old ‘Smith’ pear orchard, trained to a central-leader system, with spacing of 1.5 × 4.8 m, grafted onto Pyrus calleryana Decne. Different P-Ca rates were applied (100, 200, 300, and 400 mg∙L–1 in different stages: first, in early spring for all treatments, and the others when shoot growth resumed (GR, but only for some treatments. Variables for vegetative growth, yield components and fruit quality at harvest and post-harvest were evaluated. The use of P-Ca was effective to control vegetative growth in both seasons, at different rates. Yield components were not affected by P-Ca applications in 2013/2014, except return bloom and return yield. In 2014/2015 season, P-Ca applications positively affected yield components, except average fruit weight and return bloom. P-Ca applications did not alter the qualitative attributes of the fruits of ‘Smith’ pear trees at harvest and after a period of cold storage. These results implicate P-Ca as a potential tool to manage vigor of ‘Smith’ pear trees in climatic conditions of southern Brazil.

  7. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMs and CDPKs leading to copper entry and membrane depolarization in Ulva compressa

    Directory of Open Access Journals (Sweden)

    Melissa eGómez

    2015-03-01

    Full Text Available In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1 and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9 and 12 min of exposure, respectively, and antagonists of TRPC5, A1 and V1 corresponding to SKF-96365 (SKF, HC-030031 (HC and capsazepin (CPZ, respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9 and 12 min which were inhibited by SKF, HC and CPZ, respectively, indicating that copper activate TRPC5, A1 and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require CaMs and CDPKs activation. In addition, copper induced membrane depolarization events at 4, 8 and 11 min and these events were inhibited by SKF, HC, CPZ and bathocuproine, a specific copper chelating agent, indicating copper entry through TRP channels leading to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that CaMs and CDPKs are required in order to activate TRPs to allow copper entry. Thus, light-dependent copper-induced activation TRPC5, A1 and V1 promotes extracellular calcium entry leading to activation of CaMs and CDPKs which, in turn, promotes copper entry through these TRP channels leading to membrane depolarization.

  8. Dilution of boar ejaculates with BTS containing HEPES in place of bicarbonate immediately after ejaculation can reduce the increased inducibility of the acrosome reaction by treatment with calcium and calcium ionophore A23187, which is potentially associated with boar subfertility.

    Science.gov (United States)

    Murase, Tetsuma; Imaeda, Noriaki; Yamada, Hiroto; Takasu, Masaki; Taguchi, Kazuo; Katoh, Tsutomu

    2010-06-01

    The present study investigated whether substitution of HEPES for bicarbonate in BTS (BTS-H) used to dilute boar ejaculates immediately after ejaculation could reduce the increased inducibility of the acrosome reaction by calcium and calcium ionophore A23187. When an ejaculate was split, diluted 5-fold with regular BTS (BTS-B) and BTS-H and stored at 17 C for 12 h or 60 h, the extender or storage time had no significant influence on sperm motility or viability measured by the eosin-nigrosin method. When spermatozoa diluted serially with BTS-B and stored (36 h) were stimulated with Ca2+ (3 mM) and A23187 (0.3 microM), the proportion of spermatozoa that underwent the acrosome reaction (% acrosome reactions) significantly increased as the magnifications of dilution increased (bicarbonate content almost unchanged by dilution). By contrast, the % acrosome reactions in spermatozoa similarly diluted and stored with BTS-H decreased with the increasing magnifications of dilution (bicarbonate decreased). Sperm motility immediately after the end of incubation without A23178 tended to be lower for BTS-H than BTS-B, and the ejaculates for BTS-H had a tendency to have a lower total protein in seminal plasma than those for BTS-B. These results implied that the samples for BTS-H could be used as a model for ejaculates possibly collected during summer and showing subfertility. When an ejaculate was split, diluted serially with BTS-B and BTS-H and stored, viability measured by staining with propidium iodide was extremely similar between the 2 extenders and among the different dilution magnifications, regardless of whether spermatozoa were washed (stored for 36-66 h) or not (stored for 66-72 h). These results suggest that boar ejaculate can be stored with BTS-H at least according to the results for sperm motility and viability and that hypersensitivity of spermatozoa to Ca2+ and A23187 potentially associated with boar subfertility could be lessened by diluting ejaculates with BTS-H.

  9. Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus.

    Science.gov (United States)

    Browne, Austin; O'Donnell, Michael J

    2018-01-01

    Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca 2+ within internal calcium stores (Ca-rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion-selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca 2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca 2+ transport was specific to midtubule segments, where 97% of the Ca 2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage-gated (L-type) calcium channels decreased Ca 2+ influx ≥fivefold in adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated tubules, suggesting basolateral Ca 2+ influx is facilitated by voltage-gated Ca 2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca 2+ had opposite effects on tubule Ca 2+ transport. The adenylyl cyclase-cAMP-PKA pathway promotes Ca 2+ sequestration whereas both 5-hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca 2+ sequestration through stimulatory (cAMP) and inhibitory (Ca 2+ ) regulatory pathways. © 2017 Wiley Periodicals, Inc.

  10. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  11. Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men.

    Science.gov (United States)

    Benedict, Christian; Cedernaes, Jonathan; Giedraitis, Vilmantas; Nilsson, Emil K; Hogenkamp, Pleunie S; Vågesjö, Evelina; Massena, Sara; Pettersson, Ulrika; Christoffersson, Gustaf; Phillipson, Mia; Broman, Jan-Erik; Lannfelt, Lars; Zetterberg, Henrik; Schiöth, Helgi B

    2014-01-01

    To investigate whether total sleep deprivation (TSD) affects circulating concentrations of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in humans. These factors are usually found in the cytoplasm of neurons and glia cells. Increasing concentrations of these factors in blood may be therefore indicative for either neuronal damage, impaired blood brain barrier function, or both. In addition, amyloid β (Aβ) peptides 1-42 and 1-40 were measured in plasma to calculate their ratio. A reduced plasma ratio of Aβ peptides 1-42 to 1-40 is considered an indirect measure of increased deposition of Aβ 1-42 peptide in the brain. Subjects participated in two conditions (including either 8-h of nocturnal sleep [22:30-06:30] or TSD). Fasting blood samples were drawn before and after sleep interventions (19:30 and 07:30, respectively). Sleep laboratory. 15 healthy young men. TSD increased morning serum levels of NSE (P = 0.002) and S-100B (P = 0.02) by approximately 20%, compared with values obtained after a night of sleep. In contrast, the ratio of Aβ peptides 1-42 to 1-40 did not differ between the sleep interventions. Future studies in which both serum and cerebrospinal fluid are sampled after sleep loss should elucidate whether the increase in serum neuron-specific enolase and S100 calcium binding protein B is primarily caused by neuronal damage, impaired blood brain barrier function, or is just a consequence of increased gene expression in non-neuronal cells, such as leukocytes.

  12. Homer1 knockdown protects dopamine neurons through regulating calcium homeostasis in an in vitro model of Parkinson's disease.

    Science.gov (United States)

    Chen, Tao; Yang, Yue-fan; Luo, Peng; Liu, Wei; Dai, Shu-hui; Zheng, Xin-rui; Fei, Zhou; Jiang, Xiao-fan

    2013-12-01

    Homer1 protein is an important scaffold protein at postsynaptic density and has been demonstrated to play a central role in calcium signaling in the central nervous system. The aim of this study was to investigate the effects of Homer1 knockdown on MPP(+) induced neuronal injury in cultured dopamine (DA) neurons. We found that down-regulating Homer1 expression with specific small interfering RNA (siRNA) significantly suppressed LDH release, reduced Propidium iodide (PI) or Hoechst staining, increased the number of tyrosine hydroxylase (TH) positive cells and DA uptake, and attenuated apoptotic and necrotic cell death after MPP(+) injury. Homer1 knockdown decreased intracellular reactive oxygen species (ROS) generation through inhibition of intracellular calcium overload, but did not affect the endogenous antioxidant enzyme activities. Calcium imaging was used to examine the changes of intracellular Ca(2+) concentration ([Ca(2+)]cyt) and Ca(2+) in endoplasmic reticulum (ER) ([Ca(2+)]ER), and the results showed that Homer1 siRNA transfection attenuated ER Ca(2+) release up to 120min after MPP(+) injury. Furthermore, decrease of [Ca(2+)]cyt induced by Homer1 knockdown in MPP(+) treated neurons was further enhanced by NMDA receptor antagonists MK-801 and AP-5, but not canonical transient receptor potential (TRPC) channel antagonist SKF-96365. l-type calcium antagonist isradipine but not nimodipine further inhibited intracellular calcium overload after MPP(+) insult in Homer1 down-regulated neurons. These results suggest that Homer1 knockdown has protective effects against neuronal injury in in vitro PD model by reducing calcium overload mediated ROS generation, and this protection may be dependent at least in part on the regulatory effects on the function of calcium channels in both plasma membrane and ER. © 2013.

  13. Urinary calcium and oxalate excretion in healthy adult cats are not affected by increasing dietary levels of bone meal in a canned diet.

    Directory of Open Access Journals (Sweden)

    Nadine Passlack

    Full Text Available This study aimed to investigate the impact of dietary calcium (Ca and phosphorus (P, derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A, 18.5 (B and 27.0 g Ca/kg dry matter (C and 16.1 (A, 17.6 (B and 21.1 g P/kg dry matter (C. Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and faeces were collected over 2×4 days (with a two-day rest between, and blood samples were taken. Urinary and faecal minerals, urinary oxalate (Ox, the urinary pH and the concentrations of serum Ca, phosphate and parathyroid hormone (PTH were analyzed. Moreover, the urine was microscopically examined for CaOx uroliths. The results demonstrated that increasing levels of dietary Ca led to decreased serum PTH and Ca and increased faecal Ca and P concentrations, but did not affect the urinary Ca or Ox concentrations or the urinary fasting pH. The urinary postprandial pH slightly increased when the diet C was compared to the diet B. No CaOx crystals were detected in the urine of the cats. In conclusion, urinary Ca excretion in cats seems to be widely independent of the dietary Ca levels when Ca is added as bone meal to a typical canned diet, implicating that raw materials with higher contents of bones are of subordinate importance as risk factors for the formation of urinary CaOx crystals.

  14. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  15. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    Science.gov (United States)

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  16. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism.

    Science.gov (United States)

    Georgiou, Dimitra K; Dagnino-Acosta, Adan; Lee, Chang Seok; Griffin, Deric M; Wang, Hui; Lagor, William R; Pautler, Robia G; Dirksen, Robert T; Hamilton, Susan L

    2015-09-25

    Ca(2+) permeation and/or binding to the skeletal muscle L-type Ca(2+) channel (CaV1.1) facilitates activation of Ca(2+)/calmodulin kinase type II (CaMKII) and Ca(2+) store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca(2+) binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. [Calcium and bone metabolism across women's life stages. Exercise and sport to increase bone strength in accordance with female lifecycle.

    Science.gov (United States)

    Iwamoto, Jun

    Among females who require the strategies for preventing osteoporosis, appropriate exercise and sport through all their life are important to increase or maintain bone mass. However, the type of exercise and sport applied to females is different in accordance with the lifecycle. Jumping exercise increases bone mineral content(BMC)in prepubescent children(premenarcheal girls). Bone mineral density(BMD)is higher in adolescent athletes who are engaged in weight-bearing activities. Jumping exercise, muscle strengthening exercise, and weight-bearing plus muscle strengthening exercises increase BMD in young adults and premenopausal women. Walking, aerobic weight-bearing exercise, muscle strengthening exercise, and weight-bearing plus muscle strengthening exercises maintain or increase BMD in postmenopausal women. Thus, appropriate exercise and sport in accordance with the lifecycle are important strategies for preventing osteoporosis in females.

  18. Presenilin-mediated modulation of capacitative calcium entry.

    Science.gov (United States)

    Yoo, A S; Cheng, I; Chung, S; Grenfell, T Z; Lee, H; Pack-Chung, E; Handler, M; Shen, J; Xia, W; Tesco, G; Saunders, A J; Ding, K; Frosch, M P; Tanzi, R E; Kim, T W

    2000-09-01

    We studied a novel function of the presenilins (PS1 and PS2) in governing capacitative calcium entry (CCE), a refilling mechanism for depleted intracellular calcium stores. Abrogation of functional PS1, by either knocking out PS1 or expressing inactive PS1, markedly potentiated CCE, suggesting a role for PS1 in the modulation of CCE. In contrast, familial Alzheimer's disease (FAD)-linked mutant PS1 or PS2 significantly attenuated CCE and store depletion-activated currents. While inhibition of CCE selectively increased the amyloidogenic amyloid beta peptide (Abeta42), increased accumulation of the peptide had no effect on CCE. Thus, reduced CCE is most likely an early cellular event leading to increased Abeta42 generation associated with FAD mutant presenilins. Our data indicate that the CCE pathway is a novel therapeutic target for Alzheimer's disease.

  19. Roles of Intracellular Cyclic AMP Signal Transduction in the Capacitation and Subsequent Hyperactivation of Mouse and Boar Spermatozoa

    Science.gov (United States)

    HARAYAMA, Hiroshi

    2013-01-01

    It is not until accomplishment of a variety of molecular changes during the transit through the female reproductive tract that mammalian spermatozoa are capable of exhibiting highly activated motility with asymmetric whiplash beating of the flagella (hyperactivation) and undergoing acrosomal exocytosis in the head (acrosome reaction). These molecular changes of the spermatozoa are collectively termed capacitation and promoted by bicarbonate, calcium and cholesterol acceptors. Such capacitation-promoting factors can stimulate intracellular cyclic AMP (cAMP) signal transduction in the spermatozoa. Meanwhile, hyperactivation and the acrosome reaction are essential to sperm fertilization with oocytes and are apparently triggered by a sufficient increase of intracellular Ca2+ in the sperm flagellum and head, respectively. Thus, it is necessary to investigate the relationship between cAMP signal transduction and calcium signaling cascades in the spermatozoa for the purpose of understanding the molecular basis of capacitation. In this review, I cover updated insights regarding intracellular cAMP signal transduction, the acrosome reaction and flagellar motility in mammalian spermatozoa and then account for possible roles of intracellular cAMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. PMID:24162806

  20. Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures

    Science.gov (United States)

    Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer

    2016-03-01

    Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.

  1. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes.

    Science.gov (United States)

    Kohlhaas, Michael; Zhang, Tong; Seidler, Tim; Zibrova, Darya; Dybkova, Nataliya; Steen, Astrid; Wagner, Stefan; Chen, Lu; Brown, Joan Heller; Bers, Donald M; Maier, Lars S

    2006-02-03

    The predominant cardiac Ca2+/calmodulin-dependent protein kinase (CaMK) is CaMKIIdelta. Here we acutely overexpress CaMKIIdeltaC using adenovirus-mediated gene transfer in adult rabbit ventricular myocytes. This circumvents confounding adaptive effects in CaMKIIdeltaC transgenic mice. CaMKIIdeltaC protein expression and activation state (autophosphorylation) were increased 5- to 6-fold. Basal twitch contraction amplitude and kinetics (1 Hz) were not changed in CaMKIIdeltaC versus LacZ expressing myocytes. However, the contraction-frequency relationship was more negative, frequency-dependent acceleration of relaxation was enhanced (tau(0.5Hz)/tau(3Hz)=2.14+/-0.10 versus 1.87+/-0.10), and peak Ca2+ current (ICa) was increased by 31% (-7.1+/-0.5 versus -5.4+/-0.5 pA/pF, P<0.05). Ca2+ transient amplitude was not significantly reduced (-27%, P=0.22), despite dramatically reduced sarcoplasmic reticulum (SR) Ca2+ content (41%; P<0.05). Thus fractional SR Ca2+ release was increased by 60% (P<0.05). Diastolic SR Ca2+ leak assessed by Ca2+ spark frequency (normalized to SR Ca2+ load) was increased by 88% in CaMKIIdeltaC versus LacZ myocytes (P<0.05; in an multiplicity-of-infection-dependent manner), an effect blocked by CaMKII inhibitors KN-93 and autocamtide-2-related inhibitory peptide. This enhanced SR Ca2+ leak may explain reduced SR Ca2+ content, despite measured levels of SR Ca2+-ATPase and Na+/Ca2+ exchange expression and function being unaltered. Ryanodine receptor (RyR) phosphorylation in CaMKIIdeltaC myocytes was increased at both Ser2809 and Ser2815, but FKBP12.6 coimmunoprecipitation with RyR was unaltered. This shows for the first time that acute CaMKIIdeltaC overexpression alters RyR function, leading to enhanced SR Ca2+ leak and reduced SR Ca2+ content bu