WorldWideScience

Sample records for intracavity flow cytometry

  1. Practical flow cytometry

    National Research Council Canada - National Science Library

    Shapiro, Howard M

    2003-01-01

    ... ... Conflict: Resolution ... 1.3 Problem Number One: Finding The Cell(s) ... Flow Cytometry: Quick on the Trigger ... The Main Event ... The Pulse Quickens, the Plot Thickens ... 1.4 Flow Cytometry: ...

  2. Flow Cytometry Section

    Data.gov (United States)

    Federal Laboratory Consortium — The primary goal of the Flow Cytometry Section is to provide the services of state-of-the-art multi-parameter cellular analysis and cell sorting for researchers and...

  3. Flow cytometry bioinformatics.

    Directory of Open Access Journals (Sweden)

    Kieran O'Neill

    Full Text Available Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing, and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results. Computational methods exist to assist in the preprocessing of flow cytometry data, identifying cell populations within it, matching those cell populations across samples, and performing diagnosis and discovery using the results of previous steps. For preprocessing, this includes compensating for spectral overlap, transforming data onto scales conducive to visualization and analysis, assessing data for quality, and normalizing data across samples and experiments. For population identification, tools are available to aid traditional manual identification of populations in two-dimensional scatter plots (gating, to use dimensionality reduction to aid gating, and to find populations automatically in higher dimensional space in a variety of ways. It is also possible to characterize data in more comprehensive ways, such as the density-guided binary space partitioning technique known as probability binning, or by combinatorial gating. Finally, diagnosis using flow cytometry data can be aided by supervised learning techniques, and discovery of new cell types of biological importance by high-throughput statistical methods, as part of pipelines incorporating all of the aforementioned methods. Open standards, data

  4. Flow cytometry protocols

    National Research Council Canada - National Science Library

    Jaroszeski, Mark J; Heller, Richard

    1998-01-01

    ... are individually analyzed, and it is typical for flow cytometers to quantitatively process thousands of individual particles in a matter of seconds. This a powerful analytic feat particularly if one relates it to the time required to examine several thousand individual cells using a microscope. This leaves little doubt regarding why the field of flow cytometry has...

  5. Flow Cytometry in Pediatric Malignancies.

    Science.gov (United States)

    Handoo, Anil; Dadu, Tina

    2018-01-15

    The utility of flow cytometry as a useful diagnostic modality for the assessment of hematopoietic neoplasms has been established beyond doubt. In fact, it is now an integral part of the diagnosis and classification of various diseases like leukemias and lymphomas along with molecular studies and cytogenetics. Prognostication and disease monitoring by flow cytometry is also being recognized increasingly as one of the important fortes. This is evident by the number of articles in the published in literature on the minimal residual disease detection by flow cytometry especially in the last decade or so. To add to this, ever growing list of utilities in hematopoietic malignancies, many non-hematopoietic neoplasms can also be analyzed by flow cytometry. The examples include fluid specimens from serous cavity effusions and samples from solid tissues like lymph nodes, reticulo-endothelial tissue, central nervous system tissue, etc. Flow cytometry technique provides a unique blend of rapidity, high sensitivity and specificity compared to cyto-morphology and conventional immunohistochemical staining. It is also remarkable for simultaneous analysis of more than one marker on the cells. Evaluation of limited samples such as cerebrospinal fluid or fine needle aspiration samples makes Flow cytometry a valuable tool. DNA ploidy analysis and assessment of pediatric non-hematopoietic neoplasms by Flow cytometry has envisaged the utility vista of this technique. This review is aimed at providing an insight into the applications of flow cytometry in pediatric malignancies.

  6. Teaching Phagocytosis Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    John Boothby

    2009-12-01

    Full Text Available Investigative microbiology on protists in a basic teaching laboratory environment is limited by student skill level, ease of microbial culture and manipulation, instrumentation, and time. The flow cytometer is gaining use as a mainstream instrument in research and clinical laboratories, but has had minimal application in teaching laboratories. Although the cost of a flow cytometer is currently prohibitive for many microbiology teaching environments and the number of trained instructors and teaching materials is limited, in many ways the flow cytometer is an ideal instrument for teaching basic microbiology. We report here on a laboratory module to study phagocytosis in Tetrahymena sp. using flow cytometry in a basic microbiology teaching laboratory. Students and instructors found the flow cytometry data analysis program, Paint-A-GatePRO-TM, to be very intuitive and easy to learn within a short period of time. Assessment of student learning about Tetrahymena sp., phagocytosis, flow cytometry, and investigative microbiology using an inquiry-based format demonstrated an overall positive response from students.

  7. Detecting fetomaternal hemorrhage by flow cytometry

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Nielsen, Leif Kofoed; Berkowicz, Adela

    2006-01-01

    The aim of this review is to summarize the most recent developments in the area of detection of fetomaternal hemorrhage by flow cytometry.......The aim of this review is to summarize the most recent developments in the area of detection of fetomaternal hemorrhage by flow cytometry....

  8. Supercontinuum white light lasers for flow cytometry

    OpenAIRE

    Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2009-01-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric a...

  9. Immuno flow cytometry in marine phytoplankton research

    NARCIS (Netherlands)

    Peperzak, L; Vrieling, EG; Sandee, B; Rutten, T

    The developments in the combination of flow cytometry and immunology as a tool to identify, count and examine marine phytoplankton cells are reviewed. The concepts of immunology and now cytometry are described. A distinction is made between quantitative and qualitative immunofluorescence.

  10. Flow cytometry, fluorescent probes, and flashing bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.

    2002-01-01


    Key words: fluorescent probes, flow cytometry, CSLM, viability, survival, microbial physiology, lactic acid bacteria, Lactococcus lactis , Lactobacillus plantarum , cheese, milk,

  11. Applications of flow cytometry in food microbiology

    International Nuclear Information System (INIS)

    Serrano Valerin, Pamela

    2014-01-01

    A compilation of data about cytometry and its applications is performed to analyze the impact on food microbiology. The technique of flow cytometry is described and the use in various fields of microbiology is analyzed. Flow cytometry future could be implemented in many clinical laboratories and food, considering the cost / benefit test to be done, because at the moment it has a high cost. The existence of new fluorochromes and monoclonal antibodies enable that many intracellular and extracellular cell parameters are detected in the future. The technique can be developed in the country in few years considering that the technique has improved the sensitivity and specificity of many tests [es

  12. Flow Cytometry Scientist | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) in the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (fluorescence cell sorting) with the goal of gaining a more thorough understanding of the biology of the immune system, cancer, and inflammation processes. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. Flow Cytometry Scientist - The individual will be responsible for: Daily management of the Flow Cytometry Core, to include the supervision and guidance of technical staff members Monitor performance of and maintain high-dimensional flow cytometer analyzers and cell sorters Operate high-dimensional flow cytometer analyzers and cell sorters Provide scientific expertise to the user community and facilitate the development of cutting-edge technologies Interact with Flow Core users and customers, and provide technical and scientific advice, and guidance regarding their experiments, including possible collaborations Train staff and scientific end users on the use of flow cytometry in their research, as well as teach them how to operate and troubleshoot the bench-top analyzer instruments Prepare and deliver lectures, as well as one-on-one training sessions, with customers/users Ensure that protocols are up

  13. Near infrared lasers in flow cytometry.

    Science.gov (United States)

    Telford, William G

    2015-07-01

    Technology development in flow cytometry has closely tracked laser technology, the light source that flow cytometers almost exclusively use to excite fluorescent probes. The original flow cytometers from the 1970s and 1980s used large water-cooled lasers to produce only one or two laser lines at a time. Modern cytometers can take advantage of the revolution in solid state laser technology to use almost any laser wavelength ranging from the ultraviolet to the near infrared. Commercial cytometers can now be equipped with many small solid state lasers, providing almost any wavelength needed for cellular analysis. Flow cytometers are now equipped to analyze 20 or more fluorescent probes simultaneously, requiring multiple laser wavelengths. Instrument developers are now trying to increase this number by designing fluorescent probes that can be excited by laser wavelength at the "edges" of the visible light range, in the near ultraviolet and near-infrared region. A variety of fluorescent probes have been developed that excite with violet and long wavelength ultraviolet light; however, the near-infrared range (660-800 nm) has yet seen only exploitation in flow cytometry. Fortunately, near-infrared laser diodes and other solid state laser technologies appropriate for flow cytometry have been in existence for some time, and can be readily incorporated into flow cytometers to accelerate fluorescent probe development. The near infrared region represents one of the last "frontiers" to maximize the number of fluorescent probes that can be analyzed by flow cytometry. In addition, near infrared fluorescent probes used in biomedical tracking and imaging could also be employed for flow cytometry with the correct laser wavelengths. This review describes the available technology, including lasers, fluorescent probes and detector technology optimal for near infrared signal detection. Published by Elsevier Inc.

  14. immunophenotyping of acute leukaemias by flow cytometry

    African Journals Online (AJOL)

    2009-12-01

    Dec 1, 2009 ... ... of acute leukaemias within our resource constrained setting. ACKNOWLEDGEMENTS. To the University of Nairobi, and the American. Society of Hematology (ASH), which enabled me to undertake training in flow cytometry of leukaemias and lymphomas at the M.D. Anderson Cancer Center,. Houston ...

  15. Supercontinuum white light lasers for flow cytometry

    Science.gov (United States)

    Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2009-01-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836

  16. Supercontinuum white light lasers for flow cytometry.

    Science.gov (United States)

    Telford, William G; Subach, Fedor V; Verkhusha, Vladislav V

    2009-05-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (approximately 480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting "fine-tuning" of excitation wavelength to particular probes. (c) 2008 International Society for Advancement of Cytometry.

  17. Flow: Statistics, visualization and informatics for flow cytometry

    Directory of Open Access Journals (Sweden)

    Kepler Thomas B

    2008-06-01

    Full Text Available Abstract Flow is an open source software application for clinical and experimental researchers to perform exploratory data analysis, clustering and annotation of flow cytometric data. Flow is an extensible system that offers the ease of use commonly found in commercial flow cytometry software packages and the statistical power of academic packages like the R BioConductor project.

  18. Applications of Imaging Flow Cytometry for Microalgae.

    Science.gov (United States)

    Hildebrand, Mark; Davis, Aubrey; Abbriano, Raffaela; Pugsley, Haley R; Traller, Jesse C; Smith, Sarah R; Shrestha, Roshan P; Cook, Orna; Sánchez-Alvarez, Eva L; Manandhar-Shrestha, Kalpana; Alderete, Benjamin

    2016-01-01

    The ability to image large numbers of cells at high resolution enhances flow cytometric analysis of cells and cell populations. In particular, the ability to image intracellular features adds a unique aspect to analyses, and can enable correlation between molecular phenomena resulting in alterations in cellular phenotype. Unicellular microalgae are amenable to high-throughput analysis to capture the diversity of cell types in natural samples, or diverse cellular responses in clonal populations, especially using imaging cytometry. Using examples from our laboratory, we review applications of imaging cytometry, specifically using an Amnis(®) ImageStream(®)X instrument, to characterize photosynthetic microalgae. Some of these examples highlight advantages of imaging flow cytometry for certain research objectives, but we also include examples that would not necessarily require imaging and could be performed on a conventional cytometer to demonstrate other concepts in cytometric evaluation of microalgae. We demonstrate the value of these approaches for (1) analysis of populations, (2) documentation of cellular features, and (3) analysis of gene expression.

  19. Application of flow cytometry to wine microorganisms.

    Science.gov (United States)

    Longin, Cédric; Petitgonnet, Clément; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2017-04-01

    Flow cytometry (FCM) is a powerful technique allowing detection and enumeration of microbial populations in food and during food process. Thanks to the fluorescent dyes used and specific probes, FCM provides information about cell physiological state and allows enumeration of a microorganism in a mixed culture. Thus, this technique is increasingly used to quantify pathogen, spoilage microorganisms and microorganisms of interest. Since one decade, FCM applications to the wine field increase greatly to determine population and physiological state of microorganisms performing alcoholic and malolactic fermentations. Wine spoilage microorganisms were also studied. In this review we briefly describe FCM principles. Next, a deep revision concerning enumeration of wine microorganisms by FCM is presented including the fluorescent dyes used and techniques allowing a yeast and bacteria species specific enumeration. Then, the last chapter is dedicated to fluorescent dyes which are used to date in fluorescent microscopy but applicable in FCM. This chapter also describes other interesting "future" techniques which could be applied to study the wine microorganisms. Thus, this review seeks to highlight the main advantages of the flow cytometry applied to wine microbiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Honey Bee Hemocyte Profiling by Flow Cytometry

    Science.gov (United States)

    Marringa, William J.; Krueger, Michael J.; Burritt, Nancy L.; Burritt, James B.

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure. PMID:25285798

  1. Optical clearing in photoacoustic flow cytometry

    Science.gov (United States)

    Menyaev, Yulian A.; Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Juratli, Mazen A.; Galanzha, Ekaterina I.; Tuchin, Valery V.; Zharov, Vladimir P.

    2013-01-01

    Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins. PMID:24409398

  2. Platelet function investigation by flow cytometry

    DEFF Research Database (Denmark)

    Pedersen, Oliver Heidmann; Nissen, Peter H; Hvas, Anne-Mette

    2017-01-01

    Flow cytometry is an increasingly used method for platelet function analysis because it has some important advantages compared with other platelet function tests. Flow cytometric platelet function analyses only require a small sample volume (3.5 mL); however, to expand the field of applications, e...... assays. To examine the influence of sample volume, blood was collected from 20 healthy individuals in 1.0 mL, 1.8 mL, and 3.5 mL tubes. To examine the influence of the needle size on pre-activation, blood was drawn from another 13 healthy individuals with both a 19- and 21-gauge needle. For the reference...

  3. Lipid nanoparticles assessment by flow cytometry.

    Science.gov (United States)

    Bryła, Anna; Juzwa, Wojciech; Weiss, Marek; Lewandowicz, Grażyna

    2017-03-30

    Liposomes are promising carriers for drugs and bioactive compounds. Size and structure are their crucial parameters. Thus, it is essential to assess individual vesicles as prepared. Currently available techniques fail to measure liposome's size and structure simultaneously, with a high throughput. To solve this problem, we have developed a novel, flow cytometric method quantifying liposomes. Firstly, the following fluorescent staining combinations were tested: DiD/TO, Rh123/DiD, Syto9/DiD. Further, chosen fluorochromes were used to compare three populations of vesicles: raw (R), obtained by thin film hydration and extruded ones (populations E10 and E21). Dynamic light scattering (DLS) was used for determination of average diameter and size distribution of nanocarriers. Structural differences between the raw and the extruded liposomes, as well as additional information concerning vesicles size were acquired employing atomic force microscopy (AFM). DLS analysis indicated that, three distinct populations of vesicles were obtained. Liposomes were characterized by mean diameter of 323nm, 220nm and 170nm for population R, E10 and E21 respectively. All the populations were stable and revealed zeta potential of -29mV. AFM confirmed that raw and extruded liposomes were differed in structure. DiD/TO was the optimal fluorochrome combination that enabled to resolve distinctly the sub-populations of liposomes. Results obtained by flow cytometry were in a good agreement with those from DLS and AFM. It was proved that, flow cytometry, when proper fluorescent dyes are used, is an adequate method for liposomes assessment. The proposed method enables fast and reliable analysis of liposomes in their native environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Flow cytometry: design, development and experimental validation

    International Nuclear Information System (INIS)

    Seigneur, Alain

    1987-01-01

    The flow cytometry techniques allow the analysis and sorting of living biologic cells at rates above five to ten thousand events per second. After a short review, we present in this report the design and development of a 'high-tech' apparatus intended for research laboratories and the experimental results. The first part deals with the physical principles allowing morphologic and functional analysis of cells or cellular components. The measured parameters are as follows: electrical resistance pulse sizing, light scattering and fluorescence. Hydrodynamic centering is used, and in the same way, the division of a water-stream into droplets leading to electrostatic sorting of particles. The second part deals with the apparatus designed by the 'Commissariat a l'Energie Atomique' (C.E.A.) and industrialised by 'ODAM' (ATC 3000). The last part of this thesis work is the performance evaluations of this cyto-meter. The difference between the two size measurement methods are analyzed: electrical resistance pulse sizing versus small-angle light scattering. By an original optics design, high sensitivity has been reached in the fluorescence measurement: the equivalent noise corresponds to six hundred fluorescein isothiocyanate (FITC) molecules. The sorting performances have also been analyzed and the cell viability proven. (author) [fr

  5. An active, collaborative approach to learning skills in flow cytometry.

    Science.gov (United States)

    Fuller, Kathryn; Linden, Matthew D; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N; Röhrig, Kimberley J

    2016-06-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow cytometry listmode output (FCS) files and asked to design a gating strategy to diagnose patients with different hematological malignancies on the basis of their immunophenotype. A separate cohort of research trainees was given uncompensated data files on which they performed their own compensation, calculated the antibody staining index, designed a sequential gating strategy, and quantified rare immune cell subsets. Student engagement, confidence, and perceptions of flow cytometry were assessed using a survey. Competency against the learning outcomes was assessed by asking students to undertake tasks that required understanding of flow cytometry dot plot data and gating sequences. The active, collaborative approach allowed students to achieve learning outcomes not previously possible with traditional teaching formats, for example, having students design their own gating strategy, without forgoing essential outcomes such as the interpretation of dot plots. In undergraduate students, favorable perceptions of flow cytometry as a field and as a potential career choice were correlated with student confidence but not the ability to perform flow cytometry data analysis. We demonstrate that this new pedagogical approach to teaching flow cytometry is beneficial for student understanding and interpretation of complex concepts. It should be considered as a useful new method for incorporating complex data analysis tasks such as flow cytometry into curricula. Copyright © 2016 The American Physiological Society.

  6. A model for harmonizing flow cytometry in clinical trials

    OpenAIRE

    Maecker, Holden T; McCoy, J Philip

    2010-01-01

    Complexities in sample handling, instrument setup and data analysis are barriers to the effective use of flow cytometry to monitor immunological parameters in clinical trials. The novel use of a central laboratory may help mitigate these issues.

  7. Flow cytometry approach for studying the interaction between ...

    African Journals Online (AJOL)

    Flow cytometry approach for studying the interaction between Bacillus mojavensis and Alternaria alternata. Asma Milet, Noreddine Kacem Chaouche, Laid Dehimat, Asma Ait Kaki, Mounira Kara Ali, Philippe Thonart ...

  8. Scalable clustering algorithms for continuous environmental flow cytometry.

    Science.gov (United States)

    Hyrkas, Jeremy; Clayton, Sophie; Ribalet, Francois; Halperin, Daniel; Armbrust, E Virginia; Howe, Bill

    2016-02-01

    Recent technological innovations in flow cytometry now allow oceanographers to collect high-frequency flow cytometry data from particles in aquatic environments on a scale far surpassing conventional flow cytometers. The SeaFlow cytometer continuously profiles microbial phytoplankton populations across thousands of kilometers of the surface ocean. The data streams produced by instruments such as SeaFlow challenge the traditional sample-by-sample approach in cytometric analysis and highlight the need for scalable clustering algorithms to extract population information from these large-scale, high-frequency flow cytometers. We explore how available algorithms commonly used for medical applications perform at classification of such a large-scale, environmental flow cytometry data. We apply large-scale Gaussian mixture models to massive datasets using Hadoop. This approach outperforms current state-of-the-art cytometry classification algorithms in accuracy and can be coupled with manual or automatic partitioning of data into homogeneous sections for further classification gains. We propose the Gaussian mixture model with partitioning approach for classification of large-scale, high-frequency flow cytometry data. Source code available for download at https://github.com/jhyrkas/seaflow_cluster, implemented in Java for use with Hadoop. hyrkas@cs.washington.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Flow cytometry-based diagnosis of primary immunodeficiency diseases

    Directory of Open Access Journals (Sweden)

    Hirokazu Kanegane

    2018-01-01

    Flow cytometry can evaluate specific cell populations and subpopulations, cell surface, intracellular and intranuclear proteins, biologic effects associated with specific immune defects, and certain functional immune characteristics, each being useful for the diagnosis and evaluation of PIDs. Flow cytometry effectively identifies major forms of PIDs, including severe combined immunodeficiency, X-linked agammaglobulinemia, hyper IgM syndromes, Wiskott-Aldrich syndrome, X-linked lymphoproliferative syndrome, familial hemophagocytic lymphohistiocytosis, autoimmune lymphoproliferative syndrome, IPEX syndrome, CTLA 4 haploinsufficiency and LRBA deficiency, IRAK4 and MyD88 deficiencies, Mendelian susceptibility to mycobacterial disease, chronic mucocuneous candidiasis, and chronic granulomatous disease. While genetic analysis is the definitive approach to establish specific diagnoses of PIDs, flow cytometry provides a tool to effectively evaluate patients with PIDs at relatively low cost.

  10. Morphometric model of lymphocyte as applied to scanning flow cytometry

    Science.gov (United States)

    Loiko, Valery A.; Ruban, Gennady I.; Gritsai, Olga A.; Gruzdev, Alexey D.; Kosmacheva, Svetlana M.; Goncharova, Natalia V.; Miskevich, Alexander A.

    2006-11-01

    The peripheral blood lymphocytes of normal individuals are investigated by methods of specialized light microscopy. Lymphocytes as a whole and T-cell subpopulation are considered. Lymphocyte structure is characterized with reference to polarizing scanning flow cytometry. The lymphocyte and lymphocyte nucleus shapes are analyzed. Linear correlation dependence between sizes of lymphocyte and its nucleus is indicated. A morphometric model of a lymphocyte is constructed using the obtained data. The findings can be used, for instance, as input parameters to solve the direct and inverse light-scattering problems of turbidimetry, nephelometry, and flow cytometry.

  11. Merging Mixture Components for Cell Population Identification in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Greg Finak

    2009-01-01

    Full Text Available We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis. We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge package through the Bioconductor project.

  12. Determination of ploidy level by flow cytometry and autopolyploid ...

    African Journals Online (AJOL)

    A procedure for chromosome doubling of the white cocoyam (Xanthosoma sagittifolium) type was established by using colchicine and oryzalin treatments to in vitro plantlets. Flow cytometry was successfully used for analyzing ploidy levels within three cocoyam types and regenerated plants. Treating in vitro white cocoyam ...

  13. Flow cytometry-based diagnosis of primary immunodeficiency diseases.

    Science.gov (United States)

    Kanegane, Hirokazu; Hoshino, Akihiro; Okano, Tsubasa; Yasumi, Takahiro; Wada, Taizo; Takada, Hidetoshi; Okada, Satoshi; Yamashita, Motoi; Yeh, Tzu-Wen; Nishikomori, Ryuta; Takagi, Masatoshi; Imai, Kohsuke; Ochs, Hans D; Morio, Tomohiro

    2018-01-01

    Primary immunodeficiencies (PIDs) are a heterogeneous group of inherited diseases of the immune system. The definite diagnosis of PID is ascertained by genetic analysis; however, this takes time and is costly. Flow cytometry provides a rapid and highly sensitive tool for diagnosis of PIDs. Flow cytometry can evaluate specific cell populations and subpopulations, cell surface, intracellular and intranuclear proteins, biologic effects associated with specific immune defects, and certain functional immune characteristics, each being useful for the diagnosis and evaluation of PIDs. Flow cytometry effectively identifies major forms of PIDs, including severe combined immunodeficiency, X-linked agammaglobulinemia, hyper IgM syndromes, Wiskott-Aldrich syndrome, X-linked lymphoproliferative syndrome, familial hemophagocytic lymphohistiocytosis, autoimmune lymphoproliferative syndrome, IPEX syndrome, CTLA 4 haploinsufficiency and LRBA deficiency, IRAK4 and MyD88 deficiencies, Mendelian susceptibility to mycobacterial disease, chronic mucocuneous candidiasis, and chronic granulomatous disease. While genetic analysis is the definitive approach to establish specific diagnoses of PIDs, flow cytometry provides a tool to effectively evaluate patients with PIDs at relatively low cost. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  14. Accurate and fast urinalysis in febrile patients by flow cytometry

    NARCIS (Netherlands)

    de Boer, Foppie J.; Gieteling, Elske; van Egmond-Kreileman, Heidi; Moshaver, Bijan; van der Leur, Sjef J. C. M.; Stegeman, Coen A.; Groeneveld, Paul H. P.

    2017-01-01

    Background: The urine culture is worldwide accepted as the gold standard in diagnosing urinary tract infections, but is time consuming and costly, other methods are fast but moderately reliable. We investigated whether counting the number of bacteria by flow cytometry could be a fast and accurate

  15. Rapid detection of aneuploidy in Musa using flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Roux, N.; Toloza, A.; Radecki, Z.; Zapata-Arias, F. J.; Doležel, Jaroslav

    2003-01-01

    Roč. 21, - (2003), s. 483-490 ISSN 0721-7714 R&D Projects: GA AV ČR IAA6038204 Institutional research plan: CEZ:AV0Z5038910 Keywords : banana * flow cytometry * nuclear DNA content Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.423, year: 2003

  16. Hyperexpansion of wheat chromosomes sorted by flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Endo, Takashi R.; Kubaláková, Marie; Vrána, Jan; Doležel, Jaroslav

    2014-01-01

    Roč. 89, č. 4 (2014), s. 181-185 ISSN 1341-7568 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : flow cytometry * flow sorting * chromosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.930, year: 2014 http:// gateway .isiknowledge.com/ gateway / Gateway .cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25747042

  17. Identification and detection of murine leukemia blasts by flow cytometry

    OpenAIRE

    sprotocols

    2015-01-01

    Human leukemia has been determined and classified with the help of flow cytometry for the past two decades. Past attempts to detect leukemia blasts relied on both forward and side scatter (FSC and SSC) based on cell size and granularity. However, this technique failed to show a clean separation of blasts from normal lineage cells. In 1993, Borowitz, et al developed flow cytometric analysis to distinguish human leukemia blasts from other normal lineage cells by using fluorescence-conjugated CD...

  18. Method of detaching adherent cells for flow cytometry

    KAUST Repository

    Kaur, Mandeep

    2015-12-24

    In one aspect, a method for detaching adherent cells can include adding a cell lifting solution to the media including a sample of adherent cells and incubating the sample of adherent cells with the cell lifting solution. No scraping or pipetting is needed to facilitate cell detachment. The method do not require inactivation of cell lifting solution and no washing of detaching cells is required to remove cell lifting solution. Detached cells can be stained with dye in the presence of cell lifting solution and are further analyzed using flow cytometer. The method has been tested using 6 different cell lines, 4 different assays, two different plate formats (96 and 384 well plates) and two different flow cytometry instruments. The method is simple to perform, less time consuming, with no cell loss and makes high throughput flow cytometry on adherent cells a reality.

  19. Managing Multi-center Flow Cytometry Data for Immune Monitoring.

    Science.gov (United States)

    White, Scott; Laske, Karoline; Welters, Marij Jp; Bidmon, Nicole; van der Burg, Sjoerd H; Britten, Cedrik M; Enzor, Jennifer; Staats, Janet; Weinhold, Kent J; Gouttefangeas, Cécile; Chan, Cliburn

    2014-01-01

    With the recent results of promising cancer vaccines and immunotherapy1-5, immune monitoring has become increasingly relevant for measuring treatment-induced effects on T cells, and an essential tool for shedding light on the mechanisms responsible for a successful treatment. Flow cytometry is the canonical multi-parameter assay for the fine characterization of single cells in solution, and is ubiquitously used in pre-clinical tumor immunology and in cancer immunotherapy trials. Current state-of-the-art polychromatic flow cytometry involves multi-step, multi-reagent assays followed by sample acquisition on sophisticated instruments capable of capturing up to 20 parameters per cell at a rate of tens of thousands of cells per second. Given the complexity of flow cytometry assays, reproducibility is a major concern, especially for multi-center studies. A promising approach for improving reproducibility is the use of automated analysis borrowing from statistics, machine learning and information visualization21-23, as these methods directly address the subjectivity, operator-dependence, labor-intensive and low fidelity of manual analysis. However, it is quite time-consuming to investigate and test new automated analysis techniques on large data sets without some centralized information management system. For large-scale automated analysis to be practical, the presence of consistent and high-quality data linked to the raw FCS files is indispensable. In particular, the use of machine-readable standard vocabularies to characterize channel metadata is essential when constructing analytic pipelines to avoid errors in processing, analysis and interpretation of results. For automation, this high-quality metadata needs to be programmatically accessible, implying the need for a consistent Application Programming Interface (API). In this manuscript, we propose that upfront time spent normalizing flow cytometry data to conform to carefully designed data models enables automated

  20. Multicolor Flow Cytometry for the Diagnosis of Primary Immunodeficiency Diseases.

    Science.gov (United States)

    Takashima, Takehiro; Okamura, Miko; Yeh, Tzu-Wen; Okano, Tsubasa; Yamashita, Motoi; Tanaka, Keisuke; Hoshino, Akihiro; Mitsuiki, Noriko; Takagi, Masatoshi; Ishii, Eiichi; Imai, Kohsuke; Kanegane, Hirokazu; Morio, Tomohiro

    2017-07-01

    Primary immunodeficiency diseases (PIDDs) are rare inherited diseases that impair the human immune system. We established a multicolor flow cytometric assay to comprehensively evaluate the immune status and immunological characteristics of patients with PIDDs. Fifty-nine normal controls and 75 patients with PIDDs, including X-linked severe combined immunodeficiency (X-SCID), X-linked agammaglobulinemia (XLA), X-linked hyper IgM syndrome (X-HIGM), ataxia telangiectasia (AT), Wiskott-Aldrich syndrome (WAS), hyper IgE syndrome (HIES), and chronic mucocutaneous candidiasis disease (CMCD), were enrolled in this study. Immunophenotyes were evaluated by multicolor flow cytometry using seven different panels that allowed the detection of major leukocyte populations in peripheral blood. Multicolor flow cytometry revealed distinct leukocyte populations and immunological features of patients with X-SCID, XLA, X-HIGM, AT, WAS, HIES, and CMCD. Immunophenotyping by multicolor flow cytometry is useful to evaluate immune status and contributes to the diagnosis and management of patients with PIDDs.

  1. Plant DNA flow cytometry and estimation of nuclear genome size

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Bartoš, Jan

    2005-01-01

    Roč. 95, - (2005), s. 99-110 ISSN 0305-7364 R&D Projects: GA ČR GA522/03/0354; GA ČR GA204/04/1207 Institutional research plan: CEZ:AV0Z50380511 Keywords : flow cytometry * nuclear genome size * DNA C-value Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.665, year: 2005

  2. Sample handling for kinetics and molecular assembly in flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Sklar, L.A. [Los Alamos National Lab., NM (United States). National Flow Cytometry Resource]|[Univ. of New Mexico, Albuquerque, NM (United States). School of Medicine; Seamer, L.C.; Kuckuck, F.; Prossnitz, E.; Edwards, B. [Univ. of New Mexico, Albuquerque, NM (United States). School of Medicine; Posner, G. [Northern Arizona Univ., Flagstaff, AZ (United States). Dept. of Chemistry

    1998-07-01

    Flow cytometry discriminates particle associated fluorescence from the fluorescence of the surrounding medium. It permits assemblies of macromolecular complexes on beads or cells to be detected in real-time with precision and specificity. The authors have investigated two types of robust sample handling systems which provide sub-second resolution and high throughput: (1) mixers which use stepper-motor driven syringes to initiate chemical reactions in msec time frames; and (2) flow injection controllers with valves and automated syringes used in chemical process control. In the former system, the authors used fast valves to overcome the disparity between mixing 100 {micro}ls of sample in 100 msecs and delivering sample to a flow cytometer at 1 {micro}l/sec. Particles were detected within 100 msec after mixing, but turbulence was created which lasted for 1 sec after injection of the sample into the flow cytometer. They used optical criteria to discriminate particles which were out of alignment due to the turbulent flow. Complex sample handling protocols involving multiple mixing steps and sample dilution have also been achieved. With the latter system they were able to automate sample handling and delivery with intervals of a few seconds. The authors used a fluidic approach to defeat turbulence caused by sample introduction. By controlling both sheath and sample with individual syringes, the period of turbulence was reduced to {approximately} 200 msecs. Automated sample handling and sub-second resolution should permit broad analytical and diagnostic applications of flow cytometry.

  3. Ultraviolet 320 nm laser excitation for flow cytometry.

    Science.gov (United States)

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-04-01

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International

  4. Label-free high-throughput imaging flow cytometry

    Science.gov (United States)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  5. Stochastic Measurement Models for Quantifying Lymphocyte Responses Using Flow Cytometry

    Science.gov (United States)

    Kan, Andrey; Pavlyshyn, Damian; Markham, John F.; Dowling, Mark R.; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Hodgkin, Philip D.

    2016-01-01

    Adaptive immune responses are complex dynamic processes whereby B and T cells undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the response can lead to severe consequences for the host organism ranging from immune deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry using fluorescent probes is a major method for measuring progression of lymphocyte responses, both in vitro and in vivo. In turn, mathematical modeling of cell numbers derived from such measurements has led to significant biological discoveries, and plays an increasingly important role in lymphocyte research. Fitting an appropriate parameterized model to such data is the goal of these studies but significant challenges are presented by the variability in measurements. This variation results from the sum of experimental noise and intrinsic probabilistic differences in cells and is difficult to characterize analytically. Current model fitting methods adopt different simplifying assumptions to describe the distribution of such measurements and these assumptions have not been tested directly. To help inform the choice and application of appropriate methods of model fitting to such data we studied the errors associated with flow cytometry measurements from a wide variety of experiments. We found that the mean and variance of the noise were related by a power law with an exponent between 1.3 and 1.8 for different datasets. This violated the assumptions inherent to commonly used least squares, linear variance scaling and log-transformation based methods. As a result of these findings we propose a new measurement model that we justify both theoretically, from the maximum entropy standpoint, and empirically using collected data. Our evaluation suggests that the new model can be reliably used for model fitting across a variety of conditions. Our work provides a foundation for modeling measurements in flow cytometry experiments thus

  6. Estimation of nuclear DNA content in plants using flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Greilhuber, J.; Suda, Jan

    2007-01-01

    Roč. 2, č. 9 (2007), s. 2233-2244 ISSN 1754-2189 R&D Projects: GA MŠk ME 884; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z60050516 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : Flow cytometry * nuclear DNA content * suspensions of intact nuclei Subject RIV: EB - Genetics ; Molecular Biology www.nature.com/nprot/journal/v2/n9/abs/nprot.2007.310.html

  7. The application of data mining to flow cytometry.

    Science.gov (United States)

    Nguyen, Andy N D

    2002-05-01

    Data mining is the process of automating information discovery to detect useful patterns, correlations, and trends. Existing data must be fitted into a representative model from which useful information can be derived through a variety of algorithms. The routine generation of vast amounts of data make flow cytometry a logical target for the application of data mining. This informative unit discusses the steps of the data-mining process using the immunophenotyping of hematologic neoplasms to demonstrate the application. The author describes several types of algorithms and provides a useful resource list of commercially available tools.

  8. Thrombocytopenia: diagnosis with flow cytometry and antiplatelet antibodies.

    Science.gov (United States)

    Guerra, João Carlos de Campos; Kanayama, Ruth Hissae; Nozawa, Sonia Tsukasa; Ioshida, Márcia Regina; Takiri, Irina Yoko; Lazaro, Robson José; Hamerschlak, Nelson; Rosenfeld, Luiz Gastão Mange; Guerra, Celso Carlos de Campos; Bacal, Nydia Strachman

    2011-06-01

    To identify antiplatelet antibodies by flow cytometry (direct method) in patients with thrombocytopenia. Between January 1997 and March 2004 a total of 15100 patients were referred to the Centro de Hematologia de São Paulo for hematological investigation of several diagnoses (anemia, leukopenia, thrombocytopenia, coagulation abnormalities, adenomegaly, leukemia and others). Of those, 1057 were referred because of thrombocytopenia and were divided into two groups: Group Idiopathic thrombocytopenic purpura, with no identifiable cause; and Group Other thrombocytopenia, which included low normal platelet counts cause to be established, hepatitis C and HIV infection, hypersplenism, EDTA-induced artifacts, laboratory error, and other causes. Flow cytometry immunophenotyping was done in 115 cases to identify platelet autoantibodies (direct method). Of the total number of patients, 1057 (7%) presented low platelet counts, 670 were females (63.4%) and age range of one to 75 years. Of the 115 cases (9.7%) submitted to immunophenotyping, the results were positive in 40% and the test was inconclusive in 5%. Idiopathic thrombocytopenic purpura was found in 52% of patients, more often in women. Hepatitis C virus infection was found in 7% and HIV infection in 1%. Low normal platelet counts were found in 17%, laboratory errors in 6%, and laboratory artifacts in 1% of cases. Platelet autoantibodies were found in 76.9% of all idiopathic thrombocytopenic purpura cases. It was negative in 83.3% of the low normal counts. antiplatelet autoantibodies when present help to diagnose idiopathic thrombocytopenic purpura. When absent, suggest other causes of thrombocytopenia.

  9. Thyroid hormone effect on human mitochondria measured by flow cytometry

    DEFF Research Database (Denmark)

    Kvetny, Jan; Bomholt, Tobias; Pedersen, Palle

    2009-01-01

    a method to measure mitochondrial function in human derived cells, which also would reflect regulation by thyroid hormones. METHODS: The MDA-MB-231 cell line (a human breast cancer cell line) was incubated with bioactive iodothyronines (T(4), 3'-3, 5-T(3), 3, 5-T(2)) 50 nmol/l for 3 h. Mitochondrial...... membrane potentials (MMP) were measured by a flow cytometer after staining with Tetramethylrhodamine methyl ester (TMRM). Also, the effect of TRIAC (a stimulator of thyroid hormone nuclear receptors) and L-Carnitine (an inhibitor of thyroid hormone passage into the nucleus) was examined. FINDINGS......: It was possible to measure mitochondrial membrane potential (MMP) in human derived cells and to examine thyroid hormone effects using flow cytometry. Bioactive iodothyronines increased mitochondrial membrane potential. TRIAC had no effect and L-Carnitine only inhibited T(4) stimulation of membrane potential...

  10. Recommendations for quality assurance in multiparametric flow cytometry: first consensus of the Brazilian Group of Flow Cytometry (GBCFLUX

    Directory of Open Access Journals (Sweden)

    Rodolfo P. Correia

    2015-12-01

    Full Text Available ABSTRACT The Brazilian Group of Flow Cytometry (Grupo Brasileiro de Citometria de Fluxo [GBCFLUX], founded on April 24, 2010, is composed of experts in flow cytometry (FC area who have the common objective of contributing to technical and scientific advances in Brazilian clinical and research laboratories. Among GBCFLUX working groups, the Quality Control (QC subcommittee is responsible for discussing data in the literature and contributes to the quality assurance of the pre-analytical, analytical and post-analytical process in FC. The QC subcommittee's actions began through meetings and lectures, in which data from the literature were reviewed and discussed with all participating members of the GBCFLUX. In a second step, it was decided to draw up a text of technical and scientific consensus recommendations, informative and educative, for dissemination to all FC working groups in Brazil. To this effect, a questionnaire with objective responses was designed and sent to 35 recognized Brazilian institutions, in order to evaluate the QC profile of these institutions. Thus, the QC technical-scientific recommendations, which will be described in this updating article, are intended to ensure the process quality, technical standardization, and reproducibility of results in FC.

  11. Flow cytometry PRA using lymphocyte pools from random donors.

    Science.gov (United States)

    Won, Dong Il; Jung, Hee Du; Jung, Ok-Ju; Huh, Seung; Suh, Jang Soo

    2007-07-01

    Pools of lymphocytes from carefully chosen donors have been used for flow cytometry (FC) panel reactive antibody (PRA) assays. We intended to devise an FC PRA assay using mixed lymphocyte pools from a large number of randomly selected donors (RD FC PRA) to accurately predict the likelihood of a positive HLA crossmatch. Lymphocyte pools were prepared from randomly selected donors (N = 120). %PRA was calculated based on the anti-IgG FITC histogram of the T cells. The proposed RD FC PRA assay was assessed in comparison with the bead FC PRA, antiglobulin-augmented CDC (AHG-CDC) PRA assay, and the expected %PRA calculated by summing up the antigen frequencies of the known specificities. In 29 FC crossmatch positive sera, the positivity rate for the bead FC, RD FC, and AHG-CDC PRA was 100, 100, and 79%, and the mean %PRA was 77% +/- 0.205). In 19 sensitized patients with a negative FC crossmatch, the positivity rate was 21% using the RD FC PRA and 16% using the bead FC PRA, which suggested that both assays had similar abilities to detect low levels of HLA antibodies. The RD FC PRA assay allows easy panel preparation, reduces cost, and naturally reflects the probabilities of a positive crossmatch in the population to which the cadaveric donor belongs. Therefore, this new assay is expected to be useful as another approach to determine the % PRA. Copyright 2007 Clinical Cytometry Society.

  12. Misty Mountain clustering: application to fast unsupervised flow cytometry gating

    Directory of Open Access Journals (Sweden)

    Sealfon Stuart C

    2010-10-01

    Full Text Available Abstract Background There are many important clustering questions in computational biology for which no satisfactory method exists. Automated clustering algorithms, when applied to large, multidimensional datasets, such as flow cytometry data, prove unsatisfactory in terms of speed, problems with local minima or cluster shape bias. Model-based approaches are restricted by the assumptions of the fitting functions. Furthermore, model based clustering requires serial clustering for all cluster numbers within a user defined interval. The final cluster number is then selected by various criteria. These supervised serial clustering methods are time consuming and frequently different criteria result in different optimal cluster numbers. Various unsupervised heuristic approaches that have been developed such as affinity propagation are too expensive to be applied to datasets on the order of 106 points that are often generated by high throughput experiments. Results To circumvent these limitations, we developed a new, unsupervised density contour clustering algorithm, called Misty Mountain, that is based on percolation theory and that efficiently analyzes large data sets. The approach can be envisioned as a progressive top-down removal of clouds covering a data histogram relief map to identify clusters by the appearance of statistically distinct peaks and ridges. This is a parallel clustering method that finds every cluster after analyzing only once the cross sections of the histogram. The overall run time for the composite steps of the algorithm increases linearly by the number of data points. The clustering of 106 data points in 2D data space takes place within about 15 seconds on a standard laptop PC. Comparison of the performance of this algorithm with other state of the art automated flow cytometry gating methods indicate that Misty Mountain provides substantial improvements in both run time and in the accuracy of cluster assignment. Conclusions

  13. Monitoring Immune Responses in Organ Recipients by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Al-Mukhalafi Zuha

    2001-01-01

    Full Text Available Allograft rejection remains a major barrier to successful organ transplan-tation. Cellular and humoral immune responses play a critical role in mediating graft rejection. During the last few years, monoclonal antibodies have been used as a new specific therapeutic approach in the prevention of allograft rejection. Recently, the technology of flow cytometry has become a useful tool for monitoring immunological responses in transplant recipients. The application of this valuable tool in clinical transplantation at the present time is aimed at, i determining the extent of immuno-suppressive therapy through T-cell receptor analysis of cellular components, ii monitoring levels of alloreactive antibodies to identify high-risk recipients (sensitized patients in the pre-operative period and iii to predict rejection by monitoring their development post-operatively. In future, further development of this technology may demonstrate greater benefit to the field of organ transplantation.

  14. Rapid Identification of Airborne Biological Particles by Flow Cytometry, Gas Chromatography, and Genetic Probes

    National Research Council Canada - National Science Library

    Wick, Charles

    1997-01-01

    .... Physical characteristics of the particles, it was proposed, could be detected by flow cytometry, while their biochemical profiles could be determined by gas chromatography, and their genetic identity...

  15. Modeling flow cytometry data for cancer vaccine immune monitoring.

    Science.gov (United States)

    Frelinger, Jacob; Ottinger, Janet; Gouttefangeas, Cécile; Chan, Cliburn

    2010-09-01

    Flow cytometry (FCM) is widely used in cancer research for diagnosis, detection of minimal residual disease, as well as immune monitoring and profiling following immunotherapy. In all these applications, the challenge is to detect extremely rare cell subsets while avoiding spurious positive events. To achieve this objective, it helps to be able to analyze FCM data using multiple markers simultaneously, since the additional information provided often helps to minimize the number of false positive and false negative events, hence increasing both sensitivity and specificity. However, with manual gating, at most two markers can be examined in a single dot plot, and a sequential strategy is often used. As the sequential strategy discards events that fall outside preceding gates at each stage, the effectiveness of the strategy is difficult to evaluate without laborious and painstaking back-gating. Model-based analysis is a promising computational technique that works using information from all marker dimensions simultaneously, and offers an alternative approach to flow analysis that can usefully complement manual gating in the design of optimal gating strategies. Results from model-based analysis will be illustrated with examples from FCM assays commonly used in cancer immunotherapy laboratories.

  16. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders

    DEFF Research Database (Denmark)

    Rawstron, A.C.; Orfao, A.; Beksac, M.

    2008-01-01

    The European Myeloma Network (EMN) organized two flow cytometry workshops. The first aimed to identify specific indications for flow cytometry in patients with monoclonal gammopathies, and consensus technical approaches through a questionnaire-based review of current practice in participating lab...

  17. Viability staining of Cryptosporidium oocysts and Giardia cysts combined with flow cytometry

    NARCIS (Netherlands)

    Schets FM; Medema GJ; MGB

    1998-01-01

    The incorporation of flow cytometry as an additional purification step has improved the detection method for Cryptosporidium oocysts and Giardia cysts in water. Flow cytometry allows separation of (oo)cysts from interfering debris particles present in water concentrates and thus enables the

  18. Dicentric chromosome frequency analysis using slit-scan flow cytometry

    International Nuclear Information System (INIS)

    Lucas, J.N.; Mullikin, J.C.; Gray, J.W.

    1991-01-01

    Slit-scan flow cytometry (SSFCM) was used to quantify the frequency of dicentric chromosomes in human lymphoblastoid cells following gamma irradiation. In this study, cultured human cells were irradiated with 0, 0.25, 0.5, 1.0, and 2.0 Gy of 0.66 MeV gamma-rays, cultured for an additional 11 h, and treated for 5 h with colcemid. Chromosomes were then isolated, stained with propidium iodide, and analyzed using SSFCM for total fluorescence and slit-scan profile. The frequency of chromosomes having DNA contents greater than once and less than twice the DNA content of the number 1 chromosome and producing trimodal profiles was determined at each dose. This frequency was used as an estimate of the relative dicentric chromosome frequency at that dose. The estimated dicentric chromosome frequency per cell, f(D), increased with dose, D, in a linear-quadratic manner according to the relation f(D) = 4.52 x 10(-5) + 5.72 x 10(-5) D + 1.19 x 10(-4) D2

  19. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  20. Identifying Cell Populations in Flow Cytometry Data Using Phenotypic Signatures.

    Science.gov (United States)

    Pouyan, Maziyar Baran; Nourani, Mehrdad

    2017-01-01

    Single-cell flow cytometry is a technology that measures the expression of several cellular markers simultaneously for a large number of cells. Identification of homogeneous cell populations, currently done by manual biaxial gating, is highly subjective and time consuming. To overcome the shortcomings of manual gating, automatic algorithms have been proposed. However, the performance of these methods highly depends on the shape of populations and the dimension of the data. In this paper, we have developed a time-efficient method that accurately identifies cellular populations. This is done based on a novel technique that estimates the initial number of clusters in high dimension and identifies the final clusters by merging clusters using their phenotypic signatures in low dimension. The proposed method is called SigClust. We have applied SigClust to four public datasets and compared it with five well known methods in the field. The results are promising and indicate higher performance and accuracy compared to similar approaches reported in literature.

  1. Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT

    Directory of Open Access Journals (Sweden)

    Morse Michael A

    2005-07-01

    Full Text Available Abstract Background Cryopreservation of PBMC and/or overnight shipping of samples are required for many clinical trials, despite their potentially adverse effects upon immune monitoring assays such as MHC-peptide tetramer staining, cytokine flow cytometry (CFC, and ELISPOT. In this study, we compared the performance of these assays on leukapheresed PBMC shipped overnight in medium versus cryopreserved PBMC from matched donors. Results Using CMV pp65 peptide pool stimulation or pp65 HLA-A2 tetramer staining, there was significant correlation between shipped and cryopreserved samples for each assay (p ≤ 0.001. The differences in response magnitude between cryopreserved and shipped PBMC specimens were not significant for most antigens and assays. There was significant correlation between CFC and ELISPOT assay using pp65 peptide pool stimulation, in both shipped and cryopreserved samples (p ≤ 0.001. Strong correlation was observed between CFC (using HLA-A2-restricted pp65 peptide stimulation and tetramer staining (p Conclusion We conclude that all three assays show concordant results on shipped versus cryopreserved specimens, when using a peptide-based readout. The assays are also concordant with each other in pair wise comparisons using equivalent antigen systems.

  2. Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton

    Science.gov (United States)

    Lai, Queenie T. K.; Lau, Andy K. S.; Tang, Anson H. L.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2016-03-01

    Comprehensive quantification of phytoplankton abundance, sizes and other parameters, e.g. biomasses, has been an important, yet daunting task in aquatic sciences and biofuel research. It is primarily because of the lack of effective tool to image and thus accurately profile individual microalgae in a large population. The phytoplankton species are highly diversified and heterogeneous in terms of their sizes and the richness in morphological complexity. This fact makes time-stretch imaging, a new ultrafast real-time optical imaging technology, particularly suitable for ultralarge-scale taxonomic classification of phytoplankton together with quantitative image recognition and analysis. We here demonstrate quantitative imaging flow cytometry of single phytoplankton based on quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) - a new time-stretch imaging modality for label-free quantitative phase imaging without interferometric implementations. Sharing the similar concept of Schlieren imaging, Q-ATOM accesses multiple phase-gradient contrasts of each single phytoplankton, from which the quantitative phase profile is computed. We employ such system to capture, at an imaging line-scan rate of 11.6 MHz, high-resolution images of two phytoplankton populations (scenedesmus and chlamydomonas) in ultrafast microfluidic flow (3 m/s). We further perform quantitative taxonomic screening analysis enabled by this technique. More importantly, the system can also generate quantitative phase images of single phytoplankton. This is especially useful for label-free quantification of biomasses (e.g. lipid droplets) of the particular species of interest - an important task adopted in biofuel applications. Combining machine learning for automated classification, Q-ATOM could be an attractive platform for continuous and real-time ultralarge-scale single-phytoplankton analysis.

  3. Installation of a flow cytometry facility and some applications in radiobiology

    International Nuclear Information System (INIS)

    Walsh, M.; Kellington, J.P.

    1988-01-01

    Flow cytometry has enormous potential in many areas of experimental pathology. Details of the installation and commissioning of a flow cytometer at the Harwell Laboratory are described. Following an explanation of the principles of flow cytometry, several applications to specific problems in radiobiology are discussed. Also included are results of some preliminary studies with the Harwell flow cytometer on samples such as blood, bone marrow, macrophages and cell cultures, and a discussion of future applications. (author)

  4. Flow Cytometry of the Side Population: Tips & Tricks

    Directory of Open Access Journals (Sweden)

    Irene Sales-Pardo

    2006-01-01

    Full Text Available Background: The Side Population (SP has become an important hallmark for the definition of the stem cell compartment, especially in the detection of these cells and in their physical isolation by fluorescence-activated cell sorting (FACS. SP cells are CD34neg and were discovered using ultraviolet excitation based on the efflux of Hoechst 33342 (Ho342. Although the method works as originally described, we believe that this method is difficult for most investigators. First, because the ability to discriminate SP cells is based on the differential retention of Ho342 during a functional assay; second, because of the difficulties in setting the right experimental and acquisition conditions; and third, because the analysis of the acquired data requires an extensive expertise on flow cytometry to accurately detect the SP events. Methods: First of all and mainly for the SP application, the laser beam paths were exhaustively checked to ensure the lowest coefficients of variation. Blood suspensions were prepared by erythrocyte lysis with ammonium chloride and hematopoietic cells were labeled with Ho342. Results: The Ho342 concentration and the staining procedure are critical for the optimal resolution of the SP cells. Although UV laser alignment is very important to resolve the dim tail that outlines the SP, the problem with Ho342 excitation is not the Hoechst Blue emission, but rather the Hoechst Red's (because of the weak emission. Conclusions: Each laboratory must establish its own expected ranges based on its instrument and results may vary slightly due to instrument differences such as the narrowness of the band pass filters, laser power, laser emission wavelength, nozzle type, differential of pressure, light collection system (cuvette versus jet-in-air and beam shaping optics.

  5. Aequorea green fluorescent protein analysis by flow cytometry.

    Science.gov (United States)

    Ropp, J D; Donahue, C J; Wolfgang-Kimball, D; Hooley, J J; Chin, J Y; Hoffman, R A; Cuthbertson, R A; Bauer, K D

    1995-12-01

    The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types (Chalfie et al.: Science 263: 802-805, 1994). The longer wavelength peak (470 nm) of GFP's bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. (Nature 373:663-664, 1995) have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered at 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T-GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm.

  6. "First proposed panels on acute leukemia for four-color immunophenotyping by flow cytometry from the Brazilian Group of Flow Cytometry - GBCFLUX"

    Science.gov (United States)

    Ikoma, Maura R V; Sandes, Alex F; Thiago, Leandro S; Cavalcanti Júnior, Geraldo B; Lorand-Metze, Irene G H; Costa, Elaine S; Pimenta, Glicinia; Santos-Silva, Maria C; Bacal, Nydia S; Yamamoto, Mihoko; Souto, Elizabeth X

    2014-04-04

    Multiparameter flow cytometry (MFC) is a highly sensitive, fast and specific diagnostic technology with a wide range of applicability in hematology. Although well-established eight-color immunophenotyping panels are already available, most Brazilian clinical laboratories are equipped with four-color flow cytometer facilities. Based on this fact, the Brazilian Group of Flow Cytometry (Grupo Brasileiro de Citometria de Fluxo, GBCFLUX) for standardization of clinical flow cytometry has proposed an antibody panel designed to allow precise diagnosis and characterization of acute leukemia (AL) within resource-restricted areas. Morphological analysis of bone marrow smears, together with the screening panel, is mandatory for the primary identification of AL. The disease-oriented panels proposed here are divided into three levels of recommendations (mandatory, recommendable and optional) in order to provide an accurate final diagnosis, as well as allow some degree of flexibility based on available local resources and patient-specific needs. The proposed panels will be subsequently validated in an inter-laboratory study to evaluate its effectiveness on the diagnosis and classification of AL. © 2014 Clinical Cytometry Society. Copyright © 2014 Clinical Cytometry Society.

  7. Rapid Detection of γ-H2AX by Flow Cytometry in Cultured Mammalian Cells.

    Science.gov (United States)

    Firsanov, Denis; Solovjeva, Liudmila; Lublinskaya, Olga; Zenin, Valeriy; Kudryavtsev, Igor; Serebryakova, Maria; Svetlova, Maria

    2017-01-01

    Methods commonly used for detection of DNA double-strand breaks (DSBs) and analysis of cell death are generally time-consuming, and, therefore, any improvements in these techniques are important for researchers and clinicians. At present, flow cytometry is the most rapid method for detection of DSBs and cell viability. In this chapter, we provide our experience and methodological modification of flow cytometry protocol for the detection of γ-H2AX, a well-known marker of DSBs, in fixed mammalian fibroblasts. The modifications permit a reduction in the time required for DSB detection by flow cytometry.

  8. Diagnosis of Plasma Cell Dyscrasias and Monitoring of Minimal Residual Disease by Multiparametric Flow Cytometry

    Science.gov (United States)

    Soh, Kah Teong; Tario, Joseph D.; Wallace, Paul K.

    2018-01-01

    Synopsis Plasma cell dyscrasia (PCD) is a heterogeneous disease which has seen a tremendous change in outcomes due to improved therapies. Over the last few decades, multiparametric flow cytometry has played an important role in the detection and monitoring of PCDs. Flow cytometry is a high sensitivity assay for early detection of minimal residual disease (MRD) that correlates well with progression-free survival and overall survival. Before flow cytometry can be effectively implemented in the clinical setting sample preparation, panel configuration, analysis, and gating strategies must be optimized to ensure accurate results. Current consensus methods and reporting guidelines for MRD testing are discussed. PMID:29128071

  9. Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) compliant manuscript using the International Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org).

    Science.gov (United States)

    Spidlen, Josef; Breuer, Karin; Brinkman, Ryan

    2012-07-01

    FlowRepository.org is a Web-based flow cytometry data repository provided by the International Society for Advancement of Cytometry (ISAC). It supports storage, annotation, analysis, and sharing of flow cytometry datasets. A fundamental tenet of scientific research is that published results should be open to independent validation and refutation. With FlowRepository, researchers can annotate their datasets in compliance with the Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) standard, thus greatly facilitating third-party interpretation of their data. In this unit, we will mainly focus on the deposition, sharing, and annotation of flow cytometry data.

  10. Rapid diagnosis of uncomplicated urinary tract infection with laser flow cytometry

    Directory of Open Access Journals (Sweden)

    Chun-Chun Yang

    2016-09-01

    Conclusion: Laser flow cytometry (Sysmex UF1000i can help us rapidly identify patients with significant bateriuria in the preanalytical phase urine culture and thus reduce unnecessary use of antibiotics.

  11. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders

    DEFF Research Database (Denmark)

    Rawstron, Andy C; Orfao, Alberto; Beksac, Meral

    2008-01-01

    The European Myeloma Network (EMN) organized two flow cytometry workshops. The first aimed to identify specific indications for flow cytometry in patients with monoclonal gammopathies, and consensus technical approaches through a questionnaire-based review of current practice in participating......) after treatment, clonality assessment is only likely to be informative when combined with immunophenotype to detect abnormal cells. Flow cytometry is suitable for demonstrating a stringent complete remission; 3) for detection of abnormal plasma cells, a minimal panel should include CD19 and CD56....... A preferred panel would also include CD20, CD117, CD28 and CD27; 4) discrepancies between the percentage of plasma cells detected by flow cytometry and morphology are primarily related to sample quality and it is, therefore, important to determine that marrow elements are present in follow-up samples...

  12. A comparison of flow cytometry and immunohistochemistry in human colorectal cancers

    DEFF Research Database (Denmark)

    Diederichsen, Axel Cosmus Pyndt; Hansen, T P; Nielsen, O

    1998-01-01

    In human colorectal cancer it has been reported that some tumours lack the HLA-ABC antigens. This has been interpreted as reflecting tumour escape from the immune system. Earlier data have been obtained by immunohistochemistry. In this study, we compared the expression of HLA-ABC, HLA-DR, CD80 (B7......-1) and CD54 (ICAM-1) in 20 tumours using both a conventional immunohistochemistry two-layer technique and multiparameter flow cytometry, gating on an epithelial cell marker. Colorectal cancer tissue used in flow cytometry was dissociated with collagenase, deoxyribonuclease and hyaluronidase. The intensity...... was superior to immunohistochemistry in 33 out of 80 cases, and showed that tumours described as HLA-ABC negative by immunohistochemistry were in fact weakly positive for HLA-ABC. We conclude that flow cytometry and immunohistochemistry are complementary, and that flow cytometry is superior...

  13. 78 FR 5186 - Clinical Flow Cytometry in Hematologic Malignancies; Public Workshop; Request for Comments

    Science.gov (United States)

    2013-01-24

    ... issuance of the guidance, many uncleared, multi-analyte panels were withdrawn from distribution in order to comply with the interpretation of the ``ASR rule.'' Clinical flow cytometry plays a major role world-wide...

  14. Enumeration and Biomass Estimation of Bacteria in Aquifer Microcosm Studies by Flow Cytometry

    OpenAIRE

    DeLeo, P. C.; Baveye, P.

    1996-01-01

    Flow cytometry was used to enumerate and characterize bacteria from a sand column microcosm simulating aquifer conditions. Pure cultures of a species of Bacillus isolated from subsurface sediments or Bacillus megaterium were first evaluated to identify these organisms' characteristic histograms. Counting was then carried out with samples from the aquifer microcosms. Enumeration by flow cytometry was compared with more-traditional acridine orange direct counting. These two techniques gave stat...

  15. Comparative exploration of multidimensional flow cytometry software: a model approach evaluating T cell polyfunctional behavior.

    Science.gov (United States)

    Spear, Timothy T; Nishimura, Michael I; Simms, Patricia E

    2017-08-01

    Advancement in flow cytometry reagents and instrumentation has allowed for simultaneous analysis of large numbers of lineage/functional immune cell markers. Highly complex datasets generated by polychromatic flow cytometry require proper analytical software to answer investigators' questions. A problem among many investigators and flow cytometry Shared Resource Laboratories (SRLs), including our own, is a lack of access to a flow cytometry-knowledgeable bioinformatics team, making it difficult to learn and choose appropriate analysis tool(s). Here, we comparatively assess various multidimensional flow cytometry software packages for their ability to answer a specific biologic question and provide graphical representation output suitable for publication, as well as their ease of use and cost. We assessed polyfunctional potential of TCR-transduced T cells, serving as a model evaluation, using multidimensional flow cytometry to analyze 6 intracellular cytokines and degranulation on a per-cell basis. Analysis of 7 parameters resulted in 128 possible combinations of positivity/negativity, far too complex for basic flow cytometry software to analyze fully. Various software packages were used, analysis methods used in each described, and representative output displayed. Of the tools investigated, automated classification of cellular expression by nonlinear stochastic embedding (ACCENSE) and coupled analysis in Pestle/simplified presentation of incredibly complex evaluations (SPICE) provided the most user-friendly manipulations and readable output, evaluating effects of altered antigen-specific stimulation on T cell polyfunctionality. This detailed approach may serve as a model for other investigators/SRLs in selecting the most appropriate software to analyze complex flow cytometry datasets. Further development and awareness of available tools will help guide proper data analysis to answer difficult biologic questions arising from incredibly complex datasets. © Society

  16. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer

    Directory of Open Access Journals (Sweden)

    Vendula Pospichalova

    2015-03-01

    Full Text Available Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80–200 nm, microvesicles: ~200–1,000 nm, their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE and/or lipid- (FM specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the

  17. Rapid quantification of rice root-associated bacteria by flow cytometry.

    Science.gov (United States)

    Valdameri, G; Kokot, T B; Pedrosa, F de O; de Souza, E M

    2015-03-01

    To understand the mechanism of plant-bacterium interaction, it is critical to enumerate epiphytic bacteria colonizing the roots of the host. We developed a new approach, based on flow cytometry, for enumerating these bacteria and used it with rice plants, 7 and 20 days after colonization with Herbaspirillum rubrisubalbicans and Azospirillum brasilense. The results were compared with those obtained with the traditional plate count method. Both methods gave similar numbers of H. rubrisubalbicans associated with rice roots (c. 10(9) CFU g(-1) ). However, flow cytometry gave a number of viable cells of rice-associated A. brasilense that was approx. 10-fold greater than that obtained with the plate count method. These results suggest that the plate count method can underestimate epiphytic populations. Flow cytometry has the additional advantage that it is more precise and much faster than the plate count method. Determination of precise number of root-associated bacteria is critical for plant-bacteria interaction studies. We developed a flow cytometry approach for counting bacteria and compared it with the plate count method. Our flow cytometry assay solves two major limitations of the plate count method, namely that requires long incubation times of up to 48 h and only determines culturable cells. This flow cytometry assay provides an efficient, precise and fast tool for enumerating epiphytic cells. © 2014 The Society for Applied Microbiology.

  18. Flow cytometry susceptibility testing for conventional antifungal drugs and Comparison with the NCCLS Broth Macrodilution Test

    Directory of Open Access Journals (Sweden)

    M.J. Najafzadeh

    2009-08-01

    Full Text Available Introduction: During the last decade, the incidence of fungal infection has been increased in many countries. Because of the advent of resistant to antifungal agents, determination of an efficient strategic plan for treatment of fungal disease is an important issue in clinical mycology. Many methods have been introduced and developed for determination of invitro susceptibility tests. During the recent years, flow cytometry has developed to solving the problem and many papers have documented the usefulness of this technique. Materials and methods: As the first step, the invitro susceptibility of standard PTCC (Persian Type of Culture Collection strain and some clinical isolates of Candida consisting of Candida albicans, C. dubliniensis, C. glabrata, C. kefyer and C. parapsilosis were evaluated by macrodilution broth method according to NCCLS (National Committee for Clinical Laboratory Standards guidelines and flow cytometry susceptibility test. Results:  The data indicated that macro dilution broth methods and flow cytometry have the same results in determination of MIC (Minimum Inhibitory Concentration for amphotericin B, clotrimazole, fluconazole, ketoconazole and miconazole in C. albicans PTCC 5027 as well as clinical Candida isolates, such as C.albicans, C.dubliniensis, C.glabrata C.kefyr, and C.parapsilosis. Discussion: Comparing the results obtained by macrodilution broth and flow cytometry methods revealed that flow cytometry was faster. It is suggested that flow cytometry susceptibility test can be used as a powerful tool for determination of MIC and administration of the best antifungal drug in treatment of patients with Candida infections.

  19. First proposed panels on acute leukemia for four-color immunophenotyping by flow cytometry from the Brazilian group of flow cytometry-GBCFLUX.

    Science.gov (United States)

    Ikoma, Maura R V; Sandes, Alex F; Thiago, Leandro S; Cavalcanti Júnior, Geraldo B; Lorand-Metze, Irene G H; Costa, Elaine S; Pimenta, Glicinia; Santos-Silva, Maria C; Bacal, Nydia S; Yamamoto, Mihoko; Souto, Elizabeth X

    2015-01-01

    Multiparameter flow cytometry is a highly sensitive, fast, and specific diagnostic technology with a wide range of applicability in hematology. Although well-established eight-color immunophenotyping panels are already available, most Brazilian clinical laboratories are equipped with four-color flow cytometer facilities. Based on this fact, the Brazilian Group of Flow Cytometry (Grupo Brasileiro de Citometria de Fluxo, GBCFLUX) for standardization of clinical flow cytometry has proposed an antibody panel designed to allow precise diagnosis and characterization of acute leukemia (AL) within resource-restricted areas. Morphological analysis of bone marrow smears, together with the screening panel, is mandatory for the primary identification of AL. The disease-oriented panels proposed here are divided into three levels of recommendations (mandatory, recommendable, and optional) in order to provide an accurate final diagnosis, as well as allow some degree of flexibility based on available local resources and patient-specific needs. The proposed panels will be subsequently validated in an interlaboratory study to evaluate its effectiveness on the diagnosis and classification of AL. (Assoc editor comm. 2). © 2015 International Clinical Cytometry Society.

  20. Flow cytometry for the evaluation of anti-plasmodial activity of drugs on Plasmodium falciparum gametocytes

    Directory of Open Access Journals (Sweden)

    Pipy Bernard

    2010-02-01

    Full Text Available Abstract Background The activity of promising anti-malarial drugs against Plasmodium gametocytes is hard to evaluate even in vitro. This is because visual examination of stained smears, which is commonly used, is not totally convenient. In the current study, flow cytometry has been used to study the effect of established anti-malarial drugs against sexual stages obtained from W2 strain of Plasmodium falciparum. Gametocytes were treated for 48 h with different drug concentrations and the gametocytaemia was then determined by flow cytometry and compared with visual estimation by microscopy. Results and conclusions Initially gametocytaemia was evaluated either using light microscopy or flow cytometry. A direct correlation (r2 = 0.9986 was obtained. Two distinct peaks were observed on cytometry histograms and were attributed to gametocyte populations. The activities of established anti-malarial compounds were then measured by flow cytometry and the results were equivalent to those obtained using light microscopy. Primaquine and artemisinin had IC50 of 17.6 μM and 1.0 μM, respectively. Gametocyte sex was apparently distinguishable by flow cytometry as evaluated after induction of exflagellation by xanthurenic acid. These data form the basis of further studies for developing new methods in drug discovery to decrease malaria transmission.

  1. Multiplexed microbead immunoassays by flow cytometry for molecular profiling: Basic concepts and proteomics applications.

    Science.gov (United States)

    Krishhan, V V; Khan, Imran H; Luciw, Paul A

    2009-01-01

    Flow cytometry was originally established as an automated method for measuring optical or fluorescence characteristics of cells or particles in suspension. With the enormous increase in development of reliable electronics, lasers, micro-fluidics, as well as many advances in immunology and other fields, flow cytometers have become user-friendlier, less-expensive instruments with an increasing importance for both basic research and clinical applications. Conventional uses of flow cytometry include immunophenotyping of blood cells and the analysis of the cell cycle. Importantly, methods for labeling microbeads with unique combinations of fluorescent spectral signatures have made multiplex analysis of soluble analytes (i.e. the ability to detect multiple targets in a single test sample) feasible by flow cytometry. The result is a rapid, high-throughput, sensitive, and reproducible detection technology for a wide range of biomedical applications requiring detection of proteins (in cells and biofluids) and nucleic acids. Thus, novel methods of flow cytometry are becoming important for diagnostic purposes (e.g. identifying multiple clinical biomarkers for a wide range of diseases) as well as for developing novel therapies (e.g. elucidating drug mechanisms and potential toxicities). In addition, flow cytometry for multiplex analysis, coupled with automated sample handling devices, has the potential to significantly enhance proteomics research, particularly analysis of post-translational modifications of proteins, on a large scale. Inherently, flow cytometry methods are strongly rooted in the laws of the physics of optics, fluidics, and electromagnetism. This review article describes principles and early sources of flow cytometry, provides an introduction to the multiplex microbead technology, and discusses its applications and advantages in comparison to other methods. Anticipated future directions, particularly for translational research in medicine, are also discussed.

  2. FuGEFlow: data model and markup language for flow cytometry

    Directory of Open Access Journals (Sweden)

    Manion Frank J

    2009-06-01

    Full Text Available Abstract Background Flow cytometry technology is widely used in both health care and research. The rapid expansion of flow cytometry applications has outpaced the development of data storage and analysis tools. Collaborative efforts being taken to eliminate this gap include building common vocabularies and ontologies, designing generic data models, and defining data exchange formats. The Minimum Information about a Flow Cytometry Experiment (MIFlowCyt standard was recently adopted by the International Society for Advancement of Cytometry. This standard guides researchers on the information that should be included in peer reviewed publications, but it is insufficient for data exchange and integration between computational systems. The Functional Genomics Experiment (FuGE formalizes common aspects of comprehensive and high throughput experiments across different biological technologies. We have extended FuGE object model to accommodate flow cytometry data and metadata. Methods We used the MagicDraw modelling tool to design a UML model (Flow-OM according to the FuGE extension guidelines and the AndroMDA toolkit to transform the model to a markup language (Flow-ML. We mapped each MIFlowCyt term to either an existing FuGE class or to a new FuGEFlow class. The development environment was validated by comparing the official FuGE XSD to the schema we generated from the FuGE object model using our configuration. After the Flow-OM model was completed, the final version of the Flow-ML was generated and validated against an example MIFlowCyt compliant experiment description. Results The extension of FuGE for flow cytometry has resulted in a generic FuGE-compliant data model (FuGEFlow, which accommodates and links together all information required by MIFlowCyt. The FuGEFlow model can be used to build software and databases using FuGE software toolkits to facilitate automated exchange and manipulation of potentially large flow cytometry experimental data sets

  3. Correlation between flow cytometry and histologic findings: ten year experience in the investigation of lymphoproliferative diseases

    OpenAIRE

    Bezerra, Alanna Mara Pinheiro Sobreira; Pasqualin, Denise da Cunha; Guerra, João Carlos de Campos; Colombini, Marjorie Paris; Velloso, Elvira Deolinda Rodrigues Pereira; Silveira, Paulo Augusto Achucarro; Mangueira, Cristovão Luis Pitangueira; Kanayama, Ruth Hissae; Nozawa, Sonia Tsukasa; Correia, Rodolfo; Apelle, Ana Carolina; Pereira, Welbert de Oliveira; Garcia, Rodrigo Gobbo; Bacal, Nydia Strachman

    2011-01-01

    Objective: To demonstrate the advantages of correlating flow cytometry immunophenotyping with the pathology/ immunohistochemistry of lymph nodes or nodules in the diagnosis of lymphoproliferative diseases. Methods: A retrospective study was carried out of 157 biopsy or fine-needle aspiration lymph nodes/ nodule specimens taken from 142 patients, from 1999 and 2009. The specimens were simultaneously studied with fow cytometry and pathology at Hospital Israelita Albert Einstein. The specimens ...

  4. [Clinical evaluation of leukocyte differential count in peripheral blood by five-color flow cytometry].

    Science.gov (United States)

    Xing, Ying; Wang, Jian-zhong; Pu, Cheng-wei; Shang, Ke

    2013-08-13

    To explore the clinical application values of five-color flow cytometry for leukocyte differential count in peripheral blood. Leukocyte differentiation in 265 peripheral blood samples collected at Peking University First Hospital from September 2010 to December 2010 was detected by standard microscopic cytology as a reference method. Meanwhile, Beckman-Coulter LH750 hematology analyzer and FC500 flow cytometer were performed. Then the correlations were analyzed between microscopic cytology, hematology analyzer and flow cytometry. Forty blood samples collected at Peking University First Hospital, Beijing Daopei Hospital and General Hospital of Beijing Military Command from August 2010 to November 2010 were analyzed by standard microscopic cytology, Beckman-Coulter LH750 hematology analyzer and NAVIOS flow cytometer. Then the correlations between microscopy, hematology analyzer and flow cytometry were explored to analyze the clinical diagnostic efficiency of flow cytometry. Correlation of leukocyte differential count between FC500 flow cytometer and standard microscopic cytology was significant (all P leukocyte differential count between NAVIOS flow cytometer via manual gate and standard microscopic cytology was significant (r > 0.700, all P leukocyte differential count in peripheral blood with different flow cytometers, and the sensitivity of detecting blasts and immature granulocytes is very excellent.

  5. flowClust: a Bioconductor package for automated gating of flow cytometry data

    Directory of Open Access Journals (Sweden)

    Lo Kenneth

    2009-05-01

    Full Text Available Abstract Background As a high-throughput technology that offers rapid quantification of multidimensional characteristics for millions of cells, flow cytometry (FCM is widely used in health research, medical diagnosis and treatment, and vaccine development. Nevertheless, there is an increasing concern about the lack of appropriate software tools to provide an automated analysis platform to parallelize the high-throughput data-generation platform. Currently, to a large extent, FCM data analysis relies on the manual selection of sequential regions in 2-D graphical projections to extract the cell populations of interest. This is a time-consuming task that ignores the high-dimensionality of FCM data. Results In view of the aforementioned issues, we have developed an R package called flowClust to automate FCM analysis. flowClust implements a robust model-based clustering approach based on multivariate t mixture models with the Box-Cox transformation. The package provides the functionality to identify cell populations whilst simultaneously handling the commonly encountered issues of outlier identification and data transformation. It offers various tools to summarize and visualize a wealth of features of the clustering results. In addition, to ensure its convenience of use, flowClust has been adapted for the current FCM data format, and integrated with existing Bioconductor packages dedicated to FCM analysis. Conclusion flowClust addresses the issue of a dearth of software that helps automate FCM analysis with a sound theoretical foundation. It tends to give reproducible results, and helps reduce the significant subjectivity and human time cost encountered in FCM analysis. The package contributes to the cytometry community by offering an efficient, automated analysis platform which facilitates the active, ongoing technological advancement.

  6. Amphiphilic mediated sample preparation for micro-flow cytometry

    Science.gov (United States)

    Clague, David S [Livermore, CA; Wheeler, Elizabeth K [Livermore, CA; Lee, Abraham P [Irvine, CA

    2009-03-17

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  7. Absolute sizing and label-free identification of extracellular vesicles by flow cytometry.

    Science.gov (United States)

    van der Pol, Edwin; de Rond, Leonie; Coumans, Frank A W; Gool, Elmar L; Böing, Anita N; Sturk, Auguste; Nieuwland, Rienk; van Leeuwen, Ton G

    2018-01-05

    Blood contains extracellular vesicles (EVs), which are biological nanoparticles with clinical applications. In blood plasma, EVs are outnumbered by similar-sized lipoprotein particles (LPs), leading to controversial data such as non-specific binding of antibodies to LPs. Flow cytometry is a clinically applicable technique to characterize single EVs in body fluids. However, flow cytometry data have arbitrary units, impeding standardization, data comparison, and data interpretation, such as differentiation between EVs and LPs. Here we present a new method, named flow cytometry scatter ratio (Flow-SR), to relate the ambiguous light scattering signals of flow cytometry to the diameter and refractive index (RI) of single nanoparticles between 200-500 nm in diameter. Flow-SR enables label-free differentiation between EVs and LPs and improves data interpretation and comparison. Because Flow-SR is easy to implement, widely applicable, and more accurate and faster than existing techniques to size nanoparticles in suspension, Flow-SR has numerous applications in nanomedicine. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.

  8. Flow cytometry as an improved method for the titration of Chlamydiaceae and other intracellular bacteria.

    Science.gov (United States)

    Käser, T; Pasternak, J A; Hamonic, G; Rieder, M; Lai, K; Delgado-Ortega, M; Gerdts, V; Meurens, F

    2016-05-01

    Chlamydiaceae is a family of intracellular bacteria causing a range of diverse pathological outcomes. The most devastating human diseases are ocular infections with C. trachomatis leading to blindness and genital infections causing pelvic inflammatory disease with long-term sequelae including infertility and chronic pelvic pain. In order to enable the comparison of experiments between laboratories investigating host-chlamydia interactions, the infectious titer has to be determined. Titer determination of chlamydia is most commonly performed via microscopy of host cells infected with a serial dilution of chlamydia. However, other methods including fluorescent ELISpot (Fluorospot) and DNA Chip Scanning Technology have also been proposed to enumerate chlamydia-infected cells. For viruses, flow cytometry has been suggested as a superior alternative to standard titration methods. In this study we compared the use of flow cytometry with microscopy and Fluorospot for the titration of C. suis as a representative of other intracellular bacteria. Titer determination via Fluorospot was unreliable, while titration via microscopy led to a linear read-out range of 16 - 64 dilutions and moderate reproducibility with acceptable standard deviations within and between investigators. In contrast, flow cytometry had a vast linear read-out range of 1,024 dilutions and the lowest standard deviations given a basic training in these methods. In addition, flow cytometry was faster and material costs were lower compared to microscopy. Flow cytometry offers a fast, cheap, precise, and reproducible alternative for the titration of intracellular bacteria like C. suis. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  9. An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing.

    Science.gov (United States)

    Mao, Xiaole; Nawaz, Ahmad Ahsan; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Zhao, Yanhui; McCoy, J Philip; El-Deiry, Wafik S; Huang, Tony Jun

    2012-06-01

    In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.

  10. High-throughput autofluorescence flow cytometry of breast cancer metabolism (Conference Presentation)

    Science.gov (United States)

    Shah, Amy T.; Cannon, Taylor M.; Higginbotham, Jim N.; Skala, Melissa C.

    2016-02-01

    Tumor heterogeneity poses challenges for devising optimal treatment regimens for cancer patients. In particular, subpopulations of cells can escape treatment and cause relapse. There is a need for methods to characterize tumor heterogeneity of treatment response. Cell metabolism is altered in cancer (Warburg effect), and cells use the autofluorescent cofactor NADH in numerous metabolic reactions. Previous studies have shown that microscopy measurements of NADH autofluorescence are sensitive to treatment response in breast cancer, and these techniques typically assess hundreds of cells per group. An alternative approach is flow cytometry, which measures fluorescence on a single-cell level and is attractive for characterizing tumor heterogeneity because it achieves high-throughput analysis and cell sorting in millions of cells per group. Current applications for flow cytometry rely on staining with fluorophores. This study characterizes flow cytometry measurements of NADH autofluorescence in breast cancer cells. Preliminary results indicate flow cytometry of NADH is sensitive to cyanide perturbation, which inhibits oxidative phosphorylation, in nonmalignant MCF10A cells. Additionally, flow cytometry is sensitive to higher NADH intensity for HER2-positive SKBr3 cells compared with triple-negative MDA-MB-231 cells. These results agree with previous microscopy studies. Finally, a mixture of SKBr3 and MDA-MB-231 cells were sorted into each cell type using NADH intensity. Sorted cells were cultured, and microscopy validation showed the expected morphology for each cell type. Ultimately, flow cytometry could be applied to characterize tumor heterogeneity based on treatment response and sort cell subpopulations based on metabolic profile. These achievements could enable individualized treatment strategies and improved patient outcomes.

  11. Use of flow cytometry in the diagnosis of lymphoproliferative disorders in fluid specimens.

    Science.gov (United States)

    Yu, Gordon H; Vergara, Norge; Moore, Erika M; King, Rebecca L

    2014-08-01

    The diagnostic evaluation of fluid specimens, including serous effusions and cerebrospinal fluids (CSFs), can be challenging for a number of reasons. The evaluation of lymphoid proliferations in these specimens can be particularly problematic, given the frequent presence of coexisting inflammatory conditions and the manner in which these specimens are processed. As a result, immunophenotypic analysis of hematopoietic cell populations by flow cytometry has emerged as a useful ancillary study in the diagnosis of these specimens, both in patients with and without a previous history of a lymphoproliferative disorder. In this study, we review our experience with flow cytometry in fluid specimens over a four-year period. Flow cytometry was performed in 184 of 6,925 total cases (2.7% of all fluids). Flow cytometry was performed in 4.8% of pleural fluids (positive findings in 38%, negative in 40%, and atypical in 18%), 1.1% of peritoneal fluids (positive in 40%, negative in 50%, and atypical in 10%), 1.9% of pericardial fluids (positive in 67%, negative in 33%), and 1.9% of CSFs (positive in 23%, negative in 55%, atypical in 3%). The specimen submitted was inadequate for analysis in 9.2% of cases, most commonly with CSF specimens, but was not related to the volume of fluid submitted. Atypical flow cytometry findings and atypical morphologic findings in the context of negative flow cytometry results led to the definitive diagnosis of a lymphoproliferative disorder in a significant number of cases when repeat procedures and ancillary studies were performed. Copyright © 2014 Wiley Periodicals, Inc.

  12. Microbial flow cytometry: An ideal tool for prospective antimicrobial drug development.

    Science.gov (United States)

    Muthirulan, Pushpanathan; Chandrasekaran, Arun Richard

    2016-09-15

    Flow cytometry has tremendous applications in qualitative and quantitative analysis of characteristics of single microbial cells. Its ability to efficiently discriminate and quantify multiple parameters of microbial cells has made it a powerful tool to catalog the mechanism of action of antimicrobial peptides (AMPs) on target cells. Here, we provide a comprehensive overview and strategic design on how multi-parametric analysis of flow cytometry is unsurpassed in studying the antimicrobial process of AMPs in an accurate and rapid way. This strategy provides a conceptual framework for understanding distinct classes of AMPs and getting insights into antimicrobial mechanisms of novel AMPs. Published by Elsevier Inc.

  13. Flow cytometry vs cytomorphology for the detection of hematologic malignancy in body cavity fluids.

    Science.gov (United States)

    Cesana, Clara; Klersy, Catherine; Scarpati, Barbara; Brando, Bruno; Volpato, Elisabetta; Bertani, Giambattista; Faleri, Maurizio; Nosari, Annamaria; Cantoni, Silvia; Ferri, Ursula; Scampini, Linda; Barba, Claudia; Lando, Giuliana; Morra, Enrica; Cairoli, Roberto

    2010-08-01

    Flow cytometry and cytomorphology results on 92 body cavity fluids [61 effusions and 31 bronchoalveolar lavage fluids (BALF)] from hematologic malignancy were compared with retrospective clinical outcome. We observed double true positive/negative results in 67 cases (73%), and double false negative results in 2 cases (2%). Immunophenotyping accounted for true positive/negative results in 22 out of 23 mismatched cases (25%), and retained significantly higher accuracy than that of cytomorphology especially in effusions and differentiated lymphoma. In BALF analysis, immunophenotyping and cytomorphology sensitivity was 75% and 0%, respectively. Flow cytometry retains the highest accuracy in detecting neoplastic cells in body cavity fluids. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Surface profiling of normally responding and nonreleasing basophils by flow cytometry

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Lars Kærgaard; Jensen, Bettina Margrethe

    a maximum release blood mononuclear cells were purified by density centrifugation and using flow cytometry, basophils, defined as FceRIa+CD3-CD14-CD19-CD56-,were analysed for surface expression of relevant markers. All samples were compensated and analysed in logicle display. All gates......c, C3aR, C5aR CCR3, FPR1, ST2, CRTH2 on anti-IgE respondsive and nonreleasing basophils by flow cytometry, thereby generating a surface profile of the two phenotypes. Methods Fresh buffy coat blood (

  15. Report of the results of the International Clinical Cytometry Society and American Society for Clinical Pathology workload survey of clinical flow cytometry laboratories.

    Science.gov (United States)

    Wolniak, Kristy; Goolsby, Charles; Choi, Sarah; Ali, Asma; Serdy, Nina; Stetler-Stevenson, Maryalice

    2017-11-01

    Thorough review of current workload, staffing, and testing practices in clinical laboratories allows for optimization of laboratory efficiency and quality. This information is largely missing with regard to clinical flow cytometry laboratories. The purpose of this survey is to provide comprehensive, current, and accurate data on testing practices and laboratory staffing in clinical laboratories performing flow cytometric studies. Survey data was collected from flow cytometry laboratories through the ASCP website. Data was collected on the workload during a 1-year time period of full-time and part-time technical and professional (M.D./D.O./Ph.D. or equivalent) flow cytometry employees. Workload was examined as number of specimens and tubes per full time equivalent (FTE) technical and professional staff. Test complexity, test result interpretation, and reporting practices were also evaluated. There were 205 respondent laboratories affiliated predominantly with academic and health system institutions. Overall, 1,132 FTE employees were reported with 29% professional FTE employees and 71% technical. Fifty-one percent of the testing performed was considered high complexity and 49% was low complexity. The average number of tubes per FTE technologist was 1,194 per year and the average number of specimens per FTE professional was 1,659 per year. The flow cytometry reports were predominantly written by pathologists (57%) and were typically written as a separate report (58%). This survey evaluates the overall status of the current practice of clinical flow cytometry and provides a comprehensive dataset as a framework to help laboratory departments, directors, and managers make appropriate, cost-effective staffing decisions. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  16. Challenges of setting up flow cytometry for diagnosis of leukemia ...

    African Journals Online (AJOL)

    The bone marrow (BM) is a complex tissue containing cells of multiple hematopoietic cell lineages in all stages of development. Flow cytometric immunophenotyping evaluates the frequencies of the various leukocyte (sub) populations in BM and blood that then helps in the diagnosis of leukemia's. The aim of this study was ...

  17. Assessment of Equine Autoimmune Thrombocytopenia (EAT by flow cytometry

    Directory of Open Access Journals (Sweden)

    Schwarzwald Colin

    2001-04-01

    Full Text Available Abstract Rationale Thrombocytopenia is a platelet associated process that occurs in human and animals as result of i decreased production; ii increased utilization; iii increased destruction coupled to the presence of antibodies, within a process know as immune-mediated thrombocytopenia (IMT; or iv platelet sequestration. Thus, the differentiation of the origin of IMT and the development of reliable diagnostic approaches and methodologies are important in the clarification of IMT pathogenesis. Therefore, there is a growing need in the field for easy to perform assays for assessing platelet morphological characteristics paired with detection of platelet-bound IgG. Objectives This study is aimed to develop and characterize a single color flow cytometric assay for detection of platelet-bound IgG in horses, in combination with flow cytometric assessment of platelet morphological characteristics. Findings The FSC and SSC evaluation of the platelets obtained from the thrombocytopenic animals shows several distinctive features in comparison to the flow cytometric profile of platelets from healthy animals. The thrombocytopenic animals displayed i increased number of platelets with high FSC and high SSC, ii a significant number of those gigantic platelets had strong fluorescent signal (IgG bound, iii very small platelets or platelet derived microparticles were found significantly enhanced in one of the thrombocytopenic horses, iv significant numbers of these microplatelet/microparticles/platelet-fragments still carry very high fluorescence. Conclusions This study describes the development and characterization of an easy to perform, inexpensive, and noninvasive single color flow cytometric assay for detection of platelet-bound IgG, in combination with flow cytometric assessment of platelet morphological characteristics in horses.

  18. National flow cytometry and sorting research resource. Annual progress report, July, 1, 1994--June 30, 1995, Year 12

    Energy Technology Data Exchange (ETDEWEB)

    Jett, J.H.

    1995-04-27

    Research progress utilizing flow cytometry is described. Topics include: rapid kinetics flow cytometry; characterization of size determinations for small DNA fragments; statistical analysis; energy transfer measurements of molecular confirmation in micelles; and enrichment of Mus spretus chromosomes by dual parameter flow sorting and identification of sorted fractions by fluorescence in-situ hybridization onto G-banded mouse metaphase spreads.

  19. FlowCam: Quantification and Classification of Phytoplankton by Imaging Flow Cytometry.

    Science.gov (United States)

    Poulton, Nicole J

    2016-01-01

    The ability to enumerate, classify, and determine biomass of phytoplankton from environmental samples is essential for determining ecosystem function and their role in the aquatic community and microbial food web. Traditional micro-phytoplankton quantification methods using microscopic techniques require preservation and are slow, tedious and very laborious. The availability of more automated imaging microscopy platforms has revolutionized the way particles and cells are detected within their natural environment. The ability to examine cells unaltered and without preservation is key to providing more accurate cell concentration estimates and overall phytoplankton biomass. The FlowCam(®) is an imaging cytometry tool that was originally developed for use in aquatic sciences and provides a more rapid and unbiased method for enumerating and classifying phytoplankton within diverse aquatic environments.

  20. Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art

    Science.gov (United States)

    Hossain, Md. Sharoare; Johannisson, Anders; Wallgren, Margareta; Nagy, Szabolcs; Siqueira, Amanda Pimenta; Rodriguez-Martinez, Heriberto

    2011-01-01

    Flow cytometry is now a recognized methodology within animal spermatology, and has moved from being a research tool to become routine in the assessment of animal semen destined to breeding. The availability of ‘bench-top' flow cytometers and of newer and versatile markers for cell structure and function had allowed the instrumentation to measure more sperm parameters, from viability to reactiveness when exposed to exogenous stimuli, and to increase our capabilities to sort spermatozoa for potential fertilizing capacity, or chromosomal sex. The present review summarizes the state of the art regarding flow cytometry applied to animal andrology, albeit keeping an open comparative intent. It critically evaluates the present and future capabilities of flow cytometry for the diagnostics of potential fertility and for the development of current reproductive technologies such as sperm freezing, sperm selection and sperm sorting. The flow cytometry methods will probably further revolutionize our understanding of the sperm physiology and their functionality, and will undoubtedly extend its application in isolating many uncharacterized features of spermatozoa. However, continuous follow-up of the methods is a necessity owing to technical developments and the complexity of mapping spermatozoa. PMID:21478895

  1. The use of flow cytometry in radiation biology

    International Nuclear Information System (INIS)

    Szekely, J.G.; Raaphorst, G.P.; Lobreau, A.U.; Einspenner, M.; Sargent, M.; Azzam, E.I.

    1989-09-01

    The flow cytometer has been used in a number of projects at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, Canada. In this report we have summarized the methods and results obtained in the cellular radiobiology program. The techniques used in the program included live/dead analysis in lymphocytes, identification of bone-marrow subsets, chromosome analysis, cell-cycle analysis, cell sorting and the quantification of surface antigens

  2. Sex-sorting sperm using flow cytometry/cell sorting.

    Science.gov (United States)

    Garner, Duane L; Evans, K Michael; Seidel, George E

    2013-01-01

    The sex of mammalian offspring can be predetermined by flow sorting relatively pure living populations of X- and Y-chromosome-bearing sperm. This method is based on precise staining of the DNA of sperm with the nucleic acid-specific fluorophore, Hoechst 33342, to differentiate between the subpopulations of X- and Y-sperm. The fluorescently stained sperm are then sex-sorted using a specialized high speed sorter, MoFlo(®) SX XDP, and collected into biologically supportive media prior to reconcentration and cryopreservation in numbers adequate for use with artificial insemination for some species or for in vitro fertilization. Sperm sorting can provide subpopulations of X- or Y-bearing bovine sperm at rates in the 8,000 sperm/s range while maintaining; a purity of 90% such that it has been applied to cattle on a commercial basis. The sex of offspring has been predetermined in a wide variety of mammalian species including cattle, swine, horses, sheep, goats, dogs, cats, deer, elk, dolphins, water buffalo as well as in humans using flow cytometric sorting of X- and Y-sperm.

  3. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).

    Science.gov (United States)

    Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K

    2017-06-28

    Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization

  4. Teaching the Microbial Growth Curve Concept Using Microalgal Cultures and Flow Cytometry

    Science.gov (United States)

    Forget, Nathalie; Belzile, Claude; Rioux, Pierre; Nozais, Christian

    2010-01-01

    The microbial growth curve is widely studied within microbiology classes and bacteria are usually the microbial model used. Here, we describe a novel laboratory protocol involving flow cytometry to assess the growth dynamics of the unicellular microalgae "Isochrysis galbana." The algal model represents an appropriate alternative to…

  5. DIRECT FLOW-CYTOMETRY OF ANAEROBIC-BACTERIA IN HUMAN FECES

    NARCIS (Netherlands)

    VANDERWAAIJ, LA; MESANDER, G; LIMBURG, PC; VANDERWAAIJ, D

    1994-01-01

    We describe a flow cytometry method for analysis of noncultured anaerobic bacteria present in human fecal suspensions. Nonbacterial fecal compounds, bacterial fragments, and large aggregates could be discriminated from bacteria by staining with propidium iodide (PI) and setting a discriminator on PI

  6. External quality assessment in flow cytometry: educational aspects and trends toward improvement

    NARCIS (Netherlands)

    W.H.B.M. Levering

    2007-01-01

    textabstractFlow cytometry (FCM) uses the principles of hydro- dynamic focusing, light scattering, light excitation, and emission of fluorochrome molecules to generate specific multi-parameter data from particles and cells. FCM became rapidly a routine method for clinical decision-making in

  7. Data File Standard for Flow Cytometry, Version FCS 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Spidlen, Josef; Moore, Wayne; Parks, David; Goldberg, Michael; Bray, Chris; Gorombey, Peter; Hyun, Bill; Hubbard, Mark; Lange, Simon; Lefebvre, Ray; Leif, Robert; Novo, David; Ostruszka, Leo; Treister, Adam; Wood, James; Murphy, Robert F.; Roederer, Mario; Sudar, Damir; Zigon, Robert; Brinkman, Ryan R.; Brierre, Pierre

    2009-11-10

    The flow cytometry data file standard provides the specifications needed to completely describe flow cytometry data sets within the confines of the file containing the experimental data. In 1984, the first Flow Cytometry Standard format for data files was adopted as FCS 1.0. This standard was modified in 1990 as FCS 2.0 and again in 1997 as FCS 3.0. We report here on the next generation flow cytometry standard data file format. FCS 3.1 is a minor revision based on suggested improvements from the community. The unchanged goal of the standard is to provide a uniform file format that allows files created by one type of acquisition hardware and software to be analyzed by any other type. The FCS 3.1 standard retains the basic FCS file structure and most features of previous versions of the standard. Changes included in FCS 3.1 address potential ambiguities in the previous versions and provide a more robust standard. The major changes include simplified support for international characters and improved support for storing compensation. The major additions are support for preferred display scale, a standardized way of capturing the sample volume, information about originality of the data file, and support for plate and well identification in high throughput, plate based experiments. Please see the normative version of the FCS 3.1 specification in Supporting Information for this manuscript (or at http://www.isac-net.org/ in the Current standards section) for a complete list of changes.

  8. Comparison of four nuclear isolation buffers for plant DNA flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Loureiro, J.; Rodriguez, E.; Doležel, Jaroslav; Santos, C.

    2006-01-01

    Roč. 98, - (2006), s. 679-689 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : flow cytometry * genome size * nuclear DNA content Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.448, year: 2006

  9. A liposome-based size calibration method for measuring microvesicles by flow cytometry

    DEFF Research Database (Denmark)

    Simonsen, Jens Bæk

    2016-01-01

    BACKGROUND: Over the last years the need for a gold standard to determine the sizes of extracellular vesicles including microvesicles by flow cytometry has been emphasized. METHODS: This work suggests to use artificial vesicles as calibrators to ascertain the size of microvesicles from the side...

  10. Flow cytometry of sputum: assessing inflammation and immune response elements in the bronchial airways**

    Science.gov (United States)

    Rationale: The evaluation of sputum leukocytes by flow cytometry is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. ...

  11. Induction studies with Escherichia coli expressing recombinant interleukin-13 using multi-parameter flow cytometry

    DEFF Research Database (Denmark)

    Shitu, J. O.; Woodley, John; Wnek, R.

    2009-01-01

    The expression of interleukin-13 (IL13) following induction with IPTG in Escherichia coli results in metabolic changes as indicated by multi-parameter flow cytometry and traditional methods of fermentation profiling (O-2 uptake rate, CO2 evolution rate and optical density measurements). Induction...

  12. Sensitivity of hemozoin detection by automated flow cytometry in non- and semi-immune malaria patients

    NARCIS (Netherlands)

    Grobusch, Martin P.; Hänscheid, Thomas; Krämer, Benedikt; Neukammer, Jörg; May, Jürgen; Seybold, Joachim; Kun, Jürgen F. J.; Suttorp, Norbert

    2003-01-01

    BACKGROUND: Cell-Dyn automated blood cell analyzers use laser flow cytometry technology, allowing detection of malaria pigment (hemozoin) in monocytes. We evaluated the value of such an instrument to diagnose malaria in febrile travelers returning to Berlin, Germany, the relation between the

  13. Intracellular cytokine detection by flow cytometry in pigs: Fixation, permeabilization and cell surface staining

    Czech Academy of Sciences Publication Activity Database

    Zelníčková, P.; Faldyna, M.; Štěpánová, H.; Ondráček, J.; Kovářů, František

    2007-01-01

    Roč. 327, č. 1 (2007), s. 18-29 ISSN 0022-1759 Grant - others:GA ČR(CZ) GA524/05/0267 Institutional research plan: CEZ:AV0Z50450515 Keywords : cytokine detection * flow cytometry * pig Subject RIV: EC - Immunology Impact factor: 1.947, year: 2007

  14. DNA Detection by Flow Cytometry using PNA‐Modified Metal–Organic Framework Particles

    NARCIS (Netherlands)

    Mejia-Ariza, Raquel; Rosselli, Jessica; Breukers, Christian; Manicardi, Alex; Terstappen, Leon; Corradini, Roberto; Huskens, J.

    2017-01-01

    A DNA-sensing platform is developed by exploiting the easy surface functionalization of metal–organic framework (MOF) particles and their highly parallelized fluorescence detection by flow cytometry. Two strategies were employed to functionalize the surface of MIL-88A, using either covalent or

  15. Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis

    DEFF Research Database (Denmark)

    Knaus, Alexej; Pantel, Jean Tori; Pendziwiat, Manuela

    2018-01-01

    , the increasing number of individuals with a GPIBD shows that hyperphosphatasia is a variable feature that is not ideal for a clinical classification. METHODS: We studied the discriminatory power of multiple GPI-linked substrates that were assessed by flow cytometry in blood cells and fibroblasts of 39 and 14...

  16. Absolute sizing and label-free identification of extracellular vesicles by flow cytometry

    NARCIS (Netherlands)

    van der Pol, Edwin; de Rond, Leonie; Coumans, Frank A. W.; Gool, Elmar L.; Böing, Anita N.; Sturk, Auguste; Nieuwland, Rienk; van Leeuwen, Ton G.

    2018-01-01

    Blood contains extracellular vesicles (EVs), which are biological nanoparticles with clinical applications. In blood plasma, EVs are outnumbered by similar-sized lipoprotein particles (LPs), leading to controversial data such as non-specific binding of antibodies to LPs. Flow cytometry is a

  17. Detection of alloreactive T cells by flow cytometry : A new test compared with limiting dilution assay

    NARCIS (Netherlands)

    de Haan, A; van der Gun, [No Value; van der Bij, W; de Leij, LFMH; Prop, J

    2002-01-01

    Background. Frequencies of alloreactive T cells determined by limiting dilution assays (LDA) may not adequately reflect the donor-reactive immune status in transplant recipients. To reevaluate LDA frequencies, we developed a flow cytometry test for direct determination of alloreactive T-cell

  18. Flow cytometry-based DNA hybridization and polymorphism analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Kommander, K.; White, P.S.; Nolan, J.P.

    1998-07-01

    Functional analysis of the humane genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well-suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. The authors are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. The approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advances of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  19. Tomographic flow cytometry assisted by intelligent wavefronts analysis

    Science.gov (United States)

    Merola, F.; Memmolo, P.; Miccio, L.; Mugnano, M.; Ferraro, P.

    2017-06-01

    High-throughput single-cell analysis is a challenging target for implementing advanced biomedical applications. An excellent candidate for this aim is label-free tomographic phase microscopy. However, in-line tomography is very difficult to be implemented in practice, as it requires complex setup for rotating the sample and/or illuminate the cell along numerous directions [1]. We exploit random rolling of cells while they are flowing along a microfluidic channel demonstrating that it is possible to obtain in-line phase-contrast tomography by adopting strategies for intelligent wavefronts analysis thus obtaining complete retrieval of both 3D-position and orientation of rotating cells [2]. Thus, by numerical wavefront analysis a-priori knowledge of such information is no longer needed. This approach makes continuos-flow cyto-tomography suitable for practical operation in real-world, single-cell analysis and with substantial simplification of the optical system avoiding any mechanical/optical scanning of light source. Demonstration is given for different classes of biosamples, red-blood-cells (RBCs), diatom algae and fibroblast cells [3]. Accurate characterization of each type of cells is reported despite their very different nature and materials content, thus showing the proposed method can be extended, by adopting two alternate strategies of wavefront-analysis, to many classes of cells. In particular, for RBCs we furnish important parameters as 3D morphology, Corpuscular Hemoglobin (CH), Volume (V), and refractive index (RI) for each single cell in the total population [3]. This could open a new route in blood disease diagnosis, for example for the isolation and characterization of "foreign" cells in the blood stream, the so called Circulating Tumor Cells (CTC), early manifestation of metastasis.

  20. Distinct neutrophil subpopulations phenotype by flow cytometry in myelodysplastic syndromes.

    Science.gov (United States)

    Vikentiou, Myrofora; Psarra, Katerina; Kapsimali, Violetta; Liapis, Konstantinos; Michael, Michalis; Tsionos, Konstantinos; Lianidou, Evi; Papasteriades, Chryssa

    2009-03-01

    The cardinal feature of myelodysplastic syndromes (MDS) is dysplasia involving one or more myeloid cell lineages. In the present study, we used 4-color flow cytometric analysis to investigate dysgranulopoiesis in bone marrow specimens from 65 patients with MDS. The antigen expression patterns of total neutrophil granulocytes (TNG) and of the two distinct neutrophil granulocytic subpopulations (NGSs), NGS-1 (dimmer CD45 expression) and NGS-2 (stronger CD45 expression) identified on the side scatter (SS) vs. CD45-intensity plot, were studied. The neutrophil granulocytes from patients with MDS showed characteristic antigen expression aberrancies which were more pronounced in NGS-2 subpopulation. Studying separately the NGS-2 subpopulation with the CD16/MPO/LF combination, the low CD16(+)/MPO(+) and low CD16(+)/LF(+) percentages seemed to discriminate between lower-risk and higher-risk patients with MDS in most occasions. Furthermore, a detailed assessment of the NGS-1 and NGS-2 immunophenotypic patterns revealed early dysplastic changes, not otherwise observed by standard TNG analysis, especially in cases of lower-risk MDS.

  1. Flow cytometry of DNA in mouse sperm and testis nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Meistrich, M.L. (Univ. of Texas, Houston); Lake, S.; Steinmetz, L.L.; Gledhill, B.L.

    1978-01-01

    Mutations that occur in spermatogenic cells may be expressed as changes in DNA content, but developmentally-dependent alteration of its staining properties complicates the quantitation of DNA in individual germ cells. These alterations have been studied with flow cytometric techniques. Nuclei from mouse testis cells and sperm were stained by the acriflavine--Feulgen method. The fluorescence intensity frequency distribution of nuclei of testis cells was characterized by 2 major and 5 minor peaks. Nuclei sorted from the various peaks with a fluorescence-activated cell sorter were identified microscopically. These data were confirmed by generation of peaks with nuclei prepared from cell suspensions enriched in specific cell types. One of the major peaks corresponded to round spermatid nuclei. The other major peak, located at 0.6 of the fluorescence intensity of the round nuclei, corresponded to elongated spermatid nuclei. Purified nuclei of epididymal and vas deferens spermatozoa displayed asymmetric fluorescence distributions. A minor peak at 0.8 the intensity of the round spermatid nuclei was tentatively assigned to elongating spermatids. 2 of the minor peaks, located at 1.7 and 2.0 times the fluorescence intensity of the round nuclei, corresponded to clumps of 2 haploid and diploid nuclei.

  2. Rice starch granule characterization by flow cytometry scattering techniques hyphenated with sedimentation field-flow fractionation.

    Science.gov (United States)

    Clédat, Dominique; Battu, Serge; Mokrini, Redouane; Cardot, Philippe J P

    2004-09-17

    Sedimentation field-flow fractionation (SdFFF) elution mode of micron sized particle is described generically as "Hyperlayer" and involves particle size, density, shape and rigidity. It requires the use of specific detectors of mass, size, surface, or of other characteristics of the eluted particles. Correlation of FFF retention data with such signals gives hyphenated information about particle properties. Flow cytometry (FC) is a multi dimensional particle counter, which permits specific particle property characterization using light scattering and fluorescence principles. It appears therefore as a powerful technique for micron sized species description. FC is mostly known for cell analyses, while its potential is much broader once proper calibration performed. In this report, forward angle signal (FS) is calibrated in size by using standard latex beads and produces, for a given particle sample, a number versus size histogram, describing particle size distribution. These histograms can be an alternative to Coulter counting. That methodology is tested with rice starch population (RSP) fractions obtained from FFF separation.

  3. Automated Analysis of Clinical Flow Cytometry Data: A Chronic Lymphocytic Leukemia Illustration.

    Science.gov (United States)

    Scheuermann, Richard H; Bui, Jack; Wang, Huan-You; Qian, Yu

    2017-12-01

    Flow cytometry is used in cell-based diagnostic evaluation for blood-borne malignancies including leukemia and lymphoma. The current practice for cytometry data analysis relies on manual gating to identify cell subsets in complex mixtures, which is subjective, labor-intensive, and poorly reproducible. This article reviews recent efforts to develop, validate, and disseminate automated computational methods and pipelines for cytometry data analysis that could help overcome the limitations of manual analysis and provide for efficient and data-driven diagnostic applications. It demonstrates the performance of an optimized computational pipeline in a pilot study of chronic lymphocytic leukemia data from the authors' clinical diagnostic laboratory. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Use of Multicolor Flow Cytometry for Isolation of Specific Cell Populations Deriving from Differentiated Human Embryonic Stem Cells

    NARCIS (Netherlands)

    Mengarelli, Isabella; Fryga, Andrew; Barberi, Tiziano

    2016-01-01

    Flow Cytometry-Sorting (FCM-Sorting) is a technique commonly used to identify and isolate specific types of cells from a heterogeneous population of live cells. Here we describe a multicolor flow cytometry technique that uses five distinct cell surface antigens to isolate four live populations with

  5. Alternatives to current flow cytometry data analysis for clinical and research studies.

    Science.gov (United States)

    Gondhalekar, Carmen; Rajwa, Bartek; Patsekin, Valery; Ragheb, Kathy; Sturgis, Jennifer; Robinson, J Paul

    2018-02-01

    Flow cytometry has well-established methods for data analysis based on traditional data collection techniques. These techniques typically involved manual insertion of tube samples into an instrument that, historically, could only measure 1-3 colors. The field has since evolved to incorporate new technologies for faster and highly automated sample preparation and data collection. For example, the use of microwell plates on benchtop instruments is now a standard on virtually every new instrument, and so users can easily accumulate multiple data sets quickly. Further, because the user must carefully define the layout of the plate, this information is already defined when considering the analytical process, expanding the opportunities for automated analysis. Advances in multi-parametric data collection, as demonstrated by the development of hyperspectral flow-cytometry, 20-40 color polychromatic flow cytometry, and mass cytometry (CyTOF), are game-changing. As data and assay complexity increase, so too does the complexity of data analysis. Complex data analysis is already a challenge to traditional flow cytometry software. New methods for reviewing large and complex data sets can provide rapid insight into processes difficult to define without more advanced analytical tools. In settings such as clinical labs where rapid and accurate data analysis is a priority, rapid, efficient and intuitive software is needed. This paper outlines opportunities for analysis of complex data sets using examples of multiplexed bead-based assays, drug screens and cell cycle analysis - any of which could become integrated into the clinical environment. Copyright © 2017. Published by Elsevier Inc.

  6. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2000-06-01

    Full Text Available Flow cytometry is rapidly becoming a routine methodology in aquatic microbial ecology. The combination of simple to use bench-top flow cytometers and highly fluorescent nucleic acid stains allows fast and easy determination of microbe abundance in the plankton of lakes and oceans. The different dyes and protocols used to stain and count planktonic bacteria as well as the equipment in use are reviewed, with special attention to some of the problems encountered in daily routine practice such as fixation, staining and absolute counting. One of the main advantages of flow cytometry over epifluorescence microscopy is the ability to obtain cell-specific measurements in large numbers of cells with limited effort. We discuss how this characteristic has been used for differentiating photosynthetic from non-photosynthetic prokaryotes, for measuring bacterial cell size and nucleic acid content, and for estimating the relative activity and physiological state of each cell. We also describe how some of the flow cytometrically obtained data can be used to characterize the role of microbes on carbon cycling in the aquatic environment and we prospect the likely avenues of progress in the study of planktonic prokaryotes through the use of flow cytometry.

  7. European canine lymphoma network consensus recommendations for reporting flow cytometry in canine hematopoietic neoplasms.

    Science.gov (United States)

    Comazzi, S; Avery, P R; Garden, O A; Riondato, F; Rütgen, B; Vernau, W

    2017-09-01

    Flow cytometry (FC) is assuming increasing importance in diagnosis in veterinary oncology. The European Canine Lymphoma Network (ECLN) is an international cooperation of different institutions working on canine lymphoma diagnosis and therapy. The ECLN panel of experts on FC has defined the issue of reporting FC on canine lymphoma and leukemia as their first hot topic, since a standardized report that includes all the important information is still lacking in veterinary medicine. The flow cytometry panel of the ECLN started a consensus initiative using the Delphi approach. Clinicians were considered the main target of FC reports. A panel of experts in FC was interrogated about the important information needed from a report. Using the feedback from clinicians and subsequent discussion, a list of information to be included in the report was made, with four different levels of recommendation. The final report should include both a quantitative part and a qualitative or descriptive part with interpretation of the salient results. Other items discussed included the necessity of reporting data regarding the quality of samples, use of absolute numbers of positive cells, cutoff values, the intensity of fluorescence, and possible aberrant patterns of antigen expression useful from a clinical point of view. The consensus initiative is a first step toward standardization of diagnostic approach to canine hematopoietic neoplasms among different institutions and countries. This harmonization will improve communication and patient care and also facilitate the multicenter studies necessary to further our knowledge of canine hematopoietic neoplasms. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  8. Hyperspectral cytometry.

    Science.gov (United States)

    Grégori, Gérald; Rajwa, Bartek; Patsekin, Valery; Jones, James; Furuki, Motohiro; Yamamoto, Masanobu; Paul Robinson, J

    2014-01-01

    Hyperspectral cytometry is an emerging technology for single-cell analysis that combines ultrafast optical spectroscopy and flow cytometry. Spectral cytometry systems utilize diffraction gratings or prism-based monochromators to disperse fluorescence signals from multiple labels (organic dyes, nanoparticles, or fluorescent proteins) present in each analyzed bioparticle onto linear detector arrays such as multianode photomultipliers or charge-coupled device sensors. The resultant data, consisting of a series of characterizing every analyzed cell, are not compensated by employing the traditional cytometry approach, but rather are spectrally unmixed utilizing algorithms such as constrained Poisson regression or non-negative matrix factorization. Although implementations of spectral cytometry were envisioned as early as the 1980s, only recently has the development of highly sensitive photomultiplier tube arrays led to design and construction of functional prototypes and subsequently to introduction of commercially available systems. This chapter summarizes the historical efforts and work in the field of spectral cytometry performed at Purdue University Cytometry Laboratories and describes the technology developed by Sony Corporation that resulted in release of the first commercial spectral cytometry system-the Sony SP6800. A brief introduction to spectral data analysis is also provided, with emphasis on the differences between traditional polychromatic and spectral cytometry approaches.

  9. A Flow Cytometry Protocol to Estimate DNA Content in the Yellowtail Tetra Astyanax altiparanae

    Directory of Open Access Journals (Sweden)

    Pedro L. P. Xavier

    2017-09-01

    Full Text Available The production of triploid yellowtail tetra Astyanax altiparanae is a key factor to obtain permanently sterile individuals by chromosome set manipulation. Flow cytometric analysis is the main tool for confirmation of the resultant triploids individuals, but very few protocols are specific for A. altiparanae species. The current study has developed a protocol to estimate DNA content in this species. Furthermore, a protocol for long-term storage of dorsal fins used for flow cytometry analysis was established. The combination of five solutions with three detergents (Nonidet P-40 Substitute, Tween 20, and Triton X-100 at 0.1, 0.2, and 0.4% concentration was evaluated. Using the best solution from this first experiment, the addition of trypsin (0.125, 0.25, and 0.5% and sucrose (74 mM and the effects of increased concentrations of the detergents at 0.6 and 1.2% concentration were also evaluated. After adjustment of the protocol for flow cytometry, preservation of somatic tissue or isolated nuclei was also evaluated by freezing (at −20°C and fixation in saturated NaCl solution, acetic methanol (1:3, ethanol, and formalin at 10% for 30 or 60 days of storage at 25°C. Flow cytometry analysis in yellowtail tetra species was optimized using the following conditions: lysis solution: 9.53 mM MgCl2.7H20; 47.67 mM KCl; 15 mM Tris; 74 mM sucrose, 0.6% Triton X-100, pH 8.0; staining solution: Dulbecco's PBS with DAPI 1 μg mL−1; preservation procedure: somatic cells (dorsal fin samples frozen at −20°C. Using this protocol, samples may be stored up to 60 days with good accuracy for flow cytometry analysis.

  10. An introduction to automated flow cytometry gating tools and their implementation

    Directory of Open Access Journals (Sweden)

    Chris P Verschoor

    2015-07-01

    Full Text Available Current flow cytometry reagents and instrumentation allow for the measurement of an unprecedented number of parameters for any given cell within a homogenous or heterogeneous population. While this provides a great deal of power for hypothesis testing, it also generates a vast amount of data, which is typically analyzed manually through a processing called gating. For large experiments, such as high-content screens, in which many parameters are measured, the time required for manual analysis as well as the technical variability inherent to manual gating can increase dramatically, even becoming prohibitive depending on the clinical or research goal. In the following article, we aim to provide the reader an overview of automated flow cytometry analysis as well as an example of the implementation of FLOCK (FLOw Clustering without K, a tool that we consider accessible to researchers of all levels of computational expertise. In most cases, computational assistance methods are more reproducible and much faster than manual gating, and for some, also allow for the discovery of cellular populations that might not be expected or evident to the researcher. We urge any researcher that is planning or has previously performed large flow cytometry experiments to consider implementing computational assistance into their analysis pipeline.

  11. Analysis of flow cytometry data by matrix relevance learning vector quantization.

    Directory of Open Access Journals (Sweden)

    Michael Biehl

    Full Text Available Flow cytometry is a widely used technique for the analysis of cell populations in the study and diagnosis of human diseases. It yields large amounts of high-dimensional data, the analysis of which would clearly benefit from efficient computational approaches aiming at automated diagnosis and decision support. This article presents our analysis of flow cytometry data in the framework of the DREAM6/FlowCAP2 Molecular Classification of Acute Myeloid Leukemia (AML Challenge, 2011. In the challenge, example data was provided for a set of 179 subjects, comprising healthy donors and 23 cases of AML. The participants were asked to provide predictions with respect to the condition of 180 patients in a test set. We extracted feature vectors from the data in terms of single marker statistics, including characteristic moments, median and interquartile range of the observed values. Subsequently, we applied Generalized Matrix Relevance Learning Vector Quantization (GMLVQ, a machine learning technique which extends standard LVQ by an adaptive distance measure. Our method achieved the best possible performance with respect to the diagnoses of test set patients. The extraction of features from the flow cytometry data is outlined in detail, the machine learning approach is discussed and classification results are presented. In addition, we illustrate how GMLVQ can provide deeper insight into the problem by allowing to infer the relevance of specific markers and features for the diagnosis.

  12. Optimizing transformations for automated, high throughput analysis of flow cytometry data

    Directory of Open Access Journals (Sweden)

    Weng Andrew

    2010-11-01

    Full Text Available Abstract Background In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. Results We compare the performance of parameter-optimized and default-parameter (in flowCore data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter

  13. Automated Flow Cytometry: An Alternative to Urine Culture in a Routine Clinical Microbiology Laboratory?

    Directory of Open Access Journals (Sweden)

    Patricia Mejuto

    2017-01-01

    Full Text Available The urine culture is the “gold standard” for the diagnosis of urinary tract infections (UTI but constitutes a significant workload in the routine clinical laboratory. Due to the high percentage of negative results, there is a need for an efficient screening method, with a high negative predictive value (NPV that could reduce the number of unnecessary culture tests. With the purpose of improving the efficiency of laboratory work, several methods for screening out the culture-negative samples have been developed, but none of them has shown adequate sensitivity (SE and high NPV. Many authors show data about the efficacy of flow cytometry in the routine clinical laboratory. The aim of this article is to review and discuss the current literature on the feasibility of urine flow cytometry (UFC and its utility as an alternative analytical technique in urinalysis.

  14. Detection of Intracellular Factor VIII Protein in Peripheral Blood Mononuclear Cells by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Gouri Shankar Pandey

    2013-01-01

    Full Text Available Flow cytometry is widely used in cancer research for diagnosis, detection of minimal residual disease, as well as immune monitoring and profiling following immunotherapy. Detection of specific host proteins for diagnosis predominantly uses quantitative PCR and western blotting assays. In this study, we optimized a flow cytometry-based detection assay for Factor VIII protein in peripheral blood mononuclear cells (PBMCs. An indirect intracellular staining (ICS method was standardized using monoclonal antibodies to different domains of human Factor VIII protein. The FVIII protein expression level was estimated by calculating the mean and median fluorescence intensities (MFI values for each monoclonal antibody. ICS staining of transiently transfected cell lines supported the method's specificity. Intracellular FVIII protein expression was also detected by the monoclonal antibodies used in the study in PBMCs of five blood donors. In summary, our data suggest that intracellular FVIII detection in PBMCs of hemophilia A patients can be a rapid and reliable method to detect intracellular FVIII levels.

  15. Determination of total bacterial count in raw milk by flow cytometry

    Directory of Open Access Journals (Sweden)

    Dubravka Samaržija

    2004-01-01

    Full Text Available The automatic flow cytometry as routine method for total bacterial count determination of raw ex-farm milk has recently been accepted in Croatia. This method significantly differs from the reference method (Standard Plate Count mostly in the presentation of the results obtained. Therefore, this paper summarized experiences in the application of flow cytometry in the dairy laboratories practice. The principle and the practice of the method, methodological details and factors influencing the results were described. In order to avoid problems regarding the interpretation of the results, which aregeneral problems of the quantitative microbiology, this article try to explain an appropriate conversion of the results with regards to SPC/ml, as an official method for the bacteriological quality proposal by the national legislation.

  16. Genome size variation and species relationships in Hieracium subgen. Pilosella (Asteraceae) as inferred by flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Suda, Jan; Krahulcová, Anna; Trávníček, Pavel; Rosenbaumová, Radka; Peckert, T.; Krahulec, František

    2007-01-01

    Roč. 100, č. 6 (2007), s. 1323-1335 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA206/07/0059 Grant - others:-(CZ) 149/2002/B-BIO/PřF, Institutional research plan: CEZ:AV0Z60050516 Keywords : Hieracium subgenus Pilosella * flow cytometry * polyploidy Subject RIV: EF - Botanics Impact factor: 2.939, year: 2007

  17. Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry

    OpenAIRE

    Gohar, Ali Vaziri; Cao, Ruofan; Jenkins, Patrick; Li, Wenyan; Houston, Jessica P.; Houston, Kevin D.

    2013-01-01

    Intracellular protein transport and localization to subcellular regions are processes necessary for normal protein function. Fluorescent proteins can be fused to proteins of interest to track movement and determine localization within a cell. Currently, fluorescence microscopy combined with image processing is most often used to study protein movement and subcellular localization. In this contribution we evaluate a high-throughput time-resolved flow cytometry approach to correlate intracellul...

  18. Candidiasis and the impact of flow cytometry on antifungal drug discovery.

    Science.gov (United States)

    Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A

    2017-11-01

    Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.

  19. Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry.

    Science.gov (United States)

    Pugsley, Haley R

    2017-01-01

    The use of multispectral imaging flow cytometry has been gaining popularity due to its quantitative power, high throughput capabilities, multiplexing potential and its ability to acquire images of every cell. Autophagy is a process in which dysfunctional organelles and cellular components that accumulate during growth and differentiation are degraded via the lysosome and recycled. During autophagy, cytoplasmic LC3 is processed and recruited to the autophagosomal membranes; the autophagosome then fuses with the lysosome to form the autolysosome. Therefore, cells undergoing autophagy can be identified by visualizing fluorescently labeled LC3 puncta and/or the co-localization of fluorescently labeled LC3 and lysosomal markers. Multispectral imaging flow cytometry is able to collect imagery of large numbers of cells and assess autophagy in an objective, quantitative, and statistically robust manner. This review will examine the four predominant methods that have been used to measure autophagy via multispectral imaging flow cytometry. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  20. Flow cytometry as a novel tool for structural and functional characterization of isolated yeast vacuoles.

    Science.gov (United States)

    Rodrigues, Jorge; Silva, Rui D; Noronha, Henrique; Pedras, Andreia; Gerós, Hernâni; Côrte-Real, Manuela

    2013-05-01

    The yeast vacuole is functionally analogous to the mammalian lysosome. Both play important roles in fundamental cellular processes such as protein degradation, detoxification, osmoregulation, autophagy and apoptosis which, when deregulated in humans, can lead to several diseases. Some of these vacuolar roles are difficult to study in a cellular context, and therefore the use of a cell-free system is an important approach to gain further insight into the different molecular mechanisms required for vacuolar function. In the present study, the potentialities of flow cytometry for the structural and functional characterization of isolated yeast vacuoles were explored. The isolation protocol resulted in a yeast vacuolar fraction with a degree of purity suitable for cytometric analysis. Moreover, isolated vacuoles were structurally and functionally intact and able to generate and maintain electrochemical gradients of ions across the vacuolar membrane, as assessed by flow cytometry. Proton and calcium gradients were dissipated by NH4Cl and calcimycin, respectively. These results established flow cytometry as a powerful technique for the characterization of isolated vacuoles. The protocols developed in this study can also be used to enhance our understanding of several molecular mechanisms underlying the development of lysosome-related diseases, as well as provide tools to screen for new drugs that can modulate these processes, which have promising clinical relevance.

  1. Leukocyte Populations in Human Preterm and Term Breast Milk Identified by Multicolour Flow Cytometry

    Science.gov (United States)

    Trend, Stephanie; de Jong, Emma; Lloyd, Megan L.; Kok, Chooi Heen; Richmond, Peter; Doherty, Dorota A.; Simmer, Karen; Kakulas, Foteini; Strunk, Tobias; Currie, Andrew

    2015-01-01

    Background Extremely preterm infants are highly susceptible to bacterial infections but breast milk provides some protection. It is unknown if leukocyte numbers and subsets in milk differ between term and preterm breast milk. This study serially characterised leukocyte populations in breast milk of mothers of preterm and term infants using multicolour flow cytometry methods for extended differential leukocyte counts in blood. Methods Sixty mothers of extremely preterm (leukocyte subsets analysed using flow cytometry. Results The major CD45+ leukocyte populations circulating in blood were also detectable in breast milk but at different frequencies. Progression of lactation was associated with decreasing CD45+ leukocyte concentration, as well as increases in the relative frequencies of neutrophils and immature granulocytes, and decreases in the relative frequencies of eosinophils, myeloid and B cell precursors, and CD16- monocytes. No differences were observed between preterm and term breast milk in leukocyte concentration, though minor differences between preterm groups in some leukocyte frequencies were observed. Conclusions Flow cytometry is a useful tool to identify and quantify leukocyte subsets in breast milk. The stage of lactation is associated with major changes in milk leukocyte composition in this population. Fresh preterm breast milk is not deficient in leukocytes, but shorter gestation may be associated with minor differences in leukocyte subset frequencies in preterm compared to term breast milk. PMID:26288195

  2. Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Míriam R. García

    2018-01-01

    Full Text Available A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.

  3. Utility of peripheral blood immunophenotyping by flow cytometry in the diagnosis of pediatric acute leukemia.

    Science.gov (United States)

    Metrock, Laura K; Summers, Ryan J; Park, Sunita; Gillespie, Scott; Castellino, Sharon; Lew, Glen; Keller, Frank G

    2017-10-01

    Childhood acute leukemia is traditionally diagnosed from a bone marrow aspirate (BMA). New-onset acute leukemia patients do not always have visible circulating blasts in the peripheral blood (PB) at diagnosis. While the role of bone marrow flow cytometry for the diagnosis of acute leukemia is well established, the utility of PB flow cytometry (PBFC) is unknown. We performed a single-institution retrospective analysis to compare PBFC versus BMA in establishing or excluding a diagnosis of childhood acute leukemia. We retrospectively identified 485 PBFC samples with concurrent BMA from 2008 to 2013. Results of four-color flow cytometry for immunophenotypic characterization of leukemic versus nonclonal disease were characterized. Sensitivity and specificity were calculated among patients without a known diagnosis or prior therapy. Among 485 samples eligible for analysis, 120 had negative PBFC and BMA, 359 had positive PBFC and BMA, 3 had negative PBFC and positive BMA, and 3 had positive PBFC and negative BMA. There were small but significant differences in sensitivity (100 vs. 93.8%; P = 0.002) and positive predictive value (100 vs. 93.8%; P = 0.002) favoring BMA over PBFC among those demonstrating absence of circulating morphologic blasts. PBFC has high sensitivity and specificity for the diagnosis of childhood acute leukemia. The predictive value of PBFC remains high for patients without visible circulating blasts and may enhance the diagnostic process for determining the indications for marrow testing. © 2017 Wiley Periodicals, Inc.

  4. Flow cytometry as an auxiliary tool for the selection of probiotic bacteria.

    Science.gov (United States)

    Mudroňová, D

    2015-01-01

    Selection of appropriate bacterial strains is crucial for development of new probiotic preparations. The fundamental prerequisite for potential efficacy of a probiotic preparation for oral application is the selection of appropriate bacterial strains with good gastrointestinal colonisation abilities, antimicrobial activity, and tolerance of conditions in the gastrointestinal tract, resistance to different antimicrobial agents, survival during processing and storage. The strain should be genetically stable, it should have good growth properties, to maintain its high viability at processing and when in storage. Mostly, the properties of promising strains are tested in the first phase in vitro, and only the best ones undergo subsequent in vivo testing. in vitro tests are often performed by classical microbiological cultivation methods which are material and time consuming, and they are not able to distinguish between 'viable but nonculturable' and dead bacteria. Flow cytometry is usually used for counting, phenotyping or functional characterisation of immune cells. Nowadays, flow cytometry is increasingly used in microbiology for counting bacteria, determining their viability and metabolic activity, detecting specific strains or testing their adherence abilities. The utilisation of flow cytometry in combination with an appropriate fluorescent labelling represents an effective and rapid method for the selection of probiotic bacteria.

  5. In vivo assessment of rodent Plasmodium parasitemia and merozoite invasion by flow cytometry.

    Science.gov (United States)

    Lelliott, Patrick M; McMorran, Brendan J; Foote, Simon J; Burgio, Gaetan

    2015-04-05

    During blood stage infection, malaria parasites invade, mature, and replicate within red blood cells (RBCs). This results in a regular growth cycle and an exponential increase in the proportion of malaria infected RBCs, known as parasitemia. We describe a flow cytometry based protocol which utilizes a combination of the DNA dye Hoechst, and the mitochondrial membrane potential dye, JC-1, to identify RBCs which contain parasites and therefore the parasitemia, of in vivo blood samples from Plasmodium chabaudi adami DS infected mice. Using this approach, in combination with fluorescently conjugated antibodies, parasitized RBCs can be distinguished from leukocytes, RBC progenitors, and RBCs containing Howell-Jolly bodies (HJ-RBCs), with a limit of detection of 0.007% parasitemia. Additionally, we outline a method for the comparative assessment of merozoite invasion into two different RBC populations. In this assay RBCs, labeled with two distinct compounds identifiable by flow cytometry, are transfused into infected mice. The relative rate of invasion into the two populations can then be assessed by flow cytometry based on the proportion of parasitized RBCs in each population over time. This combined approach allows the accurate measurement of both parasitemia and merozoite invasion in an in vivo model of malaria infection.

  6. Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts

    Science.gov (United States)

    Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I.; Sawant, Rupa; Torchilin, Vladimir P.; Verkhusha, Vladislav V.; Ma, Jie; Frank, Markus H.; Biris, Alexandru S.; Zharov, Vladimir P.

    2012-01-01

    In vivo photoacoustic (PA) and fluorescence flow cytometry were previously applied separately using pulsed and continuous wave lasers respectively, and positive contrast detection mode only. This paper introduces a real-time integration of both techniques with positive and negative contrast modes using only pulsed lasers. Various applications of this new tool are summarized, including detection of liposomes loaded with Alexa-660 dye, red blood cells labeled with Indocyanine Green, B16F10 melanoma cells co-expressing melanin and green fluorescent protein (GFP), C8161-GFP melanoma cells targeted by magnetic nanoparticles, MTLn3 adenocarcinoma cells expressing novel near-infrared iRFP protein, and quantum dot-carbon nanotube conjugates. Negative contrast flow cytometry provided label-free detection of low absorbing or weakly fluorescent cells in blood absorption and autofluorescence background, respectively. The use of pulsed laser for time-resolved discrimination of objects with long fluorescence lifetime (e.g., quantum dots) from shorter autofluorescence background (e.g., blood plasma) is also highlighted in this paper. The supplementary nature of PA and fluorescence detection increased the versatility of the integrated method for simultaneous detection of probes and cells having various absorbing and fluorescent properties, and provided verification of PA data using a more established fluorescence based technique. The principles of integrated photoacoustic and fluorescence flow cytometry using positive contrast for detection of strongly absorbing and fluorescent cells and negative contrast for detection of weakly absorbing and fluorescent cells in blood absorption and autofluorescence background, respectively. PMID:22903924

  7. Internalisation of polymeric nanosensors in mesenchymal stem cells: analysis by flow cytometry and confocal microscopy.

    Science.gov (United States)

    Coupland, Paul G; Fisher, Karen A; Jones, D Rhodri E; Aylott, Jonathan W

    2008-09-10

    The aim of this study was to demonstrate that flow cytometry and confocal microscopy could be applied in a complementary manner to analyse the internalisation of polymeric nanosensors in mesenchymal stem cells (MSC). The two techniques are able to provide en masse data analysis of nanosensors from large cell populations and detailed images of intracellular nanosensor localisation, respectively. The polyacrylamide nanosensors used in this investigation had been modified to contain free amine groups which were subsequently conjugated to Tat peptide, which acted as a delivery vector for nanosensor internalisation. Flow cytometry was used to confirm the health of MSC culture and assess the impact of nanosensor internalisation. MSC were characterised using fluorescently tagged CD cell surface markers that were also used to show that nanosensor internalisation did not negatively impact on MSC culture. Additionally it was shown that flow cytometry can be used to measure fluorophores located both on the cell surface and internalised within the cell. Complementary data was obtained using confocal microscopy to confirm nanosensor internalisation within MSC.

  8. Benzoxazinone derivatives: new fluorescent probes for two-color flow cytometry analysis using one excitation wavelength.

    Science.gov (United States)

    Monsigny, M; Midoux, P; Le Bris, M T; Roche, A C; Valeur, B

    1989-01-01

    A new class of fluorescent dye which upon excitation at 488 nm turns red is shown to be probe-suitable for using in flow cytometry alone or in conjunction with fluorescein derivatives. 7-dimethylamino 3-(p-formylstyryl) 1,4 benzoxazin 2-one is suitable for rendering microorganisms, such as Plasmodium merozoites and cells detectable by flow cytometry, allowing a dual fluorescence analysis when the cells are labelled with suitable fluoresceinylated ligands such as fluorescein labeled neoglycoproteins or antibodies. The synthesis of the new benzoxazinone derivatives is described: p-[beta-(7-dimethylamino 1,4 benzoxazin 2-one 3-yl)-vinyl]-phenylpropenoic acid can be easily activated as a hydroxysuccinimide derivative and linked to amino groups of polypeptides. Hydrophilic polypeptides such as poly-L-lysine or glycosylated polymers combined with this new fluorescent dye are shown to be helpful in analyzing cell surface receptors, in dual fluorescence flow cytometry analysis, using a single excitation wavelength and two sets of compounds labeled with the new benzoxazinone derivative and with fluorescein isothiocyanate, respectively. The new benzoxazinone derivative has a high molar absorbance, a good quantum yield fluorescence when it is bound to hydrophilic polypeptides and its fluorescence intensity is not dependent on pH in the physiological pH range.

  9. Single frequency intracavity SRO

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2000-01-01

    Summary form only given. A single resonance optical parametric oscillator (SRO) is inserted intracavity to a CW high power, single frequency, and ring Nd:YVO4 laser. We obtain a stable single frequency CW SRO with output at 1.7-1.9 μm (idler) and a resonating signal at 2.3-2.6 μm. The behavior...

  10. Procoagulant and platelet-derived microvesicle absolute counts determined by flow cytometry correlates with a measurement of their functional capacity

    Directory of Open Access Journals (Sweden)

    Lisa Ayers

    2014-09-01

    Full Text Available Background: Flow cytometry is the most commonly used technology to measure microvesicles (MVs. Despite reported limitations of this technique, MV levels obtained using conventional flow cytometry have yielded many clinically relevant findings, such as associations with disease severity and ability to predict clinical outcomes. This study aims to determine if MV enumeration by flow cytometry correlates with a measurement of their functional capacity, as this may explain how flow cytometry generates clinically relevant results. Methods: One hundred samples from healthy individuals and patients with obstructive sleep apnoea were analysed by conventional flow cytometry (FACSCalibur and by three functional MV assays: Zymuphen MP-activity in which data were given as phosphatidylserine equivalent, STA® Phospholipid Procoag Assay expressed as clotting time and Endogenous Thrombin Potential (ETP reflecting in vitro thrombin generation. Correlations were determined by Spearman correlation. Results: Absolute counts of lactadherin+ procoagulant MVs generated by flow cytometry weakly correlated with the results obtained from the Zymuphen MP-activity (r=0.5370, p<0.0001; correlated with ETP (r=0.7444, p<0.0001; negatively correlated with STA® Phospholipid Procoag Assay clotting time (−0.7872, p<0.0001, reflecting a positive correlation between clotting activity and flow cytometry. Levels of Annexin V+ procoagulant and platelet-derived MVs were also associated with functional assays. Absolute counts of MVs derived from other cell types were not correlated with the functional results. Conclusions: Quantitative results of procoagulant and platelet-derived MVs from conventional flow cytometry are associated with the functional capability of the MVs, as defined by three functional MV assays. Flow cytometry is a valuable technique for the quantification of MVs from different cellular origins; however, a combination of several analytical techniques may give the

  11. An assessment of software for flow cytometry analysis in banana plants

    Directory of Open Access Journals (Sweden)

    Renata Alves Lara Silva

    2014-02-01

    Full Text Available Flow cytometry is a technique that yields rapid results in analyses of cell properties such as volume, morphological complexity and quantitative DNA content, and it is considered more convenient than other techniques. However, the analysis usually generates histograms marked by variations that can be produced by many factors, including differences between the software packages that capture the data generated by the flow cytometer. The objective of the present work was to evaluate the performance of four software products commonly used in flow cytometry based on quantifications of DNA content and analyses of the coefficients of variation associated with the software outputs. Readings were obtained from 25 ‘NBA’ (AA banana leaf samples using the FACSCalibur (BD flow cytometer, and 25 histograms from each software product (CellQuest™, WinMDI™, FlowJo™ and FCS Express™ were analyzed to obtain the estimated DNA content and the coefficient of variation (CV of the estimates. The values of DNA content obtained from the software did not differ significantly. However, the CV analysis showed that the precision of the WinMDI™ software was low and that the CV values were underestimated, whereas the remaining software showed CV values that were in relatively close agreement with those found in the literature. The CellQuest™ software is recommended because it was developed by the same company that produces the flow cytometer used in the present study.

  12. Flow cytometry with gold nanoparticlesand their clusters as scattering contrast agents: FDTD simulation of light-cell interaction

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo; Pond, James

    2009-01-01

    refractive index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open a new......The formulation of the Finite-Difference Time-Domain (FDTD) approach is presented in the framework of its potential applications to in vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled...

  13. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    Directory of Open Access Journals (Sweden)

    Oldenburg Delene J

    2007-03-01

    Full Text Available Abstract Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI, SYBR Green I (SG, SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content.

  14. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  15. Gating-ML: XML-based gating descriptions in flow cytometry.

    Science.gov (United States)

    Spidlen, Josef; Leif, Robert C; Moore, Wayne; Roederer, Mario; Brinkman, Ryan R

    2008-12-01

    The lack of software interoperability with respect to gating due to lack of a standardized mechanism for data exchange has traditionally been a bottleneck, preventing reproducibility of flow cytometry (FCM) data analysis and the usage of multiple analytical tools. To facilitate interoperability among FCM data analysis tools, members of the International Society for the Advancement of Cytometry (ISAC) Data Standards Task Force (DSTF) have developed an XML-based mechanism to formally describe gates (Gating-ML). Gating-ML, an open specification for encoding gating, data transformations and compensation, has been adopted by the ISAC DSTF as a Candidate Recommendation. Gating-ML can facilitate exchange of gating descriptions the same way that FCS facilitated for exchange of raw FCM data. Its adoption will open new collaborative opportunities as well as possibilities for advanced analyses and methods development. The ISAC DSTF is satisfied that the standard addresses the requirements for a gating exchange standard.

  16. Improved signal recovery for flow cytometry based on 'spatially modulated emission'.

    Science.gov (United States)

    Quint, S; Wittek, J; Spang, P; Levanon, N; Walther, T; Baßler, M

    2017-08-30

    Recently, the technique of 'spatially modulated emission' has been introduced (Baßler et al 2008 US Patent 0080181827A1; Kiesel et al 2009 Appl. Phys. Lett. 94 041107; Kiesel et al 2011 Cytometry A 79A 317-24) improving the signal-to-noise ratio (SNR) for detecting bio-particles in the field of flow cytometry. Based on this concept, we developed two advanced signal processing methods which further enhance the SNR and selectivity for cell detection. The improvements are achieved by adapting digital filtering methods from RADAR technology and mainly address inherent offset elimination, increased signal dynamics and moreover reduction of erroneous detections due to processing artifacts. We present a comprehensive theory on SNR gain and provide experimental results of our concepts.

  17. Improved signal recovery for flow cytometry based on ‘spatially modulated emission’

    Science.gov (United States)

    Quint, S.; Wittek, J.; Spang, P.; Levanon, N.; Walther, T.; Baßler, M.

    2017-09-01

    Recently, the technique of ‘spatially modulated emission’ has been introduced (Baßler et al 2008 US Patent 0080181827A1; Kiesel et al 2009 Appl. Phys. Lett. 94 041107; Kiesel et al 2011 Cytometry A 79A 317-24) improving the signal-to-noise ratio (SNR) for detecting bio-particles in the field of flow cytometry. Based on this concept, we developed two advanced signal processing methods which further enhance the SNR and selectivity for cell detection. The improvements are achieved by adapting digital filtering methods from RADAR technology and mainly address inherent offset elimination, increased signal dynamics and moreover reduction of erroneous detections due to processing artifacts. We present a comprehensive theory on SNR gain and provide experimental results of our concepts.

  18. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding.

    Science.gov (United States)

    Ge, Yongchao; Sealfon, Stuart C

    2012-08-01

    For flow cytometry data, there are two common approaches to the unsupervised clustering problem: one is based on the finite mixture model and the other on spatial exploration of the histograms. The former is computationally slow and has difficulty to identify clusters of irregular shapes. The latter approach cannot be applied directly to high-dimensional data as the computational time and memory become unmanageable and the estimated histogram is unreliable. An algorithm without these two problems would be very useful. In this article, we combine ideas from the finite mixture model and histogram spatial exploration. This new algorithm, which we call flowPeaks, can be applied directly to high-dimensional data and identify irregular shape clusters. The algorithm first uses K-means algorithm with a large K to partition the cell population into many small clusters. These partitioned data allow the generation of a smoothed density function using the finite mixture model. All local peaks are exhaustively searched by exploring the density function and the cells are clustered by the associated local peak. The algorithm flowPeaks is automatic, fast and reliable and robust to cluster shape and outliers. This algorithm has been applied to flow cytometry data and it has been compared with state of the art algorithms, including Misty Mountain, FLOCK, flowMeans, flowMerge and FLAME. The R package flowPeaks is available at https://github.com/yongchao/flowPeaks. yongchao.ge@mssm.edu Supplementary data are available at Bioinformatics online.

  19. The Assessment of Prostate Cells in Semen Using Flow Cytometry, for the Early Detection of Prostate Cancer

    National Research Council Canada - National Science Library

    Su, Sai

    2002-01-01

    .... Murphy's death, a reassessment of the technique used to prepare seminal fluid samples for flow cytometry showed that these methods were not adequate for the repeatable detection of prostate cancer cells...

  20. Single and multi-subject clustering of flow cytometry data for cell-type identification and anomaly detection.

    Science.gov (United States)

    Pouyan, Maziyar Baran; Jindal, Vasu; Birjandtalab, Javad; Nourani, Mehrdad

    2016-08-10

    Measurement of various markers of single cells using flow cytometry has several biological applications. These applications include improving our understanding of behavior of cellular systems, identifying rare cell populations and personalized medication. A common critical issue in the existing methods is identification of the number of cellular populations which heavily affects the accuracy of results. Furthermore, anomaly detection is crucial in flow cytometry experiments. In this work, we propose a two-stage clustering technique for cell type identification in single subject flow cytometry data and extend it for anomaly detection among multiple subjects. Our experimentation on 42 flow cytometry datasets indicates high performance and accurate clustering (F-measure > 91 %) in identifying main cellular populations. Furthermore, our anomaly detection technique evaluated on Acute Myeloid Leukemia dataset results in only <2 % false positives.

  1. Detection of an Abnormal Myeloid Clone by Flow Cytometry in Familial Platelet Disorder With Propensity to Myeloid Malignancy

    Science.gov (United States)

    Ok, Chi Young; Leventaki, Vasiliki; Wang, Sa A.; Dinardo, Courtney; Medeiros, L. Jeffrey; Konoplev, Sergej

    2016-01-01

    Objectives To report aberrant myeloblasts detected by flow cytometry immunophenotypic studies in an asymptomatic patient with familial platelet disorder with propensity to myeloid malignancy, a rare autosomal dominant disease caused by germline heterozygous mutations in Runt-related transcription factor 1. Methods Morphologic evaluation, flow cytometry immunophenotypic studies, nanofluidics-based qualitative multiplex reverse transcriptase polymerase chain reaction, Sanger sequencing, and next-generation sequencing-based mutational hotspot analysis of 53 genes were performed on bone marrow biopsy and aspirate samples. Results Flow cytometry immunophenotypic analysis showed 0.6% CD34+ blasts with an abnormal immunophenotype: CD13 increased, CD33+, CD38 decreased, CD117 increased, and CD123 increased. Conclusions The acquisition of new phenotypic aberrancies in myeloblasts as detected by flow cytometry immunophenotypic studies might be a harbinger of impending myelodysplastic syndrome or acute myeloid leukemia in a patient with familial platelet disorder with propensity to myeloid malignancy. PMID:26800764

  2. A novel flow cytometry-based method of analyzing Heinz bodies.

    Science.gov (United States)

    Palasuwan, D; Palasuwan, A; Charoensappakit, A; Noulsri, E

    2017-02-01

    Heinz bodies are important to diagnosing and managing patients. However, microscopic examination of Heinz bodies has several disadvantages, demonstrating the need for a better method. We explored the potential use of flow cytometry to examine Heinz bodies. Whole-blood samples were collected from patients deficient in G6PD and healthy volunteers. Acetylphenylhydrazine was used to induce formation of Heinz bodies in red blood cells (RBCs). Then, RBCs positive for Heinz bodies were examined using a FACSCanto II cytometer. RBCs treated with acetylphenylhydrazine formed Heinz bodies and emitted a broad spectrum of fluorescence that could be detected by flow cytometry. The maximum emission of fluorescence was observed at 45 min after the incubation with acetylphenylhydrazine. In addition, the fluorescence emitted was stable for at least 72 h. The flow cytometer could detect the RBCs positive for Heinz bodies even if they made up as little as 0.1% of the total RBC population. Furthermore, the percentage and number, respectively, of RBCs positive for Heinz bodies in G6PD-deficient patients and normal donors exhibited a mean ± standard deviation (SD) of 68.9 ± 27.5 vs. 50.9 ± 28.6 and 96 014 ±35 732 cells/μL vs. 74 688 ± 36 514 cells/μL. Heinz bodies induced by acetylphenylhydrazine emit fluorescence, and this fluorescence could be examined using flow cytometry. Our study suggests the potential use of the developed method to investigate the formation of Heinz bodies in clinical samples. © 2016 John Wiley & Sons Ltd.

  3. Evaluation of cell proliferative activity after irradiation using immunohistochemical approach and flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Tamada, Takashi (Okayama Univ. (Japan). School of Medicine)

    1992-06-01

    To evaluate a proliferative activity of post-irradiated malignant cells, we studied the kinetics of HeLa cells using immunohistochemical approach and flow cytometry. HeLa cells were stained with two proliferation-associated monoclonal antibodies, Ki-67 and anti-DNA polymerase {alpha} antibody. Nucleoli of non-irradiated cells were granularly stained with Ki-67. After irradiation, only the center of nuclei was diffusely stained with Ki-67. One hundred forty-four hours after low-dose irradiation, the staining patterns became the same as the control. On the other hand, after high-dose irradiation, the center of nuclei was weakly stained. DNA polymerase {alpha} was diffusely labelled with nuclei of the control. It was located around the border of nuclei of low-dose irradiated cells like a ring. But after high-dose irradiation, it was granularly distributed in the periphery of nuclei. FITC conjugated Ki-67/PI two parameter analysis was done by a single laser flow cytometer. Twenty-four hours after irradiation, DNA-histograms showed the accumulation to G{sub 2}/M phase and the increase of DNA content of G{sub 2}/M cells, as exposure dose was increased. Two parameter analysis showed the increase of FITC uptake of G{sub 2}/M phase as dose increased. These changes of flow cytometry were remarkably observed after 24 hours' incubation. It was shown that the difference of Ki-67 antigen and DNA polymerase {alpha} appearance depended on the irradiation dose. These findings suggest that immunohistochemical staining with Ki-67 or anti-DNA polymerase {alpha} antibody and flow cytometry using Ki-67 are available to evaluate cell damages after irradiation. (author).

  4. MRT letter: light sheet based imaging flow cytometry on a microfluidic platform.

    Science.gov (United States)

    Regmi, Raju; Mohan, Kavya; Mondal, Partha P

    2013-11-01

    We propose a light sheet based imaging flow cytometry technique for simultaneous counting and imaging of cells on a microfluidic platform. Light sheet covers the entire microfluidic channel and thus omits the necessity of flow focusing and point scanning based technology. Another advantage lies in the orthogonal detection geometry that totally cuts-off the incident light, thereby substantially reducing the background in the detection. Compared to the existing state-of-art techniques the proposed technique shows marked improvement. Using fluorescently-coated Saccharomyces cerevisiae cells we have recorded cell counting with throughput as high as 2,090 cells/min in the low flow rate regime and were able to image the individual cells on-the-go. Overall, the proposed system is cost-effective and simple in channel geometry with the advantage of efficient counting in operational regime of low laminar flow. This technique may advance the emerging field of microfluidic based cytometry for applications in nanomedicine and point of care diagnostics. Copyright © 2013 Wiley Periodicals, Inc.

  5. Simultaneous evaluation of plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential in bovine spermatozoa by flow cytometry.

    Science.gov (United States)

    Kanno, Chihiro; Kang, Sung-Sik; Kitade, Yasuyuki; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2016-08-01

    The present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen-thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE-PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE-PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE-PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE-PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously.

  6. Using multispectral imaging flow cytometry to assess an in vitro intracellular Burkholderia thailandensis infection model.

    Science.gov (United States)

    Jenner, Dominic; Ducker, Catherine; Clark, Graeme; Prior, Jo; Rowland, Caroline A

    2016-04-01

    The use of in vitro models to understand the interaction of bacteria with host cells is well established. In vitro bacterial infection models are often used to quantify intracellular bacterial load by lysing cell populations and subsequently enumerating the bacteria. Modern established techniques employ the use of fluorescence technologies such as flow cytometry, fluorescent microscopy, and/or confocal microscopy. However, these techniques often lack either the quantification of large data sets (microscopy) or use of gross fluorescence signal which lacks the visual confirmation that can provide additional confidence in data sets. Multispectral imaging flow cytometry (MIFC) is a novel emerging field of technology. This technology captures a bright field and fluorescence image of cells in a flow using a charged coupled device camera. It allows the analysis of tens of thousands of single cell images, making it an extremely powerful technology. Here MIFC was used as an alternative method of analyzing intracellular bacterial infection using Burkholderia thailandensis E555 as a model organism. It has been demonstrated that the data produced using traditional enumeration is comparable to data analyzed using MIFC. It has also been shown that by using MIFC it is possible to generate other data on the dynamics of the infection model rather than viable counts alone. It has been demonstrated that it is possible to inhibit the uptake of bacteria into mammalian cells and identify differences between treated and untreated cell populations. The authors believe this to be the first use of MIFC to analyze a Burkholderia bacterial species during intracellular infection. © 2016 Crown copyright. Published by Wiley Periodicals Inc. on behalf of ISAC. © 2015 International Society for Advancement of Cytometry.

  7. Radon-induced DNA damage and apoptosis analyzed by flow cytometry

    International Nuclear Information System (INIS)

    Meenakshi, C.; Mohankumar, Mary N.

    2012-01-01

    Natural radiation is the major source of human exposure to ionizing radiation and its largest contributing component to effective doses arises from inhalation of 222 Rn and its radioactive progeny. 222 Rn, a chemically inert gas produced naturally from radium in rocks and soil is a proven source of lung cancer especially in closed environments such as mines and in poorly ventilated homes. Much of the data on the effect of radon in humans comes from epidemiological studies, often masked by confounding factors such as age, smoking and lifestyle. Radiation carcinogenesis is initiated by DNA damage and flow cytometry is a versatile, fast and accurate technique for the analysis of DNA damage as it offers the analysis of high number of individual cells in few minutes. An attempt was made to detect DNA damage and apoptosis after exposing human blood cells in vitro to radon by flow cytometry. Blood samples were collected from apparently healthy individuals and exposed in vitro to radon ranging between 1-5 mGy using a simple, portable irradiation assembly designed and tested at the Radiological Safety Division of Indira Gandhi Centre for Atomic Research. Cultures were initiated by the addition of phytohemagglutinin and cells were processed stained and analyzed for DNA damage and apoptosis by flow cytometry. CV values indicative of DNA damage were plotted against dose and were observed to increase in a dose dependent manner 3h after of irradiation. However no such response was observed at 24h and 48h. Nevertheless, the percentage of apoptotic cells increased steadily with dose after 24 and 48h post exposure. DNA breaks appear to be rejoined after about 24h of irradiation. However apoptotic cells increased with time and dose, suggesting elimination of highly damaged cells. Further experiments are needed to identify apoptotic cells as a biomarker of radiation exposure and risk. (author)

  8. Leukocyte Populations in Human Preterm and Term Breast Milk Identified by Multicolour Flow Cytometry.

    Directory of Open Access Journals (Sweden)

    Stephanie Trend

    Full Text Available Extremely preterm infants are highly susceptible to bacterial infections but breast milk provides some protection. It is unknown if leukocyte numbers and subsets in milk differ between term and preterm breast milk. This study serially characterised leukocyte populations in breast milk of mothers of preterm and term infants using multicolour flow cytometry methods for extended differential leukocyte counts in blood.Sixty mothers of extremely preterm (<28 weeks gestational age, very preterm (28-31 wk, and moderately preterm (32-36 wk, as well as term (37-41 wk infants were recruited. Colostrum (d2-5, transitional (d8-12 and mature milk (d26-30 samples were collected, cells isolated, and leukocyte subsets analysed using flow cytometry.The major CD45+ leukocyte populations circulating in blood were also detectable in breast milk but at different frequencies. Progression of lactation was associated with decreasing CD45+ leukocyte concentration, as well as increases in the relative frequencies of neutrophils and immature granulocytes, and decreases in the relative frequencies of eosinophils, myeloid and B cell precursors, and CD16- monocytes. No differences were observed between preterm and term breast milk in leukocyte concentration, though minor differences between preterm groups in some leukocyte frequencies were observed.Flow cytometry is a useful tool to identify and quantify leukocyte subsets in breast milk. The stage of lactation is associated with major changes in milk leukocyte composition in this population. Fresh preterm breast milk is not deficient in leukocytes, but shorter gestation may be associated with minor differences in leukocyte subset frequencies in preterm compared to term breast milk.

  9. Analysis of nuclear localization of interleukin-1 family cytokines by flow cytometry.

    Science.gov (United States)

    Ross, Ralf; Grimmel, Jan; Goedicke, Sybelle; Möbus, Anna M; Bulau, Ana-Maria; Bufler, Philip; Ali, Shafaqat; Martin, Michael U

    2013-01-31

    The dual function cytokines IL-1α, IL-33 and IL-37 are members of the IL-1 cytokine family. Besides of being able to bind to their cognate receptors on target cells, they can act intracellularly in the producing cell. All three are able to translocate to the nucleus and have been discussed to affect gene expression. In order to compare and quantitate nuclear translocation of these IL-1 family members we established a robust technique which enables to measure nuclear localization on a single cell level by flow cytometry. Vectors encoding fusion proteins of different IL-1 family members with enhanced green fluorescent protein were cloned and cell lines transiently transfected with these. Fluorescent fusion proteins in intact cells or in isolated nuclei were detected subsequently by fluorescence microscopy and flow cytometry, respectively. Depending on the cellular system, cells and nuclei were distinguishable by flow cytometry in forward scatter/sideward scatter. Fluorescent fusion proteins were detectable in isolated nuclei up to three days following preparation. Signal intensity of fusion proteins of IL-33 and IL-37 in isolated nuclei but not of IL-1α, was markedly increased by fixation with paraformaldehyde, directly following cell lysis, indicating that IL-1α binds stronger to nuclear structures than IL-33 and IL-37. Nuclear translocation of fluorescent IL-37 fusion proteins in a stably transfected RAW264.7 mouse macrophage cell line required stimulation with lipopolysaccharide. Applying this method we demonstrated that a prolonged lag phase of more than 15h before LPS-stimulated nuclear translocation was detected. In summary, we present a robust method to analyze and quantitate nuclear localization of IL-1 cytokine family members. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. CONGESTIVE HEART FAILURE IN DOGS IS ASSOCIATED WITH INCREASED PLATELET LEUKOCYTE AGGREGATION MEASURED BY FLOW CYTOMETRY

    DEFF Research Database (Denmark)

    Tarnow, Inge; Andreasen, Susanne SH; Olsen, Lisbeth Høier

    2010-01-01

    CONGESTIVE HEART FAILURE IN DOGS IS ASSOCIATED WITH ENHANCED PLATELET-LEUKOCYTE AGGREGATES - A MARKER FOR PLATELET ACTIVATION. I Tarnow1, LH Olsen2, SHS Andreasen2, SG Moesgaard2, CE Rasmussen2, AT Kristensen1, T Falk2. 1Departments of Small Animal Clinical Sciences and 2Animal and Veterinary Basic...... binding),monocyte-platelet (MPAs) and neutrophil-platelet aggregates (NPAs) defined as leukocytes positive for CD61 were measured by whole blood flow cytometry asmarkers of platelet activation. For every dog platelet activation was assessed in unstimulated samples, and in response to exogenously added...

  11. Nuclear DNA content of the pigeon orchid (Dendrobium crumenatum Sw.) with the analysis of flow cytometry

    OpenAIRE

    Upatham Meesawat; Theera Srisawat; Ladda Eksomtramage; Kamnoon Kanchanapoom

    2008-01-01

    Nuclear DNA content for the adult plants grown in a greenhouse and in vitro young plantlets of the pigeon orchid (Dendrobium crumenatum Sw.) was analyzed using flow cytometry. The resulting 2C DNA values ranged from 2.30±0.14 pgto 2.43±0.06 pg. However, nuclear DNA ploidy levels of long-term in vitro plantlets were found to be triploid and tetraploid.These ploidy levels were confirmed by chromosome counting. Tetraploid individuals (2n = 4x = 76) had approximately two times DNA content than di...

  12. Detecting Lactococcus lactis Prophages by Mitomycin C-Mediated Induction Coupled to Flow Cytometry Analysis

    Directory of Open Access Journals (Sweden)

    Joana Oliveira

    2017-07-01

    Full Text Available Most analyzed Lactococcus lactis strains are predicted to harbor one or more prophage genomes within their chromosome; however, the true extent of the inducibility and functionality of such prophages cannot easily be deduced from sequence analysis alone. Chemical treatment of lysogenic strains with Mitomycin C is known to cause induction of temperate phages, though it is not always easy to clearly identify a lysogenic strain or to measure the number of released phage particles. Here, we report the application of flow cytometry as a reliable tool for the detection and enumeration of released lactococcal prophages using the green dye SYTO-9.

  13. Detection of male reproductive abnormalities by flow cytometry measurements of testicular and ejaculated germ cells

    International Nuclear Information System (INIS)

    Evenson, D.P.; Higgins, P.J.; Melamed, M.R.

    1984-01-01

    Flow cytometry of developing and mature sperm from humans and animals with pathological conditions or those exposed to testicular function modifying agents can provide rapidly acquired data that are statistically sound due to the large numbers of randomly measured cells. Of more importance, however, is the fact that the authors can acquire information on factors such as chromatin structure that cannot be practically obtained in any other manner. This approach, coupled with classical techniques in reproductive biology, including electron microscopy, will provide a powerful methodology to study the response of animals to agents that modify testicular function

  14. Detection and capture of breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Goldschmidt, Benjamin S.; Viator, John A.

    2016-08-01

    According to the Centers for Disease Control and Prevention, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis-the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems-significantly worsens the prognosis of any breast cancer patient. A technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser is used to interrogate thousands of blood cells with one pulse as they flow through the beam path. Cells that are optically absorbing, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to enhance optical absorption. After which, the PA cytometry device is calibrated to demonstrate the ability to detect single cells. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25 to 45 breast cancer cells per 1 mL of blood. An in vitro PA flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy but also it can be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  15. A perspective for biomedical data integration: Design of databases for flow cytometry

    Directory of Open Access Journals (Sweden)

    Lakoumentas John

    2008-02-01

    Full Text Available Abstract Background The integration of biomedical information is essential for tackling medical problems. We describe a data model in the domain of flow cytometry (FC allowing for massive management, analysis and integration with other laboratory and clinical information. The paper is concerned with the proper translation of the Flow Cytometry Standard (FCS into a relational database schema, in a way that facilitates end users at either doing research on FC or studying specific cases of patients undergone FC analysis Results The proposed database schema provides integration of data originating from diverse acquisition settings, organized in a way that allows syntactically simple queries that provide results significantly faster than the conventional implementations of the FCS standard. The proposed schema can potentially achieve up to 8 orders of magnitude reduction in query complexity and up to 2 orders of magnitude reduction in response time for data originating from flow cytometers that record 256 colours. This is mainly achieved by managing to maintain an almost constant number of data-mining procedures regardless of the size and complexity of the stored information. Conclusion It is evident that using single-file data storage standards for the design of databases without any structural transformations significantly limits the flexibility of databases. Analysis of the requirements of a specific domain for integration and massive data processing can provide the necessary schema modifications that will unlock the additional functionality of a relational database.

  16. Quantitative analysis of gold and carbon nanoparticles in mammalian cells by flow cytometry light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gang [Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences (China); Liu, Naicheng; Wang, Zhenheng [Nanjing University, Department of Orthopedics, Jinling Hospital, School of Medicine (China); Shi, Tongguo; Gan, Jingjing; Wang, Zhenzhen; Zhang, Junfeng, E-mail: jfzhang@nju.edu.cn [Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences (China)

    2017-02-15

    Nanoparticle-based applications for diagnostics and therapeutics have been extensively studied. These applications require a profound understanding of the fate of nanoparticles (NPs) in cellular environments. However, until now, few analytical methods are available and most of them rely on fluorescent properties or special elements of NPs; therefore, for NPs without observable optical properties or special elements, the existing methods are hardly applicable. In this study, we introduce a flow cytometry light scattering (FCLS)-based approach that quantifies in situ NPs accurately in mammalian cells. Continuous cells of heterogeneous human epithelial colorectal adenocarcinoma (Caco-2 cells), mouse peritoneal macrophages (MPM), and human adenocarcinomic alveolar basal epithelia (A549 cells) were cultured with NPs with certain concentrations and size. The intensity of the flow cytometric side scattered light, which indicates the quantity of NPs in the cells, was analyzed. The result shows an accurate size- and dose-dependent uptake of Au NPs (5, 30, 250 nm) in Caco-2 cells. The size- and dose- dependence of Au NPs (5, 30, 250 nm) and carbon NPs (50, 500 nm) in cells was validated by transmission electron microscope (TEM). This paper demonstrates the great potential of flow cytometry light scattering in the quantitative study of the size and dose effect on in situ metallic or non-metallic NPs in mammalian cells.

  17. Detection and capture of breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Goldschmidt, Benjamin S.; Viator, John A.

    2016-01-01

    Abstract. According to the Centers for Disease Control and Prevention, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis—the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems—significantly worsens the prognosis of any breast cancer patient. A technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser is used to interrogate thousands of blood cells with one pulse as they flow through the beam path. Cells that are optically absorbing, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to enhance optical absorption. After which, the PA cytometry device is calibrated to demonstrate the ability to detect single cells. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25 to 45 breast cancer cells per 1 mL of blood. An in vitro PA flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy but also it can be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied. PMID:27580367

  18. A flow cytometry method for testing the susceptibility of Cryptococcus spp. to amphotericin B.

    Science.gov (United States)

    Benaducci, Tatiane; Matsumoto, Marcelo Teruyuki; Sardi, Janaina Cássia Orlandi; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares

    2015-01-01

    Human fungal infections have increased at an alarming rate in recent years, particularly in immunocompromised individuals. Cryptococcosis is the second most prevalent systemic fungal infection worldwide, and the most prevalent systemic infection in immunocompromised individuals, representing more than 70% of cases. The incidence of cryptococcosis is high in people with HIV/acquired immunodeficiency syndrome (AIDS), with recent estimates indicating that there are one million cases of cryptococcal meningitis globally per year in AIDS patients. The aim of this research was to develop a rapid flow cytometric antifungal susceptibility test and to compare the results with the standard methods. A reference strain and clinical isolates of Cryptococcus neoformans and Cryptococcus gattii were tested for susceptibility to amphotericin B by flow cytometry using propidium iodide as indicator of viability. Flow cytometry (FC) results were compared with the minimum inhibitory concentration (MIC) values determined by microdilution. The antifungal activity of amphotericin B ranged from MICs of 0.06 to 2μg/ml for the 11 isolates studied. The same results were found by FC. The FC method allows same-day results, assisting in the selection of appropriate antifungal therapies. These results demonstrate an excellent correlation between FC and the classic methods of testing for susceptibility to antifungal agents. This rapid diagnosis method makes it possible to quickly administer effective therapeutic interventions, often saving lives. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  19. Birefringent static Fourier-transform spectrometer for flow cytometry and imaging spectroscopy.

    Science.gov (United States)

    Hegyi, Alex

    2017-07-24

    A new concept for a birefringent static Fourier-transform spectrometer, applicable to both spectral flow cytometry and hyperspectral imaging, is introduced. Biological particles or scenes in relative motion are imaged onto a polarization interferometer consisting of a calcite Wollaston prism between crossed polarizers, with polarization axes at 45° with respect to the optical axes of the Wollaston prism. Due to the position-dependent optical path delay of the interferometer, interferograms are generated by the relative motion. These interferograms are recorded either by a flow cytometer detector, or in the case of hyperspectral imaging, by a CMOS focal plane array. Fourier-transforming the interferograms with respect to time yields the optical spectrum of each particle or scene position. The concept has applicability to situations where linear motion is already present, including flow cytometers, conveyor belt systems, fixed-wing aircraft, and nanosatellites.

  20. Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry.

    Directory of Open Access Journals (Sweden)

    Kirsty M Danielson

    Full Text Available The identification of extracellular vesicles (EVs as intercellular conveyors of biological information has recently emerged as a novel paradigm in signaling, leading to the exploitation of EVs and their contents as biomarkers of various diseases. However, whether there are diurnal variations in the size, number, and tissue of origin of blood EVs is currently not known, and could have significant implications when using EVs as biomarkers for disease progression. Currently available technologies for the measurement of EV size and number are either time consuming, require specialized equipment, or lack sufficient accuracy across a range of EV sizes. Flow cytometry represents an attractive alternative to these methods; however, traditional flow cytometers are only capable of measuring particles down to 500 nm, which is significantly larger than the average and median sizes of plasma EVs. Utilizing a Beckman Coulter MoFlo XDP flow cytometer with NanoView module, we employed nanoscale flow cytometry (termed nanoFCM to examine the relative number and scatter distribution of plasma EVs at three different time points during the day in 6 healthy adults. Analysis of liposomes and plasma EVs proved that nanoFCM is capable of detecting biologically-relevant vesicles down to 100 nm in size. With this high resolution configuration, we observed variations in the relative size (FSC/SSC distributions and concentration (proportions of EVs in healthy adult plasma across the course of a day, suggesting that there are diurnal variations in the number and size distribution of circulating EV populations. The use of nanoFCM provides a valuable tool for the study of EVs in both health and disease; however, additional refinement of nanoscale flow cytometric methods is needed for use of these instruments for quantitative particle counting and sizing. Furthermore, larger scale studies are necessary to more clearly define the diurnal variations in circulating EVs, and thus

  1. Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry.

    Science.gov (United States)

    Danielson, Kirsty M; Estanislau, Jessica; Tigges, John; Toxavidis, Vasilis; Camacho, Virginia; Felton, Edward J; Khoory, Joseph; Kreimer, Simion; Ivanov, Alexander R; Mantel, Pierre-Yves; Jones, Jennifer; Akuthota, Praveen; Das, Saumya; Ghiran, Ionita

    2016-01-01

    The identification of extracellular vesicles (EVs) as intercellular conveyors of biological information has recently emerged as a novel paradigm in signaling, leading to the exploitation of EVs and their contents as biomarkers of various diseases. However, whether there are diurnal variations in the size, number, and tissue of origin of blood EVs is currently not known, and could have significant implications when using EVs as biomarkers for disease progression. Currently available technologies for the measurement of EV size and number are either time consuming, require specialized equipment, or lack sufficient accuracy across a range of EV sizes. Flow cytometry represents an attractive alternative to these methods; however, traditional flow cytometers are only capable of measuring particles down to 500 nm, which is significantly larger than the average and median sizes of plasma EVs. Utilizing a Beckman Coulter MoFlo XDP flow cytometer with NanoView module, we employed nanoscale flow cytometry (termed nanoFCM) to examine the relative number and scatter distribution of plasma EVs at three different time points during the day in 6 healthy adults. Analysis of liposomes and plasma EVs proved that nanoFCM is capable of detecting biologically-relevant vesicles down to 100 nm in size. With this high resolution configuration, we observed variations in the relative size (FSC/SSC distributions) and concentration (proportions) of EVs in healthy adult plasma across the course of a day, suggesting that there are diurnal variations in the number and size distribution of circulating EV populations. The use of nanoFCM provides a valuable tool for the study of EVs in both health and disease; however, additional refinement of nanoscale flow cytometric methods is needed for use of these instruments for quantitative particle counting and sizing. Furthermore, larger scale studies are necessary to more clearly define the diurnal variations in circulating EVs, and thus further inform

  2. Quantification of heterotypic granule fusion in human neutrophils by imaging flow cytometry

    Directory of Open Access Journals (Sweden)

    Halla Björnsdottir

    2016-03-01

    Full Text Available Human neutrophils are filled with intracellular storage organelles, called granules and secretory vesicles, which differ in their content of soluble matrix proteins and membrane-bound molecules. To date, at least four distinct granule/vesicle subsets have been identified. These organelles may secrete their content extracellularly following mobilization to and fusion with the plasma membrane, but some of them may also fuse with internal membrane-enclosed organelles, typically a plasma membrane-derived phagosome. There are also instances where different granules appear to fuse with one another, a process that would enable mixing of their matrix and membrane components. Such granule fusion enables e.g., myeloperoxidase-processing of intragranular oxygen radicals, a key event in the formation of neutrophil extracellular traps (Björnsdottir et al., 2015 [1]. Described herein are data that show the quantification of such heterotypic granule–granule fusion by the use of imaging flow cytometry, a technique that combines flow cytometry with microscopy. The analysis described is based on immunofluorescent staining of established granule markers (lactoferrin and/or NGAL for one granule subset; the specific granules, and CD63 for another granule subset, the azurophil granules and calculation of a colocalization score for resting and PMA-stimulated neutrophils.

  3. The Analysis of Cell Cycle, Proliferation, and Asymmetric Cell Division by Imaging Flow Cytometry.

    Science.gov (United States)

    Filby, Andrew; Day, William; Purewal, Sukhveer; Martinez-Martin, Nuria

    2016-01-01

    Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis.

  4. Flow Cytometry Analysis Reveals That Only a Subpopulation of Mouse Sperm Undergoes Hyperpolarization During Capacitation1

    Science.gov (United States)

    Escoffier, Jessica; Navarrete, Felipe; Haddad, Doug; Santi, Celia M.; Darszon, Alberto; Visconti, Pablo E.

    2015-01-01

    To gain fertilizing capacity, mammalian sperm should reside in the female tract for a period of time. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium, and phosphorylation of different proteins. This process is also accompanied by the hyperpolarization of the sperm plasma membrane potential (Em). In the present work, we used flow cytometry to analyze changes in sperm Em during capacitation in individual cells. Our results indicate that a subpopulation of hyperpolarized mouse sperm can be clearly distinguished by sperm flow cytometry analysis. Using sperm bearing green fluorescent protein in their acrosomes, we found that this hyperpolarized subpopulation is composed of sperm with intact acrosomes. In addition, we show that the capacitation-associated hyperpolarization is blocked by high extracellular K+, by PKA inhibitors, and by SLO3 inhibitors in CD1 mouse sperm, and undetectable in Slo3 knockout mouse sperm. On the other hand, in sperm incubated in conditions that do not support capacitation, sperm membrane hyperpolarization can be induced by amiloride, high extracellular NaHCO3, and cAMP agonists. Altogether, our observations are consistent with a model in which sperm Em hyperpolarization is downstream of a cAMP-dependent pathway and is mediated by the activation of SLO3 K+ channels. PMID:25855261

  5. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation.

    Science.gov (United States)

    Escoffier, Jessica; Navarrete, Felipe; Haddad, Doug; Santi, Celia M; Darszon, Alberto; Visconti, Pablo E

    2015-05-01

    To gain fertilizing capacity, mammalian sperm should reside in the female tract for a period of time. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium, and phosphorylation of different proteins. This process is also accompanied by the hyperpolarization of the sperm plasma membrane potential (Em). In the present work, we used flow cytometry to analyze changes in sperm Em during capacitation in individual cells. Our results indicate that a subpopulation of hyperpolarized mouse sperm can be clearly distinguished by sperm flow cytometry analysis. Using sperm bearing green fluorescent protein in their acrosomes, we found that this hyperpolarized subpopulation is composed of sperm with intact acrosomes. In addition, we show that the capacitation-associated hyperpolarization is blocked by high extracellular K(+), by PKA inhibitors, and by SLO3 inhibitors in CD1 mouse sperm, and undetectable in Slo3 knockout mouse sperm. On the other hand, in sperm incubated in conditions that do not support capacitation, sperm membrane hyperpolarization can be induced by amiloride, high extracellular NaHCO3, and cAMP agonists. Altogether, our observations are consistent with a model in which sperm Em hyperpolarization is downstream of a cAMP-dependent pathway and is mediated by the activation of SLO3 K(+) channels. © 2015 by the Society for the Study of Reproduction, Inc.

  6. Antimicrobial Activity of Rhoeo discolor Phenolic Rich Extracts Determined by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Rebeca García-Varela

    2015-10-01

    Full Text Available Traditional medicine has led to the discovery of important active substances used in several health-related areas. Phytochemicals in Rhoeo discolor extracts have proven to have important antimicrobial activity. In the present study, our group determined the antimicrobial effects of extracts of Rhoeo discolor, a plant commonly used in Mexico for both medicinal and ornamental purposes. We evaluated the in vitro activity of phenolic rich extracts against specifically chosen microorganisms of human health importance by measuring their susceptibility via agar-disc diffusion assay and flow cytometry: Gram-positive Listeria innocua and Streptococcus mutans, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and lastly a fungal pathogen Candida albicans. Ten different extracts were tested in eight different doses on all the microorganisms. Analytical data revealed a high content of phenolic compounds. Both agar-disc diffusion assay and flow cytometry results demonstrated that Pseudomonas aeruginosa was the least affected by extract exposure. However, low doses of these extracts (predominantly polar, in a range from 1 to 4 μg/mL, did produce a statistically significant bacteriostatic and bactericidal effect on the rest of the microorganisms. These results suggest the addition of certain natural extracts from Rhoeo discolor could act as antibacterial and antimycotic drugs or additives for foods and cosmetics.

  7. An imaging flow cytometry method to assess ricin trafficking in A549 human lung epithelial cells.

    Science.gov (United States)

    Jenner, Dominic; Chong, Damien; Walker, Nicola; Green, A Christopher

    2018-02-01

    The endocytosis and trafficking of ricin in mammalian cells is an important area of research for those producing ricin anti-toxins and other ricin therapeutics. Ricin trafficking is usually observed by fluorescence microscopy techniques. This gives good resolution and leads to a detailed understanding of the internal movement of ricin within cells. However, microscopy techniques are often hampered by complex analysis and quantification techniques, and the inability to look at ricin trafficking in large populations of cells. In these studies we have directly labelled ricin and assessed if its trafficking can be observed using Imaging Flow Cytometry (IFC) both to the cytoplasmic region of cells and specifically to the Golgi apparatus. Using IDEAS® data analysis software the specific fluorescence location of the ricin within the cells was analysed. Then, using cytoplasmic masking techniques to quantify the number of cells with endocytosed cytoplasmic ricin or cells with Golgi-associated ricin, kinetic endocytosis curves were generated. Here we present, to the authors' knowledge, the first example of using imaging flow cytometry for evaluating the subcellular transport of protein cargo, using the trafficking of ricin toxin in lung cells as a model. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  8. Improved and Reproducible Flow Cytometry Methodology for Nuclei Isolation from Single Root Meristem

    Directory of Open Access Journals (Sweden)

    Thaís Cristina Ribeiro Silva

    2010-01-01

    Full Text Available Root meristems have increasingly been target of cell cycle studies by flow cytometric DNA content quantification. Moreover, roots can be an alternative source of nuclear suspension when leaves become unfeasible and for chromosome analysis and sorting. In the present paper, a protocol for intact nuclei isolation from a single root meristem was developed. This proceeding was based on excision of the meristematic region using a prototypical slide, followed by short enzymatic digestion and mechanical isolation of nuclei during homogenization with a hand mixer. Such parameters were optimized for reaching better results. Satisfactory nuclei amounts were extracted and analyzed by flow cytometry, producing histograms with reduced background noise and CVs between 3.2 and 4.1%. This improved and reproducible technique was shown to be rapid, inexpensive, and simple for nuclear extraction from a single root tip, and can be adapted for other plants and purposes.

  9. DNA flow cytometry of human spermatozoa: consistent stoichiometric staining of sperm DNA using a novel decondensation protocol.

    Science.gov (United States)

    Kovács, Tamás; Békési, Gyöngyi; Fábián, Akos; Rákosy, Zsuzsa; Horváth, Gábor; Mátyus, László; Balázs, Margit; Jenei, Attila

    2008-10-01

    Rapid flow cytometric measurement of the frequency of aneuploid human sperms is in increasing demand but development of an exploitable method is hindered by difficulties of stoichiometric staining of sperm DNA. An aggressive decondensation protocol is needed after which cell integrity still remains intact. We used flow cytometry to examine the effect of lithium diiodosalicylate (LIS, chaotropic agent) on fluorescence intensity of propidium iodide-treated human spermatozoa from 10 normozoospermic men. When flow cytometric identification of diploid spermatozoa was achieved, validation was performed after sorting by three-color FISH. In contrast with the extremely variable histograms of nondecondensed sperms, consistent identification of haploid and diploid spermatozoa was possible if samples were decondensed with LIS prior to flow cytometry. A 76-fold enrichment of diploid sperms was observed in the sorted fractions by FISH. A significant correlation was found between the proportion of sorted cells and of diploid sperms by FISH. Application of LIS during the preparation of sperm for flow cytometry appears to ensure the stoichiometric staining of sperm DNA, making quantification of aneuploid sperm percentage possible. To our knowledge this is the first report in terms of separating spermatozoa with confirmedly abnormal chromosomal content. High correlation between the proportion of cells identified as having double DNA content by flow cytometry and diploid sperm by FISH allows rapid calculation of diploidy rate. Copyright 2008 International Society for Advancement of Cytometry.

  10. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding

    Science.gov (United States)

    Ge, Yongchao; Sealfon, Stuart C.

    2012-01-01

    Motivation: For flow cytometry data, there are two common approaches to the unsupervised clustering problem: one is based on the finite mixture model and the other on spatial exploration of the histograms. The former is computationally slow and has difficulty to identify clusters of irregular shapes. The latter approach cannot be applied directly to high-dimensional data as the computational time and memory become unmanageable and the estimated histogram is unreliable. An algorithm without these two problems would be very useful. Results: In this article, we combine ideas from the finite mixture model and histogram spatial exploration. This new algorithm, which we call flowPeaks, can be applied directly to high-dimensional data and identify irregular shape clusters. The algorithm first uses K-means algorithm with a large K to partition the cell population into many small clusters. These partitioned data allow the generation of a smoothed density function using the finite mixture model. All local peaks are exhaustively searched by exploring the density function and the cells are clustered by the associated local peak. The algorithm flowPeaks is automatic, fast and reliable and robust to cluster shape and outliers. This algorithm has been applied to flow cytometry data and it has been compared with state of the art algorithms, including Misty Mountain, FLOCK, flowMeans, flowMerge and FLAME. Availability: The R package flowPeaks is available at https://github.com/yongchao/flowPeaks. Contact: yongchao.ge@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online PMID:22595209

  11. Correlation between flow cytometry and histologic findings: ten year experience in the investigation of lymphoproliferative diseases

    Directory of Open Access Journals (Sweden)

    Alanna Mara Pinheiro Sobreira Bezerra

    2011-06-01

    Full Text Available Objective: To demonstrate the advantages of correlatingflow cytometry immunophenotyping with the pathology/immunohistochemistry of lymph nodes or nodules in the diagnosisof lymphoproliferative diseases. Methods: A retrospective studywas carried out of 157 biopsy or fine-needle aspiration lymph nodes/nodule specimens taken from 142 patients, from 1999 and 2009.The specimens were simultaneously studied with flow cytometryand pathology at Hospital Israelita Albert Einstein. The specimenswere prepared in hematoxylin/eosin, Giemsa, or monoclonal antibodystained slides for detecting specific antibodies for the purposesof pathology/immunohistochemical analysis. The samples werehemolyzed and marked with different monoclonal antibody panels fordifferent antigens in flow cytometry immunophenotyping. Results:The diagnostic results of pathology/immunohistochemical studiesand flow cytometry immunophenotyping agreed in 115 patients(81%, corresponding to 127 specimens, as follows according tothe pathologic diagnosis: 63 patients with non-Hodgkin’s B-celllymphoma; 26 patients with reactive lymphoid hyperplasia; 5 patientswith non-Hodgkin’s T-cell lymphoma; 4 patients with atypical lymphoidproliferation; 5 patients with a chronic granulomatous inflammatoryprocess; 5 patients with a non-hematologic diagnosis; 2 patientswith granulocytic sarcoma; 2 patients with thymoma; 1 patientwith byphenotypic leukemia; 1 patient with kappa plasmocytoma;1 patient with Hodgkin’s lymphoma. Subtypes of lymphomas couldbe classified by associating the two techniques: 19 patients withfollicular lymphoma; 15 patients with diffuse large B-cell lymphoma; 7patients with small lymphocytic B-cell lymphoma/chronic lymphocyticleukemia; 3 patients with mantle cell lymphoma; 1 patient withBurkitt’s lymphoma; 1 patient with MALT type lymphoma; 1 patientwith post-transplant lymphoproliferative disease; 2 patients with highgrade non-Hodgkin’s B-cell lymphoma; 1 patient with low grade

  12. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    Directory of Open Access Journals (Sweden)

    Michael S Bono

    Full Text Available In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  13. Flow cytometry of duodenal intraepithelial lymphocytes improves diagnosis of celiac disease in difficult cases.

    Science.gov (United States)

    Valle, Julio; Morgado, José Mario T; Ruiz-Martín, Juan; Guardiola, Antonio; Lopes-Nogueras, Miriam; García-Vela, Almudena; Martín-Sacristán, Beatriz; Sánchez-Muñoz, Laura

    2017-10-01

    Diagnosis of celiac disease is difficult when the combined results of serology and histology are inconclusive. Studies using flow cytometry of intraepithelial lymphocytes (IELs) have found that celiac patients have increased numbers of γδ IELs, along with a decrease in CD3-CD103 + IELs. The objective of this article is to assess the role of flow cytometric analysis of IELs in the diagnosis of celiac disease in difficult cases. A total of 312 patients with suspicion of celiac disease were included in the study. Duodenal biopsy samples were used for histological assessment and for flow cytometric analysis of IELs. In 46 out of 312 cases (14.7%) the combination of serology and histology did not allow the confirmation or exclusion of celiac disease. HLA typing had been performed in 42 of these difficult cases. Taking into account HLA typing and the response to a gluten-free diet, celiac disease was excluded in 30 of these cases and confirmed in the remaining 12. Flow cytometric analysis of IELs allowed a correct diagnosis in 39 out of 42 difficult cases (92.8%) and had a sensitivity of 91.7% (95% CI: 61.5% to 99.8%) and a specificity of 93.3% (95% CI: 77.9% to 99.2%) for the diagnosis of celiac disease in this setting. Flow cytometric analysis of IELs is useful for the diagnosis of celiac disease in difficult cases.

  14. Flow cytometry: a versatile technology for specific quantification and viability assessment of micro-organisms in multistrain probiotic products.

    Science.gov (United States)

    Chiron, C; Tompkins, T A; Burguière, P

    2018-02-01

    Classical microbiology techniques are the gold standard for probiotic enumeration. However, these techniques are limited by parameters of time, specificity and incapacity to detect viable but nonculturable (VBNC) micro-organisms and nonviable cells. The aim of the study was to evaluate flow cytometry as a novel method for the specific quantification of viable and nonviable probiotics in multistrain products. Custom polyclonal antibodies were produced against five probiotic strains from different species (Bifidobacterium bifidum R0071, Bifidobacterium longum ssp. infantis R0033, Bifidobacterium longum ssp. longum R0175, Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011). Evaluation of specificity confirmed that all antibodies were specific at least at the subspecies level. A flow cytometry method combining specific antibodies and viability assessment with SYTO ® 24 and propidium iodide was applied to quantify these strains in three commercial products. Analyses were conducted on two flow cytometry instruments by two operators and compared with classical microbiology using selective media. Results indicated that flow cytometry provides higher cell counts than classical microbiology (P probiotic enumeration and viability assessment. Combination with polyclonal antibodies can achieve sufficient specificity to differentiate closely related strains. Flow cytometry provides absolute and specific quantification of viable and nonviable probiotic strains in a very short time (48 h), bringing efficient tools for research and development and quality control. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  15. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.

    Science.gov (United States)

    Hennig, Holger; Rees, Paul; Blasi, Thomas; Kamentsky, Lee; Hung, Jane; Dao, David; Carpenter, Anne E; Filby, Andrew

    2017-01-01

    Imaging flow cytometry (IFC) enables the high throughput collection of morphological and spatial information from hundreds of thousands of single cells. This high content, information rich image data can in theory resolve important biological differences among complex, often heterogeneous biological samples. However, data analysis is often performed in a highly manual and subjective manner using very limited image analysis techniques in combination with conventional flow cytometry gating strategies. This approach is not scalable to the hundreds of available image-based features per cell and thus makes use of only a fraction of the spatial and morphometric information. As a result, the quality, reproducibility and rigour of results are limited by the skill, experience and ingenuity of the data analyst. Here, we describe a pipeline using open-source software that leverages the rich information in digital imagery using machine learning algorithms. Compensated and corrected raw image files (.rif) data files from an imaging flow cytometer (the proprietary .cif file format) are imported into the open-source software CellProfiler, where an image processing pipeline identifies cells and subcellular compartments allowing hundreds of morphological features to be measured. This high-dimensional data can then be analysed using cutting-edge machine learning and clustering approaches using "user-friendly" platforms such as CellProfiler Analyst. Researchers can train an automated cell classifier to recognize different cell types, cell cycle phases, drug treatment/control conditions, etc., using supervised machine learning. This workflow should enable the scientific community to leverage the full analytical power of IFC-derived data sets. It will help to reveal otherwise unappreciated populations of cells based on features that may be hidden to the human eye that include subtle measured differences in label free detection channels such as bright-field and dark-field imagery

  16. Improved graft survival in highly sensitized patients undergoing renal transplantation after the introduction of a clinically validated flow cytometry crossmatch.

    LENUS (Irish Health Repository)

    Limaye, Sandhya

    2009-04-15

    Flow cytometric techniques are increasingly used in pretransplant crossmatching, although there remains debate regarding the clinical significance and predictive value of donor-specific antibodies detected by flow cytometry. At least some of the discrepancies between published studies may arise from differences in cutoffs used and lack of standardization of the test.

  17. Computationally efficient multidimensional analysis of complex flow cytometry data using second order polynomial histograms.

    Science.gov (United States)

    Zaunders, John; Jing, Junmei; Leipold, Michael; Maecker, Holden; Kelleher, Anthony D; Koch, Inge

    2016-01-01

    Many methods have been described for automated clustering analysis of complex flow cytometry data, but so far the goal to efficiently estimate multivariate densities and their modes for a moderate number of dimensions and potentially millions of data points has not been attained. We have devised a novel approach to describing modes using second order polynomial histogram estimators (SOPHE). The method divides the data into multivariate bins and determines the shape of the data in each bin based on second order polynomials, which is an efficient computation. These calculations yield local maxima and allow joining of adjacent bins to identify clusters. The use of second order polynomials also optimally uses wide bins, such that in most cases each parameter (dimension) need only be divided into 4-8 bins, again reducing computational load. We have validated this method using defined mixtures of up to 17 fluorescent beads in 16 dimensions, correctly identifying all populations in data files of 100,000 beads in analysis, and up to 65 subpopulations of PBMC in 33-dimensional CyTOF data, showing its usefulness in discovery research. SOPHE has the potential to greatly increase efficiency of analysing complex mixtures of cells in higher dimensions. © 2015 International Society for Advancement of Cytometry.

  18. Evaluation of microparticles in whole blood by multicolour flow cytometry assay.

    Science.gov (United States)

    Christersson, Christina; Johnell, Matilda; Siegbahn, Agneta

    2013-04-01

    To develop and evaluate a multicolour flow cytometry method for analysis of microparticles (MPs) in fresh whole blood without any centrifugation steps or freezing/thawing procedure. Flow cytometry was performed using a FC500 MPL cytometer. The compensation in the protocol was performed based on the platelet population. Polystyrene microspheres 0.50-1.27 μm were used for size position, and the MP gate was set as particles 0.5-1.0 μm. Whole blood was incubated with annexin V and antibodies to tissue factor (TF), platelets (CD41 and CD62P), monocyte (CD14) and endothelial cells (CD144). For comparison, MPs from platelet free supernatant was used. The TF activity was evaluated by Calibrated Automated Thrombogram. Annexin V was used to distinguish true events from background noise. For standardization, each analysis included 10,000 events in the gate of platelets. There were 622(462-1001) MP(annV+)/10,000 platelets and of these, 66 (49-82)/10,000 platelets expressed TF. After correction for the individual platelet counts, the amount of circulating MP(annV+) was 17.1 (12.1-24.9) × 10(9)/L in whole blood, and of these, 10% (6-12%) expressed TF. The majority of the MPs expressed CD41, and 5.6% (2.2-6.9%) of these co-expressed TF. The amount of CD41 + MP(annV+) tended to correlate to the TF activity in whole blood. There was no correlation between the MP(annV+) in whole blood and MPs derived from platelet free supernatant. Patients with pulmonary arterial hypertension and stable coronary artery disease had increased concentrations of CD41 + MP(annV+) in whole blood. This multicolour flow cytometry assay in whole blood mimics the in vivo situation by avoiding several procedure steps interfering with the MP count. By standardized quantification of MPs a reference interval of MPs can be created.

  19. Standardization of 8-color flow cytometry across different flow cytometer instruments: A feasibility study in clinical laboratories in Switzerland.

    Science.gov (United States)

    Glier, Hana; Heijnen, Ingmar; Hauwel, Mathieu; Dirks, Jan; Quarroz, Stéphane; Lehmann, Thomas; Rovo, Alicia; Arn, Kornelius; Matthes, Thomas; Hogan, Cassandra; Keller, Peter; Dudkiewicz, Ewa; Stüssi, Georg; Fernandez, Paula

    2017-07-29

    The EuroFlow Consortium developed a fully standardized flow cytometric approach from instrument settings, through antibody panel, reagents and sample preparation protocols, to data acquisition and analysis. The Swiss Cytometry Society (SCS) promoted a study to evaluate the feasibility of using such standardized measurements of 8-color data across two different flow cytometry platforms - Becton Dickinson (BD) FACSCanto II and Beckman Coulter (BC) Navios, aiming at increasing reproducibility and inter-laboratory comparability of immunophenotypic data in clinical laboratories in Switzerland. The study was performed in two phases, i.e. a learning phase (round 1) and an analytical phase (rounds 2 and 3) consisting of a total of three rounds. Overall, 10 laboratories using BD FACSCanto II (n=6) or BC Navios (n=4) flow cytometers participated. Each laboratory measured peripheral blood samples from healthy donors stained with a uniform antibody panel of reagents - EuroFlow Lymphoid Screening Tube (LST) - applying the EuroFlow standardized protocols for instrument setup and sample preparation (www.EuroFlow.org). All data files were analyzed centrally and median fluorescence intensity (MedFI) values for individual markers on defined lymphocyte subsets were recorded; variability from reference MedFI values was assessed using performance scores. Data troubleshooting and discussion of the results with the participants followed after each round at SCS meetings. The results of the learning phase demonstrated that standardized instrument setup and data acquisition are feasible in routine clinical laboratories without previous experience with EuroFlow. During the analytical phase, highly comparable data were obtained at the different laboratories using either BD FACSCanto II or BC Navios. The coefficient of variation of MedFI for 7 of 11 markers performed repeatedly below 30%. In the last study round, 89% of participants scored over 90% MedFI values within the acceptance criteria

  20. An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing

    Science.gov (United States)

    Mao, Xiaole; Nawaz, Ahmad Ahsan; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Zhao, Yanhui; McCoy, J. Philip; El-Deiry, Wafik S.; Huang, Tony Jun

    2012-01-01

    In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a “microfluidic drifting” based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics. PMID:22567082

  1. Flow cytometry protocol to evaluate ionizing radiation effects on P-glycoprotein activity

    International Nuclear Information System (INIS)

    Santos, Neyliane Goncalves dos; Amaral, Ademir; Cavalcanti, Mariana Brayner . E-mail; Neves, Maria Amelia Batista; Machado, Cintia Gonsalves de Faria

    2008-01-01

    The aim of this work was to establish a protocol to evaluate ionizing radiation effects on P-glycoprotein (P-gp) activity. For this, human peripheral blood samples were irradiated in vitro with different doses and P-gp activity was analyzed for CD4 and CD8 T lymphocytes through rhodamine123-efflux assay by flow cytometry. By simultaneous employment of percentage and mean fluorescence index parameters, subject-by-subject analysis pointed out changes in P-gp activity for some individuals and irradiated samples. Based on this work, the proposed protocol was considered adequate for evaluating P-gp activity on cells after radioactive stress. Besides, this research suggests that P-gp activity could be an important factor to define patient-specific protocols in combined chemo- and radiotherapy, particularly when radiation exposure precedes chemical treatment. (author)

  2. Rapid flow cytometry analysis of antimicrobial properties of nettle powder and cranberry powder

    Science.gov (United States)

    Hattuniemi, Maarit; Korhonen, Johanna; Jaakkola, Mari; Räty, Jarkko; Virtanen, Vesa

    2010-11-01

    Both nettle (Urtica dioica) and cranberry (Vaccinium oxycoccus) are widely known to have good influence on health. The aim of this study was to investigate antimicrobial properties of nettle powder and cranberry powder against Escherichia coli (E. coli) and monitor the growth of the bacteria by a rapid flow cytometry (FCM) method. For FCM measurements samples were stained with fluorescent dyes. The inhibitory effects of plant material on growth of E. coli were estimated by comparing the results of control sample (E. coli) to E. coli samples with plant material. FCM offers both a brilliant tool to investigate the kinetics of the growth of bacterium, since subsamples can be taken from the same liquid medium during the growing period and with fluorescent dyes a rapid method to investigate viability of the bacterium.

  3. Development by flow cytometry of bioassays based on chlorella for environmental monitoring

    Directory of Open Access Journals (Sweden)

    Petrescu C-M,

    2016-05-01

    Full Text Available In ecotoxicological assessments, bioassays (ecotoxicity tests or biotests are one of the main tools, defined as methods which use living cells, tissues, organism or communities to assess exposure-related effects of chemicals. The increasing complexity of environmental degradation requires an increase in the capacity of scientific approach in monitoring and notification as early as possible risks. Our own objective concerns the detection of aquatic environment pollution in Romania and particularly in the Danube basin. For assessing aquatic environment pollution degree or for assessing cytotoxicity or ecotoxicity of pollutants (heavy metals, nanoparticles, pesticides, etc. we developed news experimental bioassays based on the use of viability and apoptosis biomarkers of Chlorella cells by flow cytometry. Our proposed bioassays could be rapid and very sensitive tests for in laboratory aquatic risk assessment and biomonitoring.

  4. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species

    Czech Academy of Sciences Publication Activity Database

    Loureiro, J.; Rodriguez, E.; Doležel, Jaroslav; Santos, C.

    2007-01-01

    Roč. 100, č. 4 (2007), s. 875-888 ISSN 0305-7364 R&D Projects: GA ČR GA521/06/1723; GA ČR(CZ) GA521/05/0257; GA MŠk(CZ) LC06004 Grant - others:Mendelova zemědělská a lesnická univerzita v Brně / Agronomická fakulta(CZ) ME 844 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : flow cytometry * general purpose buffer * genome size Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.939, year: 2007

  5. Polyploidy in the olive complex (Olea europaea): Evidence from flow cytometry and nuclear microsatellite analyses

    DEFF Research Database (Denmark)

    Besnard, G.; Garcia-Verdugo, C.; Rubio de Casas, R.

    2008-01-01

    Background: Phylogenetic and phylogeographic investigations have been previously performed to study the evolution of the olive tree complex (Olea europaea). A particularly high genomic diversity has been found in north-west Africa. However, to date no exhaustive study has been addressed to infer...... putative polyploidization events and their evolutionary significance in the diversification of the olive tree and its relatives. Methods: Representatives of the six olive subspecies were investigated using (a) flow cytometry to estimate genome content, and (b) six highly variable nuclear microsatellites....... Lastly, abnormalities in chromosomes inheritance leading to aneuploid formation were revealed using microsatellite analyses in the offspring from the controlled cross in subsp. maroccana. Conclusions: This study constitutes the first report for multiple polyploidy in olive tree relatives. Formation...

  6. Flow cytometry evidence of human granulocytes interaction with polyhedral oligomeric silsesquioxanes: effect of nanoparticle charge

    Science.gov (United States)

    Renò, Filippo; Carniato, Fabio; Rizzi, Manuela; Olivero, Francesco; Pittarella, Pamela; Marchese, Leonardo

    2013-05-01

    Nanoparticles (NPs) entering the human body are immediately confronted with the innate part of human immune system. In particular, monocyte and neutrophil granulocytes readily clear particles by phagocytosis, even if in the case of NPs the uptake mechanism may be classified as macropinocytosis. Among engineered nanoparticles, in the last years, siliceous materials have emerged as promising materials for several applications ranging from catalysis to biomedical. The polyhedral oligomeric silsesquioxanes (POSS) are nanodimensional, easily synthesizable molecular compounds and POSS-based systems are promising carriers for biological molecules. In this work, the ability of human granulocytes to uptake positively and negatively charged POSS was measured using a simple flow cytometry analysis based on cell size modifications. The data obtained showed that after a 30 min exposure only positive NPs were uptaken by human granulocyte using both macropinocytosis and clathrin-mediated mechanisms as demonstrated by uptake inhibition mediated by amiloride and chlorpromazine.

  7. Nuclear DNA content of the pigeon orchid (Dendrobium crumenatum Sw. with the analysis of flow cytometry

    Directory of Open Access Journals (Sweden)

    Upatham Meesawat

    2008-05-01

    Full Text Available Nuclear DNA content for the adult plants grown in a greenhouse and in vitro young plantlets of the pigeon orchid (Dendrobium crumenatum Sw. was analyzed using flow cytometry. The resulting 2C DNA values ranged from 2.30±0.14 pgto 2.43±0.06 pg. However, nuclear DNA ploidy levels of long-term in vitro plantlets were found to be triploid and tetraploid.These ploidy levels were confirmed by chromosome counting. Tetraploid individuals (2n = 4x = 76 had approximately two times DNA content than diploid (2n = 2x = 38 individuals. This variation may be due to prolonged cultivation and thepresence of exogenous plant growth regulators.

  8. NetFCM: A Semi-Automated Web-Based Method for Flow Cytometry Data Analysis

    DEFF Research Database (Denmark)

    Frederiksen, Juliet Wairimu; Buggert, Marcus; Karlsson, Annika C.

    2014-01-01

    data analysis has become more complex and labor-intensive than previously. We have therefore developed a semi-automatic gating strategy (NetFCM) that uses clustering and principal component analysis (PCA) together with other statistical methods to mimic manual gating approaches. NetFCM is an online...... corresponding to those obtained by manual gating strategies. These data demonstrate that NetFCM has the potential to identify relevant T cell populations by mimicking classical FCM data analysis and reduce the subjectivity and amount of time associated with such analysis. (c) 2014 International Society......Multi-parametric flow cytometry (FCM) represents an invaluable instrument to conduct single cell analysis and has significantly increased our understanding of the immune system. However, due to new techniques allowing us to measure an increased number of phenotypes within the immune system, FCM...

  9. Evaluation of T cell subsets by an immunocytochemical method compared to flow cytometry in four countries

    DEFF Research Database (Denmark)

    Lisse, I M; Böttiger, B; Christensen, L B

    1997-01-01

    The authors tested an alternative method for CD4 and CD8 T lymphocytes enumeration, the immunoalkaline phosphatase method (IA), in three African countries and in Denmark. The IA determinations from 136 HIV antibody positive and 105 HIV antibody negative individuals were compared...... lymphocytes, the sensitivity was 89% and specificity 95% for detecting an FC level of CD4 T lymphocytes. The FC and IA methods had the same internal correspondence between low absolute CD4 T cell count and low CD4 percentages; the sensitivity and specificity for detecting a low absolute CD4 T cell...... to the corresponding results obtained by flow cytometry (FC) performed in the respective countries. The authors found good correspondence between the two methods for measurements of CD4 and CD8 T lymphocytes independent of serological status and geographical site. However, the CD4 and CD8 T lymphocytes values obtained...

  10. Flow Cytometry and Effusions in Lymphoproliferative Processes and Other Hematologic Neoplasias.

    Science.gov (United States)

    Bode-Lesniewska, Beata

    2016-01-01

    Cytopathologists are regularly confronted with lymphocyte-rich effusions, and the definite decision of whether the lymphocytosis is of a purely reactive nature or a presentation of an indolent lymphoma may be an extremely difficult one based on microscopy alone. Flow cytometry (FC) offers many advantages in terms of its application in body cavity fluids, and it has proven to be very useful both in the setting of a known disease and for new lymphoma diagnoses. In this paper, the studies published in recent years dealing with the applications of FC in body cavity effusions in the context of hematologic neoplasia are reviewed, stressing the integrative diagnostic approach. The incorporation of microscopical, immunophenotypical, and molecular findings from examinations of the cellular content of effusions and the interpretation of results in relation to the current WHO classification of hematolymphoid malignancies give cytopathologists new perspectives on advanced and clinically highly relevant diagnostics. © 2016 S. Karger AG, Basel.

  11. Evaluation of T cell subsets by an immunocytochemical method compared to flow cytometry in four countries

    DEFF Research Database (Denmark)

    Lisse, I M; Böttiger, B; Christensen, L B

    1997-01-01

    The authors tested an alternative method for CD4 and CD8 T lymphocytes enumeration, the immunoalkaline phosphatase method (IA), in three African countries and in Denmark. The IA determinations from 136 HIV antibody positive and 105 HIV antibody negative individuals were compared...... lymphocytes, the sensitivity was 89% and specificity 95% for detecting an FC level of T lymphocytes. The FC and IA methods had the same internal correspondence between low absolute CD4 T cell count and low CD4 percentages; the sensitivity and specificity for detecting a low absolute CD4 T cell...... to the corresponding results obtained by flow cytometry (FC) performed in the respective countries. The authors found good correspondence between the two methods for measurements of CD4 and CD8 T lymphocytes independent of serological status and geographical site. However, the CD4 and CD8 T lymphocytes values obtained...

  12. High resolution DNA flow cytometry of boar sperm cells in identification of boars carrying cytogenetic aberrations

    DEFF Research Database (Denmark)

    Larsen, Jacob; Christensen, Knud; Larsen, Jørgen K

    2004-01-01

    The cytogenetic quality of boars used for breeding determines the litter outcome and thus has large economical consequences. Traditionally, quality controls based on the examination of simple karyograms are time consuming and sometimes give uncertain results. As an alternative, the use of high......-resolution DNA flow cytometry on DAPI-stained sperm cell nuclei (CV cytogenetic quality of boars. By analyzing a series of 25 animals judged normal by their fertility statistics and a series of seven animals with known reciprocal translocations, a model...... for identifying sperm cells from cytogenetically aberrant animals was proposed. This model was applied to a series of 50 uncharacterized animals. The model successfully identified a mosaic or chimaeric carrier of an aberrant X chromosome. However, implementation of this technique for screening purposes would...

  13. Flow cytometry protocol to evaluate ionizing radiation effects on P-glycoprotein activity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Neyliane Goncalves dos; Amaral, Ademir; Cavalcanti, Mariana Brayner [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail; neylisantos@yahoo.com.br; Neves, Maria Amelia Batista; Machado, Cintia Gonsalves de Faria [Fundacao de Hematologia e Hemoterapia de Pernambuco, Recife, PE (Brazil). Unidade de Laboratorios Especializados. Lab. de Imunofenotipagem

    2008-12-15

    The aim of this work was to establish a protocol to evaluate ionizing radiation effects on P-glycoprotein (P-gp) activity. For this, human peripheral blood samples were irradiated in vitro with different doses and P-gp activity was analyzed for CD4 and CD8 T lymphocytes through rhodamine123-efflux assay by flow cytometry. By simultaneous employment of percentage and mean fluorescence index parameters, subject-by-subject analysis pointed out changes in P-gp activity for some individuals and irradiated samples. Based on this work, the proposed protocol was considered adequate for evaluating P-gp activity on cells after radioactive stress. Besides, this research suggests that P-gp activity could be an important factor to define patient-specific protocols in combined chemo- and radiotherapy, particularly when radiation exposure precedes chemical treatment. (author)

  14. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

    Science.gov (United States)

    Cron, Andrew; Gouttefangeas, Cécile; Frelinger, Jacob; Lin, Lin; Singh, Satwinder K; Britten, Cedrik M; Welters, Marij J P; van der Burg, Sjoerd H; West, Mike; Chan, Cliburn

    2013-01-01

    Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less). Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM) approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM) naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC) samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a consistent labeling

  15. Analysis of basophil activation by flow cytometry in pediatric house dust mite allergy.

    Science.gov (United States)

    González-Muñoz, Miguel; Villota, Julian; Moneo, Ignacio

    2008-06-01

    Detection of allergen-induced basophil activation by flow cytometry has been shown to be a useful tool for allergy diagnosis. The aim of this study was to assess the potential of this technique for the diagnosis of pediatric house dust mite allergy. Quantification of total and specific IgE and basophil activation test were performed to evaluate mite allergic (n = 24), atopic (n = 23), and non-allergic children (n = 9). Allergen-induced basophil activation was detected as a CD63-upregulation. Receiver operating characteristics (ROC) curve analysis was performed to calculate the optimal cut-off value of activated basophils discriminating mite allergic and non-allergic children. ROC curve analysis yielded a threshold value of 18% activated basophils when mite-sensitized and atopic children were studied [area under the curve (AUC) = 0.99, 95% confidence interval (CI) = 0.97-1.01, p 43 kU/l) values for Dermatophagoides pteronyssinus allergen. They also showed positive prick (wheal diameter >1.0 cm) and basophil activation (>87%) tests and high specific IgE (>100 kU/l) with shrimp allergen. Shrimp sensitization was demonstrated by high levels of Pen a 1-specific IgE (>100 kU/l). Cross-reactivity between mite and shrimp was confirmed by fluorescence enzyme immunoassay (FEIA-CAP) inhibition study in these two cases. This study demonstrated that the analysis of allergen-induced CD63 upregulation by flow cytometry is a reliable tool for diagnosis of mite allergy in pediatric patients, with sensitivity similar to routine diagnostic tests and a higher specificity. Furthermore, this method can provide additional information in case of disagreement between in vivo and in vitro test results.

  16. Characterization of functional variables in epididymal alpaca (Vicugna pacos) sperm using imaging flow cytometry.

    Science.gov (United States)

    Santiani, Alexei; Ugarelli, Alejandra; Evangelista-Vargas, Shirley

    2016-10-01

    Epididymal alpaca sperm represent an alternative model for the study of alpaca semen. The objective of this study was to characterize the normal values of some functional variables in epididymal alpaca sperm using imaging flow cytometry. Alpaca testicles (n=150) were processed and sperm were recovered from the cauda epididymides. Only 76 samples with acceptable motility and sperm count were considered for assessment by imaging flow cytometry. Acrosome integrity and integrity/viability were assessed by FITC-PSA/PI and FITC-PNA/PI. Mitochondrial membrane potential (MMP) was assessed by MitoTracker CMXRos and MitoTracker Deep Red FM. Lipid peroxidation was evaluated using BODIPY 581/591 C11. Results show that the mean values for acrosome-intact sperm were 95.03±6.39% and 93.34±7.96%, using FITC-PSA and FITC-PNA, respectively. The mean values for acrosome-intact viable sperm were 60.58±12.12% with FITC-PSA/PI and 58.81±12.94% with FITC-PNA/PI. Greater MMP was detected in 65.03±15.92% and 59.52±19.19%, using MitoTracker CMXRos and MitoTracker Deep Red FM, respectively. Lipid peroxidation was 0.84±0.95%. Evaluation of acrosome-intact and acrosome-intact viable sperm with FITC-PSA/PI compared with. FITC-PNA/PI or MMP with MitoTracker CMXRos compared with MitoTracker Deep Red FM were correlated (Psperm motility (r=0.3979). This report provides a basis for future research related to alpaca semen using the epididymal sperm model. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

    Directory of Open Access Journals (Sweden)

    Andrew Cron

    Full Text Available Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less. Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a

  18. Flow Cytometry Analysis of Peripheral Blood B Cell Distribution of Patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Vuslat Yılmaz

    2017-12-01

    Full Text Available Objective: Multiple sclerosis (MS is a central nervous system (CNS disease characterized by autoimmune inflammation and neurodegeneration. Damage to the CNS is thought to be mediated predominantly by activated pro-inflammatory T cells and antibody secreting B cells. Strong evidence of B cell functions in MS pathogenesis has come from trials of B cell- depleting treatment. In this study, the peripheral blood frequencies of B cell subsets were measured using flow cytometry in patients to determine the disease-specific B cell differences that might be associated with the evolution to progressive forms of MS. Materials and Methods: Peripheral blood mononuclear cells were separated from patients and healthy controls [relapsing-remitting MS (RRMS and secondary progressive MS (SPMS]. Cells were stained with anti-human monoclonal antibodies (CD19-APC, CD27-FITC, IgD-APC/Cy7, CD138-PE, CD24-PerCP and CD38-Alexa fluor 700, and analyzed using flow cytometry Results: There were no significant differences between the MS group and healthy controls by means of peripheral blood frequencies of B cells, immature, naïve, classic memory, plasma, plasmablasts, and regulatory B cells. Only higher naïve B cell frequency tendency was determined in patients with RRMS as compared with patients with SPMS and healthy controls. Conclusion: Peripheral blood B cell subset measurements are not likely to be used as a biomarker for prediction of disease progression. Although B cells have a well-known pathogenic significance, B cell population alterations do not occur during the progression of the disease

  19. Applications of flow cytometry in plant pathology for genome size determination, detection and physiological status.

    Science.gov (United States)

    D'Hondt, Liesbet; Höfte, Monica; Van Bockstaele, Erik; Leus, Leen

    2011-10-01

    Flow cytometers are probably the most multipurpose laboratory devices available. They can analyse a vast and very diverse range of cell parameters. This technique has left its mark on cancer, human immunodeficiency virus and immunology research, and is indispensable in routine clinical diagnostics. Flow cytometry (FCM) is also a well-known tool for the detection and physiological status assessment of microorganisms in drinking water, marine environments, food and fermentation processes. However, flow cytometers are seldom used in plant pathology, despite FCM's major advantages as both a detection method and a research tool. Potential uses of FCM include the characterization of genome sizes of fungal and oomycete populations, multiplexed pathogen detection and the monitoring of the viability, culturability and gene expression of plant pathogens, and many others. This review provides an overview of the history, advantages and disadvantages of FCM, and focuses on the current applications and future possibilities of FCM in plant pathology. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  20. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  1. High degree of concordance between flow cytometry and geno2pheno methods for HIV-1 tropism determination in proviral DNA

    Directory of Open Access Journals (Sweden)

    Alex José Leite Torres

    2015-03-01

    Full Text Available Use of CCR5 antagonists requires previous viral tropism determination. The available methods have high cost, are time-consuming, or require highly trained personnel, and sophisticated equipment. We compared a flow cytometry-based tropism assay with geno2pheno method to determine HIV-1 tropism in AIDS patients, in Bahia, Brazil. We tested peripheral blood mononuclear cells of 102 AIDS patients under antiretroviral therapy by using a cytometry-based tropism assay and geno2pheno assay. Cellular membrane receptors were identified by using CXCR4, CCR5 and CD4 monoclonal antibodies, while detection of cytoplasmic mRNAs for gag and pol HIV regions was achieved by using a labeled probe. Genotypic identification of X4 and R5 tropic viruses was attempted by geno2pheno algorithm. There was a high degree of concordance between cytometry-based tropism assay and geno2pheno algorithm in determination of HIV-1 tropism. Cytometry-based tropism assay demonstrated higher sensitivity and specificity in comparison to geno2pheno, which was used as a gold-standard. One sample could not be amplified by geno2pheno method, but was classified as duotropic by cytometry-based tropism assay. We did not find any association between CD4+ count or plasma HIV-1 RNA viral load and tropism results. The overall performances of cytometry-based tropism assay and geno2pheno assay were almost identical in determination of HIV-1 tropism.

  2. High degree of concordance between flow cytometry and geno2pheno methods for HIV-1 tropism determination in proviral DNA.

    Science.gov (United States)

    Torres, Alex José Leite; Brígido, Luis Fernando de Macedo; Abrahão, Marcos Herculano Nunes; Angelo, Ana Luiza Dias; de Jesus Ferreira, Gilcivaldo; Coelho, Luana Portes; Ferreira, João Leandro; Jorge, Célia Regina Mayoral Pedroso; Netto, Eduardo Martins; Brites, Carlos

    2015-01-01

    Use of CCR5 antagonists requires previous viral tropism determination. The available methods have high cost, are time-consuming, or require highly trained personnel, and sophisticated equipment. We compared a flow cytometry-based tropism assay with geno2pheno method to determine HIV-1 tropism in AIDS patients, in Bahia, Brazil. We tested peripheral blood mononuclear cells of 102 AIDS patients under antiretroviral therapy by using a cytometry-based tropism assay and geno2pheno assay. Cellular membrane receptors were identified by using CXCR4, CCR5 and CD4 monoclonal antibodies, while detection of cytoplasmic mRNAs for gag and pol HIV regions was achieved by using a labeled probe. Genotypic identification of X4 and R5 tropic viruses was attempted by geno2pheno algorithm. There was a high degree of concordance between cytometry-based tropism assay and geno2pheno algorithm in determination of HIV-1 tropism. Cytometry-based tropism assay demonstrated higher sensitivity and specificity in comparison to geno2pheno, which was used as a gold-standard. One sample could not be amplified by geno2pheno method, but was classified as duotropic by cytometry-based tropism assay. We did not find any association between CD4+ count or plasma HIV-1 RNA viral load and tropism results. The overall performances of cytometry-based tropism assay and geno2pheno assay were almost identical in determination of HIV-1 tropism. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  3. Immunophenotype Discovery, Hierarchical Organization, and Template-based Classification of Flow Cytometry Samples

    Directory of Open Access Journals (Sweden)

    Ariful Azad

    2016-08-01

    Full Text Available We describe algorithms for discovering immunophenotypes from large collections of flow cytometry (FC samples, and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters, a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples, while ignoring noise and small sample-specific variations.We have applied the template-base scheme to analyze several data setsincluding one representing a healthy immune system, and one of Acute Myeloid Leukemia (AMLsamples. The last task is challenging due to the phenotypic heterogeneity of the severalsubtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML, and were able to distinguish Acute Promyelocytic Leukemia from other subtypes of AML.

  4. High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton.

    Science.gov (United States)

    Lai, Queenie T K; Lee, Kelvin C M; Tang, Anson H L; Wong, Kenneth K Y; So, Hayden K H; Tsia, Kevin K

    2016-12-12

    Time-stretch imaging has been regarded as an attractive technique for high-throughput imaging flow cytometry primarily owing to its real-time, continuous ultrafast operation. Nevertheless, two key challenges remain: (1) sufficiently high time-stretch image resolution and contrast is needed for visualizing sub-cellular complexity of single cells, and (2) the ability to unravel the heterogeneity and complexity of the highly diverse population of cells - a central problem of single-cell analysis in life sciences - is required. We here demonstrate an optofluidic time-stretch imaging flow cytometer that enables these two features, in the context of high-throughput multi-class (up to 14 classes) phytoplantkton screening and classification. Based on the comprehensive feature extraction and selection procedures, we show that the intracellular texture/morphology, which is revealed by high-resolution time-stretch imaging, plays a critical role of improving the accuracy of phytoplankton classification, as high as 94.7%, based on multi-class support vector machine (SVM). We also demonstrate that high-resolution time-stretch images, which allows exploitation of various feature domains, e.g. Fourier space, enables further sub-population identification - paving the way toward deeper learning and classification based on large-scale single-cell images. Not only applicable to biomedical diagnostic, this work is anticipated to find immediate applications in marine and biofuel research.

  5. Panel development for multicolor flow-cytometry testing of proliferation and immunophenotype in hMSCs.

    Science.gov (United States)

    Bradford, Jolene A; Clarke, Scott T

    2011-01-01

    Adult human mesenchymal stem cells (hMSC) are rare fibroblast-like cells capable of differentiation into a variety of cell tissues which include bone, cartilage, muscle, ligament, tendon, and adipose. Normal adult bone marrow and adipose tissue are the most common sources of these cells. The International Society for Cellular Therapy (ISCT) has proposed a set of standards to define hMSC for laboratory investigations and preclinical studies: adherence to plastic in standard culture conditions; in vitro differentiation into osteoblasts, adipocytes, and chondroblasts; and specific surface antigen expression. Direct measurement of proliferation combined with simultaneous detection of the ISCT-consensus immunophenotypic profile provides data that is used to determine the differentiation status and health of the cells. Flow cytometry provides a powerful technology that is routinely used to simultaneously and rapidly measure multiple parameters in a single sample. This chapter describes a flow cytometric panel for the simultaneous detection of immunophenotypic profile, proliferative capacity, and DNA content measurement in hMSC. Because a relatively small number of cells are needed with this approach, measurements can be made with minimal impact on expansion potential. The ability to assess antigen expression and proliferative status enables the investigator to make informed decisions on expansion and harvesting.

  6. An Introduction to Automated Flow Cytometry Gating Tools and Their Implementation.

    Science.gov (United States)

    Verschoor, Chris P; Lelic, Alina; Bramson, Jonathan L; Bowdish, Dawn M E

    2015-01-01

    Current flow cytometry (FCM) reagents and instrumentation allow for the measurement of an unprecedented number of parameters for any given cell within a homogenous or heterogeneous population. While this provides a great deal of power for hypothesis testing, it also generates a vast amount of data, which is typically analyzed manually through a processing called "gating." For large experiments, such as high-content screens, in which many parameters are measured, the time required for manual analysis as well as the technical variability inherent to manual gating can increase dramatically, even becoming prohibitive depending on the clinical or research goal. In the following article, we aim to provide the reader an overview of automated FCM analysis as well as an example of the implementation of FLOw Clustering without K, a tool that we consider accessible to researchers of all levels of computational expertise. In most cases, computational assistance methods are more reproducible and much faster than manual gating, and for some, also allow for the discovery of cellular populations that might not be expected or evident to the researcher. We urge any researcher who is planning or has previously performed large FCM experiments to consider implementing computational assistance into their analysis pipeline.

  7. Evolution of the scattering properties of phytoplankton cells from flow cytometry measurements.

    Directory of Open Access Journals (Sweden)

    William Moutier

    Full Text Available After the exponential growth phase, variability in the scattering efficiency of phytoplankton cells over their complete life cycle is not well characterised. Bulk measurements are impacted by senescent cells and detritrus. Thus the analysis of the evolution of the optical properties thanks to their morphological and/or intra-cellular variations remains poorly studied. Using the Cytosense flow cytometer (CytoBuoy b.v., NL, the temporal course of the forward and sideward efficiencies of two phytoplankton species (Thalassiosira pseudonana and Chlamydomonas concordia were analyzed during a complete life-cycle. These two species differ considerably from a morphological point of view. Over the whole experiment, the forward and sideward efficiencies of Thalassiosira pseudonana were, on average, respectively 2.2 and 1.6 times higher than the efficiencies of Chlamydomonas concordia. Large intra-species variability of the efficiencies were observed over the life cycle of the considered species. It highlights the importance of considering the optical properties of phytoplankton cells as a function of the population growth stage of the considered species. Furthermore, flow cytometry measurements were combined with radiative transfer simulations and biogeochemical and optical measurements. Results showed that the real refractive index of the chloroplast is a key parameter driving the sideward signal and that a simplistic two-layered model (cytoplasm-chloroplast seems particularly appropriate to represent the phytoplankton cells.

  8. Parallel assessment of marine autotrophic picoplankton using flow cytometry and chemotaxonomy.

    Science.gov (United States)

    Tamm, Marju; Laas, Peeter; Freiberg, Rene; Nõges, Peeter; Nõges, Tiina

    2018-06-01

    Autotrophic picoplankton (0.2-2μm) can be a significant contributor to primary production and hence play an important role in carbon flow. The phytoplankton community structure in the Baltic Sea is very region specific and the understanding of the composition and dynamics of pico-size phytoplankton is generally poor. The main objective of this study was to determine the contribution of picoeukaryotic algae and their taxonomic composition in late summer phytoplankton community of the West-Estonian Archipelago Sea. We found that about 20% of total chlorophyll a (Chl a) in this area belongs to autotrophic picoplankton. With increasing total Chl a, the Chl a of autotrophic picoplankton increased while its contribution in total Chl a decreased. Picoeukaryotes play an important role in the coastal area of the Baltic Sea where they constituted around 50% of the total autotrophic picoplankton biomass. The most abundant groups of picoeukaryotic algae were cryptophytes (16%), chlorophytes (13%) and diatoms (9%). Picocyanobacteria were clearly dominated by phycoerythrin containing Synechococcus. The parallel use of different assessment methods (CHEMTAX and flow cytometry) revealed the share of eukaryotic and prokaryotic part of autotrophic picoplankton. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Flow cytometry, microsatellites and niche models reveal the origins and geographical structure of Alnus glutinosa populations in Europe

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Vít, Petr; Krak, Karol; Trávníček, Pavel; Havrdová, Alena; Hadincová, Věroslava; Zákravský, Petr; Jarolímová, Vlasta; Bacles, C. F. E.; Douda, Jan

    2016-01-01

    Roč. 117, č. 1 (2016), s. 107-120 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP504/11/0402 Institutional support: RVO:67985939 Keywords : flow cytometry * microsatellites * glacial refugia Subject RIV: EF - Botanics Impact factor: 4.041, year: 2016

  10. Rapid assessment of viable but non-culturable Bacillus coagulans MTCC 5856 in commercial formulations using Flow cytometry

    Science.gov (United States)

    Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena

    2018-01-01

    Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856. PMID:29474436

  11. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa

    Science.gov (United States)

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-d...

  12. Flow cytometry total cell counts : A field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A

  13. Comparison of real time RT-PCR and flow cytometry methods for evaluation of biological activity of recombinant human erythropoietin

    Directory of Open Access Journals (Sweden)

    Sepehrizadeh Z

    2008-05-01

    Full Text Available Background: Evaluation of bioactivity of recombinant erythropoietin is essential for pharmaceutical industry, quality control authorities and researchers. The purpose of this study was to compare real time RT-PCR and flow cytometry for the assay of biological activity of recombinant erythropoietin. Methods: Three concentrations of recombinant erythropoietin BRP (80, 40 and 20 IU/ml were injected subcutaneously to mice. After 4 days the blood was collected and used for reticulocyte counts by flow cytometry and also for the RNA extraction. Real time RT-PCR amplification was carried out for β-globin. Results and conclusion: There was a significant correlation between the total RNA amounts (R2= 0.9995, relative quantity of β-globin mRNA (R2= 0.984 and reticulocyte counts (R2= 0.9742 with rhEpo concentrations. Total RNA and quantitative RT-PCR showed significant dose dependent results as well the reticulocyte counts by flow cytometry for the biological activity assay of rhEpo and so these methods could be considered as alternatives for flow cytometry.

  14. Rapid assessment of viable but non-culturable Bacillus coagulans MTCC 5856 in commercial formulations using Flow cytometry.

    Science.gov (United States)

    Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena; Mundkur, Lakshmi

    2018-01-01

    Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856.

  15. Monoclonal antibodies against the human mannose receptor as a specific marker in flow cytometry and immunohistochemistry for macrophages

    NARCIS (Netherlands)

    Noorman, F.; Braat, E.A.M.; Barrett-Bergshoeff, M.M.; Barbé, E.; Leeuwen, A. van; Lindeman, J.; Rijken, D.C.

    1997-01-01

    Recently we developed mouse monocloual antibodies (mAb) against the isolated human 175-kDa mannose receptor. In the present study we tested whether these mAb are suitable for the detection of the mannose receptor on cultured macrophages using flow cytometry and on cells in human tissues using

  16. Effectiveness of pulse-shape criteria for the selection of dicentric chromosomes by slit-scan flow cytometry and sorting

    NARCIS (Netherlands)

    Rens, W.; van Oven, C. H.; Stap, J.; Aten, J. A.

    1993-01-01

    A method was developed to detect dicentric chromosomes by slit-scan flow cytometry. The two centromeres of dicentric chromosomes are represented by the two dips in the trimodal fluorescence profile. A trimodal profile can, however, also be generated by aggregates of chromosomes. We tested the

  17. Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Kubátová, B.; Čurn, V.; Rauchová, Jana; Krajníková, E.; Jersáková, J.; Suda, Jan

    2011-01-01

    Roč. 107, č. 1 (2011), s. 77-87 ISSN 0305-7364 Institutional research plan: CEZ:AV0Z6005908 Keywords : coexistence * contact zone * flow cytometry Subject RIV: EF - Botanics Impact factor: 4.030, year: 2011

  18. [Flow cytometry controlled induction therapy with ATG and noninvasive monitoring of rejection--a modern management concept after heart transplantation].

    Science.gov (United States)

    Wagner, F M; Tugtekin, S M; Matschke, K; Platzbecker, U; Gulielmos, V; Schüler, S

    1998-01-01

    We introduce our concept of non-invasive transplant monitoring. The introduction of individualized immunosuppression by means of flow cytometry leads to a lower incidence of acute graft rejection and preserves immuncompetence. With the simultaneous use of echocardiography and intramyocardial electrogram (IMEG) acute graft rejections can be safely identified without using any invasive method.

  19. Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston

    NARCIS (Netherlands)

    Pires, L.M.D.; Jonker, R.M.; Van Donk, E.; Laanbroek, H.J.

    2004-01-01

    1. Selective grazing of adults and larvae of the zebra mussel (Dreissena polymorpha) on phytoplankton and detritus from both laboratory cultures and natural seston was quantified using flow cytometry. 2. Mean clearance rate of adult zebra mussels was higher on a mixture of the green alga Scenedesmus

  20. Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston

    NARCIS (Netherlands)

    Dionisio Pires, L.M.; Jonker, R.R.; Donk, E.van; Laanbroek, H.J.

    2004-01-01

    1. Selective grazing of adults and larvae of the zebra mussel (Dreissena polymorpha) on phytoplankton and detritus from both laboratory cultures and natural seston was quantified using flow cytometry. 2. Mean clearance rate of adult zebra mussels was higher on a mixture of the green

  1. Phospho-specific flow cytometry identifies aberrant signaling in indolent B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Blix Egil S

    2012-10-01

    Full Text Available Abstract Background Knowledge about signaling pathways in malignant cells may provide prognostic and diagnostic information in addition to identify potential molecular targets for therapy. B-cell receptor (BCR and co-receptor CD40 signaling is essential for normal B cells, and there is increasing evidence that signaling via BCR and CD40 plays an important role in the pathogenesis of B-cell lymphoma. The aim of this study was to investigate basal and induced signaling in lymphoma B cells and infiltrating T cells in single-cell suspensions of biopsies from small cell lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL and marginal zone lymphoma (MZL patients. Methods Samples from untreated SLL/CLL and MZL patients were examined for basal and activation induced signaling by phospho-specific flow cytometry. A panel of 9 stimulation conditions targeting B and T cells, including crosslinking of the B cell receptor (BCR, CD40 ligand and interleukins in combination with 12 matching phospho-protein readouts was used to study signaling. Results Malignant B cells from SLL/CLL patients had higher basal levels of phosphorylated (p-SFKs, p-PLCγ, p-ERK, p-p38, p-p65 (NF-κB, p-STAT5 and p-STAT6, compared to healthy donor B cells. In contrast, anti-BCR induced signaling was highly impaired in SLL/CLL and MZL B cells as determined by low p-SFK, p-SYK and p-PLCγ levels. Impaired anti-BCR-induced p-PLCγ was associated with reduced surface expression of IgM and CD79b. Similarly, CD40L-induced p-ERK and p-p38 were also significantly reduced in lymphoma B cells, whereas p-p65 (NF-κB was equal to that of normal B cells. In contrast, IL-2, IL-7 and IL-15 induced p-STAT5 in tumor-infiltrating T cells were not different from normal T cells. Conclusions BCR signaling and CD40L-induced p-p38 was suppressed in malignant B cells from SLL/CLL and MZL patients. Single-cell phospho-specific flow cytometry for detection of basal as well as activation

  2. Measurement of separase proteolytic activity in single living cells by a fluorogenic flow cytometry assay.

    Directory of Open Access Journals (Sweden)

    Wiltrud Haaß

    Full Text Available ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML. Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110 as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90-180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic

  3. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2007-06-01

    Full Text Available Abstract Background The zebrafish (Danio rerio is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Results Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. Conclusion The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  4. Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry.

    Science.gov (United States)

    Moor, Kathrin; Fadlallah, Jehane; Toska, Albulena; Sterlin, Delphine; Balmer, Maria L; Macpherson, Andrew J; Gorochov, Guy; Larsen, Martin; Slack, Emma

    2016-08-01

    Antibacterial antibody responses that target surfaces of live bacteria or secreted toxins are likely to be relevant in controlling bacterial pathogenesis. The ability to specifically quantify bacterial-surface-binding antibodies is therefore highly attractive as a quantitative correlate of immune protection. Here, binding of antibodies from various body fluids to pure-cultured live bacteria is made visible with fluorophore-conjugated secondary antibodies and measured by flow cytometry. We indicate the necessary controls for excluding nonspecific binding and also demonstrate a cross-adsorption technique for determining the extent of cross-reactivity. This technique has numerous advantages over standard ELISA and western blotting techniques because of its independence from scaffold binding, exclusion of cross-reactive elements from lysed bacteria and ability to visualize bacterial subpopulations. In addition, less than 10(5) bacteria and less than 10 μg of antibody are required per sample. The technique requires 3-4 h of hands-on experimentation and analysis. Moreover, it can be combined with automation and mutliplexing for high-throughput applications.

  5. Flow cytometry and cytomorphology evaluation of hematologic malignancy in cerebrospinal fluids: comparison with retrospective clinical outcome.

    Science.gov (United States)

    Cesana, Clara; Klersy, Catherine; Scarpati, Barbara; Brando, Bruno; Faleri, Maurizio; Bertani, Giambattista; Gatti, Arianna; Volpato, Elisabetta; Barba, Claudia; Ferri, Ursula; Scampini, Linda; Grillo, Giovanni; Lando, Giuliana; Nosari, Annamaria; Morra, Enrica; Cairoli, Roberto

    2011-07-01

    An independent clinical assessment was compared with flow cytometry (FCM) and cytomorphology results obtained on 227 cerebrospinal fluids investigated for hematologic malignancy, in a retrospective longitudinal study with a median observation time of 11 months. A combined method assessment (CMA), defining "positive" a sample if at least one method gave "positive" results, was also tested. Eleven out of 55 screening samples and 53 out of 166 follow-up samples resulted positive at clinical evaluation. FCM and CM were concordant with positive clinical assessment in 68.5% and 51.5% of cases, respectively. According to CMA, 10.5% of samples (resulting false negative by either FCM or cytomorphology) were rescued as true positive. FCM retained significantly higher accuracy than cytomorphology (p=0.0065) and 100% sensitivity when at least 220 leukocytes were acquired. CMA accuracy was higher than FCM accuracy and significantly higher than cytomorphology accuracy in the analysis of all samples (p<0.0001), samples from mature B/T cell neoplasms (p=0.0021), and samples drawn after intrathecal treatment (p=0.0001). When acquiring ≤220 leukocytes, FCM accuracy was poor, and combining cytomorphology added statistically significant diagnostic advantage (p=0.0043). Although FCM is the best diagnostic tool for evaluating CSF, morphology seems helpful especially when clinically positive follow-up samples are nearly acellular.

  6. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing.

    Science.gov (United States)

    Dey-Hazra, Emily; Hertel, Barbara; Kirsch, Torsten; Woywodt, Alexander; Lovric, Svjetlana; Haller, Hermann; Haubitz, Marion; Erdbruegger, Uta

    2010-12-06

    The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at -80°C decreased microparticle levels at days 28, 42, and 56 (P centrifugation speeds should be used to minimize contamination by smaller size platelets.

  7. Flow Cytometry Analysis of Cell Cycle and Specific Cell Synchronization with Butyrate.

    Science.gov (United States)

    Li, Cong-Jun

    2017-01-01

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. We explore the possibility of using butyrate-blocked cells to obtain synchronized cells and we characterize the properties of butyrate-induced cell cycle arrest. The site of growth inhibition and cell cycle arrest was analyzed using 5-bromo-2'-deoxyuridine (BrdU) incorporation and flow cytometry analyses. Exposure of MDBK cells to 10 mM butyrate caused growth inhibition and cell cycle arrest in a reversible manner. Butyrate affected the cell cycle at a specific point both immediately after mitosis and at a very early stage of the G1 phase. After release from butyrate arrest, MDBK cells underwent synchronous cycles of DNA synthesis and transited through the S phase. It takes at least 8 h for butyrate-induced G1-synchronized cells to begin the progression into the S phase. One cycle of cell division for MDBK cells is about 20 h. By combining BrdU incorporation and DNA content analysis, not only can the overlapping of different cell populations be eliminated, but the frequency and nature of individual cells that have synthesized DNA can be determined.

  8. A quantitative evaluation of erythropoiesis in myelodysplastic syndromes using multiparameter flow cytometry

    DEFF Research Database (Denmark)

    Jensen, I M; Hokland, M; Hokland, P

    1993-01-01

    By staining human bone marrow cells with a monoclonal antibody reacting with erythroid precursor cells (AS-E1) and propidium iodide, we have evaluated the proliferative capacity of erythropoiesis in patients with myelodysplastic syndromes (MDS) using flow cytometry. Comparing 36 patients (13 RA....../RAS, 13 RAEB, 10 RAEB-t) with 7 normal controls, significant differences in both the percentage of AS-E1+ cells and the fraction of AS-E1+ cells in the S or S-G2M-phase between the four groups were found. Since neither the percentage of AS-E1+ cells nor their fraction in S or S-G2M alone was found...... to characterize their proliferative activity, we introduced the proliferative fractions of the erythroid cell, i.e. the number of the AS-E1+ cells in S or S-G2M related to all bone marrow cells in S or S-G2M. Applying these parameters, we found significantly increased proliferative AS-E1 fractions in the RA...

  9. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  10. Utility of flow cytometry studies in the management of patients with multiple myeloma.

    Science.gov (United States)

    Paiva, Bruno; Merino, Juana; San Miguel, Jesús F

    2016-11-01

    Although the input of multiparameter flow cytometry (MFC) into the clinical management of multiple myeloma patients has faced some reluctance, continuously growing evidence supports the utility of MFC in this disease. MFC immunophenotyping of bone marrow and peripheral blood plasma cells affords cost-effective assessment of clonality, and provides prognostic information on the risk of progression in smoldering multiple myeloma, and the identification of active multiple myeloma patients with dismal outcome (e.g., high numbers of circulating tumor cells) or long-term survival despite suboptimal responses through the characterization of monoclonal gammopathy of undetermined significance-like phenotypes. Extensive data indicate that minimal residual disease (MRD) monitoring can be used as biomarker to evaluate treatment efficacy and act as surrogate for survival. The time has come to address within clinical trials the exact role of baseline risk factors and MRD monitoring for tailored therapy in multiple myeloma, which implies systematic usage of highly sensitive cost-effective, readily available, and standardized MRD techniques such as MFC. Next-generation MFC should be considered mandatory in the routine evaluation of multiple myeloma patients both at diagnosis and after therapy, and represents an attractive technique to integrate with high-throughput DNA and RNA-seq methods to help in understanding the mechanisms behind dissemination and chemoresistance of multiple myeloma.

  11. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Flow cytometry and monoclonal antibodies identify normal liver cell populations antigenically related to oval cells.

    Science.gov (United States)

    Agelli, M; Halay, E D

    1995-01-01

    Oval cells, a non-parenchymal cell population induced to rapidly proliferate in animals treated with carcinogens, are thought to be related to the hypothesized liver stem cells. In normal liver there are poorly defined cells antigenically related to oval cells. These oval cell antigen positive (OCAP) cells present in normal animals are thought to include hepatocyte and bile duct cell precursors. To isolate them, we modified the existing protocols designed for oval cells and used it on normal neonatal rat livers. Using flow cytometry, the percentage of normal liver OCAP-cells varied with the monoclonal antibody (MoAb) to the different oval cell membrane markers used: 12% (MoAb 18.2), 23% (MoAb 270.38), 27% (MoAb 18.11), 31% (MoAb 18.13), and 37% (MoAb 374.3). Macrophages consisted 10% of the cells (MoAb MCA 275); hepatocytes were essentially absent ( < 1%, MoAb 236.4). Our results demonstrate that is possible to obtain significant numbers of normal cells antigenically related to oval cells and that using different MoAbs, different cell populations can be sorted for use in experimental studies testing liver progenitor cell hypothesis.

  13. Characterization of Protein Particles in Therapeutic Formulations Using Imaging Flow Cytometry.

    Science.gov (United States)

    Probst, Christine; Zeng, Yuanchun; Zhu, Rong-Rong

    2017-08-01

    Quantitation of particles >10 μm in therapeutic protein formulations is required by pharmacopeia guidelines, and characterization of particles particles; consequently, new methods are needed to measure the sub-10 μm size range. Here, we evaluate imaging flow cytometry (IFC) as a new method for detection of protein aggregates, taking advantage of key enabling attributes including rapid multi-modal high-resolution imaging of individual particles, low sample volume, high sampling efficiency, wide dynamic size and concentration range, and low clog risk. IFC sensitivity was compared with dynamic imaging, a "gold standard" technique for analysis of particles in protein formulations. Both techniques yielded similar results for polystyrene beads ≥2 μm. However, IFC demonstrated greater protein particle detection sensitivity, especially for the sub-10 μm size range. Interestingly, for an aggregated lysozyme sample, IFC detected protein particles using fluorescence images, whereas dynamic imaging failed to detect even large particles >25 μm due to high transparency. The results corroborate implementation of IFC as an advanced technique for protein particle analysis, offering in-depth characterization of particle physical and chemical properties, and enhanced sensitivity for sub-10 μm and transparent particles. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    Directory of Open Access Journals (Sweden)

    Iole Macchia

    2013-01-01

    Full Text Available The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs and tumor-associated antigens (TAAs and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM- based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma.

  15. Photoacoustic Flow Cytometry for Single Sickle Cell Detection In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Chengzhong Cai

    2016-01-01

    Full Text Available Control of sickle cell disease (SCD stage and treatment efficiency are still time-consuming which makes well-timed prevention of SCD crisis difficult. We show here that in vivo photoacoustic flow cytometry (PAFC has a potential for real-time monitoring of circulating sickle cells in mouse model. In vivo data were verified by in vitro PAFC and photothermal (PT and PA spectral imaging of sickle red blood cells (sRBCs expressing SCD-associated hemoglobin (HbS compared to normal red blood cells (nRBCs. We discovered that PT and PA signal amplitudes from sRBCs in linear mode were 2–4-fold lower than those from nRBCs. PT and PA imaging revealed more profound spatial Hb heterogeneity in sRBCs than in nRBCs, which can be associated with the presence of HbS clusters with high local absorption. This hypothesis was confirmed in nonlinear mode through nanobubble formation around overheated HbS clusters accompanied by spatially selective signal amplification. More profound differences in absorption of sRBCs than in nRBCs led to notable increase in PA signal fluctuation (fluctuation PAFC mode as an indicator of SCD. The obtained data suggest that noninvasive label-free fluctuation PAFC has a potential for real-time enumeration of sRBCs in vitro and in vivo.

  16. Peering below the diffraction limit: robust and specific sorting of viruses with flow cytometry.

    Science.gov (United States)

    Lance, Shea T; Sukovich, David J; Stedman, Kenneth M; Abate, Adam R

    2016-12-01

    Viruses are incredibly diverse organisms and impact all forms of life on Earth; however, individual virions are challenging to study due to their small size and mass, precluding almost all direct imaging or molecular analysis. Moreover, like microbes, the overwhelming majority of viruses cannot be cultured, impeding isolation, replication, and study of interesting new species. Here, we introduce PCR-activated virus sorting, a method to isolate specific viruses from a heterogeneous population. Specific sorting opens new avenues in the study of uncultivable viruses, including recovering the full genomes of viruses based on genetic fragments in metagenomes, or identifying the hosts of viruses. PAVS enables specific sorting of viruses with flow cytometry. A sample containing a virus population is processed through a microfluidic device to encapsulate it into droplets, such that the droplets contain different viruses from the sample. TaqMan PCR reagents are also included targeting specific virus species such that, upon thermal cycling, droplets containing the species become fluorescent. The target viruses are then recovered via droplet sorting. The recovered virus genomes can then be analyzed with qPCR and next generation sequencing. We describe the PAVS workflow and demonstrate its specificity for identifying target viruses in a heterogeneous population. In addition, we demonstrate recovery of the target viruses via droplet sorting and analysis of their nucleic acids with qPCR.

  17. A High-Throughput Flow Cytometry Screen Identifies Molecules That Inhibit Hantavirus Cell Entry.

    Science.gov (United States)

    Buranda, Tione; Gineste, Catherine; Wu, Yang; Bondu, Virginie; Perez, Dominique; Lake, Kaylin R; Edwards, Bruce S; Sklar, Larry A

    2018-04-01

    Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), which infects more than 200,000 people worldwide. Sin Nombre virus (SNV) and Andes virus (ANDV) cause the most severe form of HCPS, with case fatality ratios of 30%-40%. There are no specific therapies or vaccines for SNV. Using high-throughput flow cytometry, we screened the Prestwick Chemical Library for small-molecule inhibitors of the binding interaction between UV-inactivated and fluorescently labeled SNV R18 particles, and decay-accelerating factor (DAF) expressed on Tanoue B cells. Eight confirmed hit compounds from the primary screen were investigated further in secondary screens that included infection inhibition, cytotoxicity, and probe interference. Antimycin emerged as a bona fide hit compound that inhibited cellular infection of the major HCPS (SNV)- and HCPS (Hantaan)-causing viruses. Confirming our assay's ability to detect active compounds, orthogonal testing of the hit compound showed that antimycin binds directly to the virus particle and blocks recapitulation of physiologic integrin activation caused by SNV binding to the integrin PSI domain.

  18. A rapid method for infectivity titration of Andes hantavirus using flow cytometry.

    Science.gov (United States)

    Barriga, Gonzalo P; Martínez-Valdebenito, Constanza; Galeno, Héctor; Ferrés, Marcela; Lozach, Pierre-Yves; Tischler, Nicole D

    2013-11-01

    The focus assay is currently the most commonly used technique for hantavirus titer determination. This method requires an incubation time of between 5 and 11 days to allow the appearance of foci after several rounds of viral infection. The following work presents a rapid Andes virus (ANDV) titration assay, based on viral nucleocapsid protein (N) detection in infected cells by flow cytometry. To this end, an anti-N monoclonal antibody was used that was developed and characterized previously. ANDV N could be detected as early as 6 h post-infection, while viral release was not observed until 24-48 h post-infection. Given that ANDV detection was performed during its first round of infection, a time reduction for titer determination was possible and provided results in only two days. The viral titer was calculated from the percentage of N positive cells and agreed with focus assay titers. Furthermore, the assay was applied to quantify the inhibition of ANDV cell entry by patient sera and by preventing endosome acidification. This novel hantavirus titration assay is a highly quantitative and sensitive tool that facilitates infectivity titration of virus stocks, rapid screening for antiviral drugs, and may be further used to detect and quantify infectious virus in human samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry.

    Science.gov (United States)

    da Silva, Teresa Lopes; Reis, Alberto; Medeiros, Roberto; Oliveira, Ana Cristina; Gouveia, Luisa

    2009-11-01

    Two microalgae species (Scenedesmus obliquus and Neochloris oleoabundans) were cultivated in closed sleeve photobioreactors in order to select the best oil producer for further large-scale open raceway pond cultivations, aiming at biofuel production. Scenedesmus obliquus reached a higher maximum biomass concentration (1.41 g l(-1)) with a lower lipid content (12.8% w/w), as compared to N. oleoabundans [maximum biomass concentration of 0.92 g l(-1) with 16.5% (w/w) lipid content]. Both microalgae showed adequate fatty acid composition and iodine values as substitutes for diesel fuel. Based on these results, N. oleoabundans was selected for further open raceway pond cultivations. Under these conditions, N. oleoabundans reached a maximum biomass concentration of 2.8 g l(-1) with 11% (w/w) of lipid content. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional gravimetric lipid analysis was found for both microalgae, making this method a suitable and quick technique for the screening of microalgae strains for lipid production and optimization of biofuel production bioprocesses. Medium growth optimization for enhancement of microalgal oil production is now in progress.

  20. Detection of Extracellular Vesicles Using Proximity Ligation Assay with Flow Cytometry Readout-ExoPLA.

    Science.gov (United States)

    Löf, Liza; Arngården, Linda; Ebai, Tonge; Landegren, Ulf; Söderberg, Ola; Kamali-Moghaddam, Masood

    2017-07-05

    Extracellular vesicles (EVs) are continuously released by most cells, and they carry surface markers of their cells of origin. Found in all body fluids, EVs function as conveyers of cellular information, and evidence implicates them as markers of disease. These characteristics make EVs attractive diagnostic targets. However, detection and characterization of EVs is challenging due to their small size. We've established a method, called ExoPLA, that allows individual EVs to be detected and characterized at high specificity and sensitivity. Based on the in situ proximity ligation assay (in situ PLA), proximal oligonucleotide-conjugated antibodies bound to their targets on the surfaces of the EVs allow formation of circular products that can be fluorescently labeled by rolling circle amplification. The intense fluorescent signals produced in this assay allow detection and enumeration of individual EVs by flow cytometry. We describe the procedures for ExoPLA, along with expected results and troubleshooting. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Prognostic value of multicenter flow cytometry harmonized assessment of minimal residual disease in acute myeloblastic leukemia.

    Science.gov (United States)

    Lacombe, Francis; Campos, Lydia; Allou, Kaoutar; Arnoulet, Christine; Delabarthe, Adrienne; Dumezy, Florent; Feuillard, Jean; Geneviève, Franck; Guérin, Estelle; Guy, Julien; Jouault, Hélène; Lepelley, Pascale; Maynadié, Marc; Solly, Françoise; Ballon, Orianne Wagner; Preudhomme, Claude; Baruchel, André; Dombret, Hervé; Ifrah, Norbert; Béné, Marie C

    2017-12-07

    The assessment of minimal residual disease (MRD) in acute myeloblastic leukemia is of growing interest as a prognostic marker of patients' outcome. Multiparameter flow cytometry (MFC), tracking leukemia-associated immunophenotypic patterns, has been shown in several studies to be a useful tool to investigate MRD. Here, we report a multicenter prospective study which allowed to define a harmonized analysis strategy, as well as the efficacy of MFC MRD to predict outcome. This study included 276 patients, in 10 different MFC centers, of whom 268 had at least 1 MRD check point. The combination of a CD45, CD34, and CD33 backbone, with the addition of CD117, CD13, CD7, and CD15 in 2 five-color tubes allowed to define each patient's multiparameter immunophenotypic characteristics at diagnosis, according to a Boolean combination of gates. The same individual diagnosis gating strategy was then applied at each MRD time point for each patient. MRD levels were stratified according to log by log thresholds, from 5 × 10 -2 (the classical morphological threshold to define remission) down to MRD1) as well as when considering all time points together. Finally, MRD levels were independent of cytogenetics and allowed in fact to further stratify all cytogenetics risk groups. In summary, this multicenter study demonstrates that a simple combination of immunophenotypic markers successfully allows for the detection of MRD in acute myeloblastic leukemia patients, with a strong correlation to outcome. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Single-Tube Flow Cytometry Assay for the Detection of Mature Lymphoid Neoplasms in Paucicellular Samples.

    Science.gov (United States)

    Stacchini, Alessandra; Demurtas, Anna; Aliberti, Sabrina; Barreca, Antonella; Novero, Domenico; Pacchioni, Donatella

    2016-01-01

    Flow cytometry (FC) has become a useful support for cytomorphologic evaluation (CM) of fine-needle aspirates (FNA) and serous cavity effusions (SCE) in cases of suspected non-Hodgkin lymphoma (NHL). FC results may be hampered by the scarce viability and low cellularity of the specimens. We developed a single-tube FC assay (STA) that included 10 antibodies cocktailed in 8-color labeling, a cell viability dye, and a logical gating strategy to detect NHL in hypocellular samples. The results were correlated with CM and confirmed by histologic or molecular data when available. Using the STA, we detected B-type NHL in 31 out of 103 hypocellular samples (81 FNA and 22 SCE). Of these, 8 were not confirmed by CM and 2 were considered to be only suspicious. The FC-negative samples had a final diagnosis of benign/reactive process (42/72), carcinoma (27/72), or Hodgkin lymphoma (3/72). The STA approach allowed obtainment of maximum immunophenotyping data in specimens containing a low number of cells and a large amount of debris. The information obtained by STA can help cytomorphologists not only to recognize but also to exclude malignant lymphomas. © 2016 S. Karger AG, Basel.

  3. Nuclear DNA content of the hybrid plant pathogen Phytophthora andina determined by flow cytometry.

    Science.gov (United States)

    Wang, Jianan; Presser, Jackson W; Goss, Erica M

    2016-09-01

    Phytophthora andina is a heterothallic plant pathogen of Andean solanaceous hosts and is an interspecific hybrid of P. infestans and an unknown Phytophthora species. The objective of this study was to estimate the nuclear DNA content of isolates in three clonal lineages of P. andina relative to P. infestans Twelve isolates of P. andina and six isolates of P. infestans were measured for nuclear DNA content by propidium iodide-stained flow cytometry. We found that the DNA content of P. andina was similar but slightly smaller, on average, than that of our sample of P. infestans isolates. This is consistent with P. andina being a homoploid hybrid rather than allopolyploid hybrid. Nuclear DNA content was more variable among a smaller sample of P. infestans isolates, including a putative triploid isolate from Mexico, but small differences in nuclear DNA content were also observed among P. andina isolates. Both species appear to be able to tolerate significant variation in genome size. © 2016 by The Mycological Society of America.

  4. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing

    Science.gov (United States)

    Dey-Hazra, Emily; Hertel, Barbara; Kirsch, Torsten; Woywodt, Alexander; Lovric, Svjetlana; Haller, Hermann; Haubitz, Marion; Erdbruegger, Uta

    2010-01-01

    The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at −80°C decreased microparticle levels at days 28, 42, and 56 (P centrifugation speeds should be used to minimize contamination by smaller size platelets. PMID:21191433

  5. Optimization of the cryopreservation of biological resources, Toxoplasma gondii tachyzoites, using flow cytometry.

    Science.gov (United States)

    Mzabi, Alexandre; Escotte-Binet, Sandie; Le Naour, Richard; Ortis, Naïma; Audonnet, Sandra; Dardé, Marie-Laure; Aubert, Dominique; Villena, Isabelle

    2015-12-01

    The conservation of Toxoplasma gondii strains isolated from humans and animals is essential for conducting studies on Toxoplasma. Conservation is the main function of the French Biological Toxoplasma Resource Centre (BRC Toxoplasma, France, http://www.toxocrb.com/). In this study, we have determined the suitability of a standard cryopreservation methodology for different Toxoplasma strains using the viability of tachyzoites assayed by flow cytometry with dual fluorescent labelling (calcein acetoxymethyl ester and propidium iodide) of tachyzoites. This method provides a comparative quantitative assessment of viability after thawing. The results helped to define and refine quality criteria before tachyzoite cryopreservation and optimization of the cryopreservation parameters. The optimized cryopreservation method uses a volume of 1.0 mL containing 8 × 10(6) tachyzoites, in Iscove's Modified Dulbecco's Medium (IMDM) containing 10% foetal calf serum (FCS). The cryoprotectant additive is 10% v/v Me2SO without incubation. A cooling rate of ∼1 °C/min to -80 °C followed, after 48 h, by storage in liquid nitrogen. Thawing was performed using a 37 °C water bath that produced a warming rate of ∼100 °C/min, and samples were then diluted 1:5 in IMDM with 5% FCS, and centrifuged and resuspended for viability assessment. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Antibacterial Activity of Commercial Dentine Bonding Systems against E. faecalis–Flow Cytometry Study

    Directory of Open Access Journals (Sweden)

    Monika Lukomska-Szymanska

    2017-04-01

    Full Text Available Literature presents inconsistent results on the antibacterial activity of dentine bonding systems (DBS. Antibacterial activity of adhesive systems depends on several factors, including composition and acidity. Flow cytometry is a novel detection method to measure multiple characteristics of a single cell: total cell number, structural (size, shape, and functional parameters (viability, cell cycle. The LIVE/DEAD® BacLightTM bacterial viability assay was used to evaluate an antibacterial activity of DBS by assessing physical membrane disruption of bacteria mediated by DBS. Ten commercial DBSs: four total-etching (TE, four self-etching (SE and two selective enamel etching (SEE were tested. Both total-etching DBS ExciTE F and OptiBond Solo Plus showed comparatively low antibacterial activity against E. faecalis. The lowest activity of all tested TE systems showed Te-Econom Bond. Among SE DBS, G-ænial Bond (92.24% dead cells followed by Clearfil S3 Bond Plus (88.02% and Panavia F 2.0 ED Primer II (86.67% showed the highest antibacterial activity against E. faecalis, which was comparable to isopropranol (positive control. In the present study, self-etching DBS exhibited higher antimicrobial activity than tested total-etching adhesives against E. faecalis.

  7. Antibacterial Activity of Commercial Dentine Bonding Systems against E. faecalis-Flow Cytometry Study.

    Science.gov (United States)

    Lukomska-Szymanska, Monika; Konieczka, Magdalena; Zarzycka, Beata; Lapinska, Barbara; Grzegorczyk, Janina; Sokolowski, Jerzy

    2017-04-29

    Literature presents inconsistent results on the antibacterial activity of dentine bonding systems (DBS). Antibacterial activity of adhesive systems depends on several factors, including composition and acidity. Flow cytometry is a novel detection method to measure multiple characteristics of a single cell: total cell number, structural (size, shape), and functional parameters (viability, cell cycle). The LIVE/DEAD® BacLightTM bacterial viability assay was used to evaluate an antibacterial activity of DBS by assessing physical membrane disruption of bacteria mediated by DBS. Ten commercial DBSs: four total-etching (TE), four self-etching (SE) and two selective enamel etching (SEE) were tested. Both total-etching DBS ExciTE F and OptiBond Solo Plus showed comparatively low antibacterial activity against E. faecalis. The lowest activity of all tested TE systems showed Te-Econom Bond. Among SE DBS, G-ænial Bond (92.24% dead cells) followed by Clearfil S3 Bond Plus (88.02%) and Panavia F 2.0 ED Primer II (86.67%) showed the highest antibacterial activity against E. faecalis, which was comparable to isopropranol (positive control). In the present study, self-etching DBS exhibited higher antimicrobial activity than tested total-etching adhesives against E. faecalis.

  8. New Method to Disaggregate and Analyze Single Isolated Helminthes Cells Using Flow Cytometry: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Karen Nava-Castro

    2011-01-01

    Full Text Available In parasitology, particularly in helminthes studies, several methods have been used to look for the expression of specific molecules, such as RT-PCR, western blot, 2D-electrophoresis, and microscopy, among others. However, these methods require homogenization of the whole helminth parasite, preventing evaluation of individual cells or specific cell types in a given parasite tissue or organ. Also, the extremely high interaction between helminthes and host cells (particularly immune cells is an important point to be considered. It is really hard to obtain fresh parasites without host cell contamination. Then, it becomes crucial to determine that the analyzed proteins are exclusively from parasitic origin, and not a consequence of host cell contamination. Flow cytometry is a fluorescence-based technique used to evaluate the expression of extra-and intracellular proteins in different type cells, including protozoan parasites. It also allows the isolation and recovery of single-cell populations. Here, we describe a method to isolate and obtain purified helminthes cells.

  9. Epigenetic targeting in acute myeloid leukemia: use of flow cytometry in monitoring therapeutic effects.

    Science.gov (United States)

    Ryningen, Anita; Bruserud, Øystein

    2007-12-01

    Flow cytometric techniques have emerged as a powerful tool in hematology allowing fast, sensitive and reproducible multi-parametric analyses at the single cell level of heterogeneous samples. Small subsets of cells can be studied with high degree of accuracy, and a broad and constantly increasing specter of antibodies is available. Flow cytometry has therefore become the method of choice for evaluation of therapeutic effects at single cell level. These methodological approaches can easily be used to study hematological malignancies, and the future use of this strategy in other malignancies will depend on the development of laboratory techniques to prepare suspensions of viable cells also from tumor biopsies. The selection of biological parameters for evaluation of treatment effects should probably be based on (i) molecular markers involved in cancer-associated genetic abnormalities; (ii) other molecular markers showing altered expression in the malignant cells and thought to be involved in leukemogenesis or having a prognostic impact; (ii) functional assays known to reflect biological characteristics that are important in carcinogenesis (e.g. cell cycle distribution, functional evaluation of apoptosis regulation). These molecules will in addition often represent the therapeutic targets when new anticancer drugs are developed. In this review we use treatment of acute myeloid leukemia with histone deacetylase inhibitors as an example. Based on the criteria mentioned above we suggest that the monitoring of therapeutic effects on the cancer cells in these patients should include differentiation status, histone acetylation, cell cycle distribution, pro- and anti-apoptotic signaling balance and intracellular levels of various transcription factors.

  10. Lot-to-lot stability of antibody reagents for flow cytometry.

    Science.gov (United States)

    Böttcher, Sebastian; van der Velden, Vincent H J; Villamor, Neus; Ritgen, Matthias; Flores-Montero, Juan; Murua Escobar, Hugo; Kalina, Tomas; Brüggemann, Monika; Grigore, Georgiana; Martin-Ayuso, Marta; Lecrevisse, Quentin; Pedreira, Carlos E; van Dongen, Jacques J M; Orfao, Alberto

    2017-03-30

    The fluorescence detected using fluorochrome-labelled monoclonal antibodies depends not only on the abundance of the target antigen, but amongst many other factors also on the effective fluorochrome-to-antibody ratio. The diagnostic approach of the EuroFlow consortium relies on reproducible fluorescence intensities over time. A capture bead system for mouse immunoglobulin light chains was utilized to compare the mean fluorescence intensity of 1323 consecutive antibody lots to the currently used lot of the same monoclonal antibody. In total, 157 different monoclonal antibodies were assessed over seven years. Median relative difference between consecutive lots was 3.8% (range: 0.01% to 164.7%, interquartile range: 1.3% to 10.1%). The relative difference exceeded 20% in 8.8% of all comparisons. FITC labelled monoclonal antibodies (median relative difference: 2.1%) showed a significantly smaller variation between lots than antibodies conjugated to PE (3.5%), PECy7 (3.9%), PerCPCy5.5 (5.8%), APC (5.8%), APCH7 (7.4%), and APCC750 (14.5%). Reagents labelled with Pacific Blue (1.4%), Pacific Orange (2.4%), HV450 (0.7%), and HV500 (1.7%) demonstrated more consistent results compared to conjugates of BV421 (4.1%) and BV510 (16.2%). Additionally, significant differences in lot-to-lot fluorescence stability amongst antibodies labelled with the same fluorochrome were observed between manufacturers. These observations might guide future quality recommendations for the production and application of fluorescence-labelled monoclonal antibodies in multicolor flow cytometry. Copyright © 2017. Published by Elsevier B.V.

  11. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry.

    Science.gov (United States)

    Gong, J; Traganos, F; Darzynkiewicz, Z

    1994-05-01

    In cells undergoing apoptosis (programmed cell death), a fraction of nuclear DNA is fragmented to the size equivalent of DNA in mono- or oligonucleosomes. When such DNA is analyzed by agarose gel electrophoresis it generates the characteristic "ladder" pattern of discontinuous DNA fragments. Such a pattern of DNA degradation generally serves as a marker of the apoptotic mode of cell death. We developed a simple, rapid, and selective procedure for extraction of the degraded, low-molecular-weight DNA from apoptotic cells. The cells are prefixed in 70% ethanol, DNA is extracted with 0.2 M phosphate-citrate buffer at pH 7.8, and the extract is sequentially treated with RNase A and proteinase K and then subjected to electrophoresis. The ladder pattern was detected from DNA extracted from 1-2 x 10(6) HL-60 cells, of which as few as 8% were apoptotic, by flow cytometric criteria, as well as from blood and bone marrow samples from leukemic patients undergoing chemotherapy. The method is rapid and uses nontoxic reagents (no phenol, chloroform, etc.). This approach permits the analysis of DNA extracted from the very same cell population that is subjected to measurements by flow cytometry to estimate DNA ploidy, the cell cycle distribution of nonapoptotic cells, the percentage of apoptotic cells, or other parameters. Furthermore, the cells may be stored in 70% ethanol for at least several weeks before analysis without any significant DNA degradation. Treatment with ethanol also inactivates several pathogens, thereby increasing the safety of sample handling. The method is applicable to clinical samples, which can be fixed in ethanol and then stored and/or safety transported prior to analysis.

  12. Flow cytometry for rapid detection of Salmonella spp. in seed sprouts

    Directory of Open Access Journals (Sweden)

    Bledar Bisha

    2014-12-01

    Full Text Available Seed sprouts (alfalfa, mung bean, radish, etc. have been implicated in several recent national and international outbreaks of salmonellosis. Conditions used for sprouting are also conducive to the growth of Salmonella. As a result, this pathogen can quickly grow to very high cell densities during sprouting without any detectable organoleptic impact. Seed sprouts typically also support heavy growth (~108 CFU g−1 of a heterogeneous microbiota consisting of various bacterial, yeast, and mold species, often dominated by non-pathogenic members of the family Enterobacteriaceae. This heavy background may present challenges to the detection of Salmonella, especially if this pathogen is present in relatively low numbers. We combined DNA-based fluorescence in situ hybridization (FISH with flow cytometry (FCM for the rapid molecular detection of Salmonella enterica ser. Typhimurium in artificially contaminated alfalfa and other seed sprouts. Components of the assay included a set of cooperatively binding probes, a chemical blocking treatment intended to reduce non-specific background, and sample concentration via tangential flow filtration (TFF. We were able to detect S. Typhimurium in sprout wash at levels as low as 103 CFU ml−1 sprout wash (104 CFU g−1 sprouts against high microbial backgrounds (~108 CFU g−1 sprouts. Hybridization times were typically 30 min, with additional washing, but we ultimately found that S. Typhimurium could be readily detected using hybridization times as short as 2 min, without a wash step. These results clearly demonstrate the potential of combined DNA-FISH and FCM for rapid detection of Salmonella in this challenging food matrix and provide industry with a useful tool for compliance with sprout production standards proposed in the Food Safety Modernization Act (FSMA.

  13. Hybrid integration of scalable mechanical and magnetophoretic focusing for magnetic flow cytometry.

    Science.gov (United States)

    Reisbeck, Mathias; Richter, Lukas; Helou, Michael Johannes; Arlinghaus, Stephan; Anton, Birgit; van Dommelen, Ignas; Nitzsche, Mario; Baßler, Michael; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2018-03-12

    Time-of-flight (TOF) magnetic sensing of rolling immunomagnetically-labeled cells offers great potential for single cell function analysis at the bedside in even optically opaque media, such as whole blood. However, due to the spatial resolution of the sensor and the low flow rate regime required to observe the behavior of rolling cells, the concentration range of such a workflow is limited. Potential clinical applications, such as testing of leukocyte function, require a cytometer which can cover a cell concentration range of several orders of magnitude. This is a challenging task for an integrated dilution-free workflow, as for high cell concentrations coincidences need to be avoided, while for low cell concentrations sufficient statistics should be provided in a reasonable time-to-result. Here, we extend the spatial bandwidth of a magnetoresistive sensor with an adaptive and integratable workflow concept combining mechanical and magnetophoretic guiding of magnetically labeled targets for in-situ enrichment over a dynamic concentration range of 3 orders of magnitude. We achieve hybrid integration of the enrichment strategy in a cartridge mold and a giant-magnetoresistance (GMR) sensor in a functionalized Quad Flat No-Lead (QFN) package, which allows for miniaturization of the Si footprint for potential low-cost bedside testing. The enrichment results demonstrate that TOF magnetic flow cytometry with adaptive particle focusing can match the clinical requirements for a point-of-care (POC) cytometer and can potentially be of interest for other sheath-less methodologies requiring workflow integration. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Use of flow cytometry for the possible identification of radio-induced changes in DNA of animal cells

    International Nuclear Information System (INIS)

    Spano, M.; Leonardi, M.; Cordelli, E.

    1991-01-01

    Since DNA is the main cellular target of ionizing irradiation, methods fit for analyzing DNA alterations should be able to discern irradiated versus control cells. Flow cytometry allows the rapid measurement of DNA content of single chromosomes or cell nuclei at very high resolution on a statistically significant sample. Alterations of chromatine structure can also be analyzed by flow cytometry. Briefly, evaluation of in situ DNA resistance to denaturation can be evaluated by flow cytometric analysis of different staining pattern of single versus double strange regions of DNA. In the present work both approaches were used with the aim to recognize cells derived from an irradiated sample of breast chicken. Although flow cytometry has been demonstrated to be a useful tool to detect DNA alterations and has been widely used to detect damages on DNA induced by several physical and chemical agents, it was unable to detect clastogenic effects induced by electrons on DNA of chicken breast cells. Heavily irradiated nuclei, even if challenged by denaturating treatments that partially collapse chromatine organization, do not present differences from non irradiated samples after flow cytometric DNA content measurement. (16 refs)

  15. High throughput, real-time detection of Naegleria lovaniensis in natural river water using LED-illuminated Fountain Flow Cytometry.

    Science.gov (United States)

    Johnson, P E; Deromedi, A J; Lebaron, P; Catala, P; Havens, C; Pougnard, C

    2007-09-01

    To test Fountain Flow Cytometry (FFC) for the rapid and sensitive detection of Naegleria lovaniensis amoebae (an analogue for Naegleria fowleri) in natural river waters. Samples were incubated with one of two fluorescent labels to facilitate detection: ChemChrome V6, a viability indicator, and an R-phycoerytherin (RPE) immunolabel to detect N. lovaniensis specifically. The resulting aqueous sample was passed as a stream in front of a light-emitting diode, which excited the fluorescent labels. The fluorescence was detected with a digital camera as the sample flowed toward the imager. Detections of N. lovaniensis were made in inoculated samples of natural water from eight rivers in France and the United States. FFC enumeration yielded results that are consistent with other counting methods: solid-phase cytometry, flow cytometry, and hemocytometry, down to concentrations of 0.06 amoebae ml(-1), using a flow rate of 15 ml min(-1). This study supports the efficacy of using FFC for the detection of viable protozoa in natural waters and indicates that use of RPE illuminated at 530 nm and detected at 585 nm provides a satisfactory means of attenuating background. Because of the severe global public health issues with drinking water and sanitation, there is an urgent need to develop a technique for the real-time detection of viable pathogens in environmental samples at low concentrations. FFC addresses this need.

  16. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    Science.gov (United States)

    Fleisig, Helen; Wong, Judy

    2012-05-22

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  17. Routine detection of Epstein-Barr virus specific T-cells in the peripheral blood by flow cytometry

    Science.gov (United States)

    Crucian, B. E.; Stowe, R. P.; Pierson, D. L.; Sams, C. F.

    2001-01-01

    The ability to detect cytomegalovirus-specific T-cells (CD4(+)) in the peripheral blood by flow cytometry has been recently described by Picker et al. In this method, cells are incubated with viral antigen and responding (cytokine producing) T-cells are then identified by flow cytometry. To date, this technique has not been reliably used to detect Epstein-Barr virus (EBV)-specific T-cells primarily due to the superantigen/mitogenic properties of the virus which non-specifically activate T-cells. By modifying culture conditions under which the antigens are presented, we have overcome this limitation and developed an assay to detect and quantitate EBV-specific T-cells. The detection of cytokine producing T-cells by flow cytometry requires an extremely strong signal (such as culture in the presence of PMA and ionomycin). Our data indicate that in modified culture conditions (early removal of viral antigen) the non-specific activation of T-cells by EBV is reduced, but antigen presentation will continue uninhibited. Using this method, EBV-specific T-cells may be legitimately detected using flow cytometry. No reduction in the numbers of antigen-specific T-cells was observed by the early removal of target antigen when verified using cytomegalovirus antigen (a virus with no non-specific T-cell activation properties). In EBV-seropositive individuals, the phenotype of the EBV-specific cytokine producing T-cells was evaluated using four-color flow cytometry and found to be CD45(+), CD3(+), CD4(+), CD45RA(-), CD69(+), CD25(-). This phenotype indicates the stimulation of circulating previously unactivated memory T-cells. No cytokine production was observed in CD4(+) T-cells from EBV-seronegative individuals, confirming the specificity of this assay. In addition, the use of four color cytometry (CD45, CD3, CD69, IFNgamma/IL-2) allows the total quantitative assessment of EBV-specific T-cells while monitoring the interference of EBV non-specific mitogenic activity. This method may

  18. Contribution of multiparameter flow cytometry immunophenotyping to the diagnostic screening and classification of pediatric cancer.

    Science.gov (United States)

    Ferreira-Facio, Cristiane S; Milito, Cristiane; Botafogo, Vitor; Fontana, Marcela; Thiago, Leandro S; Oliveira, Elen; da Rocha-Filho, Ariovaldo S; Werneck, Fernando; Forny, Danielle N; Dekermacher, Samuel; de Azambuja, Ana Paula; Ferman, Sima Esther; de Faria, Paulo Antônio Silvestre; Land, Marcelo G P; Orfao, Alberto; Costa, Elaine S

    2013-01-01

    Pediatric cancer is a relatively rare and heterogeneous group of hematological and non-hematological malignancies which require multiple procedures for its diagnostic screening and classification. Until now, flow cytometry (FC) has not been systematically applied to the diagnostic work-up of such malignancies, particularly for solid tumors. Here we evaluated a FC panel of markers for the diagnostic screening of pediatric cancer and further classification of pediatric solid tumors. The proposed strategy aims at the differential diagnosis between tumoral vs. reactive samples, and hematological vs. non-hematological malignancies, and the subclassification of solid tumors. In total, 52 samples from 40 patients suspicious of containing tumor cells were analyzed by FC in parallel to conventional diagnostic procedures. The overall concordance rate between both approaches was of 96% (50/52 diagnostic samples), with 100% agreement for all reactive/inflammatory and non-infiltrated samples as well as for those corresponding to solid tumors (n = 35), with only two false negative cases diagnosed with Hodgkin lymphoma and anaplastic lymphoma, respectively. Moreover, clear discrimination between samples infiltrated by hematopoietic vs. non-hematopoietic tumor cells was systematically achieved. Distinct subtypes of solid tumors showed different protein expression profiles, allowing for the differential diagnosis of neuroblastoma (CD56(hi)/GD2(+)/CD81(hi)), primitive neuroectodermal tumors (CD271(hi)/CD99(+)), Wilms tumors (>1 cell population), rhabdomyosarcoma (nuMYOD1(+)/numyogenin(+)), carcinomas (CD45(-)/EpCAM(+)), germ cell tumors (CD56(+)/CD45(-)/NG2(+)/CD10(+)) and eventually also hemangiopericytomas (CD45(-)/CD34(+)). In summary, our results show that multiparameter FC provides fast and useful complementary data to routine histopathology for the diagnostic screening and classification of pediatric cancer.

  19. Bacteria permeabilization and disruption caused by sludge reduction technologies evaluated by flow cytometry.

    Science.gov (United States)

    Foladori, P; Tamburini, S; Bruni, L

    2010-09-01

    Technologies proposed in the last decades for the reduction of the sludge production in wastewater treatment plants and based on the mechanism of cell lysis-cryptic growth (physical, mechanical, thermal, chemical, oxidative treatments) have been widely investigated at lab-, pilot- and, in some cases, at full-scale but the effects on cellular lysis have not always been demonstrated in depth. The research presented in this paper aims to investigate how these sludge reduction technologies affect the integrity and permeabilization of bacterial cells in sludge using flow cytometry (FCM), which permits the rapid and statistically accurate quantification of intact, permeabilised or disrupted bacteria in the sludge using a double fluorescent DNA-staining instead of using conventional methods like plate counts and microscope. Physical/mechanical treatments (ultrasonication and high pressure homogenisation) caused moderate effects on cell integrity and caused significant cell disruption only at high specific energy levels. Conversely, thermal treatment caused significant damage of bacterial membranes even at moderate temperatures (45-55 °C). Ozonation significantly affected cell integrity, even at low ozone dosages, below 10 mgO(3)/gTSS, causing an increase of permeabilised and disrupted cells. At higher ozone dosages the compounds solubilised after cell lysis act as scavengers in the competition between soluble compounds and (particulate) bacterial cells. An original aspect of this paper, not yet reported in the literature, is the comparison of the effects of these sludge reduction technologies on bacterial cell integrity and permeabilization by converting pressure, temperature and ozone dosage to an equivalent value of specific energy. Among these technologies, comparison of the applied specific energy demonstrates that achieving the complete disruption of bacterial cells is not always economically advantageous because excessive energy levels may be required. Copyright

  20. Application of image flow cytometry for the characterization of red blood cell morphology

    Science.gov (United States)

    Pinto, Ruben N.; Sebastian, Joseph A.; Parsons, Michael; Chang, Tim C.; Acker, Jason P.; Kolios, Michael C.

    2017-02-01

    Red blood cells (RBCs) stored in hypothermic environments for the purpose of transfusion have been documented to undergo structural and functional changes over time. One sign of the so-called RBC storage lesion is irreversible damage to the cell membrane. Consequently, RBCs undergo a morphological transformation from regular, deformable biconcave discocytes to rigid spheroechinocytes. The spherically shaped RBCs lack the deformability to efficiently enter microvasculature, thereby reducing the capacity of RBCs to oxygenate tissue. Blood banks currently rely on microscope techniques that include fixing, staining and cell counting in order to morphologically characterize RBC samples; these methods are labor intensive and highly subjective. This study presents a novel, high-throughput RBC morphology characterization technique using image flow cytometry (IFC). An image segmentation template was developed to process 100,000 images acquired from the IFC system and output the relative spheroechinocyte percentage. The technique was applied on samples extracted from two blood bags to monitor the morphological changes of the RBCs during in vitro hypothermic storage. The study found that, for a given sample of RBCs, the IFC method was twice as fast in data acquisition, and analyzed 250-350 times more RBCs than the conventional method. Over the lifespan of the blood bags, the mean spheroechinocyte population increased by 37%. Future work will focus on expanding the template to segregate RBC images into more subpopulations for the validation of the IFC method against conventional techniques; the expanded template will aid in establishing quantitative links between spheroechinocyte increase and other RBC storage lesion characteristics.

  1. Contribution of multiparameter flow cytometry immunophenotyping to the diagnostic screening and classification of pediatric cancer.

    Directory of Open Access Journals (Sweden)

    Cristiane S Ferreira-Facio

    Full Text Available Pediatric cancer is a relatively rare and heterogeneous group of hematological and non-hematological malignancies which require multiple procedures for its diagnostic screening and classification. Until now, flow cytometry (FC has not been systematically applied to the diagnostic work-up of such malignancies, particularly for solid tumors. Here we evaluated a FC panel of markers for the diagnostic screening of pediatric cancer and further classification of pediatric solid tumors. The proposed strategy aims at the differential diagnosis between tumoral vs. reactive samples, and hematological vs. non-hematological malignancies, and the subclassification of solid tumors. In total, 52 samples from 40 patients suspicious of containing tumor cells were analyzed by FC in parallel to conventional diagnostic procedures. The overall concordance rate between both approaches was of 96% (50/52 diagnostic samples, with 100% agreement for all reactive/inflammatory and non-infiltrated samples as well as for those corresponding to solid tumors (n = 35, with only two false negative cases diagnosed with Hodgkin lymphoma and anaplastic lymphoma, respectively. Moreover, clear discrimination between samples infiltrated by hematopoietic vs. non-hematopoietic tumor cells was systematically achieved. Distinct subtypes of solid tumors showed different protein expression profiles, allowing for the differential diagnosis of neuroblastoma (CD56(hi/GD2(+/CD81(hi, primitive neuroectodermal tumors (CD271(hi/CD99(+, Wilms tumors (>1 cell population, rhabdomyosarcoma (nuMYOD1(+/numyogenin(+, carcinomas (CD45(-/EpCAM(+, germ cell tumors (CD56(+/CD45(-/NG2(+/CD10(+ and eventually also hemangiopericytomas (CD45(-/CD34(+. In summary, our results show that multiparameter FC provides fast and useful complementary data to routine histopathology for the diagnostic screening and classification of pediatric cancer.

  2. Identification and characterization of neutrophil extracellular trap shapes in flow cytometry

    Science.gov (United States)

    Ginley, Brandon; Emmons, Tiffany; Sasankan, Prabhu; Urban, Constantin; Segal, Brahm H.; Sarder, Pinaki

    2017-03-01

    Neutrophil extracellular trap (NET) formation is an alternate immunologic weapon used mainly by neutrophils. Chromatin backbones fused with proteins derived from granules are shot like projectiles onto foreign invaders. It is thought that this mechanism is highly anti-microbial, aids in preventing bacterial dissemination, is used to break down structures several sizes larger than neutrophils themselves, and may have several more uses yet unknown. NETs have been implied to be involved in a wide array of systemic host immune defenses, including sepsis, autoimmune diseases, and cancer. Existing methods used to visually quantify NETotic versus non-NETotic shapes are extremely time-consuming and subject to user bias. These limitations are obstacles to developing NETs as prognostic biomarkers and therapeutic targets. We propose an automated pipeline for quantitatively detecting neutrophil and NET shapes captured using a flow cytometry-imaging system. Our method uses contrast limited adaptive histogram equalization to improve signal intensity in dimly illuminated NETs. From the contrast improved image, fixed value thresholding is applied to convert the image to binary. Feature extraction is performed on the resulting binary image, by calculating region properties of the resulting foreground structures. Classification of the resulting features is performed using Support Vector Machine. Our method classifies NETs from neutrophils without traps at 0.97/0.96 sensitivity/specificity on n = 387 images, and is 1500X faster than manual classification, per sample. Our method can be extended to rapidly analyze whole-slide immunofluorescence tissue images for NET classification, and has potential to streamline the quantification of NETs for patients with diseases associated with cancer and autoimmunity.

  3. Contribution of Multiparameter Flow Cytometry Immunophenotyping to the Diagnostic Screening and Classification of Pediatric Cancer

    Science.gov (United States)

    Ferreira-Facio, Cristiane S.; Milito, Cristiane; Botafogo, Vitor; Fontana, Marcela; Thiago, Leandro S.; Oliveira, Elen; da Rocha-Filho, Ariovaldo S.; Werneck, Fernando; Forny, Danielle N.; Dekermacher, Samuel; de Azambuja, Ana Paula; Ferman, Sima Esther; de Faria, Paulo Antônio Silvestre; Land, Marcelo G. P.; Orfao, Alberto; Costa, Elaine S.

    2013-01-01

    Pediatric cancer is a relatively rare and heterogeneous group of hematological and non-hematological malignancies which require multiple procedures for its diagnostic screening and classification. Until now, flow cytometry (FC) has not been systematically applied to the diagnostic work-up of such malignancies, particularly for solid tumors. Here we evaluated a FC panel of markers for the diagnostic screening of pediatric cancer and further classification of pediatric solid tumors. The proposed strategy aims at the differential diagnosis between tumoral vs. reactive samples, and hematological vs. non-hematological malignancies, and the subclassification of solid tumors. In total, 52 samples from 40 patients suspicious of containing tumor cells were analyzed by FC in parallel to conventional diagnostic procedures. The overall concordance rate between both approaches was of 96% (50/52 diagnostic samples), with 100% agreement for all reactive/inflammatory and non-infiltrated samples as well as for those corresponding to solid tumors (n = 35), with only two false negative cases diagnosed with Hodgkin lymphoma and anaplastic lymphoma, respectively. Moreover, clear discrimination between samples infiltrated by hematopoietic vs. non-hematopoietic tumor cells was systematically achieved. Distinct subtypes of solid tumors showed different protein expression profiles, allowing for the differential diagnosis of neuroblastoma (CD56hi/GD2+/CD81hi), primitive neuroectodermal tumors (CD271hi/CD99+), Wilms tumors (>1 cell population), rhabdomyosarcoma (nuMYOD1+/numyogenin+), carcinomas (CD45−/EpCAM+), germ cell tumors (CD56+/CD45−/NG2+/CD10+) and eventually also hemangiopericytomas (CD45−/CD34+). In summary, our results show that multiparameter FC provides fast and useful complementary data to routine histopathology for the diagnostic screening and classification of pediatric cancer. PMID:23472067

  4. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Galanzha, Ekaterina I. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Zharov, Vladimir P., E-mail: zharovvladimirp@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-12-10

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1–10 CTC/mL) due to the small volume of blood samples (5–10 mL). Consequently, they can miss up to 10{sup 3}–10{sup 4} CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 10{sup 2}–10{sup 3} times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-resolution PAFC beyond the diffraction and spectral limits.

  5. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Galanzha

    2013-12-01

    Full Text Available Despite progress in detecting circulating tumor cells (CTCs, existing assays still have low sensitivity (1–10 CTC/mL due to the small volume of blood samples (5–10 mL. Consequently, they can miss up to 103–104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102–103 times by the examination of the entire blood volume in vivo (5 L in adults. We focus on in vivo photoacoustic (PA flow cytometry (PAFC of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL and throughput (up to 10 mL/min than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits.

  6. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    International Nuclear Information System (INIS)

    Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2013-01-01

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1–10 CTC/mL) due to the small volume of blood samples (5–10 mL). Consequently, they can miss up to 10 3 –10 4 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 10 2 –10 3 times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-resolution PAFC beyond the diffraction and spectral limits

  7. Coconut genome size determined by flow cytometry: Tall versus Dwarf types.

    Science.gov (United States)

    Freitas Neto, M; Pereira, T N S; Geronimo, I G C; Azevedo, A O N; Ramos, S R R; Pereira, M G

    2016-02-11

    Coconuts (Cocos nucifera L.) are tropical palm trees that are classified into Tall and Dwarf types based on height, and both types are diploid (2n = 2x = 32 chromosomes). The reproduction mode is autogamous for Dwarf types and allogamous for Tall types. One hypothesis for the origin of the Dwarf coconut suggests that it is a Tall variant that resulted from either mutation or inbreeding, and differences in genome size between the two types would support this hypothesis. In this study, we estimated the genome sizes of 14 coconut accessions (eight Tall and six Dwarf types) using flow cytometry. Nuclei were extracted from leaf discs and stained with propidium iodide, and Pisum sativum (2C = 9.07 pg DNA) was used as an internal standard. Histograms with good resolution and low coefficients of variation (2.5 to 3.2%) were obtained. The 2C DNA content ranged from 5.72 to 5.48 pg for Tall accessions and from 5.58 to 5.52 pg for Dwarf accessions. The mean genome sizes for Tall and Dwarf specimens were 5.59 and 5.55 pg, respectively. Among all accessions, Rennel Island Tall had the highest mean DNA content (5.72 pg), whereas West African Tall had the lowest (5.48 pg). The mean coconut genome size (2C = 5.57 pg, corresponding to 2723.73 Mbp/haploid set) was classified as small. Only small differences in genome size existed among the coconut accessions, suggesting that the Dwarf type did not evolve from the Tall type.

  8. Evaluation of a prototype flow cytometry test for serodiagnosis of canine visceral leishmaniasis.

    Science.gov (United States)

    Ker, Henrique Gama; Coura-Vital, Wendel; Aguiar-Soares, Rodrigo Dian de Oliveira; Roatt, Bruno Mendes; das Dores Moreira, Nádia; Carneiro, Cláudia Martins; Machado, Evandro Marques de Menezes; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Giunchetti, Rodolfo Cordeiro; Araújo, Márcio Sobreira Silva; Coelho, Eduardo Antonio Ferraz; da Silveira-Lemos, Denise; Reis, Alexandre Barbosa

    2013-12-01

    Diagnosing canine visceral leishmaniasis (CVL) is a critical challenge since conventional immunoserological tests still present some deficiencies. The current study evaluated a prototype flow cytometry serology test, using antigens and fluorescent antibodies that had been stored for 1 year at 4°C, on a broad range of serum samples. Noninfected control dogs and Leishmania infantum-infected dogs were tested, and the prototype test showed excellent performance in differentiating these groups with high sensitivity, specificity, positive and negative predictive values, and accuracy (100% in all analyses). When the CVL group was evaluated according to the dogs' clinical status, the prototype test showed outstanding accuracy in all groups with positive serology (asymptomatic II, oligosymptomatic, and symptomatic). However, in dogs which had positive results by PCR-restriction fragment length polymorphism (RFLP) but negative results by conventional serology (asymptomatic I), serological reactivity was not observed. Additionally, sera from 40 dogs immunized with different vaccines (Leishmune, Leish-Tec, or LBSap) did not present serological reactivity in the prototype test. Eighty-eight dogs infected with other pathogens (Trypanosoma cruzi, Leishmania braziliensis, Ehrlichia canis, and Babesia canis) were used to determine cross-reactivity and specificity, and the prototype test performed well, particularly in dogs infected with B. canis and E. canis (100% and 93.3% specificities, respectively). In conclusion, our data reinforce the potential of the prototype test for use as a commercial kit and highlight its outstanding performance even after storage for 1 year at 4°C. Moreover, the prototype test efficiently provided accurate CVL serodiagnosis with an absence of false-positive results in vaccinated dogs and minor cross-reactivity against other canine pathogens.

  9. Role of flow cytometry immunophenotyping in the diagnosis of leptomeningeal carcinomatosis.

    Science.gov (United States)

    Subirá, Dolores; Serrano, Cristina; Castañón, Susana; Gonzalo, Raquel; Illán, Julia; Pardo, Javier; Martínez-García, María; Millastre, Esther; Aparisi, Francisco; Navarro, Miguel; Dómine, Manuel; Gil-Bazo, Ignacio; Pérez Segura, Pedro; Gil, Miguel; Bruna, Jordi

    2012-01-01

    To explore the contribution of flow cytometry immunophenotyping (FCI) in detecting leptomeningeal disease in patients with solid tumors. Cerebrospinal fluid (CSF) samples from 78 patients who received a diagnosis of epithelial-cell solid tumors and had clinical data suggestive of leptomeningeal carcinomatosis (LC) were studied. A novel FCI protocol was used to identify cells expressing the epithelial cell antigen EpCAM and their DNA content. Accompanying inflammatory cells were also described. FCI results (positive or negative for malignancy) were compared with those from CSF cytology and with the diagnosis established by the clinicians: patients with LC (n = 49), without LC (n = 26), and undetermined (n = 3). FCI described a wide range of EpCAM-positive cells with a hyperdiploid DNA content in the CSF of patients with LC. Compared with cytology, FCI showed higher sensitivity (75.5 vs 65.3) and negative predictive value (67.6 vs 60.5), and similar specificity (96.1 vs 100) and positive predictive value (97.4 vs 100). Concordance between cytology and FCI was high (Kp = 0.83), although misdiagnosis of LC did not show differences between evaluating the CSF with 1 or 2 techniques (P = .06). Receiver-operator characteristic curve analyses showed that lymphocytes and monocytes had a different distribution between patients with and without LC. FCI seems to be a promising new tool for improving the diagnostic examination of patients with suspicion of LC. Detection of epithelial cells with a higher DNA content is highly specific of LC, but evaluation of the nonepithelial cell compartment of the CSF might also be useful for supporting this diagnosis.

  10. Reconfigurable laser arrays with capillary fill microfluidics for chip-based flow cytometry (Conference Presentation)

    Science.gov (United States)

    Thomas, Robert

    2016-03-01

    Low cost, portable chip based flow cytometry has great potential for applications in resource poor and point of care settings. Typical approaches utilise low cost silicon or glass substrates with light emission and detection performed either off-chip using external equipment or incorporated on-chip using `pick and place' diode lasers and photo-detectors. The former approach adds cost and limits portability while the sub-micron alignment tolerances imposed by the application make the latter impractical for all but the simplest of systems. Use of an optically active semiconductor substrate, on the other hand, overcomes these limitations by allowing multiple laser/detector arrays to be formed in the substrate itself using high resolution lithographic techniques. The capacity for multiple emitters and detectors on a single chip not only enables parallel measurement for increased throughput but also allows multiple measurements to be performed on each cell as it passes through the system. Several different experiments can be performed simultaneously and throughput demand can be reduced with the facility for error checking. Furthermore, the fast switching times inherent with semiconductor lasers allows the active sections of the device to be reconfigured on a sub-microsecond time scale providing additional functionality. This is demonstrated here in a capillary fill system using pairs of laser/detectors that are operated in pulsed mode and alternated between lasing and detecting in an interleaved manner. Passing cells are alternately interrogated from opposing directions providing information that can be used to correct for differences in lateral cell position and ultimately differentiate blood cell type.

  11. [Whole blood leukocyte phagocytosis assay for Candida albicans based on flow cytometry].

    Science.gov (United States)

    He, Zhengxin; Chen, Jing; Wang, Xianling; Zhao, Bohua; Hou, Tianwen

    2015-04-01

    To establish a whole blood leukocyte phagocytosis assay for Candida albicans (C.albicans) based on flow cytometry (FCM). C.albicans of mid-logarithmic growth phase was labeled by fluorescence probe carboxyfluorescein diacetate succinimidyl ester (CFDA-SE), and then added into CD45-PC5 pre-stained human whole blood cells at a 10:1 multiplicity of infection (MOI) in 37DegreesCelsius. The cells were incubated for 10, 30 and 60 minutes. Phagocytosis rate of C.albicans by the CD45 positive cells in the blood was determined by FCM. In yeast extract peptone dextrose medium (YPD) and under the conditions of 37DegreesCelsius and 50 mL/L CO2, the logarithmic growth phase of C.albicans SC5314 was from the 5th to 11th hour. C.albicans were well stained by 10 mmol/L CFDA-SE after 30-minute incubation. After 10-, 30- and 60-minute incubation with SC5314 C.albicans with CD45⁺ cells, the phagocytosis rates measured by FCM were (80.1 ± 6.1)%, (83.8 ± 7.7)% and (92.3 ± 11.2)% for the neutrophils, (11.2 ± 3.6)%, (15.8 ± 4.4)% and (27.7 ± 6.8)% for the monocytes and (0.9 ± 0.3)%, (0.8 ± 0.4)% and (5.2 ± 1.6)% for the lymphocytes. The method for measuring whole blood leukocyte phagocytosis of C.albicans based on FCM is successfully established, and 30 minutes are the proper incubation time for the phagocytosis assay.

  12. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry

    Directory of Open Access Journals (Sweden)

    L.P.S. Alves

    Full Text Available The conventional method for quantification of polyhydroxyalkanoates based on whole-cell methanolysis and gas chromatography (GC is laborious and time-consuming. In this work, a method based on flow cytometry of Nile red stained bacterial cells was established to quantify poly-3-hydroxybutyrate (PHB production by the diazotrophic and plant-associated bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. The method consists of three steps: i cell permeabilization, ii Nile red staining, and iii analysis by flow cytometry. The method was optimized step-by-step and can be carried out in less than 5 min. The final results indicated a high correlation coefficient (R2=0.99 compared to a standard method based on methanolysis and GC. This method was successfully applied to the quantification of PHB in epiphytic bacteria isolated from rice roots.

  13. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry

    Science.gov (United States)

    Alves, L.P.S.; Almeida, A.T.; Cruz, L.M.; Pedrosa, F.O.; de Souza, E.M.; Chubatsu, L.S.; Müller-Santos, M.; Valdameri, G.

    2017-01-01

    The conventional method for quantification of polyhydroxyalkanoates based on whole-cell methanolysis and gas chromatography (GC) is laborious and time-consuming. In this work, a method based on flow cytometry of Nile red stained bacterial cells was established to quantify poly-3-hydroxybutyrate (PHB) production by the diazotrophic and plant-associated bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. The method consists of three steps: i) cell permeabilization, ii) Nile red staining, and iii) analysis by flow cytometry. The method was optimized step-by-step and can be carried out in less than 5 min. The final results indicated a high correlation coefficient (R2=0.99) compared to a standard method based on methanolysis and GC. This method was successfully applied to the quantification of PHB in epiphytic bacteria isolated from rice roots. PMID:28099582

  14. Application of an optimized flow cytometry-based quantification of Platelet Activation (PACT: Monitoring platelet activation in platelet concentrates.

    Directory of Open Access Journals (Sweden)

    Cécile H Kicken

    Full Text Available Previous studies have shown that flow cytometry is a reliable test to quantify platelet function in stored platelet concentrates (PC. It is thought that flow cytometry is laborious and hence expensive. We have optimized the flow cytometry-based quantification of agonist induced platelet activation (PACT to a labor, time and more cost-efficient test. Currently the quality of PCs is only monitored by visual inspection, because available assays are unreliable or too laborious for use in a clinical transfusion laboratory. Therefore, the PACT was applied to monitor PC activation during storage.The optimized PACT was used to monitor 5 PCs during 10 days of storage. In brief, optimized PACT uses a ready-to-use reaction mix, which is stable at -20°C. When needed, a test strip is thawed and platelet activation is initiated by mixing PC with PACT. PACT was based on the following agonists: adenosine diphosphate (ADP, collagen-related peptide (CRP and thrombin receptor-activating peptide (TRAP-6. Platelet activation was measured as P-selectin expression. Light transmission aggregometry (LTA was performed as a reference.Both PACT and LTA showed platelet function decline during 10-day storage after stimulation with ADP and collagen/CRP; furthermore, PACT showed decreasing TRAP-induced activation. Major differences between the two tests are that PACT is able to measure the status of platelets in the absence of agonists, and it can differentiate between the number of activated platelets and the amount of activation, whereas LTA only measures aggregation in response to an agonist. Also, PACT is more time-efficient compared to LTA and allows high-throughput analysis.PACT is an optimized platelet function test that can be used to monitor the activation of PCs. PACT has the same accuracy as LTA with regard to monitoring PCs, but it is superior to both LTA and conventional flow cytometry based tests with regard to labor-, time- and cost efficiency.

  15. Vancomycin-induced Immune Thrombocytopenia Proven by the Detection of Vancomycin-dependent Anti-platelet Antibody with Flow Cytometry

    OpenAIRE

    Yamanouchi, Jun; Hato, Takaaki; Shiraishi, Sanshiro; Takeuchi, Kazuto; Yakushijin, Yoshihiro; Yasukawa, Masaki

    2016-01-01

    Vancomycin-induced thrombocytopenia is a rare adverse reaction that may be overlooked because no specific diagnostic test is currently available. We herein report a patient with vancomycin-induced immune thrombocytopenia who was diagnosed by the detection of vancomycin-dependent anti-platelet antibody with flow cytometry. An IgG antibody in the patient's serum reacted with platelets only in the presence of vancomycin. Severe thrombocytopenia gave rise to life-threatening gastrointestinal blee...

  16. Using FRET to quantify changes in integrin structures in human leukocytes induced by chemoattractants with multi-frequency flow cytometry

    Science.gov (United States)

    Sambrano, Jesus; Smagley, Yelena; Chigaev, Alexandre; Sklar, Larry A.; Houston, Jessica P.

    2017-02-01

    Flow cytometry for single cell counting uses optical measurements to report multiple cell features such as cell morphology, cell phenotype, and microenvironmental changes. Time-resolved flow cytometry is a unique method that involves the detection of the average fluorescence lifetime as a cytometric parameter. Measuring the average fluorescence lifetime is helpful when discriminating between more than one emission signal from a single cell because of spectrally overlapping emission. In this contribution, we present preliminary measurements toward a study that advances simple time-resolved flow cytometry and introduces a technique to measure fluorescence lifetime values from single cells labeled with a Forster Resonance Energy Transfer (FRET) pair. Specifically, donor fluorophore fluorescein isothiocyanate (FITC) fluorescence lifetime is measured to identify its proximity to the acceptor fluorophore. We hypothesize that our time-resolved flow cytometry approach can resolve changes in FRET in order to study integrin structures on the surface of leukocyte cells. Our results show that FITC has an average lifetime of 4.2 +/-0.1 nsec, and an average fluorescence lifetime of 2.4 nsec +/-0.2 nsec when engaged in FRET. After the release of FRET (e.g. dequenched) the average fluorescence lifetime of FITC was measured to be 3.1 +/- 0.5 nsec. Phasor graphs reveal large distributions of fluorescence lifetimes on a per cell basis, suggesting the existence of multiple fluorescence lifetimes. These data suggest more than one integrin conformation occurs throughout the cell population. The impact of this work is the addition of quantitative information for FRET efficiency values and determination of FRET calculations using high-throughput data.

  17. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia

    Science.gov (United States)

    Ikoma, Maura Rosane Valério; Beltrame, Miriam Perlingeiro; Ferreira, Silvia Inês Alejandra Cordoba Pires; Souto, Elizabeth Xisto; Malvezzi, Mariester; Yamamoto, Mihoko

    2015-01-01

    Minimal residual disease is the most powerful predictor of outcome in acute leukemia and is useful in therapeutic stratification for acute lymphoblastic leukemia protocols. Nowadays, the most reliable methods for studying minimal residual disease in acute lymphoblastic leukemia are multiparametric flow cytometry and polymerase chain reaction. Both provide similar results at a minimal residual disease level of 0.01% of normal cells, that is, detection of one leukemic cell in up to 10,000 normal nucleated cells. Currently, therapeutic protocols establish the minimal residual disease threshold value at the most informative time points according to the appropriate methodology employed. The expertise of the laboratory in a cancer center or a cooperative group could be the most important factor in determining which method should be used. In Brazil, multiparametric flow cytometry laboratories are available in most leukemia treatment centers, but multiparametric flow cytometry processes must be standardized for minimal residual disease investigations in order to offer reliable and reproducible results that ensure quality in the clinical application of the method. The Minimal Residual Disease Working Group of the Brazilian Society of Bone Marrow Transplantation (SBTMO) was created with that aim. This paper presents recommendations for the detection of minimal residual disease in acute lymphoblastic leukemia based on the literature and expertise of the laboratories who participated in this consensus, including pre-analytical and analytical methods. This paper also recommends that both multiparametric flow cytometry and polymerase chain reaction are complementary methods, and so more laboratories with expertise in immunoglobulin/T cell receptor (Ig/TCR) gene assays are necessary in Brazil. PMID:26670404

  18. Cell proliferation and apoptosis in the primary enamel knot measured by flow cytometry of laser microdissected samples

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Dubská, L.; Fleischmannová, Jana; Chlastáková, Ivana; Janečková, Eva; Tucker, A. S.

    2010-01-01

    Roč. 55, č. 8 (2010), s. 570-575 ISSN 0003-9969 R&D Projects: GA AV ČR KJB500450802; GA AV ČR IAA600450904; GA ČR GA203/08/1680 Institutional research plan: CEZ:AV0Z50450515 Keywords : Laser capture microdissection * Flow cytometry * Primary enamel knot Subject RIV: EA - Cell Biology Impact factor: 1.463, year: 2010

  19. Dual excitation multi-fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition

    Directory of Open Access Journals (Sweden)

    G Mazzini

    2009-06-01

    Full Text Available The discrimination of live/dead cells as well as the detection of apoptosis is a frequent need in many areas of experimental biology. Cell proliferation is linked to apoptosis and controlled by several genes. During the cell life, specific events can stimulate proliferation while others may trigger the apoptotic pathway. Very few methods (i.e. TUNEL are now available for studies aimed at correlation between apoptosis and proliferation. Therefore, there is interest in developing new methodological approaches that are able to correlate apoptosis to the cell cycle phases. Recently new approaches have been proposed to detect and enumerate apoptotic cells by flow cytometry. Among these, the most established and applied are those based on the cell membrane modifications induced in the early phases of the apoptotic process. The dye pair Hoechst 33342 (HO and Propidium Iodide (PI, thanks to their peculiar characteristics to be respectively permeable and impermeable to the intact cell membrane, seems to be very useful. Unfortunately the spectral interaction of these dyes generates a consistent “energy transfer” from HO to PI. The co-presence of the dyes in a nucleus results in a modification in the intensity of both the emitted fluorescences. In order to designate the damaged cells (red fluorescence to the specific cell cycle phases (blue fluorescence, we have tested different staining protocols aimed to minimize the interference of these dyes as much as possible. In cell culture models, we are able to detect serum-starved apoptotic cells as well as to designate their exact location in the cell cycle phases using a very low PI concentration. Using a Partec PAS flow cytometer equipped with HBO lamp and argon ion laser, a double UV/blue excitation has been performed. This analytical approach is able to discriminate live blue cells from the damaged (blue-red ones even at 0.05 ?g/mL PI. The same instrumental setting allows performing other multi

  20. Complementary value of DNA flow cytometry and image morphometry in detection of malignant cells in effusion fluids.

    Science.gov (United States)

    Bisht, Bhumika; Handa, Uma; Mohan, Harsh; Lehl, S S

    2014-08-01

    In cytologic evaluation of body cavity effusions, the morphologic changes exhibited by reactive mesothelial cells often confound the diagnosis. This study investigates the role of DNA flow cytometry (DNA FCM) and image morphometry (IM) in improving diagnostic accuracy. 53 pleural and 47 ascitic fluid samples were evaluated cytologically. All were also subjected to flow cytometry to assess DNA ploidy. Image morphometry was used to measure nuclear diameter, nuclear perimeter and nuclear area. On cytomorphology 79% cases were diagnosed as benign, 19% as malignant and 2% as suggestive of malignancy. DNA FCM showed aneuploidy in 13 of 19 malignant cases and diploidy in 6 cases. The mean nuclear area of the benign group was 60.14 ± 39.91 µm² and that of malignant cases was 190.54 ± 56.06 µm². Using DNA FCM and IM, one of the two cases "suggestive of malignancy" was placed in the benign group and the other in the malignant group. Also, these modalities were able to pick up one case of malignancy that was diagnosed as benign on cytology. Cytomorphology remains the foremost diagnostic modality in detecting malignant cells in effusions. DNA flow cytometry and image morphometry hold a valuable complementary value.

  1. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains.

    Science.gov (United States)

    Tomasek, Kathrin; Bergmiller, Tobias; Guet, Călin C

    2018-02-20

    Buffers are essential for diluting bacterial cultures for flow cytometry analysis in order to study bacterial physiology and gene expression parameters based on fluorescence signals. Using a variety of constitutively expressed fluorescent proteins in Escherichia coli K-12 strain MG1655, we found strong artifactual changes in fluorescence levels after dilution into the commonly used flow cytometry buffer phosphate-buffered saline (PBS) and two other buffer solutions, Tris-HCl and M9 salts. These changes appeared very rapidly after dilution, and were linked to increased membrane permeability and loss in cell viability. We observed buffer-related effects in several different E. coli strains, K-12, C and W, but not E. coli B, which can be partially explained by differences in lipopolysaccharide (LPS) and outer membrane composition. Supplementing the buffers with divalent cations responsible for outer membrane stability, Mg 2+ and Ca 2+ , preserved fluorescence signals, membrane integrity and viability of E. coli. Thus, stabilizing the bacterial outer membrane is essential for precise and unbiased measurements of fluorescence parameters using flow cytometry. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device

    Science.gov (United States)

    Patra, Bishnubrata; Peng, Chien-Chung; Liao, Wei-Hao; Lee, Chau-Hwang; Tung, Yi-Chung

    2016-02-01

    Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.

  3. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia - Verification of leukemic state by flow-sorting and molecular/cytogenetic methods

    DEFF Research Database (Denmark)

    Obro, Nina Friesgaard; Ryder, Lars Peter; Madsen, Hans Ole

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring...... immunophenotype and antigen modulation) that highlight important methodological pitfalls. These findings demonstrate that with sufficient experience, flow cytometry is reliable for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia, although rare cases require supplementary PCR...

  4. A methodology for exploring biomarker--phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations.

    Science.gov (United States)

    Huang, Hongtai; Fava, Andrea; Guhr, Tara; Cimbro, Raffaello; Rosen, Antony; Boin, Francesco; Ellis, Hugh

    2015-09-15

    This work seeks to develop a methodology for identifying reliable biomarkers of disease activity, progression and outcome through the identification of significant associations between high-throughput flow cytometry (FC) data and interstitial lung disease (ILD) - a systemic sclerosis (SSc, or scleroderma) clinical phenotype which is the leading cause of morbidity and mortality in SSc. A specific aim of the work involves developing a clinically useful screening tool that could yield accurate assessments of disease state such as the risk or presence of SSc-ILD, the activity of lung involvement and the likelihood to respond to therapeutic intervention. Ultimately this instrument could facilitate a refined stratification of SSc patients into clinically relevant subsets at the time of diagnosis and subsequently during the course of the disease and thus help in preventing bad outcomes from disease progression or unnecessary treatment side effects. The methods utilized in the work involve: (1) clinical and peripheral blood flow cytometry data (Immune Response In Scleroderma, IRIS) from consented patients followed at the Johns Hopkins Scleroderma Center. (2) machine learning (Conditional Random Forests - CRF) coupled with Gene Set Enrichment Analysis (GSEA) to identify subsets of FC variables that are highly effective in classifying ILD patients; and (3) stochastic simulation to design, train and validate ILD risk screening tools. Our hybrid analysis approach (CRF-GSEA) proved successful in predicting SSc patient ILD status with a high degree of success (>82% correct classification in validation; 79 patients in the training data set, 40 patients in the validation data set). IRIS flow cytometry data provides useful information in assessing the ILD status of SSc patients. Our new approach combining Conditional Random Forests and Gene Set Enrichment Analysis was successful in identifying a subset of flow cytometry variables to create a screening tool that proved effective in

  5. Locked Nucleic Acid Flow Cytometry-fluorescence in situ Hybridization (LNA flow-FISH): A Method for Bacterial Small RNA Detection

    Science.gov (United States)

    2012-01-10

    Friedrich, U. & Lenke, J. Improved Enumeration of Lactic Acid Bacteria in Mesophilic Dairy Starter Cultures by Using Multiplex Quantitative Real...messenger RNA using locked nucleic acid probes. Anal. Biochem. 390, 109-114 (2009). 13. Waters, L. & Storz, G. Regulatory RNAs in bacteria . Cell. 136, 615...Video Article Locked Nucleic Acid Flow Cytometry-fluorescence in situ Hybridization (LNA flow-FISH): a Method for Bacterial Small RNA Detection Kelly

  6. Shifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry

    Science.gov (United States)

    Li, Wenyan; Houston, Kevin D.; Houston, Jessica P.

    2017-01-01

    Phase-sensitive flow cytometry (PSFC) is a technique in which fluorescence excited state decay times are measured as fluorescently labeled cells rapidly transit a finely focused, frequency-modulated laser beam. With PSFC the fluorescence lifetime is taken as a cytometric parameter to differentiate intracellular events that are challenging to distinguish with standard flow cytometry. For example PSFC can report changes in protein conformation, expression, interactions, and movement, as well as differences in intracellular microenvironments. This contribution focuses on the latter case by taking PSFC measurements of macrophage cells when inoculated with enhanced green fluorescent protein (EGFP)-expressing E. coli. During progressive internalization of EGFP-E. coli, fluorescence lifetimes were acquired and compared to control groups. It was hypothesized that fluorescence lifetimes would correlate well with phagocytosis because phagosomes become acidified and the average fluorescence lifetime of EGFP is known to be affected by pH. We confirmed that average EGFP lifetimes consistently decreased (3 to 2 ns) with inoculation time. The broad significance of this work is the demonstration of how high-throughput fluorescence lifetime measurements correlate well to changes that are not easily tracked by intensity-only cytometry, which is affected by heterogeneous protein expression, cell-to-cell differences in phagosome formation, and number of bacterium engulfed.

  7. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    Science.gov (United States)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  8. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system.

    Science.gov (United States)

    Debliquis, Agathe; Voirin, Jimmy; Harzallah, Inès; Maurer, Maxime; Lerintiu, Felix; Drénou, Bernard; Ahle, Guido

    2018-01-01

    Central nervous system lymphomas are aggressive tumors requiring a prompt diagnosis for successful treatment. Stereotactic biopsy remains the standard procedure, but the time needed for histopathology is usually over 2 days. We evaluated the contribution of cytomorphology and flow cytometry to histopathology of the brain biopsy in particular on the rinse fluid usually removed. Eighteen patients with suspected localized brain lymphoma underwent stereotactic brain biopsy. Brain biopsy tissue sample and/or brain biopsy rinse fluid were analyzed by cytomorphology combined with flow cytometry. Histopathology was used as a reference. Histopathology characterized ten diffuse large B-cell lymphomas and eight other diseases. Cytomorphology and flow cytometry showed lymphoma cells in nine out of the ten lymphomas. Three cytomorphology or flow cytometry negative results were reported for lymphomas in tissue samples due to low cellularity and biopsy sample conditioning. No lymphomatous cells were found by cytomorphology or flow cytometry in the eight other diseases. Rinse fluid results were consistent with histology in all cases studied (sensitivity and specificity, 100%). The median time to result was 4.5 days (range, 2-10 days) for histopathology, while 5 h (range, 3-20 h) were required for both cytomorphology and flow cytometry. Brain biopsy rinse fluid alleviates problems of tissue sample distribution compared to tissue sample. Its analysis performs the diagnosis of B-cell lymphoma in a few hours and, associated with histopathology, allows a multidisciplinary diagnosis. This study shows that cytomorphology combined with flow cytometry on brain biopsy rinse fluid is a new, fast, and useful strategy. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  9. The Diagnostic Value of Flow Cytometry Imunophenotyping in an Albanian Patient Population with a Preliminary Clinical Diagnosis of Chronic Lymphocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Valentina Semanaj

    2014-03-01

    Conclusion: Flow cytometry immunophenotyping is a fundamental examination for the final diagnosis of chronic lymphocytic leukemia. The expression of CD38+ in CLL patients stands for a more advanced clinical stage.

  10. Assessment of sperm function parameters and DNA fragmentation in ejaculated alpaca sperm (Lama pacos) by flow cytometry.

    Science.gov (United States)

    Cheuquemán, C; Merino, O; Giojalas, L; Von Baer, A; Sánchez, R; Risopatrón, J

    2013-06-01

    Flow cytometry has been shown to be an accurate and highly reproducible tool for the analysis of sperm function. The main objective of this study was to assess sperm function parameters in ejaculated alpaca sperm by flow cytometry. Semen samples were collected from six alpaca males and processed for flow cytometric analysis of sperm viability and plasma membrane integrity using SYBR-14⁄PI staining; acrosomal membrane integrity using FITC-conjugated Pisum Sativum Agglutinin⁄PI labelling; mitochondrial membrane potential (Δψm) by staining with JC-1 and DNA Fragmentation Index (DFI) by TUNEL. The results indicate that the mean value for sperm viability was 57 ± 8 %. Spermatozoa with intact acrosome membrane was 87.9 ± 5%, and viable sperm with intact acrosomal membrane was 46.8 ± 9%, high mitochondrial membrane potential (Δψm) was detected in 66.32 ± 9.51% of spermatozoa and mean DFI value was 0.91 ± 0.9%. The DFI was inversely correlated with high Δψm (p = 0.04; r = -0.41) and with plasma membrane integrity (p = 0.01; r = -0.47). To our knowledge, this is the first report of the assessment on the same sample of several parameters of sperm function in ejaculated alpaca sperm by flow cytometry. © 2012 Blackwell Verlag GmbH.

  11. Identification of a murine erythroblast subpopulation enriched in enucleating events by multi-spectral imaging flow cytometry.

    Science.gov (United States)

    Konstantinidis, Diamantis G; Pushkaran, Suvarnamala; Giger, Katie; Manganaris, Stefanos; Zheng, Yi; Kalfa, Theodosia A

    2014-06-06

    Erythropoiesis in mammals concludes with the dramatic process of enucleation that results in reticulocyte formation. The mechanism of enucleation has not yet been fully elucidated. A common problem encountered when studying the localization of key proteins and structures within enucleating erythroblasts by microscopy is the difficulty to observe a sufficient number of cells undergoing enucleation. We have developed a novel analysis protocol using multiparameter high-speed cell imaging in flow (Multi-Spectral Imaging Flow Cytometry), a method that combines immunofluorescent microscopy with flow cytometry, in order to identify efficiently a significant number of enucleating events, that allows to obtain measurements and perform statistical analysis. We first describe here two in vitro erythropoiesis culture methods used in order to synchronize murine erythroblasts and increase the probability of capturing enucleation at the time of evaluation. Then, we describe in detail the staining of erythroblasts after fixation and permeabilization in order to study the localization of intracellular proteins or lipid rafts during enucleation by multi-spectral imaging flow cytometry. Along with size and DNA/Ter119 staining which are used to identify the orthochromatic erythroblasts, we utilize the parameters "aspect ratio" of a cell in the bright-field channel that aids in the recognition of elongated cells and "delta centroid XY Ter119/Draq5" that allows the identification of cellular events in which the center of Ter119 staining (nascent reticulocyte) is far apart from the center of Draq5 staining (nucleus undergoing extrusion), thus indicating a cell about to enucleate. The subset of the orthochromatic erythroblast population with high delta centroid and low aspect ratio is highly enriched in enucleating cells.

  12. Diagnosis of leptomeningeal disease in diffuse large B-cell lymphomas of the central nervous system by flow cytometry and cytopathology.

    Science.gov (United States)

    Schroers, Roland; Baraniskin, Alexander; Heute, Christoph; Vorgerd, Matthias; Brunn, Anna; Kuhnhenn, Jan; Kowoll, Annika; Alekseyev, Andriy; Schmiegel, Wolff; Schlegel, Uwe; Deckert, Martina; Pels, Hendrik

    2010-12-01

    Reliable detection of leptomeningeal disease has the potential of facilitating the diagnosis of central nervous system (CNS) lymphoma and is important for therapeutic considerations. Currently, the standard diagnostic procedure for the detection of lymphoma in the cerebrospinal fluid is cytopathology. To improve the limited specificity and sensitivity of cytopathology, flow cytometry has been suggested as an alternative. Here, we evaluated multi-parameter flow cytometry in combination with conventional cytopathology in cerebrospinal fluid (CSF) samples from 30 patients with primary CNS lymphoma and seven patients with secondary CNS lymphoma. Overall, in 11 of 37 (29.7%) patients with CNS lymphoma, lymphoma cells were detected in CSF by flow cytometry, while cytopathology was less sensitive displaying unequivocally malignant CSF cells in only seven of all 37 (18.9%) patients. Six (16.2%) patients showed cytopathological results suspicious of lymphoma; however, in only one of these patients, the diagnosis of CSF lymphoma cells could be confirmed by flow cytometry. In primary CNS lymphomas (PCNSL), seven of 30 (23.3%) patients were positive for CSF lymphoma cells in flow cytometry, in contrast to four (13.3%) patients with PCNSL with definitely positive cytopathology. In summary, our results suggest that multi-parameter flow cytometry increases the sensitivity and specificity of leptomeningeal disease detection in CNS lymphomas. Both methods should be applied concurrently for complementary diagnostic assessment in patients with CNS lymphoma. © 2010 John Wiley & Sons A/S.

  13. A flow cytometry technique to study intracellular signals NF-κB and STAT3 in peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Chavarin Patricia

    2007-07-01

    Full Text Available Abstract Background Cytokines have essential roles on intercellular communications and are effective in using a variety of intracellular pathways. Among this multitude of signalling pathways, the NF-κB (nuclear factor kappaB and STAT (signal transducer and activator of transcription families are among the most frequently investigated because of their importance. Indeed, they have important role in innate and adaptive immunity. Current techniques to study NF-κB and STAT rely on specific ELISAs, Western Blots and – most recently described – flow cytometry; so far, investigation of such signalling pathways are most commonly performed on homogeneous cells after purification. Results The present investigation aimed at developing a flow cytometry technique to study transcription factors in various cellular types such as mixtures of B-cells, T-lymphocytes and monocytes/macrophages stimulated in steady state conditions (in other words, as peripheral blood mononuclear cells. To achieve this goal, a two step procedure was carried out; the first one consisted of stimulating PBMCs with IL1β, sCD40L and/or IL10 in such a manner that optimal stimulus was found for each cell subset (and subsequent signal transduction, therefore screened by specific ELISA; the second step consisted of assessing confirmation and fine delineation of technical conditions by specific Western-Blotting for either NF-κB or STAT products. We then went on to sensitize the detection technique for mixed cells using 4 color flow cytometry. Conclusion In response to IL1β, or IL10, the levels of phosphorylated NF-κB and STAT3 – respectively – increased significantly for all the studied cell types. In contrast, B-cells and monocytes/macrophages – but, interestingly, not T-lymphocytes (in the context of PBMCs – responded significantly to sCD40L by increasing phosphorylated NF-κB.

  14. A method for analysing phosphatase activity in aquatic bacteria at the single cell level using flow cytometry.

    Science.gov (United States)

    Duhamel, Solange; Gregori, Gerald; Van Wambeke, France; Mauriac, Romain; Nedoma, Jirí

    2008-10-01

    It has been demonstrated that ELF97-phosphate (ELF-P) is a useful tool to detect and quantify phosphatase activity of phytoplankton populations at a single cell level. Recently, it has been successfully applied to marine heterotrophic bacteria in culture samples, the cells exhibiting phosphatase activity being detected using epifluorescence microscopy. Here, we describe a new protocol that enables the detection of ELF alcohol (ELFA), the product of ELF-P hydrolysis, allowing the detection of phosphatase positive bacteria, using flow cytometry. Bacteria from natural samples must be disaggregated and, in oligotrophic waters, concentrated before they can be analyzed by flow cytometry. The best efficiency for disaggregating/separating bacterial cell clumps was obtained by incubating the sample for 30 min with Tween 80 (10 mg l(-1), final concentration). A centrifugation step (20,000 g; 30 min) was required in order to recover all the cells in the pellet (only 7+/-2% of the cells were recovered from the supernatant). The cells and the ELFA precipitates were resistant to these treatments. ELFA-labelled samples were stored in liquid nitrogen for up to four months before counting without any significant loss in total or ELFA-labelled bacterial cell abundance or in the ELFA fluorescence intensity. We describe a new flow cytometry protocol for detecting and discriminating the signals from both ELFA and different counterstains (4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)) necessary to distinguish between ELFA-labelled and non ELFA-labelled heterotrophic bacteria. The method has been successfully applied in both freshwater and marine samples. This method promises to improve our understanding of the physiological response of heterotrophic bacteria to P limitation.

  15. Using digital RNA counting and flow cytometry to compare mRNA with protein expression in acute leukemias.

    Directory of Open Access Journals (Sweden)

    Paula Fernandez

    Full Text Available BACKGROUND: The diagnosis of malignant hematologic diseases has become increasingly complex during the last decade. It is based on the interpretation of results from different laboratory analyses, which range from microscopy to gene expression profiling. Recently, a method for the analysis of RNA phenotypes has been developed, the nCounter technology (Nanostring® Technologies, which allows for simultaneous quantification of hundreds of RNA molecules in biological samples. We evaluated this technique in a Swiss multi-center study on eighty-six samples from acute leukemia patients. METHODS: mRNA and protein profiles were established for normal peripheral blood and bone marrow samples. Signal intensities of the various tested antigens with surface expression were similar to those found in previously performed Affymetrix microarray analyses. Acute leukemia samples were analyzed for a set of twenty-two validated antigens and the Pearson Correlation Coefficient for nCounter and flow cytometry results was calculated. RESULTS: Highly significant values between 0.40 and 0.97 were found for the twenty-two antigens tested. A second correlation analysis performed on a per sample basis resulted in concordant results between flow cytometry and nCounter in 44-100% of the antigens tested (mean = 76%, depending on the number of blasts present in a sample, the homogeneity of the blast population, and the type of leukemia (AML or ALL. CONCLUSIONS: The nCounter technology allows for fast and easy depiction of a mRNA profile from hematologic samples. This technology has the potential to become a valuable tool for the diagnosis of acute leukemias, in addition to multi-color flow cytometry.

  16. Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry.

    Science.gov (United States)

    Biggs, Colleen N; Siddiqui, Khurram M; Al-Zahrani, Ali A; Pardhan, Siddika; Brett, Sabine I; Guo, Qiu Q; Yang, Jun; Wolf, Philipp; Power, Nicholas E; Durfee, Paul N; MacMillan, Connor D; Townson, Jason L; Brinker, Jeffrey C; Fleshner, Neil E; Izawa, Jonathan I; Chambers, Ann F; Chin, Joseph L; Leong, Hon S

    2016-02-23

    Extracellular vesicles released by prostate cancer present in seminal fluid, urine, and blood may represent a non-invasive means to identify and prioritize patients with intermediate risk and high risk of prostate cancer. We hypothesize that enumeration of circulating prostate microparticles (PMPs), a type of extracellular vesicle (EV), can identify patients with Gleason Score≥4+4 prostate cancer (PCa) in a manner independent of PSA. Plasmas from healthy volunteers, benign prostatic hyperplasia patients, and PCa patients with various Gleason score patterns were analyzed for PMPs. We used nanoscale flow cytometry to enumerate PMPs which were defined as submicron events (100-1000nm) immunoreactive to anti-PSMA mAb when compared to isotype control labeled samples. Levels of PMPs (counts/µL of plasma) were also compared to CellSearch CTC Subclasses in various PCa metastatic disease subtypes (treatment naïve, castration resistant prostate cancer) and in serially collected plasma sets from patients undergoing radical prostatectomy. PMP levels in plasma as enumerated by nanoscale flow cytometry are effective in distinguishing PCa patients with Gleason Score≥8 disease, a high-risk prognostic factor, from patients with Gleason Score≤7 PCa, which carries an intermediate risk of PCa recurrence. PMP levels were independent of PSA and significantly decreased after surgical resection of the prostate, demonstrating its prognostic potential for clinical follow-up. CTC subclasses did not decrease after prostatectomy and were not effective in distinguishing localized PCa patients from metastatic PCa patients. PMP enumeration was able to identify patients with Gleason Score ≥8 PCa but not patients with Gleason Score 4+3 PCa, but offers greater confidence than CTC counts in identifying patients with metastatic prostate cancer. CTC Subclass analysis was also not effective for post-prostatectomy follow up and for distinguishing metastatic PCa and localized PCa patients

  17. A Simple and Rapid Method for Quality Control of Major Histocompatibility Complex–Peptide Monomers by Flow Cytometry

    Science.gov (United States)

    Chandran, P. Anoop; Heidu, Sonja; Zelba, Henning; Schmid-Horch, Barbara; Rammensee, Hans-Georg; Pascolo, Steve; Gouttefangeas, Cécile

    2017-01-01

    Major histocompatibility complex (MHC) multimers are essential tools in T cell immunomonitoring, which are employed both in basic and clinical research, as well as for assessing clinical samples during therapy. The generation of MHC monomers loaded with synthetic peptides is an elaborate and time-consuming process. It would be beneficial to assess the quality of these monomers prior to downstream applications. In this technical note, we describe a novel flow cytometry-based, cell-free, quick, and robust assay to check the quality of MHC monomers directly after refolding or after long-term storage. PMID:28228758

  18. A Simple and Rapid Method for Quality Control of Major Histocompatibility Complex-Peptide Monomers by Flow Cytometry.

    Science.gov (United States)

    Chandran, P Anoop; Heidu, Sonja; Zelba, Henning; Schmid-Horch, Barbara; Rammensee, Hans-Georg; Pascolo, Steve; Gouttefangeas, Cécile

    2017-01-01

    Major histocompatibility complex (MHC) multimers are essential tools in T cell immunomonitoring, which are employed both in basic and clinical research, as well as for assessing clinical samples during therapy. The generation of MHC monomers loaded with synthetic peptides is an elaborate and time-consuming process. It would be beneficial to assess the quality of these monomers prior to downstream applications. In this technical note, we describe a novel flow cytometry-based, cell-free, quick, and robust assay to check the quality of MHC monomers directly after refolding or after long-term storage.

  19. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    Science.gov (United States)

    Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun

    2005-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer

  20. Flow cytometry-assisted rapid isolation of recombinant Plasmodium berghei parasites exemplified by functional analysis of aquaglyceroporin

    Science.gov (United States)

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W.A.

    2012-01-01

    The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp− parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines. PMID:23137753

  1. Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kaneko

    2011-06-01

    Full Text Available We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics.

  2. Flow Cytometry Is a Powerful Tool for Assessment of the Viability of Fungal Conidia in Metalworking Fluids.

    Science.gov (United States)

    Vanhauteghem, D; Demeyere, K; Callaert, N; Boelaert, A; Haesaert, G; Audenaert, K; Meyer, E

    2017-08-15

    Fungal contamination of metalworking fluids (MWF) is a dual problem in automated processing plants because resulting fungal biofilms obstruct cutting, drilling, and polishing machines. Moreover, some fungal species of MWF comprise pathogens such as Fusarium solani Therefore, the development of an accurate analytical tool to evaluate conidial viability in MWF is important. We developed a flow cytometric method to measure fungal viability in MWF using F. solani as the model organism. To validate this method, viable and dead conidia were mixed in several proportions and flow was cytometrically analyzed. Subsequently, we assessed the fungicidal activity of two commercial MWF using flow cytometry (FCM) and compared it with microscopic analyses and plating experiments. We evaluated the fungal growth in both MWF after 7 days using quantitative PCR (qPCR) to assess the predictive value of FCM. Our results showed that FCM distinguishes live from dead conidia as early as 5 h after exposure to MWF, whereas the microscopic germination approach detected conidial viability much later and less accurately. At 24 h, microscopic analyses of germinating conidia and live/dead analyses by FCM correlated well, although the former consistently underestimated the proportion of viable conidia. In addition, the reproducibility and sensitivity of the flow cytometric method were high and allowed assessment of the fungicidal properties of two commercial MWF. Importantly, the obtained flow cytometric results on viability of F. solani conidia at both early time points (5 h and 24 h) correlated well with fungal biomass measurements assessed via a qPCR methodology 7 days after the start of the experiment. IMPORTANCE This result shows the predictive power of flow cytometry (FCM) in assessing the fungicidal capacity of MWF formulations. It also implies that FCM can be implemented as a rapid detection tool to estimate the viable fungal load in an industrial processing matrix (MWF). Copyright © 2017

  3. Prognostic value of ZAP-70 expression in chronic lymphocytic leukemia as assessed by quantitative polymerase chain reaction and flow cytometry.

    Science.gov (United States)

    Adams, Rebecca L C; Cheung, Catherine; Banh, Raymond; Saal, Russell; Cross, Donna; Gill, Devinder; Self, Marlene; Klein, Kerenaftali; Mollee, Peter

    2014-03-01

    Chronic lymphocytic leukemia (CLL) is a disorder in which the tempo of disease progression is highly variable, and prognostic markers that can be utilized at diagnosis are regarded as clinically important. Currently, there are several prognostic factors, such as immunoglobulin heavy chain (IgVH) mutational status, and ZAP-70 protein expression in neoplastic B-cells, that have demonstrated significant discriminative power in the prognostication of CLL. They are, however, largely unavailable in the routine diagnostic laboratory setting. In this study, we characterized the IgVH status and ZAP-70 expression by molecular techniques in a cohort of 108 patients with CLL, and correlated these results with three different methods of ZAP-70 expression by flow cytometry. We then assessed the results of these methods in terms of prognostic power as characterized by time to first treatment (TTFT). By comparing three different flow cytometry methods using receiver–operator curve (ROC) analysis, we identified that by utilizing a corrected mean fluorescence intensity (CorrMFI) algorithm for assessing ZAP-70 expression, there was good correlation with both IgVH mutational status, and ZAP-70 expression as assessed by qPCR. We were also able to show that ZAP-70 expression, as assessed by both qPCR and the CorrMFI method, was prognostic of TTFT. While confirmation in a larger patient cohort, with longer follow-up is required, we believe that the CorrMFI represents the most promising method currently available in a routine diagnostic setting for the assessment of ZAP-70 expression in CLL patients. © 2013 International Clinical Cytometry Society.

  4. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements.

    Science.gov (United States)

    Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra

    2017-04-26

    DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61

  5. Assessment of a flow cytometry technique for studying signaling pathways in platelets: Monitoring of VASP phosphorylation in clinical samples

    Directory of Open Access Journals (Sweden)

    N. Mallouk

    2018-07-01

    Full Text Available A recently released kit (PerFix EXPOSE was reported to improve the measurement of the degree of phosphorylation of proteins in leukocytes by flow cytometry. We tested its adaptation for platelets to monitor vasodilator-stimulated phosphoprotein (VASP phosphorylation, which is the basis of a currently used test for the assessment of the pharmacological response to P2Y12 antagonists (PLT VASP/P2Y12. The PerFix EXPOSE kit was compared to the PLT VASP/P2Y12 kit by using blood samples drawn at 24 h post clopidogrel dose from 19 patients hospitalized for a non-cardio-embolic ischemic stroke and treated with clopidogrel monotherapy for at least five days in an observational study. The platelet PerFix method was based on adaptation of the volume of the sample, the centrifugation speed and the incubation temperature. Poor agreement between prevention by adenosine diphosphate (ADP of PGE1-induced cAMP-mediated VASP phosphorylation and ADP induced aggregation assessed by Light Transmittance Aggregometry was found. We found a significant correlation between the PLT VASP/P2Y12 kit and the PerFix EXPOSE kit. The PerFix EXPOSE kit may also be helpful to monitor adverse effects of second-generation tyrosine kinase inhibitors on platelets. Keywords: Platelet signaling, VASP, Flow cytometry, Clopidogrel

  6. Evaluation of Ultrasound-Induced Damage to Escherichia coli and Staphylococcus aureus by Flow Cytometry and Transmission Electron Microscopy.

    Science.gov (United States)

    Li, Jiao; Ahn, Juhee; Liu, Donghong; Chen, Shiguo; Ye, Xingqian; Ding, Tian

    2016-01-08

    As a nonthermal sterilization technique, ultrasound has attracted great interest in the field of food preservation. In this study, flow cytometry and transmission electron microscopy were employed to investigate ultrasound-induced damage to Escherichia coli and Staphylococcus aureus. For flow cytometry studies, single staining with propidium iodide (PI) or carboxyfluorescein diacetate (cFDA) revealed that ultrasound treatment caused cell death by compromising membrane integrity, inactivating intracellular esterases, and inhibiting metabolic performance. The results showed that ultrasound damage was independent of initial bacterial concentrations, while the mechanism of cellular damage differed according to the bacterial species. For the Gram-negative bacterium E. coli, ultrasound worked first on the outer membrane rather than the cytoplasmic membrane. Based on the double-staining results, we inferred that ultrasound treatment might be an all-or-nothing process: cells ruptured and disintegrated by ultrasound cannot be revived, which can be considered an advantage of ultrasound over other nonthermal techniques. Transmission electron microscopy studies revealed that the mechanism of ultrasound-induced damage was multitarget inactivation, involving the cell wall, cytoplasmic membrane, and inner structure. Understanding of the irreversible antibacterial action of ultrasound has great significance for its further utilization in the food industry. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Autologous Pure Platelet-Rich Plasma Dermal Injections for Facial Skin Rejuvenation: Clinical, Instrumental, and Flow Cytometry Assessment.

    Science.gov (United States)

    Cameli, Norma; Mariano, Maria; Cordone, Iole; Abril, Elva; Masi, Serena; Foddai, Maria Laura

    2017-06-01

    Platelet-rich plasma (PRP) is an emerging treatment in dermatology recently proposed for skin rejuvenation. To evaluate the efficacy and safety of autologous pure PRP dermal injections on facial skin rejuvenation, investigating the cellularity of PRP samples. Twelve patients underwent 3 sessions of PRP injection at 1-month intervals. The clinical and instrumental outcomes were evaluated before (T0) and 1 month (T1) after the end of treatment by means of transepidermal water loss, corneometry, Cutometer, Visioscan, and Visioface. A flow cytometry characterization on PRP and peripheral blood (PB) samples was performed. Clinical and patient evaluation showed improvement of skin texture. Skin gross elasticity, skin smoothness parameters, skin barrier function, and capacitance were significantly improved. No difference between PRP and PB lymphocyte immunological asset was observed. A leukocyte population (mainly CD3) and neutrophils depletion were documented in all the PRP samples. This instrumental study demonstrated that PRP poor in leukocytes can provide objective improvements in skin biostimulation. Flow cytometry showed no variability among the PRP samples using a reproducible separation system and a low content in proinflammatory cells. Although a pilot study, it may be helpful for future investigations on PRP cellularity.

  8. An Integrated Workflow To Assess Technical and Biological Variability of Cell Population Frequencies in Human Peripheral Blood by Flow Cytometry.

    Science.gov (United States)

    Burel, Julie G; Qian, Yu; Lindestam Arlehamn, Cecilia; Weiskopf, Daniela; Zapardiel-Gonzalo, Jose; Taplitz, Randy; Gilman, Robert H; Saito, Mayuko; de Silva, Aruna D; Vijayanand, Pandurangan; Scheuermann, Richard H; Sette, Alessandro; Peters, Bjoern

    2017-02-15

    In the context of large-scale human system immunology studies, controlling for technical and biological variability is crucial to ensure that experimental data support research conclusions. In this study, we report on a universal workflow to evaluate both technical and biological variation in multiparameter flow cytometry, applied to the development of a 10-color panel to identify all major cell populations and T cell subsets in cryopreserved PBMC. Replicate runs from a control donation and comparison of different gating strategies assessed the technical variability associated with each cell population and permitted the calculation of a quality control score. Applying our panel to a large collection of PBMC samples, we found that most cell populations showed low intraindividual variability over time. In contrast, certain subpopulations such as CD56 T cells and Temra CD4 T cells were associated with high interindividual variability. Age but not gender had a significant effect on the frequency of several populations, with a drastic decrease in naive T cells observed in older donors. Ethnicity also influenced a significant proportion of immune cell population frequencies, emphasizing the need to account for these covariates in immune profiling studies. We also exemplify the usefulness of our workflow by identifying a novel cell-subset signature of latent tuberculosis infection. Thus, our study provides a universal workflow to establish and evaluate any flow cytometry panel in systems immunology studies. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Flow cytometry: Immunophenotyping in 48 hairy cell leukemia cases and the relevance of fluorescence intensity in CDs expression for diagnosis

    Directory of Open Access Journals (Sweden)

    Nydia Strachman Bacal

    2007-06-01

    Full Text Available Objectives: To report the experience and the importance of flowcytometry immunophenotyping by measuring the positivity andantigenic expression intensity in the diagnosis of 48 patients withhairy cell leukemia (HCL. Methods: From November 1991 to June2005, 4318 cases were analyzed by flow cytometry, 3556 (82.3% ofwhich were oncohematological diseases. Forty-eight cases of hairycell leukemia (1.3% were diagnosed. Morphological analysis wasperformed on slides stained with Grunwald Giemsa panchromaticdye, analyzed by two experienced professionals. The cytochemicalanalyses made were for acid phosphatase and tartrate-resistant acidphosphatase (TRAP. For antigenic expression analysis, the monoclonalantibodies used were: CD2, CD3, CD5, CD7, CD10, CD11c, CD19,CD20, CD22, CD23, CD25, CD38, HLA-DR, FMC-7, CD79b, CD103,IgM, IgG, IGD, kappa and lambda. Results: By analyzing positivity andmonoclonal antibody expression intensity in the forward scatter vs.side scatter histograms (used between 1991 and 2001, and in CD19vs. SSC histograms with sequential histograms (after 2001, it waspossible to confirm this pathology and to discriminate residual cellsafter the specific therapy. Conclusion: Diagnostic confirmation of hairycell leukemia by flow cytometry is a fast and accurate method that isuseful in the clinical laboratory. The option for an initial CD19 vs. SSChistogram and an analysis of antigenic expression intensity in the bonemarrow showed to be statistically more efficient.

  10. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry.

    Directory of Open Access Journals (Sweden)

    Giovanna Clavarino

    Full Text Available A precise identification and phenotypic characterization of human B-cell subsets is of crucial importance in both basic research and medicine. In the literature, flow cytometry studies for the phenotypic characterization of B-lymphocytes are mainly focused on the description of a particular cell stage, or of specific cell stages observed in a single type of sample. In the present work, we propose a backbone of 6 antibodies (CD38, CD27, CD10, CD19, CD5 and CD45 and an efficient gating strategy to identify, in a single analysis tube, a large number of B-cell subsets covering the whole B-cell differentiation from precursors to memory and plasma cells. Furthermore, by adding two antibodies in an 8-color combination, our approach allows the analysis of the modulation of any cell surface marker of interest along B-cell differentiation. We thus developed a panel of seven 8-colour antibody combinations to phenotypically characterize B-cell subpopulations in bone marrow, peripheral blood, lymph node and cord blood samples. Beyond qualitative information provided by biparametric representations, we also quantified antigen expression on each of the identified B-cell subsets and we proposed a series of informative curves showing the modulation of seventeen cell surface markers along B-cell differentiation. Our approach by flow cytometry provides an efficient tool to obtain quantitative data on B-cell surface markers expression with a relative easy-to-handle technique that can be applied in routine explorations.

  11. Flow cytometry analysis of platelet populations: usefulness for monitoringthe storage lesion in pooled buffy-coat platelet concentrates.

    Science.gov (United States)

    Vučetić, Dušan; Ilić, Vesna; Vojvodić, Danilo; Subota, Vesna; Todorović, Milena; Balint, Bela

    2018-01-01

    Early detection of the platelet storage lesion is still a challenge in transfusion practice. Using flow cytometry, we evaluated the appearance of the storage lesion, based on the expression of platelet activation markers, in total platelets and platelet populations. Buffy-coat-derived platelet concentrates were stored under standard conditions for 5 days. The expression of activation antigens CD42b, CD36, CD62p and phosphatidylserine on total platelets and populations of small, medium-sized and large platelets was analysed by flow cytometry on storage days 1, 3 and 5. The activation/lesion on total platelets and each platelet population was detected on storage day 3, by the increased expression of CD36. On the same day, increased expression of CD42b and CD62p was detected, but only on large platelets. Small and medium-sized platelets had increased CD62p expression only on day 5. Externalisation of phosphatidylserine was not detected. Evaluation of the level of expression of various activation markers on different platelet populations could be an additional valid analysis in cell quality control of platelet concentrates, and in the assessment of novel approaches to platelet concentrate manipulation.

  12. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry.

    Science.gov (United States)

    Wang, Rui; Hua, Ming; Yu, Yang; Zhang, Min; Xian, Qi-Ming; Yin, Da-Qiang

    2016-03-01

    We investigated the effects of allelochemical ferulic acid (FA) on a series of physiological and biochemical processes of blue-green algae Microcystis aeruginosa, in order to find sensitive diagnostic variables for allelopathic effects. Algal cell density was significantly suppressed by FA (0.31-5.17 mM) only after 48 h exposure. Inhibitions of photosynthetic parameters (F(v)/F(m) and F(v)'/F(m)') occurred more rapidly than cell growth, and the stimulation of non-photochemical quenching was observed as a feed-back mechanisms induced by photosystem II blockage, determining by PAM fluorometry. Inhibitions on esterase activity, membrane potential and integrity, as well as disturbance on cell size, were all detected by flow cytometry with specific fluorescent markers, although exhibiting varied sensitivities. Membrane potential and esterase activity were identified as the most sensitive parameters (with relatively lower EC50 values), and responded more rapidly (significantly inhibited only after 8 h exposure) than photosynthetic parameters and cell growth, thus may be the primary responses of cyanobacteria to FA exposure. The use of PAM fluorometry and flow cytometry for rapid assessment of those sensitive variables may contribute to future mechanistic studies of allolepathic effects on phytoplankton. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics

    Science.gov (United States)

    Sgier, Linn; Freimann, Remo; Zupanic, Anze; Kroll, Alexandra

    2016-01-01

    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring. PMID:27188265

  14. Functional characterization of neotropical snakes peripheral blood leukocytes subsets: Linking flow cytometry cell features, microscopy images and serum corticosterone levels.

    Science.gov (United States)

    de Carvalho, Marcelo Pires Nogueira; Queiroz-Hazarbassanov, Nicolle Gilda Teixeira; de Oliveira Massoco, Cristina; Sant'Anna, Sávio Stefanini; Lourenço, Mariana Mathias; Levin, Gabriel; Sogayar, Mari Cleide; Grego, Kathleen Fernandes; Catão-Dias, José Luiz

    2017-09-01

    Reptiles are the unique ectothermic amniotes, providing the key link between ectothermic anamniotes fish and amphibians, and endothermic birds and mammals; becoming an important group to study with the aim of providing significant knowledge into the evolutionary history of vertebrate immunity. Classification systems for reptiles' leukocytes have been described by their appearance rather than function, being still inconsistent. With the advent of modern techniques and the establishment of analytical protocols for snakes' blood by flow cytometry, we bring a qualitative and quantitative assessment of innate activities presented by snakes' peripheral blood leukocytes, thereby linking flow cytometric features with fluorescent and light microscopy images. Moreover, since corticosterone is an important immunomodulator in reptiles, hormone levels of all blood samples were measured. We provide novel and additional information which should contribute to better understanding of the development of the immune system of reptiles and vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Flow cytometry in the diagnosis of myelodysplastic syndromes (MDS) and the value of myeloid nuclear differentiation antigen (MNDA).

    Science.gov (United States)

    Bellos, Frauke; Kern, Wolfgang

    2014-09-25

    Background: Confirming diagnosis of myelodysplastic syndromes (MDS) is often challenging. Standard diagnostic methods are cytomorphology (CM) and cytogenetics (CG). Multiparameter flow cytometry (MFC) is upcoming in MDS diagnostic work up, comparability and investigator experience are critical. Myeloid nuclear differentiation antigen (MNDA) in myelomonocytic cells might be expressed more weakly in patients with MDS. The analysis of MNDA may thus improve diagnostic capabilities of MFC in MDS. Methods: Staining methods and antibody combinations for MFC in MDS are outlined, giving details for interpretation of results in regard to dyspoiesis. MFC results are correlated with CM and CG and with survival data. Use of myeloid nuclear differentiation antigen (MNDA) in MDS diagnostics was evaluated in 239 patients with MDS, AML, other cytopenic conditions and in 30 negative controls. Results: Strong correlation between findings in CM and MFC was found; MFC results correlated well with those of CG. Patients with higher grades of dysplasia in MFC had shorter overall survival. Percentages of granulocytes and monocytes with diminished MNDA expression (%dimG, %dimM) were higher in patients with MDS and AML. Mean fluorescence intensity (MFI) of MNDA in monocytes was lower in MDS and AML. Cut-off values for %dimG (12%) and %dimM (22%) as well as for MFI in monocytes (72) were defined discriminating between MDS and non-MDS. Conclusion: MFC adds significant information on dyspoiesis in the diagnostic work up for MDS and provides prognostic information. MNDA expression can be assessed by MFC and may facilitate evaluation of dyspoiesis when added to MDS MFC panels. © 2014 Clinical Cytometry Society. Copyright © 2014 Clinical Cytometry Society.

  16. Role of flow cytometry to define unacceptable HLA antigens in lung transplant recipients with HLA-specific antibodies.

    Science.gov (United States)

    Appel, James Z; Hartwig, Matthew G; Cantu, Edward; Palmer, Scott M; Reinsmoen, Nancy L; Davis, R Duane

    2006-04-15

    Antidonor HLA-specific antibodies have been associated with hyperacute rejection and primary graft failure in lung transplant recipients. Thus, transplant candidates with HLA-specific antibodies generally undergo prospective crossmatching to exclude donors with unacceptable HLA antigens. However, the need to perform a prospective crossmatch limits the donor pool and is associated with increased waiting list times and mortality. A virtual crossmatch strategy using flow cytometry, which enables precise determination of HLA-specific antibody specificity, was compared to prospective crossmatching in sensitized lung transplant candidates. In all, 341 lung transplant recipients were analyzed retrospectively (April 1992 to July 2003). Sixteen patients with HLA-specific antibodies underwent transplantation based on flow cytometric determination of antibody specificity and 10 underwent prospective crossmatching. Freedom from bronchiolitis obliterans syndrome (BOS) at three years was similar in those undergoing a virtual crossmatch, those undergoing prospective crossmatching, and those without HLA-specific antibodies (80.4% +/- 13.4, 85.7% +/- 13.2, and 73.8% +/- 2.8, respectively, P = 0.88). Three-year survival was also comparable (87.5% +/- 8.3, 70.0% +/- 14.5, and 78.5% +/- 2.4, respectively, P = 0.31). Elimination of prospective crossmatching for sensitized patients was associated with a significant decrease in time on the waiting list (P < 0.01) and in waiting list mortality (P < 0.05). All 16 patients undergoing a virtual crossmatch had negative retrospective crossmatches. By carefully determining the specificity of HLA-specific antibodies, flow cytometry methodologies enable the prediction of negative crossmatch results with up to 100% accuracy, enabling the determination of appropriateness of donors. Using this virtual crossmatch strategy, crossmatching can be safely omitted prior to lung transplantation, thereby decreasing waiting list time and mortality rates for

  17. Severe interference between retinal angiography and automated four-color flow cytometry analysis of blood mononuclear cells.

    Science.gov (United States)

    Bürgisser, Philippe; Vaudaux, Jean; Bart, Pierre-Alexandre

    2007-08-01

    Retinal angiography has become a widely used diagnostic tool. It requires the intravenous administration of the fluorescent dyes fluorescein and indocyanin green. We recently received blood taken 8 h after retinal angiography, without our knowing it. We describe the failure of an automated flow cytometry system in the enumeration of lymphocyte subpopulations in this sample. Cell enumeration was achieved by the use of the lyse-no wash MultiTEST procedure (Becton-Dickinson) together with the FACSCalibur cytometer. Absolute cell counts were obtained using TruCount beads. Data were analyzed automatically by the MultiSET and manually with the CellQuest softwares. The dot plots obtained with this sample looked quite abnormal. All monuclear cells stained brightly in the FITC channel irrespective of anti-CD3-FITC conjugate binding. This resulted in a major undercompensation for the increased spillover of the fluorescein emission into the PE-channel. PE-labeled cell and TruCount bead events coalesced. The MultiSET software failed to draw proper gatings and proved useless. Alternative manual gatings could partially rescue the analysis. Clinicians and cytometrists should be aware that, because of dye entry or binding, blood mononuclear cells collected shortly after retinal angiography are not suitable even for common cytometry applications. Copyright 2007 International Society for Analytical Cytology.

  18. Evaluation of Escherichia coli viability by flow cytometry: A method for determining bacterial responses to antibiotic exposure.

    Science.gov (United States)

    Boi, Paola; Manti, Anita; Pianetti, Anna; Sabatini, Luigia; Sisti, Davide; Rocchi, Marco Bruno; Bruscolini, Francesca; Galluzzi, Luca; Papa, Stefano

    2015-01-01

    In this study, we check for the presence of specific resistance genes by polymerase chain reaction (PCR) and then we used flow cytometry (FCM) to evaluate antibiotic-induced effects in different strains of Escherichia coli (E. coli). The presence of resistance genes was investigated by PCR in 10 strains of E. coli isolated from Foglia River. Bacterial responses to different antibiotics were also tested with FCM techniques by evaluating both the degree of decrease in viability and the light scatter changes in all of the strains. PCR revealed that only one strain exhibits the presence of one resistance gene. Despite this, analyses of strains using FCM evidenced the presence of viable subpopulations after antibiotic treatment. Furthermore, analyses of scatter signals revealed profound changes in the Forward Scatter and Side Scatter of the bacterial populations as a consequence of antibiotic exposure, confirming the viability and membrane potential data. The riverine strains were in general less sensitive to antibiotics than the reference strain (ATCC 25922). Antibiotic resistance is a widespread phenomena. The multiparametric approach based on FCM used in this study, providing results about different aspects (cell viability, membrane potential, light scatter changes), may overcome the limitation of PCR and could represent an adequate method for the evaluation of bacteria responses to antibiotic exposure. © 2014 International Clinical Cytometry Society.

  19. Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics Following X-rays and High Energy Iron Nuclei Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.; Gurai, Sheena; Ponomarev, Artem; Cucinotta, Francis A.; Pluth, Janice M.

    2010-12-15

    We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dose and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.

  20. Development and evaluation of a stabilized whole-blood preparation as a process control material for screening of paroxysmal nocturnal hemoglobinuria by flow cytometry.

    Science.gov (United States)

    Richards, Stephen J; Whitby, Liam; Cullen, Matthew J; Dickinson, Anita J; Granger, Viv; Reilly, John T; Hillmen, Peter; Barnett, David

    2009-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disorder in which correct diagnosis is essential for effective patient management. Demonstration of deficiency of glycosylphosphatidylinositol (GPI)-linked antigens from red cells and/or granulocytes by flow cytometry represents a highly specific diagnostic test for PNH. Currently, no external quality assessment (EQA) programme or reference material is available for whole-blood PNH testing (red cells and leucocytes) by flow cytometry. In order to address this issue, we report the development of a stabilized whole-blood PNH sample. We present the results of a detailed time course study by flow cytometry that demonstrates the stability of GPI-linked antigen expression on granulocytes and red cells in a stabilized PNH peripheral blood sample, using a previously described method. The PNH cells, as well as the coexisting normal red cell and granulocyte populations, remained stable for up to 120 days, both in terms of immunophenotypic and light scatter characteristics. Subsequent samples were used for a PNH EQA programme and issued to 92 laboratories worldwide. This study has highlighted that PNH testing by flow cytometry has significant problems with regard to false-positive and -negative results. In addition, the variation in GPI-linked antigen detection methods has highlighted the urgent need for standardized protocols. Copyright © 2008 Clinical Cytometry Society.

  1. Zinc fixation preserves flow cytometry scatter and fluorescence parameters and allows simultaneous analysis of DNA content and synthesis, and intracellular and surface epitopes

    DEFF Research Database (Denmark)

    Jensen, Uffe Birk; Owens, David; Pedersen, Søren

    2010-01-01

    Zinc salt-based fixation (ZBF) has proved advantageous in histochemical analyses conducted on intact tissues but has not been exploited in flow cytometry procedures that focus on quantitative analysis of individual cells. Here, we show that ZBF performs equally well to paraformaldehyde in the pre......Zinc salt-based fixation (ZBF) has proved advantageous in histochemical analyses conducted on intact tissues but has not been exploited in flow cytometry procedures that focus on quantitative analysis of individual cells. Here, we show that ZBF performs equally well to paraformaldehyde...... allowing subsequent quantitative PCR analysis or labeling for incorporation of the thymidine analog EdU following surface and intracellular epitope staining. Finally, ZBF treatment allows for long-term storage of labeled cells with little change in these parameters. Thus, we present a protocol for zinc...... salt fixation of cells that allows for the simultaneous analysis of DNA and intracellular and cell surface proteins by flow cytometry....

  2. Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry.

    Science.gov (United States)

    Silva, Filomena; Ferreira, Susana; Queiroz, João A; Domingues, Fernanda C

    2011-10-01

    The aim of this work was to study the antibacterial effect of coriander (Coriandrum sativum) essential oil against Gram-positive and Gram-negative bacteria. Antibacterial susceptibility was evaluated using classical microbiological techniques concomitantly with the use of flow cytometry for the evaluation of cellular physiology. Our results showed that coriander oil has an effective antimicrobial activity against all bacteria tested. Also, coriander oil exhibited bactericidal activity against almost all bacteria tested, with the exception of Bacillus cereus and Enterococcus faecalis. Propidium iodide incorporation and concomitant loss of all other cellular functions such as efflux activity, respiratory activity and membrane potential seem to suggest that the primary mechanism of action of coriander oil is membrane damage, which leads to cell death. The results obtained herein further encourage the use of coriander oil in antibacterial formulations due to the fact that coriander oil effectively kills pathogenic bacteria related to foodborne diseases and hospital infections.

  3. Vanadium bromoperoxidase-coupled fluorescent assay for flow cytometry sorting of glucose oxidase gene libraries in double emulsions.

    Science.gov (United States)

    Prodanovic, Radivoje; Ostafe, Raluca; Blanusa, Milan; Schwaneberg, Ulrich

    2012-09-01

    A Vanadium bromoPeroxidase-coupled fluorescent assay (ViPer) for ultrahigh-throughput screening of glucose oxidase (GOx) gene libraries employing double emulsions and flow cytometry was developed. The assay is based on detection of the product of a GOx reaction, hydrogen peroxide, that is first converted to a hypobromide by vanadium bromoperoxidase in the presence of sodium bromide. The hypobromide is afterwards detected in a reaction with a fluorogenic probe, 3-carboxy-7-(4'-aminophenoxy)-coumarine, where fluorescent 3-carboxy-coumarine is released. The ViPer screening system is three times more sensitive than a horseradish peroxidase coupled detection system and more resistant to bleaching of fluorescence in excess of peroxide. Using the ViPer screening system a high epPCR gene library containing 100,000 different GOx variants was screened for active clones in less than 1 h by flow cytometry. A library containing 0.15% of yeast cells expressing active enzyme variants and with an average GOx activity in the liquid culture of 0.47 U/mL, after one round of sorting, had 28.12% of the yeast cells expressing the active GOx (an enrichment factor of 200) and 26.8 U/mL of the GOx activity in the liquid culture (an enrichment factor of 57). The developed screening system could be adapted and used in a directed evolution of GOx and other hydrogen peroxide-producing enzymes (oxidases) and glycosidases if coupled with a carbohydrate oxidase.

  4. Comparison of the mutagenic potential of 17 physical and chemical agents analyzed by the flow cytometry mutation assay

    Energy Technology Data Exchange (ETDEWEB)

    French, C. Tenley [Cytomation GTX Inc., Fort Collins, CO (United States); Ross, Carley D. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Keysar, Stephen B. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Joshi, Dhanashree D. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Lim, Chang-Uk [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Fox, Michael H. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States) and Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)]. E-mail: mfox@colostate.edu

    2006-12-01

    Several methods to assess genotoxicity of physical and chemical agents have been developed, most of which depend on growing colonies in selective medium. We recently published a new method for detecting mutations in the CD59 gene in a Chinese hamster ovary cell line that contains a single copy of human chromosome 11 (CHO A{sub L}). The assay is based on detecting the surface expression of CD59 with monoclonal antibodies using flow cytometry. The capabilities of this flow cytometry mutation assay (FCMA) to detect mutations from a wide variety of genotoxic agents are described here. There was a 400-fold separation between CD59{sup -} and CD59{sup +} populations based on fluorescence intensity. Small numbers of negative cells mixed in with positive cells were detected in a highly linear fashion. Mutation dose response curves over a dose range yielding 80% to 20% survival are shown for ethyl methane sulfonate (EMS), mitomycin C (MMC) and lead acetate. EMS and lead acetate exhibited a threshold in response while MMC had a linear dose response over the full dose range. The mutant fraction was measured over time periods ranging up to 35 days following treatment. The mutant fraction peaked at different times ranging from 6 to 12 days after treatment. An additional 14 chemical and physical agents including point mutagens, heavy metals, ionizing and UV radiation, and DNA intercalators and cross linkers, were analyzed for mutagenic potential after doses giving 80% to 20% survival. The results presented here demonstrate the sensitivity and broad-ranging capability of the FCMA to detect mutations induced by a variety of genotoxic agents.

  5. Avoiding false positive antigen detection by flow cytometry on blood cell derived microparticles: the importance of an appropriate negative control.

    Science.gov (United States)

    Crompot, Emerence; Van Damme, Michael; Duvillier, Hugues; Pieters, Karlien; Vermeesch, Marjorie; Perez-Morga, David; Meuleman, Nathalie; Mineur, Philippe; Bron, Dominique; Lagneaux, Laurence; Stamatopoulos, Basile

    2015-01-01

    Microparticles (MPs), also called microvesicles (MVs) are plasma membrane-derived fragments with sizes ranging from 0.1 to 1μm. Characterization of these MPs is often performed by flow cytometry but there is no consensus on the appropriate negative control to use that can lead to false positive results. We analyzed MPs from platelets, B-cells, T-cells, NK-cells, monocytes, and chronic lymphocytic leukemia (CLL) B-cells. Cells were purified by positive magnetic-separation and cultured for 48h. Cells and MPs were characterized using the following monoclonal antibodies (CD19,20 for B-cells, CD3,8,5,27 for T-cells, CD16,56 for NK-cells, CD14,11c for monocytes, CD41,61 for platelets). Isolated MPs were stained with annexin-V-FITC and gated between 300nm and 900nm. The latex bead technique was then performed for easy detection of MPs. Samples were analyzed by Transmission (TEM) and Scanning Electron microscopy (SEM). Annexin-V positive events within a gate of 300-900nm were detected and defined as MPs. Our results confirmed that the characteristic antigens CD41/CD61 were found on platelet-derived-MPs validating our technique. However, for MPs derived from other cell types, we were unable to detect any antigen, although they were clearly expressed on the MP-producing cells in the contrary of several data published in the literature. Using the latex bead technique, we confirmed detection of CD41,61. However, the apparent expression of other antigens (already deemed positive in several studies) was determined to be false positive, indicated by negative controls (same labeling was used on MPs from different origins). We observed that mother cell antigens were not always detected on corresponding MPs by direct flow cytometry or latex bead cytometry. Our data highlighted that false positive results could be generated due to antibody aspecificity and that phenotypic characterization of MPs is a difficult field requiring the use of several negative controls.

  6. A micro flow cytometry system for study of marine phytoplankton from costal waters of Hong Kong

    KAUST Repository

    Yunyang Ling,

    2010-01-01

    Although conventional flow cytometers (CFCs) have been widely used for study of marine biology, most CFCs are too bulky to be used for field study in ocean and have corrosion problem due to salty samples. A new computer-controlled micro flow cytometer (MFC) system has been successfully developed using MEMS technology. We demonstrate that this new MFC can analyze mixture of two species of marine phytoplankton: Chlorella autotrophica and Rhodomonas. The results from our MFC are consistent with those from digital fluorescence microscopy. ©2010 IEEE.

  7. Detection of bacteriophage-infected cells of Lactococcus lactis using flow cytometry

    DEFF Research Database (Denmark)

    Michelsen, Ole; Cuesta-Dominguez, Álvaro; Albrektsen, Bjarne

    2007-01-01

    Bacteriophage infection in dairy fermentation constitutes a serious problem worldwide. We have studied bacteriophage infection in Lactococcus lactis by using the flow cytometer. The first effect of the infection of the bacterium is a change from cells in chains toward single cells. We interpret...... describe a new method for detection of phage infection in Lactococcus lactis dairy cultures. The method is based on flow cytometric detection of cells with low-density cell walls. The method allows fast and early detection of phage-infected bacteria, independently of which phage has infected the culture...

  8. Flow cytometry for the microscopy of body fluids in patients with suspected infection.

    Science.gov (United States)

    Bignardi, Giuseppe Enrico

    2015-11-01

    Automating the microscopy of body fluids is challenging, due to the wider range and lower concentrations of cells in these fluids, as opposed to blood, while the viscous nature of some of these fluids can also be problematic. This review shows that there have been major improvements and that newer flow cytometers can have remarkably low limits of quantitation for WBCs. Accurate counting of RBCs is still problematic with many flow cytometers, but this is of no clinical significance. Many flow cytometers can give reasonably accurate WBC differential counts, but detection of eosinophils and neoplastic or other nucleated cells which are not blood cells can still be problematic, hence fail-safe measures are recommended. Cerebrospinal fluid is the most challenging body fluid as it requires the ability to count and differentiate WBCs down to a 'normal range', which is much lower than the diagnostic cut-off values used for serous fluids; precision at or around the cerebrospinal fluid WBC normal range is reduced even with the best flow cytometers, but manual microscopy is even less precise. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Automated Blood Sample Preparation Unit (ABSPU) for Portable Microfluidic Flow Cytometry.

    Science.gov (United States)

    Chaturvedi, Akhil; Gorthi, Sai Siva

    2017-02-01

    Portable microfluidic diagnostic devices, including flow cytometers, are being developed for point-of-care settings, especially in conjunction with inexpensive imaging devices such as mobile phone cameras. However, two pervasive drawbacks of these have been the lack of automated sample preparation processes and cells settling out of sample suspensions, leading to inaccurate results. We report an automated blood sample preparation unit (ABSPU) to prevent blood samples from settling in a reservoir during loading of samples in flow cytometers. This apparatus automates the preanalytical steps of dilution and staining of blood cells prior to microfluidic loading. It employs an assembly with a miniature vibration motor to drive turbulence in a sample reservoir. To validate performance of this system, we present experimental evidence demonstrating prevention of blood cell settling, cell integrity, and staining of cells prior to flow cytometric analysis. This setup is further integrated with a microfluidic imaging flow cytometer to investigate cell count variability. With no need for prior sample preparation, a drop of whole blood can be directly introduced to the setup without premixing with buffers manually. Our results show that integration of this assembly with microfluidic analysis provides a competent automation tool for low-cost point-of-care blood-based diagnostics.

  10. Genome-size variation in switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampant aneuploidy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.), a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was con...

  11. Fluorescence-intensity multiplexing: simultaneous seven-marker, two-color immunophenotyping using flow cytometry.

    Science.gov (United States)

    Bradford, Jolene A; Buller, Gayle; Suter, Michael; Ignatius, Michael; Beechem, Joseph M

    2004-10-01

    Conventional immuno-based multiparameter flow cytometric analysis has been limited by the requirement of a dedicated detection channel for each antibody-fluorophore set. To address the need to resolve multiple biological targets simultaneously, flow cytometers with as many as 10-15 detection channels have been developed. In this study, a new Zenon immunolabeling technology is developed that allows for multiple antigen detection per detection channel using a single fluorophore, through a unique method of fluorescence-intensity multiplexing. By varying the Zenon labeling reagent-to-antibody molar ratio, the fluorescence intensity of the antibody-labeled cellular targets can be used as a unique identifier. Although demonstrated in the present study with lymphocyte immunophenotyping, this approach is broadly applicable for any immuno-based multiplexed flow cytomety assay. Lymphocyte immunophenotyping of 38 clinical blood specimens using CD3, CD4, CD8, CD16, CD56, CD19, and CD20 antibodies was performed using conventional flow cytometric analysis and fluorescence-intensity multiplexing analysis. Conventional analysis measures a single antibody-fluorophore per photomultiplier tube (PMT). Fluorescence-intensity multiplex analysis simultaneously measures seven markers with two PMTs, using Zenon labeling reagent-antibody complexes in a single tube: CD19, CD4, CD8, and CD16 antibodies labeled with Zenon Alexa Fluor 488 Mouse IgG(1) labeling reagent and CD56, CD3, and CD20 antibodies labeled with Zenon R-Phycoerythrin (R-PE) Mouse IgG(1) or IgG(2b) labeling reagents. The lymphocyte immunophenotyping results from fluorescence-intensity multiplexing using Zenon labeling reagents in a single tube were comparable to results from conventional flow cytometric analysis. Simultaneous evaluation of multiple antigens using a single fluorophore can be performed using antibodies labeled with varying ratios of a Zenon labeling reagent. Labeling two sets of antibodies with different Zenon

  12. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.

    2017-02-17

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed to phytoplankton by exploiting their spectral characteristics. We discriminated between cells with PAHs from cells free of PAHs. Clear discrimination was observed with flow cytometer provided with 375 or 405nm lasers in addition to the standard 488nm laser necessary to identify phytoplankton. Using this method, we measured the relationship between the percentages of phytoplankton organisms with PAHs, with the decrease in the growth rate. Moreover, the development of this method could be extended to facilitate the study of PAHs impact on cell cultures from a large variety of organisms.

  13. Cytometry metadata in XML

    Science.gov (United States)

    Leif, Robert C.; Leif, Stephanie H.

    2016-04-01

    Introduction: The International Society for Advancement of Cytometry (ISAC) has created a standard for the Minimum Information about a Flow Cytometry Experiment (MIFlowCyt 1.0). CytometryML will serve as a common metadata standard for flow and image cytometry (digital microscopy). Methods: The MIFlowCyt data-types were created, as is the rest of CytometryML, in the XML Schema Definition Language (XSD1.1). The datatypes are primarily based on the Flow Cytometry and the Digital Imaging and Communication (DICOM) standards. A small section of the code was formatted with standard HTML formatting elements (p, h1, h2, etc.). Results:1) The part of MIFlowCyt that describes the Experimental Overview including the specimen and substantial parts of several other major elements has been implemented as CytometryML XML schemas (www.cytometryml.org). 2) The feasibility of using MIFlowCyt to provide the combination of an overview, table of contents, and/or an index of a scientific paper or a report has been demonstrated. Previously, a sample electronic publication, EPUB, was created that could contain both MIFlowCyt metadata as well as the binary data. Conclusions: The use of CytometryML technology together with XHTML5 and CSS permits the metadata to be directly formatted and together with the binary data to be stored in an EPUB container. This will facilitate: formatting, data- mining, presentation, data verification, and inclusion in structured research, clinical, and regulatory documents, as well as demonstrate a publication's adherence to the MIFlowCyt standard, promote interoperability and should also result in the textual and numeric data being published using web technology without any change in composition.

  14. Reticulocyte maturity index by flow cytometry: its applicability in radioinduced bone marrow aplasia

    International Nuclear Information System (INIS)

    Dubner, D.; Gisone, P.; Perez, M.R.

    1995-01-01

    Flow cytometric reticulocyte quantification was assayed in ten patients undergoing bone marrow transplantation (BMT) with previous conditioning chemotherapy and total body irradiation (TBI). A reticulocyte maturity index (RMI) was determined taking into account the RNA content. With de aim of testing the utility of RMI as an early predictor of functional recovery in marrow aplasia, other haematological indicators as neutrophils count were comparatively evaluated. Mean time elapsed between BMT and engraftment evidence by RMI was 17,6 days. In six patients the RMI was the earliest indicator of functional recovery. The applicability of this assay in the following of radioinduced bone marrow aplasia is discussed. (author). 4 refs., 4 figs., 2 tabs

  15. FLOCK cluster analysis of mast cell event clustering by high-sensitivity flow cytometry predicts systemic mastocytosis.

    Science.gov (United States)

    Dorfman, David M; LaPlante, Charlotte D; Pozdnyakova, Olga; Li, Betty

    2015-11-01

    In our high-sensitivity flow cytometric approach for systemic mastocytosis (SM), we identified mast cell event clustering as a new diagnostic criterion for the disease. To objectively characterize mast cell gated event distributions, we performed cluster analysis using FLOCK, a computational approach to identify cell subsets in multidimensional flow cytometry data in an unbiased, automated fashion. FLOCK identified discrete mast cell populations in most cases of SM (56/75 [75%]) but only a minority of non-SM cases (17/124 [14%]). FLOCK-identified mast cell populations accounted for 2.46% of total cells on average in SM cases and 0.09% of total cells on average in non-SM cases (P < .0001) and were predictive of SM, with a sensitivity of 75%, a specificity of 86%, a positive predictive value of 76%, and a negative predictive value of 85%. FLOCK analysis provides useful diagnostic information for evaluating patients with suspected SM, and may be useful for the analysis of other hematopoietic neoplasms. Copyright© by the American Society for Clinical Pathology.

  16. Detection of Sp110 by Flow Cytometry and Application to Screening Patients for Veno-occlusive Disease with Immunodeficiency.

    Science.gov (United States)

    Marquardsen, Florian A; Baldin, Fabian; Wunderer, Florian; Al-Herz, Waleed; Mikhael, Raymond; Lefranc, Gérard; Baz, Zeina; Rezaee, Fariba; Hanna, Rabi; Kfir-Erenfeld, Shlomit; Stepensky, Polina; Meyer, Benedikt; Jauch, Annaise; Bigler, Marc B; Burgener, Anne-Valérie; Higgins, Rebecca; Navarini, Alexander A; Church, Joeseph A; Chou, Janet; Geha, Raif; Notarangelo, Luigi D; Hess, Christoph; Berger, Christoph T; Bloch, Donald B; Recher, Mike

    2017-10-01

    Mutations in Sp110 are the underlying cause of veno-occlusive disease with immunodeficiency (VODI), a combined immunodeficiency that is difficult to treat and often fatal. Because early treatment is critically important for patients with VODI, broadly usable diagnostic tools are needed to detect Sp110 protein deficiency. Several factors make establishing the diagnosis of VODI challenging: (1) Current screening strategies to identify severe combined immunodeficiency are based on measuring T cell receptor excision circles (TREC). This approach will fail to identify VODI patients because the disease is not associated with severe T cell lymphopenia at birth; (2) the SP110 gene contains 17 exons, making it a challenge for Sanger sequencing. The recently developed next-generation sequencing (NGS) platforms that can rapidly determine the sequence of all 17 exons are available in only a few laboratories; (3) there is no standard functional assay to test for the effects of novel mutations in Sp110; and (4) it has been difficult to use flow cytometry to identify patients who lack Sp110 because of the low level of Sp110 protein in peripheral blood lymphocytes. We report here a novel flow cytometric assay that is easily performed in diagnostic laboratories and might thus become a standard assay for the evaluation of patients who may have VODI. In addition, the assay will facilitate investigations directed at understanding the function of Sp110.

  17. Real-time Image Processing for Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip.

    Science.gov (United States)

    Heo, Young Jin; Lee, Donghyeon; Kang, Junsu; Lee, Keondo; Chung, Wan Kyun

    2017-09-14

    Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.

  18. Glucocorticoids and irradiation-induced apoptosis in normal murine bone marrow B-lineage lymphocytes as determined by flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Garvy, B.A.; Telford, W.G.; King, L.E.; Fraker, P.J. (Michigan State Univ., East Lansing, MI (United States))

    1993-06-01

    A substantial proportion of murine bone marrow B220[sup +] and IgM[sup +] cells were induced to undergo apoptosis when exposed to glucocorticoids or ionizing radiation in vitro. Two-colour flow cytometric analysis of the cell cycle indicated that a distinct subpopulation of cells formed to the left of G[sub o]/G[sub 1] in the hypodiploid or A[sub o] region previously shown to contain apoptotic cells with fragmented DNA. Indeed, 45-65% of all B220[sup +] or IgM[sup +] cells of the marrow were found in this apoptotic region 12 hr after treatment with dexamethasone (Dex) or exposure to 500 rads or irradiation. Zinc sulphate, a frequently cited inhibitor of apoptosis, prevented accumulation of cells exposed to glucocorticoids or ionizing radiation in the A[sub o] region as did the glucocorticoid receptor antagonist RU 38486. Although Dex was more potent, corticosterone and cortisol also induced significant degrees of apoptosis in B220[sup +] and IgM[sup +] marrow cells at physiological concentrations. These results demonstrate that freshly isolated B-lineage cells of the murine bone marrow readily undergo apoptosis upon exposure to glucocorticoids and ionizing radiation and suggest that apoptosis may play a role in the regulation of lymphopoiesis. The data also show the value of flow cytometry to the study of apoptosis in subsets of cells within a heterogenous population such as the bone marrow which heretofore was exceedingly difficult to evaluate. (Author).

  19. Genome size estimations on Ulmus minor Mill., Ulmus glabra Huds., and Celtis australis L. using flow cytometry.

    Science.gov (United States)

    Loureiro, J; Rodriguez, E; Gomes, A; Santos, C

    2007-07-01

    The Ulmaceae family is composed of nearly 2000 species widely distributed in the northern hemisphere. Despite their wide distribution area, there are only four native species in the Iberian Peninsula. In this work the genome size of three of those species (ULMUS MINOR, U. GLABRA, and CELTIS AUSTRALIS) was estimated using flow cytometry. The nuclear DNA content of C. AUSTRALIS was estimated as 2.46 +/- 0.061 pg/2C, of U. MINOR as 4.25 +/- 0.158 pg/2C, and of U. GLABRA as 4.37 +/- 0.103 pg/2C of DNA. No statistically significant differences were detected among individuals of the same species. These species revealed to be problematic for flow cytometric analyses, due to the release of mucilaginous compounds into the nuclear suspension. Despite that, the modified protocol here presented ensured high quality analyses (low coefficient of variation and background debris and nuclear fluorescence stability), opening good perspectives on its application to estimate the genome size of species with similar problems.

  20. Methods for counting residual leukocytes in leukocyte-depleted plasma-a comparison between a routine hematology instrument, the Nageotte chamber, flow cytometry, and a fluorescent microscopy analyzer.

    Science.gov (United States)

    Petersson, Annika; Ekblom, Kim

    2017-05-01

    Counting very low levels of leukocytes is technically challenging but mandatory for quality control of leukocyte-depleted plasma. Established assays, such as flow cytometry and counting in the Nageotte chamber, are laborious and expensive. The aim of this study was to test two alternative assays, the cerebrospinal fluid program in the routine hematology analyzer ADVIA 2120 and a fluorescence microscopy analyzer, the ADAM-rWBC. Linearity, accuracy, and precision were established for the ADVIA 2120, the ADAM-rWBC analyzer and the Nageotte chamber with flow cytometry as the reference method. Two hundred consecutive leukocyte-depleted donor plasma samples were also tested. The ADAM-rWBC analyzer and the Nageotte chamber fulfilled all quality requirements. Flow cytometry fulfilled the requirements for linearity and precision. The ADVIA 2120 analyzer did not fully reach the quality criteria, and flow cytometry did not reach quality criteria on accuracy. No false-positive results on donor plasma samples were recorded. The ADAM-rWBC is suitable for the purpose of quality control of residual leukocytes in leukocyte-depleted plasma. For the ADVIA 2120, further improvements and studies are needed to reach the quality requirements stated in this study. © 2017 AABB.

  1. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry

    Science.gov (United States)

    Although both domestic sheep (DS) and bighorn sheep (BHS) are affected by similar respiratory bacterial pathogens, experimental and field data indicate BHS are more susceptible to pneumonia. Cross-reactive monoclonal antibodies (mAbs) for use in flow cytometry (FC) are valuable reagents for interspe...

  2. Use of flow cytometry to identify monoclonal antibodies that recognize conserved epitopes on orthologous leukocyte differentiation antigens in goats, llamas, and rabbits

    Czech Academy of Sciences Publication Activity Database

    Davis, W. C.; Drbal, Karel; El-Aziz, A.; Mosaad, A.E.; Elbagory, A.R.M.; TIbary, A.; Barrington, G.M.; Park, Y.H.; Hamilton, M.J.

    2007-01-01

    Roč. 119, 1-2 (2007), s. 123-130 ISSN 0165-2427 Institutional research plan: CEZ:AV0Z50520514 Keywords : flow cytometry * monoclonal antibodies * leukocyte s Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.957, year: 2007

  3. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells

    DEFF Research Database (Denmark)

    Pedersen, Natasja Wulff; Chandran, P. Anoop; Qian, Yu

    2017-01-01

    Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide auto...

  4. Use of flow cytometry, fluorescence microscopy, and PCR-based techniques to assess intraspecific and interspecific matings of Armillaria species

    Science.gov (United States)

    Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald; Kathiravetpillai Arumuganathan

    2001-01-01

    For assessments of intraspecific mating using flow cytometry and fluorescence microscopy, two compatible basidiospore-derived isolates were selected from each of four parental basidiomata of North American Biological Species (NABS) X. The nuclear status in NABS X varied with basidiospore-derived isolates. Nuclei within basidiospore-derived isolates existed as haploids...

  5. Use of a Whole-Cell Biosensor and Flow Cytometry to Detect AHL Production by an Indigenous Soil Community During Decomposition

    DEFF Research Database (Denmark)

    Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2005-01-01

    technology and flow cytometry analysis. An indigenous soil bacterium, belonging to the family of Enterobacteriaceae, was isolated and transformed with a low-copy plasmid harboring a gene encoding an unstable variant of the green fluorescent protein (gfpASV) fused to the AHL-regulated PluxI promoter...

  6. Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa - An analysis based on morphometry, karyology, flow cytometry and microsatellites

    Czech Academy of Sciences Publication Activity Database

    Vít, Petr; Douda, Jan; Krak, Karol; Havrdová, Alena; Mandák, Bohumil

    2017-01-01

    Roč. 66, č. 3 (2017), s. 567-583 ISSN 0040-0262 R&D Projects: GA ČR(CZ) GAP504/11/0402 Institutional support: RVO:67985939 Keywords : Alnus glutinosa * flow cytometry * Balkan Peninsula Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.447, year: 2016

  7. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    Science.gov (United States)

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-09

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Enumeration of antigen-specific CD8+ T lymphocytes by single-platform, HLA tetramer-based flow cytometry: a European multicenter evaluation.

    NARCIS (Netherlands)

    Heijnen, I.; Barnett, D.; Arroz, M.J.; Barry, S.M.; Bonneville, M.; Brando, B.; D'Hautcourt, J.L.; Kern, F.; Totterman, T.H.; Marijt, E.W.; Bossy, D.; Preijers, F.W.M.B.; Rothe, G.; Gratama, J.W.

    2004-01-01

    BACKGROUND: HLA class I peptide tetramers represent powerful diagnostic tools for detection and monitoring of antigen-specific CD8(+) T cells. The impetus for the current multicenter study is the critical need to standardize tetramer flow cytometry if it is to be implemented as a routine diagnostic

  9. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry.

    Science.gov (United States)

    Mustapha, Pascale; Epalle, Thibaut; Allegra, Séverine; Girardot, Françoise; Garraud, Olivier; Riffard, Serge

    2015-04-01

    The viability of three Legionella pneumophila strains was monitored after chlorine dioxide (ClO2) treatment using a flow cytometric assay. Suspensions of L. pneumophila cells were submitted to increasing concentrations of ClO2. Culturable cells were still detected when using 4 mg/L, but could no longer be detected after exposure to 6 mg/L of ClO2, although viable but not culturable (VBNC) cells were found after exposure to 4-5 mg/L of ClO2. When testing whether these VBNC were infective, two of the strains were resuscitated after co-culture with Acanthamoeba polyphaga, but neither of them could infect macrophage-like cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujíllo, Romén

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes...... in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses...... on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy....

  11. Gram-typing of mastitis bacteria in milk samples using flow cytometry

    DEFF Research Database (Denmark)

    Langerhuus, Sine Nygaard; Ingvartsen, Klaus Lønne; Bennedsgaard, Torben Werner

    2013-01-01

    identification of bacterial pathogens, although shipment of samples to diagnostic laboratories delays treatment decisions. Due to the lack of fast on-site tests that can identify the causative pathogens, antibiotic treatments are often initiated before bacterial identification. The present study describes a flow...... characteristic curves for the 19 bacterial cultures. The method was then tested on 53 selected mastitis cases obtained from the department biobank (milk samples from 6 gram-negative and 47 gram-positive mastitis cases). Gram-negative bacteria in milk samples were detected with a sensitivity of 1......Fast identification of pathogenic bacteria in milk samples from cows with clinical mastitis is central to proper treatment. In Denmark, time to bacterial diagnosis is typically 24 to 48 h when using traditional culturing methods. The PCR technique provides a faster and highly sensitive...

  12. Citometria de fluxo no diagnóstico da leishmaniose visceral canina Flow cytometry used in canine visceral leishmaniasis diagnosis

    Directory of Open Access Journals (Sweden)

    A.V. Carvalho Neta

    2006-08-01

    Full Text Available Descreve-se a padronização de nova metodologia para detecção de anticorpos antiformas promastigotas fixadas de L. (L. chagasi, por citometria de fluxo (AAPF-IgG, sua aplicabilidade e desempenho na identificação de casos de leishmaniose visceral canina (LVC. Foram avaliados dois grupos de cães classificados pela reação de imunofluorescência indireta (RIFI, como: não reatores (NR, n=10 e reatores (R, n=50 dos quais foram coletadas amostras de sangue (soro para realização dos testes laboratoriais. Os resultados relacionados ao estabelecimento, aplicabilidade e desempenho da metodologia AAPF-IgG demonstraram que essa metodologia possibilita a identificação de uma região de reatividade diferencial entre cães NR e R, no soro diluído a 1:2048 e o valor de 20% de parasitos fluorescentes positivos (PPFP como ponto de corte entre resultados positivos e negativos, mostrando que a AAPF-IgG aplica-se na identificação de casos de LVC, possibilitando distinguir 96% de cães R como positivos e 100% de cães NR como negativos. Esses resultados em conjunto sugerem que a utilização da AAPF-IgG pode ser um novo instrumento para ensaios clínicos de diagnóstico sorológico da LVC.The current study evaluated the standardization of a new methodology for detection of anti-fixed L. (L. chagasi promastigote antibodies by flow cytometry (AAPF-IgG, as well its applicability and performance in the identification of cases of Canine Visceral Leishmaniasis (CVL. Two groups of dogs were classified by RIFI (gold standard as no reactors (NR, n=10 and reactors (R, n=50. Blood samples were collected and used for the laboratorial tests (RIFI and AAPF-IgG. The results showed that the new AAPF-IgG assay makes possible the identification of an area of differential reactivity between dogs NR and R at the dilution of 1:2048 and 20% of percentage of positive fluorescent parasite as the cut point among positive and negative results. The AAPF-IgG assay was able to

  13. Application of JC1 for non-toxic isolation of cells with MDR transporter activity by flow cytometry.

    Directory of Open Access Journals (Sweden)

    J Mario Wolosin

    Full Text Available The DNA intercalating dye Hoechst 33342 or its close analog DCV are actively removed from cells by the multidrug resistance transporter ABCG2, a protein overexpressed in metastatic cells and somatic stem cells. In bivariate blue-red flow cytometry fluorescent plots active Hoechst or DCV efflux combined with a concentration dependent bathochromic shifts of these nuclear dyes leads to the segregation of the transporter-rich cells into a distinct cell cohort tilted towards the shorter wavelength axis of the plot, the cohort is generically known as the side population (SP. This feature has facilitated the surface marker-independent isolation of live stem cells. A drawback, though, is the known toxicity of Hoechst dyes. In this study we show that JC1, a bathochromic mitochondrial membrane potential-sensitive dye applied at proper concentration, can yield flow cytometry fluorescent emission bivariate plots containing a low JC1 accumulation (JC1low cohort. Using a combination of multiple cell lines, ABC-transporter inhibitors and viral vector-driven insertion of the ABCG2 gene or ABCG2 and ABCB1 shRNAs we demonstrate that JC1low can be generated by either of the two aforementioned multidrug resistance transporters. Complete wash out of mitochondrial bound JC1 required more than 24 h. In spite of this tight binding, the dye did not affect either the mitochondrial membrane potentials or the proliferation rate. In contrast, contemporaneous with its nuclear accumulation, Hoechst 33342 or DVC, caused changes in the fluorescent emission of mitochondrial membrane potential sensitive dyes resembling the effects caused by the mitochondrial uncoupler FCCP. In a number of cell lines exposure to Hoechst resulted in marked slow-down of proliferation and abolition of ABCG2 transport activity during the subsequent 2 days but in K562 cells the exposure induced cell extended death. Overall, its lack of toxicity vis. a vis. the toxicity and genotoxicity of the DNA

  14. New mononuclear leukocyte-like populations within the granulocyte scatter gate detected by flow cytometry (Conference Presentation)

    Science.gov (United States)

    Melzer, Susanne; Löffler, Markus; Kautzner, Marlene; Tárnok, Attila

    2017-02-01

    Granulocytes are the major players in innate immunity and are prognostic markers in diseases. An in-depth phenotypic characterization of granulocyte subtypes and correlation with biometry or lifestyle is so far lacking. The reason is, that either preparation of mononuclear cells was analyzed or that cells in the neutrophil window were neglected in the analysis. Here we show for the first time lymphocyte- (LL) and monocyte-like (ML) cells within the granulocyte scatter gate as new, previously unknown cell subpopulation. Immunophenotyping of 905 healthy German adults from the LIFE study [1] was performed by 10-color flow cytometry [2]. Age of men (n=420): 56.5±14.0 years, women (n=485): 56.7±13.6 y (range of 18-81 y). Data analyzed by FlowJo v10.0.6. Values compared by Mann-Whitney-U test: men vs women, young (18-49 y) vs. elderly (50-81 y.) men, and young (19-49 y.) vs. elderly (50-81 y.) women; significance: p<0.05. Within the granulocyte gate four phenotypically distinct cell types were detected (all CD45+, SSCmid-high): LL1 CD3+,CD4+,CD8++,CD16/56+,CD38+,HLA-DR+ LL2 CD3+,CD4low,CD8+,CD38low LL3 CD3+,CD4+,CD8- ML1 CD3-,CD4low,CD14+,CD38+ LL2 counts were increased in men (p=0.042), as well as ML1 counts (p <0.001). Most of the cell counts were not dependent on age, except LL2 in women. In conclusion, new lymphocyte like cell types with the neutrophil scatter characteristics are reported. Counts correlate with age and gender. We plan to sort these new subtypes for further functional characterization and aim to establish them as cellular biomarkers for the early detection of various diseases. [1] BMC Public Health. 2015;15:691; [2] Cytometry A. 2014;85(9):781

  15. An Imaging Flow Cytometry-based approach to analyse the fission yeast cell cycle in fixed cells.

    Science.gov (United States)

    Patterson, James O; Swaffer, Matthew; Filby, Andrew

    2015-07-01

    Fission yeast (Schizosaccharomyces pombe) is an excellent model organism for studying eukaryotic cell division because many of the underlying principles and key regulators of cell cycle biology are conserved from yeast to humans. As such it can be employed as tool for understanding complex human diseases that arise from dis-regulation in cell cycle controls, including cancers. Conventional Flow Cytometry (CFC) is a high-throughput, multi-parameter, fluorescence-based single cell analysis technology. It is widely used for studying the mammalian cell cycle both in the context of the normal and disease states by measuring changes in DNA content during the transition through G1, S and G2/M using fluorescent DNA-binding dyes. Unfortunately analysis of the fission yeast cell cycle by CFC is not straightforward because, unlike mammalian cells, cytokinesis occurs after S-phase meaning that bi-nucleated G1 cells have the same DNA content as mono-nucleated G2 cells and cannot be distinguished using total integrated fluorescence (pulse area). It has been elegantly shown that the width of the DNA pulse can be used to distinguish G2 cells with a single 2C foci versus G1 cells with two 1C foci, however the accuracy of this measurement is dependent on the orientation of the cell as it traverses the laser beam. To this end we sought to improve the accuracy of the fission yeast cell cycle analysis and have developed an Imaging Flow Cytometry (IFC)-based method that is able to preserve the high throughput, objective analysis afforded by CFC in combination with the spatial and morphometric information provide by microscopy. We have been able to derive an analysis framework for subdividing the yeast cell cycle that is based on intensiometric and morphometric measurements and is thus robust against orientation-based miss-classification. In addition we can employ image-based metrics to define populations of septated/bi-nucleated cells and measure cellular dimensions. To our knowledge

  16. Forward modeling of inherent optical properties from flow cytometry estimates of particle size and refractive index.

    Science.gov (United States)

    Agagliate, Jacopo; Lefering, Ina; McKee, David

    2018-03-10

    A Mie-based forward modeling procedure was developed to reconstruct bulk inherent optical properties (IOPs) from particle size distributions (PSDs) and real refractive index distributions (PRIDs) obtained using a previously developed flow cytometric (FC) method [Appl. Opt.57, 1705 (2018)APOPAI0003-693510.1364/AO.57.001705]. Given the available PSDs, extrapolations for the particle fraction outside the detection limits of the method and a complex refractive index input (with real part n r directly estimated and imaginary part n i adapted from the literature separately for organic and inorganic components), the model produces volume scattering functions that are integrated to produce scattering and backscattering coefficients, and absorption efficiencies that are used to calculate absorption coefficients. The procedure was applied to PSDs and PRIDs derived from natural samples retrieved in UK coastal waters and analyzed using a CytoSense flow cytometer (CytoBuoy b.v., The Netherlands). Optical closure analysis was carried out between reconstructed IOPs and in situ IOPs measured using an ac-9 spectrophotometer and a BB9 backscattering meter (WET Labs Inc., OR) in the same waters. The procedure is shown to achieve broad agreement with particulate scattering (b p ) and backscattering (b bp ) [root mean square percentage error (RMS%E): 35.3% and 44.5%, respectively) and to a lesser degree with backscattering ratio (b˜ bp ) (RMS%E: 77%). The procedure, however, generally overestimated particulate absorption (a p ) (RMS%E: 202.3%). This degree of closure was dependent on applying recently developed scattering error corrections to both absorption and attenuation in situ measurements. Not only do these results indirectly validate the FC method as a useful tool for PSD and PRID determination in natural particle populations, they also suggest that Mie theory may be a sufficient model for bulk IOP determination, with previously reported difficulties potentially being caused by

  17. Genome-size Variation in Switchgrass (Panicum virgatum: Flow Cytometry and Cytology Reveal Rampant Aneuploidy

    Directory of Open Access Journals (Sweden)

    Denise E. Costich

    2010-11-01

    Full Text Available Switchgrass ( L., a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was considerable variation in genome size within each accession, particularly at the octoploid (2 = 8 = 72 chromosome ploidy level. Highly variable chromosome counts in mitotic cell preparations indicated that aneuploidy was more common in octoploids (86.3% than tetraploids (23.2%. Furthermore, the incidence of hyper- versus hypoaneuploidy is equivalent in tetraploids. This is clearly not the case in octoploids, where close to 90% of the aneuploid counts are lower than the euploid number. Cytogenetic investigation using fluorescent in situ hybridization (FISH revealed an unexpected degree of variation in chromosome structure underlying the apparent genomic instability of this species. These results indicate that rapid advances in the breeding of polyploid biofuel feedstocks, based on the molecular-genetic dissection of biomass characteristics and yield, will be predicated on the continual improvement of our understanding of the cytogenetics of these species.

  18. Detection of acute lymphoblastic leukemia involvement in pleural fluid in an adult patient with ataxia telangiectasia by flow cytometry method.

    Science.gov (United States)

    Keklik, Muzaffer; Koker, M Yavuz; Sivgin, Serdar; Camlica, Demet; Pala, Cigdem; Cetin, Mustafa; Kaynar, Leylagul; Unal, Ali; Eser, Bulent

    2014-09-01

    Ataxia-telangiectasia (AT) is a rare multisystem, neurodegenerative genetic disorder. Patients should be closely monitored due to risk of malignancy development. Due to its wide clinical heterogeneity, it often leads physicians to an inaccurate or missed diagnosis, and insight into this rare disease is important. Pediatric patients may develop lymphomas and acute lymphoblastic leukemia (ALL). However, in adults, there are limited numbers of reports regarding association of AT and ALL. Rarely, ALL cases may present with pleural fluid involvement. In our study, we presented an adult case with AT, in which ALL involvement was detected in pleural fluid by flow cytometry (FC). A 20-years old male presented to emergency department with fever, shortness of breath and cough, as he had been followed with a diagnosis of AT. The following findings were detected in laboratory tests: Hb, 11.5 g/L; WBC, 36 × 10(9)/L; Plt: 140 × 10(9)/L. Blastic cells were observed in peripheral blood smear. On chest radiography, pleural fluid appearance was observed. On thorax CT, pleural fluid was detected in both hemithorax. Cytoplasmic CD3(+) and superficial CD3 (+), CD45 (+), CD5 (+), CD7 (+) and CD38 (+) was found in the flow cytometric evaluation of peripheral blood. Superficial CD3 (+), CD2 (+), CD5 (+) and CD7 (+) were found in flow cytometric evaluation of pleural fluid. These findings were considered as consistent with pleural involvement of T-ALL. FC is a potentially useful diagnostic tool for clinical practice and it is a convenience method which has an important role in detection of ALL in patients with pleural fluid.

  19. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay.

    Science.gov (United States)

    Ayers, Lisa; Kohler, Malcolm; Harrison, Paul; Sargent, Ian; Dragovic, Rebecca; Schaap, Marianne; Nieuwland, Rienk; Brooks, Susan A; Ferry, Berne

    2011-04-01

    Circulating cell-derived microparticles (MPs) have been implicated in several disease processes and elevated levels are found in many pathological conditions. The detection and accurate measurement of MPs, although attracting widespread interest, is hampered by a lack of standardisation. The aim of this study was to establish a reliable flow cytometric assay to measure distinct subtypes of MPs in disease and to identify any significant causes of variability in MP quantification. Circulating MPs within plasma were identified by their phenotype (platelet, endothelial, leukocyte and annexin-V positivity (AnnV+). The influence of key variables (i.e. time between venepuncture and centrifugation, washing steps, the number of centrifugation steps, freezing/long-term storage and temperature of thawing) on MP measurement were investigated. Increasing time between venepuncture and centrifugation leads to increased MP levels. Washing samples results in decreased AnnV+MPs (P=0.002) and platelet-derived MPs (PMPs) (P=0.002). Double centrifugation of MPs prior to freezing decreases numbers of AnnV+MPs (P=0.0004) and PMPs (P=0.0004). A single freeze thaw cycle of samples led to an increase in AnnV+MPs (P=0.0020) and PMPs (P=0.0039). Long-term storage of MP samples at -80° resulted in decreased MP levels. This study found that minor protocol changes significantly affected MP levels. This is one of the first studies attempting to standardise a method for obtaining and measuring circulating MPs. Standardisation will be essential for successful development of MP technologies, allowing direct comparison of results between studies and leading to a greater understanding of MPs in disease. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  20. Use of quantitative flow cytometry to measure ex vivo immunostimulant activity of echinacea: the case for polysaccharides.

    Science.gov (United States)

    Pillai, Segaran; Pillai, Christine; Mitscher, Lester A; Cooper, Raymond

    2007-01-01

    When directly exposed to various echinacea fractions, human leukocytes ex vivo are strongly stimulated to proliferate and to produce immunostimulation and inflammatory cytokines. A comparison of fractions containing lipoidal small molecules and high-molecular-weight water-soluble polysaccharides indicates that the latter are substantially more potent as immunostimulants. Echinacea purpurea (L.) Moench, E. angustifolia DC, and E. pallida (Nutt.), Nutt. extracts, and each plant part contain significantly potent constituents. Flow cytometric techniques were utilized. This study was undertaken to determine whether flow cytometry could measure immunostimulant activity present in echinacea and, if so, which species produced more activity, which plant part was the most active, and whether the organic soluble or the aqueous extractables were more active. Ex vivo human clinical material was employed. Echinacea extracts were analyzed using flow cytometric techniques. The immunostimulation assays were measured in triplicate. Samples dissolved in dimethyl sulfoxide (DMSO) were added to 200 microL of heparinized blood mixed with 50 muL of phosphate buffer, vortexed, and incubated to allow adequate time for immune-cell stimulation. Fifty (50) microL of the stimulated blood samples were added to each of a reagent cocktail consisting of 20 microL of CD4FITC/CD69PE/CD3PerCP expressed on the helper/inducer T-lymphocyte subset; CD8FITC/CD69/PE/ CD3PerCP expressed on the human suppresser/cytotoxic T-lymphocytes and on a subset of natural killer lymphocytes; CD19FITC/CD69PE/CD45PerCP expressed on B-lymphocytes; or CD56FITC/CD69PE/CD45PerCP expressed on NK lymphocytes. Four hundred and fifty (450) microL of 1 X FACS lysing solution was added and incubated in the dark (rt, 30 minutes) and then subjected to flow cytometric analysis. All reported readings are the average of several determinations. Positive controls consisted of phorbol myristyl acetate (PMA) (50 ng/mL), phytohemagglutinin

  1. A flow cytometry-based workflow for detection and quantification of anti-plasmodial antibodies in vaccinated and naturally exposed individuals

    DEFF Research Database (Denmark)

    Ajua, Anthony; Engleitner, Thomas; Esen, Meral

    2012-01-01

    information about natural exposure and vaccine immunogenicity. A novel, cytometry-based workflow for the quantitative detection of anti-plasmodial antibodies in human serum is presented. METHODS: Fixed red blood cells (RBCs), infected with late stages of P. falciparum were utilized to detect malaria......-specific antibodies by flow cytometry with subsequent automated data analysis. Available methods for data-driven analysis of cytometry data were assessed and a new overlap subtraction algorithm (OSA) based on open source software was developed. The complete workflow was evaluated using sera from two GMZ2 malaria...... children vaccinated with 100 mug GMZ2 was present and in vaccinated adults from the same region we measured a baseline-corrected 1.23-fold, vaccine-induced increase in mean fluorescence intensity of positive cells (p=0.03). CONCLUSIONS: The current workflow advances detection and quantification of anti...

  2. Dynamics of Prochlorococcus and Synechococcus at Station ALOHA Revealed through Flow Cytometry and High-Resolution Vertical Sampling

    Directory of Open Access Journals (Sweden)

    Ger J. van den Engh

    2017-11-01

    Full Text Available The fluorescence and scattering properties of Prochlorococcus and Synechococcus at Station ALOHA as measured by flow cytometry (termed the FCM phenotype vary with depth and over a variety of time scales. The variation in FCM phenotypes may reflect population selection or physiological acclimation to local conditions. Observations before, during, and after a storm with deep water mixing show a short-term homogenization of the FCM phenotypes with depth, followed by a return to the stable pattern over the time span of a few days. These dynamics indicate that, within the upper mixed-layer, the FCM phenotype distribution represents acclimation to ambient light. The populations in the pycnocline (around 100 m and below, remain stable and are invariant with light conditions. In samples where both cyanobacteria coexist, fluorescence properties of Prochlorococcus and Synechococcus are tightly correlated providing further evidence that FCM phenotype variability is caused by a common environmental factor or factors. Measurements of the dynamics of FCM phenotypes provide insights into phytoplankton physiology and adaptation. Alternatively, FCM phenotype census of a water mass may provide information about its origin and illumination history.

  3. Outcome prediction in plasmacytoma of bone: a risk model utilizing bone marrow flow cytometry and light-chain analysis.

    Science.gov (United States)

    Hill, Quentin A; Rawstron, Andy C; de Tute, Ruth M; Owen, Roger G

    2014-08-21

    The purpose of this study was to use multiparameter flow cytometry to detect occult marrow disease (OMD) in patients with solitary plasmacytoma of bone and assess its value in predicting outcome. Aberrant phenotype plasma cells were demonstrable in 34 of 50 (68%) patients and comprised a median of 0.52% of bone marrow leukocytes. With a median follow-up of 3.7 years, 28 of 50 patients have progressed with a median time to progression (TTP) of 18 months. Progression was documented in 72% of patients with OMD vs 12.5% without (median TTP, 26 months vs not reached; P = .003). Monoclonal urinary light chains (ULC) were similarly predictive of outcome because progression was documented in 91% vs 44% without (median TTP, 16 vs 82 months; P < .001). By using both parameters, it was possible to define patients with an excellent outcome (lacking both OMD and ULC, 7.7% progression) and high-risk patients (OMD and/or ULC, 75% progression; P = .001). Trials of systemic therapy are warranted in high-risk patients. © 2014 by The American Society of Hematology.

  4. Heavy Metal Pollution, Selection, and Genome Size: The Species of the Žerjav Study Revisited with Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Eva M. Temsch

    2010-01-01

    Full Text Available The Death Valley at Žerjav in northern Slovenia exhibits a gradient of heavy metal pollution in the soil with severe consequences for species richness and composition along this gradient. Recently, a progressive loss of large-genome species in parallel with increasing concentrations of heavy metals has been shown. Here, we have measured the genome size of a near-complete sample of these species with flow cytometry and analysed the correlation of heavy metal pollution with the C- and Cx-values assigned to the test plots. The method of probability analysis was a hypergeometric distribution method. We confirm, on a different methodological basis than previously, that along the pollution gradient, species with high C- and Cx-values are increasingly underrepresented. This lends support to the “large genome constraint hypothesis”, predicting that plants with large genomes are at a disadvantage under all aspects of evolution, ecology, and phenotype, because junk DNA imposes a load to the organism.

  5. Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis.

    Science.gov (United States)

    Trigui, Hana; Masmoudi, Salma; Brochier-Armanet, Céline; Barani, Aude; Grégori, Gérald; Denis, Michel; Dukan, Sam; Maalej, Sami

    2011-05-01

    Here, we combined flow cytometry (FCM) and phylogenetic analyses after cell sorting to characterize the dominant groups of the prokaryotic assemblages inhabiting two ponds of increasing salinity: a crystallizer pond (TS) with a salinity of 390 g/L, and the non-crystallizer pond (M1) with a salinity of 200 g/L retrieved from the solar saltern of Sfax in Tunisia. As expected, FCM analysis enabled the resolution of high nucleic acid content (HNA) and low nucleic acid content (LNA) prokaryotes. Next, we performed a taxonomic analysis of the bacterial and archaeal communities comprising the two most populated clusters by phylogenetic analyses of 16S rRNA gene clone library. We show for the first time that the presence of HNA and LNA content cells could also be extended to the archaeal populations. Archaea were detected in all M1 and TS samples, whereas representatives of Bacteria were detected only in LNA for M1 and HNA for TS. Although most of the archaeal sequences remained undetermined, other clones were most frequently affiliated to Haloquadratum and Halorubrum. In contrast, most bacterial clones belonged to the Alphaproteobacteria class (Phyllobacterium genus) in M1 samples and to the Bacteroidetes phylum (Sphingobacteria and Salinibacter genus) in TS samples.

  6. Rapid detection of predation of Escherichia coli O157:H7 and sorting of bacterivorous Tetrahymena by flow cytometry

    Directory of Open Access Journals (Sweden)

    Bradley J. Hernlem

    2014-05-01

    Full Text Available Protozoa are known to harbor bacterial pathogens, alter their survival in the environment and make them hypervirulent. Rapid non-culture based detection methods are required to determine the environmental survival and transport of enteric pathogens from point sources such as dairies and feedlots to food crops grown in proximity. Grazing studies were performed on a soil isolate of Tetrahymena fed green fluorescent protein (GFP expressing Escherichia coli O157:H7 to determine the suitability of the use of such fluorescent prey bacteria to locate and sort bacterivorous protozoa by flow cytometry. In order to overcome autofluorescence of the target organism and to clearly discern Tetrahymena with ingested prey versus those without, a ratio of prey to host of at least 100:1 was determined to be preferable. Under these conditions, we successfully sorted the two populations using short 5 to 45 min exposures of the prey and verified the internalization of E. coli O157:H7 cells in protozoa by confocal microscopy. This technique can be easily adopted for environmental monitoring of rates of enteric pathogen destruction versus protection in protozoa.

  7. Use of 2-color flow cytometry to assess radiation induced geotoxic damage on CHO-KI cells

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luma Ramirez de; Bonfim, Leticia; Vieira, Daniel Perez, E-mail: lrcarvalho@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The micronucleus assay is an important technique used to evaluate genotoxic damage of chemical or physical agents (as ionizing radiations) on cells, based on quantification of cells bearing micronuclei, which are fragments derived from damage (breakage) of the DNA. Currently, this technique was updated to an automated approach that relies on plasma membrane dissolution to analyze fluorescent dye-labelled nuclei and micronuclei by flow cytometry. Cell suspensions were irradiated in PBS by a {sup 60}Co source in doses between 0 and 16Gy, and incubated by 48h. Cell membranes were lysed in the presence of SYTOX Green and EMA dyes, so EMA-stained nuclei could be discriminated as from dead cells, and nuclei and micronuclei could be quantified. Amounts of micronuclei (percent of events) in the samples, were found to be proportional to radiation doses, and could be fitted to a linear-quadratic model (R² = 0.993). Only higher doses (8 and 16Gy) and positive control could induce relevant increases in micronucleus amounts. The incorporation EMA showed an increase in irradiated cells. Mid to high doses (4, 8 and 16Gy) induced reduction of cell proliferation. Experiments showed the suitability of the technique to replace traditional microscopy analysis in evaluation of the effects of ionizing radiations on cells, with possibility to use in biological dosimetry. (author)

  8. Determination of a new index of sexual maturity (ISM) in zebra mussel using flow cytometry: interest in ecotoxicology.

    Science.gov (United States)

    Magniez, Gabrielle; Franco, Alban; Geffard, Alain; Rioult, Damien; Bonnard, Isabelle; Delahaut, Laurence; Joachim, Sandrine; Daniele, Gaëlle; Vulliet, Emmanuelle; Porcher, Jean-Marc; Bonnard, Marc

    2017-05-31

    The global dynamic spread of chemical contamination through the aquatic environment calls for the development of biomarkers of interest. Reproduction is a key element to be considered because it is related to the sustainability of species. Spermatogenesis is a complex process that leads to the formation of mature germ cells, whose steps and impairments need to be finely described in ecotoxicological analyses. The physiological process has been commonly described by histological analyses of gonads in different taxa. In the present paper, we describe the development of a novel technique to characterize spermatogenesis based on the analysis of the DNA content of germ cells by flow cytometry, using a DNA-intercalating agent. This new biomarker, referred to as an index of sexual maturity, proved relevant to describe the seasonal reproductive cycle of the zebra mussel, Dreissena polymorpha (Pallas, 1771), used as a sentinel species in the biomonitoring of continental waters and sensitive to highlight the reprotoxicity of carbamazepine (an anti-epileptic pharmaceutical) tested under ecosystemic conditions (mesocosms).

  9. A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells.

    Directory of Open Access Journals (Sweden)

    Carina Banning

    2010-02-01

    Full Text Available Försters resonance energy transfer (FRET microscopy is widely used for the analysis of protein interactions in intact cells. However, FRET microscopy is technically challenging and does not allow assessing interactions in large cell numbers. To overcome these limitations we developed a flow cytometry-based FRET assay and analysed interactions of human and simian immunodeficiency virus (HIV and SIV Nef and Vpu proteins with cellular factors, as well as HIV Rev multimer-formation.Amongst others, we characterize the interaction of Vpu with CD317 (also termed Bst-2 or tetherin, a host restriction factor that inhibits HIV release from infected cells and demonstrate that the direct binding of both is mediated by the Vpu membrane-spanning region. Furthermore, we adapted our assay to allow the identification of novel protein interaction partners in a high-throughput format.The presented combination of FRET and FACS offers the precious possibility to discover and define protein interactions in living cells and is expected to contribute to the identification of novel therapeutic targets for treatment of human diseases.

  10. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    G. Liu

    2013-01-01

    Full Text Available The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R2=0.63. Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP.

  11. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems

    Science.gov (United States)

    Liu, G.; Van der Mark, E. J.; Verberk, J. Q. J. C.; Van Dijk, J. C.

    2013-01-01

    The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R 2 = 0.63). Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP. PMID:23819117

  12. Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets.

    Directory of Open Access Journals (Sweden)

    Emily R Wendt

    Full Text Available Calcium flux is a rapid and sensitive measure of cell activation whose utility could be enhanced with better techniques for data extraction. We describe a technique to monitor calcium flux by flow cytometry, measuring Fura Red calcium dye by ratiometric analysis. This technique has several advantages: 1 using a single calcium dye provides an additional channel for surface marker characterization, 2 allows robust detection of calcium flux by minority cell populations within a heterogeneous population of primary T cells and monocytes 3 can measure total calcium flux and additionally, the proportion of responding cells, 4 can be applied to studying the effects of drug treatment, simultaneously stimulating and monitoring untreated and drug treated cells. Using chemokine receptor activation as an example, we highlight the utility of this assay, demonstrating that only cells expressing a specific chemokine receptor are activated by cognate chemokine ligand. Furthermore, we describe a technique for simultaneously stimulating and monitoring calcium flux in vehicle and drug treated cells, demonstrating the effects of the Gαi inhibitor, pertussis toxin (PTX, on chemokine stimulated calcium flux. The described real time calcium flux assay provides a robust platform for characterizing cell activation within primary cells, and offers a more accurate technique for studying the effect of drug treatment on receptor activation in a heterogeneous population of primary cells.

  13. Ultra-sensitive detection of prion protein fibrils by flow cytometry in blood from cattle affected with bovine spongiform encephalopathy

    Directory of Open Access Journals (Sweden)

    Maas Elke

    2005-10-01

    Full Text Available Abstract Background The definite diagnosis of prion diseases such as Creutzfeldt-Jakob disease (CJD in humans or bovine spongiform encephalopathy (BSE in cattle currently relies on the post mortem detection of the pathological form of the prion protein (PrPSc in brain tissue. Infectivity studies indicate that PrPSc may also be present in body fluids, even at presymptomatic stages of the disease, albeit at concentrations well below the detection limits of currently available analytical methods. Results We developed a highly sensitive method for detecting prion protein aggregates that takes advantage of kinetic differences between seeded and unseeded polymerization of prion protein monomers. Detection of the aggregates was carried out by flow cytometry. In the presence of prion seeds, the association of labelled recombinant PrP monomers in plasma and serum proceeds much more efficiently than in the absence of seeds. In a diagnostic model system, synthetic PrP aggregates were detected down to a concentration of approximately 10-8 nM [0.24 fg/ml]. A specific signal was detected in six out of six available serum samples from BSE-positive cattle. Conclusion We have developed a method based on seed-dependent PrP fibril formation that shows promising results in differentiating a small number of BSE-positive serum samples from healthy controls. This method may provide the basis for an ante mortem diagnostic test for prion diseases.

  14. High-throughput isolation of giant viruses in liquid medium using automated flow cytometry and fluorescence staining.

    Directory of Open Access Journals (Sweden)

    Jacques Yaacoub Bou Khalil

    2016-01-01

    Full Text Available The isolation of giant viruses using amoeba co-culture is tedious and fastidious. Recently, the procedure was successfully associated with a method that detects amoebal lysis on agar plates. However, the procedure remains time-consuming and is limited to protozoa growing on agar. We present here advances for the isolation of giant viruses. A high-throughput automated method based on flow cytometry and fluorescent staining was used to detect the presence of giant viruses in liquid medium. Development was carried out with the Acanthamoeba polyphaga strain widely used in past and current co-culture experiments. The proof of concept was validated with virus suspensions: artificially contaminated samples but also environmental samples from which viruses were previously isolated. After validating the technique, and fortuitously isolating a new Mimivirus, we automated the technique on 96-well plates and tested it on clinical and environmental samples using other protozoa. This allowed us to detect more than ten strains of previously known species of giant viruses and 7 new strains of a new virus lineage. This automated high-throughput method demonstrated significant time saving, and higher sensitivity than older techniques. It thus creates the means to isolate giant viruses at high speed.

  15. Evaluation of CD307a expression patterns during normal B-cell maturation and in B-cell malignancies by flow cytometry.

    Science.gov (United States)

    Auat, Mariangeles; Cardoso, Chandra Chiappin; Santos-Pirath, Iris Mattos; Rudolf-Oliveira, Renata Cristina Messores; Matiollo, Camila; Lange, Bárbara Gil; da Silva, Jessica Pires; Dametto, Gisele Cristina; Pirolli, Mayara Marin; Colombo, Maria Daniela Holthausen Perico; Santos-Silva, Maria Claudia

    2018-02-24

    Flow cytometric immunophenotyping is deemed a fundamental tool for the diagnosis of B-cell neoplasms. Currently, the investigation of novel immunophenotypic markers has gained importance, as they can assist in the precise subclassification of B-cell malignancies by flow cytometry. Therefore, the purpose of the present study was to evaluate the expression of CD307a during normal B-cell maturation and in B-cell malignancies as well as to investigate its potential role in the differential diagnosis of these entities. CD307a expression was assessed by flow cytometry in normal precursor and mature B cells and in 115 samples collected from patients diagnosed with precursor and mature B-cell neoplasms. CD307a expression was compared between neoplastic and normal B cells. B-acute lymphoblastic leukemia cases exhibited minimal expression of CD307a, displaying a similar expression pattern to that of normal B-cell precursors. Mantle cell lymphoma (MCL) cases showed the lowest levels of CD307a among mature B-cell neoplasms. CD307a expression was statistically lower in MCL cases than in chronic B lymphocytic leukemia (CLL) and marginal zone lymphoma (MZL) cases. No statistical differences were observed between CD307a expression in neoplastic and normal plasma cells. These results indicate that the assessment of CD307a expression by flow cytometry could be helpful to distinguish CLL from MCL, and the latter from MZL. Although these results are not entirely conclusive, they provide a basis for further studies in a larger cohort of patients. © 2018 International Clinical Cytometry Society. © 2018 International Clinical Cytometry Society.

  16. Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk.

    Science.gov (United States)

    Gunasekera, T S; Veal, D A; Attfield, P V

    2003-08-25

    Monitoring the quality and safety of milk requires careful analysis of microbial and somatic cell loading. Our aim was to demonstrate proof of the principle that flow cytometry (FCM), coupled with fluorescence techniques for distinguishing between cell types, could potentially be employed in a wide variety of biological assays relevant to the dairy industry. To this end, we studied raw milk samples and ultraheat-treated milk, into which known numbers of bacteria or mouse cells were inoculated. For bacterial analyses, protein and lipids were removed, whereas only centrifugal lipid clearing was needed for somatic cell analyses. Cleared samples were stained with fluorescent dyes or with bacterial-specific fluorescent-labeled oligonucleotides and analyzed by FCM. A fluoresceinated peptide nucleic acid probe enabled efficient enumeration of bacteria in milk. Dual staining of samples with fluorescent dyes that indicate live (5-cyanol-2,3-ditolyl tetrazolium chloride, CTC or SYTO 9) or damaged cells (oxonol or propidium iodide, PI) enabled determination of viable bacteria in milk. Gram-positive and -negative bacteria were distinguished using hexidium iodide and SYTO 13 in dual staining of cleared milk samples. An FCM-based method gave a good correlation (r=0.88) with total microscopic counts of somatic cells in raw milk. The FCM method also correlated strongly (r=0.98) with the standard Fossomatic method for somatic cell detection. We conclude that FCM, coupled with fluorescence staining techniques, offers potentially diverse and rapid approaches to biological safety and quality testing in the dairy industry. Potential application of flow cytometers to a broad range of assays for milk biological quality should make this instrumentation more attractive and cost effective to the dairy industry and indeed the broader food industry.

  17. Flow cytometry beads rather than the antihuman globulin method should be used to detect HLA Class I IgG antibody (PRA) in cadaveric renal regraft candidates.

    Science.gov (United States)

    Bryan, Christopher F; McDonald, Scott B; Baier, Karen A; Luger, Alan M; Aeder, Mark I; Murillo, Daniel; Muruve, Nicolas A; Nelson, Paul W; Shield, Charles F; Warady, Bradley A

    2002-01-01

    HLA Class I antibody screening can be performed by flow cytometry using a mixture of 30 distinct bead populations each coated with the Class I antigen phenotype derived from different cell lines. In this study we compared the efficacy of Class I antibody screens done by flow cytometry beads with the antihuman globulin (AHG) method for patients awaiting cadaveric renal retransplantation. Class I panel reactive antibody (PRA) screening by flow cytometric beads of 21 regraft serum samples that had all been found to be negative by AHG DTT Class I PRA, revealed that 57.1% (12 of 21) had a flow Class I PRA of > or = 10%. Furthermore, when five regraft sera with an intermediate PRA were screened (mean AHG DTT PRA = 33.2 +/- 13%) the mean flow Class I PRA almost doubled (mean flow PRA = 72.4 +/- 10.2%) (p PRA by flow beads, were divided into the three PRA categories based on their peak flow Class I PRA value (0-20%, 21-79% and > or = 80%), the incidence of a positive flow cross-match was 0%, 72% and 85% and the incidence of retransplantation was 60%, 22% and 10%, in each of these groups, respectively. These data provided our histocompatibility laboratory with the rationale to stop performing the AHG PRA and perform only the flow Class I PRA method for regraft candidates.

  18. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis.

    Directory of Open Access Journals (Sweden)

    Greg Finak

    2014-08-01

    Full Text Available Flow cytometry is used increasingly in clinical research for cancer, immunology and vaccines. Technological advances in cytometry instrumentation are increasing the size and dimensionality of data sets, posing a challenge for traditional data management and analysis. Automated analysis methods, despite a general consensus of their importance to the future of the field, have been slow to gain widespread adoption. Here we present OpenCyto, a new BioConductor infrastructure and data analysis framework designed to lower the barrier of entry to automated flow data analysis algorithms by addressing key areas that we believe have held back wider adoption of automated approaches. OpenCyto supports end-to-end data analysis that is robust and reproducible while generating results that are easy to interpret. We have improved the existing, widely used core BioConductor flow cytometry infrastructure by allowing analysis to scale in a memory efficient manner to the large flow data sets that arise in clinical trials, and integrating domain-specific knowledge as part of the pipeline through the hierarchical relationships among cell populations. Pipelines are defined through a text-based csv file, limiting the need to write data-specific code, and are data agnostic to simplify repetitive analysis for core facilities. We demonstrate how to analyze two large cytometry data sets: an intracellular cytokine staining (ICS data set from a published HIV vaccine trial focused on detecting rare, antigen-specific T-cell populations, where we identify a new subset of CD8 T-cells with a vaccine-regimen specific response that could not be identified through manual analysis, and a CyTOF T-cell phenotyping data set where a large staining panel and many cell populations are a challenge for traditional analysis. The substantial improvements to the core BioConductor flow cytometry packages give OpenCyto the potential for wide adoption. It can rapidly leverage new developments in

  19. Combining flow cytometry and 16S rRNA gene pyrosequencing: A promising approach for drinking water monitoring and characterization

    KAUST Repository

    Prest, Emmanuelle I E C

    2014-10-01

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5min intervals for 1h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345±15×103 to 425±35×103cellsmL-1) and in the percentage of intact bacterial cells (from 39±3.5% to 53±4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. © 2014 Elsevier Ltd.

  20. Opportunities and challenges in deriving phytoplankton diversity measures from individual trait-based data obtained by scanning flow-cytometry

    Directory of Open Access Journals (Sweden)

    Simone eFontana

    2014-07-01

    Full Text Available In the context of understanding and predicting the effects of human-induced environmental change (EC on biodiversity (BD, and the consequences of BD change for ecosystem functioning (EF, microbial ecologists face the challenge of linking individual level variability in functional traits to larger scale ecosystem processes. Since lower level BD at genetic, individual, and population levels largely determines the functionality and resilience of natural populations and communities, individual level measures promise to link EC-induced physiological, ecological and evolutionary responses to EF. Intraspecific trait differences, while representing among the least understood aspects of natural microbial communities, have recently become easier to measure due to new technology. For example, recent advance in scanning flow-cytometry (SCF, automation of phytoplankton sampling and integration with environmental sensors allow to measure morphological and physiological traits of individual algae with high spatial and temporal resolution. Here we present emerging features of automated SFC data from natural phytoplankton communities and the opportunities that they provide for understanding the functioning of complex aquatic microbial communities. We highlight some current limitations and future needs, particularly focusing on the large amount of individual level data that, for the purpose of understanding the EC-BD-EF link, need to be translated into meaningful BD indices. We review the available functional diversity indices that, despite having been designed for mean trait values at the species level, can be adapted to individual-based trait data and provide links to ecological theory. We conclude that, considering some computational, mathematical and ecological issues, a set of multi-dimensional indices that address richness, evenness and divergence in overall community trait space represent the most promising BD metrics to study EC-BD-EF using individual

  1. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  2. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Science.gov (United States)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.

  3. Flow cytometry-based methods for assessing soluble scFv activities and detecting pathogen antigens in solution

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Sean; Weigel, Kris M.; Miller, Keith D.; Ndung' u, Joseph; Buscher, Philippe; Tran, Thao N.; Baird, Cheryl L.; Cangelosi, Gerard A.

    2010-04-01

    Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. A limiting step in the isolation of scFv from nonimmune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeastdisplayed and secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of its ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv toidentify additional yeast-displayed scFv that bind nonoverlapping or noncompeting epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries.

  4. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  5. Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry

    Science.gov (United States)

    McKay, Bryon R; Toth, Kyle G; Tarnopolsky, Mark A; Parise, Gianni

    2010-01-01

    In humans, muscle satellite cell (SC) enumeration is an important measurement used to determine the myogenic response to various stimuli. To date, the standard practice for enumeration is immunohistochemistry (IHC) using antibodies against common SC markers (Pax7, NCAM). Flow cytometry (FC) analysis may provide a more rapid and quantitative determination of changes in the SC pool with potential for additional analysis not easily achievable with standard IHC. In this study, FC analysis revealed that the number of Pax7+ cells per milligram isolated from ∼50 mg of fresh tissue increased 36% 24 h after exercise-induced muscle injury (300 unilateral maximal eccentric contractions). IHC analysis of Pax7 and neural cell adhesion molecule (NCAM) appeared to sufficiently and similarly represent the expansion of SCs after injury (28–36% increase). IHC and FC data illustrated that Pax7 was the most widely expressed SC marker in muscle cross-sections and represented the majority of positive cells, while NCAM was expressed to a lesser degree. Moreover, FC and IHC demonstrated a similar percentage change 24 h after injury (36% increase, Pax7; 28% increase, NCAM). FC analysis of isolated SCs revealed that the number of Pax7+ cells per milligram in G2/M phase of the cell cycle increased 202% 24 h after injury. Number of cells per milligram in G0/G1 and cells in S-phase increased 32% and 59% respectively. Here we illustrate the use of FC as a method for enumerating SC number on a per milligram tissue basis, providing a more easily understandable relation to muscle mass (vs. percentage of myonuclei or per myofibre). Although IHC is a powerful tool for SC analysis, FC is a fast, reliable and effective method for SC quantification as well as a more informative method for cell cycle kinetics of the SC population in humans. PMID:20624792

  6. Basophil markers for identification and activation in the indirect basophil activation test by flow cytometry for diagnosis of autoimmune urticaria.

    Science.gov (United States)

    Kim, Zehwan; Choi, Bong Seok; Kim, Jong Kun; Won, Dong Il

    2016-01-01

    The indirect basophil activation test using flow cytometry is a promising tool for autoimmune urticaria diagnosis. We aimed to identify better donor basophils (from atopic vs. non-atopic donors and interleukin-3 primed vs. unprimed basophils) and improve basophil identification and activation markers (eotaxin CC chemokine receptor-3 [CCR3] vs. CD123 and CD63 vs. CD203c). Donor basophils were obtained from non-atopic and atopic group O donors. Positive control sera were artificially prepared to simulate autoimmune urticaria patients' sera. Patient sera were obtained from nine children with chronic urticaria. Assay sensitivity was compared among each variation by using positive control sera (n=21), applying cutoff values defined from negative control sera (n=20). For basophil identification, a combination of CCR3 and CD123 markers revealed a higher correlation with automated complete blood count (r=0.530) compared with that observed using CD123 (r=0.498) or CCR3 alone (r=0.195). Three activation markers on the atopic donor basophils attained 100% assay sensitivity: CD203c on unprimed basophils, CD63+CD203+ or CD63 alone on primed basophils; however, these markers on the non-atopic donor basophils attained lower assay sensitivity. For basophil identification markers, a combination of CD123 and CCR3 is recommended, while CD123 alone may be used as an alternative. Donor basophils should be obtained from an atopic donor. For basophil activation markers, either CD203c alone on unprimed basophils or CD203c and CD63 on primed basophils are recommended, while CD63 alone on primed basophils may be used as an alternative.

  7. Computer-aided detection of rare tumor populations in flow cytometry: an example with classic Hodgkin lymphoma.

    Science.gov (United States)

    Ng, David P; Wu, David; Wood, Brent L; Fromm, Jonathan R

    2015-09-01

    Diagnosing classical Hodgkin lymphoma (cHL) by flow cytometry (FC) relies on an observer gating rare populations of Hodgkin/Reed Sternberg (HRS) cells. Here, we apply machine-learning methods to aid in the detection of rare tumor cell populations using data derived from clinical FC analysis of cHL as a model disease. FC data from 144 clinical cases using a nine-color FC reagent panel were analyzed using Python 2.7 and the "scikit-learn" module. Seventy-eight 50 × 50 two-dimensional histograms were generated from routine FC data and a reciprocal power function applied to favor rare events. Data were classified by support vector machine (SVM), gradient boosting, and random forest classifiers. All three classifiers showed no statistical difference in performance, with 89%-92% accuracy on cross-validation. Nearly all classifiers misclassified the same set of cases, with more false-positive than false-negative cases. Dimensionality reduction by ensemble methods selected for data points in a CD5+/ CD40+/CD64- region. All classifiers provide probabilistic confidences for each result, and diagnostic cutoffs can be chosen to minimize false negatives and serve as a screening tool. Computational exclusion of manually gated HRS cells had little impact on the overall performance of selected support vectors in SVM or dimensionality reduction, suggesting that features of the immune response in cHL may dictate the method accuracy. We hypothesize there are distinct inflammatory cells that suggest cHL. Copyright© by the American Society for Clinical Pathology.

  8. Characterisation of a major phytoplankton bloom in the River Thames (UK) using flow cytometry and high performance liquid chromatography.

    Science.gov (United States)

    Moorhouse, H L; Read, D S; McGowan, S; Wagner, M; Roberts, C; Armstrong, L K; Nicholls, D J E; Wickham, H D; Hutchins, M G; Bowes, M J

    2018-05-15

    Recent river studies have observed rapid phytoplankton dynamics, driven by diurnal cycling and short-term responses to storm events, highlighting the need to adopt new high-frequency characterisation methods to understand these complex ecological systems. This study utilised two such analytical methods; pigment analysis by high performance liquid chromatography (HPLC) and cell counting by flow cytometry (FCM), alongside traditional chlorophyll spectrophotometry and light microscopy screening, to characterise the major phytoplankton bloom of 2015 in the River Thames, UK. All analytical techniques observed a rapid increase in chlorophyll a concentration and cell abundances from March to early June, caused primarily by a diatom bloom. Light microscopy identified a shift from pennate to centric diatoms during this period. The initial diatom bloom coincided with increased HPLC peridinin concentrations, indicating the presence of dinoflagellates which were likely to be consuming the diatom population. The diatom bloom declined rapidly in early June, coinciding with a storm event. There were low chlorophyll a concentrations (by both HPLC and spectrophotometric methods) throughout July and August, implying low biomass and phytoplankton activity. However, FCM revealed high abundances of pico-chlorophytes and cyanobacteria through July and August, showing that phytoplankton communities remain active and abundant throughout the summer period. In combination, these techniques are able to simultaneously characterise a wider range of phytoplankton groups, with greater certainty, and provide improved understanding of phytoplankton functioning (e.g. production of UV inhibiting pigments by cyanobacteria in response to high light levels) and ecological status (through examination of pigment degradation products). Combined HPLC and FCM analyses offer rapid and cost-effective characterisation of phytoplankton communities at appropriate timescales. This will allow a more-targeted use

  9. Characterization of Human Monocyte-derived Dendritic Cells by Imaging Flow Cytometry: A Comparison between Two Monocyte Isolation Protocols.

    Science.gov (United States)

    Figueroa, Gloria; Parira, Tiyash; Laverde, Alejandra; Casteleiro, Gianna; El-Mabhouh, Amal; Nair, Madhavan; Agudelo, Marisela

    2016-10-18

    Dendritic cells (DCs) are antigen presenting cells of the immune system that play a crucial role in lymphocyte responses, host defense mechanisms, and pathogenesis of inflammation. Isolation and study of DCs have been important in biological research because of their distinctive features. Although they are essential key mediators of the immune system, DCs are very rare in blood, accounting for approximately 0.1 - 1% of total blood mononuclear cells. Therefore, alternatives for isolation methods rely on the differentiation of DCs from monocytes isolated from peripheral blood mononuclear cells (PBMCs). The utilization of proper isolation techniques that combine simplicity, affordability, high purity, and high yield of cells is imperative to consider. In the current study, two distinct methods for the generation of DCs will be compared. Monocytes were selected by adherence or negatively enriched using magnetic separation procedure followed by differentiation into DCs with IL-4 and GM-CSF. Monocyte and MDDC viability, proliferation, and phenotype were assessed using viability dyes, MTT assay, and CD11c/ CD14 surface marker analysis by imaging flow cytometry. Although the magnetic separation method yielded a significant higher percentage of monocytes with higher proliferative capacity when compared to the adhesion method, the findings have demonstrated the ability of both techniques to simultaneously generate monocytes that are capable of proliferating and differentiating into viable CD11c+ MDDCs after seven days in culture. Both methods yielded > 70% CD11c+ MDDCs. Therefore, our results provide insights that contribute to the development of reliable methods for isolation and characterization of human DCs.

  10. Flow cytometry of nucleated red blood cells used as monitoring technique for aquatic risk assessment. A review.

    Directory of Open Access Journals (Sweden)

    Bratosin D.

    2016-05-01

    Full Text Available During the last decades anthropogenic factors led to a significant enhancement of pollutants in aquatic environment and for several years, chemicals analysis has been commonly employed. These techniques cannot detect and quantify many environmental phenomena such as bioavailability, bioaccumulation and synergistic effects. For these reasons, many investigations for evaluating the effects of xenobiotic on organisms use in vitro or in vivo bioassays. The bioassays give a global response for all chemicals present in the environment and these represent one of the best ways to estimate the risk assessment of pollutants in environment for monitoring. For assessing cytotoxicity or ecotoxicity of pollutants (heavy metals, nanoparticles, etc. and to assess aquatic pollution degree and biomonitoring of Danube River and Danube Delta, we developed a new experimental cell system based on the apoptosis of nucleated erythrocytes from fishes and batrachians which are directly exposed to pollutants absorbed by different ways. Despite their structural simplicity, the erythrocytes of lower vertebrates preserve nucleus and mitochondria, both the sensors of the programmed cell death (PCD machinery to develop an apoptosis phenomenon. Our proposed bioassays which are based on the apoptosis phenomenon as induced biomarker by pollutants on fish or amphibians erythrocytes, evidenced by flow cytometry (apoptosis/necrosis discriminated by FITC-annexin-V labeling/PI and cellular viability measured with calcein-AM method could be rapid and very sensitive tests for in laboratory aquatic risk assessment and biomonitoring. Standardization and application of these tests will surely provide the opportunity of their use easily in ecotoxicological laboratories, biomonitoring of large river basins such as the Danube River Basin and will be also able deliver information on fish as a food product.

  11. Stepwise discriminant function analysis for rapid identification of acute promyelocytic leukemia from acute myeloid leukemia with multiparameter flow cytometry.

    Science.gov (United States)

    Chen, Zhanguo; Li, Yan; Tong, Yongqing; Gao, Qingping; Mao, Xiaolu; Zhang, Wenjing; Xia, Zunen; Fu, Chaohong

    2016-03-01

    Diagnosis of acute promyelocytic leukemia (APL) has been accelerated by multiparameter flow cytometry (MFC). However, diagnostic interpretation of MFC readouts for APL depends on individual experience and knowledge, which inevitably increases the risk of arbitrariness. We appraised the feasibility of using stepwise discriminant function analysis (SDFA) based on MFC to optimize the minimal variables needed to distinguish APL from other acute myeloid leukemia (AML) without complicated data interpretation. Samples from 327 patients with APL (n = 51) and non-APL AML (n = 276) were randomly allocated into training (243 AML) and test sets (84 AML) for SDFA. The discriminant functions from SDFA were examined by correct classification, and the final variables were validated by differential expression. Finally, additional 20 samples from patients with atypical APL and AML confusable with APL were also identified by SDFA method and morphological analysis. The weighed discriminant function reveals seven differentially expressed variables (CD2/CD9/CD11b/CD13/CD34/HLA-DR/CD117), which predict a molecular result for APL characterization with an accuracy that approaches 99% (99.6 and 98.8% for AML samples in training and test sets, respectively). Furthermore, the SDFA outperformed either single variable analysis or the more limited 3-component analysis (CD34/CD117/HLA-DR) via separate SDFA, and was also superior to morphological analysis in terms of diagnostic efficacy. The established SDFA based on MFC with seven variables can precisely and rapidly differentiate APL and non-APL AML, which may contribute to the urgent initiation of all-trans-retinoic acid-based APL therapy.

  12. Cryopreservation of human whole blood allows immunophenotyping by flow cytometry up to 30days after cell isolation.

    Science.gov (United States)

    Paredes, R Madelaine; Tadaki, Douglas K; Sooter, Amanda; Gamboni, Fabia; Sheppard, Forest

    2018-01-01

    Immunophenotyping of whole blood (WB) by flow cytometry (FC) is used clinically to assess a patient's immune status and also in biomedical research. Current protocols recommend storage of immunolabeled samples at 4°C with FC analysis to be completed within seven days. This data acquisition window can be extended to up to one year post-labeling, but this requires cryopreservation of the samples at ultra-low temperatures (≤-80°C or in liquid nitrogen). In this study we optimized a standardized cryopreservation protocol to enable preservation of immunolabeled, human WB samples at -20°C for FC and tested its effectiveness after 0, 5, 15 or 30days. Analysis of stored samples shows that this protocol effectively preserves immunolabeled WB samples and that the duration of storage has no effect on morphology, viability or frequency of WB cell subpopulations, and that the intensity of fluorescent signal from labeled extracellular markers is fully preserved for at least 15days, and up to 30days for some markers. We demonstrate that using this protocol, we are able to differentiate resting versus activated WB cells as demonstrated by detection of significantly increased expression of CD11b by myeloid cells in WB samples pretreated with LPS (100μg/mL for 12h). Finally, we show that this method allows for labeling and detection of the intracellular cytokine (IL-8) up to 30days following cryopreservation from myeloid cells, in previously labeled and cryopreserved WB samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Flow cytometry for feline lymphoma: a retrospective study about pre-analytical factors possibly affecting the quality of samples

    Directory of Open Access Journals (Sweden)

    Serena Bernardi

    2017-05-01

    Full Text Available Introduction Flow cytometry (FC is an increasingly required technique on which veterinary oncologists rely to have an accurate, fast, minimally invasive lymphoma or leukemia diagnosis. FC has been studied and applied with great results in canine oncology, whereas in feline oncology the use of this technique is still to be experienced. This is mainly due to a supposed discomfort in sampling, because of the high prevalence of intra-abdominal lymphomas. The purpose of the present study is to investigate whether any pre-analytical factor might affect the quality of suspected feline lymphoma samples for FC analysis. Methods 97 consecutive samples of suspected feline lymphoma were retrospectively selected from the authors’ institution FC database. The referring veterinarians were recalled and interrogated about several different variables, including signalling, features of the lesion, features of the sampling procedure and the experience of veterinarians performing the sampling. Statistical analyses were performed to assess the possible influence of these variables on the cellularity of the samples and the likelihood of being finally processed for FC. Results None of the investigated variables significantly influenced the quality of the submitted samples, but the needle size, with 21G needles providing the highest cellularity (Table 1. Notably, the samples quality did not vary between peripheral and intra-abdominal lesions. Sample cellularity alone influenced the likelihood of being processed. About a half of the cats required pharmacological restraint. Side effects were reported in one case only (transient swelling after peripheral lymph node sampling. Conclusions FC can be safely applied to cases of suspected feline lymphomas, even for intra-abdominal lesions. 21G needle should be preferred for sampling. This study provides the bases for the spread of this minimally invasive, fast and cost-effective technique in feline medicine.

  14. Precision and linearity targets for validation of an IFNγ ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides

    Directory of Open Access Journals (Sweden)

    Lyerly Herbert K

    2008-03-01

    Full Text Available Abstract Background Single-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials. Standardization and validation of such assays are therefore important to interpretation of the clinical trial data. Here we assess the levels of intra-assay, inter-assay, and inter-operator precision, as well as linearity, of CD8+ T cell IFNγ-based ELISPOT and cytokine flow cytometry (CFC, as well as tetramer assays. Results Precision was measured in cryopreserved PBMC with a low, medium, or high response level to a CMV pp65 peptide or peptide mixture. Intra-assay precision was assessed using 6 replicates per assay; inter-assay precision was assessed by performing 8 assays on different days; and inter-operator precision was assessed using 3 different operators working on the same day. Percent CV values ranged from 4% to 133% depending upon the assay and response level. Linearity was measured by diluting PBMC from a high responder into PBMC from a non-responder, and yielded R2 values from 0.85 to 0.99 depending upon the assay and antigen. Conclusion These data provide target values for precision and linearity of single-cell assays for those wishing to validate these assays in their own laboratories. They also allow for comparison of the precision and linearity of ELISPOT, CFC, and tetramer across a range of response levels. There was a trend toward tetramer assays showing the highest precision, followed closely by CFC, and then ELISPOT; while all three assays had similar linearity. These findings are contingent upon the use of optimized protocols for each assay.

  15. Ethylene production and petiole growth in rumex plants induced by soil waterlogging: the application of a continuous flow system and a laser driven intracavity photoacoustic detection system.

    Science.gov (United States)

    Voesenek, L A; Harren, F J; Bögemann, G M; Blom, C W; Reuss, J

    1990-11-01

    Petiole growth of Rumex acetosa L., Rumex crispus L., and Rumex palustris Sm. in response to soil waterlogging was studied in relation to production of the gaseous plant hormone ethylene. Ethylene production was monitored in a flow-through system and a recently developed laser driven photoacoustic detection system, which allowed ethylene measurements as low as 6 picoliters per liter. R. acetosa showed a two-fold increase in ethylene production correlated with a slight enhancement of the growth of the petiole that developed during the waterlogging treatment. Both R. crispus and R. palustris showed a strong petiole elongation of existing as well as newly formed petioles, which was correlated with a 20-fold increase in ethylene production after approximately 7 days. Increased rates of ethylene production in R. palustris were related to a strong increase in 1-aminocyclopropane-1-carboxylic acid (ACC) concentration and a slight, but detectable, increase in ethylene forming enzyme activity. In R. acetosa on the other hand, only a very small increase in ACC concentration was observed. Changes in ethylene production in Rumex are strongly correlated with variation in ACC content and ethylene forming enzyme activity. The interaction between ethylene production/internal concentration and ethylene sensitivity of the three Rumex species is discussed in relation to their field location in a flooding gradient and their differential resistance toward waterlogging and submergence.

  16. Detection of the GD2+/CD56+/CD45- immunophenotype by flow cytometry in cerebrospinal fluids from a patient with retinoblastoma.

    Science.gov (United States)

    Shen, Hongqiang; Tang, Yongmin; Xu, Xiaojun; Tang, Hongfeng

    2013-02-01

    Triple-color flow cytometry with a panel of antibodies comprising GD2, CD56, and CD45 was performed to analyze cerebrospinal fluids (CSF) from a patient with retinoblastoma who was suspicious of meningeal metastasis based on clinical presentation. Our results showed that the cells in CSF demonstrated the immunophenotype positive for GD2 and CD56 but negative for CD45 antigen, which suggested the presence of CSF metastasis of retinoblastoma. At the end of eight cycles of intrathecal chemotherapy, CSF specimen was analyzed with Flow cytometry immunophenotyping (FCI) again and the result showed no detectable malignant cells with the same immunophenotype. Our conclusion is that FCI can be a quick and reliable method for the diagnosis of CSF metastasis of retinoblastoma and the immunophenotype (GD2+, CD56+, and CD45-) can be used to recognize residual retinoblastoma cells in CSF.

  17. Using multi-parameter flow cytometry to monitor the yeast Rhodotorula glutinis CCMI 145 batch growth and oil production towards biodiesel.

    Science.gov (United States)

    da Silva, Teresa Lopes; Feijão, Daniela; Reis, Alberto

    2010-12-01

    Multi-parameter flow cytometry was used to monitor cell intrinsic light scatter, viability, and lipid content of Rhodotorula glutinis CCMI 145 cells grown in shake flasks. Changes in the side light scatter and forward light scatter were detected during the yeast batch growth, which were attributed to the different yeast growth phases. A progressive increase in the proportion of cells stained with PI (cells with permeabilized cytoplasmic membrane) was observed during the yeast growth, attaining 79% at the end of the fermentation. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional gravimetric lipid analysis was found for this yeast, making this method a suitable and quick technique for the screening of yeast strains for lipid production and optimization of biofuel production bioprocesses. Medium growth optimization for enhancement of the yeast oil production is now in progress.

  18. Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression.

    Science.gov (United States)

    Hooker, Lara N; Smoczer, Cristine; Abbott, Samuel; Fakhereddin, Mohamad; Hudson, John W; Crawford, Michael J

    2017-09-01

    Pitx3 plays a well understood role in directing development of lens, muscle fiber, and dopaminergic neurons; however, in Xenopus laevis, it may also play a role in early gastrulation and somitogenesis. Potential downstream targets of pitx3 possess multiple binding motifs that would not be readily accessible by conventional promoter analysis. We isolated and characterized pitx3 target genes lhx1 and xnr5 using a novel three-fluor flow cytometry tool that was designed to dissect promoters with multiple binding sites for the same transcription factor. This approach was calibrated using a known pitx3 target gene, Tyrosine hydroxylase. We demonstrate how flow cytometry can be used to detect gene regulatory changes with exquisite precision on a cell-by-cell basis, and establish that in HEK293 cells, pitx3 directly activates lhx1 and represses xnr5. Developmental Dynamics 246:657-669, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Evaluation of chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effects of Aloysia citrodora extract on colon cancer cell line using Real Time PCR and Flow-cytometry methods

    OpenAIRE

    Amir Mirzaie; Seyed Ataollah Sadat Shandiz; Hassan Noorbazargan; Elahe Ali Asgary

    2016-01-01

    Background and aims: Aloysia citrodora belongs to the Verbenaceae family of plants, a well-known herbal medicine in Iran. The aim of the present study was to investigate the chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effect of A. citrodora extract against human colon cancer using real time PCR and flow cytometry methods. Materials and Methods: this experimental study was carried out in Islamic Azad University, East Tehran Branch, from March to September of 2...

  20. Application of flow cytometry to determine differential redistribution of cytochrome c and Smac/DIABLO from mitochondria during cell death signaling.

    Science.gov (United States)

    Ng, Heling; Smith, Danielle J; Nagley, Phillip

    2012-01-01

    Mitochondrially mediated apoptosis is characterized by redistribution of proteins from mitochondria to cytoplasm following permeabilization of the outer mitochondrial membrane. We applied flow cytometry to quantify simultaneously the redistribution of two apoptogenic proteins, cytochrome c (cyt c) and Smac/DIABLO (Smac). Mammalian cells were treated with digitonin that selectively permeabilizes the plasma membrane. Following fixation, treated cells were infused successively with primary and secondary antibodies (the latter fluorescently tagged) enabling independent detection of cyt c and Smac. Digitonin-treated cells that retain cyt c or Smac in mitochondria generate strong fluorescence signals in flow cytometry. Cells in which cyt c or Smac have transited the outer mitochondrial membrane show greatly reduced fluorescence because the proteins are lost from the digitonin-permeabilized cells. Quantitative flow cytometry revealed that in 143B TK(-) cells treated with staurosporine, cyt c and Smac exit mitochondria asymmetrically, with cyt c redistribution preceding that of Smac. However, in HeLa cells likewise treated, cyt c and Smac exit mitochondria concurrently. Under other conditions of apoptotic induction, for example, 143B TK(-) cells treated with MT-21 (an apoptotic inducer that binds to the mitochondrial adenine nucleotide transporter), redistribution of Smac precedes that of cyt c. The various patterns of redistribution of these proteins were confirmed by immunocytochemical analysis and confocal microscopy. We conclude that flow cytometry can be employed effectively to quantify simultaneously the redistribution of cyt c and Smac from mitochondria to the cytosol. Moreover, differential redistribution of cyt c and Smac occurs under various conditions, thereby reflecting constraints on availability of these proteins to exit mitochondria after permeabilization of the outer membrane.

  1. Application of flow cytometry to determine differential redistribution of cytochrome c and Smac/DIABLO from mitochondria during cell death signaling.

    Directory of Open Access Journals (Sweden)

    Heling Ng

    Full Text Available Mitochondrially mediated apoptosis is characterized by redistribution of proteins from mitochondria to cytoplasm following permeabilization of the outer mitochondrial membrane. We applied flow cytometry to quantify simultaneously the redistribution of two apoptogenic proteins, cytochrome c (cyt c and Smac/DIABLO (Smac. Mammalian cells were treated with digitonin that selectively permeabilizes the plasma membrane. Following fixation, treated cells were infused successively with primary and secondary antibodies (the latter fluorescently tagged enabling independent detection of cyt c and Smac. Digitonin-treated cells that retain cyt c or Smac in mitochondria generate strong fluorescence signals in flow cytometry. Cells in which cyt c or Smac have transited the outer mitochondrial membrane show greatly reduced fluorescence because the proteins are lost from the digitonin-permeabilized cells. Quantitative flow cytometry revealed that in 143B TK(- cells treated with staurosporine, cyt c and Smac exit mitochondria asymmetrically, with cyt c redistribution preceding that of Smac. However, in HeLa cells likewise treated, cyt c and Smac exit mitochondria concurrently. Under other conditions of apoptotic induction, for example, 143B TK(- cells treated with MT-21 (an apoptotic inducer that binds to the mitochondrial adenine nucleotide transporter, redistribution of Smac precedes that of cyt c. The various patterns of redistribution of these proteins were confirmed by immunocytochemical analysis and confocal microscopy. We conclude that flow cytometry can be employed effectively to quantify simultaneously the redistribution of cyt c and Smac from mitochondria to the cytosol. Moreover, differential redistribution of cyt c and Smac occurs under various conditions, thereby reflecting constraints on availability of these proteins to exit mitochondria after permeabilization of the outer membrane.

  2. Microfluidics and photonics for Bio-System-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip.

    Science.gov (United States)

    Godin, Jessica; Chen, Chun-Hao; Cho, Sung Hwan; Qiao, Wen; Tsai, Frank; Lo, Yu-Hwa

    2008-10-01

    Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.

  3. Application of the flow cytometry for determination of the amount of DNA in Yersinia pestis cells under the influence of serotonin (5-hydroxytryptamine)

    Science.gov (United States)

    Korsukov, Vladimir N.; Shchukovskaya, Tatyana N.; Kravtsov, Alexander L.; Popov, Youri A.

    2002-07-01

    Using flow cytometry a low DNA content in inoculated Yersinia pestis EV cells have been shown at the beginning of culture in Hottinger broth pH 7.2. The dependence serotonin action of its concentration on DNA content have been demonstrated. Serotonin accelerated Yersinia pestis culture growth during cultivation in Hottinger broth pH 7.2 both at 28 degrees C and 37 degrees C at concentration of 10-5 M.

  4. Distinction between Asymptomatic Monoclonal B-cell Lymphocytosis with Cyclin D1 Overexpression and Mantle Cell Lymphoma: From Molecular Profiling to Flow Cytometry

    Science.gov (United States)

    Espinet, Blanca; Ferrer, Ana; Bellosillo, Beatriz; Nonell, Lara; Salar, Antonio; Fernández-Rodríguez, Concepción; Puigdecanet, Eulàlia; Gimeno, Javier; Garcia-Garcia, Mar; Carmen Vela, Maria; Luño, Elisa; Collado, Rosa; Navarro, José Tomás; de la Banda, Esmeralda; Abrisqueta, Pau; Arenillas, Leonor; Serrano, Cristina; Lloreta, Josep; Miñana, Belén; Cerutti, Andrea; Florensa, Lourdes; Orfao, Alberto; Sanz, Ferran; Solé, Francesc; Dominguez-Sola, David; Serrano, Sergio

    2015-01-01

    Purpose According to current diagnostic criteria, mantle cell lymphoma (MCL) encompasses the usual, aggressive variants and rare, nonnodal cases with monoclonal asymptomatic lymphocytosis, cyclin D1–positive (MALD1). We aimed to understand the biology behind this clinical heterogeneity and to identify markers for adequate identification of MALD1 cases. Experimental Design We compared 17 typical MCL cases with a homogeneous group of 13 untreated MALD1 cases (median follow-up, 71 months). We conducted gene expression profiling with functional analysis in five MCL and five MALD1. Results were validated in 12 MCL and 8 MALD1 additional cases by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in 24 MCL and 13 MALD1 cases by flow cytometry. Classification and regression trees strategy was used to generate an algorithm based on CD38 and CD200 expression by flow cytometry. Results We found 171 differentially expressed genes with enrichment of neoplastic behavior and cell proliferation signatures in MCL. Conversely, MALD1 was enriched in gene sets related to immune activation and inflammatory responses. CD38 and CD200 were differentially expressed between MCL and MALD1 and confirmed by flow cytometry (median CD38, 89% vs. 14%; median CD200, 0% vs. 24%, respectively). Assessment of both proteins allowed classifying 85% (11 of 13) of MALD1 cases whereas 15% remained unclassified. SOX11 expression by qRT-PCR was significantly different between MCL and MALD1 groups but did not improve the classification. Conclusion We show for the first time that MALD1, in contrast to MCL, is characterized by immune activation and driven by inflammatory cues. Assessment of CD38/CD200 by flow cytometry is useful to distinguish most cases of MALD1 from MCL in the clinical setting. MALD1 should be identified and segregated from the current MCL category to avoid overdiagnosis and unnecessary treatment. PMID:24352646

  5. The effect of oxLDL on microvesicle release from platelets, measured by a sensitive flow cytometry method.

    Directory of Open Access Journals (Sweden)

    Tine Bo Nielsen

    2015-11-01

    by flow cytometry.

  6. Flow cytometry data analysis of CD34+/CD133+ stem cells in bone marrow and peripheral blood and T, B, and NK cells after hematopoietic grafting

    Directory of Open Access Journals (Sweden)

    José C. Jaime-Pérez

    2016-06-01

    Full Text Available This article provides flow cytometry information regarding levels of expression for hematopoietic stem cell markers CD34 and CD133 obtained simultaneously of the bone marrow and peripheral blood from recipients of allogeneic and autologous transplants of PB hematoprogenitors for treating hematological malignancies and who were clinically healthy after ≥100 days following the procedure. CD34 and CD133 expression is compared regarding type of transplant (autologous vs. allogeneic and sample cell source (bone marrow vs. peripheral blood. Patients were conditioned with a reduced-intensity conditioning regimen. Also shown is the flow cytometry analysis of mononuclear cell and lymphocyte populations in the peripheral blood of both types of recipients, as well as the characterization of immune cells, including T lymphocyte antigenic make up markers CD3, CD4 and CD8, B lymphocytes and NK cells, including total NK, bright and dim subtypes in the peripheral blood of both types of recipients. For further information and discussion regarding interpretation and meaning of post-transplant flow cytometry analysis, please refer to the article “Assessment of immune reconstitution status in recipients of a successful hematopoietic stem cell transplant from peripheral blood after reduced intensity conditioning” [1].

  7. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels

    International Nuclear Information System (INIS)

    Duan, Nuo; Wu, Shijia; Yu, Ye; Ma, Xiaoyuan; Xia, Yu; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2013-01-01

    Graphical abstract: -- Highlights: •Two bacteria were simultaneously detected using QD-apt as labels by flow cytometry. •QD-apt were used for recognition and fluorescence detection of two bacteria. •The method was applied successfully for bacteria detection in real samples. -- Abstract: A sensitive, specific method for the collection and detection of pathogenic bacteria was demonstrated using quantum dots (QDs) as a fluorescence marker coupled with aptamers as the molecular recognition element by flow cytometry. The aptamer sequences were selected using a bacterium-based SELEX strategy in our laboratory for Vibrio parahaemolyticus and Salmonella typhimurium that, when applied in this method, allows for the specific recognition of the bacteria from complex mixtures including shrimp samples. Aptamer-modified QDs (QD-apt) were employed to selectively capture and simultaneously detect the target bacteria with high sensitivity using the fluorescence of the labeled QDs. The signal intensity is amplified due to the high photostability of QDs nanoparticles, resulting in improved sensitivity over methods using individual dye-labeled probes. This proposed method is promising for the sensitive detection of other pathogenic bacteria in food stuff if suitable aptamers are chosen. The method may also provide another potential platform for the application of aptamer-conjugated QDs in flow cytometry

  8. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Nuo; Wu, Shijia [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Yu, Ye [Zhangjiagang Entry-Exit Inspection and Quarantine Bureau, Zhangjiangang 215600 (China); Ma, Xiaoyuan; Xia, Yu; Chen, Xiujuan; Huang, Yukun [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang, Zhouping, E-mail: wangzp@jiangnan.edu.cn [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China)

    2013-12-04

    Graphical abstract: -- Highlights: •Two bacteria were simultaneously detected using QD-apt as labels by flow cytometry. •QD-apt were used for recognition and fluorescence detection of two bacteria. •The method was applied successfully for bacteria detection in real samples. -- Abstract: A sensitive, specific method for the collection and detection of pathogenic bacteria was demonstrated using quantum dots (QDs) as a fluorescence marker coupled with aptamers as the molecular recognition element by flow cytometry. The aptamer sequences were selected using a bacterium-based SELEX strategy in our laboratory for Vibrio parahaemolyticus and Salmonella typhimurium that, when applied in this method, allows for the specific recognition of the bacteria from complex mixtures including shrimp samples. Aptamer-modified QDs (QD-apt) were employed to selectively capture and simultaneously detect the target bacteria with high sensitivity using the fluorescence of the labeled QDs. The signal intensity is amplified due to the high photostability of QDs nanoparticles, resulting in improved sensitivity over methods using individual dye-labeled probes. This proposed method is promising for the sensitive detection of other pathogenic bacteria in food stuff if suitable aptamers are chosen. The method may also provide another potential platform for the application of aptamer-conjugated QDs in flow cytometry.

  9. Population analysis of a commercial Saccharomyces cerevisiae wine yeast in a batch culture by electric particle analysis, light diffraction and flow cytometry.

    Science.gov (United States)

    Portell, Xavier; Ginovart, Marta; Carbo, Rosa; Gras, Anna; Vives-Rego, Josep

    2011-02-01

    Data from electric particle analysis, light diffraction and flow cytometry analysis provide information on changes in cell morphology. Here, we report analyses of Saccharomyces cerevisiae populations growing in a batch culture using these techniques. The size distributions were determined by electric particle analysis and by light diffraction in order to compare their outcomes. Flow cytometry parameters forward (related to cell size) and side (related to cell granularity) scatter were also determined to complement this information. These distributions of yeast properties were analysed statistically and by a complexity index. The cell size of Saccharomyces at the lag phase was smaller than that at the beginning of the exponential phase, whereas during the stationary phase, the cell size converged with the values observed during the lag phase. These experimental techniques, when used together, allow us to distinguish among and characterize the cell size, cell granularity and the structure of the yeast population through the three growth phases. Flow cytometry patterns are better than light diffraction and electric particle analysis in showing the existence of subpopulations during the different phases, especially during the stationary phase. The use of a complexity index in this context helped to differentiate these phases and confirmed the yeast cell heterogeneity. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods.

    Science.gov (United States)

    Fraga, María; Vilariño, Natalia; Louzao, M Carmen; Fernández, Diego A; Poli, Mark; Botana, Luis M

    2016-01-15

    Palytoxin (PLTX) is a complex marine toxin produced by zoanthids (i.e. Palythoa), dinoflagellates (Ostreopsis) and cyanobacteria (Trichodesmium). PLTX outbreaks are usually associated with Indo-Pacific waters, however their recent repeated occurrence in Mediterranean-European Atlantic coasts demonstrate their current worldwide distribution. Human sickness and fatalities have been associated with toxic algal blooms and ingestion of seafood contaminated with PLTX-like molecules. These toxins represent a serious threat to human health. There is an immediate need to develop easy-to-use, rapid detection methods due to the lack of validated protocols for their detection and quantification. We have developed an immuno-detection method for PLTX-like molecules based on the use of microspheres coupled to flow-cytometry detection (Luminex 200™). The assay consisted of the competition between free PLTX-like compounds in solution and PLTX immobilized on the surface of microspheres for binding to a specific monoclonal anti-PLTX antibody. This method displays an IC50 of 1.83 ± 0.21 nM and a dynamic range of 0.47-6.54 nM for PLTX. An easy-to-perform extraction protocol, based on a mixture of methanol and acetate buffer, was applied to spiked mussel samples providing a recovery rate of 104 ± 8% and a range of detection from 374 ± 81 to 4430 ± 150 μg kg(-1) when assayed with this method. Extracts of Ostreopsis cf. siamensis and Palythoa tuberculosa were tested and yielded positive results for PLTX-like molecules. However, the data obtained for the coral sample suggested that this antibody did not detect 42-OH-PLTX efficiently. The same samples were further analyzed using a neuroblastoma cytotoxicity assay and UPLC-IT-TOF spectrometry, which also pointed to the presence of PLTX-like compounds. Therefore, this single detection method for PLTX provides a semi-quantitative tool useful for the screening of PLTX-like molecules in different matrixes. Copyright © 2015

  11. [The preparation and evaluation of the quality control materials for detection of platelet membrane glycoproteins by flow cytometry].

    Science.gov (United States)

    Liu, Y Q; Gong, Y; Qu, C X; You, R; Li, L P; Xing, L S; Wang, J Z

    2017-04-11

    Objective: To prepare the quality control material for detection of platelet membrane glycoproteins by flowcytometry and evaluate the appearance traits, homogeneity and stability of it. Methods: Fresh platelets from the blood group O donors were fixed by the certain concentration of aldehyde solution and then washed by the imidazole buffer. After that, adding certain concentration of lyophilized protection solution into the preparations. The preparations were dispensed to be lyophilized and then were kept refrigerated in 2-8 ℃.According to the protocol of control of lyophilized biological products, the quality indicator for monitoring the prepared process, containing the appearance traits, the residual water, the platelet recovery and the rehydration quality were evaluated. The homogeneity and stability of these preparations were evaluated according to the CNAS-GL03 Guidance on evaluating the homogeneity and stability of samples used for proficiency testing and the ISO Guide 35 Reference material - general and statistical principles for certification . Results: The appearance traits and the rehydration quality of the quality control materials meeted the requirements, with the residual water distributed between 3.96% to 4.04% and the platelet recovery rate ranged from 68% to 72%.The homogeneity evaluation showed that there was no significant difference among the groups( P >0.05). The stability test indicated that the positive rate of platelet membrane glycoproteins CD42b, CD41 and CD62P of the quality control material was -0.14%, -0.14% and 0.74%, respectively, at 16 weeks after storage. There was no linear trend between the percentage of positive platelets with membrane glycoproteins and time( P >0.05). Conclusions: The quality control material for detection of platelet membrane glycoproteins by flow cytometry prepared by us meets the needs of the appearance traits, the residual water, the rehydration quality, the homogeneity and the longtime stability.It is

  12. A novel immunofluorescence flow cytometry technique detects the expansion of brown tides caused by Aureoumbra lagunensis to the Caribbean Sea.

    Science.gov (United States)

    Koch, F; Kang, Y; Villareal, T A; Anderson, D M; Gobler, C J

    2014-08-01

    During the past 3 decades, brown tides caused by the pelagophytes Aureococcus anophagefferens and Aureoumbra lagunensis have caused ecological and economic damage to coastal ecosystems across the globe. While blooms of A. lagunensis had previously been confined to Texas, in 2012, an expansive brown tide occurred on Florida's East Coast, causing widespread disruption within the Indian River and Mosquito Lagoons and generating renewed interest in this organism. A major impediment to detailed investigations of A. lagunensis in an ecosystem setting has been the absence of a rapid and reliable method for cell quantification. The combination of their small size (3 to 5 μm) and nondescript extracellular features makes identification and enumeration of these cells with conventional methods a challenge. Here we report the development of an immunological-based flow cytometry method that uses a fluorescently labeled antibody developed against A. lagunensis. This method is species specific, sensitive (detection limit of 1.5 × 10(3) cells ml(-1)), precise (1% relative standard deviation of replicated samples), and accurate (108% ± 8% recovery of spiked samples) over a wide range of cell concentrations. Furthermore, this method effectively quantifies A. lagunensis in both glutaraldehyde- and formalin-preserved samples, yields a high throughput of samples (∼35 samples h(-1)), and is cost-effective, making it an ideal tool for managers and scientists. This method successfully documented the recurrence of a brown tide bloom in Florida in 2013. Bloom densities were highest in June (>2.0 × 10(6) cells ml(-1)) and spanned >60 km from the Ponce de Leon inlet in the northern Mosquito Lagoon south to Titusville in the Indian River Lagoon. Low levels of A. lagunensis cells were found >250 km south of this region. This method also quickly and accurately identified A. lagunensis as the causative agent of a 2013 brown tide bloom in Guantanamo Bay, Cuba, and thus should prove useful for

  13. Flow cytometry-assisted cloning of specific sequence motifs from complex 16S rRNA gene libraries

    DEFF Research Database (Denmark)

    Nielsen, J. L.; Schramm, A.; Engh, G. van den

    2004-01-01

    A How cytometry method was developed for rapid screening and recovery of cloned DNA containing common sequence motifs. This approach, termed fluorescence-activated cell sorting-assisted cloning, was used to recover sequences affiliated with a unique lineage within the Bacteroidetes not abundant i...... in a clone library of environmental 16S rRNA genes....

  14. Transfer of Genomics Information to Flow Cytometry: Expression of CD27 and CD44 Discriminates Subtypes of Acute Lymphoblastic Leukemia

    Czech Academy of Sciences Publication Activity Database

    Vášková, M.; Mejstříková, E.; Kalina, T.; Martinková, Patrícia; Omelka, M.; Trka, J.; Starý, J.; Hrušák, O.

    2005-01-01

    Roč. 19, č. 5 (2005), s. 876-878 ISSN 0887-6924 Source of funding: V - iné verejné zdroje Keywords : transfer * genomics * information * cytometry * expression * discriminates * subtypesacute * lymphoblastic * leukemia Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 6.612, year: 2005

  15. DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.

    Science.gov (United States)

    Lee, Alexandra J; Chang, Ivan; Burel, Julie G; Lindestam Arlehamn, Cecilia S; Mandava, Aishwarya; Weiskopf, Daniela; Peters, Bjoern; Sette, Alessandro; Scheuermann, Richard H; Qian, Yu

    2018-04-17

    Computational methods for identification of cell populations from polychromatic flow cytometry data are changing the paradigm of cytometry bioinformatics. Data clustering is the most common computational approach to unsupervised identification of cell populations from multidimensional cytometry data. However, interpretation of the identified data clusters is labor-intensive. Certain types of user-defined cell populations are also difficult to identify by fully automated data clustering analysis. Both are roadblocks before a cytometry lab can adopt the data clustering approach for cell population identification in routine use. We found that combining recursive data filtering and clustering with constraints converted from the user manual gating strategy can effectively address these two issues. We named this new approach DAFi: Directed Automated Filtering and Identification of cell populations. Design of DAFi preserves the data-driven characteristics of unsupervised clustering for identifying novel cell subsets, but also makes the results interpretable to experimental scientists through mapping and merging the multidimensional data clusters into the user-defined two-dimensional gating hierarchy. The recursive data filtering process in DAFi helped identify small data clusters which are otherwise difficult to resolve by a single run of the data clustering method due to the statistical interference of the irrelevant major clusters. Our experiment results showed that the proportions of the cell populations identified by DAFi, while being consistent with those by expert centralized manual gating, have smaller technical variances across samples than those from individual manual gating analysis and the nonrecursive data clustering analysis. Compared with manual gating segregation, DAFi-identified cell populations avoided the abrupt cut-offs on the boundaries. DAFi has been implemented to be used with multiple data clustering methods including K-means, FLOCK, FlowSOM, and

  16. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe.

    Science.gov (United States)

    Xue, Yong; Wilkes, Jon G; Moskal, Ted J; Williams, Anna J; Cooper, Willie M; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.

  17. Prognostic relevance of DNA flow cytometry in breast cancer revisited: The 25-year experience of the Portuguese Institute of Oncology of Lisbon

    Science.gov (United States)

    Pinto, António E.; Pereira, Teresa; Silva, Giovani L.; André, Saudade

    2017-01-01

    The potential prognostic significance of DNA flow cytometric measurements (DNA ploidy and S-phase fraction) in breast cancer remains in dispute. Inconclusive data, primarily due to the lack of consistent standardization and quality control programs, have limited its translation into clinical practice. The aim of the present review, based on the 25-year experience of the Portuguese Institute of Oncology of Lisbon, is to assess the clinical relevance and application of DNA flow cytometry for the prognosis of breast cancer. Overall, data from Portuguese Institute of Oncology of Lisbon indicate that DNA flow cytometry provides significant prognostic information that is biologically relevant and clinically useful for the management of patients with breast cancer. Furthermore, this data has demonstrated the independent value of DNA aneuploidy as a prognostic indicator of poor clinical outcome in various subgroups of patients with early or locally advanced breast cancer at short- and long-term follow-up. Notably, aneuploidy identifies subsets of patients with grade (G)1 or G2 tumours who exhibit a poor clinical outcome. These patients may benefit from adjuvant chemotherapy, particularly those with luminal A and luminal B/human epidermal growth factor-2-negative endocrine-responsive breast cancer. In conclusion, data from Portuguese Institute of Oncology of Lisbon reinforces the clinical importance and utility of DNA flow cytometric analysis, particularly DNA ploidy, in the prognostic assessment and therapeutic planning for patients with breast cancer. PMID:28454358

  18. A flow cytometry-based method for a high-throughput analysis of drug-stabilized topoisomerase II cleavage complexes in human cells.

    Science.gov (United States)

    de Campos-Nebel, Marcelo; Palmitelli, Micaela; González-Cid, Marcela

    2016-09-01

    Topoisomerase II (Top2) is an important target for anticancer therapy. A variety of drugs that poison Top2, including several epipodophyllotoxins, anthracyclines, and anthracenediones, are widely used in the clinic for both hematologic and solid tumors. The poisoning of Top2 involves the formation of a reaction intermediate Top2-DNA, termed Top2 cleavage complex (Top2cc), which is persistent in the presence of the drug and involves a 5' end of DNA covalently bound to a tyrosine from the enzyme through a phosphodiester group. Drug-induced Top2cc leads to Top2 linked-DNA breaks which are the major responsible for their cytotoxicity. While biochemical detection is very laborious, quantification of drug-induced Top2cc by immunofluorescence-based microscopy techniques is time consuming and requires extensive image segmentation for the analysis of a small population of cells. Here, we developed a flow cytometry-based method for the analysis of drug-induced Top2cc. This method allows a rapid analysis of a high number of cells in their cell cycle phase context. Moreover, it can be applied to almost any human cell type, including clinical samples. The methodology is useful for a high-throughput analysis of drugs that poison Top2, allowing not just the discrimination of the Top2 isoform that is targeted but also to track its removal. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  19. Unilateral uveitis masquerade syndrome caused by diffuse large B-cell lymphoma diagnosed using multiparametric flow cytometry of the aqueous humor.

    Science.gov (United States)

    Monsalvo, Silvia; Serrano, Cristina; Prieto, Elena; Fernández-Sanz, Guillermo; Puente, Maria-Camino; Rodriguez-Pinilla, Maria; Garcia Raso, Aranzazu; Llamas, Pilar; Cordoba, Raul

    2017-07-01

    The uveitis masquerade syndromes (UMS) are a group of ocular diseases that may mimic chronic intraocular inflammation. Many malignant entities such as non-Hodgkin's lymphomas may masquerade as uveitis. We report a case of an HIV-positive patient with masquerade syndrome presenting unilateral uveitis. 45-year-old Caucasian man with a diagnosis of diffuse large B-cell lymphoma (DLBCL). The patient was diagnosed by a biopsy of an abdominal mass which showed fragments of gastric mucosa with diffuse growth of neoplastic cells. At diagnosis, the patient suffered from unilateral blurring of vision and a sudden decrease of left-eye visual acuity. A slit-lamp examination of the left eye revealed a diagnosis of anterior uveitis. The patient exhibited no signs of posterior uveitis. An anterior-chamber paracentesis was performed and analyzed by multiparameter flow cytometry (MFC), showing cells CD45, CD19, CD20, CD22, and CD38 positives, and moderate expression of CD10 with kappa light chain restriction, showing a monoclonal B-cell population. The patient received CHOP-R with intrathecal methotrexate followed by consolidation high dose methotrexate obtaining a complete response which is ongoing. Differential diagnosis between chronic uveitis and ocular lymphoma may be challenging. We advocate anterior-chamber paracentesis in cases of refractory uveitis in patients with hematologic malignancies. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  20. Flow cytometry analysis of single-strand DNA damage in neuroblastoma cell lines using the F7-26 monoclonal antibody.

    Science.gov (United States)

    Grigoryan, Rita S; Yang, Bo; Keshelava, Nino; Barnhart, Jerry R; Reynolds, C Patrick

    2007-11-01

    The F7-26 monoclonal antibody (Mab) has been reported to be specific for single-strand DNA damage (ssDNA) and to also identify cells in apoptosis. We carriedout studies to determine if F7-26 binding measured by flow cytometry was able to specifically identify exogenous ssDNA as opposed to DNA damage from apoptosis. Neuroblastoma cells were treated with melphalan (L-PAM), fenretinide, 4-hydroperoxycyclophosphamide (4-HC)+/-pan-caspase inhibitor BOC-d-fmk, topotecan or with 10Gy gamma radiation+/-hydrogen peroxide (H2O2) and fixed immediately postradiation. Cytotoxicity was measured by DIMSCAN digital imaging fluorescence assay. The degree of ssDNA damage was analyzed by flow cytometry using Mab F7-26, with DNA visualized by propidium iodide counterstaining. Flow cytometry was used to measure apoptosis detected by terminal deoxynucleotidyltransferase (TUNEL) assay and reactive oxygen species (ROS) by carboxy-dichlorofluorescein diacetate. Irradiated and immediately fixed neuroblastoma cells showed increased ssDNA, but not apoptosis by TUNEL (TUNEL-negative). 4-HC or L-PAM+/-BOC-d-fmk increased ssDNA (F7-26-positive), but BOC-d-fmk prevented TUNEL staining. Fenretinide increased apoptosis by TUNEL but not ssDNA damage detected with F7-26. Enhanced ssDNA in neuroblastoma cells treated with radiation+H2O2 was associated with increased ROS. Topotecan increased both ssDNA and cytotoxicity in 4-HC-treated cells. These data demonstrate that Mab F7-26 recognized ssDNA due to exogenous DNA damage, rather than apoptosis. This assay should be useful to characterize the mechanism of action of antineoplastic drugs. Copyright (c) 2007 International Society for Analytical Cytology.

  1. Evaluation of chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effects of Aloysia citrodora extract on colon cancer cell line using Real Time PCR and Flow-cytometry methods

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2016-06-01

    Full Text Available Background and aims: Aloysia citrodora belongs to the Verbenaceae family of plants, a well-known herbal medicine in Iran. The aim of the present study was to investigate the chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effect of A. citrodora extract against human colon cancer using real time PCR and flow cytometry methods. Materials and Methods: this experimental study was carried out in Islamic Azad University, East Tehran Branch, from March to September of 2014. At first, the A. citrodora chemical constituents were analyzed by GC/MS technique. In addition, antioxidant assay, antibacterial and anti-cancer effect was performed using DPPH, disk diffusion and MTT methods, respectively. Finally, the apoptosis gene (Bax and Bcl2 expression was performed by real time PCR and apoptotic effects was analyzed using Flow-cytometry technique. Results:  GC/MS analysis of A. citrodora extract was shown 37 major components and the most frequent component was belonged to Spathulenol (17.57% and Caryophyllene oxide (15.15%. The antioxidant activity of the extract was IC50=0.6 ±0.03. The maximum and minimum antibacterial effects of extract were belonged to Gram negative and Gram positive bacteria, respectively. Cytotoxic results revealed that the extract have IC50= 20.1± 0.78 mg/ml against colon cell line and Real Time PCR results showed the expression level of Bax and Bcl2 was increased and decreased respectively in colon cancer cell line (3.470 ± 0.72 (P<0.05, 0.43 ± 0.35 (P< 0.05. In addition, the flow-cytometry results indicated the 38.66 % apoptosis in colon cancer cell line. Conclusion: According to the results, it seems that A. citrodora extract has potential uses for pharmaceutical industries and it suggested that further studies were performed for A. citrodora pharmaceutical importance.

  2. The use of bead beating to prepare suspensions of nuclei for flow cytometry from fresh leaves, herbarium leaves, petals and pollen.

    Science.gov (United States)

    Roberts, Andy V

    2007-12-01

    "Bead beating" is commonly used to release DNA from cells for genomic studies but it was used here to prepare suspensions of plant nuclei for measurement of DNA amounts by flow cytometry. Plant material was placed in 2-ml screw-capped tubes containing beads of zirconia/silica (2.5 mm diameter) or glass (2.5 or 1.0 mm diameter) and 1 ml of lysis buffer. The tubes were mechanically shaken with an FP120 FastPrep Cell Disrupter to release intact nuclei from plant tissue by the impact of the beads. The nuclei were then stained with propidium iodide (PI) and analyzed by flow cytometry. The method was tested using fresh leaves, fresh petals and herbarium leaves of Rosa canina, leaves and pollen of R. rugosa, and fresh leaves of Petroselinum crispum, Nicotiana tabacum, and Allium cepa. Batches of 12 samples of fresh leaves were prepared, simultaneously, in 45 s by bead beating in the Cell Disrupter. In flow cytometry histograms, nuclei of fresh leaves gave G(1)/G(0) peaks with CVs of less than 3.0% and nuclei from fresh petals and herbarium leaves of R. canina, and pollen of the generative nuclei of R. rugosa gave peaks with coefficients of variation (CVs) of less than 4.0%. DNA amounts estimated from 24-month-old herbarium leaves, using P. crispum as an internal standard, were less than those of fresh leaves by a small but significant amount. Suspensions of nuclei can be prepared rapidly and conveniently from a diversity of tissues by bead beating. Exposure of laboratory workers to harmful substances in the lysis buffer is minimized. (c) 2007 International Society for Analytical Cytology

  3. The Diagnosis of Gastric Mucosa-associated Lymphoid Tissue Lymphoma by Flow Cytometry and Fluorescence in situ Hybridization of Biopsy Specimens.

    Science.gov (United States)

    Matsueda, Katsunori; Omote, Sizuma; Sakata, Masahiro; Fujita, Isao; Horii, Jouichiro; Toyokawa, Tatsuya

    2018-04-15

    Mucosa-associated lymphoid tissue (MALT) lymphoma and reactive inflammatory lymphoid changes are frequently difficult to distinguish based on a routine histological differential diagnosis. We were unable to diagnose gastric MALT lymphoma histologically using specimens obtained by endoscopy, although a flow cytometry (FCM) analysis demonstrated clonality of neoplastic cells by separating cells by CD45 gating. Furthermore, a fluorescence in situ hybridization (FISH) analysis showed trisomy 18. We therefore diagnosed gastric MALT lymphoma with trisomy 18. We recommend that FCM and FISH analyses of biopsy specimens be considered for diagnosing gastric MALT lymphoma if this diagnosis is suspected based on endoscopic findings.

  4. The application of Flow Cytometry to the study of ancient agriculture: Evidence for Mesolithic farming in Northern Britain 7200 Cal yr BP.

    Science.gov (United States)

    Jones, Richard; Tennant, Richard; Hatton, Jackie; Lee, Rob; Love, John

    2017-04-01

    The onset of agriculture in the UK, (the Mesolithic-Neolithic transition 6000 - 5500 Cal yr BP), has commonly been viewed as the end point of a cultural and technological wave that began in Eastern Europe on the Hungarian Plain 7500 Cal yr BP. This view is not without its critics, due in part to the uncertainty regarding the timing and rate of expansion and the difficulty in identifying the point at which agriculture first arrived in a particular location. Evidence for potential 'episodes' of Mesolithic agricultural activity in the UK has been identified in the UK pollen record, but this data is very tentative. Cereal pollen is typically present in very low concentrations (requiring very large, time consuming counts) and differentiating early cereal pollen from local grasses is very problematic, particularly in areas where the local grasses were domesticated. We present a multi-proxy record from Mere Tarn (54°8'12.09" N 3°7'24.28"W), 2km from the Morecambe Bay coast in South Cumbria, UK; a region with a long history of human occupation extending back into the Palaeolithic. A lacustrine core spanning the Mesolithic and Neolithic has been analysed using a combination of 'traditional' pollen analysis, Flow Cytometry and ancient DNA (aDNA). Flow Cytometry is employed to increase the concentration of cereal type grains in a sample, whilst also providing a more 'targeted' sample for aDNA analysis. The results so far provide clear evidence for an early phase of 'Mesolithic' agriculture in the catchment, spanning only two centuries ( 7300 to 7100 Cal yr BP). This phase is characterised by the occurrence of large cereal type grains (> 38µm), evidence for woodland clearance and the expansion of key anthropogenic indicators such as P. lanceolata. It occurred over 1600 years before the main transition into permanent and intensive agriculture in the catchment, at a time of significant changes in regional climate and sea-level. The results from Mere Tarn provide the earliest

  5. The use of isotypic control antibodies in the analysis of CD3+ and CD3+, CD4+ lymphocyte subsets by flow cytometry. Are they really necessary?

    Science.gov (United States)

    Sreenan, J J; Tbakhi, A; Edinger, M G; Tubbs, R R

    1997-02-01

    Isotypic control reagents are defined as irrelevant antibodies of the same immunoglobulin class as the relevant reagent antibody in a flow cytometry panel. The use of the isotypic control antibody has been advocated as a necessary quality control measure in analysis of flow cytometry. The purpose of this study was to determine the necessity of an isotypic control antibody in the analysis of CD3+ and CD3+, CD4+ lymphocyte subsets. We performed a prospective study of 46 consecutive patient samples received for lymphocyte subset analysis to determine the need for the isotypic control. For each sample, a sham buffer (autocontrol) and isotypic control reagent were stained for three-color immunofluorescence, processed, and identically analyzed with Attractors software. The Attractors software allowed independent, multiparametric, simultaneous gating; was able to identically and reproducibly process each list mode file; and yielded population data in spreadsheet form. Statistical analysis (Fisher's z test) revealed no difference between the CD3+ autocontrol and CD3+ isotypic control (correlation = 1, P autocontrol and the CD3+, CD4+ isotypic control (correlation = 1, P < .0001). The elimination of the isotypic control reagent resulted in a total cost savings of $3.36 per test. Additionally, the subtraction of isotypic background can artifactually depress population enumeration. The use of an isotypic control antibody is not necessary to analyze flow cytometric data that result in discrete cell populations, such as CD3+ and CD3+, CD4+ lymphocyte subsets. The elimination of this unnecessary quality control measure results in substantial cost savings.

  6. The use of a spaceflight-compatible device to perform WBC surface marker staining and whole-blood mitogenic activation for cytokine detection by flow cytometry

    Science.gov (United States)

    Crucian, B. E.; Sams, C. F.

    1999-01-01

    Significant changes have recently been described regarding circulating peripheral immune cells immediately following spaceflight. Existing methods for immunophenotype staining of peripheral blood in terrestrial labs do not meet the constraints for flight on the Space Shuttle. We have recently described the development and use of the Whole Blood Staining Device (WBSD), a simple device for staining flow cytometry specimens during spaceflight. When preparing samples with the WBSD, all liquids are safely contained as the cells are moved through staining, lysis and fixation steps. Here we briefly review the use of the WBSD, and then describe another versatile adaptation, a modification to perform intracellular staining of cytokines for detection by flow cytometry. Alterations in cytokine production have been reported both in ground-based simulated microgravity culture and in astronaut samples returning from spaceflight. Data regarding microgravity effects on cytokine production for specific subpopulations of cells is lacking. Flow cytometric cytokine analysis offers the unique ability to perform simultaneous surface marker analysis and positively identity cytokine producing subsets of cells. The utilization of the WBSD provides the ability to perform rapid and routine mitogenic activation during spaceflight coupled with the ability to perform simultaneous surface marker analysis. The only external requirements for this procedure are an in-flight 37-degree incubator and the capacity for 4-degree storage.

  7. Intracavity interferometry using synchronously pumped OPO

    Science.gov (United States)

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan; Navrátil, Petr

    2016-12-01

    The concept of system for intracavity interferometry based on the beat note detection in subharmonic synchronously intracavity pumped optical parametrical oscillator (OPO) is presented. The system consisted of SESAM-modelocked, picosecond, diode pumped Nd:YVO4 laser, operating at wavelength 1.06 μm and tunable linear intracavity pumped OPO based on MgO:PPLN crystal, widely tunable in 1.5 μm able to deliver two independent trains of picosecond pulses. The optical length of the OPO cavity was set to be exactly twice the pumping cavity length. In this configuration the OPO produces signal pulses with the same repetition frequency as the pump laser but the signal consists of two completely independent pulse trains. For purpose of pump probe measurements the setup signal with half repetition rate and scalable amplitude was derived from the OPO signal using RF signal divider, electropotical modulator and fiber amplifier. The impact of one pump beam on the sample is detected by one probing OPO train, the other OPO train is used as a reference. The beat note measured using the intracavity interferometer is proportional to phase modulation caused by the pump beam. The bandwidth of observed beat-note was less than 1 Hz (FWHM), it corresponds to a phase shift measurement error of less than 1.5 × 10-7 rad without any active stabilization. Such compact low-cost system could be used for ultra-sensitive phase-difference measurements (e.g. nonlinear refractive index measurement) for wide range of material especially in spectral range important for telecom applications.

  8. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells

    Directory of Open Access Journals (Sweden)

    Natasja Wulff Pedersen

    2017-07-01

    Full Text Available Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide automated analysis of major histocompatibility complex (MHC multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore difficult to detect. We used a highly heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC multimer-binding CD8+ T cells could be analyzed with computational solutions currently available, and if such analyses would reduce the technical variation across different laboratories. We used three different methods, FLOw Clustering without K (FLOCK, Scalable Weighted Iterative Flow-clustering Technique (SWIFT, and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from two donors. Experience from this analysis shows that all three programs can be used for the identification of high to intermediate frequency of MHC multimer-binding T cell populations, with results very similar to that of manual gating. For the less frequent populations (<0.1% of live, single lymphocytes, SWIFT outperformed the other tools. As used in this study, none of the algorithms offered a completely automated pipeline for identification of MHC multimer populations, as varying degrees of human interventions were needed to complete the analysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for assessing and identifying even rare populations of antigen-responsive T cells and discuss

  9. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells.

    Science.gov (United States)

    Pedersen, Natasja Wulff; Chandran, P Anoop; Qian, Yu; Rebhahn, Jonathan; Petersen, Nadia Viborg; Hoff, Mathilde Dalsgaard; White, Scott; Lee, Alexandra J; Stanton, Rick; Halgreen, Charlotte; Jakobsen, Kivin; Mosmann, Tim; Gouttefangeas, Cécile; Chan, Cliburn; Scheuermann, Richard H; Hadrup, Sine Reker

    2017-01-01

    Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide automated analysis of major histocompatibility complex (MHC) multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore difficult to detect. We used a highly heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC multimer-binding CD8 + T cells could be analyzed with computational solutions currently available, and if such analyses would reduce the technical variation across different laboratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable Weighted Iterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from two donors. Experience from this analysis shows that all three programs can be used for the identification of high to intermediate frequency of MHC multimer-binding T cell populations, with results very similar to that of manual gating. For the less frequent populations (analysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for assessing and identifying even rare populations of antigen-responsive T cells and discuss the main properties, differences, and advantages of the different methods tested.

  10. In vivo flow cytometry visualizes the effects of tumor resection on metastasis by real-time monitoring of rare circulating cancer cells

    Science.gov (United States)

    Wei, Dan; Fan, Zhichao; Wang, Xueding; Wei, Xunbin

    2013-02-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. The fate of circulating tumor cells (CTCs) is an important determinant of metastasis and recurrence, which lead to most deaths in HCC. Therefore, quantification of CTCs proves to be an emerging tool for diagnosing, stratifying and monitoring patients with metastatic diseases. In vivo flow cytometry (IVFC) has the capability to monitor the dynamics of fluorescently labeled CTCs continuously and non-invasively. Here, we combine IVFC technique and a GFP-transfected HCC orthotopic metastatic tumor model to monitor CTC dynamics. Our IVFC has ~1.8-fold higher sensitivity than whole blood analysis by conventional flow cytometry. We find out a significant difference of CTC dynamics between orthotopic and subcutaneous (s.c.) tumor models. We also investigate whether liver resection promotes or restricts hematogenous metastasis in advanced HCC. Our result shows that the number of CTCs and early metastases decreases after the resection. CTC dynamics is correlated with tumor growth in our orthotopic tumor model. The number and size of distant metastases correspond to CTC dynamics. The novel IVFC technique combined with orthotopic tumor models might provide insights to tumor hematogenous metastasis and guidance to cancer therapy.

  11. Genotoxicity evaluation of multi-component mixtures of polyaromatic hydrocarbons (PAHs), arsenic, cadmium, and lead using flow cytometry based micronucleus test in HepG2 cells.

    Science.gov (United States)

    Muthusamy, Sasikumar; Peng, Cheng; Ng, Jack C

    2018-03-01

    Some polyaromatic hydrocarbons (PAHs) and metals are known human carcinogens and the combined toxicity data of these co-contaminants are important for assessing their health risk. In this study, we have evaluated the combined genotoxicity, AhR activity and cell cycle parameters of four PAHs (benzo[a]pyrene (Ba]P), naphthalene (Nap), phenanthrene (Phe) and pyrene (Pyr)) and three metals (arsenic (As), cadmium (Cd), and lead (Pb)) in HepG2 cells using a flow cytometry based micronucleus (MN) test CAFLUX assay and nuclear fluorescence assay, respectively. The mixtures of B[a]P and metals induced a maximum of four fold increase in the MN formation compared to B[a]P alone. The higher combination of PAHs and metals did not significantly increase the MN formation. The mixtures of metals or non-carcinogenic PAHs were found to increase or decrease the aryl hydrocarbon receptor (AhR) activation of B[a]P in HepG2 cell based CAFLUX assay. Overall, the results showed that combined genotoxicity of PAHs and metals in HepG2 cells vary depending on the concentrations and number of the chemicals that are present in the mixtures and the effects of higher order combinations appear to be largely unpredictable from binary combinations. In this study, we have demonstrated the use of flow cytometry based MN test to screen the genotoxicity of environmental chemicals and its mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Quantification of circulating clonal plasma cells via multiparametric flow cytometry identifies patients with smoldering multiple myeloma at high risk of progression.

    Science.gov (United States)

    Gonsalves, W I; Rajkumar, S V; Dispenzieri, A; Dingli, D; Timm, M M; Morice, W G; Lacy, M Q; Buadi, F K; Go, R S; Leung, N; Kapoor, P; Hayman, S R; Lust, J A; Russell, S J; Zeldenrust, S R; Hwa, L; Kourelis, T V; Kyle, R A; Gertz, M A; Kumar, S K

    2017-01-01

    The presence of high numbers of circulating clonal plasma cells (cPCs) in patients with smoldering multiple myeloma (SMM), detected by a slide-based immunofluorescence assay, has been associated with a shorter time to progression (TTP) to MM. The significance of quantifying cPCs via multiparameter flow cytometry, a much more readily available diagnostic modality, in patients with SMM has not been evaluated. This study evaluated 100 patients with a known or new diagnosis of SMM who were seen at the Mayo Clinic, Rochester from January 2008 until December 2013. Patients with ⩾150 cPCs (N=9) were considered to have high number of cPCs based on the 97% specificity and 78% PPV of progression to MM within 2 years of cPC assessment. The median TTP of patients with ⩾150 cPCs was 9 months compared with not reached for patients with <150 cPCs (P<0.001). Thus, quantification of cPCs via multiparametric flow cytometry identifies patients with SMM at very high risk of progression to MM within 2 years and warrants confirmation in larger studies. In the future, this may allow reclassification of such patients as having MM requiring therapy prior to them enduring end-organ damage.

  13. Stress response assessment of Lactobacillus sakei strains selected as potential autochthonous starter cultures by flow cytometry and nucleic acid double-staining analyses.

    Science.gov (United States)

    Bonomo, M G; Milella, L; Martelli, G; Salzano, G

    2013-09-01

    The aim of this study was to apply the flow cytometry to Lactobacillus sakei strains, selected as potential autochthonous starters, to investigate dynamics and physiological heterogeneity of microbial behaviour under different stress conditions. A simultaneous nucleic acid double-staining assay was applied to discriminate cell populations in different physiological states after exposure to heat (50 and 55°C) and acid (pH 2·5 and 3·0) stresses. Alive cells with intact membranes, damaged cells still alive but with injured membranes, so with even a recovery ability, and dead cells with a permanent membrane damage were differentiated with a significant increase in damaged cells after stronger stress treatments. The existence and characteristics of subpopulations displaying heterogeneity in particular conditions are highly relevant, because specific subpopulations may show improved survival, changes and dynamics under stress conditions. This assay has potential for physiological research on lactic acid bacteria and for application in the food industry. The assessment of intermediate physiological states in Lb. sakei strains with recovery possibility could be an important criterion for application of potential starter cultures. Application of flow cytometry and characterization of sorted subpopulations may contribute to further understanding of diversity and heterogeneity in physiology of bacterial populations. © 2013 The Society for Applied Microbiology.

  14. Revelation of Different Nanoparticle-Uptake Behavior in Two Standard Cell Lines NIH/3T3 and A549 by Flow Cytometry and Time-Lapse Imaging

    Directory of Open Access Journals (Sweden)

    André Jochums

    2017-07-01

    Full Text Available The uptake of nanomaterials into different cell types is a central pharmacological issue for the determination of nanotoxicity as well as for the development of drug delivery strategies. Most responses of the cells depend on their intracellular interactions with nanoparticles (NPs. Uptake behavior can be precisely investigated in vitro, with sensitive high throughput methods such as flow cytometry. In this study, we investigated two different standard cell lines, human lung carcinoma (A549 and mouse fibroblast (NIH/3T3 cells, regarding their uptake behavior of titanium dioxide NPs. Cells were incubated with different concentrations of TiO2 NPs and samples were taken at certain time points to compare the uptake kinetics of both cell lines. Samples were analyzed with the help of flow cytometry by studying changes in the side and forward scattering signal. To additionally enable a detection via fluorescence, NPs were labeled with the fluorescent dye fluorescein isothiocyanate (FITC and propidium iodide (PI. We found that NIH/3T3 cells take up the studied NPs more efficiently than A549 cells. These findings were supported by time-lapse microscopic imaging of the cells incubated with TiO2 NPs. Our results confirm that the uptake behavior of individual cell types has to be considered before interpreting any results of nanomaterial studies.

  15. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry.

    Science.gov (United States)

    Highland, Margaret A; Schneider, David A; White, Stephen N; Madsen-Bouterse, Sally A; Knowles, Donald P; Davis, William C

    2016-06-01

    Although both domestic sheep (DS) and bighorn sheep (BHS) are affected by similar respiratory bacterial pathogens, experimental and field data indicate BHS are more susceptible to pneumonia. Cross-reactive monoclonal antibodies (mAbs) for use in flow cytometry (FC) are valuable reagents for interspecies comparative immune system analyses. This study describes cross-reactive mAbs that recognize leukocyte differentiation molecules (LDMs) and major histocompatibility complex antigens on DS and BHS leukocytes. Characterization of multichannel eosinophil autofluorescence in this study permitted cell-type specific gating of granulocytes for evaluating LDMs, specifically on neutrophils, by single-label FC. Evaluation of relative abundances of LDMs by flow cytometry revealed greater CD11a, CD11b, CD18 (β2 integrins) and CD 172a (SIRPα) on DS neutrophils and greater CD14 (lipopolysaccharide receptor) on BHS neutrophils. Greater CD25 (IL-2) was identified on BHS lymphocytes following Concavalin A stimulation. While DS and BHS have similar total peripheral blood leukocyte counts, BHS have proportionately more neutrophils. Published by Elsevier Ltd.

  16. Semi-automatized segmentation method using image-based flow cytometry to study sperm physiology: the case of capacitation-induced tyrosine phosphorylation.

    Science.gov (United States)

    Matamoros-Volante, Arturo; Moreno-Irusta, Ayelen; Torres-Rodriguez, Paulina; Giojalas, Laura; Gervasi, María G; Visconti, Pablo E; Treviño, Claudia L

    2018-02-01

    Is image-based flow cytometry a useful tool to study intracellular events in human sperm such as protein tyrosine phosphorylation or signaling processes? Image-based flow cytometry is a powerful tool to study intracellular events in a relevant number of sperm cells, which enables a robust statistical analysis providing spatial resolution in terms of the specific subcellular localization of the labeling. Sperm capacitation is required for fertilization. During this process, spermatozoa undergo numerous physiological changes, via activation of different signaling pathways, which are not completely understood. Classical approaches for studying sperm physiology include conventional microscopy, flow cytometry and Western blotting. These techniques present disadvantages for obtaining detailed subcellular information of signaling pathways in a relevant number of cells. This work describes a new semi-automatized analysis using image-based flow cytometry which enables the study, at the subcellular and population levels, of different sperm parameters associated with signaling. The increase in protein tyrosine phosphorylation during capacitation is presented as an example. Sperm cells were isolated from seminal plasma by the swim-up technique. We evaluated the intensity and distribution of protein tyrosine phosphorylation in sperm incubated in non-capacitation and capacitation-supporting media for 1 and 18 h under different experimental conditions. We used an antibody against FER kinase and pharmacological inhibitors in an attempt to identify the kinases involved in protein tyrosine phosphorylation during human sperm capacitation. Semen samples from normospermic donors were obtained by masturbation after 2-3 days of sexual abstinence. We used the innovative technique image-based flow cytometry and image analysis tools to segment individual images of spermatozoa. We evaluated and quantified the regions of sperm where protein tyrosine phosphorylation takes place at the

  17. Ultrasensitive automated RNA in situ hybridization for kappa and lambda light chain mRNA detects B-cell clonality in tissue biopsies with performance comparable or superior to flow cytometry.

    Science.gov (United States)

    Guo, Ling; Wang, Zhen; Anderson, Courtney M; Doolittle, Emerald; Kernag, Siobhan; Cotta, Claudiu V; Ondrejka, Sarah L; Ma, Xiao-Jun; Cook, James R

    2018-03-01

    The assessment of B-cell clonality is a critical component of the evaluation of suspected lymphoproliferative disorders, but analysis from formalin-fixed, paraffin-embedded tissues can be challenging if fresh tissue is not available for flow cytometry. Immunohistochemical and conventional bright field in situ hybridization stains for kappa and lambda are effective for evaluation of plasma cells but are often insufficiently sensitive to detect the much lower abundance of light chains present in B-cells. We describe an ultrasensitive RNA in situ hybridization assay that has been adapted for use on an automated immunohistochemistry platform and compare results with flow cytometry in 203 consecutive tissues and 104 consecutive bone marrows. Overall, in 203 tissue biopsies, RNA in situ hybridization identified light chain-restricted B-cells in 85 (42%) vs 58 (29%) by flow cytometry. Within 83 B-cell non-Hodgkin lymphomas, RNA in situ hybridization identified restricted B-cells in 74 (89%) vs 56 (67%) by flow cytometry. B-cell clonality could be evaluated in only 23/104 (22%) bone marrow cases owing to poor RNA preservation, but evaluable cases showed 91% concordance with flow cytometry. RNA in situ hybridization allowed for recognition of biclonal/composite lymphomas not identified by flow cytometry and highlighted unexpected findings, such as coexpression of kappa and lambda RNA in 2 cases and the presence of lambda light chain RNA in a T lymphoblastic lymphoma. Automated RNA in situ hybridization showed excellent interobserver reproducibility for manual evaluation (average K=0.92), and an automated image analysis system showed high concordance (97%) with manual evaluation. Automated RNA in situ hybridization staining, which can be adopted on commonly utilized immunohistochemistry instruments, allows for the interpretation of clonality in the context of the morphological features in formalin-fixed, paraffin-embedded tissues with a clinical sensitivity similar or

  18. Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Suk Hang Cheng

    Full Text Available Minimal residual disease, or MRD, is an important prognostic indicator in childhood acute lymphoblastic leukemia. In ALL-IC-BFM 2002 study, we employed a standardized method of flow cytometry MRD monitoring for multiple centers internationally using uniformed gating, and determined the relevant MRD-based risk stratification strategies in our local patient cohort. We also evaluated a novel method of PCR MRD quantitation using peripheral blood plasma. For the bone marrow flow MRD study, patients could be stratified into 3 risk groups according to MRD level using a single time-point at day-15 (Model I (I-A: 10%, or using two time-points at day-15 and day-33 (Model II (II-A: day-15<10% and day-33<0.01%, II-B: day-15 ≥ 10% or day-33 ≥ 0.01% but not both, II-C: day-15 ≥ 10% and day-33 ≥ 0.01%, which showed significantly superior prediction of relapse (p = .00047 and <0.0001 respectively. Importantly, patients with good outcome (frequency: 56.0%, event-free survival: 90.1% could be more accurately predicted by Model II. In peripheral blood plasma PCR MRD investigation, patients with day-15-MRD ≥ 10(-4 were at a significantly higher risk of relapse (p = 0.0117. By multivariate analysis, MRD results from both methods could independently predict patients' prognosis, with 20-35-fold increase in risk of relapse for flow MRD I-C and II-C respectively, and 5.8-fold for patients having plasma MRD of ≥ 10(-4. We confirmed that MRD detection by flow cytometry is useful for prognostic evaluation in our Chinese cohort of childhood ALL after treatment. Moreover, peripheral blood plasma DNA MRD can be an alternative where bone marrow specimen is unavailable and as a less invasive method, which allows close monitoring.

  19. Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction.

    Science.gov (United States)

    Cheng, Suk Hang; Lau, Kin Mang; Li, Chi Kong; Chan, Natalie P H; Ip, Rosalina K L; Cheng, Chi Keung; Lee, Vincent; Shing, Matthew M K; Leung, Alex W K; Ha, Shau Yin; Cheuk, Daniel K L; Lee, Anselm C W; Li, Chak Ho; Luk, Chung Wing; Ling, Siu Cheung; Hrusak, Ondrej; Mejstrikova, Ester; Leung, Yonna; Ng, Margaret H L

    2013-01-01

    Minimal residual disease, or MRD, is an important prognostic indicator in childhood acute lymphoblastic leukemia. In ALL-IC-BFM 2002 study, we employed a standardized method of flow cytometry MRD monitoring for multiple centers internationally using uniformed gating, and determined the relevant MRD-based risk stratification strategies in our local patient cohort. We also evaluated a novel method of PCR MRD quantitation using peripheral blood plasma. For the bone marrow flow MRD study, patients could be stratified into 3 risk groups according to MRD level using a single time-point at day-15 (Model I) (I-A: 10%), or using two time-points at day-15 and day-33 (Model II) (II-A: day-15<10% and day-33<0.01%, II-B: day-15 ≥ 10% or day-33 ≥ 0.01% but not both, II-C: day-15 ≥ 10% and day-33 ≥ 0.01%), which showed significantly superior prediction of relapse (p = .00047 and <0.0001 respectively). Importantly, patients with good outcome (frequency: 56.0%, event-free survival: 90.1%) could be more accurately predicted by Model II. In peripheral blood plasma PCR MRD investigation, patients with day-15-MRD ≥ 10(-4) were at a significantly higher risk of relapse (p = 0.0117). By multivariate analysis, MRD results from both methods could independently predict patients' prognosis, with 20-35-fold increase in risk of relapse for flow MRD I-C and II-C respectively, and 5.8-fold for patients having plasma MRD of ≥ 10(-4). We confirmed that MRD detection by flow cytometry is useful for prognostic evaluation in our Chinese cohort of childhood ALL after treatment. Moreover, peripheral blood plasma DNA MRD can be an alternative where bone marrow specimen is unavailable and as a less invasive method, which allows close monitoring.

  20. Efficient yellow beam generation by intracavity sum frequency ...

    Indian Academy of Sciences (India)

    2014-02-06

    :YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum ...

  1. Dynamical regimes and intracavity propagation delay in external ...

    Indian Academy of Sciences (India)

    E JAYAPRASATH

    2017-10-31

    Oct 31, 2017 ... to increase as the external cavity feedback rate of TL is increased, while an increment in the injection rate between the two lasers resulted in a reduction of intracavity propagation delay. Keywords. Semiconductor lasers; chaos synchronization; intracavity propagation delay. PACS Nos 42.55.−f; 42.55.

  2. Efficient yellow beam generation by intracavity sum frequency ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... We present our studies on dual wavelength operation using a single Nd:YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum frequency ...

  3. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells.

    Science.gov (United States)

    Hildebrandt, Petra; Surmann, Kristin; Salazar, Manuela Gesell; Normann, Nicole; Völker, Uwe; Schmidt, Frank

    2016-10-01

    Staphylococcus aureus is a Gram-positive opportunistic pathogen that is able to cause a broad range of infectious diseases in humans. Furthermore, S. aureus is able to survive inside nonprofessional phagocytic host cell which serve as a niche for the pathogen to hide from the immune system and antibiotics therapies. Modern OMICs technologies provide valuable tools to investigate host-pathogen interactions upon internalization. However, these experiments are often hampered by limited capabilities to retrieve bacteria from such an experimental setting. Thus, the aim of this study was to develop a labeling strategy allowing fast detection and quantitation of S. aureus in cell lysates or infected cell lines by flow cytometry for subsequent proteome analyses. Therefore, S. aureus cells were labeled with the DNA stain SYTO ® 9, or Vancomycin BODIPY ® FL (VMB), a glycopeptide antibiotic binding to most Gram-positive bacteria which was conjugated to a fluorescent dye. Staining of S. aureus HG001 with SYTO 9 allowed counting of bacteria from pure cultures but not in cell lysates from infection experiments. In contrast, with VMB it was feasible to stain bacteria from pure cultures as well as from samples of infection experiments. VMB can also be applied for histocytochemistry analysis of formaldehyde fixed cell layers grown on coverslips. Proteome analyses of S. aureus labeled with VMB revealed that the labeling procedure provoked only minor changes on proteome level and allowed cell sorting and analysis of S. aureus from infection settings with sensitivity similar to continuous gfp expression. Furthermore, VMB labeling allowed precise counting of internalized bacteria and can be employed for downstream analyses, e.g., proteomics, of strains not easily amendable to genetic manipulation such as clinical isolates. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  4. Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device

    DEFF Research Database (Denmark)

    Kunstmann-Olsen, Casper; Hanczyc, Martin; Hoyland, James

    2016-01-01

    A PDMS chip is fabricated using soft lithography and applied to investigate the formation and division of nitrobenzene (NB) droplets in a two-phase system stabilized by oleic acid. Using an integrated on-chip flow cytometer setup, effected with optical fibers, droplet size distributions...... are analyzed in situ based on optical signal intensities. By controlling the hydrodynamic flow focusing, uniform droplets of sizes between 100 μm and 300 μm are created with precise size control. Cross-flow shearing allows one to divide these droplets into anything from 2 to 9 individual droplets, depending...... on flow parameters....

  5. Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Gaipa, Giuseppe; Cazzaniga, Giovanni; Valsecchi, Maria Grazia; Panzer-Grümayer, Renate; Buldini, Barbara; Silvestri, Daniela; Karawajew, Leonid; Maglia, Oscar; Ratei, Richard; Benetello, Alessandra; Sala, Simona; Schumich, Angela; Schrauder, Andre; Villa, Tiziana; Veltroni, Marinella; Ludwig, Wolf-Dieter; Conter, Valentino; Schrappe, Martin; Biondi, Andrea; Dworzak, Michael N; Basso, Giuseppe

    2012-10-01

    Flow cytometric analysis of leukemia-associated immunophenotypes and polymerase chain reaction-based amplification of antigen-receptor genes rearrangements are reliable methods for monitoring minimal residual disease. The aim of this study was to compare the performances of these two methodologies in the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Polymerase chain reaction and flow cytometry were simultaneously applied for prospective minimal residual disease measurements at days 15, 33 and 78 of induction therapy on 3565 samples from 1547 children with acute lymphoblastic leukemia enrolled into the AIEOP-BFM ALL 2000 trial. The overall concordance was 80%, but different results were observed according to the time point. Most discordances were found at day 33 (concordance rate 70%) in samples that had significantly lower minimal residual disease. However, the discordance was not due to different starting materials (total versus mononucleated cells), but rather to cell input number. At day 33, cases with minimal residual disease below or above the 0.01% cut-off by both methods showed a very good outcome (5-year event-free survival, 91.6%) or a poor one (5-year event-free survival, 50.9%), respectively, whereas discordant cases showed similar event-free survival rates (around 80%). Within the current BFM-based protocols, flow cytometry and polymerase chain reaction cannot simply substitute each other at single time points, and the concordance rates between their results depend largely on the time at which they are used. Our findings suggest a potential complementary role of the two technologies in optimizing risk stratification in future clinical trials.

  6. Digital mode selection using an intracavity SLM

    CSIR Research Space (South Africa)

    Burger, L

    2012-07-01

    Full Text Available an intracavity SLM L BURGER1,3, I LITVIN1 AND A. FORBES1,2,3 1CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa 2School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa 3Laser Research Institute... for a certain grey-level values of a uniform phase screen on the SLM (to simulate a flat mirror) at different grey levels, and that the output power level loops from 0 to 2? radians. We noted that the lasing band broadened with increasing pump power...

  7. Tuning quantum correlations with intracavity photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maria M. de; Gomila, Damia; Zambrini, Roberta [IFISC, Institute for Cross-Disciplinary Physics and Complex Systems (CSIC-UIB), Campus UIB, E-07122 Palma de Mallorca (Spain); Garcia-March, Miguel Angel [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States)

    2011-09-15

    We show how to tune quantum noise in nonlinear systems by means of periodic spatial modulation. We prove that the introduction of an intracavity photonic crystal in a multimode optical parametric oscillator inhibits and enhances light quantum fluctuations. Furthermore, it leads to a significant noise reduction in field quadratures, robustness of squeezing in a wider angular range, and spatial entanglement. These results have potential benefits for quantum imaging, metrology, and quantum information applications and suggest a control mechanism of fluctuations by spatial modulation of interest also in other nonlinear systems.

  8. Urinálise: comparação entre microscopia óptica e citometria de fluxo Urinalysis: comparison between microscopic and flow cytometry analysis

    Directory of Open Access Journals (Sweden)

    P.V. Bottini

    2006-06-01

    Full Text Available INTRODUÇÃO E OBJETIVO: O exame de urina é um procedimento de alta demanda, trabalhoso e pouco padronizado. Este estudo teve por objetivo avaliar o desempenho de um citômetro de fluxo na realização do exame de urina de rotina. CASUÍSTICA E MÉTODOS: Foram analisadas 1.140 amostras de urina através de microscopia óptica comum e de citometria de fluxo (UF-100/SYSMEX. A precisão foi estabelecida com a análise de quatro amostras de urina (20 replicações cada. O cálculo da reprodutibilidade foi realizado a partir de 30 determinações de dois controles comerciais em dias consecutivos. RESULTADOS: As contagens de hemácias e leucócitos mostraram concordância de 91% e 93%, respectivamente. Cilindros, células e bactérias mostraram sobreposição dos valores fornecidos pelo UF-100 quando comparados com os relatados na análise microscópica. A precisão do UF-100 variou de 4% a 155%, com reprodutibilidade de 3% e 25%, dependendo do parâmetro avaliado. CONCLUSÃO: O equipamento UF-100/SYSMEX demonstra boa precisão, reprodutibilidade e concordância com a microscopia óptica. A utilização da citometria de fluxo implica numa maior agilização e padronização da rotina, bem como em uma nova maneira de reportar e interpretar o exame de urina de rotina.INTRODUCTION: Urinalysis is a high demand procedure, with large amount of manual labor and poorly standardized. The purpose of this investigation was to analyze the performance of an automated system based on flow cytometry for routine urinalysis. MATERIAL AND METHODS: We analyzed 1,140 urine samples by light field microscopy and by flow cytometry (UF-100/SYSMEX. For the precision study of the UF-100, we calculated the within-run and between-run coefficients of variation using two different levels of commercial controls and four different urine samples. RESULTS: Erythrocytes and leukocytes counts by the two methods showed an agreement of 91% and 93%, respectively. Casts, epithelial cells

  9. Flow cytometry analysis of FITC-labeled concanavalin A binding to human blood cells as an indicator of radiation-induced membrane alterations

    Energy Technology Data Exchange (ETDEWEB)

    Donnadieu-Claraz, M.; Paillole, N.; Voisin, P. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de la Sante de l`Homme et de Dosimetrie; Djounova, J. [National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    1995-12-31

    The {sup 3}H concanavalin-A binding to human blood cells have been described as a promising biological indicator of radiation overexposure. Flow cytometry adaptation of this technique using fluorescein-labelled concanavalin-A were performed to estimate time-dependent changes in binding on human blood cells membranes after in vitro {gamma} irradiation ({sup 60}Co). Result revealed significant enhanced lectin-binding to platelets and erythrocytes in a dose range of 0,5-5 Gy, 1 and 3 hours after irradiation. However for both platelets and erythrocytes, it was impossible to discriminate between the different doses. Further studies are necessary to confirm the suitability of lectin-binding as a biological indicator for radiation dose assessment. (authors). 5 refs., 1 fig.

  10. Flow cytometry analysis of FITC-labeled concanavalin A binding to human blood cells as an indicator of radiation-induced membrane alterations

    International Nuclear Information System (INIS)

    Donnadieu-Claraz, M.; Paillole, N.; Voisin, P.

    1995-01-01

    The 3 H concanavalin-A binding to human blood cells have been described as a promising biological indicator of radiation overexposure. Flow cytometry adaptation of this technique using fluorescein-labelled concanavalin-A were performed to estimate time-dependent changes in binding on human blood cells membranes after in vitro γ irradiation ( 60 Co). Result revealed significant enhanced lectin-binding to platelets and erythrocytes in a dose range of 0,5-5 Gy, 1 and 3 hours after irradiation. However for both platelets and erythrocytes, it was impossible to discriminate between the different doses. Further studies are necessary to confirm the suitability of lectin-binding as a biological indicator for radiation dose assessment. (authors). 5 refs., 1 fig

  11. Residual disease detected by flow cytometry is an independent predictor of survival in childhood acute myeloid leukaemia; results of the NOPHO-AML 2004 study

    DEFF Research Database (Denmark)

    Tierens, Anne; Bjørklund, Elizabeth; Siitonen, Sanna

    2016-01-01

    Early response after induction is a prognostic factor for disease outcome in childhood acute myeloid leukaemia (AML). Residual disease (RD) detection by multiparameter flow cytometry (MFC) was performed at day 15 and before consolidation therapy in 101 patients enrolled in the Nordic Society...... of Paediatric Haemato-Oncology AML 2004 study. A multicentre laboratory approach to RD analysis was used. Event-free survival (EFS) and overall survival (OS) was significantly different in patients with and without RD at both time points, using a 0·1% RD cut-off level. RD-negative and -positive patients after...... first induction showed a 5-year EFS of 65 ± 7% and 22 ± 7%, respectively (P consolidation therapy had a 5-year EFS of 57 ± 7% and 11 ± 7%, respectively (P

  12. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women.

    Science.gov (United States)

    Dragovic, Rebecca A; Southcombe, Jennifer H; Tannetta, Dionne S; Redman, Christopher W G; Sargent, Ian L

    2013-12-01

    Excessive release of syncytiotrophoblast extracellular vesicles (STBMs) from the placenta into the maternal circulation may contribute to the systemic inflammation that is characteristic of pre-eclampsia (PE). Other intravascular cells types (platelets, leukocytes, red blood cells [RBCs], and endothelium) may also be activated and release extracellular vesicles (EVs). We developed a multicolor flow cytometry antibody panel to enumerate and phenotype STBMs in relation to other EVs in plasma from nonpregnant (NonP) and normal pregnant (NormP) women, and women with late-onset PE. Nanoparticle tracking analysis (NTA) was used to determine EV size and concentration. In vitro-derived STBMs and EVs from platelets, leukocytes, RBCs, and endothelial cells were examined to select suitable antibodies to analyze the corresponding plasma EVs. Flow cytometry analysis of plasma from NonP, NormP, and PE showed that STBMs comprised the smallest group of circulating EVs, whereas most were derived from platelets. The next most abundant group comprised unidentified orphan EVs (which did not label with any of the antibodies in the panel), followed by EVs from RBCs and leukocytes. NTA showed that the total number of EVs in plasma was significantly elevated in NormP and late-onset PE women compared to NonP controls, and that EVs were smaller in size. In general, EVs were elevated in pregnancy plasma apart from platelet EVs, which were reduced. These studies did not show any differences in EVs between NormP and PE, probably because late-onset PE was studied.

  13. Combined use of flow cytometry and microscopy to study the interactions between the gram-negative betaproteobacterium Acidovorax facilis and uranium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, U., E-mail: u.gerber@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden (Germany); Zirnstein, I. [Research Institute of Leather and Plastic Sheeting (FILK) gGmbH, Meissner Ring 1-5, 09599 Freiberg (Germany); Krawczyk-Bärsch, E. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden (Germany); Lünsdorf, H. [Helmholtz Centre for Infection Research, Central Facility for Microscopy, Inhoffenstr. 7, D-38124 Braunschweig (Germany); Arnold, T. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden (Germany); Merroun, M.L. [University of Granada, Department of Microbiology, Campus Fuentenueva, E-18071 Granada (Spain)

    2016-11-05

    Highlights: • Acidovorax facilis is able to remove 130 mg U/g dry biomass from solution. • Kinetically temperature-dependent uranium removal was studied. • Cell viability and metabolic activity was tested by flow cytometry. • Uranium was removed by active biosorption and passive bioaccumulation. - Abstract: The former uranium mine Königstein (Saxony, Germany) is currently in the process of remediation by means of controlled underground flooding. Nevertheless, the flooding water has to be cleaned up by a conventional wastewater treatment plant. In this study, the uranium(VI) removal and tolerance mechanisms of the gram-negative betaproteobacterium Acidovorax facilis were investigated by a multidisciplinary approach combining wet chemistry, flow cytometry, and microscopy. The kinetics of uranium removal and the corresponding mechanisms were investigated. The results showed a biphasic process of uranium removal characterized by a first phase where 95% of uranium was removed within the first 8 h followed by a second phase that reached equilibrium after 24 h. The bacterial cells displayed a total uranium removal capacity of 130 mg U/g dry biomass. The removal of uranium was also temperature-dependent, indicating that metabolic activity heavily influenced bacterial interactions with uranium. TEM analyses showed biosorption on the cell surface and intracellular accumulation of uranium. Uranium tolerance tests showed that A. facilis was able to withstand concentrations up to 0.1 mM. This work demonstrates that A. facilis is a suitable candidate for in situ