WorldWideScience

Sample records for inthanon metamorphic core

  1. P- T- t constraints on the development of the Doi Inthanon metamorphic core complex domain and implications for the evolution of the western gneiss belt, northern Thailand

    Science.gov (United States)

    Macdonald, A. S.; Barr, S. M.; Miller, B. V.; Reynolds, P. H.; Rhodes, B. P.; Yokart, B.

    2010-01-01

    The western gneiss belt in northern Thailand is exposed within two overlapping Cenozoic structural domains: the extensional Doi Inthanon metamorphic core complex domain located west of the Chiang Mai basin, and the Mae Ping strike-slip fault domain located west of the Tak batholith. New P- T estimates and U-Pb and 40Ar/ 39Ar age determinations from the Doi Inthanon domain show that the gneiss there records a complex multi-stage history that can be represented by a clockwise P- T- t path. U-Pb zircon and titanite dating of mylonitic calc-silicate gneiss from the Mae Wang area of the complex indicates that the paragneissic sequence experienced high-grade, medium-pressure metamorphism (M1) in the Late Triassic - Early Jurassic (ca. 210 Ma), in good agreement with previously determined zircon ages from the underlying core orthogneiss exposed on Doi Inthanon. Late Cretaceous monazite ages of 84 and 72 Ma reported previously from the core orthogneiss are attributed to a thermal overprint (M2) to upper-amphibolite facies in the sillimanite field. U-Pb zircon and monazite dating of granitic mylonite from the Doi Suthep area of the complex provides an upper age limit of 40 Ma (Late Eocene) for the early stage(s) of development of the actual core complex, by initially ductile, low-angle extensional shearing under lower amphibolite-facies conditions (M3), accompanied by near-isothermal diapiric rise and decompression melting. 40Ar/ 39Ar laserprobe dating of muscovite from both Doi Suthep and Doi Inthanon provided Miocene ages of ca. 26-15 Ma, representing cooling through the ca. 350 °C isotherm and marking late-stage development of the core complex by detachment faulting of the cover rocks and isostatic uplift of the sheared core zone and mantling gneisses in the footwall. Similarities in the thermochronology of high-grade gneisses exposed in the core complex and shear zone domains in the western gneiss belt of northern Thailand (and also in northern Vietnam, Laos, Yunnan

  2. Thermal history of a metamorphic core complex

    Science.gov (United States)

    Dokka, R. K.; Mahaffie, M. J.; Snoke, A. W.

    1985-01-01

    Fission track (FT) thermochronology studies of lower plate rocks of the Ruby Mountains-East Humbolt Range metamorphic core complex provide important constraints on the timing an nature of major middle Tertiary extension of northeast Nevada. Rocks analyzed include several varieties of mylonitic orthogneiss as well as amphibolitic orthognesses from the non-mylonitic infrastructural core. Oligocene-age porphyritic biotite granodiorite of the Harrison Pass pluton was also studied. The minerals dated include apatite, zircon, and sphene and were obtained from the same rocks that have been previously studied. FT ages are concordant and range in age from 26.4 Ma to 23.8 Ma, with all showing overlap at 1 sigma between 25.4 to 23.4 Ma. Concordancy of all FT ages from all structural levels indicates that the lower plate cooled rapidly from temperatures above approx. 285 C (assumed sphene closure temperature (2)) to below approx. 150 C (assumed apatite closure temperature) near the beginning of the Miocene. This suggests that the lower plate cooled at a rate of at least approx. 36 deg C/Ma during this event. Rapid cooling of the region is considered to reflect large-scale tectonic denudation (intracrustal thinning), the vertical complement to intense crustal extension. FT data firmly establish the upper limit on the timing of mylonitization during detachment faulting and also coincide with the age of extensive landscape disruption.

  3. FEM simulation of formation of metamorphic core complex with ANSYS software

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study utilizes ANSYS to establish FEM's model of metamorphic core complex,and used thermal-structure analysis to simulate metamorphic core complex's temperature field and stress field.The metamorphic core complex formation mechanism is discussed.The simulation results show that the temperature field change appearing as the earth surface's temperature is the lowest,and the temperature of metamorphic core complex's nucleus is the highest.The temperature field is higher along with depth increase,and the stress field change appearing as the biggest stress occurs in the nucleus.The next stress field occurs at the top of the cover.

  4. Hot metamorphic core complex in a cold foreland

    Science.gov (United States)

    Franke, Wolfgang; Doublier, Michael Patrick; Klama, Kai; Potel, Sébastien; Wemmer, Klaus

    2011-06-01

    The Montagne Noire forms the southernmost part of the French Massif Central. Carboniferous flysch sediments and very low-grade metamorphic imprint testify to a very external position in the orogen. Sedimentation of synorogenic clastic sediments continued up to the Viséan/Namurian boundary (≤320 Ma). Subsequently, the Palaeozoic sedimentary pile underwent recumbent folding and grossly southward thrusting. An extensional window exposes a hot core of Carboniferous HT/LP gneisses, migmatites and granites (Zone Axiale), which was uplifted from under the nappe pile. After the emplacement of the nappes on the Zone Axiale (Variscan D1), all structural levels shared the same tectonic evolution: D2 (extension and exhumation), D3 (refolding) and post-D3 dextral transtension. HT/LP-metamorphism in the crystalline rocks probably started before and continued after the emplacement of the nappes. Peak metamorphic temperatures were attained during a post-nappe thermal increment (M2). M2 occurred during ENE-directed bilateral extension, which exhumed the Zone Axiale and its frame as a ductile horst structure, flanked to the ENE by a Stephanian intra-montane basin. Map patterns and mesoscopic structures reveal that extension in ENE occurred simultaneously with NNW-oriented shortening. Combination of these D2 effects defines a bulk prolate strain in a "pinched pull-apart" setting. Ductile D2 deformation during M2 dominates the structural record. In wide parts of the nappes on the southern flank of the Zone Axiale, D1 is only represented by the inverted position of bedding (overturned limbs of recumbent D1 folds) and by refolded D1 folds. U-Pb monazite and zircon ages and K-Ar muscovite ages are in accord with Ar-Ar data from the literature. HT/LP metamorphism and granitoid intrusion commenced already at ≥330 Ma and continued until 297 Ma, and probably in a separate pulse in post-Stephanian time. Metamorphic ages older than c. 300 Ma are not compatible with the classical model of

  5. Syn-extensional plutonism and peak metamorphism in the albion-raft river-grouse creek metamorphic core complex

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.; Kozdon, R.; Valley, J.W.

    2011-01-01

    The Cassia plutonic complex (CPC) is a group of variably deformed, Oligocene granitic plutons exposed in the lower plate of the Albion-Raft River- Grouse Creek (ARG) metamorphic core complex of Idaho and Utah. The plutons range from granodiorite to garnet-bearing, leucogranite, and during intrusion, sillimanite- grade peak metamorphism and ductile attenuation occurred in the country rocks and normal-sense, amphibolite-grade deformation took place along the Middle Mountain shear zone. U-Pb zircon geochronology from three variably deformed plutons exposed in the lower plate of the ARG metamorphic core complex revealed that each zircon is comprised of inherited cores (dominantly late Archean) and Oligocene igneous overgrowths. Within each pluton, a spread of concordant ages from the Oligocene zircon overgrowths is interpreted as zircon recycling within a long-lived magmatic system. The plutons of the CPC have very low negative whole rock ??Nd values of -26 to -35, and initial Sr values of 0.714 to 0.718, consistent with an ancient, crustal source. Oxygen isotope ratios of the Oligocene zircon overgrowths from the CPC have an average ??18O value of 5.40 ?? 0.63 permil (2SD, n = 65) with a slight trend towards higher ??18O values through time. The ??18O values of the inherited cores of the zircons are more variable at 5.93 ?? 1.51 permil (2SD, n = 29). Therefore, we interpret the plutons of the CPC as derived, at least in part, from melting Archean crust based on the isotope geochemistry. In situ partial melting of the exposed Archean basement that was intruded by the Oligocene plutons of the CPC is excluded as the source for the CPC based on field relationships, age and geochemistry. Correlations between Ti and Hf concentrations in zircons from the CPC suggest that the magmatic system may have become hotter (higher Ti concentration in zircon) and less evolved (lower Hf in zircon concentration) through time. Therefore, the CPC represents prolonged or episodic magmatism

  6. The Liaonan Metamorphic Core Complex: Constitution, Structure and Evolution

    Institute of Scientific and Technical Information of China (English)

    LIU Junlai; GUAN Huimei; JI Mo; CAO Shuyun; HU Ling

    2006-01-01

    The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, and highly metamorphosed rocks and intrusive rocks in the lower plate. The allochthonous upper plate is mainly of Neoproterozoic and Paleozoic rocks weakly deformed and metamorphosed in pre-Indosinan stage. Above these rocks is a small-scale supradetachment basin of Cretaceous sedimentary and volcanic rocks. The lower plate is dominated by Archean TTG gneisses with minor amount of supracrustal rocks. The Archean rocks are intruded by late Mesozoic synkinematic monzogranitic and granitic plutons. Different types of fault rocks, providing clues to the evolution of the detachment fault zone, are well-preserved in the fault zone, e.g. mylonitic gneiss,mylonites, brecciated mylonites, microbreccias and pseudotachylites. Lineations in lower plate granitic intrusions have consistent orientation that indicate uniform top-to-NW shearing along the main detachment fault zone. This also provides evidence for the synkinematic characteristics of the granitic plutons in the lower plate. Structural analysis of the different parts in the mcc and isotopic dating of plutonic rocks from the lower plate and mylonitic rocks from detachment fault zone suggest that exhumation of the mcc started with regional crustal extension due to crustal block rotation and tangential shearing. The extension triggered magma formation, upwelling and emplacement. This event ended with appearance of pseudotachylite and fault gauges formed at the uppermost crustal level.U-Pb dating of single zircon grains from granitic rocks in the lower plate gives an age of 130±5 Ma, and biotite grains from the main detachment fault zone have 40Ar-39Ar ages of 108-119 Ma. Several aspects may provide constraints for the exhumation of the Liaonan mcc. These include regional extensional setting, cover

  7. A comparison of geochemical core scanning methods on high-grade metamorphic COSC-1 cores

    Science.gov (United States)

    Harms, Ulrich; Hierold, Johannes; Meima, Jeannette; Rammlmair, Dieter; Kollaske, Tina

    2016-04-01

    Micro-XRF core scanning of marine and lacustrine sediment cores provides geochemical data for many elements and has become a standard tool in paleoclimate and environmental studies. In contrast, such investigations are unusual on crystalline cores due to limitations such as crystal lattice reflections. We tested micro-XRF scanning on gneisses and mylonites of the COSC-1 ICDP project in the Swedish Caledonides. The data obtained was compared with new high-resolution half-split core surface mapping using an ED-XRF instrument (50 μm res.) and Laser Induced Breakdown Spectroscopy (LIBS) core scanner (200 μm res.). In addition, an assessment was made with whole-core box oversight XRF scanning (Minalyze AB) with 10 cm resolution. High-grade metamorphic rocks including metasedimentary leucocratic gneisses and intercalated mica-rich mylonites of the lower Seve Nappe drilled during COSC-1 have been investigated to compare scanning methods. All data sets show a clear compositional step between gneiss and mylonite indicating a metasedimentary mixed layer origin (sandy to clayey) of the source rocks with extremely limited metasomatic exchange. Micro-XRF profiles are in full accord with high-resolution mapping data but cannot reproduce the detailed structural information provided by mapping data. LIBS data include light elements such as Li that are not measurable with XRF methods and confirm a sharp non-metasomatic transition between gneisses and mylonite. The whole-core box XRF scans are extremely useful to scan the 2500 m of cored material in a short time compared with other methods, and the data is very helpful, for example, for geochemical reconstructing of lithologies.

  8. Genesis of the Hongzhen metamorphic core complex and its tectonic implications

    Institute of Scientific and Technical Information of China (English)

    ZHU Guang; XIE ChengLong; XIANG BiWei; HU ZhaoQi; WANG YongSheng; LI Xing

    2007-01-01

    The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie orogenic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Dongling Group. The present profile of the ductile shear zone with consistent SW-dipping mineral elongation lineation shows antiform and reversed S-shape from northeast to southwest respectively. Exposure structures, microstructures and quartz C-axis fabric all indicate top-to-SW movement for the ductile shear zone. Recrystallisation types of quartz and feldspar in the mylonites demonstrate that the shear zone was developed under the amphibolite facies condition and at mid-crust levels. The metamorphic core complex formed in the Early Cretaceous with a muscovite plateau age of 124.8±1.2 Ma. Regional NE-SW extension along a SW-dipping, gentle detachment zone was responsible for formation of the core complex. Intrusion of the Hongzhen granite with a biotite plateau age of 124.8±1.2 Ma rendered the ductile shear zone curved, uplifted and final localization of the core complex. The Hongzhen metamorphic core complex suggests that the Early Cretaceous magmatism in this region took place under the condition of regional extension and the eastern Yangtze plate also experienced lithospheric thinning.

  9. Genesis of the Hongzhen metamorphic core complex and its tectonic implications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie oro- genic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Dongling Group. The present profile of the ductile shear zone with consistent SW-dipping mineral elongation lineation shows antiform and reversed S-shape from northeast to southwest respectively. Exposure structures, microstructures and quartz C-axis fabric all indicate top-to-SW movement for the ductile shear zone. Recrystallisation types of quartz and feldspar in the mylonites demonstrate that the shear zone was developed under the amphibolite facies condition and at mid-crust levels. The metamorphic core complex formed in the Early Cretaceous with a muscovite plateau age of 124.8±1.2 Ma. Regional NE-SW extension along a SW-dipping, gentle detachment zone was responsible for formation of the core complex. Intrusion of the Hongzhen granite with a biotite plateau age of 124.8±1.2 Ma rendered the ductile shear zone curved, uplifted and final localization of the core complex. The Hongzhen metamorphic core complex suggests that the Early Cretaceous magma- tism in this region took place under the condition of regional extension and the eastern Yangtze plate also experienced lithospheric thinning.

  10. Faulting evidence of isostatic uplift in the Rincon Mountains metamorphic core complex: An image processing analysis

    Science.gov (United States)

    Rodriguez-Guerra, Edna Patricia

    This study focuses on the applications of remote sensing techniques and digital analysis to characterizing of tectonic features of the Rincon Mountains metamorphic core complex. Data included Landsat Thematic Mapper (TM) images, digital elevation models (DEM), and digital orthophoto quadrangle quads (DOQQ). The main findings in this study are two nearly orthogonal systems of structures that have never been reported in the Rincon Mountains. The first system, a penetrative faulting system of the footwall rocks, trends N10--30°W. Similar structures identified in other metamorphic core complexes. The second system trends N60--70°E, and has only been alluded indirectly in the literature of metamorphic core complexes. The structures pervade mylonites in Tanque Verde Mountain, Mica Mountain, and the Rincon Peak area. As measured on the imagery, spacing between the N10--30°W lineaments ranges from ˜0.5 to 2 km, and from 0.25 to 1 km for the N60--70°E system. Field inspection reveals that the N10--30°W trending system, are high-angle normal faults dipping mainly to the west. One of the main faults, named here the Cabeza de Vaca fault, has a polished, planar, striated and grooved surface with slickenlines indicating pure normal dip-slip movement (N10°W, 83°SW; slickensides rake 85°SW). The Cabeza de Vaca fault is the eastern boundary of a 2 km-wide graben, with displacement as great as 400 meters. The N10--30°W faults are syn- to post-mylonitic, high-angle normal faults that formed during isostatic uplift of the Rincon core complex during mid-Tertiary time. This interpretation is based on previous works, which report similar fault patterns in other metamorphic core complexes. Faults trending N20--30°W, shape the east flank of Mica Mountain. These faults, on the back dipping mylonitic zone, dip east and may represent late-stage antithetic shear zones. The Cabeza de Vaca fault and the back dipping antithetic faults accommodate as much as 65% of the extension due to

  11. The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.

    2011-01-01

    The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

  12. The role of partial melting and extensional strain rates in the development of metamorphic core complexes

    Science.gov (United States)

    Rey, P. F.; Teyssier, C.; Whitney, D. L.

    2009-11-01

    Orogenic collapse involves extension and thinning of thick and hot (partially molten) crust, leading to the formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. Two-dimensional thermo-mechanical Ellipsis models evaluate the parameters that likely control the formation and evolution of MCC: the nature and geometry of the heterogeneity that localizes MCC, the presence/absence of a partially molten layer in the lower crust, and the rate of extension. When the localizing heterogeneity is a normal fault in the upper crust, the migmatite core remains in the footwall of the fault, resulting in an asymmetric MCC; if the localizing heterogeneity is point like region within the upper crust, the MCC remains symmetric throughout its development. Therefore, asymmetrically located migmatite domes likely reflect the dip of the original normal fault system that generated the MCC. Modeling of a severe viscosity drop owing to the presence of a partially molten layer, compared to a crust with no melt, demonstrates that the presence of melt slightly enhances upward advection of material and heat. Our experiments show that, when associated with boundary-driven extension, far-field horizontal extension provides space for the domes. Therefore, the buoyancy of migmatite cores contributes little to the outer envelope of metamorphic core complexes, although it may play a significant role in the internal dynamics of the partially molten layer. The presence of melt also favors heterogeneous bulk pure shear of the dome as opposed to the bulk simple shear, which dominates in melt-absent experiments. Melt presence affects the shape of P-T-t paths only slightly for material located near the top of the low-viscosity layer but leads to more complex flow paths for material inside the layer. The effect of extension rate is significant: at high extension rate (cm yr - 1 in the core complex region), partially molten crust crystallizes and cools along a high

  13. Rheological transitions in the middle crust: insights from Cordilleran metamorphic core complexes

    Science.gov (United States)

    Cooper, Frances J.; Platt, John P.; Behr, Whitney M.

    2017-02-01

    High-strain mylonitic rocks in Cordilleran metamorphic core complexes reflect ductile deformation in the middle crust, but in many examples it is unclear how these mylonites relate to the brittle detachments that overlie them. Field observations, microstructural analyses, and thermobarometric data from the footwalls of three metamorphic core complexes in the Basin and Range Province, USA (the Whipple Mountains, California; the northern Snake Range, Nevada; and Ruby Mountains-East Humboldt Range, Nevada), suggest the presence of two distinct rheological transitions in the middle crust: (1) the brittle-ductile transition (BDT), which depends on thermal gradient and tectonic regime, and marks the switch from discrete brittle faulting and cataclasis to continuous, but still localized, ductile shear, and (2) the localized-distributed transition, or LDT, a deeper, dominantly temperature-dependent transition, which marks the switch from localized ductile shear to distributed ductile flow. In this model, brittle normal faults in the upper crust persist as ductile shear zones below the BDT in the middle crust, and sole into the subhorizontal LDT at greater depths.In metamorphic core complexes, the presence of these two distinct rheological transitions results in the development of two zones of ductile deformation: a relatively narrow zone of high-stress mylonite that is spatially and genetically related to the brittle detachment, underlain by a broader zone of high-strain, relatively low-stress rock that formed in the middle crust below the LDT, and in some cases before the detachment was initiated. The two zones show distinct microstructural assemblages, reflecting different conditions of temperature and stress during deformation, and contain superposed sequences of microstructures reflecting progressive exhumation, cooling, and strain localization. The LDT is not always exhumed, or it may be obscured by later deformation, but in the Whipple Mountains, it can be directly

  14. Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece)

    Science.gov (United States)

    Rabillard, Aurélien; Arbaret, Laurent; Jolivet, Laurent; Le Breton, Nicole; Gumiaux, Charles; Augier, Romain; Grasemann, Bernhard

    2015-06-01

    In order to better understand the interactions between plutonic activity and strain localization during metamorphic core complex formation, the Miocene granodioritic pluton of Serifos (Cyclades, Greece) is studied. This pluton (11.6-9.5 Ma) intruded the Cycladic Blueschists during thinning of the Aegean domain along a system of low-angle normal faults belonging to the south dipping West Cycladic Detachment System (WCDS). Based on structural fieldwork, together with microstructural observations and anisotropy of magnetic susceptibility, we recognize a continuum of deformation from magmatic to brittle conditions within the magmatic body. This succession of deformation events is kinematically compatible with the development of the WCDS. The architecture of the pluton shows a marked asymmetry resulting from its interaction with the detachments. We propose a tectonic scenario for the emplacement of Serifos pluton and its subsequent cooling during the Aegean extension: (1) A first stage corresponds to the metamorphic core complex initiation and associated southwestward shearing along the Meghàlo Livadhi detachment. (2) In the second stage, the Serifos pluton has intruded the dome at shallow crustal level, piercing through the ductile/brittle Meghàlo Livadhi detachment. Southwest directed extensional deformation was contemporaneously transferred upward in the crust along the more localized Kàvos Kiklopas detachment. (3) The third stage was marked by synmagmatic extensional deformation and strain localization at the contact between the pluton and the host rocks resulting in nucleation of narrow shear zones, which (4) continued to develop after the pluton solidification.

  15. Origin of eclogite-bearing, domed, layered metamorphic complexes ("core complexes") in the D'entrecasteaux Islands, Papua New Guinea

    Science.gov (United States)

    Davies, Hugh L.; Warren, R. G.

    1988-02-01

    Compositionally layered metamorphic rocks of the D'Entrecasteaux Islands, Papua New Guinea, are folded into domes and antiforms bounded by faults parallel to metamorphic layering and foliation. The structures are broadly similar to the metamorphic "core complexes" of western North America. Lenses of ultramafic rock lie on the bounding faults, and the same faults have served as loci for Quaternary andesitic volcanic activity. Metamorphic grade in the northern islands (Goodenough and Fergusson) is amphibolite facies, with pockets of eclogite (Fergusson Island only) and granulite, and is greenschist facies in the southern island (Normanby). In all three islands there is a characteristic tectonostratigraphic sequence (FMU sequence) from felsic metamorphic rocks at base, or internally, through mafic metamorphic rocks to ultramafic rocks at top, or externally. The association of metamorphic and ultramafic rocks apparently developed in a north dipping Paleogene subduction system and was exhumed to upper crustal level in the Oligocene--Early Miocene, possibly by reversal of movement on faults in the former subduction system. Vigorous uplift and development of domes and antiforms in the Pliocene was triggered by westward propagation of the Woodlark Basin spreading ridge and was accompanied by rifting, rift-related magmatism, rapid erosion, and deposition of coarse sediment in the adjacent Trobriand Basin.

  16. Mazatan metamorphic core complex (Sonora, Mexico): structures along the detachment fault and its exhumation evolution

    Science.gov (United States)

    Granillo, Ricardo Vega; Calmus, Thierry

    2003-08-01

    The Mazatán Sierra is the southernmost metamorphic core complex (MCC) of the Tertiary extensional belt of the western Cordillera. Its structural and lithological features are similar to those found in other MCC in Sonora and Arizona. The lower plate is composed of Proterozoic igneous and metamorphic rocks intruded by Tertiary plutons, both of which are overprinted by mylonitic foliation and N70°E-trending stretching lineation. Ductile and brittle-ductile deformations were produced by Tertiary extension along a normal shear zone or detachment fault. Shear sense is consistent across the Sierra and indicates a top to the WSW motion. The lithology and fabric reflect variations in temperature and pressure conditions during extensional deformation. The upper plate consists mainly of Cambrian-Mississippian limestone and minor quartzite, covered by upper Cretaceous volcanic rocks, and then by Tertiary syntectonic sedimentary deposits with interbedded volcanic flows. Doming caused uplift and denudation of the detachment, as well as successive low-angle and high-angle normal faulting across the western slope of Mazatán Sierra. An 18±3 Ma apatite fission-track age was obtained for a sample of Proterozoic monzogranite from the lower plate. The mean fission-track length indicates rapid cooling and consequent rapid uplift of this sample during the last stage of crustal extension.

  17. Strain and flow in the metamorphic core complex of Ios Island (Cyclades, Greece)

    Science.gov (United States)

    Mizera, Marcel; Behrmann, Jan H.

    2016-10-01

    We have analysed strain and flow kinematics in the footwall of the South Cyclades Shear Zone (SCSZ), an important tectonic boundary within the Attic-Cycladic Crystalline Complex exposed on Ios Island, Cyclades, Aegean Sea. Coarse-grained augen gneisses in the basement unit flooring the SCSZ and forming a metamorphic core complex are excellently suited to measure finite strain using the Fry method and estimate the vorticity number ( W k) of flow with the "blocked-object" method. The results show that Oligo-Miocene exhumation of the basement unit during extension brought approximately 70 % N-S crustal stretching and up to 40 % subvertical shortening in a plane strain environment ( k = 0.99). Linear down-section strain decrease constrains a zone of contact deformation of the SCSZ of about 1.5 km thick. Kinematic vorticity number estimates suggest little deviation from pure shear ( W k = 0.26). Finite strain and W k are not correlated, indicating that the Ios basement and the overlying cover units were stretched compatibly. While the SCSZ is a localized zone of high strain, net displacement, however, may be restricted to about ten kilometres. This has important repercussions on large-scale tectonic models for extension in the Aegean.

  18. Formation of metamorphic core complexes in non-over-thickened continental crust: A case study of Liaodong Peninsula (East Asia)

    OpenAIRE

    Wang, Kun; Burov, Evgueni; Gumiaux, Charles; Chen, Yan; Lu, Gang; Mezri, Leila; Zhao, Liang

    2015-01-01

    International audience; Pre-thickened hot orogenic crust is often considered a necessary condition for the formation of continental metamorphic core complexes (MCCs). However, the discovery of MCCs in the Liaodong Peninsula, where the crust has a normal thickness (~ 35 km), challenges the universality of this scenario. Therefore, we implement a series of 2-D numerical thermo-mechanical modeling experiments in which we investigate the conditions of MCC formation in normal crusts, as well as th...

  19. Tectono-geochemistry analyses of fault rocks in shear zone of metamorphic core complex in north Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Through a systematic sampling test and mass equilibrium analysis of the three sorts of complex assemblages (intrusive complex, tectonic complex and metamorphic complex) penetrating the metamorphic core complex (MCC) in the Xingzi area of north Jiangxi, the authors find that, like major elements, the trace elements of small ion radius, big specific gravity and high potential form the accumulative series in fault rocks, instead of divergence series. In rare earth elements, ΣREE and HREE are relatively centralized, characteristic of rising and Eu loss in the distribution pattern. Only on the upside of the ductile fault, there exist some phenomena contrary to the general rules, most of which are restricted by the rock rheologic differentiation, coupling of mechanics and chemistry, and inversion of tectonic regime.

  20. SKS anisotropy on a dense broadband array over the Ruby Mountains Metamorphic Core Complex, Nevada

    Science.gov (United States)

    Golos, E. M.; Litherland, M.; Klemperer, S. L.

    2012-12-01

    The Ruby Mountains metamorphic core complex (RMCC), located in the Basin-and-Range Province in northeastern Nevada, is thought to have formed by some combination of low-angle detachment faulting, lateral crustal flow, and vertical diapirism. We deployed a 50-station densely-spaced passive seismic array from June 2010 through June 2012, as part of the Earthscope Flexible Array campaign. We were particularly interested in determining whether two layers of anisotropy are distinguishable, as this could imply the existence of discrete crustal and mantle strain fabrics, and potentially provide insight into local flow involved in the formation of the RMCC. We analyzed SKS splitting using the SplitLab program (Wüstefeld et al., 2008, Comp. Geosci. 34, 515) to calculate fast-axis direction, Φ, and time delay, δt, of events with magnitude ≥ 5.50 at distances of 90 to 130 degrees on 35 of our broadband seismic stations. Approximately ten such events were used per station. The mean delay time found was 0.8 s with a standard deviation of 0.28 s, and the mean fast-axis azimuthal direction was -70.1 degrees with a standard deviation of 19 degrees. We did not find evidence of two-layer anisotropy beneath the Ruby Mountains: mean splitting times within and beyond the RMCC are well within one standard deviation of each other, and average fast directions show no obvious trend within the RMCC. Either there is no significant additional crustal strain associated with the RMCC formation; or, the strain direction is identical to that of regional mantle flow; or, most likely, our data quality is insufficient to resolve crustal anisotropy superimposed on mantle anisotropy with a potentially similar fast direction. However, a systematic counterclockwise rotation of fast-axis direction across our array—the four easternmost stations (D03, D02, B17, and C18) have a mean Φ = -40.5 degrees, whereas the four westernmost stations (D05, B01, B02, and C02) have a mean Φ = -79.5 degrees

  1. METAMORPHIC PETROLOGY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160203 Ji Genyuan(Cores and Samples Center of Land Resources,Sanhe 065201,China);Dai Tagen Petrological Characteristics and Original Rocks for Metamorphic Rocks from the Jinmo Sb Deposit,in Quang Ninh Province,Vietnam(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,35(1),2015,p.43-46,6illus.,1table,6refs.)

  2. Structural analysis and deformation characteristics of the Yingba metamorphic core complex, northwestern margin of the North China craton, NE Asia

    Science.gov (United States)

    Yin, Congyuan; Zhang, Bo; Han, Bao-Fu; Zhang, Jinjiang; Wang, Yang; Ai, Sheng

    2017-01-01

    The presence of the Yingba (Yinggete-Bagemaode) metamorphic core complex (MCC) is confirmed near the Sino-Mongolian border in China. We report its structural evolution and the rheological features of ductile shear zones within this complex. Three deformations (Ds, Dm, and Db) since the Late Jurassic are identified. Ds is characterized by ductile structures that resulted from early NW-oriented, low-angle, extensional ductile shearing. Dm is associated with partial melting and magmatic diapirism, which accelerated the formation of the dome-like geometry of the Yingba MCC. Synchronously with or slightly subsequently to Ds and Dm, the Yingba MCC was subjected to brittle, extensional faulting (Db), which was accompanied by the exhumation of the lower crust and the formation of supracrustal basins. The ductile shearing (Ds) developed under greenschist-to amphibolite-facies metamorphic conditions (400-650 °C), as indicated by microstructures in quartz and feldspar, quartz [c] axis fabrics, and two-feldspar geothermometry. The mean kinematic vorticity estimates of 48-62% show a pure shear-preferred flow during Ds. The Yingba MCC provides an excellent sample that recorded an intermediate to high temperature shearing, which also implies the widely extensional regime in northeastern Asia at that time.

  3. New and Noteworthy Records of Mosses from Doi (Mt. Inthanon, Chiang Mai, Chom Tong District, Northern Thailand

    Directory of Open Access Journals (Sweden)

    Printarakul Narin

    2013-07-01

    Full Text Available Mosses new to Thailand (35 species in 29 genera and new to Doi Inthanon (6 species in 6 genera are reported based on collections made by the authors. Austinia tenuinervis var. micholitzii W. R. Buck & H. A. Crum, Brotherella nictans (Mitt. Broth., Chionostomum hainanensis B. C. Tan & Y. Jia, Clastobryopsis muelleri (Dixon Tixier, Trichosteleum stigmosum Mitt., Micralsopsis complanata (Dixon W. R. Buck, and Fissidens schwabei Nog. are fully illustrated.

  4. Geologic, structural, and thermochronologic constraints on the tectonic evolution of the Sierra Mazatán core complex, Sonora, Mexico: New insights into metamorphic core complex formation

    Science.gov (United States)

    Wong, Martin S.; Gans, Phillip B.

    2008-08-01

    The Sierra Mazatán in northwestern Mexico is the southernmost metamorphic core complex in the North American Cordillera. Large-magnitude Tertiary extension at Sierra Mazatán involved both ductile and brittle slip along a major normal fault that presently dips 10°-15° west. Extension was polyphase and involved an early period of extension from 25 to 23 Ma followed by major slip from 21 to 16 Ma. Total slip was ≤20 km and occurred at rates of 3-4 mm/a. This extension predated the plate boundary change to transtension at ˜12 Ma and was largely decoupled from relative Pacific-North American plate motion. Numerous lines of evidence suggest that the presently low-angle normal fault initiated at a steep dip (50°-60°) and was rotated to lower angles during slip. When corrected for this tilting, fault corrugations at Sierra Mazatán had a similar geometry to the segmentation of many active normal faults, which is compatible with their origin as primary fault features. Many aspects of the Sierra Mazatán are comparable to large active normal faults, indicating that this core complex formed owing to prolonged extension on an otherwise typical high-angle normal fault. Therefore, core complexes need not represent a fundamentally unique mode of crustal extension.

  5. On the Survivability and Metamorphism of Tidally Disrupted Giant Planets: the Role of Dense Cores

    CERN Document Server

    Liu, Shang-Fei; Lin, Douglas N C; Ramirez-Ruiz, Enrico

    2012-01-01

    A large population of planetary candidates in short-period orbits have been found through transit searches. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate some misaligned planetary systems. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-in super-Earths and Neptune-like planets through the tidal disruption of giant planets as a consequence of these dynamical processes. We model the core-envelope structure of giant planets with composite polytropes. Using three-dimensional hydrodynamical simulations of close encounters between planets and their host stars, we find that the presence of a core with a mass more than ten Earth masses can significantly increase the fraction of envelope which remains boun...

  6. A tale of two eras: Pliocene-Pleistocene unroofing of Cenozoic and late Archean zircons from active metamorphic core complexes, Solomon Sea, Papua New Guinea

    Science.gov (United States)

    Baldwin, Suzanne L.; Ireland, Trevor R.

    1995-11-01

    U/Pb ion microprobe analyses of zircons from gneisses and granodiorites exposed in the D'Entrecasteaux Islands, and from conglomerate sections of the Goodenough No. 1 well in the adjacent Trobriand Basin, provide constraints on the age of magmatism, peak metamorphism, and nature of rocks unroofed during initial stages of metamorphic core complex formation in the Solomon Sea. The youngest populations of zircons from felsic gneisses and granodiorites indicate late Pliocene 206Pb*/238U ages. No inherited zircons were identified in the granodiorites, and the 206Pb*/238U ages (1.65 ± 0.18 Ma; 1.98 ± 0.08 Ma [2σ]) are interpreted as crystallization ages. These synkinematically emplaced granodiorites, intruded into actively extending continental crust, are some of the youngest known granitoids currently exposed at the Earth' surface. Zircon ages from felsic gneisses (2.63 ± 0.16 Ma; 2.72 ± 0.28 Ma [2σ]) are interpreted to date zircon growth subsequent to eclogite facies metamorphism. Felsic gneiss samples also contained zircon xenocrysts from Cretaceous-Miocene protoliths. In striking contrast, zircons from igneous and metamorphic clasts from the Goodenough No. 1 well indicate a single population with a 207Pb*/206/Pb* age of 2781 ± 9 Ma (2σ). We speculate that they are derived from basement rocks unroofed during initial stages of development of the D&Entrecasteaux metamorphic core complexes. These results provide the first direct evidence for the existence of Archean protoliths in the basement rocks of southeastern Papua New Guinea.

  7. Co-axial superposed folding and inverted regional metamorphism in the Tonga Formation: Cretaceous accretionary thrust tectonics in the Cascades crystalline core

    Science.gov (United States)

    Luke, Jensen; Lebit, Hermann; Paterson, Scott; Miller, Robert; Vernon, Ron

    2017-04-01

    The Cascades crystalline core forms part of the Cretaceous magmatic belt of western North America and exposes a crustal section composed of primarily tonalitic plutons that intruded siliciclastic metasediments of an arc-derived accretional system, and local meta-basalt/chert sequences. This study is the first attempt to correlate the well understood intrusive and P-T-t history of the metasedimentary and plutonic terrane with the kinematics and tectonic boundary conditions by rigorous analysis of structures documented in the Tonga Formation exposed at the western edge of the core. The Tonga Formation comprises pelite-psammite metasediments, which increase from greenschist ( 300-350° C) to amphibolite grade ( 500-600° C) from south to north. This metamorphic gradient is inverted relative to a major westward verging and downward facing fold system that dominates the internal architecture of the formation and implies that the initial regional metamorphic signature was established prior to the early fold generation. Subsequent co-axial fold superposition is seen as a consequence of the persistent accretional west-vergent thrusting in the foreland of the magmatic arc. The central section of the Cascades Range, exposed in western Washington, forms part of the Cretaceous accretional/magmatic arc extending over 4,000 km along western North America from Baja California to British Columbia (Fig. 1a) (e.g. Misch, 1966; Brown, 1987; Tabor et al., 1989). Two models exist for the evolution of the Cascades crystalline core with one invoking magmatic loading (e.g. Brown and Walker, 1993) as the major cause for rapid loading, consequent regional metamorphism and vertical uplift (Evans and Berti, 1986). Conversely, other workers favor a model that suggests loading as a consequence of tectonic, thrust-related thickening, followed by rapid exhumation of the exposed crustal section of 10 to 40 km paleodepth (e.g. Matzel, 2004; Patterson et al., 2004; Stowell et al., 2007). In this

  8. Complete structural analysis of the Upper plate of Attica metamorphic core complex (Sub-Pelagonian Zone, Internal Hellenides, Central Greece)

    Science.gov (United States)

    Diamantopoulos, A.

    2009-04-01

    Two structural plates compose the Miocene Cordillera-type core complex of Attica, separated by a km-scale detachment fault (Diamantopoulos 2005, Diamantopoulos 2006). The Upper Plate contains rocks of the Sub-Pelagonian Zone and the Neogene basin of Athens. The Lower Plate includes Neogene basins developed onto Late Cenozoic a-type metamorphic domes. This work analyzes the geometry and the kinematic path of flow of rock masses of the Sub-Pelagonian rocks from the northern parts of Penteli mountain up to the Gulf of Alkyonides. The UP comprises Permo-Triassic rocks, Triassic-Jurassic carbonates and Late Jurassic melange, Mesozoic serpentinites containing Fe-Ni rocks, occurrences of carbonates and radiolarites, Cretaceous limestones as well as Paleocene flysch. A 3D structural analysis in all the scales concludes that: a) Multiple steep- and low-angle cataclastic shear zones define the boundaries among distinctive Permo-Triassic rocks, among Triassic-Jurassic rocks and Permo-Triassic rocks, among Permo-Triassic rocks and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and serpentinites, among serpentinites and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Jurassic mélange, among Jurassic mélange and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Jurassic radiolarites, among Cretaceous and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Fe-Ni rocks, among Cretaceous and Fe-Ni rocks, among Paleocene and Triassic-Jurassic rocks, among Paleocene and Permo-Triassic rocks as well as among Cretaceous and Paleocene rocks, b) Apparent omissions of intermediate lithologies throughout the entire nappe stack observed in multiple locations suggest intense non-coaxial thinning, c) A remarkable contrast in the distributed strain between the distinctive lithologies is well-recognized, dependent by the rheological and mechanical character of the rocks, d) Thrust-like geometries and macroscopic repetitions between competent and incompetent

  9. Shallow seismic reflection profiling over a Mylonitic Shear Zone, Ruby Mountains-East Humboldt Range Metamorphic Core Complex, NE Nevada

    Science.gov (United States)

    Hawman, Robert B.; Ahmed, Hishameldin O.

    Seismic reflection profiling carried out with a sledgehammer source has imaged Tertiary extensional structures over a depth range of 45-500 m within lower plate rocks of the Ruby Mountains-East Humboldt Range metamorphic core complex. The 400-m CMP profile straddles an exposed contact between tectonic slices of dolomitic marble and metaquartzite emplaced by low-angle ductile-brittle normal faulting. Subhorizontal reflections from layering within the tectonic slices give way at 160 ms (160-220 m depth) to reflections that dip 15-45° to the east, in contrast with dips indicated in a poorly imaged segment of a coincident regional seismic line but in agreement with dips of foliation mapped for nearby up-plunge exposures of a late Proterozoic - early Cambrian sequence of metaquartzites, marbles, schists, and granitic rocks that forms the bulk of the underlying shear zone. Differences with the regional profile are attributed to the higher frequencies (30-100 Hz) generated by the smaller hammer source and the enhanced lateral resolution provided by the straighter profile and much smaller shot-receiver offsets (46-157 m) contributing to the stack for each CMP. The results suggest that the near-surface, east-dipping component of the anastomozing shear zone extends at least 2 km farther east than previously interpreted. Rough estimates of interval velocities (1500-4500 m/s) inferred from stacking velocities are consistent with velocities of mylonitic rocks measured perpendicular to foliation at low confining pressures when the effects of macroscopic fractures and joints are taken into account. Peaks in amplitude spectra of stacked traces suggest long-wavelength components of layering resolved at scales from 5-8 m (depth: 50 m) to 15-25 m (depth: 500 m).

  10. Continental rifting and metamorphic core complex formation ahead of the Woodlark spreading ridge, D'Entrecasteaux Islands, Papua New Guinea

    Science.gov (United States)

    Little, Timothy A.; Baldwin, S. L.; Fitzgerald, P. G.; Monteleone, B.

    2007-02-01

    We evaluate the role of a metamorphic core complex (MCC) on Normanby Island in the Woodlark rift. Located 1 km thickness of blueschist-derived mylonites formed in a midcrustal shear zone during the Pliocene at ˜400-500°C. This top-to-the-north zone appears to have reactivated the gently dipping base of the Papuan ophiolite (Papuan Ultramafic Body, PUB), and its continued activity appears to control the north dipping asymmetry of active half grabens to the north of the MCC and rapid subsidence of the Woodlark Rise. Mylonites in the MCC's lower plate have been exhumed along a detachment as a result of >50 km of slip at rates of >12 mm/yr. The inactive, back-tilted detachment preserves fault surface megamullions and mylonitic lineations parallel to the Plio-Pleistocene plate motion. A second SE vergent detachment has been established on the opposite flank of this rolling-hinge style MCC, probably since 0.8) at depth, and provide a sufficient mechanism for activating low-angle normal faults in the rift. MCC inception was not localized to the tip of the Woodlark MOR. Instead, extreme crustal thinning near the MCC preconditioned later continental breakup. The lower crust appears to be weak, thickening beneath unloaded footwalls to uplift MCCs above sea level, and flowing laterally to even out regional crustal thickness contrasts on a 1-6 m.y. timescale. Deep-seated transforms separate rheologically distinct domains in which extension has been localized along the weak PUB to cause MCC formation, vs. those in which slip is distributed across an imbricate zone of more uniform strength normal faults. The Trobriand fault connects in the eastern Woodlark rift to the Owen Stanley fault in the Papuan Ranges, which is probably moving at nearly the full plate velocity.

  11. Formation of metamorphic core complexes in non-over-thickened continental crust: A case study of Liaodong Peninsula (East Asia)

    Science.gov (United States)

    Wang, Kun; Burov, Evgueni; Gumiaux, Charles; Chen, Yan; Lu, Gang; Mezri, Leila; Zhao, Liang

    2015-12-01

    Pre-thickened hot orogenic crust is often considered a necessary condition for the formation of continental metamorphic core complexes (MCCs). However, the discovery of MCCs in the Liaodong Peninsula, where the crust has a normal thickness (~ 35 km), challenges the universality of this scenario. Therefore, we implement a series of 2-D numerical thermo-mechanical modeling experiments in which we investigate the conditions of MCC formation in normal crusts, as well as the relationships between the underlying mechanisms and the syn-rift basin evolution. In these experiments, we explore the impact of the lithostratigraphic and thermo-rheological structure of the crust. We also examine the lithosphere thickness, strain softening, extension rate, and surface erosion/ sedimentation processes. The experiments demonstrate that high thermal gradients and crustal heterogeneities result only in a symmetric spreading dome, which is geometrically incompatible with the observations of the MCCs in the Liaodong Peninsula. According to our further findings, the strain softening should play a key role in the development of asymmetric strain localization and domal topography uplift, while synchronous surface erosion controls the polarity of the syn-rift basin. The synthetic model data are compatible with the geological observations and cooling history based on the thermo-chronology for the eastern part of the East Asia during the late Mesozoic to the early Cenozoic. The model-predicted P-T-t paths are essentially different from those inferred for the other known MCCs, confirming the exceptional character of the MCC formation in the wide rift system of the East Asia.

  12. Tectonic stratigraphy near a metamorphic core complex: Lessons from the Castaneda-signal area of west-central Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Lucchitta, I. (Geological Survey, Flagstaff, AZ (United States)); Suneson, N.H. (Oklahoma Geological Survey, Norman, OK (United States))

    1993-04-01

    A sequence of latest Oligocene through Quaternary sedimentary and volcanic rocks, when analyzed tectonically and combined with lithologically distinctive source terranes, clarifies the character and timing of Neogene extension just north of the Buckskin-Rawhide metamorphic core complex (BRMCC) in west-central Arizona. The oldest strata (basal arkose of Lucchitta and Suneson) reflect regional stability and a southwesterly paleoslope. In latest Oligocene time, this drainage was ponded by an upwarp (now exposed as the BRMCC) rising to the southwest. The resulting lake beds contain a thin 26.6 MA airfall tuff that marks the beginning of volcanic activity in the region. A widespread breccia records the progressive unroofing of the still-rising CC. Mantle-driven crustal heating probably caused the upwarp and allowed the eruption of voluminous mantle-derived basalt and basaltic andesite about 19 MA (early basalts, Artillery Basalt). The overlying syntectonic conglomerate (arkose of Keenan Camp) was deposited during a period of extreme extension, low-angle detachment faulting, and block rotation, typical of highly extended terranes. The conglomerate is interlayered with widespread silicic volcanic rocks (15--10 MA) derived from the lower crust and large gravity-glide sheets lithologically identical to the breccia and similarly derived from the CC to the south. Unconformably overlying the conglomerate are locally derived fanglomerate and 13--8.5 MA (mesa-forming) basalt that accumulated in present-day basins of classic basin-range type. Untilted and nearly unfaulted 7.7--5.4 MA mantle-derived megacryst-bearing basalt marks the cessation of tectonic activity.

  13. Analysis of magnetotelluric profile data from the Ruby Mountains metamorphic core complex and southern Carlin Trend region, Nevada

    Science.gov (United States)

    Wannamaker, Philip E.; Doerner, William M.; Stodt, John A.; Sodergen, Timothy L.; Rodriguez, Brian D.

    2002-01-01

    We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings are in three east-west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass and Secret Pass latitudes). Two shorter lines cross a prominent east-west structure to the north of the northern profile. MT impedance tensor and vertical magnetic field rotations imply a N-NNE average regional geoelectric strike, similar to surface geologic trends. Model resistivity cross sections were derived using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure, emphasizing the transverse magnetic (TM) mode and vertical magnetic field data. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity-thickness product) from east to west. These increases in conductance are attributed to graphitization caused by Elko-Sevier era compressional shear deformation and

  14. THE GEOCHEMISTRY AND AGES OF ROCKS IN THE FOOTWALL OF THE BUTULIYN-NUR AND ZAGAN METAMORPHIC CORE COMPLEXES (NORTH MONGOLIA – WESTERN TRANSBAIKALIA)

    OpenAIRE

    T. V. Donskaya; A.M. MAZUKABZOV

    2015-01-01

    This article reviews data on ages of rocks in the footwall of the Butuliyn-Nur and Zagan metamorphic core complexes (MCC) and provides new data on the geochemistry of the rock complexes. It is noted that the oldest rocks are mylonitized gneisses on rhyolites (554 Ma) in the footwall of the Butuliyn-Nur MCC. The Late Permian – Triassic (249–211 Ma) igneous rocks are ubiquitous in the footwall of the Butuliyn-Nur and Zagan MCC. The youngest rocks in the studied MCC are the Jurassic granitoids (...

  15. 豫西地区变质核杂岩的基本特征及其对金矿床的控制%Metamorphic core complex and its controlling role of gold deposits in Western Henan

    Institute of Scientific and Technical Information of China (English)

    孙卫志; 李磊; 谢劲松; 刘德民; 张灯堂; 杨小芬

    2013-01-01

    There exists one EW extending metamorphic core complex belt in Western Henan , which is formed from west to east by Xiaoqinling metamorphic core complex .Xiaoshan metamorphic core complex and Xiong'ershan metamorphic core complex .Xiao Qinling gold field ,Xiaoshan gold field and Xiong'ershan gold field in Western Henan Province are corresponding to Xiao Qinling metamorphic core complex .Xiaoshan metamorphic core complex and Xiong'ershan metamorphic core complex in space .The gold deposits are hosted in the different levels of the metamor-phic core complexes'detachment faults .After collecting and documenting the precise radiometric age date ,the metallo-genisis of gold deposits focuses on two periods 133-122 Ma(the main period) and 115.3-114.34 Ma,which are consistent with the metamorphic core complex territorially SEE-NWW extending phase ( 135 -123 Ma ) and the late breakdown phase(116 Ma).This illustrates that the territorially SEE-NWW extending phase parallel to the orogenic belt is the main phase for mineralization and the breakdown phase vertical to the orogenic belt is another important section for the mineralization .Through systematic study on the typical deposits'metallogenic characteristics and the for-mation,evolution and ore-controlling mechanism of metamorphic core complexes ,it can be discovered obviously that the metamorphic core complex belt plays an important role in controlling the gold deposits'types,scale,spatial distri-bution and temporal distribution in Western Henan Province ,so we can use it in looking for more gold deposits in this area.%豫西地区近EW向展布一条变质核杂岩带,自西向东由小秦岭变质核杂岩、崤山变质核杂岩和熊耳山变质核杂岩等多个变质核杂岩组成。豫西地区的小秦岭金矿田、崤山金矿田和熊耳山金矿田,在空间上分别对应于小秦岭变质核杂岩、崤山变质核杂岩和熊耳山变质核杂岩,金矿床产于变质核杂岩不同层次的拆离

  16. Dike emplacement, footwall rotation, and the transition from magmatic to tectonic extension in the Whipple Mountains metamorphic core complex, southeastern California

    Science.gov (United States)

    Gans, Phillip B.; Gentry, Beau J.

    2016-11-01

    The Chambers Well dike swarm and associated plutonic/volcanic rocks in the western footwall of the Whipple Detachment Fault (WDF) provide key insight into the evolution of this metamorphic core complex. New structural and geochronologic data suggest that the western 12-15 km of exposed footwall is steeply tilted to the SW, providing a cross-sectional view of the upper crust, from the Miocene erosion surface to the top of the coeval mylonitization. Ages and compositions of dikes are indistinguishable from adjacent thick volcanic successions. Several kilometers of early Miocene extension ( 20.5 to 19.0 Ma) were accommodated by magmatic accretion but transitioned to rapid extensional faulting and tilting at 19.0-18.5 Ma. The subhorizontal WDF in this area initiated as a northeast dipping high-angle (50-60°) normal fault that breached the surface locally, not in a breakaway tens of kilometers to the west. Large-scale tilting and differential uplift of the western footwall was in part coeval with mylonitization and dike emplacement and was accomplished by block rotation in the hanging wall of additional normal faults, isostatic uplift, and flow of lower crust from beneath less extended regions to the west. The WDF is likely a composite surface with a western segment that had ceased moving by 18.5 Ma, cut by successively younger and steeper fault(s) to the east. Perhaps, the most important difference between seismogenic high-angle normal faults and low-angle "detachment faults" characteristic of metamorphic core complexes is one of magnitude and rate of total accumulated slip, not of initial failure conditions.

  17. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China

    Science.gov (United States)

    Ji, Wenbin; Lin, Wei; Faure, Michel; Shi, Yonghong; Wang, Qingchen

    2016-03-01

    The Dabieshan massif is famous as a portion of the world's largest HP-UHP metamorphic belt in east-central China that was built by the Triassic North-South China collision. The central domain of the Dabieshan massif is occupied by a huge migmatite-cored dome [i.e., the central Dabieshan dome (CDD)]. Origin of this domal structure remains controversial. Synthesizing previous and our new structural and geochronological data, we define the Cretaceous Dabieshan as an orogen-scale metamorphic core complex (MCC) with a multistage history. Onset of lithospheric extension in the Dabieshan area occurred as early as the commencement of crustal anatexis at the earliest Cretaceous (ca. 145 Ma), which was followed by primary (early-stage) detachment during 142-130 Ma. The central Dabieshan complex in the footwall and surrounding detachment faults recorded a consistently top-to-the-NW shearing. It is thus inferred that the primary detachment was initiated from a flat-lying detachment zone at the middle crust level. Removal of the orogenic root by delamination at ca. 130 Ma came into the extensional climax, and subsequently isostatic rebound resulted in rapid doming. Along with exhumation of the footwall, the mid-crustal detachment zone had been warped as shear zones around the CDD. After 120 Ma, the detachment system probably experienced a migration accommodated to the crustal adjustment, which led to secondary (late-stage) detachment with localized ductile shearing at ca. 110 Ma. The migmatite-gneiss with HP/UHP relicts in the CDD (i.e., the central Dabieshan complex) was product of the Cretaceous crustal anatexis that consumed the deep-seated part of the HP-UHP slices and the underlying para-autochthonous basement. Compared with the contemporaneous MCCs widely developed along the eastern margin of the Eurasian continent, we proposed that occurrence of the Dabieshan MCC shares the same tectonic setting as the "destruction of the North China craton". However, geodynamic trigger

  18. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China

    Science.gov (United States)

    Ji, Wenbin; Lin, Wei; Faure, Michel; Shi, Yonghong; Wang, Qingchen

    2017-06-01

    The Dabieshan massif is famous as a portion of the world's largest HP-UHP metamorphic belt in east-central China that was built by the Triassic North-South China collision. The central domain of the Dabieshan massif is occupied by a huge migmatite-cored dome [i.e., the central Dabieshan dome (CDD)]. Origin of this domal structure remains controversial. Synthesizing previous and our new structural and geochronological data, we define the Cretaceous Dabieshan as an orogen-scale metamorphic core complex (MCC) with a multistage history. Onset of lithospheric extension in the Dabieshan area occurred as early as the commencement of crustal anatexis at the earliest Cretaceous (ca. 145 Ma), which was followed by primary (early-stage) detachment during 142-130 Ma. The central Dabieshan complex in the footwall and surrounding detachment faults recorded a consistently top-to-the-NW shearing. It is thus inferred that the primary detachment was initiated from a flat-lying detachment zone at the middle crust level. Removal of the orogenic root by delamination at ca. 130 Ma came into the extensional climax, and subsequently isostatic rebound resulted in rapid doming. Along with exhumation of the footwall, the mid-crustal detachment zone had been warped as shear zones around the CDD. After 120 Ma, the detachment system probably experienced a migration accommodated to the crustal adjustment, which led to secondary (late-stage) detachment with localized ductile shearing at ca. 110 Ma. The migmatite-gneiss with HP/UHP relicts in the CDD (i.e., the central Dabieshan complex) was product of the Cretaceous crustal anatexis that consumed the deep-seated part of the HP-UHP slices and the underlying para-autochthonous basement. Compared with the contemporaneous MCCs widely developed along the eastern margin of the Eurasian continent, we proposed that occurrence of the Dabieshan MCC shares the same tectonic setting as the "destruction of the North China craton". However, geodynamic trigger

  19. Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust

    Science.gov (United States)

    Howard, K.A.

    2003-01-01

    The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ???50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pin??on and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large

  20. Structures of mylonitic granites of the Yagan metamorphic core complex on Sino-Mongolian border——implications for its kinematics and chronology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mylonitic granitic plutons are extended in line-shape (L) and parallel to the regional extensional shear foliation. After being unstrained, the primary shapes of these plutons are also nearly sheet-like (S). Their fabrics are of S-L or L type. Various kinds of shear marks indicate top-to-south shear. The plutons of various stages are different in deformation intensity; however, the foliation and lineation of these rocks have the same shear sense, which suggests progressive ductile shearing. The development mechanisms of the fabrics include magmatic flow, high-temperature solidstate flow and mid-low temperature solid-state flow. All this demonstrates that these plutons are probably early synextensional tectonic plutons. Their structural features and ages suggest that the low- and mid-crustal extensional detachments might have occurred at the early stage of the development of the metamorphic core complex in the early Mesozoic. These deformations are much deeper at levels and much older than those formed at the final formation stage.

  1. Forceful Emplacement of Granitic Plutons in an Extensional Tectonic Setting: Syn-kinematic Plutons in the Yagan-Onch Hayrhan Metamorphic Core Complex

    Institute of Scientific and Technical Information of China (English)

    王涛; 郑亚东; 李天兵; 高永军; 马铭波

    2002-01-01

    It is generally considered that granitic plutons are forcefully emplaced in a compressional setting and permissively emplaced in an extensional setting. This paper, however, shows that syn-kinematic (extensional) elliptic granitic plutons in the Yagan-Onch Hayrhan metamorphic core complex (MCC) have relatively strong forceful emplacement, which are indicated by (1) concentric distribution of the rock units, (2) a strain pattern with strong strains on the margins and low strains at the centre of a pluton, and particularly (3) syn-emplacement shortening of the host rocks within the aureole. The strain analysis for the host rocks shows that the host-rock ductile shortening, I.e. Forceful emplacement, provides about 16?24% of the emplacement space for the present plutons. All these suggest that forceful emplacement occurs not only in a compressional tectonic setting, but also in an extensional setting. This study further demonstrates the significance of the multiple emplacement of granitic plutons and provides new information about the causality between granitic magmatism and the formation of the MCC and its dynamics.

  2. What do fault patterns reveal about the latest phase of extension within the Northern Snake Range metamorphic core complex, Nevada, USA?

    Science.gov (United States)

    Ismat, Zeshan; Riley, Paul; Lerback, Jory

    2016-08-01

    The Northern Snake Range is a classic example of a metamorphic core complex, Basin-and-Range province, United States. It is composed of a plastically deformed footwall and a brittlely deformed hanging wall, separated by the Northern Snake Range low-angle detachment (NSRD). Brittle deformation, however, is not confined to the hanging wall. This paper focuses on exposures in Cove Canyon, located on the SE flank of the Northern Snake Range, where penetrative, homogeneous faults are well exposed throughout the hanging wall, footwall and NSRD, and overprint early plastic deformation. These late-stage fault sets assisted Eocene-Miocene extension. Detailed analysis of the faults reveals the following: (1) The shortening direction defined by faults is similar to the shortening direction defined by the stretching lineation in the footwall mylonites, indicating that the extensional kinematic history remained unchanged as the rocks were uplifted into the elastico-frictional regime. (2) After ∼17 Ma, extension may have continued entirely within elastic-frictional regime via cataclastic flow. (3) This latest deformation phase may have been accommodated by a single, continuous event. (3) Faults within NSRD boudins indicate that deformation within the detachment zone was non-coaxial during the latest phase of extension.

  3. Integration of offshore seismic data, exploration wells, and onland outcrops as constraints on the tectonics and uplift age of metamorphic core complexes, eastern Papua New Guinea

    Science.gov (United States)

    Fitz, G. G.; Mann, P.; Campos Aguiniga, H.

    2009-12-01

    High-grade metamorphic domes of the D’Entrecasteaux Islands (DEI) of eastern Papua New Guinea are located within continental crust at the tip of the westward propagating Woodlark spreading ridge. Multi-channel seismic data collected by the RV Maurice Ewing in 1992 was integrated with seismic data from 1974 and two wells drilled by the oil industry in 1973 to understand pattern and age of faults and clastic wedges in offshore basins surrounding the 2-2.5-km high DEI. The WNW-trending line of the DEI demarcates two areas of contrasting deformational and depositional histories. In the area of the Kiribisi and Trobriand basins north of the DEI, normal faults occupy a WNW-striking basin that began to rift in the early Miocene and continued to rift sporadically until the early Pliocene when all normal faults were buried by ~650 m of undeformed Plio-Pleistocene sediments. We infer that these basins formed as sub-basins within a larger forearc basin bounded to the north by the forearc high of the Trobriand Islands and to the south by the DEI. Uplift of the forearc high and inversion of normal faults near the high during the Pleistocene and suggests the possibility of present-day, southward subduction along the Trobriand trench. To the south of the DEI in the Goodenough basin, the Pleistocene section is thicker and deformed by active, WNW-striking normal faults with seafloor scarps and high-angle dips. Wedging of the Pleistocene clastic fill in a half-graben geometry along the Owen-Stanley fault in the Southern part of the Goodenough basin along the southern coastline of the bay indicates that most normal motion has now shifted to this fault system. The shift in extension from north of the DEI to the Owen-Stanley fault zone in post-Pliocene time likely signals the arrival of the propagating rift tip of the Woodlark basin. The presence of conglomerate with high-grade metamorphic clasts in the Pliocene section north of the DEI supports the idea that the uplift and erosion

  4. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    Gregory A. Davis; Brian J. Darby

    2010-01-01

    The Early Cretaceous Hohhot metamorphic core complex (mcc) of the Daqing Shan (Mtns.) of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc's that developed within the northern edge of the North China "craton". All of these mcc's were formed within the basement of a Late Paleozoic Andean-style arc and across older Mesozoic fold-and-thrust belts of variable age and tectonic vergence. The master Hohhot detachment fault roots southwards within the southern margin of the Daqing Shan for an along-strike distance of at least 120 km. Its geometry in the range to the north is complicated by interference patterns between ( 1 ) primary, large-scale NW-SE-trending convex and concave fault corrugations and (2) secondary ENE-WSW-trending antiforms and synforms that folded the detachment in its late kinematic history. As in the Whipple Mtns. of California,the Hohhot master detachment is not of the Wernicke (1981) simple rooted type; instead, it was spawned from a mid-crustal shear zone, the top of which is preserved as a mylonitic front within Carboniferous metasedimentary rocks in its exhumed lower plate. 40Ar-39Ar dating of siliceous volcanic rocks in basal sections of now isolated supradetachment basins suggest that crustal extension began at ca. 127 Ma,although lower-plate mylonitic rocks were not exposed to erosion until after ca. 119 Ma. Essentially synchronous cooling of hornblende, biotite, and muscovite in footwall mylonitic gneisses indicates very rapid exhumation and at ca. 122-120 Ma. Contrary to several recent reports, the master detachment clearly cuts across and dismembers older, north-directed thrust sheets of the Daqing Shan foreland fold-and-thrust belt. Folded and thrust-faulted basalts within its foredeep strata are as young as 132.6 ± 2.4 Ma, thus defining within 5-6 Ma the regional tectonic transition between crustal contraction and profound crustal extension.

  5. THE GEOCHEMISTRY AND AGES OF ROCKS IN THE FOOTWALL OF THE BUTULIYN-NUR AND ZAGAN METAMORPHIC CORE COMPLEXES (NORTH MONGOLIA – WESTERN TRANSBAIKALIA

    Directory of Open Access Journals (Sweden)

    T. V. Donskaya

    2015-09-01

    Full Text Available This article reviews data on ages of rocks in the footwall of the Butuliyn-Nur and Zagan metamorphic core complexes (MCC and provides new data on the geochemistry of the rock complexes. It is noted that the oldest rocks are mylonitized gneisses on rhyolites (554 Ma in the footwall of the Butuliyn-Nur MCC. The Late Permian – Triassic (249–211 Ma igneous rocks are ubiquitous in the footwall of the Butuliyn-Nur and Zagan MCC. The youngest rocks in the studied MCC are the Jurassic granitoids (178–152 Ma of the Naushki and Verhnemangirtui massifs. In the footwall of the Butuliyn-Nur and Zagan MCC, the most common are granitoids and felsic volcanic rocks (249–211 Ma with many similar geochemical characteristics, such as high alkalinity, high contents of Sr and Ba, moderate and low concentrations of Nb and Y. Considering the contents of trace elements and REE, the granitoids and the felsic volcanic rocks are similar to I-type granites. Specific compositions of these rocks suggest that they might have formed in conditions of the active continental margin of the Siberian continent over the subducting oceanic plate of the Mongol-Okhotsk Ocean. The granitoids of the Naushki and Verhnemangirtui massifs, which are the youngest of the studied rocks (178–152 Ma, also have similar geochemical characteristics. In both massif, granitoids are ferriferous, mostly alkaline rocks. By contents of both major and trace elements, they are comparable to A-type granites. Such granitoids formed in conditions of intracontinental extension while subduction was replaced by collision. Based on ages and geochemical characteristics of the rocks in the footwall of the Butuliyn-Nur and Zagan MCC, a good correlation is revealed between the studied rocks  and the rock complexes of the Transbaikalian and North-Mongolian segments of the Central Asian fold belt (CAFB, and it can thus be suggested that the regions under study may have a common evolutionary history.

  6. METAMORPHIC PETROLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091533 Gao Changgui(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China);Liu Yongsheng Distributions and Geodynamic Implications of High Field Strength Elements in Rutile from Ultrahigh Pressure Eclogites(Earth Science,ISSN1000-2383,CN42-1233/P,33(4),2008,p.487-503,8 illus.,3 tables,80 refs.)Key words:eclogite,Su-Lu orogenic beltsTrace element compositions of rutiles in eclogites from the Chinese Continental Scientific Drilling(CCSD)main hole were analyzed using LA-ICP-MS.The results indicate that Nb and Ta contents of rutiles are significantly controlled by whole rock compositions,while Zr and Hf show no obvious dependence on the whole rock compositions.Coupled with enrichments of Pb and Sr at the rim of the interstitial rutiles,Zr contents decrease from the core to the rim.

  7. Indicators of coal metamorphism

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, A.E.

    1982-06-01

    Important in determining metamorphism of coal is the reliability of indicators of coalification. Both the reflection of vitrinite and emission of volatile matter have been used for this purpose. To determine which indicator more accurately characterizes metamorphism of coal, their conformity to the following demands was established: 1. uniformity in direction of change of parameters with degree of metamorphism; 2. independence of the indicator of the genetic characteristics of coal (petrographic composition, reduction and oxidation of coal); 3. sensitivity of indicator. Both indicators conform to the first requirement. Emission of volatile substance decreases and reflective capacity of vitrinite increases uniformly with degree of metamorphism. However, the reflectivity of vitrinite is not influenced by petrographic composition of coals and is less dependent on the oxidation and reduction of coal than emission of volatile matter. It is also a more sensitive indicator distinguishing more degrees of metamorphism than emission of volatile matter. Reflectivity of vitrinite is a more reliable indicator of metamorphism than emission of volatile matter. However, in many laboratories this indicator is not measured with sufficient accuracy. To correct this, measuring equipment must be standardized.

  8. Low grade metamorphism of mafic rocks

    Science.gov (United States)

    Schiffman, Peter

    1995-07-01

    Through most of this past century, metamorphic petrologists in the United States have paid their greatest attention to high grade rocks, especially those which constitute the core zones of exhumed, mountain belts. The pioneering studies of the 50's through the 80's, those which applied the principles of thermodynamics to metamorphic rocks, focused almost exclusively on high temperature systems, for which equilibrium processes could be demonstrated. By the 1980's, metamorphic petrologists had developed the methodologies for deciphering the thermal and baric histories of mountain belts through the study of high grade rocks. Of course, low grade metamorphic rocks - here defined as those which form at pressures and temperatures up to and including the greenschist facies - had been well known and described as well, initially through the efforts of Alpine and Circum-Pacific geologists who recognized that they constituted an integral and contiguous portion of mountain belts, and that they underlay large portions of accreted terranes, many of oceanic origins. But until the mid 80's, much of the effort in studying low grade rocks - for a comprehensive review of the literature to that point see Frey (1987) - had been concentrated on mudstones, volcanoclastic rocks, and associated lithologies common to continental mountain belts and arcs. In the mid 80's, results of the Deep Sea Drilling Project (DSDP) rather dramatically mitigated a shift in the study of low grade metamorphic rocks.

  9. DYNAMIC MODELING OF METAMORPHIC MECHANISM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The concept of metamorphic mechanism is put forward according to the change of configurations from one state to another. Different configurations of metamorphic mechanism are described through the method of Huston lower body arrays. Kinematics analyses for metamorphic mechanism with generalized topological structure, including the velocity, angular velocity, acceleration and angular acceleration, are given. Dynamic equations for an arbitrary configuration, including close-loop constraints, are formed by using Kane's equations. For an arbitrary metamorphic mechanism, the transformation matrix of generalized speeds between configuration (*)and(*)+1 is obtained for the first time. Furthermore, configuration-complete dynamic modeling of metamorphic mechanism including all configurations is completely established.

  10. A multi-isotope approach to understanding the evolution of Cenozoic magmatism in the northeastern Basin and Range: Results from igneous rocks in the Albion-Raft River-Grouse Creek metamorphic core complex

    Science.gov (United States)

    Konstantinou, A.; Strickland, A.; Miller, E. L.

    2012-12-01

    Deep crustal rocks exposed by extensional processes in metamorphic core complexes provide a unique opportunity to address the magmatic and isotopic evolution of the crust and assess the relative crust versus mantle contributions in Cenozoic igneous rocks exposed in the complexes. The Albion-Raft River-Grouse Creek metamorphic core complex exposes mid-crustal rocks that resided at depths of ~15-20 km before the onset of Cenozoic extension. Three major Cenozoic magmatic events are represented in the complex and have been studied using multiple isotopic systems (whole rock Sr and Nd coupled with the Oxygen isotopes in zircon). These three major events are: (1) 42-31 Ma intrusion of a composite plutonic complex of calc-alkaline composition that intrudes both upper crustal rocks (~5-10 km depth) and deeper rocks. (2) A 32-25 Ma plutonic complex, with evolved calc-alkaline composition that intruded in the middle crust (~12-15 km depth), and (3) A 10-8 Ma bimodal (basalt-rhyolite) suite of volcanic rocks that contain high-T anhydrous mineral assemblages erupted across the complex. The pre-extensional crust consisted of an upper crust composed primarily of Neoproterozoic through Triassic metasedimentary rocks (schist and quartzite at its base and limestone at its top). The middle crust consists of late Archean orthogneiss with evolved composition (metamorphosed peraluminous granite) with average 87Sr/86Sr40~0.800, ɛNd40~ -43.4 and δ18Ozirc ~5.7‰. The lower crust is inferred to have been composed of Precambrian intermediate composition igneous rocks with average 87Sr/86Sr40~0.750, ɛNd40~ -37.5 and δ18Ozirc ~5.9‰, and Precambrian mafic rocks with average 87Sr/86Sr40~0.717, ɛNd40~ -25 and δ18Ozirc ~7.0‰. Existing and new data indicate that the 42-31 Ma upper crustal plutonic complex ranges in isotopic composition from 87Sr/86Sri=0.709-0.712, ɛNdi=-15 to -25 and δ18Ozirc 4.7-6.5‰. The composition of the 32-25 Ma middle crustal plutonic complex ranges from 87Sr

  11. PETROLOGY METAMORPHIC PETROLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070226 Chen Nengsong (Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China); Liu Rong LA-ICP-MS U-Pb Zircon Dating for Felsic Granulite, Huangtuling Area, North Dabieshan: Constraints on Timing of Its Protolith and Granulite-Facies Metamorphism, and Thermal Events in Its Provenance (Journal of China University of Geosciences, ISSN1002-0705, CN42-1279/P, 16(4), 2005, p.317-323, 4 illus., 2 tables, 32 refs.) Key words: granulites, Dabie Mountains

  12. Metamorphic Testing for Cybersecurity.

    Science.gov (United States)

    Chen, Tsong Yueh; Kuo, Fei-Ching; Ma, Wenjuan; Susilo, Willy; Towey, Dave; Voas, Jeffrey; Zhou, Zhi Quan

    2016-06-01

    Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators, we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater cybersecurity.

  13. Thermal durations and heating behaviour for the Barrovian metamorphism, Scotland

    Science.gov (United States)

    Viete, D. R.; Lister, G. S.; Hermann, J.; Forster, M. A.; Oliver, G. J.

    2008-12-01

    Barrovian metamorphic series preserve c. 100 μm diffusion textures between sillimanite-grade rim domains and lower-grade cores. Timescales for Fickian diffusion processes increase with the square of the diffusion lengthscale. Lengthscales of diffusion are considered within the context of 3.5- to eight-million-year duration for the Barrovian thermal event. Heat associated with regional metamorphism appears to have accumulated within the metamorphosed units following numerous, short- timescale (tens of thousands of year) heating events. Shear zones that occur in the highest-grade parts of the Barrovian metamorphic series provide a suitably narrow heating region for regional metamorphism over a several million years and, with episodic movement histories, can account for self-similar heating behaviour (by mechanical work and/or the introduction of magmas and hot fluids).

  14. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand - A new report of Early Paleozoic granite

    Science.gov (United States)

    Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T.

    2014-07-01

    In order to understand the age and tectonic framework of Eastern to Peninsular Thailand from the viewpoint of basement (metamorphic and plutonic) geology, the LA-ICP-MS U-Pb zircon dating and the chemical Th-U-total Pb isochron method (CHIME) monazite dating were performed in the Khao Chao, Hub-Kapong to Pran Buri, and Khanom areas in Eastern to Peninsular Thailand. The LA-ICP-MS U-Pb zircon dating of the garnet-hornblende gneiss from the Khao Chao area gave 229 ± 3 Ma representing the crystallization age of the gabbro, and that of the garnet-biotite gneisses gave 193 ± 4 Ma representing the timing of an upper amphibolite facies metamorphism. The CHIME monazite dating of pelitic gneiss from the Khao Chao gneiss gave scattered result of 68 ± 22 Ma, due to low PbO content and rejuvenation of older monazite grains during another metamorphism in the Late Cretaceous to Tertiary time. The U-Pb ages of zircon from the Hua Hin gneissic granite in the Hub-Kapong to Pran Buri area scatter from 250 Ma to 170 Ma on the concordia. Granite crystallization was at 219 ± 2 Ma, followed by the sillimanite-grade regional metamorphism at 185 ± 2 Ma. Monazite in the pelitic gneiss from this area also preserves Early to Middle Jurassic metamorphism and rejuvenation by later contact metamorphism by non-foliated granite or by another fluid infiltration event in the Late Cretaceous to Tertiary time. The Khao Dat Fa granite from the Khanom area of Peninsular Thailand gave a U-Pb zircon age of 477 ± 7 Ma. This is the second oldest granite pluton ever reported from Thailand, and is a clear evidence for the Sibumasu block having a crystalline basement that was formed during the Pan-African Orogeny. The Khao Pret granite gives U-Pb zircon concordia age of 67.5 ± 1.3 Ma, which represents the timing of zircon crystallization from the granitic melt and accompanied sillimanite-grade contact metamorphism against surrounding metapelites and gneisses. Metamorphic rocks in the Doi Inthanon area

  15. SHRIMP Dating and Recrystallization of Metamorphic Zircons from a Granitic Gneiss in the Sulu UHP Terrane

    Institute of Scientific and Technical Information of China (English)

    LI Hongyan

    2004-01-01

    An unusual zircon SHRIMP dating result of a granitic gneiss from the Qinglongshan eclogite-gneiss roadcut section is presented in this paper. The very peculiar and complicated internal structures, as well as the very low Th/U ratios (0.01-0.08) of the zircons indicate that they were formed by metamorphic recrystallization. Strongly in contrast with previously published zircon U-Pb ages of the Dabie-Sulu UHP metamorphic rocks where protolith ages of 600-800 Ma are commonly recorded, only metamorphic age of 218+5 Ma, defined by 18 analytical spots either in rim or in core of zircons, are recorded in this granitic gneiss. This age represents the time of the complete metamorphic recrystallization overprint on primary magmatic zircons. The recrystallization was derived by the UHP metamorphism,and was strengthened by the early stage of retrograde metamorphic fluid activity.

  16. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  17. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  18. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    Science.gov (United States)

    Nesheim, T.O.; Vervoort, J.D.; McClelland, W.C.; Gilotti, J.A.; Lang, H.M.

    2012-01-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085??2. Ma, 1198??79. Ma, 1207??8. Ma, 1255??28. Ma, and 1314??2. Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347??10. Ma and 1102??47. Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~. 1330. Ma (M1) and ~. 1080. Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~. 1080. Ma, which overlaps in time with the Grenville Orogeny. The older ~. 1330. Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia. ?? 2011 Elsevier B.V.

  19. Metamorphic Rocks in West Irian

    NARCIS (Netherlands)

    Wegen, van der G.

    1971-01-01

    Low-grade metamorphics of West Irian occur to the east of Geelvink Bay associated with two narrow belts of basic and ultrabasic igneous rocks which represent ophiolitic suites of an eugeosynclinical development beginning in Early Mesozoic time. In both of these belts there are indications of regiona

  20. Extensional deformation of post ultrahigh-pressure metamorphism and exhumation process of ultrahigh-pressure metamorphic rocks in the Dabie massif,China

    Institute of Scientific and Technical Information of China (English)

    索书田; 钟增球; 游振东

    2000-01-01

    A detailed tectonic analysis demonstrates that the present ob served regional tectonic configuration of the ultrahigh-pressure metamorphic terrane in the Da bie massif was mainly formed by the extension processes of the post-lndosinian continent-continent oblique collision between the Sino-Korean and V’angtze cratons and ultrahigh-pressure metamorphism (UHPM). The configuration is characterized by a regional tectonic pattern similar to metamorphic core complexes and by the development of multi-layered detachment zones. On the basis of the identification of compressional and extensional fabrics, it is indicated that the exhumation and uplift of ultrahigh-pressure (UHP) metamorphic rocks from the mantle depth to the surface can be divided into at least three different decompression retrogressive metamo rphism and tectonic deformation stages, in which the subhorizontal crustal-scale extensional flow in the middle-lower crust under amphibolite facies conditions is an important geodynamic process in the exhu

  1. Extensional Tectonic Framework of Post High and Ultrahigh Pressure Metamorphism in Dabieshan, China

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The most prominent feature of the extensional tectonic framework of post high-pressure (HP) and ultrahigh-pressure (UHP) metamorphism in Dabieshan is the development of the multi-layered extension detachment zones surrounding the core of the Luotian dome, and the separation of the UHP, HP and epidote blueschist units by the detachment zones, which form the vertically stacking sheet-like slices of the HP and UHP metamorphic rocks. From the core outwards, exist the HP and UHP rock-barren Dabie complex, UHP unit, HP unit and epidote blueschist unit. The extension tectonics of post HP and UHP metamorphic event constrain the distribution and present configuration of the HP and UHP metamorphic rocks, and the extensional tectonic framework bears some similarities to the Cordillera metamorphic core complex. It is suggested that partial melting happened in the Dabie gneiss complex (DGC) and UHP unit contemporaneously with the extrusion of UHP metamorphic rocks into the lower-middle crust. The formation and emplacement of the migmatite and granites are the response to the change in thermal state, facilitating the transfer from the compressive regime to extensional regime in the crust. The large-scale crustal extension and uplift and the accompanying anatexis in Dabieshan are probably related to the delamination and magmatic underplating in the mantle and the lower crust.

  2. Paleoproterozoic, High-Metamorphic, Metasedimentary Units of Siberian Craton

    Institute of Scientific and Technical Information of China (English)

    Lena URMANTSEVA; Olga TURKINA

    2009-01-01

    Sensitive, high-resointion ion microprobe zircon U-Pb ages of Paleoproterozoic, high-grade,metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexes, including garnet-biotite, hypersthene-biotite, and cordierite-bearing gneisses compose the Irkut terrane of the Sharyzhalgay Uplift. Protoliths of studied gneisses correspond to terrigenous sediments, ranging from greywacke to shale. The paragneiss model Nd ages of 2.4-3.1 Ga indicate Archean-to-Paleoproterozoic source provinces. Zircons from gneisses show core-rim textures in cathodoluminescence (CL) image. Round or irregular shaped cores indicate detrital origin. Structureless rims with low Th/U are metamorphic in origin. The three age groups of detrital cores are: ≥2.7, -2.3, and 1.95-2 Ga. The ages of metamorphic rims range from 1.86 to 1.85 Ga;therefore, the sediments were deposited between 1.95 and 1.86 Ga and derived from Archean and Paleoproterozoic source rocks. It should be noted that Paleoproterozoic metasedimentary rocks of the Irkut Block are not unique. High-grade metaterrigenons sediments, with model Nd ages ranging from 2.3 to 2.5 Ga, are widely distributed within the AIdan and Anabar Shields of the Siberian Craton. The same situation is observed in the North China Craton, where metasedimentary rocks contain detrital igneous zircon grains with ages ranging from 3 to 2.1 Ga (Wan et al., 2006). All of these sedimentary units were subjected to Late Paleoproterozoic metamorphism. In the Siberian Craton, the Paleoproterozoic sedimentary deposits are possibly marked passive margins of the Early Precambrian crustal blocks, and their high-grade metamorphism was related to the consolidation of the Siberian Craton.

  3. Extensional deformation of post ultrahigh-pressure metamorphism and exhumation process of ultrahigh-pressure metamorphic rocks in the Dabie massif, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A detailed tectonic analysis demonstrates that the present observed regional tectonic configuration of the ultrahigh-pressure metamorphic terrane in the Dabie massif was mainly formed by the extension processes of the post-Indosinian continent-continent oblique collision between the Sino-Korean and Yangtze cratons and ultrahigh-pressure metamorphism (UHPM). The configuration is characterized by a regional tectonic pattern similar to metamorphic core complexes and by the development of multi-layered detachment zones. On the basis of the identification of compressional and extensional fabrics, it is indicated that the exhumation and uplift of ultrahigh-pressure (UHP) metamorphic rocks from the mantle depth to the surface can be divided into at least three different decompression retrogressive metamorphism and tectonic deformation stages, in which the subhorizontal crustal-scale extensional flow in the middle-lower crust under amphibolite facies conditions is an important geodynamic process in the exhumation of UHP metamorphic rocks. Moreover, the extensional flow is probably driven by delamination and magmatic underplating of thickened lithospheric mantle following the continental oblique collision.

  4. Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks

    Science.gov (United States)

    Xia, Qiong-Xia; Zhou, Li-Gang

    2017-09-01

    Garnet in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in subduction zone commonly shows considerable zonation in major and trace elements as well as mineral inclusions, which bears information on its growth mechanism via metamorphic or peritectic reactions in coexistence with relic minerals and metamorphic fluids or anatectic melts at subduction-zone conditions. It provides an important target to retrieve physicochemical changes in subduction-zone processes, including those not only in pressure and temperature but also in the durations of metamorphism and anatexis. Garnet from different compositions of HP to UHP metamorphic rocks may show different types of major and trace element zonation, as well as mineral inclusions. Discrimination between the different origins of garnet provides important constraints on pressure and temperature and the evolution history for the HP to UHP metamorphic rocks. Magmatic garnet may occur as relics in granitic gneisses despite metamorphic modification at subduction-zone conditions, with spessartine-increasing or flat major element profiles from inner to outer core and exceptionally higher contents of trace elements than metamorphic mantle and rim. Metamorphic garnet can grow at different metamorphic stages during prograde subduction and retrograde exhumation, with spessartine-decreasing from core to rim if the intracrystalline diffusion is not too fast. The compositional profiles of metamorphic garnet in the abundances of grossular, almandine and pyrope are variable depending on the composition of host rocks and co-existing minerals. Peritectic garnet grows through peritectic reactions during partial melting of HP to UHP rocks, with the composition of major elements to be controlled by anatectic P-T conditions and the compositions of parental rocks and anatectic melts. Trace element profiles in garnet with different origins are also variable depending on the coexisting mineral assemblages, the garnet

  5. Metamorphism of bauxites on Naxos, Greece

    NARCIS (Netherlands)

    Feenstra, A.

    1985-01-01

    This thesis presents the results of a petrological-mineralogical and geochemical study of the metamorphosed karstbauxites on the island of Naxos, Greece. The bauxites have been subject to an Eocene highpressure metamorphism (M1), followed by a Late Oligocene-Miocene medium-pressure metamorphism (M2)

  6. Metamorphic geology: Why should we care?

    Science.gov (United States)

    Tajcmanova, Lucie; Moulas, Evangelos; Vrijmoed, Johannes

    2016-04-01

    Estimation of pressure-temperature (P-T) from petrographic observations in metamorphic rocks has become a common practice in petrology studies during the last 50 years. This data then often serves as a key input in geodynamic reconstructions and thus directly influences our understanding of lithospheric processes. Such an approach might have led the metamorphic geology field to a certain level of quiescence. Obtaining high-quality analytical data from metamorphic rocks has become a standard part of geology studies. The numerical tools for geodynamic reconstructions have evolved to a great extend as well. Furthermore, the increasing demand on using the Earth's interior for sustainable energy or nuclear waste disposal requires a better understanding of the physical processes involved in fluid-rock interaction. However, nowadays, metamorphic data have apparently lost their importance in the "bigger picture" of the Earth sciences. Interestingly, the suppression of the metamorphic geology discipline limits the potential for understanding the aforementioned physical processes that could have been exploited. In fact, those phenomena must be considered in the development of new generations of fully coupled numerical codes that involve reacting materials with changing porosity while obeying conservation of mass, momentum and energy. In our contribution, we would like to discuss the current role of metamorphic geology. We will bring food for thoughts and specifically touch upon the following questions: How can we revitalize metamorphic geology? How can we increase the importance of it? How can metamorphic geology contribute to societal issues?

  7. Application of Metamorphic Testing to Supervised Classifiers

    Science.gov (United States)

    Xie, Xiaoyuan; Ho, Joshua; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2010-01-01

    Many applications in the field of scientific computing - such as computational biology, computational linguistics, and others - depend on Machine Learning algorithms to provide important core functionality to support solutions in the particular problem domains. However, it is difficult to test such applications because often there is no “test oracle” to indicate what the correct output should be for arbitrary input. To help address the quality of such software, in this paper we present a technique for testing the implementations of supervised machine learning classification algorithms on which such scientific computing software depends. Our technique is based on an approach called “metamorphic testing”, which has been shown to be effective in such cases. More importantly, we demonstrate that our technique not only serves the purpose of verification, but also can be applied in validation. In addition to presenting our technique, we describe a case study we performed on a real-world machine learning application framework, and discuss how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also discuss how our findings can be of use to other areas outside scientific computing, as well. PMID:21243103

  8. Hydrothermal alteration of a seamount complex on La Palma, Canary Islands: Implications for metamorphism in accreted terranes

    Science.gov (United States)

    Schiffman, P.; Staudigel, H.

    1994-02-01

    The hydrothermal metamorphism of a sequence of Pliocene-age seamount extrusive and volcaniclastic rocks on La Palma, Canary Islands, is characterized by a relatively complete low-pressure-high-temperature facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200-300 °C/km. The metamorphism of the seamount, at least in its core region, is distinct from ocean-floor metamorphism: the former is characterized by a serially continuous facies series encompassing zeolite, prehnite-pumpellyite, and greenschist assemblages, and the latter by a discontinuous metamorphic gradient in which prehnite-pumpellyite assemblages are absent. These metamorphic features, presumably reflecting fundamental thermal-tectonic differences between extending oceanic crust at mid- oceanic ridges vs. the more static crust underlying seamount volcanoes, should aid in the recognition of incoherent fragments of seamount metamorphic rocks within accreted terranes which typically have undergone subsequent higher pressure-temperature regional metamorphism, albeit to comparable grades.

  9. Age, temperature and pressure of metamorphism in the Tasriwine Ophiolite Complex, Sirwa, Morocco

    Science.gov (United States)

    Samson, S. D.; Inglis, J.; Hefferan, K. P.; Admou, H.; Saquaque, A.

    2013-12-01

    Sm-Nd garnet-whole rock geochronology and phase equilbria modeling have been used to determine the age and conditions of regional metamorphism within the Tasriwine ophiolite complex,Sirwa, Morocco. Pressure and temperature estimates obtained using a NaCaKFMASHT phase diagram (pseudosection) and garnet core and rim compositions predict that garnet growth began at ~0.72GPa and ~615°C and ended at ~0.8GPa and ~640°C. A bulk garnet Sm-Nd age of 645.6 × 1.6 Ma, calculated from a four point isochron that combines whole rock, garnet full dissolution and two successively more aggressive partial dissolutions, provides a precise date for garnet formation and regional metamorphism. The age is nearly 20 million years younger than a previous age estimate of regional metamorphism of 663 × 14 Ma based upon a SHRIMP U-Pb date from rims on zircon from the Irri migmatite. The new data provide further constraints on the age and nature of regional metamorphism in the Anti-Atlas mountains and emphasizes that garnet growth during regional metamorphism may not necessarily coincide with magmatism/anatexis which predominate the signature witnessed by previous U-Pb studies. The ability to couple PT estimates for garnet formation with high precision Sm- Nd geochronology highlights the utility of garnet studies for uncovering the detailed metamorphic history of the Anti-Atlas mountain belt.

  10. Origin of Garnet zoning in the contact metamorphic areole of Hassan-Abaad intrusion, southwest of Taft

    OpenAIRE

    Samira Zandifar; Mohammad Ali Valizadeh; Mohammad Ali Barghi

    2009-01-01

    In the contact metamorphic aureole of the next to the granodiorite intrusive body in the Hassan-Abaad village of Yazd, high frequency garnet in different metamorphic zones is notable, which some contain garnet crystal with obvious zoning. Obtained data from core to rim of garnet by SEM point analysis, show that garnet crystals belong to grandite series, and sharp variation of Al and Fe from center to rim indicates garnet zoning formed during crystal growth, but the zoning has been disturbed b...

  11. A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation

    Directory of Open Access Journals (Sweden)

    Rabie A. Mahmoud

    2016-08-01

    Full Text Available To enhance the performance of the KASUMI Metamorphic Cipher, we apply a lightweight Metamorphic Structure. The proposed structure uses four lightweight bit-balanced operations in the function Meta-FO of the KASUMI Metamorphic Cipher. These operations are: XOR, INV, XNOR, and NOP for bitwise XOR, invert, XNOR, and no operation respectively building blocks of the Specialized Crypto Logic Unit (SCLU. In this work, we present a lightweight KASUMI Specialized-Metamorphic Cipher. In addition, we provide a Field Programmable Gate Array (FPGA implementation of the proposed algorithm modification.

  12. HP metamorphic belt of the western Alps

    Institute of Scientific and Technical Information of China (English)

    RobertoCompagnoni

    2003-01-01

    The understanding of the subduction-related processes benefited by the studies of the high-pressure (HP) meta-morphic rocks from the western Alps. The most stimu-lating information was obtained from the inner part of the western Alpine belt, where most tectonic units show an early Alpine eclogite-facies recrystallisation. This is especially true for the Austroalpine Sesia Zone and the Penninic Dora-Maira massif. From the Sesia zone,which consists of a wide spectrum of continental crust lithologies recrystallised to quartz-eclogite-facies min-eral assemblages, the first finding of a jadeite-bearingmeta-granitoid has been described, supporting evidencethat even continental crust may subduct into the mantle.From the Dora-Maira massif the first occurrence of regional metamorphic coesite has been reported, open-ing the new fertile field of the ultrahigh-pressure meta-morphism (UHPM), which is now becoming the rule in the collisional orogenic belts.

  13. Ultrahigh-Temperature Metamorphism in Madurai Granulites, Southern India: Evidence from Carbon Isotope Thermometry.

    Science.gov (United States)

    Satish-Kumar

    2000-07-01

    Ultrahigh-temperature (UHT) metamorphism in the Madurai Block of the southern Indian granulite terrain has been verified using the calcite-graphite isotope exchange thermometer. Carbon isotope thermometry has been applied to marbles from a locality near the reported occurrence of sapphirine granulites that have yielded temperature estimates of around 1000 degrees C. The delta(13)C and delta(18)O values of calcite are homogenous, implying equilibration of the isotopes during metamorphism. However, the delta(13)C values of single graphite crystals show variations in the order of 1 per thousand within a hand specimen. Detailed isotopic zonation studies indicate that graphite preserves either the time-integrated crystal growth history or reequilibrium fractionation during its cooling history. The graphite cores preserve higher delta(13)C values than the rims. The fractionation between calcite and graphite cores gives the highest metamorphic temperature of about 1060 degrees C, which matches the petrologically inferred temperature estimates in the high-magnesian pelites. The fractionation between graphite rims and calcite suggests a temperature of around 750 degrees C, which is interpreted to reflect retrograde cooling. This event is also observed in the sapphirine granulites. Calcite-graphite thermometry thus provides a useful tool to define UHT metamorphism in granulite terrains.

  14. Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆

    Science.gov (United States)

    Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2011-01-01

    Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969

  15. P-T-t Path of Mafic Granulite Metamorphism in Northern Tibet and Its Geodynamical Implications

    Institute of Scientific and Technical Information of China (English)

    HU Daogong; WU Zhenhan; JIANG Wan; YE Peisheng

    2004-01-01

    Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (Mi) is preserved only in the granulites and represented by plagioclase+homblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of gamet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of horublende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of homblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of gamet+clinopyroxene+plagioclase+homblende were estimated at 769-905°C and 0.86-1.02 GPa based on the geothermometers and geobarometers. The P-T conditions of plagioclase+hornblende symplectites (M3) were estimated at 720-800°C and 0.55-0.68 GPa, and recrystallized hornblende+plagioclase (M4) at 594-708°C and 0.26-0.47 GPa. It is impossible to estimate the P-T conditions of the early metamorphic assemblage (M1) because of the absence of modal minerals. The combination of petrographic textures, metamorphic reaction history, thermobarometric data and corresponding isotopic ages defines a clockwise near-isothermal decompression metamorphic path, suggesting that the mafic granulites had undergone initial crustal thickening, subsequent exhumation, and cooling and retrogression. This tectonothermal path is considered to record two major phases of collision which resulted in both the assemblage of Gondwanaland during the Pan-African orogeny at 531 Ma and the collision of the Qiangtang and Lhasa Terranes at 174 Ma, respectively.

  16. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China

    Science.gov (United States)

    Mattinson, C.G.; Wooden, J.L.; Liou, J.G.; Bird, D.K.; Wu, C.L.

    2006-01-01

    Amphibolite-facies para-and orthogneisses near Dulan, at the southeast end of the North Qaidam terrane, enclose minor eclogite and peridotite which record ultra-high pressure (UHP) metamorphism associated with the Early Paleozoic continental collision of the Qilian and Qaidam microplates. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. SHRIMP-RG U-Pb and REE analyses of zircons from four eclogites yield weighted mean ages of 449 to 422 Ma, and REE patterns (flat HREE, no Eu anomaly) and inclusions of garnet, omphacite, and rutile indicate these ages record eclogite-facies metamorphism. The coherent field relations of these samples, and the similar range of individual ages in each sample suggests that the ???25 m.y. age range reflects the duration of eclogite-facies conditions in the studied samples. Analyses from zircon cores in one sample yield scattered 433 to 474 Ma ages, reflecting partial overlap on rims, and constrain the minimum age of eclogite protolith crystallization. Inclusions of Th + REE-rich epidote, and zircon REE patterns are consistent with prograde metamorphic growth. In the Lu??liang Shan, approximately 350 km northwest in the North Qaidam terrane, ages interpreted to record eclogite-facies metamorphism of eclogite and garnet peridotite are as old as 495 Ma and as young as 414 Ma, which suggests that processes responsible for extended high-pressure residence are not restricted to the Dulan region. Evidence of prolonged eclogite-facies metamorphism in HP/UHP localities in the Northeast Greenland eclogite province, the Western Gneiss Region of Norway, and the western Alps suggests that long eclogite-facies residence may be globally significant in continental subduction/collision zones.

  17. Timing and conditions of regional metamorphism and crustal shearing in the granulite facies basement of south Namibia: Implications for the crustal evolution of the Namaqualand metamorphic basement in the Mesoproterozoic

    Science.gov (United States)

    Bial, Julia; Büttner, Steffen; Appel, Peter

    2016-11-01

    Granulite facies basement gneisses from the Grünau area in the Kakamas Domain of the Namaqua-Natal Metamorphic Province in south Namibia show high-grade mineral assemblages, most commonly consisting of garnet, cordierite, sillimanite, alkali feldspar and quartz. Cordierite + hercynitic spinel, and in some places quartz + hercynitic spinel, indicate granulite facies P-T conditions. The peak assemblage equilibrated at 800-850 °C at 4.0-4.5 kbar. Sillimanite pseudomorphs after kyanite1 and late-stage staurolite and kyanite2 indicate that the metamorphic record started and ended within the stability field of kyanite. Monazite in the metamorphic basement gneisses shows a single-phase growth history dated as 1210-1180 Ma, which we interpret as the most likely age of the regional metamorphic peak. This time coincides with the emplacement of granitic plutons in the Grünau region. The ∼10 km wide, NW-SE striking Grünau shear zone crosscuts the metamorphic basement and overprints high-temperature fabrics. In sheared metapelites, the regional metamorphic peak assemblage is largely obliterated, and is replaced by synkinematic biotite2, quartz, alkali feldspar, sillimanite and cordierite or muscovite. In places, gedrite, staurolite, sillimanite and green biotite3 may have formed late- or post-kinematically. The mylonitic mineral assemblage equilibrated at 590-650 °C at 3.5-5.0 kbar, which is similar to a retrograde metamorphic stage in the basement away from the shear zone. Monazite cores in two mylonite samples are similar in texture and age (∼1200 Ma) to monazite in metapelites away from the shear zone. Chemically distinct monazite rims indicate a second growth episode at ∼1130-1120 Ma. This age is interpreted to date the main deformation episode along the Grünau shear zone and the retrograde metamorphic stage seen in the basement. The main episode of ductile shearing along the Grünau shear zone took place 70-80 million years after the thermal peak metamorphism

  18. Metamorphism, Plate Tectonics, and the Supercontinent Cycle

    Science.gov (United States)

    Brown, Michael

    Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian; G-UHTM facies series rocks may be inferred at depth in younger, particularly Cenozoic orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the cyclic formation of supercontinents and their breakup, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those associated with the modern Pacific rim. Medium-temperature eclogite, high-pressure granulite metamorphism (E-HPGM), is also first recognized in the Neoarchean rock record and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E-HPGM belts are complementary to G-UHTM belts and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; they record the low thermal gradients associated with modern subduction. Lawsonite blueschists and eclogites (high-pressure metamorphism, HPM) and ultrahigh pressure metamorphism (UHPM) characterized by coesite (±lawsonite) or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers the low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although perhaps counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A

  19. Potential links between porphyry copper deposits and exhumed metamorphic basement complexes in northern Chile

    Science.gov (United States)

    Cooper, Frances; Docherty, Alistair; Perkins, Rebecca

    2014-05-01

    Porphyry copper deposits (PCDs) are typically associated with magmatic arcs in compressional subduction zone settings where thickened crust and fractionated calc-alkaline magmas produce favourable conditions for copper mineralisation. A classic example is the Eocene-Oligocene PCD belt of Chile, the world's leading copper producing country. In other parts of the world, older late Cretaceous to early Tertiary PCDs are found in regions of former subduction-related magmatism that have undergone subsequent post-orogenic crustal extension, such as the Basin and Range province of western North America, and the Eurasian Balkan-Carpathian-Dinaride belt. In the Basin and Range there is a striking correlation between the location of many PCDs and exhumed metamorphic core complexes (isolated remnants of the middle to lower crust exhumed during extensional normal faulting). This close spatial relationship raises questions about the links between the two. For example, are their exhumation histories related? Could the presence of impermeable metamorphic rocks at depth affect and localise mineralising fluids? In Chile there appears to be a similar spatial relationship between PCDs and isolated outcrops of exhumed metamorphic basement. In northern Chile, isolated exposures of high-grade metamorphic gneisses and amphibolites are thought to be exhumed remnants of the pre-subduction Proterozoic-Paleozoic continental margin of Gondwana [2], although little is known about when they were exhumed and by what mechanism. For example, the Limón Verde metamorphic complex, exhumed from a depth of ca. 50 km, is situated adjacent to Chuquicamata, the largest open pit copper mine in the world. In northernmost Chile, another metamorphic exposure, the Belén complex, sits close to the Dos Hermanos PCD, a small deposit that is not actively mined. Comprising garnet-bearing gneisses and amphibolites, the Belén is thought to have been exhumed from a depth of ca. 25 km, but when and how is unclear [3

  20. Post-peak metamorphic evolution of the Sumdo eclogite from the Lhasa terrane of southeast Tibet

    Science.gov (United States)

    Cao, Dadi; Cheng, Hao; Zhang, Lingmin; Wang, Ke

    2017-08-01

    A reconstruction of the pressure-temperature-time (P-T-t) path of high-pressure eclogite-facies rocks in subduction zones may reveal important information about the tectono-metamorphic processes that occur at great depths along the plate interface. The majority of studies have focused on prograde to peak metamorphism of these rocks, whereas after-peak metamorphism has received less attention. Herein, we present a detailed petrological, pseudosection modeling and radiometric dating study of a retrograded eclogite sample from the Sumdo ultrahigh pressure belt of the Lhasa terrane, Tibet. Mineral chemical variations, textural discontinuities and thermodynamic modeling suggest that the eclogite underwent an exhumation-heating period. Petrographic observations and phase equilibria modeling suggest that the garnet cores formed at the pressure peak (∼2.5 GPa and ∼520 °C) within the lawsonite eclogite-facies and garnet rims (∼1.5 GPa and growth of garnet spans an interval of ∼7 million years, which is a minimum estimate of the duration of the eclogite-facies metamorphism of the Sumdo eclogite.

  1. Contrasting geochemistry and metamorphism of pillow basalts in metamorphic complexes from Aysén, S. Chile

    Science.gov (United States)

    Hervé, F.; Aguirre, L.; Sepúlveda, V.; Morata, D.

    1999-07-01

    The geochemistry of pillow basalts from the Chonos Metamorphic Complex (CMC) and the Eastern Andes Metamorphic Complex of Aysén (EAMC) indicates contrasting tectonic environments for these basic lavas. They have E-MORB and continental alkaline affinities, respectively. The MORB-like basalts are metamorphosed in the pumpellyite-actinolite metamorphic facies, with mineral associations indicative of relatively high P/T metamorphism. The continental alkali basalts exhibit pumpellyite-chlorite assemblages developed in a low to intermediate P/T regime. These contrasting eruptive and metamorphic settings agree with recently established age differences between the complexes, and invalidate direct correlation between them.

  2. The "granite pump": LP/HT metamorphism and exhumation in the Montagne Nore (S-France)

    Science.gov (United States)

    Franke, W.; Doublier, M. P.; Doerr, W.; Stein, E.

    2003-04-01

    The Montagne Noire at the southern margin of the French Massif Central represents an exceptional case of a hot metamorphic core complex evolved from a thrust stack in a foreland position. The core of the structure (Zone Axiale) exposes granites and LP/HT gneisses up to anatectic grade. The hot core is encased by ENE-trending shear zones, which define a dextral pull-apart structure. Ductile extension is documented by top WSW shearing in the W, and ENE shearing in the E part of the Zone Axiale (eg, MATTE et al., 1998). Extension in ENE and reduction of the metamorphic profile are accompanied by NNW-directed contraction ("pinched pull-apart"). Palaeozoic sediments on the southern flank of the Zone Axiale exhibit only greenschist to diagenetic grades of metamorphism. Conodont alteration index (WIEDERER et al., 2002) and illite crystallinity (Doublier, this meeting) reveal a decrease of metamorphic temperature away from the hot core. Metamorphic isograds cut across the axial planes of D1 nappes. These features suggest that metamorphism was imposed by the rising hot core. Accordingly, the palaeozoic sediments show a tectonic evolution which closely resembles that of the gneissic core (extension top ENE, contraction in NNW). Structures relating to stacking (D1) have survived at the southern margin of the Montagne Noire. U-Pb studies (TIMS on single zircon and monazite) reveal peak metamorphism and magmatism already at c. 315 Ma (KLAMA et al., 2001), i.e., only <10 Ma after the end of flysch deposition in latest Visean/Early Namurian time (<= 323 Ma). The coincidence, within error, of the U-Pb ages and earlier Ar/Ar ages (MALUSKI et al., 1991) suggest rapid cooling. Synchronous granite emplacement and metamorphism is best explained by advective heating. Since granites are not generated in foreland settings, we propose derivation of the melts from areas of thickened crust adjacent to the N. Transport and emplacement of granites was essentially driven by the hydraulic

  3. Charnockite microstructures: From magmatic to metamorphic

    Directory of Open Access Journals (Sweden)

    Jacques L.R. Touret

    2012-11-01

    Full Text Available Charnockites sensu lato (charnockite-enderbite series are lower crustal felsic rocks typically characterised by the presence of anhydrous minerals including orthopyroxene and garnet. They either represent dry (H2O-poor felsic magmas that are emplaced in the lower crust or granitic intrusions that have been dehydrated during a subsequent granulite facies metamorphic event. In the first case, post-magmatic high-temperature recrystallisation may result in widespread metamorphic granulite microstructures, superimposed or replacing the magmatic microstructures. Despite recrystallisation, magmatic remnants may still be found, notably in the form of melt-related microstructures such as melt inclusions. For both magmatic charnockites and dehydrated granites, subsequent fluid-mineral interaction at intergrain boundaries during retrogradation are documented by microstructures including K-feldspar microveins and myrmekites. They indicate that a large quantity of low-H2O activity salt-rich brines, were present (together with CO2 under immiscible conditions in the lower crust.

  4. Heat transfer by fluids in granulite metamorphism

    Science.gov (United States)

    Morgan, Paul; Ashwal, Lewis D.

    1988-01-01

    The thermal role of fluids in granulite metamorphism was presented. It was shown that for granulites to be formed in the middle crust, heat must be advected by either magma or by volatile fluids, such as water or CO2. Models of channelized fluid flow indicate that there is little thermal difference between channelized and pervasive fluid flow, for the same total fluid flux, unless the channel spacing is of the same order or greater than the thickness of the layer through which the fluids flow. The volumes of volatile fluids required are very large and are only likely to be found associated with dehydration of a subducting slab, if volatile fluids are the sole heat source for granulite metamorphism.

  5. Shape Metamorphism Using p-Laplacian Equation

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Ge; Esser, Mehmet; Parvin, Bahram; Bebis, George

    2004-05-19

    We present a new approach for shape metamorphism, which is a process of gradually changing a source shape (known) through intermediate shapes (unknown) into a target shape (known). The problem, when represented with implicit scalar function, is under-constrained, and regularization is needed. Using the p-Laplacian equation (PLE), we generalize a series of regularization terms based on the gradient of the implicit function, and we show that the present methods lack additional constraints for a more stable solution. The novelty of our approach is in the deployment of a new regularization term when p --> infinity which leads to the infinite Laplacian equation (ILE). We show that ILE minimizes the supremum of the gradient and prove that it is optimal for metamorphism since intermediate solutions are equally distributed along their normal direction. Applications of the proposed algorithm for 2D and 3D objects are demonstrated.

  6. METAMORPHIC MECHANISMS AND THEIR CONFIGURATION MODELS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The concept of metamorphic mechanisms is presented, configuration models and configuration transformations relating to a set of new matrix operations are discussed and proposed. The configuration of a m etamorphic mechanism reflects the connectivity change in the mechanism during motions which r esults in mobility change and presents the characteristics of the mechanism which is discussed in various applications particularly in decorative artifacts. The characteristics is further investigated with mobility analysis.

  7. Rheologic Transitions During Exhumation of High-Pressure Metamorphic Rocks

    Science.gov (United States)

    Whitney, D. L.; Teyssier, C. P.; Rey, P. F.

    2015-12-01

    The exhumation of deeply buried rocks typically involves dynamic feedbacks between deformation and metamorphic reactions (+ fluid and/or melt) that influence rheology and facilitate or drive large-magnitude exhumation. The evolution of grain-scale to terrane-scale processes during decompression can be seen in rocks exhumed from oceanic and continental subduction and from orogenic crust. In the Sivrihisar (Turkey) high-P/low-T (oceanic subduction) complex, microstructures record deformation and syn-kinematic reactions during decompression from eclogite to blueschist facies conditions; this transformation resulted in dramatic strength reduction that promoted strain localization along the subduction interface. In quartz-rich rocks, qz was deformed in the dislocation creep regime and records transitions in microstructure and slip systems during near-isothermal decompression from 2.5 to 1.5 GPa; these transitions may be related to decreasing water fugacity over tens of km of decompression. High-to ultrahigh-P eclogite in exhumed continental subduction zones such as the Western Gneiss Region (Norway) record decompression from >2.5 GPa to crust, upper crustal extension/transtension drives rapid ascent of the deep crust to form migmatite-cored domes. The exhuming deep crust entrains HP relics such as eclogite (e.g. Montagne Noire dome, France) as it traverses much of the orogenic crust, from >1.2 GPa to (in some cases) crust reaches the near-surface. In summary, decompression of subducted or deeply buried crust systematically leads to rheologic transitions and feedbacks between deformation and metamorphism in the presence of aqueous fluid and/or melt.

  8. Episodic burial metamorphism in the Andes—A viable model?

    Science.gov (United States)

    Bevins, R. E.; Robinson, D.; Aguirre, L.; Vergara, M.

    2003-08-01

    Burial metamorphism of regional extent throughout Mesozoic to Cenozoic sequences in the Andean Mountain belt has been attributed previously to a unique model of metamorphic development, involving episodic ˜40 m.y. cycles of extensional basin formation, burial, metamorphism, and then exhumation. A main premise of this model is that breaks in metamorphic grade occur at major stratigraphic unconformities, so marking successive metamorphic cycles. This model is tested in a Mesozoic Cenozoic sequence east of Santiago, where three metamorphic episodes have been reported on the basis of sharp breaks in metamorphic grade at two main unconformities. In metabasites from this area, reaction progress in mafic phyllosilicates shows a continuum across the sequence without breaks at the unconformities. There are differences in mineral assemblages between the various stratigraphic units, from which contrasting subgreenschist facies can be recognized. However, consideration of the controls on mineral paragenesis at subgreenschist facies conditions demonstrates that these different facies cannot be used as evidence of sharp breaks in metamorphic grade at unconformities, as has been reported in many previous publications. Thus, metamorphic breaks within this Andean section cannot be confirmed. Accordingly, models of Andean burial metamorphism linked to episodic tectonic cycles throughout the Mesozoic and Cenozoic appear unfounded.

  9. Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low pressure/temperature metamorphic facies series

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.; Bird, D.K.

    1983-01-01

    In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200/sup 0/ and 370/sup 0/C, low fluid and lithostatic pressures, and low oxygen fugacities. Petrologic investigations of drill cores and cutting from over 50 wells in this field identified a prograde series of calc-silicate mineral zones which include as index minerals: wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicative of a very low pressure/temperature metamorphic facies series which encompasses the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydrothermal metamorphic facies series, which is becoming increasingly recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation mineral equilibria. Its equivalent should now be sought in fossil hydrothermal systems.

  10. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt

    Institute of Scientific and Technical Information of China (English)

    ZHENG YongFei

    2008-01-01

    The study of continental deep-subduction has been one of the forefront and core subjects to advance the plate tectonics theory in the twenty-first century. The babie-Sulu orogenic belt in China crops out the largest lithotectonic unit containing ultrahigh-pressure metamorphic rocks in the world. Much of our understanding of the world's most enigmatic processes in continental deep-subduction zones has been deduced from various records in the Dabie-Sulu rocks. By taking these rocks as the natural laboratory, earth scientists have made seminal contributions to understanding of ultrahigh-pressure metamorphism and continental collision. This paper outlines twelve aspects of outstanding progress, including spatial distribution of the UHP metamorphic rocks, timing of the UHP metamorphism, time-scale of the UHP metamorphism, the protolith nature of deeply subducted continental crust, subduction erosion and crustal detachment during continental collision, the possible depths of continental sub-duction, fluid activity in the continental deep-subduction zone, partial melting during continental colli-sion, element mobility in continental deep-subduction zone, recycling of subducted continental crust, geodynamic mechanism of postcollisional magmatism, and lithospheric architecture of collision oro-gen. Some intriguing questions and directions are also proposed for future studies.

  11. Plate tectonics. Seismological detection of slab metamorphism.

    Science.gov (United States)

    Julian, Bruce

    2002-05-31

    The occurrence of more or less continuous ground vibrations ("volcanic tremor") is an important indicator of volcanic activity. But results from the "Hi-net" seismic network in Japan reported by Obara show that continuous ground vibrations can occur far away from any volcanic activity. In his Perspective, Julian discusses the idea that this tremor is excited by flow of metamorphic fluids. He also identifies other possible locations where such a tremor may be detected and explains what may be learnt from measuring it.

  12. Measuring metamorphic history of unequilibrated ordinary chondrites

    Science.gov (United States)

    Sears, D. W.; Grossman, J. N.; Melcher, C. L.; Ross, L. M.; Mills, A. A.

    1980-10-01

    Measurements performed by a thermoluminescence sensitivity technique of the degree of metamorphism experienced by unequilibrated ordinary chondrites are reported. Samples of type 3 chondrites were ground and heated to 500 C to remove their natural thermoluminescence, then irradiated with either 50 krad from a Co-60 gamma ray source or 25 krad from a Sr-90 beta source. The resulting thermoluminescence measured as a function of temperature is found to differ as much among some type 3 chondrites as between type 3 and other types, leading to the proposal of scheme for subdividing type 3 ordinary chondrites based on their thermoluminescence sensitivity.

  13. A combined study of SHRIMP U-Pb dating, trace element and mineral inclusions on high-pressure metamorphic overgrowth zircon in eclogite from Qinglongshan in the Sulu terrane

    Institute of Scientific and Technical Information of China (English)

    LI Qiuli; LI Shuguang; HOU Zhenhui1; HONG Jian; YANG Wei1

    2005-01-01

    Methods recently advanced for discrimination on the genesis of metamorphic zircon, such as analysis of mineral inclusions and trace elements, provide us powerful means to distinguish zircon overgrowth during high-pressure metamorphism. Zircons in ultrahigh-pressure eclogite from Qinglongshan in the Sulu terrane were studied by the SHRIMP U-Pb method in combining with trace element and mineral inclusion analyses. No inherited core was identified in the analyzed zircons by means of cathodoluminescence images. The occurrence of high-pressure metamorphic mineral inclusions in zircon, such as garnet, omphacite, rutile, and the flat HREE pattern in zircon indicate that the zircon formed at high-pressure metamorphic conditions. Therefore, a weighted average U-Pb age of 227.4 ± 3.5 Ma obtained from such a kind of zircon is interpreted to represent the timing of peak metamorphism for the Qinglongshan eclogite.

  14. Ultrahigh Pressure Metamorphic Terrane Evolution; Norwegian Caledonides

    Science.gov (United States)

    Rodda, C. I.; Koons, P. O.; Terry, M.; Robinson, P.

    2007-12-01

    Rocks in Norway's Western Gneiss Region (WGR) experienced high pressure and ultrahigh pressure (UHPM) (4GPa., 800C) peak metamorphic conditions during the Scandian orogeny at 410Ma. Thermobarometric studies of exhumed ultramafic eclogite pods from the Nordfjord, Soroyane and Nordoyane areas place tight time constraints on subduction, UHP metamorphism and exhumation, with all but the final phase of exhumation occurring in ca. 12 million years. However, few structures apparently related to the descent phase of terrane evolution were observed during field studies. Rather, ubiquitous quartz-rod lineation and pervasive minor folding indicate top-to-the-west, relatively shallow unroofing of the subducted margin as indicated in a new bedrock map of a portion of the Norwegian coast. Many of the mapped units have been redescribed, with emphasis put on those features that are of interest to the geophysical community.. To address the ambiguous kinematics of UHPM evolution, numerical models are employed in this study to consider the trajectory of crustal materials during continental collision that concentrate on the delicate balance of forces driving and resisting the subduction of buoyant continental materials as a function of kinetically-controlled equilibration.. In the WGR, past stability of coesite and rarely, of diamond, is preserved in robust mafic eclogites as inclusions within zircon and garnet grains. However, the extent of UHPM equilibration of the volumetrically dominant quartzo-feldspathic gneisses and consequently the contribution of these lithologies to the overall subduction suystemare unclear. . As such, simple equilibrium- defined strength and density parameters are insufficient to define natural model behavior. (Meaning of this next sentence escapes me. How does the following sound?) Rather, numerical solutions involving end member and intermediate states between equilibrium and non-equilibrium assemblages are explored While UHP metamorphic reactions in the

  15. Metamorphic and tectonic evolution of the Greater Himalayan Crystalline Complex in Nyalam region, south Tibet

    Science.gov (United States)

    Wang, Jia-Min; Zhang, Jin-Jiang; Rubatto, Daniela

    2016-04-01

    Recent studies evoke dispute whether the Himalayan metamorphic core - Greater Himalayan Crystalline Complex (GHC) - was exhumed as a lateral crustal flow or a critical taper wedge during the India-Asia collision. This contribution investigated the evolution of the GHC in the Nyalam region, south Tibet, with comprehensive studies on structural kinematics, metamorphic petrology and geochronology. The GHC in the Nyalam region can be divided into the lower and upper GHC. Phase equilibria modelling and conventional thermobarometric results show that peak temperature conditions are lower in the lower GHC (~660-700°C) and higher in the upper GHC (~740-780°C), whereas corresponding pressure conditions at peak-T decrease from ~9-13 kbar to ~4 kbar northward. Monazite, zircon and rutile U-Pb dating results reveal two distinct blocks within the GHC of the Nyalam region. The upper GHC underwent higher degree of partial melting (15-25%, via muscovite dehydration melting) that initiated at ~32 Ma, peaked at ~29 Ma to 25 Ma, possibly ended at ~20 Ma. The lower GHC underwent lower degree of melting (0-10%) that lasted from 19 to 16 Ma, which was produced mainly via H2O-saturated melting. At different times, both the upper and lower blocks underwent initial slow cooling (35 ± 8 and 10 ± 5°C/Myr, respectively) and subsequent rapid cooling (120 ± 40°C/Myr). The established timescale of metamorphism suggests that high-temperature metamorphism within the GHC lasted a long duration (~15 Myr), whereas duration of partial melting lasted for ~3 Myr in the lower GHC and lasted for 7-12 Myr in the upper GHC. The documented diachronous metamorphism and discontinuity of peak P-T conditions implies the presence of the Nyalam Thrust in the study area. This thrust is probably connected to the other thrusts in Nepal and Sikkim Himalaya, which extends over ~800 km and is named the "High Himalayan Thrust". Timing of activity along this thrust is at ~25-16 Ma, which is coeval with active

  16. Age of metamorphic events : petrochronology and hygrochronology

    Science.gov (United States)

    Bosse, Valerie; Villa, Igor M.

    2017-04-01

    Geodynamic models of the lithosphere require quantitative data from natural samples. Time is a key parameter: it allows to calculate rates and duration of geological processes and provides informations about the involved physical processes (Vance et al. 2003). Large-scale orogenic models require linking geochronological data with other parameters: structures, kinematics, magmatic and metamorphic petrology (P-T-A-X conditions), thermobarometric evolution of the lithosphere, chemical dynamics (Muller, 2003). This requires geochronometers that are both powerful chemical and petrological tracers. In-situ techniques allow dating a mineral in its petrological-microstructural environment. Getting a "date" has become quite easy... But what do we date in the end ? What is the link between the numbers obtained from the mass spectrometer and the age of the metamorphic event we are trying to date ? How can we transform the date into a geological meaningful age ? What do we learn about the behavior of the geochronometer minerals? Now that we can perform precise dating on very small samples directly in the studied rock, it is important to improve the way we interpret the ages to give them more pertinence in the geodynamic context. We propose to discuss the Th/U/Pb system isotopic closure in various metamorphic contexts using our published examples of in situ dating on monazite and zircon (Bosse et al. 2009; Didier et al. 2014, 2015). The studied examples show that (i) fluid assisted dissolution-precipitation processes rather than temperature-dependent solid diffusion predominantly govern the closure of the Th/U/Pb system (ii) monazite and zircon are sensitive to the interaction with fluids of specific composition (F, CO2, K ...), even at low temperature (iii) in the absence of fluids, monazite is able to record HT events and to retain this information in poly-orogenic contexts or during partial melting events (iv) complex chemical and isotopic zonations, well known in monazite

  17. Determining age of Pan African metamorphism using Sm-Nd garnet-whole rock geochronology and phase equilibria modeling in the Tasriwine ophiolite, Sirwa, Anti-Atlas Morocco

    Science.gov (United States)

    Inglis, Jeremy D.; Hefferan, Kevin; Samson, Scott D.; Admou, Hassan; Saquaque, Ali

    2017-03-01

    Sm-Nd garnet-whole rock geochronology and phase equilibria modeling have been used to determine the age and conditions of regional metamorphism within the Tasriwine ophiolite complex, Sirwa, Morocco. Pressure and temperature estimates obtained using a NaCaKFMASHT phase diagram (pseudosection) and garnet core and rim compositions predict that garnet growth began at ∼0.72 GPa and ∼615 °C and ended at ∼0.8 GPa and ∼640 °C. A bulk garnet Sm-Nd age of 647.2 ± 1.7 Ma, calculated from a four point isochron that combines whole rock, garnet full dissolution and two successively more aggressive partial dissolutions, provides a precise date for garnet formation and regional metamorphism. The age is over 15 million years younger than a previous age estimate of regional metamorphism of 663 ± 13 Ma based upon a SHRIMP U-Pb date from rims on zircon from the Iriri migmatite. The new data provide further constraints on the age and nature of regional metamorphism in the Anti-Atlas mountains and emphasizes that garnet growth during regional metamorphism may not necessarily coincide with magmatism/anatexis which predominate the signature witnessed by previous U-Pb studies. The ability to couple PT estimates for garnet formation with high precision Sm-Nd geochronology highlights the utility of garnet studies for uncovering the detailed metamorphic history of the Anti-Atlas mountain belt.

  18. Geologic and Geochronologic Studies of the Early Proterozoic Kanektok Metamorphic Complex of Southwestern Alaska

    Science.gov (United States)

    Turner, Donald L.; Forbes, Robert B.; Aleinikoff, John N.; McDougall, Ian; Hedge, Carl E.; Wilson, Frederic H.; Layer, Paul W.; Hults, Chad P.

    2009-01-01

    The Kanektok complex of southwestern Alaska appears to be a rootless terrane of early Proterozoic sedimentary, volcanic, and intrusive rocks which were metamorphosed to amphibolite and granulite facies and later underwent a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism of overlying sediments. The terrane is structurally complex and exhibits characteristics generally attributed to mantled gneiss domes. U-Th-Pb analyses of zircon and sphene from a core zone granitic orthogneiss indicate that the orthogneiss protolith crystallized about 2.05 b.y. ago and that the protolithic sedimentary, volcanic and granitic intrusive rocks of the core zone were metamorphosed to granulite and amphibolite facies about 1.77 b.y. ago. A Rb-Sr study of 13 whole-rock samples also suggests metamorphism of an early Proterozoic [Paleoproterozoic] protolith at 1.77 Ga, although the data are scattered and difficult to interpret. Seventy-seven conventional 40K/40Ar mineral ages were determined for 58 rocks distributed throughout the outcrop area of the complex. Analysis of the K-Ar data indicate that nearly all of these ages have been totally or partially reset by a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism. Several biotites gave apparent K-Ar ages over 2 Ga. These ages appear to be controlled by excess radiogenic 40Ar produced by the degassing protolith during the 1.77 Ga metamorphism and incorporated by the biotites when they were at temperatures at which Ar could diffuse through the lattice. Five amphibolites yielded apparent Precambrian 40K/40Ar hornblende ages. There is no evidence that these hornblende ages have been increased by excess argon. The oldest 40K/40Ar hornblende age of 1.77 Ga is identical to the sphene 207Pb/206Pb orthogneiss age and to the Rb-Sr 'isochron' age for six of the 13 whole-rock samples. The younger hornblende ages are interpreted as

  19. Possible polyphase metamorphic evolution of high grade metabasic rocks from the Songshugou ophiolite, Qinling orogen, China

    Science.gov (United States)

    Belic, Maximilian; Hauzenberger, Christoph; Dong, Yunpeng; Chen, Danling

    2014-05-01

    The Proterozoic Songshugou ophiolite consists of a series of ultrabasic and tholeitic metabasic rocks. They were emplaced as a lense shaped body into the southern margin of the Qinling Group. Isotope composition and trace element geochemistry display an E-MORB and T-MORB signature for the mafic rocks (Dong et al., 2008). Within the ophiolite sequence some rudimental fresh peridotites (dunites and harzburgites) within serpentines display low CaO (non-fertile mantle rocks. The metabasic rocks comprise the mineral assemblage garnet, amphibole, symplectitic pyroxenes, ilmenite, apatite, ±zoisite, ±sphene and show a strong retrograde metamorphic overprint. Garnet typically contains many inclusions within the core but are nearly inclusion free at the rim. The cores have sometimes snowball textures indicating initially syndeformative growth. Albite and prehnite were found in central parts of garnet. In the outer portions, pargasitic amphibole, rutile and a bluish amphibole, probably glaukophane were found. Garnet zoning pattern clearly show a discontinous growth seen in an sudden increase in grossular and decrease in almandine components. The symplectitic pyroxenes are of diopsidic composition which enclose typically prehnite and not albite, as common in retrograde eclogitic rocks. Different stages of garnet breakdown to plagioclase and amphibole, from thin plagioclase rims surrounding the garnets to plagioclase rich pseudomorphs, can be observed in different samples. Based on symplectitic pyroxenes a high pressure metamorphic event can be concluded (Zhang, 1999). The garnet breakdown to plagioclase and the symplectites clearly indicate a rapid exhumation phase. The age of the metamorphic event is probably related to the closure of the Shangdan ocean during the early Paleozoic. It is unclear if the garnet rims grew during a later stage of the metamorphic cycle or developed during a separate event. The financial support by Eurasia-Pacific Uninet is gratefully

  20. Geochronological review of Sambagawa metamorphic belt in Southwest Japan

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on almost all available published age data, the protolith ages, peak metamorphic ages and cooling rate of the Sambagawa metamorphic belt have been discussed and the latest constraints on the ages of the Sambagawa metamorphism and subduction-related accretionary evolutions were summarized. Peak metamorphic conditions attained within the Kuma nappe complex at ca. 145~185 Ma, and uplift through ca. 500℃ at ca. 150 Ma and 350~400℃ at ca. 110~ 115 Ma. The protolith sediments of the Besshi nappe complex were accumulated and subsequently progressively subducted and suffered high P-T prograde metamorphism during the Kuma nappe complex uplifting. The Besshi nappe complex arrived maximum metamorphic conditions at ca. 110 ~ 120 Ma and subsequently started rapid uplift with the cooling rate of ca. 14.2℃/Ma at ca. 75 ~85 Ma, followed with the cooling rate of ca. 6.0 ~8.9℃/Ma. The Oboke nappe complex started subduction later than other tectonic units and arrived the peak metamorphic conditions at ca. 75 Ma, which followed by the uplift with a cooling rate of ca. 8℃/Ma.

  1. Mineral chemistry of garnet in pegmatite and metamorphic rocks in the Hamedan area

    Directory of Open Access Journals (Sweden)

    Ahmad Ahmadi Khalaji

    2015-10-01

    Full Text Available Introduction The area of this study is located near Hamadan within the Sanandaj - Sirjan tectonic zone. In the Hamadan area, consisting mainly of Mesozoic plutonic and metamorphic rocks, aplites and pegmatites locally contain garnets.(Baharifar et al., 2004, Amidi and Majidi, 1977; Torkian, 1995. Garnet-bearing schists and hornfelses in the area are products of regional metamorphism shown by slate and phyllite (Baharifar, 2004. In this investigation the distribution of elements in garnet in different rock type was studied to determine their mineral types and conditions of formation. Garnet samples from igneous and metamorphic rocks were analyzed by electron microprobe (EMPA, the results of which are presented in this article. Materials and methods Thirty-five samples were selected for thin section preparation and twenty thin-polished sections were prepared for mineralogical and microprobe analysis. Thin sections of garnet-bearing igneous (pegmatite and metamorphic rocks (schist and hornfels were studied by polarizing microscope. Chemical analysis was performed on the garnets (38 points using a Caimeca SX100 electron microprobe at an acceleration voltage of 15 kV and electric current of 15 nA in the Mineral Processing Research Center, Iran. Separation of iron (II and Fe (III was calculated by Droop’s method (1987 and the structural formulas of the garnets were calculated using 24 oxygens to determine the relative proportions of the end-members using the mineral spreadsheet software of Preston and Still (2001. Results Based on the analyses, almandine (Fe - Al garnet and spessartine (Mn - Al garnet are the principal types of the (Kamari metamorphic and (Abaro pegmatitic garnets, that belong to the well-known pyralspite garnet group. Chemical zoning patterns of the garnets in the metamorphic rocks (schists differ from those in the igneous rocks (pegmatite, showing different compositions from core to rim. Petrographic evidence such as: co

  2. High Radiation Resistance Inverted Metamorphic Solar Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in the proposed SBIR Phase I project is the development of a unique triple unction inverted metamorphic technology (IMM), which will enable the...

  3. High Radiation Resistance Inverted Metamorphic Solar Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this SBIR Phase II project is the development of a unique triple junction inverted metamorphic technology (IMM), which will enable the...

  4. Inverted Metamorphic Multijunction (IMM) Cell Processing Instructions

    Energy Technology Data Exchange (ETDEWEB)

    Duda, A.; Ward, S.; Young, M.

    2012-02-01

    This technical report details the processing schedule used to fabricate Inverted Metamorphic Multijunction (IMM) concentrator solar cells at The National Renewable Energy Laboratory (NREL). These devices are used as experimental test structures to support the research at NREL that is focused on increasing the efficiency of photovoltaic power conversion. They are not intended to be devices suitable for deployment in working concentrator systems primarily because of heat sinking issues. The process schedule was developed to be compatible with small sample sizes and to afford relatively rapid turn-around times, in support of research efforts. The report describes the use of electro deposition of gold for both the back and front contacts. Electro-deposition is used because of its rapid turn around time and because it is a benign metallization technique that is seldom responsible for damage to the semiconductors. The layer transfer technique is detailed including the use of a commercially available adhesive and the etching away of the parent gallium arsenide substrate. Photolithography is used to define front contact grids as well as the mesa area of the cell. Finally, the selective wet chemical etchant system is introduced and its use to reveal the back contact is described.

  5. Garnet peridotites from Pohorje: Petrography, geothermobarometry and metamorphic evolution

    Directory of Open Access Journals (Sweden)

    Mirijam Vrabec

    2010-06-01

    Full Text Available Ultrahigh-pressure (UHP metamorphism has been recorded in Eo-Alpine garnet peridotites from the PohorjeMts., Slovenia, belonging to the Eastern Alps. The garnet peridotite bodies are found within serpentinized metaultrabasitesin the SE edge of Pohorje and are closely associated with UHP kyanite eclogites. These rocks belongto the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriaticfault system.Garnet peridotites show signs of a complex four-stage metamorphic history. The protolith stage is represented bya low-P high-T assemblage of olivine + Al-rich orthopyroxene + Al-rich clinopyroxene + Cr-spinel. Due to metamorphism,primary clinopyroxene shows exsolutions of garnet, orthopyroxene, amphibole, Cr-spinel and ilmenite. TheUHP metamorphic stage is defined by the assemblage garnet + olivine + Al-poor orthopyroxene + clinopyroxene +Cr-spinel. Subsequent decompression and final retrogression stage resulted in formation of kelyphitic rims aroundgarnet and crystallization of tremolite, chlorite, serpentine and talc.Pressure and temperature estimates indicate that garnet peridotites reached the peak of metamorphism at 4 GPaand 900 °C, that is well within the UHP stability field. Garnet peridotites in the Pohorje Mountains experiencedUHP metamorphism during the Cretaceous orogeny and thus record the highest-pressure conditions of all Eo-Alpinemetamorphism in the Alps.

  6. The Chicxulub crater - impact metamorphism of sulfate and carbonate lithologies

    Science.gov (United States)

    Deutsch, A.; Langenhorst, F.; Hornemann, U.; Ivanov, B. A.

    2003-04-01

    It is discussed whether in the aftermath of the Chicxulub event, impact-released CO_2 and SO_x have changed the Earth's climate, acting also as lethal thread for life. Undoubtedly, vaporization of carbonates and sulfates, which are major target lithologies at the Chicxulub impact site, occurred in the footprint of the projectile. What happened to these lithologies outside this very restricted zone was so far unconstrained. Petrologic observations on PEMEX and UNAM as well as on the CSDP cores allow to set up a general classification for shock-related pro-grade effects on sulfate and carbonate sedimentary rocks. Shock effects in lithic breccias are restricted to brecciation and formation of twins in calcite. Suevites mostly lack melted carbonate clasts; annealing effects in anhydrite fragments are absent. The underlying melt breccias contain anhydrite fragments still displaying a sedimentary texture, and limestone clasts, whose texture reflect crystallization from melt. Impact melt breccias from deeper levels frequently contain partially resorbed anhydrite clasts and a melt matrix with the Ca-rich mineral assemblage quartz + plagioclase + clinopyroxene; this mineral assemblage provides evidence for partial dissociation of CaSO_4. Large clasts of anhydrite consist of equant crystals with 120^o triple junctions, a feature indicative for re-crystallization in the solid state. Tagamites (impact melt rocks) are virtually free of clasts from sedimentary lithologies. These rocks have an extremely high formation temperature, which caused total dissociation of CaSO_4 and CaCO_3. Finally, up to 100 μm wide veins of anhydrite + calcite + quartz cut the matrix of all lithologies except the tagamites. They probably represent "degassing vents". The given scheme is in qualitative accordance with data of shock recovery and annealing experiments as well as with modeling results. In addition, it substantiates that annealing plays a fundamental role in the impact metamorphism of

  7. Petrology, geochemistry, and metamorphic evolution of meta-sedimentary rocks in the Diancang Shan-Ailao Shan metamorphic complex, Southeastern Tibetan Plateau

    Science.gov (United States)

    Wang, Fang; Liu, Fulai; Liu, Pinghua; Shi, Jianrong; Cai, Jia

    2016-07-01

    Meta-sedimentary rocks are widely distributed within the Diancang Shan-Ailao Shan metamorphic complex in the Southeastern Tibetan Plateau. Detailed geochemical analyses show that all of them have similar geochemical features. They are enriched in light rare-earth elements (LREEs) and depleted in heavy rare-earth elements (HREEs), with moderately negative Eu anomalies (Eu/Eu∗ = 0.55-0.75). Major and trace element compositions for the meta-sedimentary rocks suggest that the protoliths were probably claystone, siltstone, and greywacke and deposited in an active continental margin. Garnet porphyroblasts in meta-sedimentary rocks have distinct compositional zonation from core to rim. The zonation of garnet in St-Ky-Grt-Bt-Ms schist indicates an increasing P-T trend during garnet growth. In contrast, garnets from (Sil)-Grt-Bt paragneiss show diffusion zoning, implying a decreasing P-T trend. Based on mineral transformations and P-T estimates using conventional geothermobarometers and pseudosection calculations, four metamorphic stages have been determined, including an early prograde metamorphic stage (M1), a peak amphibolite-granulite facies metamorphic stage (M2), a near-isothermal decompression stage (M3), and a late amphibolites-facies retrograde stage (M4). The relic assemblage of Ms + St ± Ky ± Bt ± Kfs + Qz preserved as inclusions in garnet porphyroblasts of the meta-sedimentary rocks belongs to prograde (M1) stage and records P-T conditions of 560-590 °C and 5.5-6.3 kb. Matrix mineral assemblages of Grt + Bt + Ky/Sil + Pl + Qz and Grt + Bt ± Sil + Pl ± Kfs + Qz formed at peak (M2) stage yield P-T conditions of 720-760 °C and 8.0-9.3 kb. M3 is characterized by decompression reactions, dehydration melting of assemblages that include hydrous minerals (e.g., biotite), and partial melting of felsic minerals. The retrograde assemblages is Grt + Bt + Sil + Pl + Qz formed at 650-760 °C and 5.0-7.3 kb. At the amphibolites-facies retrograde (M4) stage, fine

  8. Initiation of continental accretion: metamorphic conditions

    Science.gov (United States)

    Clement, Conand; Frederic, Mouthereau; Gianreto, Manatschal; Adbeltif, Lahfid

    2017-04-01

    The physical processes involved at the beginning of the continental collision are largely unknown because they are transient and therefore hardly identifiable from the rock record. Despite the importance of key parameters for understanding mountain building processes, especially the formation of deep mountain roots and their impacts on earthquakes nucleation, rock/fluid transfers and oil/gas resources in the continental crust, observations from the earliest collision stages remain fragmentary. Here, we focus on the example of Taiwan, a young and active mountain belt where the transition from oceanic subduction, accretion of the first continental margin to mature collision can be followed in space and time. We present preliminary results and provide key questions regarding the reconstruction of time-pressure-temperature paths of rocks & fluids to allow discriminating between rift-related thermal/rheological inheritance and burial/heating phases during convergence. Previous studies have focused on peak temperatures analyzed by Raman Spectrometry of Carbonaceous Matter from the deeper structural layers exposed in the Central Range of Taiwan. In the pre-rift sediments, these studies reported a positive gradient from West to Est, and values from units. Cross sections and maps with high resolution peak temperatures are in process as well as pressure estimations to determine how the sediments were metamorphosed. In addition to this work, we report a few inherited temperatures in the 390-570 °C range, indicating recycling of organic matter from metasediments that recorded HT events, likely originated from higher grade metamorphic units of mainland China, which have been eroded and deposited in the post-rift sediments.

  9. An integrated tectonothermal model for the evolution of the High Himalaya in western Zanskar with constraints from thermobarometry and metamorphic modeling

    Science.gov (United States)

    Walker, C. B.; Searle, M. P.; Waters, D. J.

    2001-12-01

    We present an integrated model for the tectonothermal evolution of the High Himalaya in NW Zanskar based on detailed field mapping, petrographic and microstructural analysis, thermobarometric techniques, and metamorphic modeling. Metasedimentary lithologies in the Suru valley can be correlated with the Palaeozoic-Mesozoic Tethyan shelf sediments along the north Indian continental margin in Kashmir and Ladakh, and metaigneous amphibolites correlate with Permian rift-related igneous units. Subsequent to India-Asia collision at ca. 54 Ma, crustal thickening of Indian plate rocks resulted in a polyphase deformational and metamorphic history. The large-scale structure of the area is that of kilometer-scale, SW vergent recumbent folds that have been folded by structurally lower, later domes such as the Suru Dome. Prograde M1 metamorphism reached a maximum of kyanite grade and is believed to be synkinematic to postkinematic with respect to the formation of the large folds. Thermobarometric analysis indicates that peak conditions relating to this Harrovian event between 33 and 28 Ma were 9.5-10.5 kbar and 620°-650°C. A later metamorphic event (M2) associated with doming throughout the Zanskar Himalaya and crustal anatexis in the sillimanite + K-feldspar-grade core of the High Himalaya caused reequilibration of deeper Suru Dome rocks to slightly lower pressures (4.5-7 kbar). Metamorphic modeling, involving phase diagram construction and pressure-temperature (P-T) path determination, suggests that metamorphic garnets grew under conditions of heating and burial along moderate slopes in P-T space. Rapid exhumation of the High Himalayan Crystallines between the Main Central Thrust and the Zanskar Shear Zone occurred during or immediately after peak M2 metamorphism (21.5-19.5 Ma).

  10. Lithospheric seismic fabrics of Sulu ultrahigh-pressure metamorphic belt

    Institute of Scientific and Technical Information of China (English)

    YANG; Wencai; YANG; Wuyang; JIN; Zhenmin; CHENG; Zhenyan

    2005-01-01

    Calibration of seismic reflectors appearing in the crust of the Chinese continent scientific drilling site can be completed through the correlation studies between direct evidences, such as the drill cores, and geophysical signatures; therefore the interpretation of geophysical data could produce reliable results of crustal structure and composition. On the other hand, there are two Cenozoic volcanoes close to the scientific drilling site; analyzing composition of xenoliths existent in the volcanoes and evaluating their seismic velocities can also offer information about the mantle and lower crust. After the calibration via cores and well-logging data, the seismic reflectors appearing in the UHP belt can be caused by lithological changes within the UHP rock slice, ductile shearing rock-suites, and later fracture zones. Among these sources, ductile shearing resulted in displacement and detachment of original rock-sheets, producing some rock-interbeds of several hundred meters thick that are named the ductile shearing rock-suites. A suite consists of mylonized gneiss and eclogite slices that underwent shearing, becoming the major mechanism responsible to generate regional strong reflections. The UHP rock-slice is characterized by complicated structures and high density, high seismic velocity and high electrical resistivity, its thickness is usually less than 11 km. Velocity and density of the gneiss-layer beneath gradually tend to normal with increasing depth. Based on the xenoliths we can infer that the middle crust contains a lot of gneisses, and the lower crust consists of different granulites. The lithospheric mantle has multi-layer structures and consists mainly of spinal lherzolite and harzburgite, implying late Mesozoic lithospheric thinning. The seismic fabrics with different origins were possible products of different geodynamic processes. For instance, the UHP rock-slice was produced by the UHP metamorphic process and the exhumation of subducted

  11. Metamorphic history of LP/HT migmatites from the Bavarian Unit (Bohemian Massif)

    Science.gov (United States)

    Sorger, Dominik; Hauzenberger, Christoph; Linner, Manfred; Iglseder, Christoph

    2016-04-01

    Granulite facies migmatites are commonly observed in the Bavarian Unit which were formed during a late Variscan (post 330 Ma) LP-HT overprint. This event is related to a delamination of mantle lithosphere and subsequent asthenospheric upwelling. Most of these rocks underwent high degrees of melting forming meta- and diatexites. Former work in the Sauwald area, Upper Austria, by Tropper et al. (2006) determined metamorphic conditions of 700-800°C and 0.4-0.5 Gpa. In this study samples were taken along the (1) Danube valley (west of Linz), from the (2) Lichtenberg area (north of Linz), the (3) Bad Leonfelden area (west of the Rodl Fault) and the (4) Sauwald area (south of the river Danube). Biotite and plagioclase bearing migmatite is very common and occurs all over the investigated area. These rocks are the product of intensive melting (anatexite) and formed at conditions of ~650-700°C and 0.25-0.45 Gpa. Scarce outcrops of garnet bearing Al-rich migmatitic metapelites occur along the Danube valley. The formation of the migmatitc texture with well-developed leucosomes (K-feldspar, plagioclase, quartz) and melanosomes (garnet, cordierite, sillimanite, spinel, ilmenite, ± biotite) indicate high temperature metamorphism. Most of the garnet grains show a homogenous iron-rich composition and form generally an almandine-pyrope (Xalm=0.78-0.80, Xprp=0.16-0.18) solid solution with minor contents of grossular and spessartine (Xgrs=0.028-0.032, Xsps=0.020-0.024). Large garnet porphyroblasts (up to 1cm in size) display a distinct chemical zoning, especially in grossular component. Elevated homogeneous grossular content in the core is followed discontinously by low grossular content at the rim indicating a two stage growth. Garnet core and rim also display different mineral inclusions. Thermobarometric calculations using garnet core compositions with inclusions and garnet rim compositions with matrix phases as well as pseudosection calculations allow the reconstruction of a P

  12. SHRIMP-RG U-Pb zircon geochronology of mesoproterozoic metamorphism and plutonism in the southwesternmost United States

    Science.gov (United States)

    Barth, Andrew P.; Wooden, Joseph L.; Coleman, Drew S.

    2001-01-01

    Mesoproterozoic intrusive and granulite‐grade metamorphic rocks in southern California have been inferred to be exotic to North America on the basis of perceived chronologic incompatibility with autochthonous cratonal rocks. Ion microprobe geochronology indicates that zircons in granulite‐grade gneisses, dated at 1.4 Ga using conventional methods, are composed of 1.68–1.80‐Ga cores and 1.19‐Ga rims. These Early Proterozoic gneisses were metamorphosed at extremely high temperatures and moderate pressures during emplacement of the 1.19‐Ga San Gabriel anorthosite complex. The lack of a 1.4‐Ga metamorphic event suggests that Proterozoic rocks in this region, rather than being exotic to North America, may in fact be a midcrustal window into Mesoproterozoic crustal evolutionary processes in southwestern North America.

  13. Post-Collisional Ductile Extensional Tectonic Framework in the UHP and HP Metamorphic Belts in the Dabie-Sulu Region, China

    Institute of Scientific and Technical Information of China (English)

    索书田; 钟增球; 游振东; 张泽明

    2001-01-01

    The present-day observable tectonic framework of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts in the Dabie-Sulu region was dominantly formed by an extensional process, mostly between 200 and 170 Ma, following the Triassic collision between the Sino-Korean and Yangtze cratons. The framework that controls the present spatial distribution of UHP and HP metamorphic rocks in particular displays the typical features of a Cordilleran-type metamorphic core complex, in which at least four regional-scale, shallow-dipping detachment zones are recognized. Each of these detachment zones corresponds to a pressure gap of 0.5 to 2.0 GPa. The detachment zones separate the rocks exposed in the region into several petrotectonic units with different P-T conditions. The geometry and kinematics of both the detachment zones and the petrotectonic units show that the exhumation of UHP and HP metamorphic rocks in the Dabie-Sulu region was achieved, at least in part, by non-coaxial ductile flow in the multi-layered detachment zones, and by coaxial vertical shortening and horizontal stretching in the metamorphic units, under amphibolite- to greenschist-facies conditions, and in an extensional regime. All ductile extensional deformations occurred at depths below 10 to 15 km, i.e. below the brittle/ductile deformation transition.

  14. Organic matter and metamorphic history of CO chondrites

    Science.gov (United States)

    Bonal, Lydie; Bourot-Denise, Michèle; Quirico, Eric; Montagnac, Gilles; Lewin, Eric

    2007-03-01

    The metamorphic grades of a series of eight CO3 chondrites (ALHA77307, Colony, Kainsaz, Felix, Lancé, Ornans, Warrenton and Isna) have been quantified. The method used was based on the structural grade of the organic matter trapped in the matrix, which is irreversibly transformed by thermal metamorphism. The maturation of the organic matter is independent with respect to the mineralogical context and aqueous alteration. This metamorphic tracer is thus valid whatever the chemical class of chondrites. Moreover, it is sensitive to the peak metamorphic temperature. The structural grade of the organic matter was used along with other metamorphic tracers such as petrography of opaque minerals, Fa and Fs silicate composition in type I chondrules, presolar grains and noble gas (P3 component) abundance. The deduced metamorphic hierarchy and the attributed petrographic types are the following: ALHA77307 (3.03) Chopin C., and Rouzaud J. N. (2002) Raman spectrum of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol., 20, 859-871]. A value of 330 °C was obtained for Allende (CV chondrite), Warrenton and Isna, consistent with temperatures estimated from Fe diffusion [Weinbruch S., Armstrong J., and Palme H. (1994). Constraints on the thermal history of the Allende parent body as derive from olivine-spinel thermometry and Fe/Mg interdiffusion in olivine. Geochim. Cosmochim. Acta58(2), 1019-1030.], from the Ni content in sulfide-metal assemblages [Zanda B., Bourot-Denise M., and Hewins R. (1995) Condensate sulfide and its metamorphic transformations in primitive chondrites. Meteorit. Planet. Sci.30, A605.] and from the d002 interlayer spacing in poorly graphitized carbon [Rietmeijer, F., and MacKinnon, I. (1985) Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature, 315, 733-736]. The trapped noble gas and C content appear to be sensitive but not precise metamorphic tracers, indicating that the "Ornans

  15. Linking monazite geochronology with fluid infiltration and metamorphic histories: Nature and experiment

    Science.gov (United States)

    Shazia, J. R.; Harlov, D. E.; Suzuki, K.; Kim, S. W.; Girish-Kumar, M.; Hayasaka, Y.; Ishwar-Kumar, C.; Windley, B. F.; Sajeev, K.

    2015-11-01

    Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 °C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 °C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation.

  16. Burial metamorphism in rocks of the Western Andes of Peru

    Science.gov (United States)

    Offler, R.; Aguirre, L.; Levi, B.; Child, S.

    1980-01-01

    An unconformity bound, episodic pattern of burial metamorphism is preserved in marine and terrestrial volcanic and sedimentary rocks which were deposited in the West Peruvian Trough during the Mesozoic and Cenozoic Eras. A particular metamorphic facies series is developed in each of the stratigraphic-structural units bounded by unconformities. In each unit, grade increases with stratigraphic depth and covers part or all of the range from zeolite to greenschist facies. At every unconformity a mineralogic break occurs where higher grade assemblages on top of the unconformity plane overlie lower grade assemblages. The presence of wairakite and the development of a wide range of metamorphic facies in thin sequences suggest high geothermal gradients, possibly related to generation of magma at depth.

  17. Ubiquitous brecciation after metamorphism in equilibrated ordinary chondrites

    Science.gov (United States)

    Scott, E. R. D.; Lusby, D.; Keil, K.

    1985-01-01

    Ten objects with aberrant Fe/(Fe + Mg) ratios have been found in apparently unbrecciated types 4-6 H and L chondrites. Since the Fe/(Fe + Mg) ratios of these objects are incompatible with the metamorphic history of the host chondrites, it is concluded that a high proportion of ordinary chondrites are breccias that were lithified after peak metamorphism. This is consistent with the results of Scott (1984), who concluded that most type three ordinary chondrites are breccias of materials with diverse thermal histories, even though they do not show prominent brecciation. It is found that the classification scheme of Van Schmus and Wood (1967) does not identify chondrites with similar thermal histories; the petrologic type of a chondrite is only a measure of the average thermal history of its ingredients. Chondrite and achondrite breccias are also compared in order to understand how brecciation of chondrites after metamorphism is so well camouflaged.

  18. Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California.

    Science.gov (United States)

    Evarts, R.C.; Schiffman, P.

    1983-01-01

    Metamorphic zonation overprinted on the volcanic member and overlying volcanogenic sediments of the ophiolite complex increases downward in grade and is characterized by the sequential appearance with depth of zeolites, ferric pumpellyite and pistacitic epidote. Metamorphic assemblages of the plutonic member of the complex are characterized by the presence of calcic amphibole. The overprinting represents the effects of hydrothermal metamorphism resulting from the massive interaction between hot igneous rocks and convecting sea-water in a submarine environment. A thermal gradient of 100oC/km is postulated to account for the zonal recrystallization effects in the volcanic member. The diversity and sporadic distribution of mineral assemblages in the amphibole zone are considered due to the limited availability of H2O in the deeper part of the complex. Details of the zonation and representative microprobe analyses are tabulated.-M.S.

  19. Post-inversion stage of regional metamorphism of coals

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, A.Ye.

    1982-01-01

    A study is made of the metamorphism of coals in Kuznetsk Basin. To interpret the stages of coalification, measurements were used of the indicators of vitrinite along the hinges of folds, graphic plottings of isometamorphism of coals, analysis of interrelationships of the isolines of coal metamorphism with isopachites covering their deposits. The elevation of the coal mass of Kuzbass in the post-inversion time was accompanied by the formation of steep linear folds and longitudinal bending of their hinges. As a consequence of this, the hinges of the folds in beds of the same name occurred at different depths from the modern surface, however coal metamorphism along the hinges has not changed. In the Kuznetsk Basin there are no traces of post-inversion coalification.

  20. Metamorphic Algorithm of Self-reconfigurable Modular Robotic System

    Institute of Scientific and Technical Information of China (English)

    徐威; 王高中; 李倩; 王石刚

    2004-01-01

    A self-reconfigurable robot is a non-linear complex system composed of a large number of modules. The complexity caused by non-linearity makes it difficult to solve the problem of module motion planning and shape-changing control with the traditional algorithm. In this paper, a full-discrete metamorphic algorithm is proposed. The modules concurrently process the local sensing information, update their eigenvector, and act by the same predetermined logical rules. Then a reasonable motion sequence for modules and the global metamorphosis can be obtained. Therefore, the complexity of metamorphic algorithm is reduced, the metamorphic procedure is simplified, and the self-organizing metamorphosis can be obtained. The algorithm cases of several typical systems are studied and evaluated through simulation program of 2-D planar homogeneous modular systems.

  1. Metamorphic Virus Detection in Portable Executables Using Opcodes Statistical Feature

    CERN Document Server

    Rad, Babak Bashari

    2011-01-01

    Metamorphic viruses engage different mutation techniques to escape from string signature based scanning. They try to change their code in new offspring so that the variants appear non-similar and have no common sequences of string as signature. However, all versions of a metamorphic virus have similar task and performance. This obfuscation process helps to keep them safe from the string based signature detection. In this study, we make use of instructions statistical features to compare the similarity of two hosted files probably occupied by two mutated forms of a specific metamorphic virus. The introduced solution in this paper is relied on static analysis and employs the frequency histogram of machine opcodes in different instances of obfuscated viruses. We use Minkowski-form histogram distance measurements in order to check the likeness of portable executables (PE). The purpose of this research is to present an idea that for a number of special obfuscation approaches the presented solution can be used to i...

  2. Weakening and strain localization during metamorphic overprint: The example of Arnøya, Scandinavian Caledonides, Northern Norway

    Science.gov (United States)

    Faber, Carly; Stünitz, Holger; Jeřábek, Petr

    2015-04-01

    Metamorphic processes such as new mineral growth, changes in mineral composition, and infiltration of water are thought to play an important role in rheological weakening and strain localization in the lower crust. However, the exact mechanisms and extent to which these processes have an effect, are not well understood. The Scandinavian Caledonides in northern Norway offer a unique field laboratory to study pervasively deformed and metamorphosed lower crustal nappes and allow for the comparison of deformation and metamorphic conditions between nappe cores, nappe boundaries, and the transition between the two. The island of Arnøya provides a 20 km-long cross section through the Vaddas, Kåfjord and Nordmannvik nappes, with metamorphic grade increasing upwards from amphibolite to granulite facies, respectively. The nappes display a pervasive foliation associated with a strong NW-SE lineation and top-to-SE shear sense consistent with Caledonian thrust deformation. Nappe boundaries occur as wide (10's of metres) ultramylonite-, mylonite- and schist-bearing shear zones, and have a different mineralogy to internal parts of the nappes. Metapelites and migmatites of the Nordmannvik nappe are kyanite-bearing (high T, high P), and the Kåfjord nappe is composed mainly of homogenous semi-pelite (medium T and P). The Vaddas nappe is more variable and contains interlayered metapsammites, amphibolites and local marbles. A comparison of metapelitic samples from the nappes and the two nappe boundary shear zones show that grain size decreases and degree of mixing of phases increases towards shear zone cores. Also grain size becomes homogeneous towards shear zone cores. All samples show evidence of high temperature dynamic recrystallization of quartz. Quartz within aggregates in nappe rocks have a crystallographic preferred orientation (CPO), while quartz in shear zone rocks shows no CPO, indicating deformation mainly by dislocation creep in the nappes and a switch to diffusion

  3. The Lost South Gobi Microcontinent: Protolith Studies of Metamorphic Tectonites and Implications for the Evolution of Continental Crust in Southeastern Mongolia

    Directory of Open Access Journals (Sweden)

    Matthew J. Heumann

    2013-08-01

    Full Text Available The Central Asian Orogenic Belt, or Altaids, is an amalgamation of volcanic arcs and microcontinent blocks that records a complex late Precambrian–Mesozoic accretionary history. Although microcontinents cored by Precambrian basement are proposed to play an integral role in the accretion process, a lack of isotopic data hampers volume estimates of newly produced arc-derived versus old-cratonic crust in southeastern Mongolia. This study investigates metamorphic tectonites in southern Mongolia that have been mapped as Precambrian in age, largely on the basis of their high metamorphic grade and high strain. Here we present results from microstructural analyses and U-Pb zircon geochronology on samples from Tavan Har (44.05° N, 109.55° E and the Yagan-Onch Hayrhan metamorphic core complex (41.89° N, 104.24° E. Our results show no compelling evidence for Precambrian basement in southeastern Mongolia. Rather, the protoliths to all tectonites examined are Paleozoic–Mesozoic age rocks, formed during Devonian–Carboniferous arc magmatism and subsequent Permian–Triassic orogenesis during collision of the South Mongolia arc with the northern margin of China. These results yield important insights into the Paleozoic accretionary history of southern Mongolia, including the genesis of metamorphic and igneous basement during the Paleozoic, as well as implications for subsequent intracontinental reactivation.

  4. Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry

    Science.gov (United States)

    Marschall, Horst R.; Altherr, Rainer; Kalt, Angelika; Ludwig, Thomas

    2008-06-01

    The boron isotopic composition of zoned tourmaline in two metasediments from the island of Syros, determined by secondary-ion mass spectrometry (SIMS), reflects the sedimentary and metamorphic record of the rocks. Tourmaline from a silicate-bearing marble contains small (≤20 μm) detrital cores with highly variable δ 11B values (-10.7 to +3.6‰), pointing to a heterogeneous protolith derived from multiple sources. The sedimentary B isotopic record survived the entire metamorphic cycle with peak temperatures of ˜500°C. Prograde to peak metamorphic rims are homogeneous and similar among all analysed grains ( δ 11B ≈ +0.9‰). The varying δ 11B values of detrital cores in the siliceous marble demonstrate that in situ B isotope analysis of tourmaline by SIMS is a potentially powerful tool for provenance studies not only in sediments but also in metasediments. A meta-tuffitic blueschist bears abundant tourmaline with dravitic cores of detrital or authigenic origin ( δ 11B ≈ -3.3‰), and prograde to peak metamorphic overgrowth zones (-1.6‰). Fe-rich rims, formed during influx of B-bearing fluids under retrograde conditions, show strongly increasing δ 11B values (up to +7.7‰) towards the margins of the grains. The δ 11B values of metamorphic tourmaline from Syros, formed in mixed terrigenous-marine sediments, reflect the B signal blended from these two different sources, and was probably not altered by dehydration during subduction.

  5. Why are Q-Ratios High in the Sulu UHP Metamorphic Rocks?

    Institute of Scientific and Technical Information of China (English)

    Liu Qingsheng

    2011-01-01

    I found high Q values (Q-ratio=Jn/Ji, Jn, Ji are remanent magnetization and induced magnetization) in the Sulu ultrahigh pressure (UHP) metamorphic rocks, eastern China which is the world's largest UHP metamorphic belt (Fig. 1 in Liu et al., 2009). Q values of 320 core samples with variable lithologies in the 100-2 000 m interval from the Chinese Continental Scientific Drilling (CCSD) main hole are as follows: values between 0.06 and 608.24, with an average of 15.56 for 171 eclogite samples; values between 0.11 and 23.83, with an average of 1.93 for 61 orthogneiss samples; values between 0.13 and 1 746.00, with an average of 63.63 for 74 paragneiss samples; and values from 8.07 to 28.23, with an average of 16.59 for 14 serpentinized peridotite (Liu et al., 2010, 2009). However, continental lower crustal rocks generally have low Q values. For example, several thousand samples from the Ukranian shield show a mean Q of about 1.0 (Krutikhovskaya and Pashkevich, 1977).

  6. Metamorphism of the Oddanchatram anorthosite, Tamil Nadu, South India

    Science.gov (United States)

    Wiebe, R. A.; Janardhan, A. S.

    1988-01-01

    The Oddanchatram anorthosite is located in the Madurai District of Tamil Nadu, near the town of Palni. It is emplaced into a granulite facies terrain commonly presumed to have undergone its last regional metamorphism in the late Archean about 2600 m.y. The surrounding country rock consists of basic granulites, charnockites and metasedimentary rocks including quartzites, pelites and calc-silicates. The anorthosite is clearly intrusive into the country rock and contains many large inclusions of previously deformed basic granulite and quartzite within 100 meters of its contact. Both this intrusion and the nearby Kaduvar anorthosite show evidence of having been affected by later metamorphism and deformation.

  7. MetPetDB: New Directions for Metamorphic Studies

    Science.gov (United States)

    Spear, F. S.; Adali, S.; Szymanski, B. K.; Hallett, B. K.; Waters, A. J.; Linder, Z. J.; Fyffe, M. E.; Goldfarb, D.; Barlett, K.

    2008-12-01

    It is estimated that less than 1% of the data collected on metamorphic rocks is published, and MetPetDB (database for metamorphic geochemistry) is being developed and populated to preserve these data and to foster new and innovative directions for scientific research and education. The data model is based on a sample of metamorphic rock and includes information about location, rock type, mineral assemblage, fabric, plus images of all types and mineral composition data. Mineral analyses are linked to locations on appropriate images so the spatial integrity of the data is preserved. Tools will be available for mineral recalculation, plotting, and thermobarometric applications. Derivative data such as peak P-T conditions, metamorphic P-T path, and cooling rate will also be stored. The database will be searchable based on any number of data fields, permitting rapid location of samples that can be used to test hypotheses and discover new relationships. For example: A student is designing a thesis project and MetPetDB will be a first resource to determine the types of rocks present in a region, the work that has been done on them, and links to the published findings. The Fe/Mg zoning in migmatitic garnets has been used to infer cooling rates. What is the range of cooling rates recorded by migmatitic garnets, and is there a correlation between peak metamorphic temperature and cooling rate? Is it possible that melting triggers rapid thrusting that causes the rapid cooling? A search on: rock type = migmatite plus Fe and Mg X-ray maps of garnet would reveal all samples that could be used in this study. A new geobarometer based on a specific mineral assemblage is proposed that permits pressures to be estimated to within 50 MPa. A search of the database for all samples with this assemblage plus analyses of the necessary minerals would provide a set of samples to which this new barometer can be applied. Recalculating pressures and temperatures for an entire region using new

  8. The onset of metamorphism in ordinary and carbonaceous chondrites

    Science.gov (United States)

    Grossman, J.N.; Brearley, A.J.

    2005-01-01

    Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X-ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO-rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr-rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr-rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re-enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to

  9. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks

    Science.gov (United States)

    Selverstone, Jane; Sharp, Zachary D.

    2015-05-01

    Chlorine stable isotope compositions of two sedimentary sequences and their metamorphic equivalents were measured in order to study fractionation effects during prograde metamorphism and devolatilization. Protoliths (n = 25) were collected from a 50 m section of Triassic fluvial and playa-lake strata and Jurassic (Liassic) marine black shales in a well-characterized quarry. Low greenschist to middle amphibolite facies equivalents (n > 80) were collected from the Glarus Alps, Urseren Zone, and Lucomagno region. Bulk δ37Cl values are constant within individual sedimentary layers, but vary from -2.0 to + 2.4 ‰ in Triassic rocks and from -3.0 to 0‰ in the black shales. Dolomitic and gypsiferous samples have positive δ37Cl values, but marls and shales are isotopically negative. Bulk Cl contents show only small declines during the earliest stages of metamorphism. Metamorphic equivalents of the Triassic and Liassic protoliths record the same overall ranges in δ37Cl as their protoliths. Samples with highly correlated bulk compositions but different metamorphic grade show no statistically significant difference in δ37Cl. These data lead to the following conclusions: (1) Terrestrial and marine sedimentary rocks display large primary heterogeneities in chlorine isotope composition. As a result, an unambiguous "sedimentary signature" does not exist in the chlorine stable isotope system. (2) No isotopic fractionation is discernable during metamorphic devolatilization, even at low temperatures. Alpine-style metamorphism thus has little to no effect on bulk chlorine isotopic compositions, despite significant devolatilization. (3) Cl is largely retained in the rocks during devolatilization, contrary to the normally assumed hydrophilic behavior of chlorine. Continuous release of mixed-volatile C-O-H fluids likely affected Cl partitioning between fluid and minerals and allowed chlorine to remain in the rocks. (4) There is no evidence for fluid communication across (meta

  10. Links between fluid circulation, temperature, and metamorphism in subducting slabs

    Science.gov (United States)

    Spinelli, G.A.; Wang, K.

    2009-01-01

    The location and timing of metamorphic reactions in subducting lithosph??re are influenced by thermal effects of fluid circulation in the ocean crust aquifer. Fluid circulation in subducting crust extracts heat from the Nankai subduction zone, causing the crust to pass through cooler metamorphic faci??s than if no fluid circulation occurs. This fluid circulation shifts the basalt-to-eclogite transition and the associated slab dehydration 14 km deeper (35 km farther landward) than would be predicted with no fluid flow. For most subduction zones, hydrothermal cooling of the subducting slab will delay eclogitization relative to estimates made without considering fluid circulation. Copyright 2009 by the American Geophysical Union.

  11. Modelling metamorphism in the Hoosac Schist, Western Massachusetts: new approaches to a New England problem

    Science.gov (United States)

    Bidgood, Anna; Waters, Dave; Gardiner, Nick

    2015-04-01

    Along the western margin of the metamorphic Appalachians in New England, Taconic (Ordovician) tectonism and metamorphism are overprinted towards the east by Acadian (Devonian) structures and metamorphism. The Hoosac Schist, a probable correlate of the well-known Gassetts Schist of Vermont, lies in the region of overprinting. It forms a narrow N-S-trending tectonically-bound zone crossing several Barrovian mineral-assemblage zones from garnet to kyanite grade. Highly aluminous units containing cm-sized garnets (Cheney & Brady, 1992) are noted for the occurrence of textural unconformities within the garnets, separating inclusion-rich cores from inclusion-poor rims. Matrix domains contain both paragonite and muscovite. Muscovite is present in at least two compositionally distinct generations, with broad later laths cutting across a microfolded earlier fabric. Rutile is restricted to inclusions in garnet, whereas the matrix Ti- phase is ilmenite. These features suggest a polymetamorphic history, potentially recording the superimposition of Acadian metamorphism on Taconic, but it has not yet proved possible to demonstrate the presence of two metamorphic cycles. This study aims to test and employ the new and revised activity models recently developed for metapelites in the full system MnNCKFMASHTO (White et al, 2014), for use with the Holland & Powell data-set 6. Features that can now be more explicitly modelled include garnet zonation in relation to its inclusion suites and microstructural features, the occurrence, texture and distribution of Ti-bearing accessory minerals, and the assemblages and compositional trends in white micas. Preliminary modelling, correlated with microstructural observation, indicates (1) some confirmation of the concern expressed by White et al (2014) that the stability of margarite-bearing assemblages may be somewhat overestimated, (2) that apart from this, the early growth history of garnet is consistent with its suite of trapped inclusions

  12. How High Are the P-T Conditions for Paleoproterozoic Metamorphism of the Huangtuling Felsic Granulite, North Dabieshan, Central China?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The 2.34 cm-wide garnet porphyroblast in the Paleoproterozoic felsic granulite from the Huangtuling area, North Dabieshan, has been reinvestigated for compositional variation in light of Cacomposition X-ray mapping to obtain peak P-T conditions of granulite-facies metamorphism.A new core-rim traverse was conducted through where there is little influence on Ca-profile and slight modification in Mn-, Mg- and Fe-profiles with the highest Mg/(Mg+Fe) value of 0.467.Reasonable peak P-T conditions were estimated to be 1.50- 1.70 GPa and 1 100- 1 150 ℃ according to TWQ-based garnetAl-orthopyroxene thermobarometry.These estimations suggest that the Huangtuling granulite once was subjected to ultrahigh-temperature (UHT) granulite-facies metamorphism following a high-pressure granulite-faices metamorphic stage, implying that a deep subduction and collision process relevant to the Yangtze block occurred in the Paleoproterozoic time, probably as a response to the global assembly event of the Columbia supercontinent.

  13. [Myanmar jadeitite low-temperature metamorphic water-rock reaction: eveidence from microscopic fourier transform infrared spectroscopy].

    Science.gov (United States)

    Yan, Ruo-Gu; Qiu, Zhi-Li; Feng, Ming; Jin, Chun-Mei; Li, Liu-Fen; Shi, Gui-Yong; Wang, Ping

    2014-09-01

    Weathering & transporting and depositing processes may improve the quality of some natural low-quality jadeite through reaction with surrounding water fluids. But the mechanism of such water-rock reaction has not been known clearly to date. Applying microscopic Fourier transform infrared spectroscopy (Micro-FTIR), this paper carried out comparatively in-situ research of jadeites' mineral composition before and after water-rock reaction. The results show that water-rock reaction cannot impact jadeites in their major and minor element composition, but greatly change their water content. Jadeites became richer, with even several times increase, in water content, after experiencing water-rock reaction, and hence show a shift of absorption peak at 3 550 cm(-1) to higher frequency. The mineral crystals of these jadeites showed reglar variation in water content from core to edge, and these jadeites have more water in marginal area than in center area, being opposite to the change in water content in jadeite during high temperature and pressure metamorphic process, hence implying that there are different mechanism and shift direction for H+/OH of jadeite between high pressure metamorphic process and low temperature water-rock reaction. We think that this finding may contribute to understanding the behavior of water in jadeite during metamorphic process and the mechanism of jadeite quality improvement.

  14. Metamorphic evolution and U-Pb zircon SHRIMP geochronology of the Belizario ultramafic amphibolite, Encantadas Complex, southernmost Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Leo A.; Porcher, Carla C. [Rio Grande do Sul Univ., Porto Alegre (Brazil). Inst. de Geociencias]. E-mail: leo.hartmann@ufrgs.br; Santos, Joao O.S. [Centro de Pesquisas de Recursos Minerais (CPRM), Porto Alegre, RS (Brazil). Brazilian Geological Survey; Leite, Jayme A.D. [Mato Grosso Univ., Cuiaba (Brazil). Dept. de Recursos Minerais; McNaughton, Neal J. [Western Australia Univ., Nedlands, WA (Australia). Centre for Global Metallogeny

    2003-09-15

    The integrated investigation of metamorphism and zircon U-Pb SHRIMP geochronology of the Belizario ultramafic amphibolite from southernmost Brazil leads to a better understanding of the processes involved in the generation of the Encantadas Complex. Magmatic evidence of the magnesian basalt or pyroxenite protolith is only preserved in cores of zircon crystals, which are dated at 2257 {+-} 12 Ma. Amphibolite facies metamorphism M{sub 1} formed voluminous hornblende in the investigated rock possibly at 1989 {+-} 21 Ma. This ultramafic rock was re-metamorphosed at 702+- 21 Ma during a greenschist facies event M{sub 2}; the assemblage actinolite + oligoclase + microcline + epidote + titanite + monazite formed by alteration of hornblende. The metamorphic events are probably related to the Encantadas Orogeny (2257 {+-} 12 Ma) and Camboriu Orogeny ({approx}1989 Ma) of the Trans-Amazonian Cycle, followed by an orogenic event (702 {+-} 21 Ma) of the Brasiliano Cycle. The intervening cratonic period (2000-700 Ma) corresponds to the existence of the Supercontinent Atlantica, known regionally as the Rio de la Plata Craton. (author)

  15. Nature and origin of fluids in granulite facies metamorphism

    Science.gov (United States)

    Newton, R. C.

    1988-01-01

    The various models for the nature and origin of fluids in granulite facies metamorphism were summarized. Field and petrologic evidence exists for both fluid-absent and fluid-present deep crustal metamorphism. The South Indian granulite province is often cited as a fluid-rich example. The fluids must have been low in H2O and thus high in CO2. Deep crustal and subcrustal sources of CO2 are as yet unproven possibilities. There is much recent discussion of the possible ways in which deep crustal melts and fluids could have interacted in granulite metamorphism. Possible explanations for the characteristically low activity of H2O associated with granulite terranes were discussed. Granulites of the Adirondacks, New York, show evidence for vapor-absent conditions, and thus appear different from those of South India, for which CO2 streaming was proposed. Several features, such as the presence of high-density CO2 fluid inclusions, that may be misleading as evidence for CO2-saturated conditions during metamorphism, were discussed.

  16. Contrasting metamorphism across Cauvery Shear Zone, south India

    Indian Academy of Sciences (India)

    Manish M John; S Balakrishnan; B K Bhadra

    2005-04-01

    The Palghat Cauvery Shear Zone (CSZ) is a major shear zone that possibly extends into different fragments of Gondwanaland. In the present study mafic granulites occurring on either side of the CSZ in Namakkal area, southern India are examined. Textural features recorded in the mafic granulites are crucial in elucidating the metamorphic history of the southern granulite terrane (SGT). In the mafic granulites occurring to the south of CSZ, evidence of garnet breaking down during near isothermal decompression (ITD) is indicated by the development of orthopyroxene + plagioclase moats in between quartz and garnet. The presence of comparatively small elongated second generation garnet embedded in pyroxenes from the mafic granulites occurring to the north of CSZ is indicative of the garnet formation via reaction between pyroxenes and plagioclase, which occurred during isobaric cooling (IBC). Rocks occurring to the south of CSZ have recorded comparatively higher temperature and pressure (849°C and 9.6 kbar) than those occurring to the north of the CSZ (731°C and 8.6 kbar) using conventional geothermobarometry. The rocks occurring to the north of CSZ have suffered more complex metamorphic histories in comparison to the southern part. Integrating the results of the present field and metamorphic studies with the earlier investigations and available geochronological data we suggest that the CSZ could represent a suture zone between two different continental blocks that underwent distinct metamorphic evolution.

  17. Metamorphic Virus Detection in Portable Executables Using Opcodes Statistical Feature

    Directory of Open Access Journals (Sweden)

    Babak Bashari Rad

    2011-01-01

    Full Text Available Metamorphic viruses  engage different mutation techniques to escape from string signature based scanning. They try to change their code in new offspring so that the variants appear non-similar and have no common sequences of string as signature. However, all versions of a metamorphic virus have similar task and performance. This obfuscation process helps to keep them safe from the string based signature detection. In this study, we make use of instructions statistical features to compare the similarity of two hosted files probably occupied by two mutated forms of a specific metamorphic virus. The introduced solution in this paper is relied on static analysis and employs the frequency histogram of machine opcodes in different instances of obfuscated viruses. We use Minkowski-form histogram distance measurements in order to check the likeness of portable executables (PE. The purpose of this research is to  present an idea that for  a number of special  obfuscation approaches the presented solution can be  used to identify morphed copies of a file. Thus, it can be applied by antivirus scanner to recognize different versions of a metamorphic virus.

  18. Oman metamorphic sole formation reveals early subduction dynamics

    Science.gov (United States)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Plunder, Alexis; Ildefonse, Benoît; Yamato, Philippe; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500m thick tectonic slices welded beneath most of the large-scale ophiolites. They typically show a steep inverted metamorphic structure where the pressure and temperature conditions of crystallization increase upward (from 500±100°C at 0.5±0.2 GPa to 800±100°C at 1.0±0.2 GPa), with isograds subparallel to the contact with the overlying ophiolitic peridotite. The proportion of mafic rocks in metamorphic soles also increases from the bottom (meta-sediments rich) to the top (approaching the ophiolite peridotites). These soles are interpreted as the result of heat transfer from the incipient mantle wedge toward the nascent slab (associated with large-scale fluid transfer and possible shear heating) during the first My of intra-oceanic subduction (as indicated by radiometric ages). Metamorphic soles provide therefore major constraints on early subduction dynamics (i.e., thermal structure, fluid migration and rheology along the nascent slab interface). We present a detailed structural and petrological study of the metamorphic sole from 4 major cross-sections along the Oman ophiolite. We show precise pressure-temperature estimates obtained by pseudosection modelling and EBSD measurements performed on both the garnet-bearing and garnet-free high-grade sole. Results allow quantification of the micro-scale deformation and highlight differences in pressure-temperature-deformation conditions between the 4 different locations, showing that the inverted metamorphic gradient through the sole is not continuous in all locations. Based on these new constraints, we suggest a new tectonic-petrological model for the formation of metamorphic soles below ophiolites. This model involves the stacking of several homogeneous slivers of oceanic crust leading to the present-day structure of the sole. In this view, these thrusts are the result of rheological contrasts between the sole and the peridotite as the plate interface progressively cools down

  19. Constraint Force Analysis of Metamorphic Joints Basedon the Augmented Assur Groups

    Institute of Scientific and Technical Information of China (English)

    LI Shujun; WANG Hongguang; YANG Qiang

    2015-01-01

    In order to obtain a simple way for the force analysis of metamorphic mechanisms, the systematic method to unify the force analysis approach of metamorphic mechanisms as that of conventional planar mechanisms is proposed. A force analysis method of metamorphic mechanisms is developed by transforming the augmented Assur groups into Assur groups, so that the force analysis problem of metamorphic mechanisms is converted into the force analysis problems of conventional planar mechanisms. The constraint force change rules and values of metamorphic joints are obtained by the proposed method, and the constraint force analysis equations of revolute metamorphic joints in augmented Assur group RRRR and prismatic metamorphic joints in augmented Assur group RRPR are deduced. The constraint force analysis is illustrated by the constrained spring force design of paper folding metamorphic mechanism, and its metamorphic working process is controlled by the spring force and geometric constraints of metamorphic joints. The results of spring force show that developped design method and approach are feasible and practical. By transforming augmented Assur groups into Assur groups, a new method for the constraint force analysis of metamorphic joints is proposed firstly to provide the basis for dynamic analysis of metamorphic mechanism.

  20. A study on the relationships between metamorphic anatexis and petrogenesis and mineralization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Metamorphic processes are closely associated with the formation and evolution of the crust and highly related to petrogenesis and mineralization processes. Dynamic systematic analysis indicates that regional metamorphism-migmatization-metamorphic anatexis process is a temperature-pressure progressive process. Metamorphic anatexis process is a critical part with its unique pressure/temperature and thermodynamic, dynamic and geochemical characteristics. The concept of metamorphic anatexis system (MAS) introduced by the author includes the essential factors of material resources, energy resources, process format, material transportation and concentration, occurring time and location. Based on the essential factors of MAS, metamorphic anatexis process-related granitic rocks and deposit cases are discussed on their petrogenesis and/or mineralizaion mechanisms. The discussion points out that granites in the Ailaoshan and Yunkai metamorphic zones are of metamorphic anatexis origin. The genesis of pegmatite ore deposits in metamorphic zones and shear zone gold deposits in shear zones are highly related to metamorphic anatexis process. The study of metamorphism process involved in ore formation and material transport is a hot subject concerned by the international geological circles. Thorough investigations into the relationships between metamorphic anatexis and petrogenesis-meneralization processes are of great importance not only in geological theory, but also in industrial practice.

  1. The structural evolution of carbonaceous material during metamorphism : a geothermometer

    Science.gov (United States)

    Beyssac, O.; Goffe, B.; Brunet, F.; Bollinger, L.; Avouac, J.; Rouzaud, J.

    2003-12-01

    With increasing metamorphic temperature, the organic matter present in sedimentary rocks is progressively transformed into graphite (graphitization). The degree of organization of this carbonaceous material (CM) as characterized by Raman spectroscopy (RSCM), can be used as a geothermometer which yields the maximum temperature reached during the metamorphic cycle (Beyssac et al., 2002). We used this RSCM geothermometer to map the maximum metamorphic temperatures through the Lesser Himalaya (LH) in Nepal. This study provides a large dataset (80 samples) to estimate uncertainty of this method and to ascertain its reliability by comparison with conventional petrological investigations. We show that the RSCM geothermometer might be used to detect inter-samples temperature variations as small as 10° C or so, but absolute temperatures are only loosely determined to +/- 50° C due to the uncertainty on the calibration. This successful application of the RSCM geothermometer confirms that, at the timescale of regional metamorphism (several My), the transformation of CM is mainly controlled by temperature. However, laboratory investigations suggest that, in addition to temperature, pressure should also play a role (Beyssac et al. 2003). As a matter of fact, high degree of organizations encountered in natural CM cannot be reproduced in laboratory without pressure, even at temperatures as high as 3000° C. In addition to the data acquired on natural CM, we will discuss laboratory experiments performed up to 8 GPa which show that (1) a few kbar of hydrostatic pressure are required to initiate microtextural and subsequent structural transformations within CM and (2) the overall effect of increasing pressure is to speed up graphitization process. Beyssac, O., Goffe, B., Chopin, C., and Rouzaud, J.N., 2002, Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20, 859-871. Beyssac, O., Brunet, F., Petitet, J.P., Goffe, B

  2. Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong

    2003-01-01

    In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metamorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intrucontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie-Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts us a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must account

  3. Metamorphic manipulating mechanism design for MCCB using index reduced iteration

    Science.gov (United States)

    Xu, Jinghua; Zhang, Shuyou; Zhao, Zhen; Lin, Xiaoxia

    2013-03-01

    The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003

  4. CARBONACEOUS MATTER PRECURSORS AND METAMORPHIC CONDITIONS IN THERMALLY PROCESSED CHONDRITES

    Science.gov (United States)

    Quirico, E.; Montagnac, G.; Rouzaud, J.; Bonal, L.; Bourot-Denise, M.; Duber, S.; Reynard, B.

    2009-12-01

    Unravelling the origin of carbonaceous matter in pristine chondrites requires the understanding of the effect of post-accretion processes. In chondrites of petrologic type 3, thermal metamorphism modified to various extents the composition and structure of carbonaceous matter. Interestingly, this process controls the degree of structural order of carbonaceous matter, and clues on the thermal history of the parent body may be recovered from the physico-chemical study of carbonaceous matter. Following this framework, geothermometers based on Raman spectrometry of carbonaceous matter and covering a wide range of temperatures (100-650 °C) have been developed over recent years, both on terrestrial rocks and chondrites. While Raman data have been largely interpreted in terms of temperature, they are also the fingerprint of certain metamorphic conditions, especially in the low temperature range relevant to poorly ordered carbonaceous matter. This study investigates the Raman spectra of two series of chondritic carbonaceous matter and coal samples formed from different precursors and under different metamorphic conditions. The Raman spectra of Polyaromatic Carbonaceous Matter (PCM) from 42 chondrites and 27 coal samples, measured with visible (514 nm) and ultra-violet (244 nm) excitation wavelengths, are analyzed. The Raman spectra of low rank coals and chondrites of petrologic types 1 and 2, which contain the more disordered PCM, reflect the distinct carbon structures of their precursors. The 514 nm Raman spectra of high rank coals and chondrites of petrologic type 3 exhibit continuous and systematic spectral differences reflecting different carbon structures present during the metamorphism event. They result from differences in the chemical structures of the precursors concerning for instance the reticulation of polyaromatic units or an abundance of ether functional groups, or possibly from a lack of carbonization processes to efficiently expel oxygen heteroatoms, due

  5. Characteristics of Telemagmatic Metamorphism of the Ceshui Formation Coal in Lianyuan Coal Basin

    Institute of Scientific and Technical Information of China (English)

    毕华; 彭格林

    1998-01-01

    The Ceshui Formation coal is mostly anthracite and its metamorphism has been less documented.By analyzing systematically the reflectance of vitrinite and the results of X-ray diffraction of the Ceshui Formation cola in the Lianyuan coal basin,the spatial variation characteristics of coal ranks,coal metamorphic regions,the extension of coal metamorphic belts.coal metamorphic gradients,coal chemical structure and the effect on the degree of metamorphism of heat-production and -storge conditions,buried depth of the Indosinian-Yenshanian granites at the margins of the Lianyuan coal basin are discussed.The research results in conjunction of the features of regional hydrothermal alterations,endogenetic deposits with the Ceshui Formation coal measures,and the development of secondary vesicles indicate that the telemagmatic metamorphism is the main factor leading to the metamorphism of the Ceshui Formation coal in the region studied.

  6. The Lanshantou Kyanite-bearing Eclogite with Coesite Inclusions in the Sulu Ultrahigh-Pressure Metamorphic Belt and Its PTt Path

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Coesite inclusions are found in kyanite from the Lanshantoueclogite in the Sulu ultrahigh-pressure (UHP) metamorphic belt. This discovery extends the stable region of kyanite to over 2.4 GPa. As an important UHP metamorphic belt in China, the Sulu eclogite belt is the product of A-subduction induced by strong compression of the Yellow Sea terrane to the Jiaodong-northereastem Jiangsu terrane during the interaction of the Eurasian plate and Palaeo-Pacific plate in the Indosinian. It stretches about 350 km and contains over 1000 eclogite bodies. Most eclogites in this belt belong to Groups B and C in the classification of Coleman et al., and commonly contain kyanite, while the Lanshantou eclogite belongs to Group A and contains coesite. The MgO, CaO and FeO contents in garnet and pyroxene show regular variation from the core to the rim, which reveals the PTt paths of progressive metamorphism during the Early Mesozoic (240-200 Ma) and retrogressive metamorphism during the Late Mesozoic and Cenozoic exhumation.

  7. High-pressure granulite from Western Kunlun,northwestern China:Its metamorphic evolution,zircon SHRIMP U-Pb ages and tectonic implication

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were ob-tained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic con-dition of these high-pressure granulites is about 760―820℃,1.0―1.2 GPa and the retrograde meta-morphic condition is about 620―720℃,0.7―0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T path which suggests that the Western Kunlun underwent initial crustal thickening,subsequent exhumation and cooling. The SHRIMP zircon U-Pb dating gives two groups of ages for high-pressure granulites. One is 177±6 Ma which is obtained from the rim of the zircon. We consider this age should be the metamorphic age. And the other is 456±30 Ma which is obtained from the core of the zircon and should be the protolith age. The formation of these high-pressure granulites in western Kunlun is closely correlated with the evolution of the Paleo-Tethys and has important im-plications for the research on Tethys and Paleo-Asian tectonic zone.

  8. High-pressure granulite from Western Kunlun, northwestern China: Its metamorphic evolution, zircon SHRIMP U-Pb ages and tectonic implication

    Institute of Scientific and Technical Information of China (English)

    QU JunFeng; ZHANG LiFei; AI YongLiang; L(U) Zeng; WANG JianPing; ZHOU Hui; WANG ShiYan

    2007-01-01

    High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were obtained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic condition of these high-pressure granulites is about 760-820℃, 1.0-1.2 GPa and the retrograde metamorphic condition is about 620-720℃, 0.7-0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T path which suggests that the Western Kunlun underwent initial crustal thickening, subsequent exhumation and cooling. The SHRIMP zircon U-Pb dating gives two groups of ages for high-pressure granulites. One is 177±6 Ma which is obtained from the rim of the zircon. We consider this age should be the metamorphic age. And the other is 456±30 Ma which is obtained from the core of the zircon and should be the protolith age. The formation of these high-pressure granulites in western Kunlun is closely correlated with the evolution of the Paleo-Tethys and has important implications for the research on Tethys and Paleo-Asian tectonic zone.

  9. Fi Investigations On Hp-Rocks From The Lower Engadine Window New Insights On Its Late Tectono-Metamorphic Evolution

    Science.gov (United States)

    Bertle, R. J.; Götzinger, M. A.; Koller, F.

    2003-04-01

    Fluid inclusions studies in metamorphic rocks allow to reconstruct not only the chemistry of the fluids enabling and/or supporting metamorphic reactions but also the late metamorphic evolution of orogenesis. Therefore late, discordant quarz-calcite veins were investigated using FI-techniques. The Engadine Window which is exposed at the Swiss-Austrian-border exposes the penninic units of the Western Alps as a tectonic window within the Austroalpine nappes of the Eastern Alps. The nappes of the Engadine window underwent metamorphism and deformation during Tertiary times (THÖNI 1981, BERTLE 2000). The highest unit (Fimber unit) and the core of the window (= Zone of Pfunds) suffered HP-LT-metamorphism. P-T-conditions for parts of the Zone of Pfunds at the region of Piz Mundin are at 13-15 kbar at 380^oC (BOUSQUET et al. 2002) indicated by the occurrence of carpholite and glaucophane. The late metamorphic history is not very well constrained. There exist only a few FI-data published in an abstract by STÖCKHERT et al. 1990 and some unpublished data in RING 1989. During the ongoing mapping campaign of the first author samples from the Fimber unit and the Zone of Pfunds were collected and investigated using a LINKHAM freezing-cooling-stage. The investigated veins are discordant in respect to the main-foliation of the rocks and show nice cristalls of quarz, calcite and sometimes feldspar (adularia). Structural data implie that the investigated veins correspond to a set of ac-joints that correlate to the late updoming of the large "Engadiner Gewölbe" (Engadin anticlinal structure, MATTMÜLLER 1996). All investigated veins (from all tectonic units) show the same relationship to the anticlinal structure. FI-investigations show, that a large amount of the primary FI are decrepitated, however it was possible to find enough to provide a serious statistical data set. FI from Piz Mundin in the core of the Engadine window exhibit at the base of the vein quarz at the contact to

  10. Metamorphic Virus Variants Classification Using Opcode Frequency Histogram

    CERN Document Server

    Rad, Babak Bashari

    2011-01-01

    In order to prevent detection and evade signature-based scanning methods, which are normally exploited by antivirus software, metamorphic viruses use several various obfuscation approaches. They transform their code in new instances as look entirely or partly different and contain dissimilar sequences of string, but their behavior and function remain unchanged. This obfuscation process allows them to stay away from the string based signature detection. In this research, we use a statistical technique to compare the similarity between two files infected by two morphed versions of a given metamorphic virus. Our proposed solution based on static analysis and it uses the histogram of machine instructions frequency in various offspring of obfuscated viruses. We use Euclidean histogram distance metric to compare a pair of portable executable (PE) files. The aim of this study is to show that for some particular obfuscation methods, the presented solution can be exploited to detect morphed varieties of a file. Hence,...

  11. Petrology of blueschist facies metamorphic rocks of the Meliata Unit

    Directory of Open Access Journals (Sweden)

    Faryad Shah Wali

    1997-06-01

    Full Text Available Meliata blueschists originated from basalts, limestones, pelites, psammitic and amphibolite facies basement rocks. Compositionally, the metabasalts have a geochemical signature mostly indicative of a transitional arc-MORB origin, but some mafic rocks having affinity with within plate basalts also present. The mafic blueschists consist of blue amphibole, epidote and albite, rarely also garnet, Na-pyroxene and chloritoid. Apart from phengite and quartz the metapelites and metapsammites contain one or more of the minerals: chloritoid, paragonite, glaucophane, albite, chlorite, occasionally also Na-pyroxene and garnet. Amphibolite facies rocks contain relic garnet, plagioclase and hornblende, the latter two replaced by albite and blue amphibole, respectively. The zoning patterns of blue amphibole, garnet and chloritoid suggest their formation during prograde stage of metamorphism. P-T conditions of meta-morphism are estimated to be about 350-460 oC and 10-12 kbar.

  12. Metamorphic rocks in the deep boreholes near Maribor

    Directory of Open Access Journals (Sweden)

    Mirka Trajanova

    2002-12-01

    Full Text Available Six research-captive boreholes for thermal water passed through a pile of metamorphic rocks near Maribor (Eastern Slovenia that is on average about 1000 m thick. The succession of metamorphic rocks is characteristic for the Pohorje Mt. and eastern Kobansko region. In the area of the boreholes two tectonic zones are more pronounced: the upper one, at a depth of about 510 to 550 m at the contact of the Štelenska Gora and Phyllite formations and the deeper one at a depth of about 460 to 590 m, indicating the reverse fault junction of the Phyllite and Kobansko formations. They belong to the second andthe third thrust unit of the accretionary wedge formed at the collision of the European and African plates. Four Alpine nappe units are proven in the Slovenian part of the Eastern Alps.

  13. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar

    Science.gov (United States)

    Barley, M. E.; Pickard, A. L.; Zaw, Khin; Rak, P.; Doyle, M. G.

    2003-06-01

    Situated south of the eastern Himalayan syntaxis at the western margin of the Shan-Thai terrane the high-grade Mogok metamorphic belt (MMB) in Myanmar occupies a key position in the tectonic evolution of Southeast Asia. The first sensitive high-resolution ion microprobe U-Pb in zircon geochronology for the MMB shows that strongly deformed granitic orthogneisses near Mandalay contain Jurassic (˜170 Ma) zircons that have partly recrystallized during ˜43 Ma high-grade metamorphism. A hornblende syenite from Mandalay Hill also contains Jurassic zircons with evidence of Eocene metamorphic recrystallization rimmed by thin zones of 30.9 ± 0.7 Ma magmatic zircon. The relative abundance of Jurassic zircons in these rocks is consistent with suggestions that southern Eurasia had an Andean-type margin at that time. Mid-Cretaceous to earliest Eocene (120 to 50 Ma) I-type granitoids in the MMB, Myeik Archipelago, and Western Myanmar confirm that prior to the collision of India, an up to 200 km wide magmatic belt extended along the Eurasian margin from Pakistan to Sumatra. Metamorphic overgrowths to zircons in the orthogneiss near Mandalay date a period of Eocene (˜43 Ma) high-grade metamorphism possibly during crustal thickening related to the initial collision between India and Eurasia (at 65 to 55 Ma). This was followed by emplacement of syntectonic hornblende syenites and leucogranites between 35 and 23 Ma. Similar syntectonic syenites and leucogranites intruded the Ailao Shan-Red River shear belt in southern China and Vietnam during the Eocene-Oligocene to Miocene, and the Wang Chao and Three Pagodas faults in northern Thailand (that most likely link with the MMB) were also active at this time. The complex history of Eocene to early Miocene metamorphism, deformation, and magmatism in the MMB provides evidence that it may have played a key role in the network of deformation zones that accommodated strain during the northwards movement of India and resulting extrusion or

  14. Effects of the metamorphic changes on the subducting processes

    Science.gov (United States)

    Bousquet, R.; de Capitani, C.; Arcay, D.

    2005-12-01

    During the subduction-collision processes, the Earth's crust is squeezed, thickened and uplifted. Therefore rocks will be exposed to changing temperature, pressures and stress regimes and they may undergo metamorphism or partial melting. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. The formation of different kind of rocks (amphibolites, eclogites, granulites) can lead to dramatic changes in petrophysical properties. When reacting rocks expand and contract, the volume changes will set up in the surrounding material. Modeling several cases of subduction for different types of rocks (granites, sediments, mafic and ultramafic rocks), we explore implications 1) on the dynamic of the subduction. Hence computing changes of physical properties of rocks as well quantity of released fluids by dynamic modeling of metamorphic reactions, we will show that some subductions are more propitious to exhume (U)HP rocks and thus to obstruct the subduction dynamic the while others are more propitious to produce heavier rocks and self-sustained subduction. 2) on the localization of earthquakes into the subducting slab. As shown by several authors, intermediate-depth earthquakes mainly occur where hydrous minerals are predicted to be present, implying a causal link between dehydration reactions and seismicity. We investigate petrophysical changes related to dehydration and their implications for generating an earthquake? 3) on the dynamic of the mantle wedge. In many subductions, the upper plate thinning seems to be controlled by the dehydration reactions. We test influence of bulk composition of the lithosphere to estimate the back-arc dynamic. Preliminary results suggest that the appearance of amphiboles within the lithosphere favors local convection and formation of back-arc basin. We conclude that changes associated with metamorphism as an alternative to changes attributed solely to compositional differences.

  15. Pathway to 50% Efficient Inverted Metamorphic Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte, Kevin L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); France, Ryan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McMahon, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perl, Emmett [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Friedman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-06

    Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAs to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.

  16. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  17. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in...

  18. Hydrologic characterization of four cores from the Geysers Coring Project

    Energy Technology Data Exchange (ETDEWEB)

    Persoff, Peter; Hulen, Jeffrey B.

    1996-01-24

    Results of hydrologic tests conducted on four representative core plugs from Geysers Coring Project drill hole SB-15-D have been related to detailed mineralogic and textural characterization of the plugs to yield new information about permeability, porosity, and capillary-pressure characteristics of the uppermost Geysers steam reservoir and its immediately overlying caprock. The core plugs are all fine- to medium-grained, Franciscan-assemblage (late Mesozoic) metagraywacke with sparse Franciscan metamorphic quartz-calcite veins and late Cenozoic, hydrothermal quartz-calcite-pyrite veins. The matrices of three plugs from the caprock are rich in metamorphic mixed-layer illite/smectite and disseminated hydrothermal pyrite; the reservoir plug instead contains abundant illite and only minor pyrite. The reservoir plug and one caprock plug are sparsely disrupted by latest-stage, unmineralized microfractures which both follow and crosscut veinlets but which could be artifacts. Porosities of the plugs, measured by Boyles-law gas expansion, range between 1.9 and 2.5%. Gas permeability and Klinkenberg slip factor were calculated from gas-pressure-pulse-decay measurements using a specially designed permeameter with small (2 mL) reservoirs. Matrix permeabilities in the range 10-21 m² ( = 1 nanodarcy) were measured for two plugs that included mineral-filled veins but no unfilled microfractures. Greater permeabilities were measured on plugs that contained microfractures; at 500 psi net confining pressure, an effective aperture of 1.6 µm was estimated for one plug. Capillary pressure curves were determined for three cores by measuring saturation as weight gain of plugs equilibrated with atmospheres in which the relative humidity was controlled by saturated brines.

  19. Field Observations of Crustal Seismic Anisotropy: Implications for Mapping Tectonic Structure in Metamorphic Terranes

    Science.gov (United States)

    Christensen, N. I.; Okaya, D.; Meltzer, A.; Brocher, T.; Holbrook, W. S.

    2003-12-01

    The study of seismic anisotropy within continental tectonic provinces provides earth scientists with a powerful tool for measuring and quantifying deformation within the crust. Preferred mineral alignment observed in metamorphic terranes produced by recrystallization during metamorphism is associated with planar structures such as slaty cleavage, schistosity, and gneissic layering. These structures are often pervasive for tens to hundreds of kilometers and produce significant compressional wave seismic anisotropy as well as shear wave splitting. Observations of crustal anisotropy within (1) slates of the chlorite subzone of the Haast schist terrane of South Island, New Zealand, (2) lower greenschist facies phyllites and metagraywackes of the Valdez Group Chugach terrane in southern Alaska, (3) amphibolite facies mica schists within the Yukon-Tanana terrane in the eastern Alaska range and (4) amphibolite facies quartzofeldspathic gneisses, approaching granulite grade, within the Nanga Parbat-Haramosh massif demonstrate that crustal anisotropy is not limited to rocks of any particular metamorphic grade and thus can be present at all crustal levels. Two refraction lines at approximately right angles shown up to 10% compressional wave anisotropy in relatively low grade metapelites of the Haast schist terrane. Fast velocities parallel the strike of the upturned slaty cleavage. Measured field velocities in the Chugach terrane, obtained from observed first arrival travel times, demonstrate significant compressional wave anisotropy (~9%) with fastest directions oriented approximately east-west and parallel to foliations observed in outcrops. Within the Alaskan Yukon-Tanana terrane variations in seismic velocities of the first arrivals correlate with field observations of regional dips of foliated schists. A northward shallowing of foliation dips produces an observed northward increasing seismic velocity. The core of the Nanga-Parbat massif forms a large-scale antiformal

  20. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin

    Institute of Scientific and Technical Information of China (English)

    PEI FuPing; XU WenLiang; YANG DeBin; ZHAO QuanGuo; LIU XiaoMing; HU ZhaoChu

    2007-01-01

    Zircon LA-ICP MS U-Pb dating of six metamorphic rocks and a metagranite (breccia) from southern basement of the Songliao Basin are reported in order to constrain the formation ages of basement. The basement metamorphic rocks in the Songliao Basin mainly consist of metagabbro (L45-1), amphibolite (SN117), metarhyolitical tuff (G190), sericite (Ser) schist (N103), chlorite (Chi) schist (T5-1), biotite (Bi)-actinolite (Act)-quartz (Q) schist (Y205), and metagranite (L44-1). The cathodoluminesence (CL)images of the zircons from metagabbro (L45-1) and metagranite (L44-1) indicate that they have cores of magmatic origin and rims of metamorphic overgrowths. Their U-Pb isotopic ages are 1808±21 Ma and 1873±13 Ma, respectively. The zircons with oscillatory zoning from amphibolite (SN117) and Chi schist (T5-1), being similar to those of mafic igneous rocks, yield ages of 274 ± 3.4 Ma and 264 ± 3.2 Ma, respectively. The zircons from metarhyolitical tuff (G190) and Ser schist (N103) display typical magmatic growth zoning and yield ages of 424 ± 4.5 Ma and 287 ± 5.1Ma, respectively. Most of zircons from Bi-Act-Q schist (Y2O5) are round in shape and different in absorption degree in the CL images, implying their sedimentary detritals. U-Pb dating yield concordant ages of 427 ± 3.1Ma, 455 ± 12 Ma, 696 ± 13 Ma,1384±62 Ma, 1649±36 Ma, 1778±18 Ma, 2450±9 Ma, 2579±10 Ma, 2793±4 Ma and 2953±14 Ma. The above-mentioned results indicate that the Precambrian crystalline basement (1808-1873 Ma) exists in the southern Songliao Basin and could be related to tectonic thrust, and that the Early Paleozoic (424-490 Ma) and Late Paleozoic magmatisms (264-292 Ma) also occur in the basin basement, which are consistent with the ages of the detrital zircons from Bi-Act-Q schist in the basement.

  1. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers

    Science.gov (United States)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.

    2016-11-01

    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  2. On the role of horizontal displacements in the exhumation of high pressure metamorphic rocks

    Science.gov (United States)

    Brun, J.-P.; Tirel, C.; Philippon, M.; Burov, E.; Faccenna, C.; Gueydan, F.; Lebedev, S.

    2012-04-01

    High pressure metamorphic rocks exposed in the core of many mountain belts correspond to various types of upper crustal materials that have been buried to mantle depths and, soon after, brought back to surface at mean displacement rates up to few cm/y, comparable to those of plate boundaries. The vertical component of HP rock exhumation velocity back to surface is commonly well constrained by pressure estimates from petrology and geochronological data whereas the horizontal component remains generally difficult or impossible to estimate. Consequently, most available models, if not all, attempt to simulate exhumation with a minimal horizontal component of displacement. Such models, require that the viscosity of HP rocks is low and/or the erosion rate large -i.e. at least equal to the rate of exhumation. However, in some regions like the Aegean, where the exhumation of blueschists and eclogites is driven by slab rollback, it can be shown that the horizontal component of exhumation related displacement, obtained from map view restoration, is 5 to 7 times larger than the vertical one, deduced from metamorphic pressure estimates. Using finite element models performed with FLAMAR, we show that such a situation simply results from the subduction of small continental blocks (walk, with the block's tail slipping along a basal décollement, approaching the head and making a large buckle, which then unrolls at surface as soon as the entire block is delaminated. Finally, the crustal block emplaces at surface in the space created by trench retreat. This process of exhumation requires neither rheological weakening of HP rocks nor high rates of erosion.

  3. The role of boron and fluids in high temperature, shallow level metamorphism of the Chugach Metamorphic Complex, Alaska

    Science.gov (United States)

    Sisson, V. B.; Leeman, W. P.

    1988-01-01

    The possible role of boron (B) involvement in granite equilibria and generation of melts during crustal metamorphism has been a focus of speculation in recent literature. Most of the evidence for such involvement derives from experimental data which implies that the addition of B will lower the temperature of the granite solidus. Also the presence of tourmaline has a minor effect on the temperature of the solidus. Further indirect evidence that B may be involved in partial melting processes is the observation that granulites are commonly depleted in B, whereas the B content of low grade metapelites can be high (up to 2000 ppm). Researchers' measurements of the whole-rock B contents of granulites from the Madras region, India are low, ranging from 0.4 to 2.6 ppm. Ahmad and Wilson suggest that B was mobilized in the fluid phase during granulite facies metamorphism of the Broken Hill Complex, Australia. Thus, it appears that during the amphibolite to granulite transition, B is systematically lost from metasediments. The B that is released will probably partition into the vapor phase and/or melt phase. Preliminary measurements imply that the boron content of rocks in the Chugach Metamorphic Complex is not sufficient to influence the processes of partial melting at low pressures.

  4. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating

    Science.gov (United States)

    Liu, Fulai; Wang, Fang; Liou, J. G.; Meng, En; Liu, Jianhui; Yang, Hong; Xiao, Lingling; Cai, Jia; Shi, Jianrong

    2014-11-01

    The precise constraints on the timing of metamorphism of the Changhai metamorphic complex is of great importance considering the prolonged controversial issue of the north margin and the extension of the Sulu-Dabie HP-UHP Belt. While the monazite U-Th-Pb and muscovite 40Ar/39Ar techniques are widely accepted as two of the most powerful dating tools for revealing the thermal histories of medium-low grade metamorphic rocks and precisely constraining the timing of metamorphism. The Changhai metamorphic complex at the SE Jiao-Liao-Ji Belt, North China Craton consists of a variety of pelitic schist and Grt-Ky-bearing paragneiss, and minor quartzite and marble. Analyses of mineral inclusions and back-scattered electric (BSE) images of monazites, combined with LA-ICP-MS U-Th-Pb ages for monazites and 40Ar/39Ar ages for muscovites, provide evidence of the origin and metamorphic age of the Changhai metamorphic complex. Monazites separates from various Grt-Mus schists and Grt-Ky-St-Mus paragneisses exhibit homogeneous BSE images from cores to rims, and contain inclusion assemblages of Grt + Mus + Qtz ± Ctd ± Ky in schist, and Grt + Ky + St + Mus + Pl + Kfs + Qtz inclusions in paragneiss. These inclusion assemblages are very similar to matrix minerals of host rocks, indicating they are metamorphic rather than inherited or detrital in origin. LA-ICP-MS U-Th-Pb dating reveals that monazites of schist and paragneiss have consistent 206Pb/238U ages ranging from 228.1 ± 3.8 to 218.2 ± 3.7 Ma. In contrast, muscovites from various schists show slightly older 40Ar/39Ar plateau ages of 236.1 ± 1.5 to 230.2 ± 1.2 Ma. These geochronological and petrological data conclude that the pelitic sediments have experienced a metamorphic event at the Mid-Late Triassic (236.1-218.2 Ma) rather than the Paleoproterozoic (1950-1850 Ma), commonly regarded as the Precambrian basement for the Jiao-Liao-Ji Belt. Hence, the Changhai metamorphic complex should be considered as a discrete

  5. Petrological evolution of subducted rodingite from seafloor metamorphism to dehydration of enclosing antigorite-serpentinite (Cerro del Almirez massif, southern Spain)

    Science.gov (United States)

    Laborda-López, Casto; López Sánchez-Vizcaíno, Vicente; Marchesi, Claudio; Gómez-Pugnaire, María Teresa; Garrido, Carlos J.; Jabaloy-Sánchez, Antonio; Padrón-Navarta, José Alberto

    2016-04-01

    Rodingites are common rocks associated with serpentinites in exhumed terrains that experienced subduction and high pressure metamorphism. However, the response of these rocks to devolatilization and redox reactions in subduction settings is not well constrained. In the Cerro del Almirez ultramafic massif (southern Spain) rodingites constitute about 1-2% of the total volume of exposed rocks. Metarodingites are enclosed in antigorite-serpentinite and chlorite-harzburgite separated by a transitional zone that represents the front of prograde serpentinite-dehydration in a paleo-subduction setting (Padrón-Navarta et al., 2011). Metarodingites occur as boudin lenses, 1 to 20 m in length and 30 cm to 2 m in thickness. During serpentinization of peridotite host rocks, dolerites and basalts precursor of rodingites underwent intense seafloor metasomatism, causing the enrichment in Ca and remobilization of Na and K. Subsequent metamorphism during subduction transformed the original igneous and seafloor metamorphic mineralogy into an assemblage of garnet (Ti-rich hydrogrossular), diopside, chlorite, and epidote. During prograde metamorphism, garnet composition changed towards higher andradite contents. High-pressure transformation of enclosing antigorite-serpentinite to chlorite-harzburgite released fluids which induced breakdown of garnet to epidote in metarodingites. Ti liberation by this latter reaction produced abundant titanite. Released fluids also triggered the formation of amphibole by alkalis addition. Highly recrystallized metarodingites in chlorite-harzburgite present a new generation of idiomorphic garnet with composition equal to 10-30% pyrope, 30-40% grossular and 35-55% almandine + spessartine. This garnet has titanite inclusions in the core and rutile inclusions in the rim. The contact between metarodingites and ultramafic rocks consists of a metasomatic zone (blackwall) with variable thickness (7 to 40 cm) constituted by chlorite, diopside, and titanite

  6. Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low-pressure, low-temperature metamorphic facies series

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.; Bird, D.K.

    1984-01-01

    In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200 and 370 C, at low fluid and lithostatic pressures and low oxygen fugacities. Their petrologic investigations of drill cores and cuttings from more than 50 wells in this field identified a prograde series of zones that include as index minerals wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicate of a very low pressure, low-temperature metamorphic facies series spanning the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydrothermal facies series, which is now recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation. Its equivalent can now be sought in fossil hydrothermal systems.

  7. Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: A telescoped low-pressure, low-temperature metamorphic facies series

    Science.gov (United States)

    Schiffman, P.; Elders, W. A.; Williams, A. E.; McDowell, S. D.; Bird, D. K.

    1984-01-01

    In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200 and 370 °C, at low fluid and lithostatic pressures and low oxygen fugacities. Our petrologic investigations of drill cores and cuttings from more than 50 wells in this field identified a prograde series of zones that include as index minerals wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicative of a very low pressure, low-temperature metamorphic facies series spanning the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydro-thermal facies series, which is now recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation. Its equivalent can now be sought in fossil hydrothermal systems.

  8. Metamorphic Isotope Chronology and Collisional Process between North China and South China Blocks

    Institute of Scientific and Technical Information of China (English)

    LI Shuguang; LIU Yican; XIAO Yilin; SUN Weidong; LI Qiuli

    2011-01-01

    Intercrossing several research realms including geochronology, isotope geochemistry and petrogeochemistry, the studies on continental collision processes and ultrahigh-pressure (UHP) metamorphism have remained one of the hottest and most interesting fields in continental dynamics research since the early 1980s, which constantly provide important knowledge and scientific ideas for developing and improving the plate tectonic theory.The Qinling-Dabie-Sulu metamorphic belt, one of the largest UHP metamorphic terrains discovered

  9. Formation Mechanism and Exhumation Processes for HP-UHP Metamorphic Rocks in Dabie Mountains

    Institute of Scientific and Technical Information of China (English)

    Hou Mingjin; Tang Jiafu

    2004-01-01

    The high, ultrahigh pressure metamorphic rocks, widely distributed in Dabie Mountains, were described in terms of the geological setting, the marks of the petrology and the mineralogy of the ultrahigh pressure (UHP) metamorphic rocks. According to the estimated uplifting and denudation of the Dabie Mountains, and to the thermodynamics theory, were assessed the depth and pressure (high pressure autoclave) of the formation setting of the UHP metamorphic rocks. Based on all the information mentioned above, a new explanation is derived from the mechanism of formation and the processes of exhumation of the UHP metamorphic rocks.

  10. Evidence and implications of shock metamorphism in lunar samples.

    Science.gov (United States)

    Short, N M

    1970-01-30

    Lunar microbreccias and loose regolith materials contain abundant evidence of shock metamorphism related to crater-forming meteorite impacts. Diagnostic shock effects include (i) planar features in a silica phase and feldspars, and lamellae in clinopyroxene, (ii) thetomorphic feldspar glass, (iii) heterogeneous glasses of rock and mineral composition, (iv) distinctive recrystallization textures, and (v) characteristic changes in crystal structure as indicated by x-ray diffraction analysis and measurements of refractive index. The microbreccias are produced from regolith materials (ejected fromz craters) by shock lithification. Some feldsparrich fragments may represent ejecta introduced from nonlocal sources, such as the lunar highlands.

  11. Self-induced nanofluidic transport enables crustal-scale metamorphism

    Science.gov (United States)

    Plümper, Oliver; Botan, Alexandru; Los, Catharina; Liu, Yang; Malthe-Sørenssen, Anders; Jamtveit, Bjørn

    2017-04-01

    The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localize deformation enabling tectonic responses to plate motion. During these fluid-rock interactions it is the ability of a rock to transmit fluid, its permeability, that controls the rates of metamorphic reactions. However, although some geological environments (e.g., sediments) are open to fluids, the majority of solid rocks (e.g., granites, elcogites, peridotites, etc.) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Here we investigate one of the most wide-spread fluid-mediated metamorphic processes in the Earth's crust, the albitization of feldspatic rocks. We show that fluid flow and element mobilization during albitization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-precipitation process. Using a combination of focused ion beam scanning electron microscopy (FIB-SEM)-assisted nanotomography combined with transmission electron microscopy (TEM) we show that the porosity is dictated by pore channels with a pore diameter ranging between 10 to 100 nm. Three-dimensional visualization of the feldspar pore network reveals that the pore channels must have been connected during the replacement reaction. Analysis of the pore aspect ratios suggests that a Rayleigh-Taylor-type instability associated to surface energy minimization caused the disconnection of the pore channels. Fluid transport in nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of physical phenomena that are impossible at bigger length scales. Thus, on the basis of our microstructural

  12. Peak metamorphic temperatures from cation diffusion zoning in garnet

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik; Mezger, Klaus

    2013-01-01

    A model that relates the characteristic diffusion length and average cooling rate to peak temperature was developed for chemical diffusion in spherical geometries on the basis of geospeedometry principles and diffusion theory. The model is quantitatively evaluated for cation diffusion profiles in...... is robust and provides a reliable means of estimating peak temperatures for different types of high-grade metamorphic rock. The tool could be of particular advantage in rocks where critical assemblages for conventional thermometry do not occur or have been replaced during retrogression....

  13. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton

    Science.gov (United States)

    Lu, Jun-Sheng; Zhai, Ming-Guo; Lu, Lin-Sheng; Wang, Hao Y. C.; Chen, Hong-Xu; Peng, Tao; Wu, Chun-Ming; Zhao, Tai-Ping

    2017-02-01

    The Taihua metamorphic complex in the southern part of the North China Craton is composed of tonalite-trondhjemite-granodiorite (TTG) gneisses, amphibolites, metapelitic gneisses, marbles, quartzites, and banded iron formations (BIFs). The protoliths of the complex have ages ranging from ∼2.1 to ∼2.9 Ga and was metamorphosed under the upper amphibolite to granulite facies conditions with NWW-SEE-striking gneissosity. Metapelitites from the Wugang area have three stages of metamorphic mineral assemblages. The prograde metamorphic mineral assemblage (M1) includes biotite + plagioclase + quartz + ilmenite preserved as inclusions in garnet porphyroblasts. The peak mineral assemblage (M2) consists of garnet porphyroblasts and matrix minerals of sillimanite + biotite + plagioclase + quartz + K-feldspar + ilmenite + rutile + pyrite. The retrograde mineral assemblage (M3), biotite + plagioclase + quartz, occurs as symplectic assemblages surrounding embayed garnet porphyroblasts. Garnet porphyroblasts are chemically zoned. Pseudosection calculated in the NCKFMASHTO model system suggests that mantles of garnet porphyroblasts define high-pressure granulites facies P-T conditions of 12.2 kbar and 830 °C, whereas garnet rims record P-T conditions of 10.2 kbar and 840 °C. Integrating the prograde mineral assemblages, zoning of garnet porphyroblasts with symplectic assemblages, a clockwise metamorphic P-T path can be retrieved. High resolution SIMS U-Pb dating and LA-ICP-MS trace element measurements of the metamorphic zircons demonstrate that metapelites in Wugang possibly record the peak or near peak metamorphic ages of ∼1.92 Ga. Furthermore, 40Ar/39Ar dating of biotite in metapelites suggests that the cooling of the Taihua complex may have lasted until ∼1.83 Ga. Therefore, a long-lived Palaeoproterozoic metamorphic event may define a slow exhumation process. Field relationship and new metamorphic data for the Taihua metamorphic complex does not support the previous

  14. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  15. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  16. Uranium, rare metals, and granulite-facies metamorphism

    Directory of Open Access Journals (Sweden)

    Michel Cuney

    2014-09-01

    The Tranomaro metasomatized marbles recrystallizing under granulite-facies conditions represent a demonstrative example of fluid transfer from granulite-facies supracrustals to traps represented by regional scale skarns. Such fluids may be at the origin of the incompatible element enrichment detected in leucosomes of migmatites from St Malo in Brittany (France and Black Hills in South Dakota. The northern French Massif Central provides us with an example of a potential association between incompatible element enrichment of granitic melts and granulite-facies metamorphism. U- and F-enriched fine-grained granites are emplaced along a crustal scale shear zone active during the emplacement within the St Sylvestre peraluminous leucogranitic complex. We propose that during granulite-facies metamorphism dominated by carbonic waves in a deep segment of the continental crust, these shear zones control: (i the percolation of F-, LILE-, rare metal-rich fluids liberated primarily by the breakdown of biotite; (ii the enhancement of partial melting by F-rich fluids at intermediate crustal levels with the generation of F-, LILE-, rare metal-rich granitic melts; (iii their transfer through the crust with protracted fractionation facilitated by their low viscosity due to high F-Li contents; and finally (iv their emplacement as rare metal intrusions at shallow crust levels.

  17. Nano-texture of penetrative foliation in metamorphic rocks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By observing four samples obtained from Jiangxi Province, China, under the scanning electron mi-croscope (SEM), we discovered that nano-particle layers were commonly formed on sliding planes of the penetrative foliation in metamorphic rocks. We also successfully reproduced this phenomenon with a tri-axial pressure experiment. Having gone through the granulitization-alienation-partition in the shear sliding process, the nano-particles (40-95 nm in diameter) display different individual shapes and dis-tinct layered textures. This nano-confinement layer is essentially a frictional-viscous stripe with vis-cous-elastic deformation. In the micro-domain stripe, activities in structural stress field-rheological physical field-geochemical field are very dynamic, corresponding to the three stages (i.e., shear sliding strengthening-weakening-exfoliating) of the foliation development in metamorphism rocks. As such, the viscous-elastic deformation behavior helps shed light on the understanding of the micro-dynamic mechanism of the structural shearing.

  18. Effects of thermal metamorphism on compositions of lunar spinels

    Science.gov (United States)

    Misra, K. C.; Taylor, L. A.

    1977-01-01

    The reported study represents an attempt to evaluate experimentally the compositional and textural changes that are likely to be observed in the Fe-Ti-Cr spinels of lunar igneous rocks by subsequent thermal metamorphism. The Apollo 12 igneous rock, 12018,43, was chosen for this investigation because an earlier study of another fraction of this rock by El Goresy et al. (1971) has reported an almost continuous trend of spinel compositions between Cr-Ulvoespinel and Ti-chromite. The nature of the compositional changes in the heated spinels (and ilmenites) is found to be such that the changes cannot be explained by intragranular adjustments alone. In the heated sample, pyroxene grains adjacent to the high-Ti spinels show a decrease in FeO, and an increase in MgO and Al2O3 at the interface. This may account for the MgO depletion and a part of the FeO enrichment in the high-Ti spinels. It is believed that the heating experiment demonstrates that thermal metamorphism of lunar basalts is likely to modify the compositions of their preexisting spinels (and ilmenites).

  19. Phase-field modeling of dry snow metamorphism.

    Science.gov (United States)

    Kaempfer, Thomas U; Plapp, Mathis

    2009-03-01

    Snow on the ground is a complex three-dimensional porous medium consisting of an ice matrix formed by sintered snow crystals and a pore space filled with air and water vapor. If a temperature gradient is imposed on the snow, a water vapor gradient in the pore space is induced and the snow microstructure changes due to diffusion, sublimation, and resublimation: the snow metamorphoses. The snow microstructure, in turn, determines macroscopic snow properties such as the thermal conductivity of a snowpack. We develop a phase-field model for snow metamorphism that operates on natural snow microstructures as observed by computed x-ray microtomography. The model takes into account heat and mass diffusion within the ice matrix and pore space, as well as phase changes at the ice-air interfaces. Its construction is inspired by phase-field models for alloy solidification, which allows us to relate the phase-field to a sharp-interface formulation of the problem without performing formal matched asymptotics. To overcome the computational difficulties created by the large difference between diffusional and interface-migration time scales, we introduce a method for accelerating the numerical simulations that formally amounts to reducing the heat- and mass-diffusion coefficients while maintaining the correct interface velocities. The model is validated by simulations for simple one- and two-dimensional test cases. Furthermore, we perform qualitative metamorphism simulations on natural snow structures to demonstrate the potential of the approach.

  20. A metamorphic controller for plant control system design

    Directory of Open Access Journals (Sweden)

    Tomasz Klopot

    2016-07-01

    Full Text Available One of the major problems in the design of industrial control systems is the selection and parameterization of the control algorithm. In practice, the most common solution is the PI (proportional-integral controller, which is simple to implement, but is not always the best control strategy. The use of more advanced controllers may result in a better efficiency of the control system. However, the implementation of advanced control algorithms is more time-consuming and requires specialized knowledge from control engineers. To overcome these problems and to support control engineers at the controller design stage, the paper describes a tool, i.e., a metamorphic controller with extended functionality, for selection and implementation of the most suitable control algorithm. In comparison to existing solutions, the main advantage of the metamorphic controller is its possibility of changing the control algorithm. In turn, the candidate algorithms can be tested through simulations and the total time needed to perform all simulations can be less than a few minutes, which is less than or comparable to the design time in the concurrent design approach. Moreover, the use of well-known tuning procedures, makes the system easy to understand and operate even by inexperienced control engineers. The application was implemented in the real industrial programmable logic controller (PLC and tested with linear and nonlinear virtual plants. The obtained simulation results confirm that the change of the control algorithm allows the control objectives to be achieved at lower costs and in less time.

  1. Metabolism of thyroxine in Rana catesbeiana tadpoles during metamorphic climax

    Energy Technology Data Exchange (ETDEWEB)

    Galton, V.A.; Munck, K.

    1981-01-01

    Previous studies have indicated that premetamorphic tadpoles do not convert T4 to T3 to a measurable extent (1). The present study was performed to determine whether a T4 5'-monodeiodinating system is acquired at later stages of development. (/sup 125/I)T4 metabolism in vivo was determined in tadpoles at most stages of prometamorphosis and metamorphic climax and, for comparison, in premetamorphic tadpoles. The conversion of (/sup 125/I)T4 to (/sup 125/I)T3, as indicated by the presence of an /sup 125/I-labeled product in serum and liver preparations that cochromatographed with carrier T3, was sometimes observed in tadpoles near the end of prometamorphosis and was always evident in tadpoles that were either undergoing or had completed metamorphic climax. However, during this phase, no correlation could be drawn between the extent of T3 production and morphological development. The formation of T3 from T4 in vivo was significantly decreased in tadpoles pretreated with propylthiouracil. The T45'-monodeiodinating system could be induced in premetamorphic tadpoles by injecting them with either T4 or T3. This finding together with the observation that normal acquisition of this system occurs at the time when endogenous T4 and T3 levels are rising rapidly suggest that its development is under the control of the thyroid hormones.

  2. Zircon U-Pb Age, Trace Element, and Hf Isotope Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Remnant in the Dabie Orogen

    Institute of Scientific and Technical Information of China (English)

    Lei Nengzhong; Wu Yuanbao

    2008-01-01

    Zircon U-Pb age, trace elements, and Hf isotopes were determined for granulite and gneiss at Huaugtuling (黄土岭), which is hosted by ultrahigh-pressure metamorphic rocks in the Dabie(大别) orogen, east-central China. Cathodolumineseence (CL) images reveal core-rim structure for most zircons in the granulite. The cores show oscillatory zoning, relatively high Th/U and 176 Lu/177 Hf ratios, and high rare earth element (HREE)-enriched pattern, consistent with magmatic origin. They gave a weighted mean 207 Pb/206 Pb age of (2 766±9) Ma, dating magma emplacement of protolith. The rims are characterized by sector ur planar zoning, low Th/U and 176 Lu/177 Hf ratios, negative Euanomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphicconditions. Zircon U-Pb dating yields an age of (2 029±13) Ma, which is interpreted as a record ofmetamorphic event during the assembly of the supercontinent Columbia. The gneiss has a protolith ageof (1982±14) Ma, which is similar to the zircon U-Pb age for the granulite-facies metamorphism,suggesting complementary processes to granulite-facies metamorphism and partial melting. A fewinherited cores with igneous characteristics have 207 pb/206 Pb ages of approximately 3.53, 3.24, and 2.90Ga, respectively, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants. A fewTriassic and Cretaceous metamorphic ages were obtained, suggesting the influences by the Triassiccontinental collision and postcollisional collapse in response to the Cretaceous extension. Comparingwith abundant occurrence of Triassic metamorphic zircons in ultrahigh-pressure eclogite and granitehydrous melt is evident for zircon growth in theHuangtuling granulite and gneiss during thecontinental collision. The magmatic protolithzircons from the granulite show a large variationin 176 Hf/177 Hf ratios from 0.280 809 to 0.281 289,corresponding to era(t) values of-7.3 to 6.3 andHf model ages of 2.74 to 3.34 Ga. The 2

  3. Garnet growth interruptions during high- and ultra high-pressure metamorphism constrained by thermodynamic forward models

    Science.gov (United States)

    Konrad-Schmolke, M.; Schildhauer, H.

    2013-12-01

    Growth and chemical composition of garnet in metamorphic rocks excellently reflect thermodynamic as well kinetic properties of the host rock during garnet growth. This valuable information can be extracted from preserved compositional growth zoning patterns in garnet. However, metamorphic rocks often contain multiple garnet generations that commonly develop as corona textures with distinct compositional core-overgrowth features. This circumstance can lead to a misinterpretation of information extracted from such grains if the age- and metamorphic relations between different garnet generations are unclear. Especially garnets from high-pressure (HP) and ultra high-pressure (UHP) rocks often preserve textures that show multiple growth stages reflected in core-overgrowth differences both in main and trace element composition and in the inclusion assemblage. Distinct growth zones often have sharp boundaries with strong compositional gradients and/or inclusion- and trace-element-enriched zones. Such growth patterns indicate episodic garnet growth as well as growth interruptions during the garnet evolution. A quantitative understanding of these distinct growth pulses enables the relationship between reaction path, age determinations in spatially controlled garnet domains or temperature-time constraints to be fully characterised. In this study we apply thermodynamic forward models to simulate garnet growth along a series of HP and UHP P-T paths, representative for subducted oceanic crust. We study garnet growth in different basaltic rock compositions and under different element fractionation scenarios in order to detect path-dependent P-T regions of limited or ceased garnet growth. Modeled data along P-T trajectories involving fractional crystallisation are assembled in P-T diagrams reflecting garnet growth in a changing bulk rock composition. Our models show that in all investigated rock compositions garnet growth along most P-T trajectories is discontinuous, pulse

  4. Felsic granulite with layers of eclogite facies rocks in the Bohemian Massif; did they share a common metamorphic history?

    Science.gov (United States)

    Jedlicka, Radim; Faryad, Shah Wali

    2017-08-01

    High pressure granulite and granulite gneiss from the Rychleby Mountains in the East Sudetes form an approximately 7 km long and 0.8 km wide body, which is enclosed by amphibolite facies orthogneiss with a steep foliation. Well preserved felsic granulite is located in the central part of the body, where several small bodies of mafic granulite are also present. In comparison to other high pressure granulites in the Bohemian Massif, which show strong mineral and textural re-equilibration under granulite facies conditions, the mafic granulite samples preserve eclogite facies minerals (garnet, omphacite, kyanite, rutile and phengite) and their field and textural relations indicate that both mafic and felsic granulites shared common metamorphic history during prograde eclogite facies and subsequent granulite facies events. Garnet from both granulite varieties shows prograde compositional zoning and contains inclusions of phengite. Yttrium and REEs in garnet show typical bell-shaped distributions with no annular peaks near the grain rims. Investigation of major and trace elements zoning, including REEs distribution in garnet, was combined with thermodynamic modelling to constrain the early eclogite facies metamorphism and to estimate pressure-temperature conditions of the subsequent granulite facies overprint. The first (U)HP metamorphism occurred along a low geothermal gradient in a subduction-related environment from its initial stage at 0.8 GPa/460 °C and reached pressures up to 2.5 GPa at 550 °C. The subsequent granulite facies overprint (1.6-1.8 GPa/800-880 °C) affected the rocks only partially; by replacement of omphacite into diopside + plagioclase symplectite and by compositional modification of garnet rims. The mineral textures and the preservation of the eclogite facies prograde compositional zoning in garnet cores confirm that the granulite facies overprint was either too short or too faint to cause recrystallisation and homogenisation of the eclogite

  5. Thermal evolution of high-pressure metamorphic rocks in the Alps

    NARCIS (Netherlands)

    Brouwer, F.M.

    2000-01-01

    There are two major and currently unresolved issues in Alpine geology concerning the metamorphic evolution of the rocks in the internal zones of the Alps. First, rocks showing evidence for geologically young, high-pressure to very high-pressure metamorphism are now exposed at the Earth's surface, im

  6. Thermal evolution of high-pressure metamorphic rocks in the Alps

    NARCIS (Netherlands)

    Brouwer, F.M.

    2000-01-01

    There are two major and currently unresolved issues in Alpine geology concerning the metamorphic evolution of the rocks in the internal zones of the Alps. First, rocks showing evidence for geologically young, high-pressure to very high-pressure metamorphism are now exposed at the Earth's surface, im

  7. UHP metamorphism in the Western Mediterranean : A tale of a Tethys fragment (Edough Massif, NE Algeria) and its geodynamic consequences

    Science.gov (United States)

    Bruguier, Olivier; Bosch, Delphine; Caby, Renaud; Fernandez, Laure; Abdallah, Nachida; Arnaud, Nicolas; Hammor, Dalila; Laouar, Rabah; Mechati, Medhi; Monié, Patrick; Ouabadi, Aziouz; Toubal, Abder

    2016-04-01

    The Edough Massif of NE Algeria is part of the Maghrebides, a peri-Mediterranean Alpine belt that extends from Morocco to Tunisia. The belt resulted mainly from the eastward retreat of the Tethyan slab and from the drift of continental fragments, some of which finally collided with the north African margin. In this study we report the recent discovery of metamorphic diamonds (5-30 μm in size) included in a garnet megacryst and identified by Raman spectroscopy and the characteristic sharp band at 1332 cm-1 for crystalline diamond. The studied megacryst was taken from a weathered actinolitite horizon inserted within a major mylonite-ultramylonite band, which outcrops at the base of an allochtonous oceanic unit thrust onto the African paleomargin. The host garnet is almandine-dominant with a sharp increase in grossular component in the rim and is rich in exsolution of small acicular rutile needles. Major and trace elements show a gradual but significant zonation from core to rim characterized by a decrease in HREE, Y and Mn, typical of a prograde growth in a closed system. Trace element analyses of large prismatic rutile (up to 300 μm) indicate that the host metamorphic rock was a mafic protolith of MORB affinity and the Zr-in-rutile thermometry indicates a temperature range of 724-778°C for rutile growth. U-Pb analyses of these large rutile crystals provide an age of 32.4 ± 3.3 Ma interpreted as dating the prograde subduction stage of the mafic protolith. Minute zircons (≤ 30μm), disseminated in the garnet, display a multifaceted appearance and low Th/U ratios consistent with a metamorphic origin. The lack of HREE depletion in these zircons indicates that their metamorphic growth was not coeval with garnet. U-Pb analyses and Ti-in-zircon thermometry indicate they nucleated at 20.9 ± 2.2 Ma during near isothermal decompression related to exhumation of the UHP units. This study allows bracketing the age of UHP metamorphism in the Western Mediterranean to the

  8. Metamorphic history of the Central Pyrenees part 1; Arize, Trois Seigneurs and Saint-Barthelemy Massifs (sheet 3).

    NARCIS (Netherlands)

    Zwart, H.J.

    1957-01-01

    The relation between orogenic movements and metamorphism is discussed. Schistosity and especially lineations are characteristic for metamorphites of the synkinematic phase. Lineations show a regular pattern. Late-kinematic metamorphism accompanied by different kinds of movement result in irregular

  9. Metamorphic history of the Central Pyrenees part 1; Arize, Trois Seigneurs and Saint-Barthelemy Massifs (sheet 3).

    NARCIS (Netherlands)

    Zwart, H.J.

    1957-01-01

    The relation between orogenic movements and metamorphism is discussed. Schistosity and especially lineations are characteristic for metamorphites of the synkinematic phase. Lineations show a regular pattern. Late-kinematic metamorphism accompanied by different kinds of movement result in irregular r

  10. Metamorphic history of the Central Pyrenees part 1; Arize, Trois Seigneurs and Saint-Barthelemy Massifs (sheet 3).

    NARCIS (Netherlands)

    Zwart, H.J.

    1957-01-01

    The relation between orogenic movements and metamorphism is discussed. Schistosity and especially lineations are characteristic for metamorphites of the synkinematic phase. Lineations show a regular pattern. Late-kinematic metamorphism accompanied by different kinds of movement result in irregular r

  11. Pb-Pb zircon ages of the Porto Nacional high-grade metamorphic terrain, northern portion of the Goias Massif, central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gorayeb, Paulo Sergio de Sousa; Moura, Candido Augusto Veloso [Para Univ., Belem, PA (Brazil). Centro de Geociencias]. E-mail: gorayebp@ufpa.br; c_moura@ufpa.br; Barros, Gisele Ribeiro de [Para Univ., Belem, PA (Brazil). Programa Institucional de Bolsas de Iniciacao Cientifica (PIBIC)]. E-mail: agbarros@amazon.com.br

    2000-03-01

    Single zircon Pb-evaporation ages were determined for a mafic granulite, two enderbites and a kinzigite of the Porto Nacional High-Grade Metamorphic Terrain (PNHGT) in the Goias massif. Zircons from mafic granulites and one of the enderbites of yielded average {sup 207} Pb/{sup 206} Pb ages of 2125{+-}3 Ma and 2153{+-}1 Ma, respectively, being interpreted as minimum ages of the igneous protoliths. The other enderbite, whose zircons presented round terminations, yielded an average {sup 207} Pb/{sup 206} Pb age of 2097 {+-} 2 Ma. Zircons from the kinzigite, displaying cores and rims overgrowth, presented {sup 207} Pb/{sup 206} Pb ages ranging between 2027 and 2115 Ma. However, a very homogeneous zircon crystal without overgrowth yielded age of 2100 {+-} 2 Ma, with a distinctive low Th/U value (0.02). This zircon is interpreted as a metamorphic crystal and its age probably sets the age of the granulite facies metamorphism, indicating that the PNHGT is a result of the Transamazonian thermotectonic event. (author)

  12. The Cambrian initiation of intra-oceanic subduction in the southern Paleo-Asian Ocean: Further evidence from the Barleik subduction-related metamorphic complex in the West Junggar region, NW China

    Science.gov (United States)

    Liu, Bo; Han, Bao-Fu; Xu, Zhao; Ren, Rong; Zhang, Jin-Rui; Zhou, Jing; Su, Li; Li, Qiu-Li

    2016-06-01

    In this study, we present new evidence from the Barleik subduction-related metamorphic complex in the southern West Junggar region, northwestern China, for the Cambrian initiation of intra-oceanic subduction in the southern Paleo-Asian Ocean. The Barleik metamorphic complex is mainly composed of blueschist and amphibolite blocks within an ophiolitic mélange and their protoliths are calc-alkaline andesite and alkali and tholeiitic basalts. The calc-alkaline andesite has a zircon U-Pb age of 502 ± 2 Ma, obtained from magmatic cores of zircon grains, and shares geochemical features similar to the 515-485 Ma intra-oceanic arc magmatic rocks in the West Junggar region. By contrast, the alkali and tholeiitic basalts have trace element features similar to ocean island and enriched mid-ocean ridge basalts, respectively. Rutile and sodic-calcic amphibole from the amphibolite have a U-Pb age of 502 ± 25 Ma and a 40Ar/39Ar age of ∼504 Ma, respectively, which are in good agreement within errors with a 40Ar/39Ar age of 492 ± 4 Ma for phengite from the blueschist. These metamorphic ages of ∼500 Ma are interpreted to represent the timing of Pacific-type subduction-related metamorphism and are also compatible with ages of the oldest supra-subduction zone ophiolites (531-512 Ma) and intra-oceanic arc plutons (515-485 Ma) in the southern West Junggar region. Being one of the oldest subduction-related metamorphic complexes (509-490 Ma) in the southern Central Asian Orogenic Belt, the Barleik metamorphic complex, together with the oldest arc plutons, definitely indicate the initial intra-oceanic subduction in the southern Paleo-Asian Ocean at least in the Early Cambrian.

  13. Energy Dissipation by Metamorphic Micro-Robots in Viscous Fluids

    CERN Document Server

    Hogg, Tad

    2015-01-01

    Microscopic robots could perform tasks with high spatial precision, such as acting on precisely-targeted cells in biological tissues. Some tasks may benefit from robots that change shape, such as elongating to improve chemical gradient sensing or contracting to squeeze through narrow channels. This paper evaluates the energy dissipation for shape-changing (i.e., metamorphic) robots whose size is comparable to bacteria. Unlike larger robots, surface forces dominate the dissipation. Theoretical estimates indicate that the power likely to be available to the robots, as determined by previous studies, is sufficient to change shape fairly rapidly even in highly-viscous biological fluids. Achieving this performance will require significant improvements in manufacturing and material properties compared to current micromachines. Furthermore, optimally varying the speed of shape change only slightly reduces energy use compared to uniform speed, thereby simplifying robot controllers.

  14. Alkali control of high-grade metamorphism and granitization

    Directory of Open Access Journals (Sweden)

    Oleg G. Safonov

    2014-09-01

    Full Text Available We review petrologic observations of reaction textures from high-grade rocks that suggest the passage of fluids with variable alkali activities. Development of these reaction textures is accompanied by regular compositional variations in plagioclase, pyroxenes, biotite, amphibole and garnet. The textures are interpreted in terms of exchange and net-transfer reactions controlled by the K and Na activities in the fluids. On the regional scale, these reactions operate in granitized, charnockitized, syenitized etc. shear zones within high-grade complexes. Thermodynamic calculations in simple chemical systems show that changes in mineral assemblages, including the transition from the hydrous to the anhydrous ones, may occur at constant pressure and temperature due only to variations in the H2O and the alkali activities. A simple procedure for estimating the activity of the two major alkali oxides, K2O and Na2O, is implemented in the TWQ software. Examples of calculations are presented for well-documented dehydration zones from South Africa, southern India, and Sri Lanka. The calculations have revealed two end-member regimes of alkalis during specific metamorphic processes: rock buffered, which is characteristic for the precursor rocks containing two feldspars, and fluid-buffered for the precursor rocks without K-feldspar. The observed reaction textures and the results of thermodynamic modeling are compared with the results of available experimental studies on the interaction of the alkali chloride and carbonate-bearing fluids with metamorphic rocks at mid-crustal conditions. The experiments show the complex effect of alkali activities in the fluid phase on the mineral assemblages. Both thermodynamic calculations and experiments closely reproduce paragenetic relations theoretically predicted by D.S. Korzhinskii in the 1940s.

  15. Survey yields data on unique metamorphic rock complex in China

    Science.gov (United States)

    Schulze, A.; Jiang, M.; Ryberg, T.; Gao, R.

    Seismic data from survey work last year in Dabie Shan, China, are giving scientists their first view of the subsurface structure of a unique metamorphic rock complex. The work, in which a joint Chinese-German research team surveyed possible sites for a super deep borehole, set the stage for more intensive petrological and seismic investigations this year and next.Data were collected by near-vertical seismic imaging at Dabie Shan, the Earth's largest outcrop of ultra-high pressure metamorphic (UHM) rocks, some exhumed from depths of 100 km. Processing so far has revealed unexpectedly strong mid-and lower-crustal reflections, predominantly dipping west to east, indicating the involved tectonic history of the region. Upcoming research will look more closely at the three-dimensional structure of the rock and other matters. Scientific deep drilling is essential in addressing a wide range of major geoscientific problems of global importance. The International Continental Scientific Drilling Programme (ICDP) coordinates such, and one key target of ICDP is the Dabie Shan. To find the most appropriate location for a drill site and to extend the findings of the drilling beyond the drill hole, geophysical methods, especially seismic investigations, play an important role. Integrated interpretation of seismic and drill results in the Dabie Shan will lead to a better understanding of the structure and dynamic processes of the collisional history of the Yangtze and Sino-Korean Cratons. The Dabie Shan is located in the eastern part of the Qinling orogen in Anhui province, central China. The rocks there contain microdiamonds and coesite within a 20-km-thick eclogite zone representing a part of the lower lithosphere of the Yangtze Craton [Okay, 1993]. Such rocks suggest that continental crust had been subducted to depths greater than 100 km and exhumed afterwards [Hackeretal, 1995].

  16. An innovative approach for testing bioinformatics programs using metamorphic testing

    Directory of Open Access Journals (Sweden)

    Liu Huai

    2009-01-01

    Full Text Available Abstract Background Recent advances in experimental and computational technologies have fueled the development of many sophisticated bioinformatics programs. The correctness of such programs is crucial as incorrectly computed results may lead to wrong biological conclusion or misguide downstream experimentation. Common software testing procedures involve executing the target program with a set of test inputs and then verifying the correctness of the test outputs. However, due to the complexity of many bioinformatics programs, it is often difficult to verify the correctness of the test outputs. Therefore our ability to perform systematic software testing is greatly hindered. Results We propose to use a novel software testing technique, metamorphic testing (MT, to test a range of bioinformatics programs. Instead of requiring a mechanism to verify whether an individual test output is correct, the MT technique verifies whether a pair of test outputs conform to a set of domain specific properties, called metamorphic relations (MRs, thus greatly increases the number and variety of test cases that can be applied. To demonstrate how MT is used in practice, we applied MT to test two open-source bioinformatics programs, namely GNLab and SeqMap. In particular we show that MT is simple to implement, and is effective in detecting faults in a real-life program and some artificially fault-seeded programs. Further, we discuss how MT can be applied to test programs from various domains of bioinformatics. Conclusion This paper describes the application of a simple, effective and automated technique to systematically test a range of bioinformatics programs. We show how MT can be implemented in practice through two real-life case studies. Since many bioinformatics programs, particularly those for large scale simulation and data analysis, are hard to test systematically, their developers may benefit from using MT as part of the testing strategy. Therefore our work

  17. REE Geochemistry of Precambrian Metamorphic Rocks in Wutaishan Region

    Institute of Scientific and Technical Information of China (English)

    吴素珍

    1989-01-01

    The metasedimentary-volcanic series of the Wutai and Hutuo groups experienced regional metamorphism and thus turned into moderate-to low-grade metamorphic rocks.REE abundances and REE distribution patterns in the Shizui and Taihuai Subgroup metasedimentary-volcanic rocks are typical of the Archean,whereas the Gaofan Subgroup and the Hutuo Group show post-Archean REE geochemical char-acteristics.Five types of REE distribution pattern are distinguished:(1)rightward inclined smooth curves with little REE anomaly(Eu/Eu*=0.73-0.95) and heavy REE depletion (e.g.the Late Archean metasedimentary rocks);(2)rightward inclined V-shaped curves with sharp Eu anoma-ly (Eu/Eu*=0.48-0.76) and slightly higher ∑REE (e.g.the post-Archean metasedimentary rocks);(3) rightward inclined steep curves with negative Eu anomaly(Eu/Eu*=0.73-0.76) and the lowest ∑REE (e.g.the post-Archean dolomites);(4)rightward inclined,nearly smooth curves with both positive Eu anomaly and unremarkable positive Eu anomaly(Eu/Eu*=0.95-1.25)(e.g.the meta-basic volcanic rocks);and (5) rightward inclined curves with Eu anomaly(Eu/Eu*=1.09-1.19)and heavy REE depletion(e.g.the meta-acid volcanic rocks).Strata of the two groups are considered to have been formed in an island-arc belt-an instable continental petrogenetic environment.

  18. 40Ar/ 39Ar mineral ages from the Oki metamorphic complex, Oki-Dogo, southwest Japan: implications for regional correlations

    Science.gov (United States)

    Dallmeyer, R. D.; Takasu, A.

    1998-08-01

    The Oki metamorphic complex exposed in the Oki-Dogo islands consists predominantly of psammitic and pelitic gneisses with subordinate amphibolite and rare calcareous gneiss. The Oki gneisses were regionally metamorphosed to general amphibolite facies conditions, with local development of granulite facies assemblages. Peak metamorphic conditions of c. 800°C have been suggested. Hornblende concentrates from amphibolites collected within the Oki metamorphic complex record 40Ar/ 39Ar isotope correlation ages of 199-192 Ma. These are interpreted to date the post metamorphic cooling through temperatures required for intracrystalline retention of argon (c. 500°C). Muscovite concentrates record 40Ar/ 39Ar plateau ages of 167-168 Ma. These are interpreted to date post metamorphic cooling through appropriate closure temperature of muscovite (c. 400-375°C). Combined with the previously reported geochronological data, the Oki metamorphic complex appears to have experienced peak metamorphic conditions at c. 250 Ma. Subsequently, it cooled and was exhumed at the earth's surface at c. 90 Ma with cooling rate of c. 5°C/Ma. The Oki metamorphic complex records a similar prograde metamorphic event as the Hida metamorphic complex exposed in central Japan. The cooling and exhumation rates of the Hida metamorphic complex were significantly more rapid compared with the Oki metamorphic complex, and they were exhumed with extensively intruded Jurassic granites (Funatsu granites).

  19. Micro-area Chemical Composition and Preserved P-T Evolution Trace of Phengite in Albite Gneiss from the Donghai Ultrahigh-Pressure Metamorphic Area, East China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Study of micro-area chemical compositions indicates that phengite in albite gneiss from hole ZK2304 of the Donghai region has evident compositional zoning. SiO2 and tetrahedrally coordinated Si contents decrease, and Al2O3, AlIV and AlVI contents increase gradually from core to rim. However, K2O, MgO and FeO contents basically remain unchanged from core to rim. According to P-T estimates obtained from geothermometers and barometers, combined with previous experimental data, the core belt (micro-area I) of phengite was formed at T=637- 672° C and P=1.55- 1.73 GPa, and the transitional belt (micro-area II) of the phengite were formed at T=594- 654° C and P=1.35- 1.45 GPa. Towards the rim belt (micro-area III), the temperature decreased slightly, but the pressure decreased rapidly with T=542- 630° C and P=1.12- 1.19 GPa. The P-T evolution path recorded by the compositional zoning of phengite is characterized by significant near-isothermal decompression, revealing that the gneiss has undergone high-pressure-ultrahigh-pressure metamorphism. The compositional zoning of the phengite in the albite gneiss may have formed in the geodynamic process of rapid exhumation in the Sulu ultrahigh-pressure metamorphic belt.

  20. Short-lived subduction and exhumation in Western Papua (Wandamen peninsula): Co-existence of HP and HT metamorphic rocks in a young geodynamic setting

    Science.gov (United States)

    François, Camille; de Sigoyer, Julia; Pubellier, Manuel; Bailly, Vivien; Cocherie, Alain; Ringenbach, Jean-Claude

    2016-12-01

    Understanding processes of formation of accretionary wedges requires studying young and well preserved examples. The Lengguru wedge (West Papua) is younger than 10 Myr and is a result of oblique and fast subduction (11 cm/yr) of the Bird's Head (a part of the Australian margin beneath the Melanesian Arc). Thus, the rapid formation of this wedge (actually a Fold and Thrust Belt) may be attributed to a single tectonic event. High pressure (HP) metabasic and metasedimentary rocks have been discovered in the core of the wedge in the Wandamen peninsula. Locally, these rocks are overprinted by migmatization during the decompression. Field relationships indicate that migmatites and anatectic leucogranite crosscut the HP metamorphic rocks. This paper reports characterization of petrology and thermobarometry of metasediments and metabasic samples, all included in a former mélange-type rock association, as well as geochronology of metasediments. Pressure-Temperature (P-T) conditions highlight two stages of metamorphism within a small time bracket. In metasediments, a first stage of relatively HP ( 13-17 kbar) is observed as attested by a first paragenesis of garnet-kyanite-phengite. Garnet, kyanite and phengite are then destabilized in favor of biotite during the decompression (5-12 kbar and > 550 °C). Late fractures filled with chlorite and a second generation of white mica crosscut the foliation (< 7 kbar and 500-600 °C). In metabasic rocks, the peak of pressure is reached from 17 to 23 kbar and from 700 to 800 °C. Geochronological study was conducted using U-Pb dating (LA-MC-ICPMS) on zircons from the metasedimentary and migmatitic rocks. Some zircon cores often present high Th/U ratio typical for magmatic origin, as confirmed by trace element signature of metasediments, and recorded ages older than 300 Ma, witness of the activity of a volcanic arc on the former margin of the Australian craton. Most other zircons present a low Th/U ratio attesting their metamorphic

  1. Coupling thermodynamic modeling and high-resolution in situ LA-ICP-MS monazite geochronology: evidence for Barrovian metamorphism late in the Grenvillian history of southeastern Ontario

    Science.gov (United States)

    McCarron, Travis; Gaidies, Fred; McFarlane, Christopher R. M.; Easton, R. Michael; Jones, Peter

    2014-12-01

    The Flinton Group is a greenschist to upper amphibolite facies package of metasediments in southeastern Ontario that was metamorphosed during the Ottawan Orogeny. Thermodynamic modeling of metapelitic mineral assemblages suggests an increase in peak conditions of metamorphism across the 40 km wide study area from 3.5 to 7.9 kbar and 540 to 715 °C. Garnet isopleth thermobarometry applied to the cores of compositionally zoned porphyroblasts reveals remarkably similar P-T conditions of initial crystallization at approximately 3.7-4.0 kbar and 512-520 °C, corresponding to a relatively high geothermal gradient of ca. 34-45 °C km-1. It is inferred from modeling and reaction textures that metamorphism was along Barrovian P-T paths. Major and trace element zoning in garnet from one sample records a complex growth history as evidenced by major and trace element zoning and the distribution of xenotime, allanite and monazite inclusions. High-resolution (6 μm) LA-ICP-MS U-Pb geochronology performed on monazite in the rock matrix and included in the outer 150 μm of garnet rim-ward of a Y annulus revealed an age of 976 ± 4 Ma. The age is interpreted to reflect monazite growth at the expense of allanite and apatite late in garnet's growth history over the P-T interval 4.5-6.8 kbar and 540-640 °C. This new age estimate for near peak metamorphism fits well into the regional framework but is significantly younger than previously reported ages for Ottawan metamorphism. Based on microstructures this new age suggests that compressional tectonics were operating much later in the history of the Grenville of southeastern Ontario than previously thought.

  2. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins

    Science.gov (United States)

    Zheng, Yong-Fei; Chen, Ren-Xu

    2017-09-01

    Regional metamorphism at extreme conditions refers either to Alpine-type metamorphism at low geothermal gradients of 30 °C/km. Extreme pressures refer to those above the polymorphic transition of quartz to coesite, so that ultrahigh-pressure (UHP) eclogite-facies metamorphism occurs at mantle depths of >80 km. Extreme temperatures refer to those higher than 900 °C at crustal depths of ≤80 km, so that ultrahigh-temperature (UHT) granulite-facies metamorphism occurs at medium to high pressures. While crustal subduction at the low geothermal gradients results in blueschist-eclogite facies series without arc volcanism, heating of the thinned orogenic lithosphere brings about the high geothermal gradients for amphibolite-granulite facies series with abundant magmatism. Therefore, UHP metamorphic rocks result from cold lithospheric subduction to the mantle depths, whereas UHT metamorphic rocks are produced by hot underplating of the asthenospheric mantle at the crustal depths. Active continental rifting is developed on the thinned lithosphere in response to asthenospheric upwelling, and this tectonism is suggested as a feasible mechanism for regional granulite-facies metamorphism, with the maximum temperature depending on the extent to which the mantle lithosphere is thinned prior to the rifting. While lithospheric compression is associated with subduction metamorphism in accretionary and collisional orogens, the thinned orogenic lithosphere undergoes extension due to the asthenospheric upwelling to result in orogen-parallel rifting metamorphism and magmatism. Thus, the rifting metamorphism provides a complement to the subduction metamorphism and its operation marks the asthenospheric heating of the orogenic lithosphere. Because of the partial melting and melt extraction of the lower continental crust, contemporaneous granite-migmatite-granulite associations may serve as a petrological indicator of rifting orogeny that is superimposed on precedingly accretionary and

  3. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  4. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  5. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar

    Science.gov (United States)

    Mitchell, A. H. G.; Htay, Myint Thein; Htun, Kyaw Min; Win, Myint Naing; Oo, Thura; Hlaing, Tin

    2007-03-01

    The Mogok metamorphic belt (MMB), over 1450 km long and up to 40 km wide, consists of regionally metamorphosed rocks including kyanite and sillimanite schists and granites lying along the Western margin of the Shan Plateau in central Myanmar and continuing northwards to the eastern Himalayan syntaxis. Exposures in quarries allow correlation of Palaeozoic meta-sedimentary, early Mesozoic meta-igneous and late Mesozoic intrusive rocks within a 230 km long northerly-trending segment of the MMB, from Tatkon to Kyanigan north of Mandalay, and with the Mogok gemstone district 100 km to the northeast. Relationships among the metamorphic and intrusive rocks, with sparse published radiometric age controls, indicate at least two metamorphic events, one before and one after the intrusion of Late Jurassic to early Cretaceous calc-alkaline rocks. These relationships can be explained by either of two possible tectonic histories. One, constrained by correlation of mid-Permian limestones across Myanmar, requires early Permian and early Jurassic regional metamorphic events, prior to an early Tertiary metamorphism, in the western part of but within a Shan-Thai - western Myanmar block. The second, not compatible with a single laterally continuous Permian limestone, requires pre-Upper Jurassic regional metamorphism and orogenic gold mineralization in the Mergui Group and western Myanmar, early Cretaceous collision of an east-facing Mergui-western Myanmar island arc with the Shan Plateau, and early Tertiary metamorphism in the MMB related to reversal in tectonic polarity following the arc-Plateau collision.

  6. Reactions to define the biotite isograd in the Ryoke metamorphic belt, Kii Peninsula, Japan

    Science.gov (United States)

    Wang, Ge-Fan; Banno, Shohei; Takeuchi, Keiji

    1986-03-01

    Two types of biotite isograd are defined in the low-grade metamorphism of the Wazuka area, a Ryoke metamorphic terrain in the Kii Peninsula, Japan. The first, BI1, is defined by the reaction of chlorite+K-feldspar= biotite+muscovite+quartz+H2O that took place in psammitic rocks, and the second, BI2, by the continuous reaction between muscovite, chlorite, biotite and quartz in pelitic rocks. The Fe/Mg ratios of the host rocks do not significantly affect the reactions. From the paragenesis of pelitic and psammitic metamorphic rocks, the following mineral zones were established for this low-pressure regional metamorphic terrain: chlorite, transitional, chlorite-biotite, biotite, and sillimanite. The celadonite content of muscovite solid solution in pelitic rocks decreases systematically with the grade of metamorphism from 38% in the chlorite zone to 11% in the biotite zone. Low pressure does not prohibit muscovite from showing the progressive change of composition, if only rocks with appropriate paragenesis are chosen. A qualitative phase diagram of the AKF system relevant to biotite formation suggests that the higher the pressure of metamorphism, the higher the celadonite content of muscovite at BI1, which is confirmed by comparing the muscovites from the Barrovian and Ryoke metamorphism.

  7. Late miocene/pliocene origin of the inverted metamorphism of the Central Himalaya

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, T.M.; Ryerson, F.J.; LeFort, P.; Yin, A. Lovera, O.M.

    1997-01-01

    The spatial association of intracontinental thrusting and inverted metamorphism, recognized in the Himalaya more than a century ago, has inspired continuing efforts to identify their causal relationship. Perhaps the best known sequence of inverted metamorphism is that found immediately beneath the Himalayan Main Central Thrust (MCT), generally thought to have been active during the Early Miocene. It has been widely assumed that the pattern of inverted metamorphism also developed at that time. Using a new approach, in situ Th-Pb dating of monazite included in garnet, we have discovered that the peak metamorphic recrystallization recorded in the footwall of the MCT fault occurred at ca. 5 Ma. The apparent inverted metamorphism resulted from activation of a broad shear zone beneath the MCT zone which juxtaposed two right-way-up metamorphic sequences. Recognition of this remarkably youthful phase of metamorphism resolves outstanding problems in Himalayan tectonics, such as why the MCT (and not the more recently initiated thrusts) marks the break in slope of the present day mountain range, and transcends others, such as the need for exceptional conditions to explain Himalayan anatexis.

  8. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures

    Science.gov (United States)

    French, Bevan M.

    1998-01-01

    This handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures emphasizes terrestrial impact structures, field geology, and particularly the recognition and petrographic study of shock-metamorphic effects in terrestrial rocks. Individual chapters include: 1) Landscapes with Craters: Meteorite Impacts, Earth, and the Solar System; 2) Target Earth: Present, Past and Future; 3) Formation of Impact Craters; 4) Shock-Metamorphic Effects in Rocks and Minerals; 5) Shock-Metamorphosed Rocks (Impactities) in Impact Structures; 6) Impact Melts; 7) How to Find Impact Structures; and 8) What Next? Current Problems and Future Investigations.

  9. Thermal effects of metamorphic reactions in a three-component slab

    DEFF Research Database (Denmark)

    Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd

    2010-01-01

    or consumption can occur due to metamorphic reactions, including endothermic devolatilization. We investigate enthalpy budget in a subducting slab using a self-consistent thermodynamic model. Petrological model of a subducting slab consists of three layers: oceanic subducting sediment (GLOSS), oceanic basalt (OB......), and moderately serpentinized harzburgite (SHB). These layers are examined over the range of pressure-temperature conditions of interest by computing metamorphic phase diagrams and retrieving whole-rock thermodynamic properties. Our results suggest that metamorphic reactions consume a significant amount of slab...

  10. Thermal effects of metamorphic reactions in a three-component slab

    DEFF Research Database (Denmark)

    Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd

    2010-01-01

    or consumption can occur due to metamorphic reactions, including endothermic devolatilization. We investigate enthalpy budget in a subducting slab using a self-consistent thermodynamic model. Petrological model of a subducting slab consists of three layers: oceanic subducting sediment (GLOSS), oceanic basalt (OB......), and moderately serpentinized harzburgite (SHB). These layers are examined over the range of pressure-temperature conditions of interest by computing metamorphic phase diagrams and retrieving whole-rock thermodynamic properties. Our results suggest that metamorphic reactions consume a significant amount of slab...

  11. The discovery and significance of the northeastern Jiangxi Province ophiolite (NEJXO), its metamorphic peridotite and associated high temperature-high pressure metamorphic rocks

    Science.gov (United States)

    Guoqing, Zhou

    The NEJXO with a N.E.-S.W. elongation occurs in the mid-Lower Qigong Group, under which lies the Jiuling Group (1401 Ma) and above which lies the Shangshu Group (817 ± 87 Ma), so that the age of NEJXO is defined to be Proterozoic between 1401 Ma and 817 ± 87 Ma. The sediments of the Jiuling Group show evidence of continental derivation, but the Qigong Group and Shangshu Group are characterised by CA volcanic rocks and probably represent a gradually growing island-arc. Thus, we regard the NEJXO as occurring in a back-island-arc basin between the ancient continent and the island-arc. On the whole, the main members of dismembered ophiolite are all present. The metamorphic periodotite present in them, is considered to be especially important, because it may be the sole representative of the older mantle present and it differs from those younger. The high-T metamorphic rocks associated with the NEJXO are various hornstones and melilite marble, whereas the high-P metamorphic rocks are aragonite-jadeite-glaucophane schist and schistose lawsonite marble. From the fact that high-P metamorphism was superimposed on the high-T metamorphic rocks, it may be suggested that early tension (at opening stage) and late compression (at closing stage) occurred during the development of the basin.

  12. The Effects of Metamorphism on Chondritic Diamond and Silicon Carbide

    Science.gov (United States)

    Russell, S. S.; Arden, J. W.; Pillinger, C. T.

    1992-07-01

    Presolar grains have now been studied in a considerable number of primitive meteorites so that it can be readily shown that the diamond/silicon carbide ratio is not constant (Fig. 1). To highlight some of the distinctions: the enstatite chondrite Indarch appears to be particularly enriched in SiC compared to its diamond content, whereas the CV3s are relatively SiC poor. The abundance of SiC content in CV3s, however, seems to depend strongly on the oxidation state; the highly oxidized Allende has much less SiC than the more reduced Vigarano. The differences seen in Fig. 1 imply either heterogeneity in the solar nebula, i.e., preferential inclusion of one of the components into different meteorite parent bodies or different destruction mechanisms for the two components. Alexander et al. (1990) and Huss (1990) noted that abundance of both diamond and silicon carbide in primitive chondritic meteorites declines with increasing petrologic type, perhaps indicating that these components are destroyed during metamorphism. In addition to the above observations, diamond and silicon carbide from different meteorite classes can be distinguished. The nitrogen content of the diamond varies considerably in a way that might be petrologic type dependent (Russell et al., 1991a). The combustion temperature of SiC in different samples is widely variable and the delta^13C measured for SiC from the CV3 meteorites is isotopically much lighter. The similarity in average delta^13C of SiC in the lowest petrologic type carbonaceous chondrites, Andrar 003 and Indarch (when it is known from ion probe studies that individual SiC grains are extraordinarily variable in ^12C/^13C), suggests that the interstellar mineral was well mixed in the parent body forming regions of the solar nebula (Russell et al., 1991b). Clearly understanding all these apparently unrelated facts is vital to unraveling the history of primitive parent bodies and their formation. Metamorphism must be involved after accretion

  13. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  14. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    extensions. Combined with the fact that the language definition does not provide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an implementation). In this paper we identify a core subset of the language, called Core BPEL, which has fewer and simpler constructs......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...... formally with WS-BPEL, as one, without loss of generality, need only consider the much simpler Core BPEL. This report may also be viewed as an addendum to the WS-BPEL standard specification, which clarifies the WS-BPEL syntax and presents the essential elements of the language in a more concise way...

  15. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    extensions. Combined with the fact that the language definition does not provide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an implementation). In this paper we identify a core subset of the language, called Core BPEL, which has fewer and simpler constructs......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...... formally with WS-BPEL, as one, without loss of generality, need only consider the much simpler Core BPEL. This report may also be viewed as an addendum to the WS-BPEL standard specification, which clarifies the WS-BPEL syntax and presents the essential elements of the language in a more concise way...

  16. Core benefits

    National Research Council Canada - National Science Library

    Keith, Brian W

    2010-01-01

    This SPEC Kit explores the core employment benefits of retirement, and life, health, and other insurance -benefits that are typically decided by the parent institution and often have significant governmental regulation...

  17. Radiation-Hardened, Substrate-Removed, Metamorphic InGaAs Detector Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance radiation-hardened metamorphic InGaAs imaging arrays sensitive from the ultraviolet (UV) through the short-wavelength infrared (SWIR) will be...

  18. Research on Metamorphic Testing: A Case Study in Integer Bugs Detection

    National Research Council Canada - National Science Library

    Yao Yi; Zheng Changyou; Huang Song; Ren Zhengping

    2013-01-01

    In order to solve Test Oracle problem which restricts the development of software testing techniques significantly, Metamorphic Testing is used to prove a way to determine the correctness of testing...

  19. Toward a quantitative model of metamorphic nucleation and growth

    Science.gov (United States)

    Gaidies, F.; Pattison, D. R. M.; de Capitani, C.

    2011-11-01

    The formation of metamorphic garnet during isobaric heating is simulated on the basis of the classical nucleation and reaction rate theories and Gibbs free energy dissipation in a multi-component model system. The relative influences are studied of interfacial energy, chemical mobility at the surface of garnet clusters, heating rate and pressure on interface-controlled garnet nucleation and growth kinetics. It is found that the interfacial energy controls the departure from equilibrium required to nucleate garnet if attachment and detachment processes at the surface of garnet limit the overall crystallization rate. The interfacial energy for nucleation of garnet in a metapelite of the aureole of the Nelson Batholith, BC, is estimated to range between 0.03 and 0.3 J/m2 at a pressure of ca. 3,500 bar. This corresponds to a thermal overstep of the garnet-forming reaction of ca. 30°C. The influence of the heating rate on thermal overstepping is negligible. A significant feedback is predicted between chemical fractionation associated with garnet formation and the kinetics of nucleation and crystal growth of garnet giving rise to its lognormal—shaped crystal size distribution.

  20. Eclogites of the Dabie Region: Retrograde Metamorphism and Fluid Evolution

    Institute of Scientific and Technical Information of China (English)

    顾连兴; 杜建国; 翟建平; 赵成浩; 范建国; 张文兰

    2002-01-01

    Based upon fluid effects, retrograde metamorphism of eclogites in the Dabie region can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stage is marked by polymorphic inversion, recrystallization and exsolution of solid solutions, and is thought to represent eclogite-facies retrograde environments. The fluid-bearing stage is likely to have occurred at the late stage of ecologite-facies diaphthorosis and is represented by kyanite porphyroblasts, rutile, and sodic pyroxene in association with high-pressure hydrous minerals such as phengite and zoisite (clinozoisite) without significant amount of hydrous minerals such as amphibole, epidote and biotite. The fluid-rich stage might have commenced concomitantly with lower amphibolite-facies diaphthoresis and persisted all the way towards the near-surface environment. The product of this stage is characterized by plentiful hydrous and volatile-bearing phases.The dissemination-type rutile mineralizations in eclogites might have formed by preferential shearing-induced pressure solution of gangue minerals at the fluid-bearing stage. The accompanying vein rutile was precipitated from fluids of this stage after local transport and concentration, and may hence represent proximal mobilization of titanium from the eclogite. Therefore, rutile veins can be used as an exploration indicator for dissemination-type rutile deposits.

  1. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism

    Directory of Open Access Journals (Sweden)

    Artur Krężel

    2017-06-01

    Full Text Available Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  2. Metamorphism in oceanic layer 3, Gorringe Bank, eastern Atlantic

    Science.gov (United States)

    Mevel, Catherine

    1988-12-01

    Gorringe Bank is an anomalously high structure of the eastern part of the north Atlantic, which was known to be composed of mantle-derived peridotites (layer 4) and gabbros (layer 3). During the submersible cruise CYAGOR II in 1981, the contact between layer 4 and layer 3 was observed on Mount Gettysburg and interpreted as tectonic. The overlying series of gabbro was extensively sampled on both mounts composing the bank, Gettysburg and Ormonde. Coarse-grained to pegmatoid clinopyroxene gabbros predominate and are associated with differentiated rocks (ferrogabbros and diorites). Cumulate gabbros are missing. The gabbroic section sampled is therefore interpreted as the upper part of the plutonic section. Most samples were strongly recrystallized during two distinct events. Metamorphism occurred close to the ridge axis, from interaction of a seawater-derived fluid with still hot gabbros. High temperature shear zones favoured fluid circulation, but the water/rock ratio — estimated from the sodium input — was very small in undeformed rocks (<1). The low W/R ratio explains the strong evolution of the fluid phase and therefore some particular compositions of secondary minerals. Low temperature alteration occurred when the gabbros were tectonically emplaced close to the sea bottom.

  3. Low-grade Prehnite-Pumpellyite facies metamorphism in the Bamble sector, SE-Norway

    OpenAIRE

    Velo, Mari Roen

    2014-01-01

    Low-grade metamorphic minerals have been found within the high-grade terrain in the Bamble sector, SE-Norway. The minerals prehnite and pumpellyite indicative of prehnite-pumpellyite facies conditions have been confirmed around the Kragerø area. The formation of analcime, thomsonite, hydrogarnet, albite and clay minerals is also a part of the low-grade metamorphism. The occurrence of these low-grade minerals is constricted to pseudomorph replacement of earlier mineral phases, hydrothermal vei...

  4. Re-epithelialization of large wound in paedomorphic and metamorphic axolotls.

    Science.gov (United States)

    Huang, Ting-Yu; Chang, Chun-Che; Cheng, Nai-Chen; Wang, Mu-Hui; Chiou, Ling-Ling; Lee, Kuang-Lun; Lee, Hsuan-Shu

    2017-02-01

    Axolotls (Ambystoma mexicanum) may heal their skin wounds scar-free in both paedomorphs and metamorphs. In previous studies on small punch skin wounds, rapid re-epithelialisation was noted in these two axolotl morphs. However, large wound size in mammals may affect wound healing. In this study, large circumferential full thickness excision wounds on the hind limbs were created on juvenile paedomorphic and metamorphic axolotls. The results showed re-epithelialisation was more quickly initiated in paedomorphs than in metamorphs after wounding. The migrating rate of epidermis on the wound bed was faster in paedomorphs than in metamorphs and thus completion of re-epithelialisation was faster in paedomorphs than in metamorphs. Within these re-epithelialisation periods, neither basement membrane nor dermis was reformed. Epidermal cell proliferation was detected by EdU-labelling technique. In the normal unwounded skin, epidermal proliferation rate was higher in paedomorphs than in metamorphs. After wounding, the epidermal proliferation rate was significantly lower in the migrating front on the wound bed than in the normal skin in paedomorphs. The EdU-labelling rate between normal skin and migration front was not different in metamorphs. Lacking of more proliferating epidermal cells on the wound bed indicated that the new epidermis here derived rather from migrating epidermal cells than from cell proliferation in situ. In conclusion, re-epithelialisation in the large wound might be fully completed in both morphs despite it was initiated earlier and with faster rate in paedomorphs than in metamorphs. The new epidermis on the wound bed derived mainly from cell migration than by cell proliferation in the re-epithelialisation period. J. Morphol. 278:228-235, 2017. © 2016 Wiley Periodicals,Inc. © 2016 Wiley Periodicals, Inc.

  5. Experimental simulation of the condensation and metamorphism of seasonal CO2 condensates under martian conditions.

    Science.gov (United States)

    Grisolle, F.; Schmitt, B.; Beck, P.; Philippe, S.; Brissaud, O.

    2014-04-01

    An experimental set-up, CARBON-IR, has been developed in order to perform the condensation and metamorphism of CO2 condensates in various controlled martian conditions at, or out of, equilibrium. The sample texture is monitored and near-infrared reflectance spectra are recorded. We present a first set of experiments aimed to simulate the formation of compact translucent slabs by condensation of CO2 gas, the metamorphism of CO2 snow, as well as their sublimation.

  6. New insights into the history and origin of the southern Maya block, SE Mexico: U-Pb-SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif

    Science.gov (United States)

    Weber, Bodo; Iriondo, Alexander; Premo, Wayne R.; Hecht, Lutz; Schaaf, Peter

    2007-01-01

    The histories of the pre-Mesozoic landmasses in southern México and their connections with Laurentia, Gondwana, and among themselves are crucial for the understanding of the Late Paleozoic assembly of Pangea. The Permian igneous and metamorphic rocks from the Chiapas massif as part of the southern Maya block, México, were dated by U–Pb zircon geochronology employing the SHRIMP (sensitive high resolution ion microprobe) facility at Stanford University. The Chiapas massif is composed of deformed granitoids and orthogneisses with inliers of metasedimentary rocks. SHRIMP data from an anatectic orthogneiss demonstrate that the Chiapas massif was part of a Permian (∼ 272 Ma) active continental margin established on the Pacific margin of Gondwana after the Ouachita orogeny. Latest Permian (252–254 Ma) medium- to high-grade metamorphism and deformation affected the entire Chiapas massif, resulting in anatexis and intrusion of syntectonic granitoids. This unique orogenic event is interpreted as the result of compression due to flat subduction and accretionary tectonics. SHRIMP data of zircon cores from a metapelite from the NE Chiapas massif yielded a single Grenvillian source for sediments. The majority of the zircon cores from a para-amphibolite from the SE part of the massif yielded either 1.0–1.2 or 1.4–1.5 Ga sources, indicating provenance from South American Sunsás and Rondonian-San Ignacio provinces.

  7. Effects of Metamorphism on the Valence and Coordination of Titanium in Ordinary Chondrites

    Energy Technology Data Exchange (ETDEWEB)

    Simon, S.B.; Sutton, S.R.; Grossman, L. (UC)

    2012-04-02

    Despite years of study, the conditions under which ordinary chondrites were metamorphosed from grade 3 to grade 6 are not well defined. Wide ranges of peak temperature are inferred for each grade. The long-popular 'onion shell' model, in which higher metamorphic grade is attributed to greater depths of origin, implies a corresponding decrease in cooling rate with increasing grade, and there is disagreement as to whether or not this is observed. Redox conditions during chondrite metamorphism are also not well understood. Some workers have reported evidence for reduction, presumably by carbon, with increase in grade from 3-4, followed by oxidation during metamorphism to higher grades, but other work indicates little variation in fO{sub 2} as a function of metamorphic grade. During our investigation of the valence of Ti in planetary materials, we found high proportions of Ti{sup 3+} in olivine and pyroxene in chondrules in Semarkona (LL3.0) and low proportions in New Concord (L6) olivine, suggesting that Ti was oxidized during ordinary chondrite metamorphism. We have undertaken a study of L and LL chondrites of grades 3-6 to see how Ti valence and coordination vary with grade and to see if the variations can be used to constrain conditions of chondrite metamorphism.

  8. Contact metamorphism in Middle Ordovician arc rocks (SW Sardinia, Italy): New paleogeographic constraints

    Science.gov (United States)

    Costamagna, Luca Giacomo; Elter, Franco Marco; Gaggero, Laura; Mantovani, Federico

    2016-11-01

    In the early Cambrian Bithia Formation in the Variscan foreland of Sardinia, a Middle Ordovician granitic intrusion (478-457 Ma) is hosted by marly metasedimentary rocks that were affected by high-temperature (HT) metamorphism. A detailed structural-petrographical transect was conducted through the granitic intrusion and its host rocks. Field data and relationships between HT/low-pressure (LP) mineral assemblages in the metasedimentary rocks (Grt + Wo + Ves in carbonate lenses and And in pelite) demonstrate that the study area was affected by a polyphase HT overprint (I: T = 520-620 °C at XCO2 = 0.1, P: 0.2-0.4 GPa; and II: T = 600-670 °C at XCO2 = 0.1, P = 0.2-0.4 GPa) that pre-dates the Variscan tectonic, metamorphic, and igneous phases. In the Canigò or Canigou Massif (Eastern Pyrenees), the Somail Massif (Montagne Noire), and the Ruitor Massif (Internal Massifs, NW Alps), Middle Ordovician orthogneiss with relict igneous textures are deciphered despite being overprinted by Variscan amphibolite-to-granulite-facies metamorphism and subsequent Alpine low-grade metamorphism. Comparisons of associated igneous and metasedimentary rocks in the Sardinia foreland with the High-Grade Metamorphic Complex in the Variscan Axial Zone and the Canigou Massif indicate a convergent Middle Ordovician evolution that was overprinted by HT Variscan metamorphism.

  9. 3D geometrical modelling of post-foliation deformations in metamorphic terrains (Syros, Cyclades, Greece)

    Science.gov (United States)

    Philippon, Mélody; Le Carlier de Veslud, Christian; Gueydan, Frédéric; Brun, Jean-Pierre; Caumon, Guillaume

    2015-09-01

    Superposed to ductile syn-metamorphic deformations, post-foliation deformations affect metamorphic units during their exhumation. Understanding the role of such deformations in the structuration of metamorphic units is key for understanding the tectonic evolution of convergence zones. We characterize post-foliations deformations using 3D modelling which is a first-order tool to describe complex geological structures, but a challenging task where based only on surface data. We propose a modelling procedure that combines fast draft models (interpolation of orientation data), with more complex ones where the structural context is better understood (implicit modelling), allowing us to build a 3D geometrical model of Syros Island blueschists (Cyclades), based on field data. With our approach, the 3D model is able to capture the complex present-day geometry of the island, mainly controlled by the superposition of three types of post-metamorphic deformations affecting the original metamorphic pile: i) a top-to-South ramp-flat extensional system that dominates the overall island structure, ii) large-scale folding of the metamorphic units associated with ramp-flat extensional system, and iii) steeply-dipping normal faults trending dominantly NNW-SSE and EW. The 3D surfaces produced by this method match outcrop data, are geologically consistent, and provide reasonable estimates of geological structures in poorly constrained areas.

  10. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires

    Science.gov (United States)

    Peucat, J. J.; Ruffault, P.; Fritsch, E.; Bouhnik-Le Coz, M.; Simonet, C.; Lasnier, B.

    2007-10-01

    Using ICP-MS-LA analyses, we demonstrate that the use of the Ga/Mg ratio, in conjunction with the Fe concentration, is an efficient tool in discriminating between "metamorphic" and "magmatic" blue sapphires. Magmatic blue sapphires found in alkali basalts (e.g. southeastern Asia, China, Africa) are commonly medium-rich to rich in Fe (with average contents between 2000 and 11000 ppm), high in Ga (> 140 ppm), and low in Mg (generally 10). Conversely, metamorphic blue sapphires found in basalts (e.g. Pailin pastel) and in metamorphic terrains (e.g. Mogok, Sri Lanka, Ilakaka) are characterized by low average iron contents ( 60 ppm) with low average Ga/Mg ratios (< 10). Basaltic magmatic sapphires have Fe, Ga and Mg contents similar to those obtained for primary magmatic sapphires found in the Garba Tula syenite. This suggests that these both sets of sapphires have a possible common "syenitic" origin, as previously proposed from other criteria. In addition, plumasite-related sapphires and metamorphic sapphires also exhibit similar composition in trace elements. Based on results from the present study, we suggest that fluid circulations during a metamorphic stage produced metasomatic exchanges between mafic and acidic rocks (plumasite model), thus explaining the high Mg contents and converging Ga/Mg ratios observed in metamorphic sapphires.

  11. Geochronological constraints on the metamorphic sole of the Semail ophiolite in the United Arab Emirates

    Directory of Open Access Journals (Sweden)

    Nick M.W. Roberts

    2016-07-01

    Full Text Available The Semail ophiolite of Oman and the United Arab Emirates (UAE provides the best preserved large slice of oceanic lithosphere exposed on the continental crust, and offers unique opportunities to study processes of ocean crust formation, subduction initiation and obduction. Metamorphic rocks exposed in the eastern UAE have traditionally been interpreted as a metamorphic sole to the Semail ophiolite. However, there has been some debate over the possibility that the exposures contain components of older Arabian continental crust. To help answer this question, presented here are new zircon and rutile U-Pb geochronological data from various units of the metamorphic rocks. Zircon was absent in most samples. Those that yielded zircon and rutile provide dominant single age populations that are 95–93 Ma, partially overlapping with the known age of oceanic crust formation (96.5–94.5 Ma, and partially overlapping with cooling ages of the metamorphic rocks (95–90 Ma. The data are interpreted as dating high-grade metamorphism during subduction burial of the sediments into hot mantle lithosphere, and rapid cooling during their subsequent exhumation. A few discordant zircon ages, interpreted as late Neoproterozoic and younger, represent minor detrital input from the continent. No evidence is found in favour of the existence of older Arabian continental crust within the metamorphic rocks of the UAE.

  12. Metamorphic evolution of the Río de la Plata Craton in the Cinco Cerros area, Buenos Aires Province, Argentina

    Science.gov (United States)

    Massonne, Hans-Joachim; Dristas, Jorge A.; Martínez, Juan Cruz

    2012-10-01

    A metapelite and an interlayered granite were studied from the Cinco Cerros area ca. 65 km WNW of the city of Mar del Plata. Garnet in these samples is slightly zoned with core and rim compositions of pyr17(gro + andr)6spes1.5alm75.5 and pyr13.5(gro + andr)5.5spes2alm80, respectively, in the metapelite. Corresponding compositions in the granite are pyr15(gro + andr)3.5spes3.5alm78 and pyr11(gro + andr)3.5spes4.5alm81. We used the PERPLE_X computer software package to calculate P-T pseudosections. From the pseudosection of the metapelite P-T conditions of 6.7 kbar and 670 °C were derived for an early metamorphic stage. Subsequently, a pressure release occurred at decreasing temperatures. The final metamorphic P-T conditions recorded by the studied rock are 4.5 kbar and 600 °C compatible with the absence of cordierite, staurolite, and an Al2SiO5-phase. Garnet in the granitoid crystallized between 715 and 690 °C at a pressure around 7.7 kbar. U-Th-Pb age dating with the electron microprobe was performed. 16 analyses of monazite in the metapelite formed three clusters resulting in ages of I: 2073 ± 11.4 (1σ) Ma, II: 1913 ± 11.0 (1σ) Ma, and III: 1805 ± 20.8 (1σ) Ma. Thus, the Paleoproterozoic metamorphic event can be related to the Trans-Amazonian cycle and was followed by slow cooling. As our study area is close to the margin of the Río de la Plata Craton, where abundant magmatic arc-derived plutonic rocks are outcropping, we interpret the derived P-T data as follows: A heating event (not recorded by the studied rocks) resulted from magmas that intruded during the Trans-Amazonian cycle. This event was followed by slow exhumation, probably caused by erosion, accompanied by thermal relaxation.

  13. Physiological effects and cellular responses of metamorphic larvae and juveniles of sea urchin exposed to ionic and nanoparticulate silver.

    Science.gov (United States)

    Magesky, Adriano; Ribeiro, Ciro A Oliveiro; Pelletier, Émilien

    2016-05-01

    The widespread use of silver nanoparticles (AgNPs) would likely result in their discharge into wastewater and inevitable release in densely populated coastal areas. It is known that AgNPs can cause harmful effects to marine fauna, but how they affect development stages is still an open question. In order to understand in details how polymer-coated AgNPs (PAAm-AgNPs) (from 0.19 to 4.64mM as Ag) can affect critical stages of marine invertebrate development, metamorphic larvae and juveniles of sea urchins were used as biological models. Multidimensional scaling (MDS) approach based on Bray-Curtis similarity matrix with PERMANOVA showed organisms in a multivariate space undergoing through different physiological conditions as a function of time, chemical forms of silver, nominal concentrations, and presence or absence of food. Sublethal effects such as lethargy, oedema and immobility mainly characterized PAAm-AgNPs effects with juveniles and postlarvae, whereas necrosis and death arose in Ag(+) conditions in short-term tests. Chronically exposed metamorphic larvae had their morphogenic processes interrupted by PAAm-AgNPs and a high mortality rate was observed in recovery period. On the contrary, Ag(+) ions caused progressive mortality during exposure, but a quick recovery in uncontaminated seawater was observed. By means of fluorescent markers we showed that nanosilver could be transferred between consecutive stages (swimming larvae and postlarvae) and highlighted how important is food to enhance PAAm-AgNPs uptake. Using TEM we observed that unfed juveniles had nanosilver aggregates mostly restricted to their coelomic sinuses, while metamorphic larvae already had nano-contamination overspread in different tissues and blastocoel. Our main hypothesis for nanotoxicity of PAAM-AgNPs relies on the slow dissolution of nano-core over time, but in this study the effects of particulate silver form itself are also evoked. Main mechanisms governing tissular and cellular responses

  14. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    Science.gov (United States)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous

  15. Metamorphic crystallization kinetics quantified through space and time

    Science.gov (United States)

    Kelly, E. D.; Carlson, W. D.; Ketcham, R. A.

    2012-12-01

    Numerical simulations of diffusion-controlled nucleation and growth of garnet porphyroblasts in regionally metamorphosed rocks constrain values for interfacial energy and rates of nucleation and Al intergranular diffusion, quantities that exert a strong control on the sizes and disposition of porphyroblasts in most metamorphic rocks. During simulation of a reaction, product crystals consume a rate-limiting component (Al) and gradients in Al concentration in the intergranular fluid develop between the product and reactant crystals. Low Al concentrations surrounding product crystals (low reaction affinity) reduce nucleation probability, creating a tendency toward spatial ordering of crystal centers in homogeneous portions of a rock. Also, as Al depletion zones impinge, crystals compete for Al, resulting in a tendency toward smaller sizes for neighboring crystals and larger sizes for those that grow in isolation. These phenomena produce distinctive textural effects that allow the simulations to be constrained by measurements of the sizes and locations of porphyroblasts in natural samples. The 13 rocks analyzed in this study were collected from 7 localities exhibiting a diverse range of crystallization conditions. In the simulations, unknown kinetic parameters governing nucleation and intergranular diffusion were adjusted iteratively to achieve fits between simulated and natural porphyroblastic textures. Model fits were assessed primarily from textural characteristics precisely measured by high-resolution X-ray computed tomography. The range of interfacial energies obtained for heterogeneous nucleation is 0.007-0.118 J/m2 for the sample suite, assuming shape factors in the range 0.1-1.0. Nucleation rates change through space and time due to growth and impingement of Al depletion zones. In some modeled rocks, the actual (whole-rock) rate rises steeply, achieves a steady state, and then falls rapidly as reactants are consumed; in others, the steady-state is not achieved

  16. Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea

    Directory of Open Access Journals (Sweden)

    Sutherby Josh

    2012-04-01

    Full Text Available Abstract Background A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement, i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA, a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Results Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. Conclusions We

  17. Permo-Carboniferous granitoids with Jurassic high temperature metamorphism in Central Pontides, Northern Turkey

    Science.gov (United States)

    Gücer, Mehmet Ali; Arslan, Mehmet; Sherlock, Sarah; Heaman, Larry M.

    2016-12-01

    In the northern part of the Central Pontides (N Turkey) there are different metamorphic rocks exposed, notably the Devrekani metamorphic rocks. Here, upper amphibolite-lower granulite facies metamorphic rocks contain predominantly paragneiss, orthogneiss and metacarbonate, and to a lesser extent, amphibolite and quartzite, with cross-cutting aplite, pegmatite and granite veins. This is the first report of these rocks and includes new data on the petrochemistry, geochronology and metamorphic evolution of the Devrekani orthogneisses from the Central Pontides. The orthogneisses show five different mineral parageneses with the characteristic mineral assemblage quartz + K-feldspar + plagioclase + biotite ± hornblende ± opaque (± ilmenite and ± magnetite), and accessory minerals (zircon, sphene and apatite). These metamorphic rocks exhibit generally granoblastic, lepidogranoblastic and nematolepidogranoblastic with locally migmatitic and relic micrographic textures. They have well-developed centimeter-spaced gneissic banding and display gneissose structure with symmetric, asymmetric and irregular folds. The petrographic features, mineralogical assemblages and weak migmatization reflect high temperature conditions. Thermometric calculations in the orthogneisses indicate metamorphic temperatures reached 744 ± 33 °C. Field relations, petrography and petrochemistry suggest that the orthogneisses have predominantly granodioritic and some granitic protoliths, that show features of I-type, medium to high-potassic calc-alkaline volcanic arc granitoids. The orthogneisses have high contents of LILEs and low contents of HFSEs with negative Nb and Ti anomalies, which are typical of subduction-related magmas. The orthogneisses also show significant LREE enrichment relative to HREE with negative Eu anomalies (EuN/Eu* = 0.33-1.07) with LaN/LuN = 6.98-20.47 values. Based on U-Pb zircon dating data, the protoliths are related to Permo-Carboniferous (316-252 Ma) magmatism. It is

  18. Episodic subgreenschist facies metamorphism in the Andes of Chile - is it a valid model?

    Science.gov (United States)

    Bevins, R. E.; Robinson, D.; Aguirre, L.; Vergara, M.

    2003-04-01

    The Central Andes of Chile are characterized by subgreenschist facies burial metamorphism that is reported as having developed in up to seven episodic cycles of some 40Myr duration. The main evidence in support of the model is reported as mineralogical breaks at major stratigraphic boundaries that are interpreted as documenting sharp breaks in metamorphic grade. Here we test this model by examination of the progressive secondary mineral development, reaction progress in mafic phyllosilicates, and topological variations of the low-grade assemblages in metabasites for Jurassic to Miocene sequences east of Santiago. The mafic phyllosilicates (smectite - mixed-layer chlorite/smectite - chlorite) show increasing reaction progress with stratigraphic age and there is a continuum across the main stratigraphic boundaries, such there is no offset or gap in the reaction progress at these boundaries. There are some differences in mineral assemblages between the various stratigraphic units, such as between prehnite+pumpellyite+/-laumonite or amphibole-bearing and non amphibole bearing rocks, from which contrasting subgreenschist facies can be recognised. However, consideration of the controls on mineral parageneses at subgreenschist facies conditions demonstrates that these different facies cannot be used solely as evidence of sharp breaks in metamorphic grade at unconformities, as has been reported in many previous publications for the Andes. The presently accepted model for the Central Andes, involving repeated cycles of episodic metamorphism developing in extensional basins, is, therefore, partly unfounded. Consideration of the overall tectonic evolution of this part of the Andes concurs that the burial metamorphism developed in extensional settings, but in only two events, namely in mid-late Cretaceous and Late Miocene times respectively. The results from this work suggest that the record of sharp metamorphic breaks and the episodic model of metamorphism reported for many

  19. Pressure-temperature evolution of Neoproterozoic metamorphism in the Welayati Formation (Kabul Block), Afghanistan

    Science.gov (United States)

    Collett, Stephen; Faryad, Shah Wali

    2015-11-01

    The Welayati Formation, consisting of alternating layers of mica-schist and quartzite with lenses of amphibolite, unconformably overlies the Neoarchean Sherdarwaza Formation of the Kabul Block that underwent Paleoproterozoic granulite-facies and Neoproterozoic amphibolite-facies metamorphic events. To analyze metamorphic history of the Welayati Formation and its relations to the underlying Sherdarwaza Formation, petrographic study and pressure-temperature (P-T) pseudosection modeling were applied to staurolite- and kyanite-bearing mica-schists, which crop out to the south of Kabul City. Prograde metamorphism, identified by inclusion trails and chemical zonation in garnet from the micaschists indicates that the rocks underwent burial from around 6.2 kbar at 525 °C to maximum pressure conditions of around 9.5 kbar at temperatures of around 650 °C. Decompression from peak pressures under isothermal or moderate heating conditions are indicated by formation of biotite and plagioclase porphyroblasts which cross-cut and overgrow the dominant foliation. The lack of sillimanite and/or andalusite suggests that cooling and further decompression occurred in the kyanite stability field. The results of this study indicate a single amphibolite-facies metamorphism that based on P-T conditions and age dating correlates well with the Neoproterozoic metamorphism in the underlying Sherdarwaza Formation. The rocks lack any paragenetic evidence for a preceding granulite-facies overprint or subsequent Paleozoic metamorphism. Owing to the position of the Kabul Block, within the India-Eurasia collision zone, partial replacement of the amphibolite-facies minerals in the micaschist could, in addition to retrogression of the Neoproterozoic metamorphism, relate to deformation associated with the Alpine orogeny.

  20. Quantifying the impact of metamorphic reactions on strain localization in the mantle

    Science.gov (United States)

    Huet, Benjamin; Yamato, Philippe

    2014-05-01

    Metamorphic reactions are most often considered as a passive record of changes in pressure, temperature and fluid conditions that rocks experience. In that way, they provide key constraints on the tectonic evolution of the crust and the mantle. However, natural examples show that metamorphism can also modify the strength of rocks and affect the strain localization in ductile shear zones. Hence, metamorphic reactions have an active role in tectonics by inducing softening and/or hardening depending on the involved reactions. Quantifying the mechanical effect of such metamorphic reactions is, therefore, a crucial task for determining both the strength distribution in the lithosphere and its evolution. However, the estimate of the effective strength of such polyphase rocks remains still an open issue. Some flow laws (determined experimentally) already exist for monophase aggregates and polyphase rocks for rheologically important materials. They provide good constraints on lithology-controlled lithospheric strength variations. Unfortunately, since the whole range of mineralogical and chemical rock compositions cannot be experimentally tested, the variations of strength due to in metamorphism reaction cannot be systematically and fully characterized. In order to tackle this issue, we here present the results of a study coupling thermodynamical and mechanical modeling that allows us to predict the mechanical impact of metamorphic reactions on the strength of the mantle. Thermodynamic modeling (using Theriak-Domino) is used for calculating the mineralogical composition of a typical peridotite as a function of pressure, temperature and water content. The calculated modes and flow laws parameters for monophase aggregates are then used as input of the Minimized Power Geometric model for predicting the polyphase aggregate strength. Our results are then used to quantify the strength evolution of the mantle as a function of pressure, temperature and water content in two

  1. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei

    2016-10-01

    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  2. Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex

    NARCIS (Netherlands)

    Uzel, Bora; Langereis, Cornelis G.|info:eu-repo/dai/nl/073584223; Kaymakçı, Nuretdin; Sözbilir, Hasan; Özkaymak, Çağlar; Özkaptan, Murat

    2015-01-01

    Within the Aegean extensional system, the Izmir-Balikesir Transfer Zone (IBTZ) is a crucial element in the late Cenozoic evolution of western Anatolia since it accommodates the differential deformation between the Cycladic and the Menderes metamorphic core complexes. Here, we determine the rotationa

  3. Sapphirine granulites from Panasapattu, Eastern Ghats belt, India: Ultrahigh-temperature metamorphism in a Proterozoic convergent plate margin

    Directory of Open Access Journals (Sweden)

    C.V. Dharma Rao

    2012-01-01

    Full Text Available We report equilibrium sapphirine + quartz assemblage in biotite–orthopyroxene–garnet granulites from a new locality in Panasapattu of Paderu region in the Eastern Ghats granulite belt, which provide new evidence for ultrahigh-temperature (UHT metamorphism at 1030–1050 °C and 10 kbar in this region. The development of migmatitic texture, stabilization of the garnet–orthopyroxene–plagioclase–K-feldspar association, prograde biotite inclusions within garnet and sapphirine as well as sapphirine and cordierite inclusions within garnet in these granulites indicate that the observed peak assemblages probably formed during prograde dehydration melting of a Bt–Sill–Qtz assemblage, and constrain the prograde stage of the p–T path. The core domains of orthopyroxene porphyroblasts have up to w(Al2O3 9.6%, which suggest that the temperatures reached up to 1150 °C suggesting extreme crustal metamorphism. These conditions were also confirmed by the garnet–orthopyroxene thermobarometery, which yields a p–T range of 1012–960 °C and 9.4 kbar. The p–T phase topologies computed using isochemical sections calculated in the model system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH for metapelites, garnet-free sapphirine granulites and garnet-bearing sapphirine granulites match the melt-bearing assemblages observed in these rocks. Isochemical sections constructed in the NCKFMASH system for an average sub-aluminous metapelite bulk composition, and contoured for modal proportions of melt and garnet, as well as for the compositional isopleths of garnet, predict phase and reaction relations that are consistent with those observed in the rocks. Garnet and orthopyroxene contain Ti-rich phlogopite inclusions, suggesting formation by prograde melting reactions at the expense of phlogopite during ultrahigh-temperature conditions. These p–T results underestimate ‘peak’ conditions, in part as a result of the modification

  4. Clumped isotope thermometry of calcite and dolomite in a contact metamorphic environment

    Science.gov (United States)

    Lloyd, Max K.; Eiler, John M.; Nabelek, Peter I.

    2017-01-01

    Clumped isotope compositions of slowly-cooled calcite and dolomite marbles record apparent equilibrium temperatures of roughly 150-200 °C and 300-350 °C, respectively. Because clumped isotope compositions are sensitive to the details of T-t path within these intervals, measurements of the Δ47 values of coexisting calcite and dolomite can place new constraints on thermal history of low-grade metamorphic rocks over a large portion of the upper crust (from ∼5 to ∼15 km depth). We studied the clumped isotope geochemistry of coexisting calcite and dolomite in marbles from the Notch Peak contact metamorphic aureole, Utah. Here, flat-lying limestones were intruded by a pluton, producing a regular, zoned metamorphic aureole. Calcite Δ47 temperatures are uniform, 156 ± 12 °C (2σ s.e.), across rocks varying from high-grade marbles that exceeded 500 °C to nominally unmetamorphosed limestones >5 km from the intrusion. This result appears to require that the temperature far from the pluton was close to this value; an ambient temperature just 20 °C lower would not have permitted substantial re-equilibration, and should have preserved depositional or early diagenetic Δ47 values several km from the pluton. Combining this result with depth constraints from overlying strata suggests the country rock here had an average regional geotherm of 22.3-27.4 °C/km from the late Jurassic Period until at least the middle Paleogene Period. Dolomite Δ47 in all samples above the talc + tremolite-in isograd record apparent equilibrium temperatures of 328-12+13 °C (1σ s.e.), consistent with the apparent equilibrium blocking temperature we expect for cooling from peak metamorphic conditions. At greater distances, dolomite Δ47 records temperatures of peak (anchi)metamorphism or pre-metamorphic diagenetic conditions. The interface between these domains is the location of the 330 °C isotherm associated with intrusion. Multiple-phase clumped isotope measurements are complemented by

  5. The Cedrolina Chromitite, Goiás State, Brazil: A Metamorphic Puzzle

    Directory of Open Access Journals (Sweden)

    Yuri de Melo Portella

    2016-09-01

    Full Text Available The Cedrolina chromitite body (Goiás-Brazil is concordantly emplaced within talc-chlorite schists that correspond to the poly-metamorphic product of ultramafic rocks inserted in the Pilar de Goiás Greenstone Belt (Central Brazil. The chromite ore displays a nodular structure consisting of rounded and ellipsoidal orbs (up to 1.5 cm in size, often strongly deformed and fractured, immersed in a matrix of silicates (mainly chlorite and talc. Chromite is characterized by high Cr# (0.80–0.86, high Fe2+# (0.70–0.94, and low TiO2 (av. = 0.18 wt % consistent with variation trends of spinels from metamorphic rocks. The chromitite contains a large suite of accessory phases, but only irarsite and laurite are believed to be relicts of the original igneous assemblage, whereas most accessory minerals are thought to be related to hydrothermal fluids that emanated from a nearby felsic intrusion, metamorphism and weathering. Rutile is one of the most abundant accessory minerals described, showing an unusually high Cr2O3 content (up to 39,200 ppm of Cr and commonly forming large anhedral grains (>100 µm that fill fractures (within chromite nodules and in the matrix or contain micro-inclusions of chromite. Using a trace element geothermometer, the rutile crystallization temperature is estimated at 550–600 °C (at 0.4–0.6 GPa, which is in agreement with P and T conditions proposed for the regional greenschist to low amphibolite facies metamorphic peak of the area. Textural, morphological, and compositional evidence confirm that rutile did not crystallize at high temperatures simultaneously with the host chromitite, but as a secondary metamorphic mineral. Rutile may have been formed as a metamorphic overgrowth product following deformation and regional metamorphic events, filling fractures and incorporating chromite fragments. High Cr contents in rutile very likely are due to Cr remobilization from Cr-spinel during metamorphism and suggest that Ti was

  6. Core Java

    CERN Document Server

    Horstmann, Cay S

    2013-01-01

    Fully updated to reflect Java SE 7 language changes, Core Java™, Volume I—Fundamentals, Ninth Edition, is the definitive guide to the Java platform. Designed for serious programmers, this reliable, unbiased, no-nonsense tutorial illuminates key Java language and library features with thoroughly tested code examples. As in previous editions, all code is easy to understand, reflects modern best practices, and is specifically designed to help jumpstart your projects. Volume I quickly brings you up-to-speed on Java SE 7 core language enhancements, including the diamond operator, improved resource handling, and catching of multiple exceptions. All of the code examples have been updated to reflect these enhancements, and complete descriptions of new SE 7 features are integrated with insightful explanations of fundamental Java concepts.

  7. Lu Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth's mantle

    Science.gov (United States)

    Choi, Sung Hi; Mukasa, Samuel B.; Andronikov, Alexandre V.; Osanai, Yasuhito; Harley, Simon L.; Kelly, Nigel M.

    2006-06-01

    The Napier Complex of the East Antarctic Craton comprises some of the oldest rocks on Earth (˜ 3.8 billion years old), overprinted by an ultra-high temperature (UHT) metamorphic event near the Archean-Proterozoic boundary. Garnet, orthopyroxene, sapphirine, osumilite, rutile and a whole rock representing a fully equilibrated assemblage from this UHT granulite belt have yielded a Lu-Hf isochron age of 2403 ± 43 Ma, the first ever determined on a UHT mineral assemblage. Preservation of the UHT mineral assemblage in the rock analyzed, without any significant retrogression, suggests rapid cooling with closure likely to have occurred for the Lu-Hf system at post-peak UHT conditions near a temperature of ˜ 800 °C. This mineral-whole rock isochron yields an initial 176Hf/ 177Hf ratio corresponding to an ɛHf value of - 14 ± 1, acquired during UHT metamorphism. Such a low value demonstrates that overall UHT granulites evolved in a low Lu/Hf environment, probably formed when the rocks were first extracted from a highly depleted mantle. Zircon ɛHf values we have measured "see through" the UHT metamorphism and show that the source materials for the magmas that formed the Napier Complex were extremely depleted (> + 5.6 ɛHf at 3.85 Ga) relative to the chondritic uniform reservoir (CHUR). These results also suggest significant depletion of the early Archean mantle, in agreement with the early differentiation of the Earth that the latest core formation models require.

  8. Fluid inclusions evidence for differential exhumation of ultrahigh pressure metamorphic rocks in the Sulu terrane

    Institute of Scientific and Technical Information of China (English)

    FAN Hongrui; GUO Jinghui; HU Fangfang; CHU Xuelei; CHEN Fukun; JIN Chengwei

    2005-01-01

    Differential exhumation was petrologically recognized in ultrahigh pressure metamorphic rocks from the southern and northern parts of the Sulu terrane. While a normal exhumation occurred for eclogites and gneisses in south Sulu, granulite-facies overprinting of ultrahigh pressure metamorphic rocks took place with high retrograde temperatures in north Sulu. A study of fluid inclusions reveals trapping of five type fluid inclusions in high and ultrahigh pressure eclogite minerals and vein quartz in the Sulu terrane. These are A-type N2±CO2 inclusion trapped at high and ultra-high pressure eclogite-facies metamorphic condition, B-type pure-CO2 liquid phase inclusion with higher density trapped during granulite-facies overprinting metamorphism of eclogites, C-type CO2-H2O inclusion and D-type hypersaline inclusion trapped in high pressure eclogite-facies re-crystallization stage, and E-type low salinity H2O inclusion trapped in the latest stage of ultrahigh pressure exhumation (amphibolite-facies retrogression). Identification of crowded-distributing pure-CO2 liquid inclusions with higher density trapped in garnet of eclogites provides an evidence for granulite-facies overprinting metamorphism in the north Sulu terrane.

  9. Metamorphic pattern of the Cretaceous Celica Formation, SW Ecuador, and its geodynamic implications

    Science.gov (United States)

    Aguirre, Luis

    1992-04-01

    The volcanic rocks of the Cretaceous Celica Formation of southern Ecuador are affected by a weak although widespread alteration. The chemical study of the secondary chemical phases present in andesitic and basaltic lava flows reveals that this alteration corresponds to very low-grade metamorphism comprising the zeolite and the prehnite-pumpellyite facies. Main features of this metamorphism are: weak lithostatic pressure, moderate to steep thermal gradient, high ƒ O2, low value of the seawater/rock ratio and total absence of deformation. These characteristics are typically present in other volcanic suites of similar age and composition along the Andes and correspond to the pattern of metamorphism developed in extensional settings (diastathermal metamorphism) linked to various degrees of thinning of the continental crust. Based on this metamorphic pattern, a geodynamic model is proposed in which the Celica Formation is interpreted as an ensialic, aborted, marginal basin developed on strongly attenuated continental crust at the border of the South American plate. The relationship between the Ecuadorian and Colombian volcanic suites of Cretaceous age present along the Western Cordillera is discussed in the light of the model suggested.

  10. Evolutionary genetics of metamorphic failure using wild-caught vs. laboratory axolotls (Ambystoma mexicanum).

    Science.gov (United States)

    Voss, S R; Shaffer, H B

    2000-09-01

    In many organisms metamorphosis allows for an ecologically important habitat-shift from water to land. However, in some salamanders an adaptive life cycle mode has evolved that is characterized by metamorphic failure (paedomorphosis); these species remain in the aquatic habitat throughout the life cycle. Perhaps the most famous example of metamorphic failure is the Mexican axolotl (Ambystoma mexicanum), which has become a focal species for developmental biology since it was introduced into laboratory culture in the 1800s. Our previous genetic linkage mapping analysis, using an interspecific crossing design, demonstrated that a major gene effect underlies the expression of metamorphic failure in laboratory stocks of the Mexican axolotl. Here, we repeated this experiment using A. mexicanum that were sampled directly from their natural habitat at Lake Xochimilco, Mexico. We found no significant association between the major gene and metamorphic failure when wild-caught axolotls were used in the experimental design, although there is evidence of a smaller genetic effect. Thus, there appears to be genetic variation among Mexican axolotls (and possibly A. tigrinum tigrinum) at loci that contribute to metamorphic failure. This result suggests a role for more than one mutation and possibly artificial selection in the evolution of the major gene effect in the laboratory Mexican axolotl.

  11. Metamorphic fluid flow - a question of scale, crustal depth and bulk rock composition

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, R.J.; Rye, D.M.

    1985-01-01

    Recent studies have indicated that certain metamorphic rocks interacted with significant volumes of aqueous fluid during their time-integrated mineral reaction history. Rather than demonstrating that pervasive fluid flow is general in metamorphic rocks, these documented cases instead suggest the likelihood of pronounced to extreme channelization of through-going in fluids in deep-seated metamorphic terranes (P>3 kbar). In rocks more shallowly buried, and therefore under low lithostatic stress, pervasive flow along grain boundaries and open microfractures probably occurred, as at Skye and the Skaergaard Complex. In higher pressure metamorphic environments, documented cases of high fluid/rock ratio make a strong case for flow channelized in veins or in impure marble aquifers where pore space and permeability were created by decarbonation reactions driven by infiltration of aqueous fluid. The source of this fluid may commonly be traced to a nearby wet granitic intrusion or quartz vein. As long as the pressurized source of aqueous fluid continued, outward flow was possible as fluid held open the intergranular pore space which was created only at the infiltration/reaction front where a reduction in solid volume accompanied reaction. Cessation or interruption of fluid flow would allow the pore space to close due to porous-rock strength being exceeded by lithostatic stress. Pervasive flow or aqueous fluid in deepseated metamorphic terranes is therefore probably limited to carbonate-bearing lithologies adjacent to sources of major volumes of fluid; otherwise, fluid flow is likely to be localized in fractures or veins.

  12. On the compositional variability of metamorphic chlorites as an effect of the micro-site chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, Raffaele; Zane, Antonella [Padua, Univ. (Italy). Dipt. di Mineralogia e Petrologia

    1997-12-31

    Chlorite is a widespread mineral in all metamorphic rock sequence with the exception of the upper part of the amphibolite facies and granulite. Its stability field is well known but the petrologic meaning of its compositional variability is still poorly understood. In this paper, the chemical variability of low grade metamorphic chlorites as an effect of the micro-site chemistry has been tested by means of 2169 microprobe analyses of selected chlorite flakes. The chemistry of studied chlorites turns out to be significantly scattered, as a function of the micro-site chemistry. As a general conclusion, the possible existence in the same thin section, of chlorite flakes having different composition is a serious drawback for geothermobarometry, at least in low grade metamorphic rocks.

  13. Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal-mechanical coupling facilitated by erosion

    Science.gov (United States)

    Zeitler, Peter K.; Koons, Peter O.; Bishop, Michael P.; Chamberlain, C. Page; Craw, David; Edwards, Michael A.; Hamidullah, Syed; Jan, M. Qasim; Khan, M. Asif; Khattak, M. Umar Khan; Kidd, William S. F.; Mackie, Randall L.; Meltzer, Anne S.; Park, Stephen K.; Pecher, Arnaud; Poage, Michael A.; Sarker, Golam; Schneider, David A.; Seeber, Leonardo; Shroder, John F.

    2001-10-01

    Within the syntaxial bends of the India-Asia collision the Himalaya terminate abruptly in a pair of metamorphic massifs. Nanga Parbat in the west and Namche Barwa in the east are actively deforming antiformal domes which expose Quaternary metamorphic rocks and granites. The massifs are transected by major Himalayan rivers (Indus and Tsangpo) and are loci of deep and rapid exhumation. On the basis of velocity and attenuation tomography and microseismic, magnetotelluric, geochronological, petrological, structural, and geomorphic data we have collected at Nanga Parbat we propose a model in which this intense metamorphic and structural reworking of crustal lithosphere is a consequence of strain focusing caused by significant erosion within deep gorges cut by the Indus and Tsangpo as these rivers turn sharply toward the foreland and exit their host syntaxes. The localization of this phenomenon at the terminations of the Himalayan arc owes its origin to both regional and local feedbacks between erosion and tectonics.

  14. Evaluating the effect of dislocation on the photovoltaic performance of metamorphic tandem solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The photovoltaic conversion efficiency for monolithic GaInP/GaInAs/Ge triple-junction cell with various bandgap combination (300 suns,AM1.5d) was theoretically calculated.An impressive improvement on conversion efficiency was observed for a bandgap combination of 1.708,1.194,and 0.67 eV.A theoretical investigation was carried out on the effect of dislocation on the metamorphic structure’s efficiency by regarding dislocation as minority-carrier recombination center.The results showed that only when dislocation density was less than 1.6×106 cm-2,can this metamorphic combination exhibit its efficiency advantage over the fully-matched combination.In addition,we also briefly evaluated the lattice misfit dependence of the dislocation density for a group of metamorphic triple-junction system,and used it as guidance for the choice of the proper cell structure.

  15. Chemical and physical studies of type 3 chondrites. VIII - Thermoluminescence and metamorphism in the CO chondrites

    Science.gov (United States)

    Keck, Bradly D.; Sears, Derek W. G.

    1987-01-01

    A possible relationship between the thermoluminescence (TL) properties of CO chondrites and their metamorphic history was investigated by measuring the TL properties of seven normal CO chondrites and of the Colony and the Allan Hills A77307 (ALHA 77307) CO-related chondrites. With the exception of Colony and ALHA 77307, whose maximum induced TL emission is at approximately 350 C, the CO chondrites were found to exhibit two TL peaks: a 130 C and a 250 C peaks. Among the CO chondrites, the 130 C peak showed a 100-fold range in TL sensitivity and was found to correlate with various metamorphism-related phenomena, such as silicate heterogeneity, metal composition, and McSween's metamorphic subtypes. The peak at 250 did not show these correlations and, with exception of Colony, showed little variation.

  16. Metamorphic sole formation, emplacement and blueschist overprint: early obduction dynamics witnessed by W. Turkey ophiolites

    Science.gov (United States)

    Plunder, Alexis; Agard, Philippe; Chopin, Christian; Soret, Mathieu; Okay, Aral; Whitechurch, Hubert

    2016-04-01

    Western Turkey, with a >200 km long-belt of unmetamorphosed ophiolite overlying continental lithosphere is one or even the largest obducted ophiolite on Earth and therefore a key example to study obduction and early subduction dynamics. All Western Turkish ophiolite fragments are considered as part of the same Neotethyan branch resulting of a long-lived continental subduction (or underthrusting). Synchronous (ca. ~ 93 Ma) metamorphic sole formation and preservation at the base of most of the Turkish ophiolite fragments support this single event and place a strong constraint on the age of subduction initiation. Metamorphic soles are indeed generally considered to have formed during the early and hot subduction zone at 25 ± 10 km depths and welded to the overriding oceanic lithosphere. In Western Turkey however (as for most places worldwide) a systematic study of the pressure-temperature conditions with modern thermobarometric tools is generally lacking, and fundamental mechanisms of formation or accretion to the upper plate are poorly (if at all) constrained. We herein reappraise Western Turkish metamorphic soles focusing on the following points and issues: (i) detailed structures of metamorphic sole and other subduction derived units, petrological evolution and refined pressure-temperature conditions; peak pressure-temperature conditions of metamorphic sole were estimated using garnet, clinopyroxene, amphibole and plagioclase as the peak paragenesis at 10.5 ± 2 kbar and 800 ± 50°C based on pseudosections using the Theriak/Domino package (ii) the rather unique (and enigmatic) blueschist facies overprint found in places was investigated in terms of structural position and pressure-temperature conditions. Conditions of overprint were estimated around 12 kbar and 425 °C from the presence of glaucophane, lawsonite, jadeite and garnet overgrowing the amphibolite-facies assemblage. This field-based study provides clues to mechanisms of metamorphic sole underplating

  17. Can the Metamorphic Basement of Northwestern Guatemala be Correlated with the Chuacús Complex?

    Science.gov (United States)

    Cacao, N.; Martens, U.

    2007-05-01

    The Chuacús complex constitutes a northward concave metamorphic belt that stretches ca. 150 km south of the Cuilco-Chixoy-Polochic (CCP) fault system in central and central-eastern Guatemala. It represents the basement of the southern edge of the Maya block, being well exposed in the sierra de Chuacús and the sierra de Las Minas. It is composed of high-Al metapelites, amphibolites, quartzofeldspathic gneisses, and migmatites. In central Guatemala the Chuacús complex contains ubiquitous epidote-amphibolite mineral associations, and local relics of eclogite reveal a previous high-pressure metamorphic event. North of the CCP, in the Sierra de Los Cuchumatanes area of western Guatemala, metamorphic rocks have been considered the equivalent of the Chuacús complex and hence been given the name Western Chuacús group, These rocks, which were intruded by granitic rocks and later mylonitized, include chloritic schist and gneiss, biotite-garnet schist, migmatites, and amphibolites. No eclogitic relics have been found within metamorphic rocks in northwestern Guatemala. Petrographic analyses of garnet-biotite schist reveal abundant retrogression and the formation of abundant zeolite-bearing veins associated with intrusion. Although metamorphic conditions in the greenschist and amphibolite facies are similar to those in the sierra de Chuacús, the association with deformed intrusive granites is unique for western Guatemala. Hence a correlation with metasediments intruded by the Rabinal granite in the San Gabriel area of Baja Verapaz seems more feasible than a correlation with the Chuacús complex. This idea is supported by reintegration of the Cenozoic left-lateral displacement along the CCP, which would place the metamorphic basement of western Guatemala north of Baja Verapaz, adjacent to metasediments intruded by granites in the San Gabriel-Rabinal area.

  18. Giants, dwarfs and the environment - metamorphic trait plasticity in the common frog.

    Directory of Open Access Journals (Sweden)

    Franziska Grözinger

    Full Text Available In order to understand adaptation processes and population dynamics, it is central to know how environmental parameters influence performance of organisms within populations, including their phenotypes. The impact of single or few particular parameters in concert was often assessed in laboratory and mesocosm experiments. However, under natural conditions, with many biotic and abiotic factors potentially interacting, outcomes on phenotypic changes may be different. To study the potential environmental impact on realized phenotypic plasticity within a natural population, we assessed metamorphic traits (developmental time, size and body mass in an amphibian species, the European common frog Rana temporaria, since a larval amphibians are known to exhibit high levels of phenotypic plasticity of these traits in response to habitat parameters and, b the traits' features may strongly influence individuals' future performance and fitness. In 2007 we studied these metamorphic traits in 18 ponds spread over an area of 28 km2. A subset of six ponds was reinvestigated in 2009 and 2010. This study revealed locally high variances in metamorphic traits in this presumed generalist species. We detected profound differences between metamorphing froglets (up to factor ten; both between and within ponds, on a very small geographic scale. Parameters such as predation and competition as well as many other pond characteristics, generally expected to have high impact on development, could not be related to the trait differences. We observed high divergence of patterns of mass at metamorphosis between ponds, but no detectable pattern when metamorphic traits were compared between ponds and years. Our results indicate that environment alone, i.e. as experienced by tadpoles sharing the same breeding pond, can only partly explain the variability of metamorphic traits observed. This emphasizes the importance to assess variability of reaction norms on the individual level to

  19. Peak metamorphic temperature and thermal history of the Southern Alps (New Zealand)

    Science.gov (United States)

    Beyssac, O.; Cox, S. C.; Vry, J.; Herman, F.

    2016-04-01

    The Southern Alps orogen of New Zealand results from late Cenozoic convergence between the Indo-Australian and Pacific plates and is one of the most active mountain belts in the world. Metamorphic rocks carrying a polymetamorphic legacy, ranging from low-greenschist to high-grade amphibolites, are exhumed in the hanging wall of the Alpine Fault. On a regional scale, the metamorphic grade has previously been described in terms of metamorphic zones and mineral isograds; application of quantitative petrology being severely limited owing to unfavorable quartzofeldspathic lithologies. This study quantifies peak metamorphic temperatures (T) in a 300 × 20 km area, based on samples forming 13 transects along-strike from Haast in the south to Hokitika in the north, using thermometry based on Raman spectroscopy of carbonaceous material (RSCM). Peak metamorphic T decreases across each transect from ≥ 640 °C locally in the direct vicinity of the Alpine Fault to less than 330 °C at the drainage divide 15-20 km southeast of the fault. Thermal field gradients exhibit a degree of similarity from the southernmost to the northernmost transects, are greater in low-grade semischist than high-grade schist, are affected by folding or discontinuous juxtaposition of metamorphic zones, and contain limited information on crustal-scale geothermal gradients. Temperatures derived by RSCM thermometry are slightly (≤ 50 °C) higher than those derived by traditional quantitative petrology using garnet-biotite thermometry and THERMOCALC modeling. The age of RSCM T appears to be mostly pre-Cenozoic over most of the area except in central Southern Alps (Franz Josef-Fox area), where the amphibolite facies schists have T of likely Cenozoic age. The RSCM T data place some constraints on the mode of exhumation along the Alpine Fault and have implications for models of Southern Alps tectonics.

  20. Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks

    Science.gov (United States)

    Bernard, Sylvain; Benzerara, Karim; Beyssac, Olivier; Brown, Gordon E., Jr.

    2010-09-01

    Pyritized plant tissues with well-preserved morphology were studied in rocks from Vanoise (western Alps, France) that experienced high-pressure, low-temperature metamorphic conditions in the blueschist facies during the Alpine orogeny. Organic and inorganic phases composing these fossils were characterized down to the nanometer scale by Raman microspectroscopy, scanning transmission X-ray microscopy and transmission electron microscopy. The graphitic but disordered organic matter composing these fossils is chemically and structurally homogeneous and mostly contains aromatic functional groups. Its original chemistry remains undefined likely because it was significantly transformed by diagenetic processes and/or thermal degradation during metamorphism. Various mineral phases are closely associated with this organic matter, including sulphides such as pyrite and pyrrhotite, carbonates such as ankerite and calcite, and iron oxides. A tentative time sequence of formation of these diverse mineral phases relative to organic matter decay is proposed. The absence of traces of organic matter sulphurization, the pervasive pyritization of the vascular tissues and the presence of ankerite suggest that the depositional/diagenetic environment of these metasediments was likely rich in reactive iron. Fe-sulphides and ankerite likely precipitated early and might have promoted the preservation of the fossilized biological soft tissues by providing mechanical resistance to compaction during diagenesis and subsequent metamorphism. In contrast, iron oxides which form rims of 100-nm in thickness at the interface between organic matter and Fe-sulphides may result from metamorphic processes. This study illustrates that it may be possible in some instances to deconvolve metamorphic from diagenetic imprints and opens new avenues to better constrain processes that may allow the preservation of organic fossils during diagenesis and metamorphism.

  1. Post-metamorphic change in activity metabolism of anurans in relation to life history.

    Science.gov (United States)

    Pough, F Harvey; Kamel, Suzanne

    1984-12-01

    Newly-metamorphosed individuals of some species of frogs and toads differ from adults in behavior, ecology, and physiology. These differences may be related to broader patterns of the life histories of different species of frogs. In particular, the length of larval life and the size of a frog at metamorphosis appear to be significant factors in post-metamorphic ontogenetic change. These changes in performance are associated with rapid post-metamorphic increases in oxygen transport capacity. Bufo americanus (American toads) and Rana sylvatica (wood frogs) spend only 2-3 months as tadpoles and metamorphose at body masses of 0.25 g or less. Individuals of these species improve endurance and aerobic capacity rapidly during the predispersal period immediately following metamorphosis. Increases in hematocrit, hemoglobin concentration, and heart mass relative to body mass are associated with this improvement in organismal performance. Rana clamitans (green frogs) spend from 3 to 10 months as larvae and weigh 3 g at metamorphosis. Green frogs did not show immediate post-metamorphic increases in performance. Rana palustris (pickerel frogs) are intermediate to wood frogs and green frogs in length of larval life and in size at metamorphosis, and they are intermediate also in their post-metamorphic physiological changes.American toads and wood frogs appear to delay dispersal from their natal ponds while they undergo rapid post-metamorphic growth and development, whereas green frogs disperse as soon as they leave the water, even before they have fully absorbed their tails. The very small body sizes of newly metamorphosed toads and wood frogs appear to limit the scope of their behaviors. The brief larval periods of these species permit them to exploit transient aquatic habitats, but impose costs in the form of a period of post-metamorphic life in which their activities are restricted in time and space compared to those of adults.

  2. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    Science.gov (United States)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    ]. Analyses of cores of some zircons from granodiorites of Lupveem batholith indicate Precambrian age of protolith (717, 1070.4 and 1581.5 m.a.) [15]. 40Ar-39Ar age of synmetamorphic biotite varies from 108 to 103 m.a. [15]. Intrusive rocks of Alarmaut dome are represented by wide spectrum of rocks: diorites, Q diorites, Q monzodiorites, granodiorites, tonalites, granites. Granodiorites and granites contain mafic enclaves of monzonites and Q monzonites. SiO2 contents in rocks of Alarmaut dome varies from 58,55% in diorites to 71,3% in granites; in enclaves - from 54,6% in monzonites to 61.89% in Q monzonites. Granitoids are normal and subalkaline rocks according to SiO2 vs K2O+Na2O and belong to high-K calc-alkaline and shoshonite series according to K2O vs SiO2. They are mainly metaluminous rocks (ASI syncollisional granites and volcanic arc granites, but within the field of postcollisional [19]. Geochronological and structural data indicate temporal relation between magmatism, metamorphism and deformations, accompanying formation of dome structure. Structural data also indicate the dome formation between two regional strike-slips. Strike-slip deformations of terminal stage of collision might have resulted in local zones of extensions [6, 8]. Intrusive contacts of studied granitoid plutons with already deformed host deposits indicate their postcollisional origin. Wide petrographical spectrum of granitoids, hornblende and biotite existence in granites, metaluminous high-K and shoshonite character, biotites compositions allow belonging them to high-K granites of I-type. Appearance of I-type granites in postcollisional setting is usually related to crustal anatexis under the influence of hot asthenospheric mantle due to delamination of lower parts of lithosphere. At the same time the processes of mingling of magmas of different composition, assimilation, fractional crystallization take place. Thus, in tectonic scenario of Alarmaut dome formation except dominating submergence of

  3. Ultrahigh-temperature metamorphism followed by two-stage decompression of garnet orthopyroxene sillimanite granulites from Ganguvarpatti, Madurai block, southern India

    Science.gov (United States)

    Sajeev, K.; Osanai, Y.; Santosh, M.

    2004-09-01

    The Mg Al granulites from Ganguvarpatti consist of orthopyroxene sillimanite garnet ± quartz as peak assemblage, with a few porphyroblasts of cordierite and sapphirine. These assemblages were strongly overprinted by late symplectites and coronas. Orthopyroxene inclusions in garnet and porphyroblast cores have the highest X Mg (0.80) and Al2O3 content (10.7 wt%). The estimated near-peak metamorphic conditions (1,000±50°C and 11 kbar) using garnet orthopyroxene geothermobarometry are consistent with those determined using a petrogenetic grid. The proposed multi-stage evolution process implies an initial decompression, deduced from multi-phase symplectites, followed by cooling during biotite formation. Further late decompression is explained from the orthopyroxene rims on biotite. This proposed P T path thus suggests a unique and complex evolution history for the UHT granulites of southern India. Present results are comparable with similar adjacent terranes in the Gondwana supercontinent, but the lack of structural and geochronological data makes a link with any major metamorphic event uncertain.

  4. Formation and metamorphic evolution of the Douling Complex from the East Qinling Mountains

    Institute of Scientific and Technical Information of China (English)

    张寿广; 魏春景; 赵子然; 沈洁

    1996-01-01

    The Douling Complex occurs as a Precambrian tectonic block distributed between the North China and Yangtze plates and has a protracted evolutional history. It is composed of various metamorpnic intrusives and supracrustal rocks. According to the studies on geology and geochronology, it can be concluded that the complex may have been formed in the early Proterozoic, about 2000 Ma ago and experienced two phases of regional metamorphism during the Jinningian and late Caledonian-early Hercynian. It can be correlated with the Qinling Complex from the North Qinling Mountains in lithic assemblage, formation age, tectonic setting and metamorphism, and is probably a thrust nappe split from the Qinling Complex.

  5. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    Science.gov (United States)

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks. Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed. Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in ??18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences. The range of Adirondack carbonate ??18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their

  6. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    Directory of Open Access Journals (Sweden)

    P. P. Ebner

    2015-02-01

    Full Text Available Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Diffusion originating in the Kelvin effect between snow structures dominates and is the main transport process in isothermal snow packs.

  7. Volatile transfer and recycling at UHP metamorphism; constraint from CCSD (Chinese Continental Scientific Drilling) eclogites

    Science.gov (United States)

    Okamoto, K.; Iizuka, Y.; Jahn, B.; Tzeng-Fu, Y.; Xu, Z.

    2005-12-01

    Study of dehydration and decarbonation processes of subducting oceanic crust is important to understand the island arc volcanism and recycling of water and carbon to deep mantle. Recent UHP experiments in C-O-H fluid-bearing MORB system have revealed that phase change and fluid composition depend on oxygen fugacity (e.g. Molina and Poli, 2002; Crottini and Poli, 2004). If oxygen fugacities represented by the equilibrium NNO (Ni-NiO) or FMQ (fayalie-magnesite-quartz) are assumed to be the average condition of UHP metamorphism, then the phase assemblages of UHP rocks are expected to have graphite/diamond only, graphite/diamond +carbonates, or carbonates only depending on the bulk compositions (Poli and Fumagalli, 2004, EMU notes in miner. vol. 5). C-species are well described in Chinese UHP eclogites (e.g. Zhang and Kai, 1996). However, carbonates can be easily leached from outcrop. Therefore in the worst case, only graphite could be recognized from surface exposures although drilled core samples represent carbonates with graphite (e.g. Sanbagawa schist in Japan, Goto et al., 2000, Ann. Meet. Japan. Petrol. Miner. Mining Geol. Assoc.). From this point of view, CCSD (Chinese Continental Scientific Drilling) samples are probably the best for identification of C-species in UHP rocks. We investigated nine eclogites from various depths (170 to 2000 m). Two types of eclogite can be distinguished; dry- and phengite-eclogite. The phengite eclogite is associated with orthogneiss. Under the microscope, the dry eclogites contain relative coarse-grained (> 500 microns across) garnet, clinopyroxene and rutile with or without graphite, quartz, apatite, zircon, and pyrite. The phengite eclogites exhibit garnet, clinopyroxene, rutile, quartz, and phengite with or without graphite, pyrite, talc, apatite, zircon, and K-feldspar. Graphite is always recognized with pyrite, suggesting oxygen fugacity was low (NNO) at UHP stage. Estimated P, T conditions based on the assemblage garnet

  8. Metamorphic conditions and CHIME monazite ages of Late Eocene to Late Oligocene high-temperature Mogok metamorphic rocks in central Myanmar

    Science.gov (United States)

    Maw Maw Win; Enami, Masaki; Kato, Takenori

    2016-03-01

    The high temperature (T)/pressure (P) regional Mogok metamorphic belt is situated in central Myanmar, and is mainly composed of pelitic gneisses, amphibolites, marbles, and calc-silicate rocks. The garnet-biotite-plagioclase-sillimanite-quartz assemblage and its partial system suggest equilibrium P/T conditions of 0.6-1.0 GPa/780-850 °C for the peak metamorphic stage, and 0.3-0.5 GPa/600-680 °C for the exhumation and hydration stage. Monazite grains show complex compositional zoning consisting of three segments-I, II, and III. Taking into consideration the monazite zoning and relative misfit curves, the calculated chemical Th-U-total Pb isochron method (CHIME) monazite age data (284 spot analyses) indicated four age components: 49.3 ± 2.6-49.9 ± 7.9, 37.8 ± 1.0-38.1 ± 1.7, 28.0 ± 0.8-28.8 ± 1.6, and 23.7 ± 1.3 Ma (2σ level). The ages of the Late Eocene and Late Oligocene epochs were interpreted as the peak metamorphic stage of upper-amphibolite and/or granulite facies and the postdated hydration stage, respectively.

  9. The timing of the tectono-metamorphic evolution at the Neoproterozoic-Phanerozoic boundary in central southern Madagascar

    DEFF Research Database (Denmark)

    Giese, Jörg; Berger, Alfons; Schreurs, Guido;

    2011-01-01

    emplaced. HT/HP granulite facies metamorphism (M1), including migmatisation and anatexis of the crust started at~585Maand lasted until at least~500 Ma. Monazite growth between 480 and 450Mapostdates major ductile deformation and might be related to a second, HT/MP metamorphism (M2), indicating...

  10. Amphiboles and their host rocks in the high-grade metamorphic Precambrin of Rogaland/Vest-Agder, Sw. Norway

    NARCIS (Netherlands)

    Dekker, A.G.C.

    1978-01-01

    In the high-grade metamorphic Precambrian of the Sirdal-¢rsdal area, Rogaland/Vest-Agder,south-west Norway, the Ca-amphiboles show a change in pleochroic colours, not only with changes in metamorphic grade, but also to some extend in bulk composition. A regional study was performed on the amphiboles

  11. Stenian - Tonian and Ediacaran metamorphic imprints in the southern Paleoproterozoic Ubendian Belt, Tanzania: Constraints from in situ monazite ages

    Science.gov (United States)

    Boniface, Nelson; Appel, Peter

    2017-09-01

    In situ monazite geochronological data yield the timing of migmatitic metamorphism in southern Ubendian Belt. The mineral assemblage of garnet-biotite- sillimanite- K-feldspar- plagioclase-quartz- ilmenite, in migmatitic metapelitic gneisses was achieved during the Ediacaran metamorphic episode between 565 ± 4 Ma and 559 ± 8 Ma as manifested by dating of monazite grains that include garnet. The Ediacaran metamorphic event in the southern Ubendian Belt overprinted the Paleoproterozoic metamorphic event established at 1808 ± 9 Ma and the Mesoproterozoic metamorphic event at 944 ± 4 Ma (Tonian Period). The Stenian - Tonian and Ediacaran metamorphic imprints in the southern Ubendian Belt fall within the time window of metamorphism and deformation of the neighboring Irumide, southern Irumide, and Unango/Marrupa Complexes. The ca. 560 Ma old granulite facies imprinting in the southern Ubendian Belt is coeval with shear zone patterns in the neighboring Nyika Terrane in NE Malawi the event that was followed by eclogite facies metamorphism during the last stage of Gondwana amalgamation.

  12. Metamorphic sole formation and early plate interface rheology: Insights from Griggs apparatus experiments

    Science.gov (United States)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Hirth, Greg; Yamato, Philippe; Ildefonse, Benoît; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500 m thick highly strained metamorphic rock units found beneath mylonitic banded peridotites at the base of large-scale ophiolites, as exemplified in Oman. Metamorphic soles are mainly composed of metabasalts deriving from the downgoing oceanic lithosphere and metamorphosed up to granulite-facies conditions by heat transfer from the mantle wedge. Pressure-temperature peak conditions are usually estimated at 1.0±0.2 GPa and 800±100°C. The absence of HP-LT metamorphism overprint implies that metamorphic soles have been formed and exhumed during subduction infancy. In this view, metamorphic soles were strongly deformed during their accretion to the mantle wedge (corresponding, now, to the base of the ophiolite). Therefore, metamorphic soles and banded peridotites are direct witnesses of the dynamics of early subduction zones, in terms of thermal structure, fluid migration and rheology evolution across the nascent slab interface. Based on fieldwork and EBSD analyses, we present a detailed (micro-) structural study performed on samples coming from the Sumeini window, the better-preserved cross-section of the metamorphic sole of Oman. Large differences are found in the deformation (CPO, grain size, aspect ratio) of clinopyroxene, amphibole and plagioclase, related to mineralogical changes linked with the distance to the peridotite contact (e.g., hardening due to the appearance of garnet and clinopyroxene). To model the incipient slab interface in laboratory, we carried out 5 hydrostatic annealing and simple-shear experiments on Griggs solid-medium apparatus. Deformation experiments were conducted at axial strain rates of 10-6 s-1. Fine-grained amphibolite was synthetized by adding 1 wt.% water to a (Mid-Ocean Ridge) basalt powder as a proxy for the metamorphic sole (amphibole + plagioclase + clinopyroxene ± garnet assemblage). To synthetize garnet, 2 experiments were carried out in hydrostatic conditions and with deformation at

  13. Metamorphic and thermal evolution of large contact aureoles - lessons from the Bushveld Igneous Complex

    Science.gov (United States)

    Waters, D.

    2012-04-01

    Large igneous intrusions crystallise, cool, and transfer heat out into their host rocks. The thermal structure of the resulting aureole can be mapped as a series of assemblage zones and isograds, and can in principle be modelled on the assumption that heat transfer is dominantly by conduction. The local peak of contact metamorphism occurs later in time with increasing distance from the igneous contact. The importance of fluids as a metamorphic/metasomatic agent or heat transfer mechanism depends on volatile contents of magma and country rock, and on the geometry of the intrusion. Many of these features are spectacularly illustrated by the aureole beneath the mafic Rustenburg Layered Suite of the Bushveld Complex, which was emplaced at ca. 2060 Ma sub-concordantly into the shale-quartzite succession of the Pretoria Group in the Transvaal Basin. The layered suite reaches a thickness of at least 8 km, and the metamorphic aureole extends 4 km or more downwards into the "floor" of the intrusion. The great extent and relative absence of deformation make this a remarkable natural laboratory for studying the fundamental processes of metamorphism. In quantifying the thermal history, however, a number of second-order factors need to be taken into account. The first relates to the markedly different thermal properties of the major quartzite and shale units, and the second to the importance of endothermic metamorphic reactions in shale units relative to the quartzites. Further insights into metamorphic processes arise from the exquisite detail of poikiloblast growth microstructures preserved in graphite-poor metapelites of the Timeball Hill and Silverton Formations, 2.5 to 3.5 km beneath the igneous contact. These allow a detailed reconstruction of the time sequence of mineral growth and replacement, revealing a marked overlap of the growth intervals of porphyroblastic staurolite, cordierite, biotite, garnet and andalusite at the expense of muscovite, chlorite and chloritoid

  14. Reconstruction of P-T-t metamorphic conditions from symplectites: insights from Pouso Alegre mafic rocks (Brasília Belt, Brazil)

    Science.gov (United States)

    Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Hermann, Jörg; Pedrosa-Soares, Antônio Carlos; Dussin, Ivo; Aurélio Pinheiro, Marco; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2017-04-01

    Reconstructing the metamorphic history of polycyclic tectono-metamorphic mafic rocks that preserve potential relicts of high-pressure metamorphism is challenging because such rocks are commonly retrogressed and rare in supercrustal sequences. However, pressure-temperature-time (P-T-t) information is required to obtain the paleo-geothermal gradients and thus to define those units as markers for suture zones. The mafic rocks from Pouso Alegre in the Meridional Brasília Orogen (SW-Brazil) outcrop as rare lenses within Sil-Grt gneisses, Amp-Grt orthogneisses and Bt granites. They are heavily weathered. They have previously been defined as "retro-eclogites", based on the characteristic symplectite texture and some mineralogical observations. They have been intepreted to mark the suture zone between the Paranapanema and São Francisco cratons, although no quantitative estimates of the pressure is available to support this conclusion. In this study we investigated in detail these samples to refine their P-T-t history. As commonly observed in retrogressed eclogites, the studied mafic rock shows symplectite and corona textures overprinting the former paragenesis of Garnet (Grt) - Clinopyroxene (Cpx) 1 - Amphibole (Amp) 1 - Rutile (Rt). Phase equilibrium modelling shows that this assemblage is stable at 690°C and 13.5 kbar, in line with Zr-in-rutile thermometry (720 ±30° C). Local compositions of the symplectite domains were used to retrieve the jadeite content of Cpx1. This low-Jd cpx is in line with the predictions of the model and confirms a maximum pressure of 14 kbar. The symplectite formed from the reaction Cpx1+Qz+H2O→Cpx2+Amp+Pl+Qz taking place at conditions of 600-750°C and <7 kbar. Zircon and monazite U-Th-Pb geochronology was performed for the mafic and surrounding rocks. Zircon core dates from the mafic rock spread along concordia from ca. 1.7 to 1.0 Ga with a cluster at 1520±17 Ma, which is interpreted as the protolith crystallization age. Zircon rim

  15. Grain coarsening in polymineralic contact metamorphic carbonate rocks: The role of different physical interactions during coarsening

    DEFF Research Database (Denmark)

    Brodhag, Sabine; Herwegh, Marco; Berger, Alfons

    2011-01-01

    ) and microstructures with considerable second-phase volume fractions of up to 0.5. The variations might be of general validity for any polymineralic rock, which undergoes grain coarsening during metamorphism. The new findings are important for a better understanding of the initiation of strain localization based...... on the activation of grain size dependent deformation mechanisms....

  16. FeO and MgO in plagioclase of lunar anorthosites: Igneous or metamorphic?

    Science.gov (United States)

    Phinney, W. C.

    1994-01-01

    The combined evidence from terrestrial anorthosites and experimental laboratory studies strongly implies that lunar anorthosites have been subjected to high-grade metamorphic events that have erased the igneous signatures of FeO and MgO in their plagioclases. Arguments to the contrary have, to this point, been more hopeful than rigorous.

  17. An optimization method for metamorphic mechanisms based on multidisciplinary design optimization

    Directory of Open Access Journals (Sweden)

    Zhang Wuxiang

    2014-12-01

    Full Text Available The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for metamorphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization (MDO. Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collaborative optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierarchical scheme with global optimizer and configuration optimizer loops. The method is demonstrated by optimizing a planar five-bar metamorphic mechanism which has two configurations, and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models.

  18. Reaction induced nucleation and growth v. grain coarsening in contact metamorphic, impure carbonates

    DEFF Research Database (Denmark)

    Berger, Alfons; Brodhag, Sabine; Herwegh, Marco

    2010-01-01

    aureole of the Adamello pluton (N-Italy). As a function of increasing distance from the pluton contact, the investigated samples have peak metamorphic temperatures ranging from the stability field of diopside/tremolite down to diagenetic conditions. All samples consist of calcite as the dominant matrix...

  19. An optimization method for metamorphic mechanisms based on multidisciplinary design optimization

    Institute of Scientific and Technical Information of China (English)

    Zhang Wuxiang; Wu Teng; Ding Xilun

    2014-01-01

    The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design vari-ables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for meta-morphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization (MDO). Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collabora-tive optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierar-chical scheme with global optimizer and configuration optimizer loops. The method is demon-strated by optimizing a planar five-bar metamorphic mechanism which has two configurations, and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models.

  20. Petrographic analysis of igneous and metamorphic rocks from the Fishguard 1:50000 sheet, south Wales

    OpenAIRE

    McKervey, J.A.

    2005-01-01

    This report presents the results of petrographic analysis of samples of igneous and metamorphic rocks collected as part of a mapping survey of the Fishguard 1:50000 sheet, south Wales. The objective of the report is to provide petrographic descriptions of the rocks and to discuss the origin of the fabrics present.

  1. Assessment of fire-damaged concrete. Combining metamorphic petrology and concrete petrography

    NARCIS (Netherlands)

    Larbi, J.A.; Nijland, T.G.

    2001-01-01

    Metamorphic petrology is a branch of geology that deals with the study of changes in rocks due changing physio-chemical conditions. As conditions shift in or out of the thermodynamic stability field of phases, new phases may appear whereas others disappear. A basic approach is mapping of so-called

  2. Orogenesis at the southern tip of the Americas: the structural evolution of the Cordillera Darwin metamorphic complex, southernmost Chile

    Science.gov (United States)

    Cunningham, W. Dickson

    1995-04-01

    New, detailed lithologic and structural data are presented from three separately mapped areas along the southern boundary of the Cordillera Darwin metamorphic complex of southernmost Chile. Cordillera Darwin is a unique uplift because it exposes the highest grade rocks in the Andes south of Peru and averages 1 km higher in elevation than adjacent areas. The structural data indicate that Cordillera Darwin experienced mid-Late Cretaceous trans-pressional deformation with a partitioned strike-slip component localized along the Beagle Channel that forms the southern boundary to the range. Foliation, lineation and fold axis trends indicate NE-SW-directed contraction and NW-SE strike-slip shearing (present directions) during progressive {D1}/{D2} Andean deformation. D2 deformation is marked by outcrop-to 10 km-scale south-southwest-vergent folds. Late Cretaceous-Tertiary brittle-ductile and brittle left-lateral strike-slip faults and shear zones crosscut all {D1}/{D2} structures. Although limited structural evidence for extensional tectonics was documented in this study, apparent normal offsets across both arms of the Beagle Channel and previously documented field evidence for extension from other areas in Cordillera Darwin suggest that transtensional displacements also may have occurred in southern Cordillera Darwin during the Late Cretaceous-Early Tertiary. Cordillera Darwin's position within the evolving Patagonian Orocline adjacent to an evolving Mesozoic-Cenozoic left-lateral transform boundary between the South American and Antarctic plates, and later the South American and Scotia plates, necessitates consideration of the possible effects of regional counterclockwise rotation on development of structures. Regional counterclockwise rotation of Cordillera Darwin may have controlled the temporal and spatial transition of deformational regimes within Cordillera Darwin. Exhumation of the metamorphic core of Cordillera Darwin during the Late Cretaceous-Early Tertiary is

  3. Miocene metamorphism of pan-African granites in the Edough Massif (NE Algeria); Metamorphisme miocene de granites panafricains dans le massif de l`Edough (Nord-Est de l`Algerie)

    Energy Technology Data Exchange (ETDEWEB)

    Hammor, D. [Universite d`Annaba, El Hadjar Annaba (Algeria). Dept. de Geologie; Lancelot, J. [Montpellier-2 Univ., 34 (France). Laboratoire de Geochimie Isotopique

    1998-09-01

    The Edough Massif is the eastern most crystalline core of the Maghrebides that represents the African segment of the west Mediterranean Alpine belt. U-Pb zircon dating provides upper intercept ages of 595{+-} My and 606{+-}55 My and orthogneiss of the lower unit and a deformed leucogranite of the upper pelitic unit, respectively. These ages suggest emplacement of the two granitoids during the Pan-African orogeny. Monazites from a paragneiss sample gave a 18{+-} My U-Pb age that points to a Miocene age of the high-temperature metamorphism. (authors) 18 refs.

  4. The timing of metamorphism in the Odenwald-Spessart basement, Mid-German Crystalline Zone

    Science.gov (United States)

    Will, T. M.; Schulz, B.; Schmädicke, E.

    2016-07-01

    New in situ electron microprobe monazite and white mica 40Ar/39Ar step heating ages support the proposition that the Odenwald-Spessart basement, Mid-German Crystalline Zone, consists of at least two distinct crustal terranes that experienced different geological histories prior to their juxtaposition. The monazite ages constrain tectonothermal events at 430 ± 43 Ma, 349 ± 14 Ma, 331 ± 16 Ma and 317 ± 12 Ma/316 ± 4 Ma, and the 40Ar/39Ar analyses provide white mica ages of 322 ± 3 Ma and 324 ± 3 Ma. Granulite-facies metamorphism occurred in the western Odenwald at c. 430 and 349 Ma, and amphibolite-facies metamorphism affected the eastern Odenwald and the central Spessart basements between c. 324 and 316 Ma. We interpret these data to indicate that the Otzberg-Michelbach Fault Zone, which separates the eastern Odenwald-Spessart basement from the Western Odenwald basement, is part of the Rheic Suture, which marks the position of a major Variscan plate boundary separating Gondwana- and Avalonia-derived crustal terranes. The age of the Carboniferous granulite-facies event in the western Odenwald overlaps with the minimum age of eclogite-facies metamorphism in the adjacent eastern Odenwald. The granulite- and eclogite-facies rocks experienced contrasting pressure-temperature paths but occur in close spatial proximity, being separated by the Rheic Suture. As high-pressure and high-temperature metamorphisms are of similar age, we interpret the Odenwald-Spessart basement as a paired metamorphic belt and propose that the adjacent high-pressure and high-temperature rocks were metamorphosed in the same subduction zone system. Juxtaposition of these rocks occurred during the final stages of the Variscan orogeny along the Rheic Suture.

  5. The timing of metamorphism in the Odenwald-Spessart basement, Mid-German Crystalline Zone

    Science.gov (United States)

    Will, T. M.; Schulz, B.; Schmädicke, E.

    2017-07-01

    New in situ electron microprobe monazite and white mica 40Ar/39Ar step heating ages support the proposition that the Odenwald-Spessart basement, Mid-German Crystalline Zone, consists of at least two distinct crustal terranes that experienced different geological histories prior to their juxtaposition. The monazite ages constrain tectonothermal events at 430 ± 43 Ma, 349 ± 14 Ma, 331 ± 16 Ma and 317 ± 12 Ma/316 ± 4 Ma, and the 40Ar/39Ar analyses provide white mica ages of 322 ± 3 Ma and 324 ± 3 Ma. Granulite-facies metamorphism occurred in the western Odenwald at c. 430 and 349 Ma, and amphibolite-facies metamorphism affected the eastern Odenwald and the central Spessart basements between c. 324 and 316 Ma. We interpret these data to indicate that the Otzberg-Michelbach Fault Zone, which separates the eastern Odenwald-Spessart basement from the Western Odenwald basement, is part of the Rheic Suture, which marks the position of a major Variscan plate boundary separating Gondwana- and Avalonia-derived crustal terranes. The age of the Carboniferous granulite-facies event in the western Odenwald overlaps with the minimum age of eclogite-facies metamorphism in the adjacent eastern Odenwald. The granulite- and eclogite-facies rocks experienced contrasting pressure-temperature paths but occur in close spatial proximity, being separated by the Rheic Suture. As high-pressure and high-temperature metamorphisms are of similar age, we interpret the Odenwald-Spessart basement as a paired metamorphic belt and propose that the adjacent high-pressure and high-temperature rocks were metamorphosed in the same subduction zone system. Juxtaposition of these rocks occurred during the final stages of the Variscan orogeny along the Rheic Suture.

  6. Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes

    Science.gov (United States)

    Taylor, Richard J. M.; Kirkland, Christopher L.; Clark, Chris

    2016-11-01

    High-temperature metamorphic rocks are the result of numerous chemical and physical processes that occur during a potentially long-lived thermal evolution. These rocks chart the sequence of events during an orogenic episode including heating, cooling, exhumation and melt interaction, all of which may be interpreted through the elemental and isotopic characteristics of accessory minerals such as zircon, monazite and rutile. Developments in imaging and in situ chemical analysis have resulted in an increasing amount of information being extracted from these accessory phases. The refractory nature of these minerals, combined with both their use as geochronometers and tracers of metamorphic mineral reactions, has made them the focus of many studies of granulite-facies terrains. In such studies the primary aim is often to determine the timing and conditions of the peak of metamorphism, and high-temperature metasedimentary rocks may seem ideal for this purpose. For example pelites typically contain an abundance of accessory minerals in a variety of bulk compositions, are melt-bearing, and may have endured extreme conditions that facilitate diffusion and chemical equilibrium. However complexities arise due to the heterogeneous nature of these rocks on all scales, driven by both the composition of the protolith and metamorphic differentiation. In additional to lithological heterogeneity, the closure temperatures for both radiogenic isotopes and chemical thermometers vary between different accessory minerals. This apparent complexity can be useful as it permits a wide range of temperature and time (T-t) information to be recovered from a single rock sample. In this review we cover: 1) characteristic internal textures of accessory minerals in high temperature rocks; 2) the interpretation of zircon and monazite age data in relation to high temperature processes; 3) rare earth element partitioning; 4) trace element thermometry; 5) the incorporation of accessory mineral growth

  7. Ultrahigh-temperature metamorphism under isobaric heating: New evidence from the North China Craton

    Science.gov (United States)

    Yang, Qiong-Yan; Santosh, M.; Tsunogae, Toshiaki

    2014-12-01

    The Khondalite Belt within Inner Mongolia Suture Zone (IMSZ) in the North China Craton (NCC) preserves evidence for extreme crustal metamorphism under ultra-high temperature (UHT) conditions at ca. 1.92 Ga, associated with the subduction-collision tectonics between the Yinshan and Ordos Blocks. Here we report a new locality in Hongsigou where cordierite- and spinel-bearing granulites record UHT metamorphism. The prograde, peak, and retrograde mineral assemblages in these pelitic granulites have been identified based on petrography and mineral chemistry as: Bt1 + Grt1 + Sil1 + Kfs1 + Pl1 + Ilm + Qtz1, Grt1 + Sil2 + Kfs2 + Pl2 + Spl + Ilm + Qtz2 + Liq, and Crd + Grt2 + Sil3 + Kfs2 + Pl2 + Ilm + Qtz2 respectively. The peak metamorphic conditions of the pelitic granulite were estimated as 930-1050 °C and 6.5-7.5 kbar based on pseudosection analysis in the system NCKFMASHTO, suggesting extreme thermal metamorphism. We report LA-ICPMS zircon U-Pb data from the granulite which show weighted mean 207Pb/206Pb age of 1881 ± 6.6 Ma, marking the timing of UHT metamorphism. Lu-Hf analyses of the zircons show εHf(t) values within a restricted range of -4.2 to 0.3 and together with Hf model ages, a Paleoproterozoic arc magmatic source is inferred for the detrital zircons. The estimated P-T path for the UHT granulite suggests isobaric heating followed by cooling and decompression along a clockwise trajectory, different from the anti-clockwise P-T paths defined in earlier studies for the 1.92 Ga UHT rocks from the IMSZ. The younger age and the isobaric heating trajectory suggest that the Hongsigou UHT rocks are related to heat input from underplated mafic magmas following continental collision.

  8. P-T-t path of metamorphism for the Julin Group and its geodynamical implications in Yuanmou, Yunnan

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The metamorphic complex of the Julin Group occurs in the Yuanmou area of Yunnan Province on the western margin of the Yangtze Platform, and connects with the Kangdian metamorphic complex to the north. Based on the detailed petrographic observations and studies of garnet growth zoning, a P-T-t path has been reconstructed for the staurolite-kyanite zone in the Julin Group. This path is characterized by (1) a counter-clockwise evolutional trend, (2) a quicker increase of temperature than that of pressure in the initial prograde metamorphism, but slower near the peak, then temperature and pressure simultaneously reaching the peak metamorphic conditions, and (3) a slow near-isobaric cooling during the retrograde process. The P-T-t path for prograde metamorphism is closely related to magmatic accretion in the arc setting. The magmatic accretion model, metamorphism type and tectonic setting may be compared with the global Grenville tectono-metamorphic events, and related to the assembly of the Rodinia at the late Meso-proterozoic-early Neoproterozoic (~1.0 Ga). The retrograde P-T-t path shows a slow near-isobaric cooling, indicating sustained heat supplies from the upper mantle and no rapid erosion. This heat source may be originated from the Neoproterozoic (~0.82 Ga) breakup of the Rodinia.

  9. Metamorphic evolution of the contact aureole of the Jhirgadandi pluton, Sonbhadra district,Mahakoshal mobile belt, central India

    Indian Academy of Sciences (India)

    S P Singh; Anand K Srivastava; Gopendra Kumar; S B Dwivedi

    2013-06-01

    The metamorphic evolution of the contact aureole around the Late Paleoproterozoic Jhirgadandi pluton in the eastern part of Parsoi Formation of Mahakoshal terrain, central India represents three distinct metamorphic zones, characterized by definite mineral assemblages. The contact-metamorphic event produced the peak-metamorphic mineral assemblages Bt + Qtz + Alb + Sil ± Cd ± Grt ± Mus ± Kfs in the metapelites of inner aureole, Bt + Qtz + And + Mus + Kfs + Plag ± Cd ± Chl in middle aureole and Chl + Mus + Bt ± And + Alb + Qtz ± Ep + Mt ± tourmaline in the outer aureole. The estimated P–T conditions based on detailed geothermobarometric calculations in the thermal metamorphosed rocks are 690°C/3.4 kbar, 580 ± 15°C and 487 ± 30°C in inner aureole, middle aureole and outer aureole, respectively. The variation in metamorphic condition suggests that the shallow crustal level emplacement of Jhirgadandi pluton is responsible for the overprinting of contact metamorphic assemblages (M2) in the low grade metapelites (regional metamorphism M1) of Mahakoshal Group.

  10. Geomorphic response of an active metamorphic core-complex in a collisional orogen: Example from the Lunggar Shan, Southern Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M H; Stockli, D F [Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, KS 66044 (United States); Kapp, P A [Department of Geosciences, University of Arizona, Tucson, AZ (United States)], E-mail: mht@ku.edu

    2008-07-01

    We present structural and neotectonic mapping from the Lunggar Shan rift in southern Tibet. The Lunggar Shan is a N-trending mountain range {approx}70 km long N-S and up to 40 km wide E-W. The Lunggar Shan is bounded on its east side by a low-angle (<40{sup 0}) east-dipping detachment fault that juxtaposes mylonitic gneiss and variably deformed granites in its footwall against alluvial fans and Neogene gravels in its hangingwall. Foliations in the mylonitic footwall dip < 40 deg. east and stretching lineations are east plunging. The range front detachment is presently inactive as indicated by undisturbed moraines and Quaternary sediments that overlie it. However, we consider the Lunggar Shan detachment to be an active structure, as inferred by range parallel fault scarps cutting Quaternary alluvium located 4-5 km into the hangingwall basin, with >40 m of throw on individual scarps. An intriguing observation is that an intrabasinal topographic high is actively developing near areas of inferred maximum extension, with lacustrine sediments being uplifted and eroded. This observation indicates that the rift basin initially developed as a typical half-graben system that underwent a transition from deposition, to uplift and erosion perhaps as a result of isostatic rebound of the footwall at depth, warping the overlying hangingwall basin. If correct, the Lunggar Shan may represent a modern analogue to the supradetachment basin model.

  11. Eduction, extension, and exhumation of ultrahigh-pressure rocks in metamorphic core complexes due to subduction initiation

    Science.gov (United States)

    Petersen, Kenni Dinesen; Buck, W. Roger

    2015-09-01

    The controversy over the exhumation of ultrahigh-pressure (UHP) rocks centers on whether it involves rising of pieces of crust detached from subducted continental lithosphere or an entire subducted plate that undergoes "eduction," i.e., reverse subduction. We present a new thermomechanical model of continental subduction showing that these apparently contrasting mechanisms can occur together: crust subducted deep enough is heated and weakened, causing limited diapiric rise, while crust subducted to shallower depths retains strength and is exhumed only by eduction. The model also shows for the first time how eduction followed by seafloor spreading can occur in a zone of regional convergence. This occurs spontaneously when subduction of buoyant crust causes a subduction zone to "lock up" in one place causing a new subduction zone to form in another. The model is consistent with many features of the youngest region of UHP rock exhumation on earth: the D'Entrecasteaux Islands. UHP exhumation and the amount of regional extension, as well as the seismic structure around the islands, can be explained by eduction. Ductile flow fabrics, seen on the islands, would result from exhumation of the most deeply subducted crust heated enough to undergo partial melting. Reversal of motion on the north-dipping continental subduction zone, required by this model, was likely triggered by initiation of the New Britain Trench, as suggested previously. Our model implies that the crust of Goodenough Basin, south of the islands, was exhumed by eduction in the last 5 Ma and this hypothesis can be tested by drilling.

  12. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics

    Institute of Scientific and Technical Information of China (English)

    Michael Brown

    2014-01-01

    In the early 1980s, evidence that crustal rocks had reached temperatures >1000℃at normal lower crustal pressures while others had followed low thermal gradients to record pressures characteristic of mantle conditions began to appear in the literature, and the importance of melting in the tectonic evolution of orogens and metamorphicemetasomatic reworking of the lithospheric mantle was realized. In parallel, new developments in instrumentation, the expansion of in situ analysis of geological ma-terials and increases in computing power opened up new fields of investigation. The robust quantifi-cation of pressure (P), temperature (T) and time (t) that followed these advances has provided reliable data to benchmark geodynamic models and to investigate secular change in the thermal state of the lithosphere as registered by metamorphism through time. As a result, the last 30 years have seen sig-nificant progress in our understanding of lithospheric evolution, particularly as it relates to Precambrian geodynamics. EoarcheaneMesoarchean crust registers uniformly high T/P metamorphism that may reflect a stagnant lid regime. In contrast, two contrasting types of metamorphism, eclogiteehigh-pressure granulite metamorphism, with apparent thermal gradients of 350e750℃/GPa, and granulite eultrahigh temperature metamorphism, with apparent thermal gradients of 750e1500℃/GPa, appeared in the Neoarchean rock record. The emergence of paired metamorphism is interpreted to register the onset of one-sided subduction, which introduced an asymmetric thermal structure at these developing convergent plate margins characterized by lower T/P in the subduction channel and higher T/P in the overriding plate. During the Paleoarchean to Paleoproterozoic the ambient mantle temperature was warmer than at present by w300e150℃. Although the thermal history of Earth is only poorly constrained, it is likely that prior to ca. 3.0 Ga heating from radioactive decay would have exceeded surface heat

  13. Eclogite-high-pressure granulite metamorphism records early collision in West Gondwana: new data from the Southern Brasilia Belt, Brazil

    DEFF Research Database (Denmark)

    Reno II, Barry Len; Brown, Michael; Kobayashi, Katsura

    2009-01-01

    constrain the age of. (1) retrograded eclogite from a block along the tectonic contact beneath the uppermost nappe in a stack of passive margin-derived nappes; (2) high-pressure granulite-facies metamorphism in the uppermost passive margin-derived nappe; (3) high-pressure granulite-facies metamorphism...... in the overlying arc-derived nappe. Rare zircons from a retrograded eclogite yield a Pb-206/U-238 age of 678 +/- 29 Ma. which we interpret as most likely to (late close-to-peak-P metamorphism and to provide a minimum age for detachment of the overlying passive margin-derived nappe from the subducting plate. Zircon...

  14. UHT granulite-facies metamorphism in Rogaland, S Norway, is polyphase in nature

    Science.gov (United States)

    Laurent, Antonin; Duchene, Stéphanie; Bingen, Bernard; Seydoux-Guillaume, Anne-Magali; Bosse, Valérie

    2016-04-01

    Propensity of metamorphic assemblages to remain metastable after melt extraction complicates singularly the petrologist's task to discriminate between a single granulite-facies P-T path and a polyphase one. Using an integrated petrological and in-situ geochronological approach in key rock-samples, we reconstruct the pressure-temperature-time path of Sveconorwegian metamorphism across a 30 km-wide metamorphic gradient ranging from upper amphibolite facies to ultra-high temperature (UHT) granulite-facies in Rogaland, S. Norway. Thermodynamic modelling of phase equilibria in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-Ti2O-O2 chemical system (PerpleX code) are carried out with an emphasis on moderately oxidized, spinel-bearing assemblages resulting from either garnet or sapphirine breakdown. Geochronological U-(Th)-Pb data acquired on both monazite (LA-ICP-MS) and zircon (SIMS) are complemented by minor- and trace-elements signatures of both minerals, to monitor REE distribution through time and to evaluate garnet apparition or demise. Coupling field, petrological and geochronological data lead to a polyphase metamorphic history, lasting about 100 My. The onset of regional granulite facies metamorphism at 1035 Ma is associated with the emplacement of large volumes of granitic magmas in the amphibolite to granulite facies transition zone. In the deeper part of the crustal section, localized sapphirine-bearing restitic lithologies testify to UHT temperatures (900-920 °C). These conditions were reached at ca. 1010 Ma following a tight clockwise P-T path associated with minor exhumation (7 to 5.5 kbar) and subsequent cooling to 700 °C. A distinct thermal episode, initiated at ca. 950 Ma, reached UHT granulite-facies conditions with the intrusion of massif-type anorthosite plutons at ca. 930 Ma producing a 5-km wide aureole. The aureole is delimited by the presence of osumilite in high Fe-Al rocks yielding quantitative estimates of 900-950 °C at a maximum pressure of 5 kbar

  15. Geochemistry, provenance, and metamorphic evolution of Gabal Samra Neoproterozoic metapelites, Sinai, Egypt

    Science.gov (United States)

    Abu El-Enen, Mahrous M.

    2011-02-01

    Metapelites are exposed at Wadi Ba'ba, east of Abu Zenima city; represent the northwestern extension of the Fieran-Solaf Metamorphic Complex, Sinai Peninsula, Egypt. The metapelites are characterized by qtz + pl (An 24-28) + bt + grt ± crd ± sil mineral assemblage, indicating upper amphibolite facies with peak metamorphic conditions of 700 °C and pressures of 7 kbar, as determined by conventional geothermobarometeric methods. This resulted in incipient migmatization, forms patches of leucosomes and melanosomes. Geochemical investigation indicates that the precursor sediments of the metapelites had been deposited as immature Fe-rich shales from source materials of dominantly intermediate composition. Source area exhibited weak to moderate chemical weathering in a tectonically active continental marginal basin within a continental-arc system. A strong shallow-dipping foliation, characterizing the metapelites, was folded around an open antiform with sub-horizontal south plunging hinge. Phase equilibria calculations in the KFMASH system indicate that the peak metamorphic conditions formed at 730-750 °C and 6.8-7.9 kbar. This was followed by a retrogression formed at 770-785 °C and 3.9-4.5 kbar. Hence, this implies an isothermal decompression and rapid exhumation of the metapelites from depth (25-29 km) in the lower crustal level at peak conditions, continuous to include shallow to middle crustal level (14-17 km), at overprint retrograde conditions. Subsequent isobaric cooling took place at 720-750 °C and 3.6-4.5 kbar. The resulting isothermal decompression followed by isobaric cooling clockwise P-T path of the metapelites is more likely, in which the high-temperatures attained maximum conditions during isothermal decompression were enhanced by heat flux, due to the presence of an active magmatic arc that formed on top of subducting young lithosphere. This is supported by a moderate geothermal gradient of 27-43 °C/km and dating compatibility of the Sinai

  16. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand

    Science.gov (United States)

    Stowell, H.; Tulloch, A.; Zuluaga, C.; Koenig, A.

    2010-01-01

    Pembroke Granulite from Fiordland, New Zealand provides a window into the mid- to lower crust of magmatic arcs. Garnet Sm-Nd and zircon U-Pb ages constrain the timing and duration of high-P partial melting that produced trondhjemitic high Sr/Y magma. Trace element zoning in large, euhedral garnet is compatible with little post growth modification and supports the interpretation that garnet Sm-Nd ages of 126.1??2.0 and 122.6??2.0. Ma date crystal growth. Integration of the garnet ages with U-Pb zircon ages elucidates a history of intrusion(?) and a protracted period of high-temperature metamorphism and partial melting. The oldest zircon ages of 163 to 150. Ma reflect inheritance or intrusion and a cluster of zircon ages ca. 134. Ma date orthopyroxene-bearing mineral assemblages that may be magmatic or metamorphic in origin. Zircon and garnet ages from unmelted gneiss and garnet reaction zones record garnet granulite facies metamorphism at 128 to 126. Ma. Peritectic garnet and additional zircon ages from trondhjemite veins and garnet reaction zones indicate that garnet growth and partial melting lasted until ca. 123. Ma. Two single fraction garnet ages and young zircon ages suggest continued high-temperature re-equilibration until ca. 95. Ma. Phase diagram sections constrain orthopyroxene assemblages to growth. Results demonstrate the utility of integrated U-Pb zircon and Sm-Nd garnet ages, and phase diagram sections for understanding the nature, duration, and conditions of deep crustal metamorphism and melting. Geochronologic and thermobarometric data for garnet granulite indicate that thickening of arc crust, which caused high-pressure metamorphism in northern Fiordland, must have occurred prior to 126. Ma, that loading occurred at a rate of ca. 0.06. GPa/m.y., and that garnet granulite metamorphism lasted 3-7m.y. Locally-derived partial melts formed and crystallized in considerably less than 10 and perhaps as little as 3m.y. ?? 2010 Elsevier B.V.

  17. Dual-core antiresonant hollow core fibers.

    Science.gov (United States)

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters.

  18. Analysis of lineament swarms in a Precambrian metamorphic rocks in India

    Indian Academy of Sciences (India)

    Tapas Acharya; Sukumar Basu Mallik

    2012-04-01

    Addressing the geologic significance of lineaments and their correlation with joints/fractures is still unclear. The present study attempts to analyse the lineament swarms developed in a Precambrian metamorphic terrain in India using both unfiltered and filtered techniques. The unfiltered analysis technique shows that the major lineament and fracture trends are oriented along EW and NS directions respectively, thus failing to provide any correlation between them. The application of domain-based filtering techniques identifies a highly predominant fracture-correlated lineaments in mica schist constituting the EW trending shear zone in the area. This correlation is not evident in the areas north and south of the shear zone, where the lineaments are consistently oriented along the foliation planes of the rocks and are designated as ‘foliation correlated’. The present analysis indicates that the fracture frequency and the strain history may have played significant roles for the formation of fracture-correlated lineaments in the metamorphic terrain.

  19. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    Science.gov (United States)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  20. Metamorphism, argon depletion, heat flow and stress on the Alpine fault

    Science.gov (United States)

    Scholz, C. H.; Beavan, J.; Hanks, T. C.

    1978-01-01

    The Alpine fault of New Zealand is a major continental transform fault which was uplifted on its southeast side 4 to 11 km within the last 5 m.y. This uplift has exposed the Haast schists, which were metamorphosed from the adjacent Torlesse graywackes. The Haast schists increase in metamorphic grade from prehnite-pumpellyite facies 9-12 km from the fault through the chlorite and biotite zones of the greenschist facies to the garnet-oligoclase zone amphibolite facies within 4 km of the fault. These metamorphic zone boundaries are subparallel to the fault for 350 km along the strike. The K-Ar and Rb-Sr ages of the schists increase with distance from the fault: from 4 m.y. within 3 km of the fault to approximately 110 m.y. 20 km from the fault. Field relations show that the source of heat that produced the argon depletion aureole was the fault itself.

  1. Study of oxidative desulphurization process of coal with different metamorphism degrees

    Institute of Scientific and Technical Information of China (English)

    SPYSH'YEV; V GUNKA; YPRYSIAZHNYI; K SHEVCHUK; A PATTEK-JANCZYK

    2012-01-01

    The oxidative desulphurization process of coal with different metamorphism degrees treated by an air-steam mixture has been studied.It has been shown that the pyrite present in black coal and anthracite is oxidized with the sulphur dioxide formation,and the process chemical mechanism does not depend on the quality of organic matter.The medium-metamorphized coal,capable of turning into a plastic state and cake in the range of investigated temperatures ( 350 ~ 450 ℃ ),is desulphurized with the greatest difficulty.The chemical mechanism dealing with the transformations of pyritic sulphur present in brown coal differs from similar processes taking place in black coal and anthracite,because FeS2 is converted with hydrogen sulphide formation at desulphurization.

  2. Ubiquitous interstellar diamond and SiC in primitive chondrites - Abundances reflect metamorphism

    Science.gov (United States)

    Huss, Gary R.

    1990-01-01

    It is shown here that interstellar diamond and SiC were incorporated into all groups of chondrite meteorites. Abundances rapidly go to zero with increasing metamorphic grade, suggesting that metamorphic destruction is responsible for the apparent absence of these grains in most chondrites. In unmetamorphosed chondrites, abundances normalized to matrix content are similar for different classes. Diamond samples from chondrites of different classes have remarkably similar noble-gas constants and isotropic compositions, although constituent diamonds may have come from many sources. SiC seems to be more diverse, partly because grains are large enough to measure individually, but average characteristics seem to be similar from meteorite to meteorite. These observations suggest that various classes of chondritic meteorites sample the same solar system-wide reservoir of interstellar grains.

  3. Fluorian garnets from the host rocks of the Skaergaard intrusion: implications for metamorphic fluid composition

    Science.gov (United States)

    Manning, C.E.; Bird, D.K.

    1990-01-01

    Zoned, silica-deficient, calcic garnets containing up to 5 mol% F substitution for O formed during contact metamorphism of basalts by the Skaergaard intrusion in East Greenland. Fluorian calcic garnets occur as a retrograde alteration of prograde wollastonite and clinopyroxene that fills vesicles and vugs in lavas 30-70 m from the intrusion. The F content of garnet is extremely sensitive to minor changes in fluid composition. The calculations show that a decrease in pH or an increase in log aF- of 0.3 at constant pressure and temperature will decrease the F concentration in garnet from 5 to 0 mol%. The results of this study show that fluorian hydrous grandites provide a mineralogical record of the activities of F species in coexisting metamorphic and hydrothermal fluids. -from Authors

  4. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics

    Directory of Open Access Journals (Sweden)

    Michael Brown

    2014-07-01

    At 1.0 Ga the ambient mantle temperature was still ∼150–100 °C warmer than at present. Continued secular cooling caused a transition to cold subduction registered in the crustal record of metamorphism by the first appearance of blueschist and high to ultrahigh pressure metamorphism during the Neoproterozoic. Results of 2-D numerical experiments of continental collision demonstrate a transition from shallow to deep slab breakoff associated with stronger crust–mantle coupling that enabled continental subduction to mantle depths as upper mantle temperature declined to <100 °C warmer than at present during the late Proterozoic. This is the beginning of the modern plate tectonics regime.

  5. Research advances in contact model and mechanism configuration for nut shelling manipulation based on metamorphic method

    Directory of Open Access Journals (Sweden)

    Xiulan BAO

    2017-04-01

    Full Text Available Nuts are the important economic forest tree species of China. De-shell is the key operation of nut deep processing. There are some problems in the current nut cracking devices such as the low decorticating rate, the high nuts losses rate and nutmeat integrity problems, etc.. The foundation of force analysis is to establish contact model for nut and mechanical. The nut surface is rough and irregular, so the contact area cannot be modeled as regular shape. How to set up contact constraint model is the key problem to accomplish non-loss shelling. In order to study the shell-breaking mechanism and structural design of the nut shelling manipulation, a multi-fingered metamorphic manipulator is presented. An overview of the nut shelling technology and the contact manipulator modeling are proposed. The origin and application of metamorphic mechanisms are introduced. Then the research contents and development prospects of nut shelling manipulator are described.

  6. Metamorphic Testing Integer Overflow Faults of Mission Critical Program: A Case Study

    Directory of Open Access Journals (Sweden)

    Zhanwei Hui

    2013-01-01

    Full Text Available For mission critical programs, integer overflow is one of the most dangerous faults. Different testing methods provide several effective ways to detect the defect. However, it is hard to validate the testing outputs, because the oracle of testing is not always available or too expensive to get, unless the program throws an exception obviously. In the present study, the authors conduct a case study, where the authors apply a metamorphic testing (MT method to detect the integer overflow defect and alleviate the oracle problem in testing critical program of Traffic Collision Avoidance System (TCAS. Experimental results show that, in revealing typical integer mutations, compared with traditional safety property testing method, MT with a novel symbolic metamorphic relation is more effective than the traditional method in some cases.

  7. Deciphering the tectonometamorphis history of the Anarak Metamorphic Complex, Central Iran

    Science.gov (United States)

    Zanchetta, Stefano; Malaspina, Nadia; Zanchi, Andrea; Martin, Silvana; Benciolini, Luca; Berra, Fabrizio; Javadi, Hamid Reza; Koohpeyma, Meysam; Ghasemi, Mohammad R.; Sheikholeslami, Mohammad Reza

    2014-05-01

    The Cimmerian orogeny shaped the southern margin of Eurasia during the Late Permian and the Triassic. Several microplates, detached from Gondwana in the Early Permian, migrated northward to be accreted to the Eurasia margin. In the reconstruction of such orogenic event Iran is a key area. The occurrence of several "ophiolites" belt of various age, from Paleozoic to Cretaceous, poses several questions on the possibility that a single rather than multiple Paleotethys sutures occur between Eurasia and Iran. In this scenario the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted to be part of microplate of Gondwanan affinity, a relic of an accretionary wedge developed at the Eurasia margin during the Paleothetys subduction or part of the Cimmerian suture zone, occurring in NE Iran, displaced to central Iran by counterclockwise rotation of the central Iranian blocks from the Triassic. Our field structural data, petrographic and geochemical data, carried out in the frame of the DARIUS PROGRAMME, indicate that the AMC is not a single coherent block, but it consists of several units (Morghab, Chah Gorbeh, Patyar, Palhavand Gneiss, Lakh Marble, Doshak and dismembered "ophiolites") which display different tectonometamorphic evolutions. The Morghab and Chah Gorbeh units share a common history and they preserve, as a peculiar feature within metabasites, a prograde metamorphism with sin- to post-deformation growth of blueschists facies assemblages on pre-existing greenschist facies mineralogical associations. LT-HP metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the southern limit of the Chah Gorbeh unit. Finally, evidence of LT-HP metamorphism also occur in the metabasites and possibly also in the serpentinites that form

  8. Source and location mechanism for lode gold deposits hosted in metamorphic rocks in northeastern Hunan, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For understanding the source and location mechanism of lode gold deposits hosted in metamorphic rocks in northeastern Hunan, the authors analyzed the REE (rare earth elements) in ores and their host rocks, metallogenic elements in host rocks near and distant from the ore-bodies, and characteristics of ore-controlling structures, and deduced their genetic implication. Their geochemical features of REE and metallogenic elements suggest that they are formed by mobilization of dispersed metallogenic materials in Lengjiaxi Group of Middle Proterozoic during deformation and metamorphism process, mainly in Wulingian period. From the attributes of ore-controlling structures and regularity of location of gold metallization, it is concluded that the location of gold deposits is closely related to reverse shearing. Ore-forming fluids are focused on the secondary faults and extension fractures of reverse shear zones of nearly EW strike by stress-driven diffusion and seismic pumping.

  9. Mid amphibolite facies metamorphism of harzburgites in the Neoproterozoic Cerro Mantiqueiras Ophiolite, southernmost Brazil

    Directory of Open Access Journals (Sweden)

    HARTMANN LÉO A.

    2003-01-01

    Full Text Available Valuable information is retrieved from the integrated investigation of the field relationships, microstructure and mineral compositions of harzburgites from the Neoproterozoic Cerro Mantiqueiras Ophiolite. This important tectonic marker of the geological evolution of southernmost Brazilian Shield was thoroughly serpentinized during progressive metamorphism, because the oldest mineral assemblage is: olivine + orthopyroxene + tremolite + chlorite + chromite. This M1 was stabilized in mid amphibolite facies - 550-600ºC as calculated from mineral equilibria. No microstructural (e.g. ductile deformation of olivine or chromite or compositional (e.g. mantle spinel remnant of mantle history was identified. A metamorphic event M2 occurred in the low amphibolite facies along 100 m-wide shear zones, followed by intense serpentinization (M3 and narrow 1-3 m-wide shear zones (M4 containing asbestos.

  10. Changes in brain gangliosides of the neotene and metamorphic (thyroxine-induced) newt axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Hilbig, R; Schmitt, M; Rahmann, H

    1987-01-01

    Qualitative and quantitative changes in the concentration of proteins, sialoglycoproteins and gangliosides and in the composition of gangliosides in the brains of the neotene and the thyroxine-induced metamorphic newt axolotl (Ambystoma mexicanum) were investigated. During metamorphosis two polar gangliosides (GT1b and GQ1b) decreased by about 5% each. On the contrary GD1a increased to 10%. Another developmental trend was a slight increase of two other disialogangliosides (GD1b, GD2). Additionally, incorporation profiles (2-8 days) of 14C-N-Ac-mannosamine, the specific precursor for gangliosides, in the brain of neotene and metamorphic axolotls were followed giving evidence of significant changes in the sialoglycoconjugate metabolism of the central nervous system during metamorphosis of this newt.

  11. Simulating the metamorphic evolution of rocks in the laboratory: experimental modelling of orogenic metamorphism of metapelites using a piston cylinder apparatus

    Science.gov (United States)

    Tropper, Peter; Mair, Philipp

    2017-04-01

    Metamorphic rocks contain a more or less complex mineral assemblage reflecting their metamorphic evolution. If the complex mineral assemblage is of multi-stage origin how do we know which mineral grew at which stage during the P-T evolution? To answer this question one needs to put constraints on the geological evolution of a given rock. The metamorphic evolution of a rock can be deciphered using three approaches: 1.) the practical geothermobarometric approach (inverse modelling), 2.) the theoretical pseudosection approach (forward modelling) and 3.) the experimental approach. Whereas with the first two approaches it is possible to constrain several stages of the P-T-X evolution but how do we know what assemblage is actually present at the desired P-T conditions? This question leads to the experimental approach, which allows a detailed mineralogical investigation of a given rock at distinct P-T conditions. Therefore, experimental investigations should be viewed as a forward modelling technique, which allow putting additional constraints on the evolution of a rock under defined P and T conditions and hence represents a snap-shot of a P-T point of the evolution of a given rock! For this purpose, simple experiments using natural rocks as starting materials can easily be conducted. The disadvantage of this method lies in the complex chemical composition of natural rocks and the deviation from chemical end-member systems. Therefore these experiments need to be evaluated not only 1.) in terms of their ability to reproduce the natural observations but also 2.) in their ability to reproduce theoretical calculations. In this study experimental investigations of orogenic metamorphism of metapelites (quartzphyllites with Grt1 + Ms1 + Ch1 + Bt1 + Rt) was investigated. Four different P-T conditions were chosen to represent an orogenic clockwise P-T loop: 400°C, 0.8 GPa, 600°C, 1.2 GPa, 700°C, 1 GPa and 500°C, 0.4 GPa. Two experiments with a duration of 16 and 33 days were

  12. Restoration of the Western Himalaya:implications for metamorphic protoliths,thrust and normal faulting,and channel flow models

    Institute of Scientific and Technical Information of China (English)

    Michael P.Searle; Ben Stephenson; James Walker; Christian Walker

    2007-01-01

    @@ The Greater Himalayan Sequence(GHS)is composed of a sequence of Barrovian facies metamorphic rocks up to kyanite or sillimanite+K-feldspar grade,migrmatites,layered stromatic migmatites and leucogranite sheets.

  13. High grade metamorphism in the Bundelkhand massif and its implications on Mesoarchean crustal evolution in central India

    Indian Academy of Sciences (India)

    S P Singh; S B Dwivedi

    2015-02-01

    The Bundelkhand Gneissic Complex (BnGC) in the central part of the Bundelkhand massif preserves a supracrustal unit which includes pelitic (garnet–cordierite–sillimanite gneiss, garnet–sillimanite gneiss, biotite gneiss and garnet–biotite gneiss) and mafic (hornblende–biotite gneiss and garnetiferous amphibolite) rocks. Granulite facies metamorphism of the complex initiated with breaking down of biotite to produce garnet and cordierite in the pelitic gneisses. Geothermobarometric calculations indicate metamorphic conditions of 720°C/6.2 kbar, followed by a retrograde (687°C/4.9 kbar) to very late retro-grade stages of metamorphism (579°C/4.4 kbar) which is supported by the formation of late cordierite around garnet. The P–T conditions and textural relations of the garnet–cordierite-bearing gneiss suggest a retrograde cooling path of metamorphism.

  14. Shock Metamorphism in Northwest Africa 8159, Tissint and Elephant Moraine A79001: Implications for Thermal Histories and Geochronology

    Science.gov (United States)

    Sharp, T. G.; Hu, J.; Walton, E. L.

    2016-08-01

    Shock metamorphic effects in martian meteorites provide a record of recent impact events on Mars. We examined the textures and mineralogy associated with shock melting in three highly shocked martian basalts: NWA 8159, Tissint and EET A79001.

  15. Morphological preservation of carbonaceous plant fossils in blueschist metamorphic rocks from New Zealand.

    Science.gov (United States)

    Galvez, M E; Beyssac, O; Benzerara, K; Bernard, S; Menguy, N; Cox, S C; Martinez, I; Johnston, M R; Brown, G E

    2012-03-01

    Morphological and chemical evidence of ancient life is widespread in sedimentary rocks retrieved from shallow depths in the Earth's crust. Metamorphism is highly detrimental to the preservation of biological information in rocks, thus limiting the geological record in which traces of life might be found. Deformation and increasing pressure/temperature during deep burial may alter the morphology as well as the composition and structure of both the organic and mineral constituents of fossils. However, microspore fossils have been previously observed in intensely metamorphosed rocks. It has been suggested that their small size, and/or the nature of the polymer composing their wall, and/or the mineralogy of their surrounding matrix were key parameters explaining their exceptional preservation. Here, we describe the remarkable morphological preservation of plant macrofossils in blueschist metamorphic rocks from New Zealand containing lawsonite. Leaves and stems can be easily identified at the macroscale. At the microscale, polygonal structures with walls mineralized by micas within the leaf midribs and blades may derive from the original cellular ultrastructure or, alternatively, from the shrinkage during burial of the gelified remnants of the leaves in an abiotic process. Processes and important parameters involved in the remarkable preservation of these fossils during metamorphism are discussed. Despite the excellent morphological preservation, the initial biological polymers have been completely transformed to graphitic carbonaceous matter down to the nanometer scale. This occurrence demonstrates that plant macrofossils may experience major geodynamic processes such as metamorphism and exhumation involving deep changes and homogenization of their carbon chemistry and structure but still retain their morphology with remarkable integrity even if they are not shielded by any hard-mineralized concretion.

  16. Structural and metamorphic evolution of serpentinites and rodingites recycled in the Alpine subduction wedge

    Science.gov (United States)

    Zanoni, D.; Rebay, G.; Spalla, M. I.

    2015-12-01

    Hydration-dehydration of mantle rocks affects the viscosity of the mantle wedge and plays a prominent role in subduction zone tectonics, facilitating marble cake-type instead of large-slice dynamics. An accurate structural and petrologic investigation of serpentinites from orogenic belts, supported by their long-lived structural memory, can help to recognize pressure-sensitive mineral assemblages for deciphering their P-prograde and -retrograde tectonic trajectories. The European Alps preserve large volumes of the hydrated upper part of the oceanic lithosphere that represents the main water carrier into the Alpine subduction zone. Therefore, it is important to understand what happens during subduction when these rocks reach P-T conditions proximal to those that trigger the break-down of serpentine, formed during oceanic metamorphism, to produce olivine and clinopyroxene. Rodingites associated with serpentinites are usually derived from metasomatic ocean floor processes but rodingitization can also happen in subduction environments. Multiscale structural and petrologic analyses of serpentinites and enclosed rodingites have been combined to define the HP mineral assemblages in the Zermatt-Saas ophiolites. They record 3 syn-metamorphic stages of ductile deformation during the Alpine cycle, following the ocean floor history that is testified by structural and metamorphic relics in both rock types. D1 and D2 developed under HP to UHP conditions and D3 under lower P conditions. Syn-D2 assemblages in serpentinites and rodingites indicate conditions of 2.5 ± 0.3 GPa and 600 ± 20°C. This interdisciplinary approach shows that the dominant structural and metamorphic imprint of the Zermatt-Saas eclogitized serpentinites and rodingites developed during the Alpine subduction and that subduction-related serpentinite de-hydration occurred exclusively at Pmax conditions, during D2 deformation. In contrast, in the favourable rodingite bulk composition (Ca-rich), hydrated minerals

  17. Structural and lithologic relationships in the Raleigh metamorphic belt near Lake Gaston, Virginia and North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, P.E.; Horton, J.W. Jr. (Geological Survey, Reston, VA (United States))

    1993-03-01

    Preliminary results of mapping along the NC-VA State line eastward from the Buggs Is. granite about 35 km to the Hollister fault zone yield new information about structural and lithologic relationships in the Raleigh metamorphic belt. The layered rocks are predominantly two-mica schist and sillimanite-mica schist interlayered with lesser amounts of muscovite-biotite-quartz-plagioclase paragneiss and hornblende-biotite gneiss. The overall rock assemblage here differs from those along strike near Goochland, VA, and near Raleigh, NC, and is reminiscent of an accretionary complex. Bodies of foliated to massive two-mica granite are abundant and commonly contain garnet. One body, the Wise pluton, contains a N--NW-striking, steeply dipping foliation, but the intrusive contact of the granite with the metamorphic rocks is discordant. The most prominent regional foliation, parallel to transposed compositional layering, is axial planar to relict, reclined, isoclinal outcrop-scale folds. This foliation is folded at both outcrop and map scale by open folds plunging NW and SW. Some foliated, two-mica granite sheets are warped by the open folds; other bodies of similar granite cut across these folds. Sillimanite needles are locally aligned with the hinges of some of the open folds, an indication that sillimanite-muscovite-grade metamorphism was associated with this folding event. The two-mica granites resemble other late Paleozoic granites in the region. If these granites prove to be late Paleozoic (Alleghanian), then the deformation and metamorphism that produced sillimanite along the hingelines also must be Alleghanian. Relatively younger, NW- and SE-plunging crenulations and chevron folds are associated with a crenulation cleavage that dips steeply NE or SW. Sillimanite needles are folded by these crenulations. Crenulation cleavage and related folds may have developed in response to transpression of these rocks between the dextral Lake Gordon and Hollister mylonite zones.

  18. Variation in body size and metamorphic traits of Iberian spadefoot toads over a short geographic distance

    OpenAIRE

    2008-01-01

    Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad (Pelobates cultripes) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern obs...

  19. Thermal effects of variable material properties and metamorphic reactions in a three-component subducting slab

    DEFF Research Database (Denmark)

    Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd

    2015-01-01

    We explore the effects of variable material properties, phase transformations, and metamorphic devolatilization reactions on the thermal structure of a subducting slab using thermodynamic phase equilibrium calculations combined with a thermal evolution model. The subducting slab is divided...... into three layers consisting of oceanic sediments, altered oceanic crust, and partially serpentinized or anhydrous harzburgite. Solid-fluid equilibria and material properties are computed for each layer individually to illustrate distinct thermal consequences when chemical and mechanical homogenization...

  20. A Biomimetic Study of Discontinuous-Constraint Metamorphic Mechanism for Gecko-Like Robot

    Institute of Scientific and Technical Information of China (English)

    Zhen-dong Dai; Jiu-rong Sun

    2007-01-01

    Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the discontinuous-constraint, point out that driving and controlling are the key points to improve the performance and efficiency of the linkage mechanism. Inspired by controlling strategy of the motor nervous system in peripheral vertebrae to the locomotion, we draw off motor control and drive strategy.

  1. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    OpenAIRE

    P. P. Ebner; M. Schneebeli; A. Steinfeld

    2015-01-01

    Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence...

  2. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    OpenAIRE

    P. P. Ebner; M. Schneebeli; A. Steinfeld

    2015-01-01

    Time-lapse X-ray microtomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. The effect of diffusion and advection across the snow pores on the snow microstructure were analysed in controlled laboratory experiments and possible effects on natural snowpacks discussed. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective permeabi...

  3. Design and accuracy analysis of a metamorphic CNC flame cutting machine for ship manufacturing

    Science.gov (United States)

    Hu, Shenghai; Zhang, Manhui; Zhang, Baoping; Chen, Xi; Yu, Wei

    2016-09-01

    The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from-0.975 mm to +0.628 mm and orientation error is from-0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a `large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.

  4. Development of Manufacturable Process to Deposit Metal Matrix Composites on Inverted Metamorphic Multijunction Solar Cells

    Science.gov (United States)

    2015-01-14

    MULTIJUNCTION SOLAR CELLS Sang M. Han University of New Mexico 1700 Lomas Blvd. NE, Suite 2200 Albuquerque, NM 87131-0001 14 Jan 2015 Final...Composites on Inverted Metamorphic Multijunction Solar Cells 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) 5d. PROJECT NUMBER 8809 Sang...multijunction (IMM) space solar cells . The IMM cells fracture during packaging or after prolonged cycles of temperature fluctuations encountered in

  5. "High-grade burial metamorphism of sedimentary mélange, Shoo Fly Complex, central Sierra Nevada, California"

    Science.gov (United States)

    Mendoza, Y.; Wakabayashi, J.

    2013-12-01

    The Shoo Fly Complex, California is a subduction complex metamorphosed at lower greenschist facies in much of the northern Sierra Nevada. Central Sierra Nevada exposures include higher grade assemblages. Previous studies have interpreted the higher grade rocks as gneissic granitoids representing the roots of a Paleozoic arc. Recent field work in the North Fork Mokelumne River drainage, shows that high-grade and low-grade metamorphic rocks were derived from similar subduction complex protoliths. The Shoo Fly in this region consists of mostly phyllite (metasiltstone, metasandstone, metachert), with some metabasite, and metaultramafic blocks. There is a metamorphic gradient from west to east in the field area, transitioning from sub to lower greenschist facies (white mica only) to middle and upper green schist facies (biotite) within the phyllites to amphibolite/upper amphibolite/granulite grade mica schists, gneisses, and amphibolites This gradient occurs across a zone about 1.5 km wide and this gradient is about 5 km west of the contact between the Shoo Fly Complex and plutons of the Sierra Nevada batholith. The higher-grade rocks do not have an apparent west-east metamorphic gradient. Accordingly the high-grade metamorphism does not appear to be a consequence of either contact metamorphism or raised regional geothermal gradients connected with the batholith. This conclusion is consistent with the fact that published metamorphic ages from probable correlative rocks within the central Sierra are much older than the Sierra Nevada batholith. Protoliths for the higher grade rocks appear identical to the lower grade rocks, for metaclastic rocks dominate with subordinate metacherts, metabasites, and metaultramafic rocks. The latter are represented by tremolite-talc schists. In the lower grade rocks some of the metabasite and metaultramafic blocks exhibit a higher grade of metamorphism than the surrounding metaclastic rocks and metacherts. Amphibolite and tremolite schist

  6. Inter-relationships between deformation partitioning, metamorphism and tectonism

    Science.gov (United States)

    Bell, T. H.; Rieuwers, M. T.; Cihan, M.; Evans, T. P.; Ham, A. P.; Welch, P. W.

    2013-03-01

    NW-SE trend of FIA 0 resulted in most deformation pervasively partitioning NE of the competent gneiss beneath the Chester dome and Green Mountains. Consequently, the bulk of porphyroblast growth within the Pomfret dome region occurred at this time. The effects of NW-SE bulk shortening partitioned through similar amounts of gneiss during FIA 1 generating the same percentage of new sites for garnet growth in both regions. As a result, ~ 60% of all garnet growth within the Pomfret region had occurred before the N-S directed bulk horizontal shortening during FIA 2 began, resulting in an increase in bulk competency. This caused deformation to preferentially partition pervasively through the previously more competent Chester region generating ~35% of all garnet cores plus loading through crustal thickening to a depth of ~ 7 kbar. This increase in pressure prior to FIAs 3 and 4 enabled other rocks with different bulk compositions to grow garnet for the first time during these later periods of orogeny. It also resulted in considerable growth on the rims of garnet porphyroblasts that had grown much earlier during the deformation history.

  7. Evolution of Migmatitic Granulite Complexes: implications from Lapland Granulite Belt, Part I: metamorphic geology

    Directory of Open Access Journals (Sweden)

    Pekka Tuisku

    2006-01-01

    Full Text Available The Palaeoproterozoic Lapland granulite belt was juxtaposed between Archaean and Proterozoic terrains in the NE part of the Fennoscandian Shield concurrently with the accretion of Svecofennian arc complexes at ~1.9 Ga. The belt consists mainly of aluminous migmatiticmetagreywackes. Abundant noritic to enderbitic magmas were intruded concordantly into the metasediments and were probably an important heat source for metamorphism, which took place during the crystallization of the magmas. This is supported by structural and contact relations of metasediments and igneous rocks, and by the lack progressive metamorphic reaction textures in the igneous rock series. The peak of metamorphism took place above the dehydration melting temperature of the biotite-sillimanite-plagioclase-quartz assemblageat 750−850°C and 5−8.5 kbar which lead to formation of a restitic palaeosome and peraluminous granitic melt in metapelites. Subsequently, the rocks were decompressed and cooled below the wet melting temperature of pelitic rocks (650°C under the stability field of andalusite coexisting with potassium feldspar (2−3 kbar. Cooling was accompanied by the crystallization of the neosomes, often carrying aluminium-rich phases. Postmetamorphic duplexing of the LGB is clearly seen in the distribution of calculated PT conditions.

  8. EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY

    Directory of Open Access Journals (Sweden)

    E. G. Kolomyts

    2012-01-01

    Full Text Available The paper presents a novel approach to the study of development of microstructures in snowpack based on the crystal-morphology and on the fundamental laws of natural symmetry. An empirical deterministic model describing the sublimation-metamorphic cycle in seasonal snow cover and the polymorphic variants of this cycle is suggested. Staging in the formation of crystal shapes and self-development of snow microstructure in snow layers is revealed. The crystal shapes are the result of successive process of superposition of ice crystal-chemical symmetry and dissymmetry of the soil – snow cover – atmosphere system, according to the known P. Curie principle. Morphological classification of snow crystals in seasonal snow cover is developed on the base of evolutionary model. Evolution of snow microstructure is conditioned by a marked degree by probabilistic conformity to natural laws, manifesting itself in the processes of auto-regulation of metamorphism. These processes include two types of regulation: the self-regulation of snow layers, on the one hand, and the regulation related to external conditions – under the influence of atmospheric perturbations, on the other hand. The accounting the processes of auto-regulation of snow metamorphism for allows development of new methods in short- and long-term avalanche forecast.

  9. Study of the metamorphic belts and tectonics; Henseitai kenkyu to tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Hokkaido University, Sapporo (Japan)

    1997-10-25

    Study of metamorphic belts and tectonics is introduced. Minerals supposedly originating in the transitional zone and the lower mantle, that is, inclusions in diamond in kimberlite, are deemed to carry information about the depth level of 670km and lower. The place of origin of peridotite, Alpe Arami of Switzerland, is again estimated at a level of 300km or deeper. In the tectonic cross section in this region, the oceanic crust is bent and folded, and such a structure enables the supposition that fragments off the transitional zone may be carried upward to the ground surface. This region is now being limelighted, with plume tectonics enjoying popularity. The split of Pangaea is related with the ascent of plume. In the eastern part of Australia, there are alkali rocks attributable to the plume that was supposedly active at the end of the Proterozoic. Zircon U-Pb dating by SHRIMP offers a new approach to the tectonics of metamorphic rocks, and is reinforcing the position of metamorphic petrology relative to the study of collision and split of continents. 64 refs., 10 figs.

  10. Hydrogen and oxygen isotope studies of metamorphic fluid-rock interactions in the Dabie Mountains

    Institute of Scientific and Technical Information of China (English)

    傅斌; 郑永飞; 李一良; 肖益林; 龚冰

    1999-01-01

    Hydrogen and oxygen isotope studies were carried out on mineral separates from high to ultrahigh pressure metamorphic rocks at Huangzhen and Shuanghe in the eastern Dabie Mountains, East China. The δ 18O values of eelogites cover a wide range of-5‰ to+9‰, but the δD values of micas fall within a narrow range of -85‰ to -70‰. Both equilibrium and disequilibrium oxygen isotope fractionations were observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some eclogite samples. The δ 18O values of -5‰ to -1‰ for some of the eclogites represent the oxygen isotope compositions of their protoliths which underwent meteoric water-rock interaction prior to plate subduction. The preservation of oxygen isotope heterogeneity in the eclogites implies a channelized flow of fluids during progressive metamorphism caused by rapid subduetion. Retrograde metamorphism has caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the f

  11. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-11-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.

  12. Combustion metamorphic events as age markers of orogenic movements, in Central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, I.S.; Sokol, E.V. [Russian Academy of Science, Novosibirsk (Russian Federation)

    2007-07-15

    Combustion metamorphic (pyrometamorphic) complexes produced by prehistoric natural coal fires are widespread in Central Asia, namely at the interfaces between mountain systems and the flanking sedimentary basins. Large-scale and prolonged fires accompanied the initial orogenic stages as unweathered coal-bearing formations became exposed into the aeration zone. Pyrometamorphic rocks are comparable to sanidinite facies rocks in formation conditions and in alteration of sedimentary material but, unlike these, their protolith underwent different melting degrees to produce either ferrous basic paralavas or glazed clinkers. The phase composition of the newly-formed melted rocks are favorable for Ar-40/Ar-39 dating of combustion metamorphic events which are coeval to the onset of the main stage of recent orogenic events. We suggest a new algorithm providing correct Ar-40/Ar-39 dating of pyrometamorphic rocks followed by well-grounded geological interpretation. We applied it to pyrometamorphic rocks in the western Salair zone of the Kuznetsk coal basin where combustion metamorphism under temperatures above 1000 degrees C acted upon large volumes of coal-bearing sediments.

  13. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-05-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry and the pressure-temperature path of the Early Cretaceous granulites that occur within the Tertiary Sabzevar suture zone of NE Iran. The geochemical data set document that the granulites are remnants of a MORB-type oceanic crust and thus of a (Early Cretaceous ? back-arc basin formed in the upper plate of the Neotethyan subduction and thus interpreted as portions of a dismembered dynamothermal sole formed during oceanic subduction. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop, compatible with burial in a hot subduction zone followed by cooling during exhumation. This is interpreted as the evidence of a nascent subduction zone formed at the expenses of hot and hence young oceanic lithosphere. These data point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing heterogeneity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected with further investigations.

  14. Disturbance of isotope systematics in meteorites during shock and thermal metamorphism and implications for shergottite chronology

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, A M; Borg, L E; Asmerom, Y

    2008-12-10

    Shock and thermal metamorphism of meteorites from differentiated bodies such as the Moon and Mars have the potential to disturb chronometric information contained in these meteorites. In order to understand the impact-related mechanisms and extent of disturbance to isochrons, we undertook experiments to shock and heat samples of 10017, a 3.6 billion year old lunar basalt. One sub-sample was shocked to 55 GPa, a second subsample was heated to 1000 C for one week, and a third sub-sample was maintained as a control sample. Of the isotope systems analyzed, the Sm-Nd system was the least disturbed by shock or heat, followed by the Rb-Sr system. Ages represented by the {sup 238}U-{sup 206}Pb isotope system were degraded by shock and destroyed with heating. In no case did either shock or heating alone result in rotated or reset isochrons that represent a spurious age. In some cases the true crystallization age of the sample was preserved, and in other cases age information was degraded or destroyed. Although our results show that neither shock nor thermal metamorphism alone can account for the discordant ages represented by different isotope systems in martian meteorites, we postulate that shock metamorphism may render a meteorite more susceptible than unshocked material to subsequent disturbance during impact-related heating or aqueous alteration on Mars or Earth. The combination of these processes may result in the disparate chronometric information preserved in some meteorites.

  15. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  16. Time interval between volcanism and burial metamorphism and rate of basin subsidence in a Cretaceous Andean extensional setting

    Science.gov (United States)

    Aguirre, L.; Féraud, G.; Morata, D.; Vergara, M.; Robinson, D.

    1999-11-01

    40Ar/ 39Ar ages were obtained from basaltic flows belonging to a 9-km-thick sequence generated in an extensional ensialic setting of an arc/back-arc basin type during the Early Cretaceous and presently exposed along the Coastal Range of central Chile. The basalts have been affected by very low- to low-grade burial metamorphism, mostly under prehnite-pumpellyite facies. Age values obtained from primary (volcanic) and secondary (metamorphic) minerals permit to quantify the time interval between volcanism and burial metamorphism. A plateau age of 119±1.2 Ma from primary plagioclase represents the best estimation of the age of the volcanism, whereas adularia, in low-variance assemblages contained in amygdules, gave a plateau age of 93.1±0.3 Ma which is interpreted as the age of the metamorphism. Considering the P- T conditions estimated for this metamorphic event, the c. 25 Ma time interval between volcanic emplacement and prehnite-pumpellyite facies metamorphism, the rate of basin subsidence in this extensional geodynamic setting would be comprised in the interval 150-180 m/Ma.

  17. Metamorphic evolution and U-Pb zircon SHRIMP geochronology of the Belizário ultramafic amphibolite, Encantadas Complex, southernmost Brazil

    Directory of Open Access Journals (Sweden)

    Léo A. Hartmann

    2003-09-01

    Full Text Available The integrated investigation of metamorphism and zircon U-Pb SHRIMP geochronology of the Belizário ultramafic amphibolite from southernmost Brazil leads to a better understanding of the processes involved in the generation of the Encantadas Complex. Magmatic evidence of the magnesian basalt or pyroxenite protolith is only preserved in cores of zircon crystals, which are dated at 2257 ± 12 Ma. Amphibolite facies metamorphism M1 formed voluminous hornblende in the investigated rock possibly at 1989 ± 21 Ma. This ultramafic rock was re-metamorphosed at 702±21 Ma during a greenschist facies eventM2; the assemblage actinolite + oligoclase + microcline + epidote + titanite + monazite formed by alteration of hornblende. The metamorphic events are probably related to the Encantadas Orogeny (2257±12 Ma and Camboriú Orogeny (~ 1989 Ma of the Trans-Amazonian Cycle, followed by an orogenic event (702±21 Ma of the Brasiliano Cycle. The intervening cratonic period (2000-700 Ma corresponds to the existence of the Supercontinent Atlantica, known regionally as the Rio de la Plata Craton.O entendimento dos processos evolutivos do Complexo Encantadas no sul do Brasil foi aperfeiçoado através do estudo integrado do metamorfismo de um anfibolito ultramáfico e da geocronologia U-Pb SHRIMP de zircão. Os núcleos herdados de alguns cristais de zircão tem idades em torno de 2257 ±12 Ma e constituem a única evidência preservada do protólito ígneo, que pode ter sido um basalto magnesiano ou um piroxenito. O metamorfismo M de fácies anfibolito formou abundante hornblenda na amostra investigada, possivelmente há 1989 ±21 Ma. Esta rocha ultramáfica foi re-metamorfizada talvez há cerca de 702 ±21 Ma durante um evento M de fácies xistos verdes do metamorfismo regional. Durante o evento M, a hornblenda foi recristalizada e formou a assembléia actinolita + oligoclásio + microclínio + epidoto + titanita + monazita. Estes eventos foram a manifesta

  18. Formation and metamorphism of stratified firn at sites located under spatial variations of accumulation rate and wind speed on the East Antarctic ice divide near Dome Fuji

    Directory of Open Access Journals (Sweden)

    S. Fujita

    2012-03-01

    Full Text Available The initial stage of postdepositional metamorphism in polar firn was investigated at sites located under spatial variations of accumulation rate and wind speed along the East Antarctic ice divide near Dome Fuji. A better understanding of this process is important for interpreting local insolation proxies used for astronomical dating of deep ice cores. Three 2–4 m deep pits were excavated and physical properties, including density ρ, grain size D, reflectance R of near infrared light and microwave dielectric anisotropy Δε, were investigated at high spatial resolution. We found that Δε ranges between 0.028 and 0.067 and that such high values occur in the surface ~0.1 m. In addition, short scale variations of ρ are correlated with those of Δε, and inversely correlated with those of D, confirming contrasting development of initially higher density layers and initially lower density layers. Moreover, postdepositional metamorphism makes these contrasts more distinct with increasing depths. Both the contrasts and Δε for given values of ρ are higher under lower accumulation rate conditions and under less windy conditions. Insolation efficiently causes evolution of strata of firn at the ice sheet surface under such conditions. Under more windy conditions, the strata contain more wind-driven hard layers with higher ρ and Δε and thus have larger fluctuations of ρ and Δε. We suggest that the initial variability of ρ at the surface and the duration of exposure to diurnal and seasonal temperature gradients play sequential roles in determining the physical/mechanical properties of firn, which is retained throughout the densification process.

  19. Active hydrothermal metamorphism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low P/T facies series. [Abstract only

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, P. (Univ. of California, Riverside); Elders, W.A.; Williams, A.E.; McDowell, S.D.; Bird, D.K.

    1983-03-01

    In the Cerro Prieto geothermal system, carbonate-cemented, quartzo-feldspathic sediments of the Colorado River delta are being actively recrystallized into calc-silicate metamorphic rocks through intense fluid/rock interaction with alkali chloride brine (1.5 x 10/sup 4/ ppM TDS) at temperatures between 200/sup 0/ and 370/sup 0/C, fluid pressures <0.25 Kb, lithostatic pressures <1.0 Kb, and oxygen fugacities close to the QFM buffer. Petrologic investigations of cuttings and core from more than 50 wells in this field reveal a prograde series of calc-silicate mineral zones with index metamorphic minerals: wairakite (wr), epidote (ep), prehnite (pr), and calcic clinopyrosene (cpx). The compositions of these and other key phases: wr (Ca/Ca + Na + K + 0.97), ep (Fe/Fe + Al/sup vi/ = 0.11 to 0.31), pr (Fe/Fe + Al/sup vi/ = 0.01 to 0.28), cps (close to Wo/sub 50/ and Mg/Mg + Fe + Mn = 0.23 to 0.90), actinolite (0.20 Al/sup iv//15 cations and Mg/Mg + Fe + Mn = 0.67 to 0.82), biotite (Mg/Mg + Fe + Mn = 0.58 to 0.87) and microcline (Or/sub 96 to 100/) reflect recrystallization under low fluid pressures, relatively low f/sub O/sub 2//, and varying brine compositions. Divariant mineral assemblages in this system comprise a very low P/T facies series encompassing the clay-carbonate, zeolite, greenschist, and amphibolite facies and reflect equilibrium occurring in response to both increasing temperature and decreasing CO/sub 2/ pressure. Similar facies series, characterized by telescoped devolatization mineral reactions, are becoming increasingly recognized in other active geothermal systems above 300/sup 0/C. However, close analogues in the fossil geologic record are as yet unidentified.

  20. Traces of H2O in Ultrahigh-Pressure Metamorphic Rocks

    Science.gov (United States)

    Dobrzhinetskaya, L. F.

    2007-05-01

    Ultrahigh-pressure (UHP) metamorphic rocks accommodate a significant amount of H2O at high pressures and temperatures during their deep subduction. Fluid-driven processes are responsible for mineral reactions; they may trigger phase transformations and provide a decisive weakening effect on the rheological behavior of the rocks during deep subduction, or they may lead to brittle failure and earthquakes. Dehydration reactions, producing fluid (i.e., H2O, CO2) during regional metamorphism at low-to-mid crustal levels (P ~ 0.1 - 1 GPa), are reasonably pressure insensitive. At these levels, the maximum dehydration occurs at the greatest temperatures experienced by buried rocks. In the deep subduction zone (> 120 - 150 km), where both high pressures and temperatures operate, the situation is different. There, on the one hand, the water becomes chemically bonded and incorporated into the structure of both nominally hydrous and anhydrous minerals. On the other hand, the aqueous fluid (a supercritical fluid) dissolves a considerable amount of mineral components at high pressures and temperatures, and a solute concentration increases as pressure is increased. Microstructural observations on ultrahigh-pressure minerals from eclogites and metasediments provide convincing evidence of fluid involvement as deep as the upper mantle and possibly, the mantle transition zone. Diamond is one of the minerals of great importance because it unambiguously records the high pressure (minimum 4 GPa and possibly > 4GPa) at which the host rocks were recrystallized. We present here the results of studies of nano-inclusions associated with dislocations of growth and/or with interstitial defects of carbon in diamond structure obtained with transmission electron microscopy, microRaman, and microInfrared synchrotron assisted spectroscopy. A diverse composition of multicomponent fluid and crystalline inclusions and characteristic of nitrogen aggregations, provide evidence that the diamonds were

  1. On Continent-Continent Point-Collision and Ultrahigh-Pressure Metamorphism

    Institute of Scientific and Technical Information of China (English)

    董树文; 武红岭; 刘晓春; 薛怀民

    2002-01-01

    Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisphere. UHP metamorphic rocks are represented by coesite- and diamond-bearing eclogites and eclogite facies metamorphic rocks formed at 650–800°C and 2.6–3.5 Gpa, and most of the protoliths of UHP rocks are volcanic-sedimentary sequences of continental crust. From these it may be deduced that deep subduction of continental crust may have occurred. However, UHP rocks are exposed on the surface or occur near the surface now, which implies that they have been exhumed from great depths. The mechanism of deep subduction of continental crust and subsequent exhumation has been a hot topic of the research on continental dynamics, but there are divergent views. The focus of the dispute is how deep continental crust is subducted so that UHP rocks can be formed and what mechanism causes it to be subducted to great depths and again exhumed to the shallow surface. Through an analysis of the continental process and mechanical boundary conditions of the Dabie collisional belt—an UHP metamorphic belt where the largest area of UHP rocks in the world is exposed, this paper discusses the variations of viscous stresses and average pressure in the viscous fluid caused by tectonism with rock physical properties and the contribution of the tectonic stresses to production of UHP. Calculation indicates that the anomalous stress state on the irregular boundary of a continental block may give rise to stress concentration and accumulation at local places (where the compressional stress may be 5–9 times higher than those in their surroundings). The tectonic stresses may account for 20–35% of the total UHP. So we may infer that the HP (high-pressure)-UHP rocks in the Dabie Mountains were formed at depths of 60–80 km. Thus the authors propose a new genetic model of UHP

  2. Relationship between nano-scale deformation of coal structure and metamorphic-deformed environments

    Institute of Scientific and Technical Information of China (English)

    JU Yiwen; JIANG Bo; HOU Quanlin; WANG Guiliang

    2005-01-01

    There is a more consanguineous relation between nano-scale deformation of coal structure and metamorphic-deformed environment. In different metamorphic-deformed environments, deformation in the coal structure can occur not only at micro-scale, but also at nano-scale, and even leads to the change of molecular structure and nano-scale pore (<100 nm) structure. The latter is the main space absorbing coalbed methane. Through X-ray diffraction (XRD) and liquid-nitrogen absorption methods, the characteristics of macromolecular and nano-scale pore structures of coals in different metamorphic-deformed environments and deformational series of coals have been studied. By combining with high-resolution transmission electron microcopy (HRTEM), the macromolecular and nano-scale pore structures are also directly observed. These results demonstrate that the stacking Lc of the macromolecular BSU in tectonic coals increases quickly from the metamorphic-deformed environment of low rank coals to that of high rank coals. For different deformed tectonic coals, in the same metamorphic-deformed environment, the difference of Lc is obvious. These changes reflect chiefly the difference of different temperature and stress effect of nano-scale deformation in tectonic coals. The factor of temperature plays a greater role in the increase of macromolecular structure parameters Lc, the influence of stress factor is also important. With the stress strengthening, Lc shows an increasing trend, and La /Lc shows a decreasing trend. Therefore, Lc and La /Lc can be used as the indicator of nano-scale deformation degree of tectonic coals. With increasing temperature and pressure, especially oriented stress, the orientation of molecular structure becomes stronger, and ordering degree of C-nets and the arrangement of BSU are obviously enhanced. For the deformation of nano-scale pore structure, in the same metamorphic-deformed environment, along with the strengthening of stress, the ratio of mesopores to

  3. Geochronology of accessory allanite and monazite in the Barrovian metamorphic sequence of the Central Alps, Switzerland

    Science.gov (United States)

    Boston, Kate R.; Rubatto, Daniela; Hermann, Jörg; Engi, Martin; Amelin, Yuri

    2017-08-01

    The formation of accessory allanite, monazite and rutile in amphibolite-facies rocks across the Barrovian sequence of the Central Alps (Switzerland) was investigated with a combination of petrography and geochemistry and related to the known structural and metamorphic evolution of the Lepontine dome. For each of these minerals a specific approach was adopted for geochronology, taking into account internal zoning and U-Th-Pb systematics. In-situ U-Th-Pb dating of allanite and monazite by ion microprobe revealed systematic trends for the ages of main deformation and temperature in the Lepontine dome. Isotope dilution TIMS dating of rutile returns dates in line with this picture, but is complicated by inheritance of pre-Alpine rutile and possible Pb loss during Alpine metamorphism. Allanite is generally a prograde mineral that is aligned along the main foliation of the samples and found also as inclusions in garnet. Prograde allanite formation is further documented by rutile inclusions with formation temperatures significantly lower than the maximum T recorded by the rock mineral assemblage. Allanite ages vary from 31.3 ± 1.1 Ma in orthogneisses in the East to 31.7 ± 1.1 Ma for a Bündnerschiefer and 28.5 ± 1.3 Ma for a metaquartzite in the central area, to 26.8 ± 1.1 Ma in the western part of the Lepontine dome. These ages are interpreted to date the main deformation events (nappe stacking and isoclinal deformation of the nappe stack), close to peak pressure conditions. The timing of the thermal peak in the Lepontine dome is recorded in monazite that grew at the expense of allanite and after a main episode of garnet growth at temperatures of 620 °C. Monazite in the central area yields an age of 22.0 ± 0.3 Ma, which is indistinguishable from the age of 21.7 ± 0.4 Ma from a metapelite in the western part of the Lepontine dome. In the central area some of the classical kyanite-staurolite-garnet schists directly underlying the metamorphosed Mesozoic sediments

  4. Unraveling an antique subduction process from metamorphic basement around Medellín city, Central Cordillera of Colombian Andes

    Science.gov (United States)

    Bustamante, Andres; Juliani, Caetano

    2011-10-01

    In the surroundings of Caldas and El Retiro cities (Colombia) metamorphic rocks derived from basic and pelitic protoliths comprise the Caldas amphibole schist and the Ancón schist respectively. Subordinated metamorphosed granite bodies (La Miel gneiss) are associated to these units, and The El Retiro amphibolites, migmatites and granulites crops out eastwards of these units, separated by shear zones. The Caldas amphibole schist and the Ancón schist protoliths could have been formed in a distal marine reduced environment and amalgamated to the South American continent in an apparent Triassic subduction event. The El Retiro rocks are akin to a continental basement and possible include impure metasediments of continental margin, whose metamorphism originated granulite facies rocks and migmatites as a result of the anatexis of quartz-feldspathic rocks. The metamorphism was accompanied by intense deformation, which has juxtaposed both migmatites and granulite blocks. Afterward, heat and fluid circulation associated with the emplacement of minor igneous intrusions resulted in intense fluid-rock interaction, variations in the grain size of the minerals and, especially, intense retrograde metamorphic re-equilibrium. Thermobarometric estimations for the Caldas amphibole schist indicate metamorphism in the Barrovian amphibolite facies. The metamorphic path is counter-clockwise, but retrograde evolution could not be precisely defined. The pressures of the metamorphism in these rocks range from 6.3 to 13.5 kbar, with narrow temperature ranging from 550 to 630 °C. For the Ancón schist metapelites the P- T path is also counter-clockwise, with a temperature increase evidenced by the occurrence of sillimanite and the cooling by later kyanite. The progressive metamorphism event occurred at pressures of 7.6-7.2 kbar and temperatures of 645-635 °C for one sample and temperature between 500 and 600 °C under constant pressure of 6 kbar. The temperature estimated for these rocks

  5. Structural analysis and metamorphism of Palaeoproterozoic metapelites in the Seinäjoki-Ilmajoki area, western Finland

    Directory of Open Access Journals (Sweden)

    Mäkitie, H.

    1999-12-01

    Full Text Available The Palaeoproterozoic Svecofennian bedrock of the Seinäjoki-Ilmajoki area, western Finland, is largely composed of porphyroblastic metapelites. In the area, the regional metamorphic grade increases towards the southwest. Over a distance of 15 km, andalusite mica schists gradually grade into migmatitic garnet cordierite-sillimanite mica gneisses with a facies-series of the andalusite-sillimanite type. Five regional metamorphic zones are present: andalusite, sillimanite-muscovite, sillimanite-K-feldspar, cordierite-K-feldspar and garnet-cordierite-K-feldspar. The primary layering (S0 of the mica schists is deformed by an isoclinal fold phase (F2, which is synchronous with the main metamorphic phase and the growth of micas. S1 is very weak and subject to interpretation. The S2 schistosity is deformed by intense late-metamorphic F3 and F3b folds, which have formed under slightly different metamorphic conditions: practically no metamorphic micas have grown parallel to axial planes while within F3b folds there are a few granitic veins parallel to these planes. The F3 and F3b folds probably belong to one phase. S2 dominates in the mica schists while S3 and S3b dominate in the mica gneisses. The metapelites are also deformed by younger minor fold phases (F4 and F5. A composite schistosity (S0±S1±S2±S3, or S3b commonly occurs in the metapelites. The peak of regional metamorphism has been associated with the intrusion of 1.89-1.88 Ga old tonalite plutons. Geothermometric estimates for regional metamorphism are c. 730 °C at an assumed pressure of 5 kbar. Neosomes in the high-grade mica gneisses occur as patches rather than as elongated, narrow veins. Garnet coexists with cordierite, but the minerals are rarely in equilibrium. Muscovitization and the formation of retrogressive andalusite did not occur in the high-grade mica gneisses, but there is minor kyanite indicating that the crust probably underwent near-isobaric cooling. The area of highest

  6. Record of high-pressure overprint in metamorphic soles of the Tavşanli zone, Western Anatolia

    Science.gov (United States)

    Plunder, Alexis; Agard, Philippe; Chopin, Christian; Okay, Aral

    2013-04-01

    Large obducted ophiolites correspond to the emplacement of dense oceanic lithosphere on top of a continent and thereby provide insights into rheological and thermal coupling between plates or fluid budgets. Obducted ophiolites thrust onto the continental margin of the Anatolide-Tauride block (Western Anatolia, south of the Izmir-Ankara suture zone) are dated through their metamorphic sole at ca. 90-95Ma and derive from the same intra-oceanic Neotethyan subduction. We herein focus on the metamorphic soles of the Tavşanlı zone, which show a variable high-pressure low-temperature (HP-LT) overprint of the initial amphibolitic metamorphic conditions (Önen & Hall, 1993; Dilek & Whitney, 1997; Okay et al, 1998). Systematic sampling was done in both the already studied areas as well as new locations. PT conditions were estimated at 8 kbar and 700°C for the amphibolitic stage with the assemblage hornblende + plagioclase ± garnet ± epidote. The HP-LT metamorphic overprint reached incipient blueschist to blueschist facies PT conditions. Development of the characteristic assemblage glaucophane + lawsonite yields PT estimates of >6-7 kbar and 300°C. The high-pressure stage is similar to the one observed for the underlying accretionary-complex unit of the Tavşanlı zone (Plunder et al, this meeting). This HP overprint was not observed in other obduction contexts such as Oman or New Caledonia but was documented in Fransciscan Complex amphibolites (Wakayabashi, 1990). The record of two metamorphic events can be understood as: (1) rapid cooling of the subduction zone after initiation and the exhumation of the metamorphic sole; (2) reburial after or during exhumation of the amphibolite initially welded at the base of the ophiolite. Several observations (i.e., lack of tectonic contact between the ophiolitic body and the metamorphic sole, PT estimates,...) point to cooling as the most likely hypothesis. Metamorphic soles allow to highlight: (1) the dynamics of obducted

  7. Fluid-related modifications of Cr-spinel and olivine from ophiolitic peridotites by contact metamorphism of granitic intrusions in the Ablah area, Saudi Arabia

    Science.gov (United States)

    Ahmed, Ahmed Hassan; Surour, Adel Abdullah

    2016-05-01

    heterogeneous modification in which the alteration starts from the cores outwards forming a very characteristic "atoll" textured SiO2- and Cr-rich porous spinel. This type is characterized by core-to-rim increase in Cr, Fe3+, Si, Mn, Ni and Ti, and decrease in Mg, Al and Fe2+. The mineral assemblage in equilibrium with this pattern is chlorite + carbonates + lizardite/chrysotile ± antigorite. The first modification pattern is suggested to form under nearly solid-state conditions in the distal part from the granitic intrusion. The second pattern could be formed under reducing conditions with high temperature and fluid/rock ratio near the contact zone. The peak metamorphic temperature of this stage ranges from 500 to 650 °C that indicate upper amphibolite facies conditions. During retrograde metamorphism, the hydrothermal fluids are cooler and oxidizing which lead to the precipitation of thick marble-like carbonate veins within the serpentinized peridotites. In such a case, the aqueous fluids attack the Al- and Mg-rich cores, which are less resistant and replicable than the Fe-rich rims, and form the third chemical modification pattern of porous SiO2-rich spinel. The high SiO2 content in Cr-spinel is most probably attributed to the formation of Mg- and Al-rich silicates within the sub-microscopic pores of altered Cr-spinel.

  8. The petrological evidence for the uplift of ultrahigh-pressure met-amorphic rocks in root zone of the Qinling-Dabie orogenic belt

    Institute of Scientific and Technical Information of China (English)

    游振东; 韩郁菁; 张泽明

    1996-01-01

    Petrographic evidence indicates that some of the ultrahigh-pressure (UHP) eclogites in Dabie Mountains area may be evolved from epidote amphibolite fades rocks recrystallized under ultrahigh pressure conditions. The evolution of the erogenic belt had eventually resulted in the uplift of the metamorphic terrane soon after the peak metamorphic ultrahigh pressure stage of collision. During the uplift the ultrahigh-pressure metamorphic rocks were superimposed by nearly isothermal decompressive retrograde metamorphism through high-pressure (HP) edogite fades to amphibolite fades. Some of them were followed by epidote amphibolite fades and greenschist fades of metamorphism, while others were followed by epidote blueschist fades and then lowered to greenschist fades. Accompanying the retrogressive metamorphism. the rocks underwent at least 6 stages of deformation ranging from plastic to brittle character. The decompressive P-T path is also shown in the evolution of fluid inclusions: the entrapment pressure is

  9. Electron microprobe Th-U-Pb monazite dating and metamorphic evolution of the Acaiaca Granulite Complex, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros Junior, Edgar Batista; Marques, Rodson Abreu, E-mail: edgarjr@ymail.com, E-mail: rodson.marques@ufes.br [Universidade Federal do Espirito Santo (UFES), Alegre, ES (Brazil). Departamento de Geologia; Jordt-Evangelista, Hanna; Queiroga, Glaucia Nascimento, E-mail: hanna@degeo.ufop.br, E-mail: glauciaqueiroga@yahoo.com.br [Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG (Brazil). Escola de Minas. Departamento de Geologia; Schulz, Bernhard, E-mail: bernhard.schulz@mineral.tu-freiberg.de [TU Bergakademie - Institute of Mineralogy, Freiberg - Saxony (Germany)

    2016-01-15

    The Acaiaca Complex (AC) is located in southeastern Minas Gerais state, and comprises felsic, mafic, ultramafic, and aluminous granulite as well as lower grade gneisses and mylonite. The complex is distributed over an area of ca. 36 km by 6 km, surrounded by amphibolite facies gneisses of the Mantiqueira Complex (MC). The discrepancy in the metamorphic grade between both complexes led to the present study aiming to understand the metamorphic history of the AC by means of geothermobarometry calculations and electron microprobe Th-U-Pb monazite dating. Estimates of the metamorphic conditions of the granulite based on conventional geothermobarometry and THERMOCALC resulted in temperatures around 800 deg C and pressures between of 5.0 and 9.9 kbar and a retro metamorphic path characterized by near-isobaric cooling. Part of the granulite was affected by anatexis. The melting of felsic granulite resulted in the generation of pegmatites and two aluminous lithotypes. These are: 1) garnet-sillimanite granulite with euhedral plagioclase and cordierite that show straight faces against quartz, and is the crystallization product of an anatectic melt, and 2) garnet-kyanite-cordierite granulite, which is probably the restite of anatexis, as indicated by textures and high magnesium contents. Th-U-Pb monazite geochronology of two granulite samples resulted in a metamorphic age around 2060 Ma, which is similar to the age of the MC registered in the literature. The similar Paleoproterozoic metamorphic ages of both complexes lead to the conclusion that the Acaiaca Complex may be the high grade metamorphic unit geochronological related to the lower grade Mantiqueira Complex. (author)

  10. Metamorphic Evolution of Garnet-bearing Epidote-Barroisite Schist from the Meratus Complex in South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Nugroho Imam Setiawan

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.139-156This paper presents metamorphic evolution of metamorphic rocks from the Meratus Complex in South Kalimantan, Indonesia. Eight varieties of metamorphic rocks samples from this location, which are garnet-bearing epidote-barroisite schist, epidote-barroisite schist, glaucophane-quartz schist, garnet-muscovite schist, actinolite-talc schist, epidote schist, muscovite schist, and serpentinite, were investigated in detail its petrological and mineralogical characteristics by using polarization microscope and electron probe micro analyzer (EPMA. Furthermore, the pressure-temperature path of garnet-bearing epidote-barroisite schist was estimated by using mineral parageneses, reaction textures, and mineral chemistries to assess the metamorphic history. The primary stage of this rock might be represented by the assemblage of glaucophane + epidote + titanite ± paragonite. The assemblage yields 1.7 - 1.0 GPa in assumed temperature of 300 - 550 °C, which is interpreted as maximum pressure limit of prograde stage. The peak P-T condition estimated on the basis of the equilibrium of garnet rim, barroisite, phengite, epidote, and quartz, yields 547 - 690 °C and 1.1 - 1.5 GPa on the albite epidote amphibolite-facies that correspond to the depth of 38 - 50 km. The retrograde stage was presented by changing mineral compositions of amphiboles from the Si-rich barroisite to the actinolite, which lies near 0.5 GPa at 350 °C. It could be concluded that metamorphic rocks from the Meratus Complex experienced low-temperature and high-pressure conditions (blueschist-facies prior to the peak metamorphism of the epidote amphibolite-facies. The subduction environments in Meratus Complex during Cretaceous should be responsible for this metamorphic condition.

  11. Metamorphic Evolution of Garnet-bearing Epidote-Barroisite Schist from the Meratus Complex in South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Nugroho Imam Setiawan

    2015-10-01

    Full Text Available This paper presents metamorphic evolution of metamorphic rocks from the Meratus Complex in South Kalimantan, Indonesia. Eight varieties of metamorphic rocks samples from this location, which are garnet-bearing epidote-barroisite schist, epidote-barroisite schist, glaucophane-quartz schist, garnet-muscovite schist, actinolite-talc schist, epidote schist, muscovite schist, and serpentinite, were investigated in detail its petrological and mineralogical characteristics by using polarization microscope and electron probe micro analyzer (EPMA. Furthermore, the pressure-temperature path of garnet-bearing epidote-barroisite schist was estimated by using mineral parageneses, reaction textures, and mineral chemistries to assess the metamorphic history. The primary stage of this rock might be represented by the assemblage of glaucophane + epidote + titanite ± paragonite. The assemblage yields 1.7 - 1.0 GPa in assumed temperature of 300 - 550 °C, which is interpreted as maximum pressure limit of prograde stage. The peak P-T condition estimated on the basis of the equilibrium of garnet rim, barroisite, phengite, epidote, and quartz, yields 547 - 690 °C and 1.1 - 1.5 GPa on the albite epidote amphibolite-facies that correspond to the depth of 38 - 50 km. The retrograde stage was presented by changing mineral compositions of amphiboles from the Si-rich barroisite to the actinolite, which lies near 0.5 GPa at 350 °C. It could be concluded that metamorphic rocks from the Meratus Complex experienced low-temperature and high-pressure conditions (blueschist-facies prior to the peak metamorphism of the epidote amphibolite-facies. The subduction environments in Meratus Complex during Cretaceous should be responsible for this metamorphic condition.

  12. k-core covers and the core

    NARCIS (Netherlands)

    Sanchez-Rodriguez, E.; Borm, Peter; Estevez-Fernandez, A.; Fiestras-Janeiro, G.; Mosquera, M.A.

    2015-01-01

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  13. Academic Rigor: The Core of the Core

    Science.gov (United States)

    Brunner, Judy

    2013-01-01

    Some educators see the Common Core State Standards as reason for stress, most recognize the positive possibilities associated with them and are willing to make the professional commitment to implementing them so that academic rigor for all students will increase. But business leaders, parents, and the authors of the Common Core are not the only…

  14. k-core covers and the core

    NARCIS (Netherlands)

    Sanchez-Rodriguez, E.; Borm, Peter; Estevez-Fernandez, A.; Fiestras-Janeiro, G.; Mosquera, M.A.

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  15. Structural and metamorphic evolution of the Turku migmatite complex, southwestern Finland

    Directory of Open Access Journals (Sweden)

    Väisänen, M.

    1999-06-01

    Full Text Available The Turku migmatite complex in southwestern Finland is a representative area for the type of tectonic and metamorphic evolution seen within the Palaeoproterozoic Svecofennian Orogen in southern Finland. The orogeny can be divided into early, late and postorogenic stages. The early orogenic structural evolution of the crust is expressed by a D1/D2 deformation recorded as bedding-parallel S1 mica foliation deformed by tight to isoclinal D2 folds with subhorizontal axial planes and a penetrative S2 axial plane foliation. Syntectonic ca. 1890-1870 Ma tonalites were emplaced during D2 as sheet intrusions. This deformation is attributed to thrust tectonics and thickening of the crust. The late orogenic structural evolution produced the main D3 folding, which transposed previous structures into a NE-SW trend. The doubly plunging fold axis produced dome-and-basin structures. The attitude of the F3 folds varies from upright or slightly overturned to locally recumbent towards the NW. Granite dikes were intruded along S3 axial planes. Large D3 fold limbs are often strongly deformed, intensively migmatized and intruded by garnet- and cordierite-bearing granites. These observations suggest that these potassium-rich granites, dated at 1840-1830 Ma, were emplaced during D3. This late orogenic NW-SE crustal shortening further contributed to crustal thickening. Subvertical D4 shear zones that cut all previous rock types possibly controlled the emplacement of postorogenic granitoids. Steeply plunging lineations on D4 shear planes suggest vertical displacements during a regional uplift stage. Metamorphic grade increases from cordierite-sillimanite-K-feldspar gneisses in the northwest and from muscovite-quartz±andalusite rocks in the southeast to high-temperature granulite facies migmatites in the middle of the study area. Block movements during D4 caused the observed differences in metamorphic grade. Garnet and cordierite are mostly breakdown products of biotite

  16. Mapping contact metamorphic aureoles in Extremadura, Spain, using Landsat thematic mapper images

    Science.gov (United States)

    Rowan, L.C.; Anton-Pacheco, C.; Brickey, D.W.; Kingston, M.J.; Payas, A.

    1987-01-01

    In the Extremadura region of western Spain, Ag, Pb, Zn, and Sn deposits occur in the pieces of late Hercynian granitic plutons and near the pluton contacts in late Proterozoic slate and metagraywacke that have been regionally metamorphosed to the green schist facies. The plutons generally are well exposed and have distinctive geomorphological expression and vegetation; poor exposures of the metasedimentary host rocks and extensive cultivation, however, make delineation of the contact aureoles difficult. Landsat Thematic Mapper (TM) images have been used to distinguish soil developed on the contact metamorphic rocks from soil formed on the stratigraphically equivalent slate-metagraywacke sequence. The mineral constituents of these soils are similar, except that muscovite is more common in the contact metamorphic soil; carbonaceous material is common in both soils. Contact metamorphic soil have lower reflectance, especially in the 1.6-micrometers wavelength region (TM 5), and weaker Al-OH, Mg-OH, and Fe3+ absorption features than do spectra of the slate-metagraywacke soil. The low-reflectance and subdued absorption features exhibited by the contact metamorphic soil spectra are attributed to the high absorption coefficient f the carbonaceous material caused by heating during emplacement of the granitic plutons. These spectral differences are evident in a TM 4/3, 4/5, 3/1 color-composite image. Initially, this image was used to outline the contact aureoles, but digital classification of the TM data was necessary for generating internally consistent maps of the distribution of the exposed contact metamorphic soil. In an August 1984, TM scene of the Caceras area, the plowed, vegetation-free fields were identified by their low TM 4/3 values. Then, ranges of TM 4/5 and 3/1 values were determine for selected plower fields within and outside the contact aureoles; TM 5 produced results similar to TM 4/5. Field evaluation, supported by X-ray diffraction and petrographic

  17. Prograde and retrograde metamorphic processes in high-pressure subduction zone serpentinites from East Thessaly, Greece

    Science.gov (United States)

    Koutsovitis, Petros

    2016-04-01

    The East Thessaly region, Central Greece, includes metaophiolitic mélange formations which extend from the eastern foothills of Mt. Olympus and Ossa, throughout the Agia basin, Mt. Mavrovouni (Sklithro region), South Pelion and reaching up to northeast Othris (regions of Aerino and Velestino). They appear in the form of dispersed and deformed thrust sheets having been variably emplaced onto Mesozoic platform series rocks of the Pelagonian tectonostratigraphic zone[1]. These formations consist mainly of serpentinites, as well as metasediments, metagabbros, metadolerites, rodingites, ophicalcites, talc-schists and chromitites. Based upon petrographic observations, mineral chemistry data and XRD patterns, the subduction zone-related serpentinites from the regions of Potamia, Anavra, Aetolofos and Kalochori-Chasanbali (Agia basin), as well as from the regions of Aerino and Velestino, are characterized by the progressive transformation of lizardite to antigorite and are distinguished into two groups. The first group includes serpentinites from the metaophiolitic formations of Potamia, Anavra, Aerino and Velestino, which are marked by destibillization of lizardite to antigorite, mostly along the grain boundaries of the lizardite mesh textured relics. The presence of lizardite and antigorite in almost equal amounts indicates medium-temperature blueschist facies metamorphic conditions (˜340-370 ° C; P≈10-11 kbar)[2,3,4]. The second serpentinite group appears in the regions of Aetolofos and Kalochori, characterized by the predominance of antigorite, the minor occurrence of lizardite and the complete replacement of spinel by Cr-magnetite. The absence of metamorphic olivine suggests that these serpentinites were most likely formed at slightly higher temperature and pressure conditions compared to the first serpentinite group, corresponding to medium or high temperature blueschist facies metamorphism (˜360-380 ° C; P≈12 kbar)[2,3,4]. These metamorphic conditions are

  18. Three Dimensional Petrography of Kernouve: A Story of Vein Formation, Compaction, and Metamorphism

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, J.M.; Ruzicka, A.; Ebel, D.S.; Thostenson, J.; Rudolph, R.A.; Rivers, M.L.; Macke, R.J.; Britt, D.T. (Central Florida); (AMNH); (Portland SU); (UC); (Fordham)

    2012-03-26

    Metallic veins in ordinary chondrites, like those found in Kernouve (H5, S1), have been attributed to impact or shock processes on the parent body. However, Kernouve is widely known to exhibit few traditional signs of shock loading and has a very old {sup 39}Ar-{sup 40}Ar age (4.46 Ga), making the significance of vein formation in Kernouve unclear. One possibility is early vein formation followed by partial obliteration due to thermal metamorphism. We examine this scenario here. The metal vein in Kernouve can be explained as a pre-metamorphic shock-induced structure, given the evidence for current weak compaction and low shock stage. However, it is not clear how one explains high porosity and low shock stage if the meteorite experienced early shock sufficiently strong to mobilize metal into a vein-like structure. Some combination of unusual conditions during shock (e.g. high temperatures) or mobility of metal during metamorphism may be needed. One possible mechanism occurring early on the H chondrite parent body follows: blocks of slightly indurated but porous material were disturbed by an impact which caused a physical concentration of metallic phases akin to slickensides. Shearing of these materials caused the warm, ductile metal grains to be concentrated on rock surfaces. This process would have imparted the rocks with indicators cited by as shock induced. This event happened early in the history of the chondrite otherwise shearing forces would have imparted a preferred orientation upon the metal grains. Subsequent annealing due to radiogenic heating erased any preferential orientation and further coalesced the vein metal. The final compaction of the material occurred yielding the porosity seen in the samples today. The material escaped other major shock episodes.

  19. mRNA/microRNA Profile at the Metamorphic Stage of Olive Flounder (Paralichthys olivaceus

    Directory of Open Access Journals (Sweden)

    Caixia Xie

    2011-01-01

    Full Text Available Flatfish is famous for the asymmetric transformation during metamorphosis. The molecular mechanism behind the asymmetric development has been speculated over a century and is still not well understood. To date, none of the metamorphosis-related genes has been identified in flatfish. As the first step to screen metamorphosis-related gene, we constructed a whole-body cDNA library and a whole-body miRNA library in this study and identified 1051 unique ESTs, 23 unique miRNAs, and 4 snoRNAs in premetamorphosing and prometamorphosing Paralichthys olivaceus. 1005 of the ESTs were novel, suggesting that there was a special gene expression profile at metamorphic stage. Four miRNAs (pol-miR-20c, pol-miR-23c, pol-miR-130d, and pol-miR-181e were novel to P. olivaceus; they were characterized as highly preserved homologies of published miRNAs but with at least one nucleotide differed. Representative 24 mRNAs and 23 miRNAs were quantified during metamorphosis of P. olivaceus by using quantitative RT PCR or stem-loop qRT PCR. Our results showed that 20 of mRNAs might be associated with early metamorphic events, 10 of mRNAs might be related with later metamorphic events, and 16 of miRNAs might be involved in the regulation of metamorphosis. The data provided in this study would be helpful for further identifying metamorphosis-related gene in P. olivaceus.

  20. Effect of Metamorphic Foliation on Regolith Thickness, Catalina Critical Zone Observatory, Arizona

    Science.gov (United States)

    Leone, J. D.; Holbrook, W. S.; Chorover, J.; Carr, B.

    2016-12-01

    Terrestrial life is sustained by nutrients and water held in soil and weathered rock, which are components of the Earth's critical zone, referred to as regolith. The thickness of regolith in the near-surface is thought to be influenced by factors such as climate, topographic stress, erosion and lithology. Our study has two aims: to determine the effect of metamorphic foliation on regolith thickness and to test an environmental model, Effective Energy Mass Transfer (EEMT), within a zero-order basin (ZOB) in the Santa Catalina Mountains. Seismic refraction and electrical resistivity data show a stark contrast in physical properties, and inferred regolith thickness, on north- versus south-facing slopes: north-facing slopes are characterized by higher seismic velocities and higher resistivities, consistent with thin regolith, while south-facing slopes show lower resistivities and velocities, indicative of deeper and more extensive weathering. This contrast is exactly the opposite of that expected from most climatic models, including the EEMT model, which predicts deeper regolith on north-facing slopes. Instead, regolith thickness appears to be controlled by metamorphic foliation: we observed a general, positive correlation between interpreted regolith thickness and foliation dip within heavily foliated lithologies and no correlation in weakly foliated lithologies. We hypothesize that hydraulic conductivity controls weathering here: where foliation is parallel to the surface topography, regolith is thin, but where foliation pierces the surface topography at a substantial angle, regolith is thick. The effect of foliation is much larger than that expected from environmental models: regolith thickness varies by a factor of 4 (2.5 m vs. 10 m). These results suggest that metamorphic foliation, and perhaps by extension sedimentary layering, plays a key role in determining regolith thickness and must be accounted for in models of critical zone development.

  1. Sulfate incorporation in monazite lattice: potential for dating the cycle of sulfur in metamorphic belts

    Science.gov (United States)

    Laurent, Antonin; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie

    2016-04-01

    Monazite is a common accessory mineral in magmatic and metamorphic rocks that often shows complex chemical zoning at the μm- to nm-scale. The large number of cations that may be accommodated in its lattice, makes monazite particularly responsive to changes in the rock-forming minerals and fluid composition. Chemical zoning resulting from replacement or overgrowth may coincide, or not, with age zoning derived from U-Th-Pb isotopes. In this study, we focus on the potential for monazite to record both the redox condition of its crystalizing medium and an absolute U-Th-Pb isotopic age, during polyphase metamorphism in the Proterozoic province of Rogaland, S. Norway. The metamorphic evolution of several samples is derived from phase diagrams and the oxygen fugacity estimated from the FeO/Fe2O3 ratio measured by titration. Monazite grains were mapped at high spatial resolution for minor elements with electron microprobe, revealing convolute chemical zoning. Some of these zones yield appreciable content of S (up to 7000 ppm), accommodated following the Ca2+ + S6+ = REE3+ + P5+ substitution vector. The incorporation of sulfate in monazite has been subsequently investigated by TEM thanks to site specific FIB preparations. Besides, LA-ICP-MS U-Pb isotopic ages of monazite grains show a remarkable correlation with the sulfate content. It is therefore possible to distinguish different generations of monazite based on their S-content. From our petrological study we conclude that sulfate-bearing monazite reflects incongruent melting of Fe-Cu-As sulfides under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore be used to probe the presence of sulfur in anatectic melts from high-grade terrains at a specific point in time. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  2. Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism

    Science.gov (United States)

    Wang, X.; Baker, I.

    2014-12-01

    The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.

  3. Leaf litter resource quality induces morphological changes in wood frog (Lithobates sylvaticus) metamorphs.

    Science.gov (United States)

    Stoler, Aaron B; Stephens, Jeffrey P; Relyea, Rick A; Berven, Keith A; Tiegs, Scott D

    2015-11-01

    For organisms that exhibit complex life cycles, resource conditions experienced by individuals before metamorphosis can strongly affect phenotypes later in life. Such resource-induced effects are known to arise from variation in resource quantity, yet little is known regarding effects stemming from variation in resource quality (e.g., chemistry). For larval anurans, we hypothesized that variation in resource quality will induce a gradient of effects on metamorph morphology. We conducted an outdoor mesocosm experiment in which we manipulated resource quality by rearing larval wood frogs (Lithobates sylvaticus) under 11 leaf litter treatments. The litter species represented plant species found in open- and closed-canopy wetlands and included many plant species of current conservation concern (e.g., green ash, common reed). Consistent with our hypothesis, we found a gradient of responses for nearly all mass-adjusted morphological dimensions. Hindlimb dimensions and gut mass were positively associated with litter nutrient content and decomposition rate. In contrast, forelimb length and head width were positively associated with concentrations of phenolic acids and dissolved organic carbon. Limb lengths and widths were positively related with the duration of larval period, and we discuss possible hormonal mechanisms underlying this relationship. There were very few, broad differences in morphological traits of metamorphs between open- and closed-canopy litter species or between litter and no-litter treatments. This suggests that the effects of litter on metamorph morphology are litter species-specific, indicating that the effects of changing plant community structure in and around wetlands will largely depend on plant species composition.

  4. Chemical modifications accompanying blueschist facies metamorphism of Franciscan conglomerates, Diablo Range, California

    Science.gov (United States)

    Moore, Diane E.; Liou, J.G.; King, B.-S.

    1981-01-01

    As part of an investigation of blueschist-facies mineral parageneses in pebbles and matrix of some Franciscan metaconglomerates of the Diablo Range, California, textural and major-element chemical analyses were conducted on a number of igneous pebbles that comprise a range of rock types from granite and dacite to gabbro and basalt. Compositions of the igneous pebbles differ significantly from common igneous rocks, particularly with respect to Ca, K, Na, Si and H2O. The SiO2 and H2O contents are characteristically high and the K2O contents low. The CaO and Na2O contents may be relatively enriched or reduced in different pebbles. The igneous pebbles show little evidence of alteration prior to their incorporation into the Franciscan conglomerates, and the chemical modifications are considered to have been produced during metamorphism of the conglomerates to (lawsonite + albite + aragonite ?? jadeite)-bearing assemblages. The observed variations in the pebbles are shown to be functions of: (1) bulk chemistry; (2) the igneous mineral assemblage; (3) the stable metamorphic mineral assemblage; and (4) the composition of pore fluids in the conglomerates. The relative proportions of Mg and Fe in most of the pebbles apparently have been unaffected by the metamorphism, and these parameters, along with other textural and chemical factors, were used to determine the petrogenetic affinities of the igneous pebbles. The plutonic and most of the volcanic pebbles correspond to calc-alkaline rock series, whereas a few volcanic pebbles show apparent Fe-enrichment characteristic of tholeiitic rocks. A continental margin arc-batholith complex would be the best source for these igneous detrital assemblages. Conglomerates in local areas differ in igneous lithologies from conglomerates in other areas and probably differ somewhat in age, perhaps reflecting varying degrees of unroofing of such a complex during deposition of Franciscan sediments. ?? 1981.

  5. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance

    Science.gov (United States)

    Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R.

    2003-01-01

    Metamorphic belts are complex regions where accretion or collision has added to, or thickened, continental crust. Gold-rich deposits can be formed at all stages of orogen evolution, so that evolving metamorphic belts contain diverse gold deposit types that may be juxtaposed or overprint each other. This partly explains the high level of controversy on the origin of some deposit types, particularly those formed or overprinted/remobilized during the major compressional orogeny that shaped the final geometry of the hosting metamorphic belts. These include gold-dominated orogenic and intrusion-related deposits, but also particularly controversial gold deposits with atypical metal associations. There are a number of outstanding problems for all types of gold deposits in metamorphc belts. These include the following: (1) definitive classifications, (2) unequivocal recognition of fluid and metal sources, (3) understanding of fluid migration and focusing at all scales, (4) resolution of the precise role of granitoid magmatism, (5) precise gold-depositional mechanisms, particularly those producing high gold grades, and (6) understanding of the release of CO2-rich fluids from subducting slabs and subcreted oceanic crust and granitoid magmas at different crustal levels. Research needs to be better coordinated and more integrated, such that detailed fluid-inclusion, trace-element, and isotopic studies of both gold deposits and potential source rocks, using cutting-edge technology, are embedded in a firm geological framework at terrane to deposit scales. Ultimately, four-dimensional models need to be developed, involving high-quality, three-dimensional geological data combined with integrated chemical and fluid-flow modeling, to understand the total history of the hydrothermal systems involved. Such research, particularly that which can predict superior targets visible in data sets available to exploration companies before discovery, has obvious spin-offs for global- to deposit

  6. Provenance of the Late Neogene Siwalik sandstone, Kumaun Himalayan Foreland Basin: Constraints from the metamorphic rank and index of detrital rock fragments

    Indian Academy of Sciences (India)

    Poonam Jalal; Sumit K Ghosh

    2012-06-01

    An understanding about lithology, tectonics and unroofing history of provenance is mostly drawn from the compositional and textural parameters of the detrital fragments. We here use different metamorphic ranks (Rm) and metamorphic index (MI) values of rock fragments present in Late Neogene Siwalik sandstone of the Ramganga sub-basin to infer the provenance history. The study indicates maximum contribution from metamorphic ranks 1 and 2 (Rm1 and Rm2; meta-sedimentary and very low grade metamorphic rocks) and minimum from metamorphic rank 4 (Rm4; high metamorphic grade rocks). The metamorphic index (MI) values range from 118 to 224, with an average of 186. The meta-sedimentary and very low-grade metamorphic rock fragments are derived from the Lesser Himalayan domain. The medium-to-high grade metamorphic fragments are derived from the Lesser Himalayan Crystalline bodies. The abundance of Rm2 and Rm3 detrital modes suggest the exhumation of crystalline bodies of the Ramgarh and Almora most likely occurred prior to 7 Ma and subsequently the source area shifted and resulted abundant supply of Rm1 fragments due to the upliftment along Main Boundary Thrust around 5.55 Ma.

  7. A combined diffusion and thermal modeling approach to determine peak temperatures of thermal metamorphism experienced by meteorites

    Science.gov (United States)

    Schwinger, Sabrina; Dohmen, Ralf; Schertl, Hans-Peter

    2016-10-01

    Carbonaceous chondrites are affected to different degrees by thermal and aqueous metamorphism on their parent bodies. However, the degree of alteration has been categorized mainly by relative scales and achieving quantitative information about metamorphic temperature by conventional mineral thermometry is problematic for low petrologic types. We have developed a general approach to estimate the metamorphic peak temperature experienced by type 3 chondrites from diffusion zoning in minerals, and have applied this approach to olivine in type I and type II chondrules of CO3 chondrites. To obtain metamorphic temperatures from diffusion zoning, we have combined diffusion modeling with thermal modeling of the meteorite parent body. The integrated diffusion coefficient over time (Γ) was identified as a useful parameter to quantify the extent of chemical change by diffusion occurring in a mineral during a given thermal history. Knowing the temperature dependence of the diffusion coefficient, Γ values can be calculated for each thermal history and be compared to the Γ values obtained from diffusion modeling. For thermal histories realistic for the parent body, Γ depends primarily on the metamorphic peak temperature, so that Γ values determined from diffusion profiles in meteorite minerals can be directly related to the metamorphic peak temperature. This general approach is relatively insensitive to uncertainties in the input parameters for the thermal model. We found that chemical zoning in type I and type II chondrule olivine of the CO chondrites Kainsaz and Lancé was largely influenced by solid state diffusion, which is evident from the observed correlation of zoning anisotropy with the crystallographic orientation. Chemical zoning in type II chondrule olivine is mainly igneous for CO chondrites of petrologic types up to at least 3.2 (Kainsaz) and was influenced only minor by diffusion during parent body metamorphism. Fe-Mg zoning in type II chondrule olivine and

  8. On ultrahigh temperature crustal metamorphism:Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings

    Institute of Scientific and Technical Information of China (English)

    David E. Kelsey; Martin Hand

    2015-01-01

    Ultrahigh temperature (UHT) metamorphism is the most thermally extreme form of regional crustal metamorphism, with temperatures exceeding 900 ?C. UHT crustal metamorphism is recognised in more than 50 localities globally in the metamorphic rock record and is accepted as‘normal’ in the spectrum of regional crustal processes. UHT metamorphism is typically identified on the basis of diagnostic mineral assemblages such as sapphirine þ quartz, orthopyroxene þ sillimanite ? quartz and osumilite in MgeAl-rich rock compositions, now usually coupled with pseudosection-based thermobarometry using internally-consistent thermodynamic data sets and/or Al-in-Orthopyroxene and ternary feldspar ther-mobarometry. Significant progress in the understanding of regional UHT metamorphism in recent years includes: (1) development of a ferric iron activityecomposition thermodynamic model for sapphirine, allowing phase diagram calculations for oxidised rock compositions;(2) quantification of UHT conditions via trace element thermometry, with Zr-in-rutile more commonly recording higher temperatures than Ti-in-zircon. Rutile is likely to be stable at peak UHT conditions whereas zircon may only grow as UHT rocks are cooling. In addition, the extent to which Zr diffuses out of rutile is controlled by chemical communication with zircon; (3) more fully recognising and utilising temperature-dependent thermal properties of the crust, and the possible range of heat sources causing metamorphism in geodynamic modelling studies; (4) recognising that crust partially melted either in a previous event or earlier in a long-duration event has greater capacity than fertile, unmelted crust to achieve UHT conditions due to the heat energy consumed by partial melting reactions;(5) more strongly linking UePb geochronological data from zircon and monazite to PeT points or path segments through using Y þ REE partitioning between accessory and major phases, as well as phase diagrams incorporating Zr and REE

  9. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings

    Directory of Open Access Journals (Sweden)

    David E. Kelsey

    2015-05-01

    Full Text Available Ultrahigh temperature (UHT metamorphism is the most thermally extreme form of regional crustal metamorphism, with temperatures exceeding 900 °C. UHT crustal metamorphism is recognised in more than 50 localities globally in the metamorphic rock record and is accepted as ‘normal’ in the spectrum of regional crustal processes. UHT metamorphism is typically identified on the basis of diagnostic mineral assemblages such as sapphirine + quartz, orthopyroxene + sillimanite ± quartz and osumilite in Mg–Al-rich rock compositions, now usually coupled with pseudosection-based thermobarometry using internally-consistent thermodynamic data sets and/or Al-in-Orthopyroxene and ternary feldspar thermobarometry. Significant progress in the understanding of regional UHT metamorphism in recent years includes: (1 development of a ferric iron activity–composition thermodynamic model for sapphirine, allowing phase diagram calculations for oxidised rock compositions; (2 quantification of UHT conditions via trace element thermometry, with Zr-in-rutile more commonly recording higher temperatures than Ti-in-zircon. Rutile is likely to be stable at peak UHT conditions whereas zircon may only grow as UHT rocks are cooling. In addition, the extent to which Zr diffuses out of rutile is controlled by chemical communication with zircon; (3 more fully recognising and utilising temperature-dependent thermal properties of the crust, and the possible range of heat sources causing metamorphism in geodynamic modelling studies; (4 recognising that crust partially melted either in a previous event or earlier in a long-duration event has greater capacity than fertile, unmelted crust to achieve UHT conditions due to the heat energy consumed by partial melting reactions; (5 more strongly linking U–Pb geochronological data from zircon and monazite to P–T points or path segments through using Y + REE partitioning between accessory and major phases, as well as phase

  10. Comparison of thermoluminescence (TL) and cathodoluminescence (ESEM-CL) properties between hydrothermal and metamorphic quartzes

    Energy Technology Data Exchange (ETDEWEB)

    Topaksu, M., E-mail: mtopaksu@adiyaman.edu.tr [Department of Physics, Faculty of Science and Art, Adiyaman University, 02040 Adiyaman (Turkey); Correcher, V. [CIEMAT, Av. Complutense 22, Madrid 28040 (Spain); Garcia-Guinea, J. [CSIC, Museo Nacional de Ciencias Naturales, C/Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Topak, Y. [Adiyaman University, Vocational High School, 02040 Adiyaman (Turkey); Goeksu, H.Y. [Department of Physics, Faculty of Science and Art, Adiyaman University, 02040 Adiyaman (Turkey)

    2012-06-15

    This paper reports on the Thermoluminescence (TL) and Cathodoluminescence (CL) emission of well-characterized hydrothermal milky quartz specimens from Hakkari in Turkey, labeled THQ, and Madrid in Spain, labeled SHQ, and metamorphic quartz from Madrid, in Spain, labeled SMQ. Both hydrothermal and metamorphic quartz samples display similar UV-IR CL spectra consisting of five groups of components centered at 330 nm and 380 nm linked to [AlO{sub 4}] Degree-Sign centers, 420 nm due to intrinsic defects such as oxygen vacancies, lattice defects, and impurities which modify the crystal structure, 480 nm associated with [AlO{sub 4}] Degree-Sign centers of substitutional Al{sup 3+}, and a red broad band related to the hydroxyl defects in the quartz lattice as precursors of non-bridging oxygen hole centers (NBOHC) and substitutional point defects. The Turkish quartz specimen exhibits higher CL intensity in the UV region (up to 330 nm) than the Spanish specimens probably linked to the presence of Ca (0.95% in THQ and less than 0.1% in SHQ and SMQ). At wavelengths greater than 330 nm, SMQ (formed at high pressure 6000 bars and temperatures over 500-600 Degree-Sign C) shows higher intensity than the hydrothermal (growth at 2000 bars and temperatures 200-300 Degree-Sign C) samples associated with the formation process. The natural blue TL glow curves of both THQ and SHQ display a weaker TL intensity than the SMQ, attributable to the Al (0.32%), Ti (0.14%), K (0.01%) and Zr (76 ppm) content. It is shown that mineralogical formation, crystallinity index and the content of the impurities seem to be the main parameters of influence in the shape intensity of the CL and TL glow curve emission. - Highlights: Black-Right-Pointing-Pointer We reported on the TL and CL emission of well-characterized hydrothermal milky and metamorphic quartz specimens. Black-Right-Pointing-Pointer Hydrothermal and metamorphic quartz samples displayed similar UV-IR CL spectra. Black

  11. Tectono-metamorphic evolution of the Paleoproterozoic ultra-high temperatures Khondalite Belt, North China Craton.

    Science.gov (United States)

    Lobjoie, Cyril; Trap, Pierre; Lin, Wei; Goncalves, Philippe; Marquer, Didier

    2016-04-01

    In the North China Craton, the Khondalite belt is a famous Paleoproterozoic domain where ultra-high temperatures (UHT) metamorphism was extensively documented over an area of 1000 square kilometers. Numerous petrological analyses argue for P-T conditions around 0.6-0.8GPa for temperature above 900°C for peak metamorphism. Unfortunately, the scarcity of available structural data prevents any discussion about thermo-mechanical behavior of the orogenic crust suffering high thermal regime. In this contribution, we present a detail structural analysis of the Khondalite belt that allowed to distinguish two main deformation events, named D1 and D2. The deformation D1 led to the formation of the S1 foliation that dips weakly toward the South-East. S1 holds a N70°E trending mineral and stretching L1 lineation that is sub-horizontal or plunges weakly to the East. The D1 fabrics is reworked by the dextral transpressional D2 deformation responsible for the development of km-scale S2-C2-C'2 system. The N30°E trending S2 foliation is sub-vertical to highly dipping toward the East. Kilometer-scale C2 and C'2 shear zones are sub-vertical and trend N70°E and N90-100°E, respectively. Petrological study and phase diagram modeling suggest that both D1 and D2 developed at UHT conditions. Garnet and spinel-bearing migmatites recording D1 fabric yield 0.7GPa for ca. 950-1015°C P-T conditions. Within D2 shear zones, numerous granitoids and mafic bodies are injected. Mafic intrusions are responsible for UHT contact metamorphism that can occur at low pressure as recorded in an olivine-bearing migmatite. This may suggest that the D2 S-C-C' system form an interconnected network of kilometer scale shear zones that act as pathways for percolation of mafic magmas from the mantle up to the base of the upper crust. Our results allow to discuss the role of localized heat advection along crustal-scale shear zones as a possible mechanism responsible for UHT metamorphism at regional scale, with

  12. The Texture,Mineral Assemblages and Origin of Metamorphic Peridotite from Kuda Ophiolite,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    沈步明; 周云生; 等

    1997-01-01

    There are two grades of network-type texture in metamorphic peridotite from the Kuda ophiolite,Xinjiang,China,The first graduation consists of coarse-grained olivine with plastic deformation fabrics,orthopyroxene and minor clinopyroxene and Cr-spinel.The second graduation consists of small minerals filling among the mineral grains of the first graduation.Four kinds of assemblages containing tremolite have been discovered in the second graduation,which were formed during mantle partial melting and mantle metasomatism of a highly depleted peridotite.

  13. Sub—microscopic Textures and Retrogressive Metamorphic Origin of Longxi Nephrite

    Institute of Scientific and Technical Information of China (English)

    王春云; 任国浩; 等

    1990-01-01

    Nephrite specimens from Longxi,sichuan,prepared by ion-thinning and dispersion techniques have been studied using TEM and SAED.A series of sub-microscopic textures such as (010)multiple-chain faults and related fault terminations.(001)mechanical twinning,sub-grain boundaries or fault walls,tremolite fibrous pseudoform of talc and intergrowth of tremolite and talc with (010)as interface are revealed .By analogy of metallographic textures,characteristics and mechanisms of the process of "deformation-recovery-recrystallization" are discussed in detail,Topotactic reaction mechanism by which tremolite retrogresses to talc was studied and a retrogressive metamorphic origin of Longxi nephrite is proposed.

  14. The Kenna ureilite - An ultramafic rock with evidence for igneous, metamorphic, and shock origin

    Science.gov (United States)

    Berkley, J. L.; Brown, H. G.; Keil, K.; Carter, N. L.; Mercier, J.-C. C.; Huss, G.

    1976-01-01

    Ureilites are a rare group of achondrites. They are composed mainly of olivine and pigeonite in a matrix of carbonaceous material, including graphite, lonsdaleite, diamond, and metal. In most respects Kenna is a typical ureilite with the requisite mineralogical and chemical properties of the group. Differences of the Kenna ureilite from previously studied ureilites are related to a greater density, the occurrence of exceedingly minute quantities of feldspar, and a very strong elongation lineation of the silicate minerals. A description is presented of a study which indicates a complex history for Kenna, including igneous, mild metamorphic, and shock processes.

  15. Migmatization and low-pressure overprinting metamorphism as record of two pre-Cretaceous tectonic episodes in the Santander Massif of the Andean basement in northern Colombia (NW South America)

    Science.gov (United States)

    Zuluaga, C. A.; Amaya, S.; Urueña, C.; Bernet, M.

    2017-03-01

    The core of the Santander Massif in the northern Andes of Colombia is dominated by migmatitic gneisses with a 7.5 kbar. Lithologies are overprinted by low-pressure metamorphism, related to extensive Jurassic intrusions and linked with growth of cordierite and equilibration of low-pressure mineral assemblages, recorded metamorphic conditions are < 750 °C and < 6.5 kbar. Observed leucosomes display significant compositional variations and can be grouped in three groups: i) Group One leucosomes with high total REE content, high LREE/HREE, and negative Eu anomaly, ii) Group Two leucosomes with low total REE, low LREE/HREE, and positive Eu anomalies, and iii) Group Three leucosomes with relatively low LREE/HREE and strong positive Eu anomaly. Geochemical data support the interpretation that Group Two leucosomes crystallized from melts originated in a partial melting event affecting mostly pelitic and quartz-feldspathic lithologies with fluid-present melting reactions. The evaluation of mesosomes (amphibolite, pelitic and quartz-feldspathic rocks) as potential protoliths or restites indicates that at least two pelitic samples of the analyzed lithologies have characteristics consistent with the occurrence of fluid-present melting reactions involving quartz and feldspar. The leucosomes produced by crystallization of modified partial melts contrast with several other leucosomes that were injected; however, in some cases the melts crystallized as injected leucosomes show consistent geochemistry with partial melting of lithologies geochemically similar to the ones observed in the unit. The migmatization and the low pressure metamorphic overprint are related here to two main tectonic events: an early Paleozoic tectonic pulse produced by subduction of the oceanic crust of the Iapetus Ocean beneath northwestern Gondwana, and an Upper Triassic to Lower Jurassic tectonic pulse produced by subduction of oceanic crust of the proto-Pacific ocean beneath western Pangaea.

  16. Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: Ion probe in situ analyses

    Institute of Scientific and Technical Information of China (English)

    CHEN Daogong; Deloule Etienne; CHENG Hao; XIA Qunke; WU Yuanbao

    2003-01-01

    151 in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogeneity inδ18O values, with variation in different rocks from -8.5‰ to +9.7‰ and within one sample from 2‰ to 12‰. No measurable difference inδ18O was observed between protolith magmatic (detrital) zircons and metamorphic recrystallized zircons within analytical uncertainties from the ion micro-probe measurements. This indicates that the metamorphic zircons have inherited the oxygen isotopic compositions of protolith zircons despite the HP to UHP metamorphism. According to their protolith ages from zircon U-Pb in situ dating by the same ion micro-probe, two groups of oxygen isotope composition are recognized, with one having δ18O values of 6‰-7‰ for old protolith of 1.9-2.5 Ga ages and the other 0‰-2‰ for young protolith of 0.7-0.8 Ga ages. The latter anomalously lowδ18O values of zircons indicate that the magma has had the obvious involvement of meteoric water when forming the young protolith of high-grade metamorphic rocks. This may be correlated with the snowball Earth event occurring in South China and the world elsewhere during the Neoproterozoic.

  17. Extensive seismic anisotropy in the lower crust of Archean metamorphic terrain, South India, inferred from ambient noise tomography

    Science.gov (United States)

    Das, Ritima; Rai, S. S.

    2017-01-01

    We use Rayleigh and Love wave empirical Green's function (EGF) recovered from the cross correlation of seismic ambient noise to study the spatial distribution of radial anisotropy in the southern India crust. The corresponding dispersion curves in the period 2 to 32 s are measured from ambient noise data recorded at 57 sites, and the strength of anisotropy computed from the discrepancy between shear velocities obtained from Rayleigh (VSV) and Love (VSH) at various depths down to 40 km. In upper crust (up to a depth of 20 km) the region is characterized by anisotropy coefficients of - 2 to + 2% that could be explained due to a combination of fluid-filled open cracks and foliated metamorphic rocks. At deeper levels (beyond 20 km), except for the Archean metamorphic terrain, most part of south India has anisotropies of up to 5%. This may be due to rocks with varying degree of metamorphism. Beneath the Archean metamorphic terrain, the anisotropy is recorded up to 9% in the depth range of 20-40 km. This high anisotropy is unlikely to be the manifestation of any recent geodynamic process, considering that the region has low surface heat flow ( 30 mW/m2). We propose that the observed strong anisotropy in the metamorphic belt of southern India crust could best be explained as due to the presence of micaceous minerals or amphiboles in the deep crust that are formed possibly during the evolution of granulite terrain at 2.5 Ga.

  18. METAMORPHIC PETROLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110122 Cai Zhihui(Key Laboratory of Continental Dynamics of the Ministry of Land and Resources,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China);Li Huaqi The Formation Mechanism of Garnet Porphyroblast with Snowball Structure:A Case Study from the Quartz Schist in West Indus-Yarlung Tsangpo Suture Zone,Namche Barwa,Tibet(Earth Science Frontiers,ISSN1005-2321,CN11-3370/P,17(1),2010,p.61-73,13 illus.,33 refs.)Key words:suture zones,TibetThe quartz schist from Mil

  19. METAMORPHIC PETROLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132334 Chai Fengmei(Key Laboratory of Geodynamic Processes and Metallogenic Prognosis of the Central Asian Orogenic Belt,Xinjiang University,Urumqi 830049,China);Yang Fuquan Geochronology and Genesis of Meta-Felsic Volcanic Rocks from the Kangbutiebao Formation in Chonghuer Basin on Southern Margin of Altay,Xinjiang(Geological

  20. METAMORPHIC PETROLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090911 Chen Junlu(Xi’an Institute of Geology and Mineral Resources,China Geological Survey,Xi’an 710054,China);Xu Xueyi Geological Features and SHRIMP U-Pb Zircon Age of the Yanwan-Yinggezui Ophiolitic M(?)lange in the Taibai Area,Westren Qinling,China(Geogolical Bulletin of China, ISSN1671-2552,CN11-4648/P,27(4),

  1. METAMORPHIC PETROLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151583 Cui Jianjun(Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing100081,China);Dong Shuwen135~130 Ma:The Timing of Slab Breakoff Again in the Dabie Mountains?(Acta Geoscientica Sinica,ISSN1006-3021,CN11-

  2. Over 400 m.y. metamorphic history of the Fennoscandian lithospheric segment in the Proterozoic (the East European Craton)

    Science.gov (United States)

    Skridlaite, G.; Bogdanova, S.; Taran, L.; Baginski, B.; Krzeminska, E.; Wiszniewska, J.; Whitehouse, M.

    2009-04-01

    Several Palaeoproterozoic terranes in the Fennoscandian lithospheric segment of the East European Craton (EEC) evolved differently prior to their final amalgamation at c. 1.8 Ga. South-westward younging of the major tectono-thermal events characterizes the Baltic -Belarus region between the Baltic and Ukrainian Shields of the EEC. While at c.1.89-1.87 Ga and 1.85-1.84 Ga rocks of some northern and eastern terranes (Estonia, Belarus and eastern Lithuania) experienced syncollisional, moderate P metamorphism, subduction-related volcanic island arc magmatism still dominated southwestern terranes in Lithuania and Poland. The available age determinations of metamorphic zircon (SIMS/NORDSIM and TIMS methods, Stockholm, SHRIMP method, RSES, ANU, Canberra) and metamorphic monazite (TIMS, Stockholm and EPMA method, Warsaw University) allow to distinguish several metamorphic events related to major orogenic processes: - 1.90-1.87 Ga amphibolite-facies H/MP metamorphism occurred along with emplacements of juvenile TTG-type granitoids in the North Estonian and Lithuanian-Belarus terranes. They are coeval with the main accretionary growth of the crust in the Svecofennian Domain in the Baltic Shield (e.g. Lahtinen et al., 2005). - 1.84-1.79 Ga high-grade metamorphism affected sedimentary and igneous rocks in almost all the terranes and is assumed to have been related to the major aggregation of the EEC (Bogdanova et al, 2006, 2008). In the metasedimentary granulites of western Lithuania, a prograde metamorphism commenced with monazite growth prior garnet at 1.84-1.83 Ga. The sediments and mafic igneous rocks in Lithuania, felsic igneous rocks in NE Poland underwent peak metamorphism and deformation at 1.81-1.79 Ga (zircon and monazite ages). The 1.83-1.79 Ga metamorphism has the same age as a metamorphic imprint and strong shearing of the crust in central Sweden (Andersson et al., 2004). The postcollisional granulite metamorphism of mafic intrusions at 1.80-1.79 Ga in Belarus

  3. Comodules over semiperfect corings

    CERN Document Server

    Caenepeel, S

    2011-01-01

    We discuss when the Rat functor associated to a coring satisfying the left $\\alpha$-condition is exact. We study the category of comodules over a semiperfect coring. We characterize semiperfect corings over artinian rings and over qF-rings.

  4. Coring Sample Acquisition Tool

    Science.gov (United States)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  5. Petrographic (thin section) notes on selected samples from hornblende-rich metamorphic terranes in the southernmost Sierra Nevada, California

    Science.gov (United States)

    Ross, Donald Clarence

    1983-01-01

    Medium- to high-grade metamorphic rocks that are commonly hornblende-rich, and probably largely of 'oceanic' affinity, are widespread in the southernmost Sierra Nevada, California. These metamorphic rocks are largely amphibolite, mafic and felsic gneiss, granofels, and hypersthene granulite The mineral assemblages suggest that these rocks are at least in part of granulite grade, represent relatively deep crustal levels, and may be exposed parts of the root zone of the Sierra Nevada batholith. Access to the largest area of these rocks is relatively limited and for this reason petrographic data (textures and mineral content based on thin section study) are summarized here. Directions to readily accessible localities are presented, however, where the major metamorphic rock types can be examined and sampled.

  6. Tomography-based observation of sublimation and snow metamorphism under temperature gradient and advective flow

    Directory of Open Access Journals (Sweden)

    P. P. Ebner

    2015-09-01

    Full Text Available Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray micro-tomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. The sublimation of water vapor for saturated air flowing across the snow sample was experimentally determined via variations of the porous ice structure. The results showed that the exothermic gas-to-solid phase change is favorable vis-a-vis the endothermic solid-to-gas phase change, thus leading to more ice deposition than ice sublimation. Sublimation has a marked effect on the structural change of the ice matrix but diffusion of water vapor in the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong reposition process of water molecules on the ice grains is relevant for atmospheric chemistry.

  7. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet

    Institute of Scientific and Technical Information of China (English)

    丁林; 钟大赉

    1999-01-01

    A large area of high-pressure garnet-kyanite granulite is exhumed in the Namjagbarwa area, which provides a window for observing the deep crust rocks and structures of the Tibetan Plateau. Three mineral assemblages can have been distinguished in the garnet-kyanite HP granulites by petrography, i.e. M1. Mus+Bi+P1+Q, M2. Gt+Ky +perphite/antiperphite+Rt+Q, M3. Gt+Sill+Cord+Sp+Ilm±Opx. Metanmrphic conditions of the peak granulite assemblages (M2) formatted by thickening of crusts, with available isotopic ages of 45-69 Ma, are at 1.4-1.8 Gpa and 750--850℃ . Their retrograde assemblages overprinted by deconpressure during the uplift, with available isotopic ages of 18-23 Ma, were formed at 0.60-0.70 Gpa, 621-726℃ . The thermobarometric evaluation, petrogenetic grid and corresponding isotopic ages indicate a clockwise isothermal decompression metamorphic path. The HP granulite metamorphic history indicates that the collision of the Indian Plate with the Eurasian Plate had begun at 70 Ma, far earlier tha

  8. Some aspects of the role of intergranular fluids in the compositional evolution of metamorphic rocks

    Indian Academy of Sciences (India)

    Sumit Chakraborty; Ralf Dohmen

    2001-12-01

    Minerals that react with each other during the progressive evolution of metamorphic terranes are not always in physical contact. As such, an "intergranular fluid" could play a major role in element transfer and chemical evolution. However, the nature of this uid and its specific role remains somewhat elusive. Recent experiments in our laboratory shed some light on the behavior of such a uid. Here we present a simple mathematical model which accounts for diffusion within crystals and fluid, solubility in the fluid and mass balance between the various reservoirs. The model elucidates the nature of element exchange between two minerals via the mediation of an intergranular fluid. It is shown that a coupling of thermodynamics and kinetics controls the evolution of the system and the concentration of an element in the intergranular fluid is a key parameter of interest. The results have important implications for standard tools of metamorphic petrology such as geothermometers and barometers, geospeedometry and the closure of isotopic systems. For example, homogeneity of mineral grains may be a poor criterion for equilibrium and the rim compositions of minerals showing diffusion zoning may be out of equilibrium with distant exchange partners, even in the presence of a uid in which transport is fast.

  9. The Behavior of Fe—Ni Metal during Thermal Metamorphism of the Jilin Chondrite

    Institute of Scientific and Technical Information of China (English)

    谢先德; 王道德

    1992-01-01

    Metal grains in stony meteorites are relatively movable during thermal netamorphism(Wood,1967;Xie and Wang,1979;Xie,1986).In view of the fact that the Jilin meteorite is the largest in the world known up to now,its main body weighing 1770kg and its total volume amounting to 117×93×84cm3,a de-tailed investigation into such a huge meteorite body would undoubtedly provide us with a lot of clues and information valuable in the study of the behavior of Fe-Ni metal during thermal metamorphism of meteorites.Our recent investigation has revealed that during thermal metamorphism of the Jilin chondirte fine Fe-Ni metal particles migrated easily by diffusion in solid state,and subsequently aggregated into metal nodules about 5-10mm in length,and the largest nodule we found is 30mm in size (Photo1).In this paper we present some new results of our study concerning the migra-tion and concentration of Fe-Ni metal in the Jilin chondrite on the basis of op-tical,SEM observations and high-temperature-high pressure as well as shock loading experiments.

  10. Structure and metamorphism of the Gran Paradiso massif, western Alps, Italy

    Science.gov (United States)

    Brouwer, F. M.; Vissers, R. L. M.; Lamb, W. M.

    2002-05-01

    The pressure-temperature-time trajectory and structural history of high-pressure rocks presently exposed in the Gran Paradiso massif provide constraints on the processes that caused their thermal evolution and exhumation. High-pressure metamorphism of the rocks is found to have culminated at temperatures around 525 °C and pressures of 12 to 14 kbar. After high-pressure metamorphism, the rocks cooled during initial decompression, while undergoing top-to-the-west shear on chlorite-bearing shear bands and larger scale shear zones. Biotite-bearing shear bands and larger shear zones related to top-to-the-east deformation affected the Gran Paradiso massif during reheating to temperatures of around 550 °C at 6 to 7 kbar. Further exhumation occurred at relatively high temperatures. A potentially viable explanation of the observed stage of reheating before final cooling and exhumation is breakoff of a subducting slab in the upper mantle, allowing advective heat transfer to the base of the crust. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00410-001-0357-6.

  11. Microprobe monazite dating and the ages of some granitic and metamorphic rocks from southeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Vlach, Silvio Roberto Farias; Gualda, Guilherme Augusto Rosa [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias]. E-mail: srfvlach@usp.br

    2000-03-01

    Electron microprobe monazite crystallization ages are presented for selected granite and metamorphic rock samples from the Socorro and Guaxupe Nappes and the Alto Rio grande and Ribeira Belts, southeastern Brazil. Results are consistent with ages close to 625 Myr of the main metamorphic episode in the nappe structures. Anatetic granite magmatic events in these terranes and in the Alto Rio Grande Belt were roughly coeval, most samples sharing ages between 610-625 ({+-} 15) Myr. A crust-derived granite and a granite contact aureole from the Ribeira Belt have ages of 600-608 ({+-} 15) Myr., suggesting that the main granite magmatism in this belt was somewhat younger, probably contemporaneous with the late orogenic phase in the nappe domains. Some regional and granite samples from all these terranes point to possible inheritance or incompletely monazite grains and intra-grain domains giving older ages, up to 690 Myr. The microprobe age results agree very well with independent isotopic data, reinforcing the applicability of the method to highlight an overall picture of main geochronological trends within the continental crust. The high spatial resolution of the probe should play an important role in understanding geochronological patterns of metasedimentary rocks and related migmatites and granites, as these rocks and their minerals often present chemical and isotopic domains related to contrasting geological events, not always recognized by conventional dating schemes. (author)

  12. Ubiquitous Burgess Shale-style "clay templates" in low-grade metamorphic mudrocks

    Science.gov (United States)

    Page, Alex; Gabbott, Sarah E.; Wilby, Philip R.; Zalasiewicz, Jan A.

    2008-11-01

    Despite the Burgess Shale's (British Columbia, Canada) paleobiologicalimportance, there is little consensus regarding its taphonomy.Its organic fossils are preserved as compressions associatedwith phyllosilicate films ("clay templates"). Debate focuseson whether these templates were fundamental in exceptional preservationor if they formed in metamorphism, meaning that it is importantto establish the timing of their formation relative to decay.An early diagenetic origin has been proposed based on anatomy-specificvariations in their composition, purportedly reflecting contrastsin decay. However, we demonstrate that these films bear a remarkablesimilarity to those that occur on organic fossils in graptoliticmudrocks and form as a normal product of low-grade metamorphism.Such phyllosilicates may also occur within voids created byvolume loss in maturation, a process that may have aided theirformation. In bedding-plane assemblages from graptolitic mudrocks,different taxa are associated with distinct phyllosilicates.This likely reflects stepwise maturation of their constituentkerogens in an evolving hydrothermal fluid, with different phyllosilicatesforming as each taxon progressively underwent maturation. Theseobservations provide an analogue for the distribution and compositionof phyllosilicates on Burgess Shale fossils, which we interpretas reflecting variations in the maturation of their constituenttissues. Thus, their clay templates seem unremarkable, formingtoo late to account for exceptional preservation.

  13. Ontogeny of the vertebral column of Eleutherodactylus johnstonei (Anura: Eleutherodactylidae) reveals heterochronies relative to metamorphic frogs.

    Science.gov (United States)

    Meza-Joya, Fabio Leonardo; Ramos-Pallares, Eliana Patricia; Ramírez-Pinilla, Martha Patricia

    2013-07-01

    Over the last century, the morphogenesis of the vertebral column has been considered as a highly conserved process among anurans. This statement is based on the study of few metamorphic taxa, ignoring the role of developmental mechanisms underlying the evolution of specialized life-histories. Direct development in anurans has been regarded as evolutionarily derived and involves developmental recapitulation and repatterning at different levels in all amphibian taxa studied so far. Herein, we analyze the vertebral column morphogenesis of the direct-developing frog Eleutherodactylus johnstonei, describing the sequence of chondrification and ossification, based on cleared and double-stained specimens from early stage embryos to adults. In general, our results show that the morphogenesis of the vertebral column in E. johnstonei recapitulates the ancestral tadpole-like pattern of development. However, the analysis of the sequence of events using heterochrony plots shows important heterocronies relative to metamorphic species, such as a delay in the chondrification of the vertebral centra and in osteogenesis. These ontogenetic peculiarities may represent derived traits in direct-developing frogs and are possibly correlated with its unusual life history. In addition, several features of the vertebral column of E. johnstonei are highly variable from its typical morphology. We report some malformations and small deviations, which do not seem to affect the survival of individuals. These anomalies have also been found in other frogs, and include many vertebral defects, such as vertebral fusion, and vertebral preclusion and/or induction.

  14. Thermal implications of metamorphism in greenstone belts and the hot asthenosphere-thick continental lithoshere paradox

    Science.gov (United States)

    Morgan, P.

    1986-01-01

    From considerations of secular cooling of the Earth and the slow decay of radiogenic heat sources in the Earth with time, the conclusion that global heat loss must have been higher in the Archean than at present seems inescapable. The mechanism by which this additional heat was lost and the implications of higher heat low for crustal temperatures are fundamental unknowns in our current understanding of Archean tectonics and geological processes. Higher heat loss implies that the average global geothermal gradient was higher in the Archean than at present, and the restriction of ultramafic komatiites to the Archean and other considerations suggests that the average temperature of the mantle was several hundred degrees hotter during the Archean than today. In contrast, there is little petrologic evidence that the conditions of metamorphism or crustal thickness (including maximum crustal thickness under mountains) were different in archean continental crust from the Phanerozoic record. Additionally, Archean ages have recently been determined for inclusions in diamonds from Cretaceous kimeberlites in South Africa, indicating temperatures of 900 to 1300 at depths of 150 to 215 km (45 to 65 kbar) in the Archean mantle, again implying relatively low geothermal gradients at least locally in the Archean. The thermal implications of metamorphism are examined, with special reference to greenstone belts, and a new thermal model of the continental lithosphere is suggested which is consistent with thick continental lithosphere and high asthenosphere temperatures in the Archean.

  15. Palaeoproterozoic prograde metasomatic-metamorphic overprint zones in Archaean tonalitic gneisses, eastern Finland

    Directory of Open Access Journals (Sweden)

    Pajunen, M.

    1999-06-01

    Full Text Available Several occurrences of coarse-grained kyanite rocks are exposed in the Archaean area of eastern Finland in zones trending predominantly northwest-southeast that crosscut all the Archaean structures and, locally, the Palaeoproterozoic metadiabase dykes, too. Their metamorphic history illustrates vividly Palaeoproterozoic reactivation of the Archaean craton. The early-stage kyanite rocks were formed within the framework of ductile shearing or by penetrative metasomatism in zones of mobile brecciation. Static-state coarse-grained mineral growth during the ongoing fluid activity covered the early foliated fabrics, and metasomatic zoning developed. The early-stage metasomatism was characterized by Si, Ca and alkali leaching. The late-stage structures are dilatational semi-brittle faults and fractures with unstrained, coarse-grained fabrics often formed by metasomatic reactions displaying Mg enrichment along grain boundaries. Metamorphism proceeded from the low-T early-stage Chl-Ms-Qtz, Ky/And-St, eventually leading to the high-T late-stage Crd-Sil assemblages. The thermal peak, at 600-620°C/4-5 kbar, of the process is dated to 1852+2 Ma (U-Pb on xenotime. Al-silicate growth successions in different locations record small variations in the Palaeoproterozoic clockwise P-T paths. Pressure decreased by c. 1 kbar between the early and late stage, i.e. some exhumation had occurred. Fluid composition also changed during the progression, from saline H2O to CO2, rich. Weak retrograde features of high-T phases indicate a rapid cooling stage and termination of fluid activity. The early-stage Ky-St assemblages resemble those described from nearby Palaeoproterozoic metasediments in the Kainuu and North Karelia Schist Belts, where the metamorphic peak was achieved late with respect to Palaeoproterozoic structures. The static Ky-St metamorphism in kyanite rocks was generated by fluid-induced leaching processes at elevated T during the post-orogenic stage after

  16. Mesozoic metamorphism and its tectonic implication along the Solonker suture zone in central Inner Mongolia, China

    Science.gov (United States)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang; Chen, Yaping

    2016-09-01

    The Xing'an-Inner Mongolia Orogenic Belt (XIMOB) exposed in the eastern section of the Central Asian Orogenic Belt (CAOB) is generally thought to have resulted from closure of the Paleo-Asian Ocean. However, disputations still exist on the age and detailed tectonic processes involved in its final amalgamation. The Solonker suture zone in the central Inner Mongolia, once recognized as the major paleo-plate boundary recording the terminal collision of the XIMOB, is characterized by extensive regional low-temperature metamorphism of greenschist to epidote-amphibolite facies with local presence of blueschists, which lacks systematic study. Four metabasite and garnet-mica schist samples were studied for determination of metamorphic P-T evolution using pseudosection and conventional thermobarometry. The two metabasite samples from Wulangou and Daqing Pasture contain actinolite, albite, epidote, chlorite and hornblende (in Daqing Pasture) and are estimated to have peak P-T conditions of 5.2-5.9 kbar/415-450 °C in Wulangou and 7.0-7.9 kbar/470-475 °C in Daqing Pasture. Two garnet-mica schist samples from Shuangjing (or Shuangjing schist) contain garnet porphyroblasts, muscovite, quartz, plagioclase, chlorite with or without potassium feldspar, biotite, and calcite, and are modeled to record prograde P-T vectors respectively of 3.0 kbar/482 °C-3.3 kbar/495 °C and 4.2 kbar/478 °C-4.8 kbar/483 °C, followed by near-isothermal decompression. The zircon U-Pb dating analyses suggest that the metamorphism probably occurred soon afterwards in the Early Mesozoic. The peak P-T conditions for the metabasite and garnet-mica schist samples yield thermal gradients respectively of 18-22 °C/km and 26-33 °C/km, being intermediate and low P/T series, and the metamorphic evolution in these rocks characteristic of clockwise P-T paths may correspond to tectonic thickening and thinning processes. The extensive low-temperature metamorphism of intermediate to low P/T types along the

  17. Syn-collapse eclogite metamorphism and exhumation of deep crust in a migmatite dome: The P-T-t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central)

    Science.gov (United States)

    Whitney, Donna L.; Roger, Françoise; Teyssier, Christian; Rey, Patrice F.; Respaut, J.-P.

    2015-11-01

    In many orogens, high-pressure (HP) metamorphic rocks such as eclogite occur as lenses in quartzofeldspathic gneiss that equilibrated at much lower pressures. The pressure-temperature-time (P-T-t) history of eclogite relative to host gneiss provides information about mechanisms and timescales of exhumation of orogenic crust. The Montagne Noire of the southern Massif Central, France, is an eclogite-bearing gneiss (migmatite) dome located at the orogen-foreland transition of the Variscan belt. Results of our study show that it contains the youngest eclogite in the orogen, similar in age to migmatite and granite that crystallized under low-pressure conditions. P-T conditions for an exceptionally unaltered eclogite from the central Montagne Noire were estimated using a pseudosection supplemented by garnet-clinopyroxene and Zr-in-rutile thermometry. Results indicate peak P ∼ 1.4 GPa and T ∼ 725°C for Mg-rich garnet rim (50 mol% pyrope) + omphacite (36 mol% jadeite) + rutile + quartz. U-Pb geochronology (LA-ICP-MS) of 16 zoned zircon grains yielded ∼360 Ma (4 cores) and ∼315 Ma (12 rims and cores). Rare earth element abundances determined by LA-ICP-MS for dated zircon are consistent with crystallization of ∼315 Ma zircon under garnet-stable, plagioclase-unstable conditions that we interpret to indicate high pressure; in contrast, the ∼360 Ma zircon core corresponds to crystallization under lower pressure plagioclase-stable conditions. Based on garnet zoning and inclusion suites, rutile textures and Zr zoning, P-T results, and zircon petrochronology, we interpret the ∼315 Ma date as the age of eclogite-facies metamorphism that only slightly preceded dome formation and crystallization at 315-300 Ma. This age relation indicates that eclogite formation at high pressure and migmatite dome emplacement at low pressure were closely spaced in time. We propose that collapse-driven material transfer from the hot orogen to the cool foreland resulted in thickening of

  18. Banded transformer cores

    Science.gov (United States)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  19. Chemical zoning and homogenization of Pasamonte-type pyroxene and their bearing on thermal metamorphism of a howardite parent body

    Science.gov (United States)

    Miyamoto, M.; Duke, M. B.; Mckay, D. S.

    1985-01-01

    The Mg-Fe zoning of pyroxenes in Pasamonte and Juvinas eucrites is examined in order to gain a better understanding of the metamorphism in the surface layer of a eucrite/howardite parent body. Three distinct types of Ca-Mg-Fe zoning of Pasamonte pyroxenes are identified. The wide compositional range of the zoned pyroxenes suggests that Pasamonte is less metamorphosed than previously believed. It is also found that a Pasamonte-type pyroxene may yield a Juvinas-type pyroxene by thermal metamorphism. Calculations imply that the homogenization of Juvinas pyroxenes may have occurred during later reheating events rather than during initial cooling.

  20. Li and B Isotope Systematics of Ultrahigh-pressure Metamorphic Rocks from the Chinese Continental Scientific Drilling Program

    Institute of Scientific and Technical Information of China (English)

    Yilin Xiao; Rolf L. Romer; Jochen Hoefs; Anette Meixner; Zeming Zhang

    2007-01-01

    @@ 1 Introduction Recent improvements in the precision of Li and B isotope measurements have demonstrated the potential of these elements in tracing a wide range of geological processes. The Li and B isotope systematics of ultrahigh-pressure (UHP) metamorphic rocks provides a unique opportunity to investigate the behaviour of Li and B during fluid-rock interaction at high temperatures and very high pressures and to constrain the fluid budget and the recycling of subducted crustal materials into the mantle during UHP metamorphism.

  1. Late-Stage Ductile Deformation in Xiongdian-Suhe HP Metamorphic Unit, North-Western Dabie Shan, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong

    2004-01-01

    New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shan, central China. The fine-grained symplectic amphibolite-facies assemblage and coronal structure enveloping eclogite-facies garnet, omphacite and phengite etc., representing strain-free decompression and retrogressive metamorphism, are considered as the main criteria to distinguish between the early-stage deformation under HP metamorphic conditions related to the continental deep subduction and collision, and the late-stage deformation under amphibolite to greenschist-facies conditions occurred in the post-eclogite exhumation processes. Two late-stages of widely developed, sequential ductile deformations D3 and D4, are recognized on the basis of penetrative fabrics and mineral aggregates in the Xiongdian-Suhe HP metamorphic unit, which shows clear, regionally, consistent overprinting relationships. D3 fabrics are best preserved in the Suhe tract of low post-D3 deformation intensity and characterized by steeply dipping layered mylonitic amphibolites associated with doubly vergent folds. They are attributed to a phase of tectonism linked to the initial exhumation of the HP rocks and involved crustal shortening with the development of upright structures and the widespread emplacement of garnet-bearing granites and felsic dikes. D4 structures are attributed to the main episode of ductile extension (D14) with a gently dipping foliation to the north and common intrafolial, recumbent folds in the Xiongdian tract, followed by normal sense top-to-the north ductile shearing (D24) along an important tectonic boundary, the so-called Majiawa-Hexiwan fault (MHF), the westward continuation of the Balifan-Mozitan-Xiaotian fault (BMXF) of the northern Dabie Shan. It is indicated that the two stages of ductile deformation observed in the Xiongdian-Suhe HP metamorphic unit, reflecting the post-eclogite compressional or extrusion

  2. Telescoping metamorphic isograds: Evidence from 40Ar/39A dating in the Orange-Milford belt, southern Connecticut

    Science.gov (United States)

    Kunk, Michael J.; Walsh, Gregory J.; Growdon, Martha L.; Wintsch, Robert P.

    2013-01-01

    New 40Ar/39Ar ages for hornblende and muscovite from the Orange-Milford belt in southern Connecticut reflect cooling from Acadian amphibolite facies metamorphism between ∼380 to 360 Ma followed by retrograde recrystallization of fabric-forming muscovite and chlorite during lower greenschist facies Alleghanian transpression at ∼280 Ma. Reported field temperature and pressure gradients are improbably high for these rocks and a NW metamorphic field gradient climbing from chlorite-grade to staurolite-grade occurs over less than 5 km. Simple tilting cannot account for this compressed isograd spacing given the geothermal gradient of ∼20 °C/km present at the time of regional metamorphism. However, post-metamorphic transpression could effectively telescope the isograds by stretching the belt at an oblique angle to the isograd traces. Textures in the field and in thin section reveal several older prograde schistosities overprinted by lower greenschist facies fabrics. The late cleavages commonly occur at the scale of ∼100 μm and these samples contain multiple age populations of white mica. 40Ar/39Ar analysis of these poly-metamorphic samples with mixed muscovite populations yield climbing or U-shaped age spectra. The ages of the low temperature steps are late Paleozoic, while the ages of the older steps are late Devonian. These results support our petrologic interpretation that the younger cleavage developed under metamorphic conditions below the closure temperature for Ar diffusion in muscovite, that is, in the lower greenschist facies. The correlation of a younger regionally reproducible age population with a pervasive retrograde muscovite ± chlorite cleavage reveals an Alleghanian (∼280 Ma) overprint on the Acadian metamorphic gradient (∼380 Ma). Outcrop-scale structures including drag folds and imbricate boudins suggest that Alleghanian deformation and cleavage development occurred in response to dextral transpression along a northeast striking boundary

  3. Diagenesis, low-grade and contact metamorphism in the Triassic-Jurassic of the Vichuquen-Tilicura and Hualane-Gualleco Basins, Coastal Range of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Belmar, M.; Schmidt, S.T.; Mahlmann, R.F.; Mullis, J.; Stern, W.B.; Frey, M. [University of Chile, Santiago (Chile). Dept. of Geology

    2002-07-01

    Diagenetic and low-grade metamorphic conditions have been determined (pressure and temperature) for Late Triassic to Early Jurassic sedimentary rocks from the Vichuquen-Tilicura and the Hualane-Gualleco basins in Central Chile using Kubler index (KI), coal rank data, K-white mica b cell dimension, characteristic mineral assemblages and fluid inclusion data. A burial-related diagenetic to low-grade metamorphic event, which is recorded in both basins, is partly overprinted in the Hualane-Gualleco basin by contact metamorphism around Jurassic dioritic to granodioritic intrusions. Diagenetic conditions prevailed in the northern Vichuquen-Tilicura basin, whereas in the southern Hualane-Gualleco basin low-grade metamorphism is observed with an increase in metamorphic grade from north to south. Epizonal conditions are locally reached in the very south of the Hualane-Gualleco basin. Low-pressure conditions were determined using the K-white mica b cell dimension. A numerical maturity model corroborates with the regional low-grade metamorphism. Evidence of contact metamorphism in the immediate proximity of some Jurassic intrusions includes: (1) hornfels facies assemblages such as ferrosilite (XFe0.6)-magnesiohornblende-ferroactinolite-biotite together with chlorite, plagioclase, stilpnomelane and (2) natural coke and pyrolitic bituminite in some sedimentary samples. Epizonal KI and high coal rank values are probably a result of this locally occurring contact metamorphism.

  4. Prolonged episodic Paleoproterozoic metamorphism in the Thelon Tectonic Zone, Canada: an in-situ SHRIMP/EPMA monazite geochronology study

    Science.gov (United States)

    Mitchell, Rhea; William, Davis; Robert, Berman; Sharon, Carr; Michael, Jercinovic

    2017-04-01

    The Thelon Tectonic zone (TTZ), Nunavut, Canada, is a >500km long geophysically, lithologically and structurally distinct N-NNE striking Paleoproterozoic boundary zone between the Slave and Rae Archean provinces. The TTZ has been interpreted as a ca. 2.0 Ga continental arc on the western edge of the Rae craton, that was deformed during collision with the Slave craton ca. 1.97 Ga. Alternatively, the Slave-Rae collision is interpreted as occurring during the 2.35 Ga Arrowsmith orogeny while the 1.9-2.0 Ga TTZ represents an intra-continental orogenic belt formed in previously thinned continental crust, postdating the Slave-Rae collision. The central part of the TTZ comprises three >100 km long, 10-20 km wide belts of ca. 2.0 Ga, mainly charnockitic plutonic rocks, and a ca. 1910 Ma garnet-leucogranite belt. Metamorphism throughout these domains is upper-amphibolite to granulite-facies, with metasedimentary rocks occurring as volumetrically minor enclaves and strands of migmatites. The Ellice River domain occurs between the western and central plutonic belts. It contains ca. 1950 Ma ultramafic to dacitic volcanic rocks and foliated Paleoproterozoic psammitic metasedimentary rocks at relatively lower grade with lower to middle amphibolite-facies metamorphic assemblages. In-situ U-Pb analyses of monazite using a combination of Sensitive High-Resolution Ion Microprobe (SHRIMP) and Electron Probe Microanalyzer (EPMA) were carried out on high-grade metasedimentary rocks from seventeen samples representing the eastern margin of the Slave Province and all major lithological domains of the TTZ. 207Pb/206Pb monazite ages from SHRIMP analysis form the foundation of this dataset, while EPMA ages are supplementary. The smaller <6µm spot size of EPMA allowed for further constraint on ages of micro-scale intra-crystalline domains in some samples. Monazite ages define four distinct Paleoproterozoic metamorphic events and one Archean metamorphic event at ca. 2580 Ma. The latter is

  5. Mesozoic burial, Mesozoic and Cenozoic exhumation of the Funeral Mountains core complex, Death Valley, Southeastern California

    Science.gov (United States)

    Beyene, Mengesha Assefa

    2011-12-01

    The Funeral Mountains of Death Valley National Park, CA, provide an opportunity to date metamorphism resulting from crustal shortening and subsequent episodic extensional events in the Sevier hinterland. It was not clear whether crustal shortening and thus peak temperature metamorphism in the hinterland of the Sevier-Laramide orogenic wedge have occurred whether in Late Jurassic, Early Cretaceous, Late Cretaceous or somewhere between. Particularly ambiguous is the timing of crustal shortening in the deep levels of the hinterland of the Sevier belt, now manifest in the metamorphic core complexes, and how and when these middle-to-lower crustal rocks were exhumed. A 6-point garnet and a whole rock Savillax isochron from middle greenschist facies pelitic schist of the southeastern Funeral Mountains core complex yields an age of 162.1 +/- 5.8 Ma (2sigma). Composite PT paths determined from growth-zoned garnets from the same samples show a nearly isothermal pressure increase of ˜2 kbar at ˜490°C, suggesting thrust burial at 162.1 +/- 5.8 Ma. A second sample of Johnnie Formation from the comparatively higher metamorphic grade area to the northwest (East of Chloride Cliff) yielded an age of 172.9 +/- 4.9 Ma (2sigma) suggesting an increase of thrust burial age towards the higher grade rocks (northwest part of the core complex), consistent with paleo-depth interpretation and metamorphic grade. 40Ar/ 39Ar muscovite ages along footwall of the Boundary Canyon detachment fault and intra-core Chloride Cliff shear zone exhibit significant 40Ar/39Ar muscovite age differences. For samples from the immediate footwall of BCD, the pattern of ages decreasing toward the northwest is consistent with differences in depth of metamorphism, and for Late Cretaceous, top-to-northwest exhumation by motion along the precursor BCD; consistent with mesoscopic and microscopic kinematic studies. Samples from the footwall of the structurally-lower Chloride Cliff shear zone yield Tertiary 40Ar/39Ar

  6. A polyphase metamorphic evolution for the Xitieshan paragneiss of the north Qaidam UHP metamorphic belt, western China: In-situ EMP monazite- and U-Pb zircon SHRIMP dating

    NARCIS (Netherlands)

    Zhang, C.; Roermund, H.L.M. van; Zhang, L.; Spiers, C.

    2012-01-01

    In-situ electron microprobe (EMP) U–Th–Pbmonazite-, sensitive high-resolution ion microprobe (SHRIMP) zircon analyses, metamorphic phase equilibrium (Domino/Theriak)- and geothermobarometric calculations are performed on kyanite/sillimanite-bearing garnet biotite gneisses forming part of the dominan

  7. Cenozoic metamorphism along the Shan Scarp (Myanmar): Evidences for ductile shear along the Sagaing Fault or the northward migration of the Eastern Himalayan Syntaxis?

    Science.gov (United States)

    Bertrand, Guillaume; Rangin, Claude; Maluski, Henri; Han, Tin Aung; Thein, Myint; Myint, Ohn; Maw, Win; Lwin, San

    The Mogok metamorphic belt, exposed along the N-S trending Shan scarp and Sagaing fault, in the eastern part of Myanmar, has been regarded as Paleozoic to Precambrian for a long time. New observations in the Shan scarp area, close to the Sagaing fault, from Thaton in the south to Mandalay in the north, allowed us to collect samples of high grade metamorphic and intrusive rocks that have been analyzed by 40Ar/39Ar step heating method. The 13 samples we analyzed provide Oligocene to Lower Miocene ages for this metamorphism. Oriented thin sections and field observations suggest that this metamorphism was caused by a NNW-SSE to N-S ductile extension. Therefore, we suggest that this metamorphism is not directly related to the Sagaing fault, but could be instead related to the northward migration of the eastern Himalayan syntaxis, characterized by crustal thinning, resulting from the India-Asia oblique collision.

  8. Effects of shock metamorphism on clay mineralogy: Implications for remote sensing of martian clays

    Science.gov (United States)

    Michalski, J. R.; Glotch, T. D.; Friedlander, L.; Bish, D. L.; Sharp, T. G.; Dyar, M. D.

    2012-12-01

    One of the most important discoveries in recent exploration of Mars has been the detection of clay minerals within materials exhumed by meteor impact, which point to ancient subsurface alteration and possible habitable conditions at depth. These "crustal clays" occur within central peaks, ejecta, and uplifted rims of many large craters (Ehlmann et al., Nature 2011). The geologic context of phyllosilicates in these settings suggests that most of these deposits represent clays that formed in the subsurface and were later exhumed by impact, rather than clays that formed as a consequence of impact. Therefore, crustal clays exposed at the surface are likely to have experienced some effects of shock metamorphism and/or thermal alteration related to meteor impact. We are investigating the effects of shock metamorphism on the mineralogy of phyllosilicates in the laboratory. Purified, size-separated clay mineral samples were pressed into pellets to decrease internal porosity and were subsequently shocked using the Flat Plate Accelerator at NASA Johnson Space Center. Five minerals (nontronite, saponite, serpentine, chlorite, and kaolinite) were shocked to six pressure steps (10, 20, 25, 30, 35, and 40 GPa). The recovered, shocked samples are being analyzed by thermal infrared emission, visible/near-infrared reflectance, X-ray diffraction (XRD), Mossbauer spectroscopy, and transmission electron microscopy (TEM). Results thus far suggest that shock metamorphism has little effect on the structure or infrared signature of the clay minerals at pressures clay is greatly decreased upon initial shock. At 40 GPa, this feature has lost all internal spectral structure, though a broad absorption in the same region is retained. Lastly, Mossbauer spectroscopy indicates that clays containing ferrous iron are progressively oxidized as a function of shock pressure. In the case of a meteor impact, intense shock pressures are highly localized phenomena although low shock pressures might affect

  9. The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula

    Science.gov (United States)

    Lee, Byung Choon; Oh, Chang Whan; Kim, Tae Sung; Yi, Keewook

    2016-07-01

    The Odaesan Gneiss Complex (Odesan Gneiss Complex) is the eastern end of the Hongseong-Odaesan collision belt in the Korean Peninsula, which is an extension of the Dabie-Sulu collision belt between the North and South China cratons. The Odaesan Gneiss Complex mainly consists of banded and migmatitic gneisses with porphyritic granitoids and amphibolites. The garnet-bearing banded gneisses can be subdivided into garnet-biotite and garnet-orthopyroxene banded gneisses. At the beginning of the post-collision stage, the banded gneisses underwent regional ultrahigh-temperature metamorphism (902-950 °C/8.8-9.4 kbar) at ca. 247-245 Ma due to the heat supplied from underplated basic magma, which was generated by the partial melting of the lithospheric mantle caused by the heat supplied from the asthenospheric mantle. As a result of the continuous extensional force, the study area (lower crust) uplifted onto the middle crust depths, and then the study area underwent prograde granulite facies metamorphism from 660 °C and 8.7 kbar to 750-760 °C and 6.3-6.5 kbar at ca. 227 Ma, causing migmatization, which erased the ultrahigh-temperature metamorphism in most of the study area. The ultrahigh-temperature metamorphism was preserved only in the garnet-orthopyroxene banded gneisses due to their very low water contents. During migmatization, the garnet-biotite banded gneisses were retrograded into upper granulite facies due to the relatively abundant water compared with the garnet-orthopyroxene gneisses. Finally, the study area was uplifted to a shallow depth and locally underwent amphibolite facies retrograde metamorphism (575-680 °C and 3.1-4.5 kbar). In addition, Paleoproterozoic metamorphic (ca. 1930-1886 Ma) and post-collisional magmatic events (ca. 1847 Ma) are identified based on SHRIMP age dating. These ages agree well with the regional Paleoproterozoic metamorphic and post-collisional magmatic activities reported from other areas of the Gyeonggi Massif.

  10. Tectono-metamorphic evolution and timing of the melting processes in the Svecofennian Tonalite-Trondhjemite Migmatite Belt: An example from Luopioinen, Tampere area, southern Finland

    Directory of Open Access Journals (Sweden)

    Mouri, H.

    1999-06-01

    Ma, which is marginally younger than the age of the adjacent mesosome and the concordant leucosome (1877+18 and 1880±23 Ma, respectively and the age of monazite. Zircons from the studied migmatites display complex zoning structures using SEM-based CL-imaging. Most grains have distinct cores, clearly remnants of original grains. The cores display various types of zoning but oscillatory zoning dominates. The cores are overgrown by one or two thin outer rims that are of two types: i unzoned outer rim, considered as overgrowth of new zircon during a metamorphic event, and ii weakly oscillatory zoned rim, considered as typical of magmatic recrystallization. Ion probe dating of cores yielded slightly discordant 207Pb/206Pb ages of between 2866-2002 Ma, which are interpreted as protolith age. Rims yielded two major age groups: the unzoned rims gave ages of 1872-1886 Ma, whereas the rims with oscillatory zoning yielded ages of 1951—1959 Ma. The youngest age group is consistent with the conventional Sm-Nd dating on garnet and U-Pb dating on monazite and we suggest that the migmatites were metamorphosed at granulite facies conditions at ca. 1880 Ma. The 1951-1959 Ma age group yielded by magmatic zircon rims remains difficult to interpret, but may reflect a magmatic event prior to the metamorphic one. This magmatic event might be related to the rifting of a Svecofennian protocontinent.

  11. Tectonic mechanisms associated with P- T paths of regional metamorphism: alternatives to single-cycle thrusting and heating

    Science.gov (United States)

    Wakabayashi, John

    2004-11-01

    Metamorphic pressure ( P)-temperature ( T) paths are commonly used as tools to interpret the tectonic history of orogenic belts, those deformed belts of rocks that record past activity along active plate margins. Many studies and reviews relating P- T path development to tectonics have focused on thrusting-thermal relaxation cycles, with special emphasis on collisional processes. Other studies have assumed that P- T paths resulted from a single tectono-metamorphic event that accounted for the entire burial-exhumation history of the rocks. In many cases, such assumptions may prove invalid. This paper speculates on the relationship of tectonic processes other than thrusting-heating to P- T path development. The processes discussed herein include subduction initiation, triple-junction interactions, initiation and shut off of arc volcanism, subcontinental delamination, and hot spot migration. All of these processes may leave a signature in the metamorphic rock record. Examples are presented from a number of localities, most of which are from the Pacific Rim. Although thrusting-heating cycles have influenced metamorphic evolution in many orogenic belts, the potential impact of other types of tectonic mechanisms should not be overlooked.

  12. Charnockites and UHT metamorphism in the Bakhuis Granulite Belt, western Suriname : Evidence for two separate UHT events

    NARCIS (Netherlands)

    Klaver, Martijn; de Roever, Emond W F; Nanne, Josefine A M; Mason, Paul R D; Davies, Gareth R.

    2015-01-01

    The Bakhuis Granulite Belt in western Suriname is an ultrahigh-temperature (UHT) metamorphic terrain in the centre of the Paleoproterozoic (Transamazonian) Guiana Shield. Next to the UHT granulites, the belt contains a 30 by 30km body of orthopyroxene-bearing granitoids: the Kabalebo charnockites. T

  13. Late Cretaceous extension and exhumation of the Stong and Taku magmatic and metamorphic complexes, NE Peninsular Malaysia

    NARCIS (Netherlands)

    François, T.; Md Ali, M.A.; Matenco, L.; Willingshofer, E.; Ng, T.F.; Taib, N.I.; Shuib, M.K.

    2017-01-01

    Fragmentation of large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts, as exemplified by the Stong and Taku magmatic and metamorphic complexes of northern Peninsular Malaysia. For this cas

  14. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet

    Science.gov (United States)

    Zhang, Zeming; Xiang, Hua; Dong, Xin; Ding, Huixia; He, Zhenyu

    2015-01-01

    The Namche Barwa Complex exposed in the Eastern Himalayan Syntaxis, south Tibet, underwent high-pressure (HP) and high-temperature (HT) granulite-facies metamorphism and associated anatexis. The HP pelitic granulites contain garnet, kyanite, sillimanite, cordierite, biotite, quartz, plagioclase, K-feldspar, spinel, ilmenite and graphite. These minerals show composite reaction texture and varying chemical compositions and form four successive mineral assemblages. Phase equilibrium modeling constrains the P-T conditions of 10-12 kbar and 550-700 °C for the prograde stage, 13-16 kbar and 840-880 °C for the peak-metamorphic stage, and 5-6 kbar and 830-870 °C for the late retrograde stage, indicating that the HP granulites recorded a clockwise P-T path involving the early heating burial and anatexis through dehydration melting of both muscovite and biotite, and the late isothermal decompression and gradual melt crystallization under HT granulite-facies conditions. The zircon U-Pb dating reveals that the HT granulite-facies metamorphism probably initiated at ca. 40 Ma, and lasted to ca. 8 Ma. Therefore, the present study provides robust evidence for a long-lived HT metamorphism and associated anatexis in the deeply buried Indian continent and important constraints on the leucogranite generation and tectonic evolution of the Himalayan orogen.

  15. Evaluation of defect density by top-view large scale AFM on metamorphic structures grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Gocalinska, Agnieszka, E-mail: agnieszka.gocalinska@tyndall.ie; Manganaro, Marina; Dimastrodonato, Valeria; Pelucchi, Emanuele

    2015-09-15

    Highlights: • Metamorphic buffer layers of In{sub x}Ga{sub 1−x}As were grown by MOVPE and characterised by AFM and TEM. • It was found that AFM provides sufficient information to estimate threading defect density in metamorphic structures, even when significant roughness is present. • When planar-view TEM is lacking, a combination of cross-sectional TEM and large scale AFM can provide good evaluation of the material quality. • It is fast, cheap and non-destructive – can be very useful in development process of complicated structures, requiring multiple test growths and characterisation. - Abstract: We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluation tool for the quality of epitaxial structures and allow for cost reduction, as it lessens the amount of the transmission electron microscopy analysis required at the early stages of projects. Metamorphic structures with low surface defectivities (below 10{sup 6}) were developed successfully with the application of the technique, proving its usefulness in process optimisation.

  16. Prograde, peak and retrograde metamorphic fluids and associated metasomatism in upper amphibolite to granulite facies transition zones

    NARCIS (Netherlands)

    Nijland, T.G.; Touret, J.L.R.

    2012-01-01

    Abstract Granulites constitute a major part of the (lower) continental crust, occurring on a regional scale in many metamorphic belts. Their origin is generally discussed in terms of vapour-absent melting and fluid-assisted dehydration. This last model is notably supported by the occurrence of two i

  17. Shock metamorphism of Bosumtwi impact crater rocks, shock attenuation, and uplift formation.

    Science.gov (United States)

    Ferrière, Ludovic; Koeberl, Christian; Ivanov, Boris A; Reimold, Wolf Uwe

    2008-12-12

    Shock wave attenuation rate and formation of central uplifts are not precisely constrained for moderately sized complex impact structures. The distribution of shock metamorphism in drilled basement rocks from the 10.5-kilometer-diameter Bosumtwi crater, and results of numerical modeling of inelastic rock deformation and modification processes during uplift, constrained with petrographic data, allowed reconstruction of the pre-impact position of the drilled rocks and revealed a shock attenuation by approximately 5 gigapascals in the uppermost 200 meters of the central uplift. The proportion of shocked quartz grains and the average number of planar deformation feature sets per grain provide a sensitive indication of minor changes in shock pressure. The results further imply that for moderately sized craters the rise of the central uplift is dominated by brittle failure.

  18. Thermal contraints on high-pressure granulite metamorphism of supracrustal rocks

    Science.gov (United States)

    Ashwal, L. D.; Morgan, P.; Leslie, W. W.

    1983-01-01

    The circumstances leading to the formation and exposure at the Earth's surface of supracrustal granulites are examined. These are defined as sediments, volcanics, and other rock units which originally formed at the surface of the Earth, were metamorphosed to high-pressure granulite facies (T = 700-900 C, P = 5-10 kbar), and reexposed at the Earth's surface, in many cases underlain by normal thicknesses of continental crust (30-40 km). Five possible heating mechanisms to account for granulite metamorphism of supracrustal rocks are discussed: magnetic heating, thermal relaxation of perturbed temperature profiles following underthrusting of the continental crust, thermal relaxation after underthrusting of thin slivers of supracrustal rocks below continental crust of normal thickness, major preheating of the upper plate, and shear heating caused by frictional stress along the thrust plane.

  19. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks

    Science.gov (United States)

    Guillot, S.; Mahéo, G.; de Sigoyer, J.; Hattori, K. H.; Pêcher, A.

    2008-04-01

    The Himalayan range is one of the best documented continent-collisional belts and provides a natural laboratory for studying subduction processes. High-pressure and ultrahigh-pressure rocks with origins in a variety of protoliths occur in various settings: accretionary wedge, oceanic subduction zone, subducted continental margin and continental collisional zone. Ages and locations of these high-pressure and ultrahigh-pressure rocks along the Himalayan belt allow us to evaluate the evolution of this major convergent zone. (1) Cretaceous (80-100 Ma) blueschists and possibly amphibolites in the Indus Tsangpo Suture zone represent an accretionary wedge developed during the northward subduction of the Tethys Ocean beneath the Asian margin. Their exhumation occurred during the subduction of the Tethys prior to the collision between the Indian and Asian continents. (2) Eclogitic rocks with unknown age are reported at one location in the Indus Tsangpo Suture zone, east of the Nanga Parbat syntaxis. They may represent subducted Tethyan oceanic lithosphere. (3) Ultrahigh-pressure rocks on both sides of the western syntaxis (Kaghan and Tso Morari massifs) formed during the early stage of subduction/exhumation of the Indian northern margin at the time of the Paleocene-Eocene boundary. (4) Granulitized eclogites in the Lesser Himalaya Sequence in southern Tibet formed during the Paleogene underthrusting of the Indian margin beneath southern Tibet, and were exhumed in the Miocene. These metamorphic rocks provide important constraints on the geometry and evolution of the India-Asia convergent zone during the closure of the Tethys Ocean. The timing of the ultrahigh-pressure metamorphism in the Tso Morari massif indicates that the initial contact between the Indian and Asian continents likely occurred in the western syntaxis at 57 ± 1 Ma. West of the western syntaxis, the Higher Himalayan Crystallines were thinned. Rocks equivalent to the Lesser Himalayan Sequence are present

  20. Cristobalite-pyroxene in an L6 chondrite - Implications for metamorphism

    Science.gov (United States)

    Olsen, E. J.; Mayeda, T. K.; Clayton, R. N.

    1981-01-01

    CRISPY is a cristobalite-pyroxene assemblage in the L6 chondrite ALHA 76003. It was formed by reaction of a very siliceous inclusion with the surrounding olivine-rich rock. Oxygen isotopes show that the inclusion was derived from a source with non-chondritic isotopic composition. The isotopes also show that the oxygen of the pyroxene reaction product was derived by simple mixing of oxygen from the inclusion and its immediately adjacent surroundings, with exchange with the bulk meteorite limited to a distance of about a millimeter. The persistence of cristobalite in close proximity to olivine, and the lack of isotopic equilibration, show that the metamorphic processes that form petrographic grade 6 chondrites involve transport of major elements over distances only on the order of millimeters.

  1. Partial melting of ultrahigh-pressure metamorphic rocks during continental collision: Evidence, time, mechanism, and effect

    Science.gov (United States)

    Chen, Yi-Xiang; Zhou, Kun; Gao, Xiao-Ying

    2017-09-01

    Partial melting of ultrahigh-pressure (UHP) metamorphic rocks during continental collision has been increasingly found in nature. More and more studies have devoted to the evidence, time, mechanism and effect of crustal anataxis at mantle to lower crust depths. This is particularly so for UHP rocks from the Dabie-Sulu orogenic belt, whereas similar studies on these issues are relatively minor for other UHP terranes. The petrological evidence, especially microstructural observations and multiphase solid inclusion analyses, have been accumulated for the partial melting of UHP metamorphic rocks in collisional orogens. The results indicate that this is a kind of low-degree crustal anataxis at convergent plate margins due to decompressional dehydration of the UHP rocks themselves. Thus it has great bearing on intracrustal differentiation and crust-mantle interaction in continental subduction channels. Zircon may grow through peritectic reactions due to the breakdown of hydrous minerals. By dating of the peritectic zircons that contain coesite or diamond inclusions, the time of crustal anatexis under UHP conditions can be directly determined. In general, the partial melting of UHP rocks mainly took place at the stage of their early exhumation, partly still in the UHP regime and partly in the subsequent high-pressure (HP) regime. The crustal anatexis still at mantle depths is common in many UHP terranes, possibly facilitating exhumation of deeply subducted continental slices toward shallower levels. Petrological and geochemical studies indicate that phengite dehydration-driven melting during exhumation is the common mechanism for the anatexis of UHP rocks, though the other hydrous minerals were also involved in this process. The resulted HP to UHP melts may occur at different spatial scales and show significant fractionation in melt-mobile incompatible trace elements such as LILE and LREE. These melts are enriched in LILE to large extent and LREE and Th to small extent

  2. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Directory of Open Access Journals (Sweden)

    S. R. Bragança

    2009-06-01

    Full Text Available A metamorphic limestone and a dolomite were employed as SO2 sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O2 level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (~60% for Ca/S = 2 was obtained.

  3. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas

    Science.gov (United States)

    Finlayson, David P.; Montgomery, David R.; Hallet, Bernard

    2002-03-01

    A spatially distributed rate-of-erosion index (EI) based on models of bedrock river incision documents a strong spatial correspondence between areas of high erosion potential and young metamorphic massifs as well as structural highs throughout the Himalayas. The EI is derived from slopes and drainage areas calculated from a hydrologically corrected digital elevation model (GTOPO30) combined with precipitation data (IIASA) to generate synthetic annual stream discharges. These variables drive three generalized process models to produce EI maps that, while differing in detail, provide an internally consistent, spatially continuous index of large-scale erosion rates. The large spatial variation in potential erosion rates in the Himalayas suggested by the EI patterns contrasts with the uniform convergence of the Indian subcontinent. If these EI gradients persist through time, they support the emerging view of a positive feedback between localized, rapid erosion and upward advection of lower crust.

  4. Hydrogen sensing properties of a Pd/oxide/InAlAs metamorphic-based transistor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tsung-Han; Chen, Tai-Yu.; Chen, Li-Yang; Liu, Yi-Jung; Huang, Chien-Chang; Hsu, Kai-Siang; Liu, Wen-Chau [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, 1 University Road, Tainan 70101 (China); Chen, Huey-Ing [Department of Chemical Engineering, National Cheng-Kung University, 1 University Road, Tainan 70101 (China)

    2010-04-15

    A Pd/oxide/InAlAs metal-oxide-semiconductor (MOS) type metamorphic high electron mobility transistor (MHEMT)-based hydrogen sensor is fabricated and investigated. In comparison with the conventional HEMT-based sensors, the MOS MHEMT-based sensor exhibits significantly high sensitivity to the hydrogen. The found hydrogen sensing response is as high as 300%. Using the thermodynamic analysis to estimate the enthalpy value of hydrogen adsorption, the value for the proposed sensor is much lower than that for the other reported HEMT-based sensors. The MHEMT-based sensors are demonstrated to have a relatively fast response as comparing to other HEMT-based ones. The response time of the device is approximately 10 s under exposure to a 1% H{sub 2}/air gas. Consequently, the performance of the studied sensors shows the promise characteristics for practical applications. (author)

  5. Room-temperature mid-infrared quantum well lasers on multi-functional metamorphic buffers

    Science.gov (United States)

    Jung, Daehwan; Yu, Lan; Dev, Sukrith; Wasserman, Daniel; Lee, Minjoo Larry

    2016-11-01

    The modern commercial optoelectronic infrastructure rests on a foundation of only a few, select semiconductor materials, capable of serving as viable substrates for devices. Any new active device, to have any hope of moving past the laboratory setting, must demonstrate compatibility with these substrate materials. Across much of the electromagnetic spectrum, this simple fact has guided the development of lasers, photodetectors, and other optoelectronic devices. In this work, we propose and demonstrate the concept of a multi-functional metamorphic buffer (MFMB) layer that not only allows for growth of highly lattice-mismatched active regions on InP substrates but also serves as a bottom cladding layer for optical confinement in a laser waveguide. Using the MFMB concept in conjunction with a strain-balanced multiple quantum well active region, we demonstrate laser diodes operating at room temperature in the technologically vital, and currently underserved, 2.5-3.0 μm wavelength range.

  6. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Castellan, J.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2009-04-15

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (similar to 60%) for Ca/S = 2 was obtained.

  7. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Braganca; J.L. Castellan [Federal University of Rio Grande do Sul, Porto Alegre (Brazil)

    2009-07-01

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidised bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (about 60%) for Ca/S = 2 was obtained. 25 refs., 5 figs.

  8. Rb-Sr and Sm-Nd Study of Asuka 881394: Evidence of "Late" Metamorphism

    Science.gov (United States)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Takeda, H.

    2011-01-01

    The Asuka 881394 achondrite contains fossil Al-26 and Mn-53 [1,2,3] and has a Pb-207/Pb-206 age of 4566.5 plus or minus 0.2 Ma [3], the oldest for an achondrite. Preliminary results showed initial Sm-146/Sm-144 = (7.4 plus or minus 1.2) x 10(exp -3), indicative of an ancient age, but Rb-87 - Sr-87 and Sm-147 - Nd-143 ages of 4370 plus or minus 60 and 4490 plus or minus 20 Ma, resp. [1], were younger than expected from the presence of short-lived nuclides. We revisit the Rb-Sr and Sm-Nd chronology of A881394 in an attempt to establish whether late metamorphism led to inconsistency in its apparent ages.

  9. Reconstruction of protoliths of metamorphic rocks and tectonic setting of Wolegen Group

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Parametamorphic rocks from Arong County in southeastern Inner Mongolia-Daxinganling district are regarded as Proterozoic in age,belonging to the Wolegen Group and composed of volcanoclastic and sandstone in origin,and have been disputed in tectonic setting.Because of the stability in metamorphism,the rare earth dements indicate the features of their protoliths.The authors integrated the petrologic methods with the geochemical parameters which include ∑REE,∑LREE/∑HREE,δCe,δEu,La/Yb,Sm/Nd,Th/Sc and the standard values of chondrite.The results show that the protoliths of Wolengen Group may be a group of voleanoclastic and continental margin elastic rocks,and their tectonic setting is the continent island arc.

  10. The core paradox.

    Science.gov (United States)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  11. K-core inflation

    OpenAIRE

    Alexander L. Wolman

    2011-01-01

    K-core inflation is a new class of underlying inflation measures. The two most popular measures of underlying inflation are core inflation and trimmed mean inflation. The former removes fixed categories of goods and services (food and energy) from the inflation calculation, and the latter removes fixed percentiles of the weighted distribution of price changes. In contrast, k-core inflation specifies a size of relative price change to be removed from the inflation calculation. Thus, the catego...

  12. Igneous and metamorphic petrology in the field: a problem-based, writing-intensive alternative to traditional classroom petrology

    Science.gov (United States)

    DeBari, S. M.

    2011-12-01

    The Geology Department at Western Washington University (~100 geology majors) offers field and classroom versions of its undergraduate petrology course. This is a one-quarter course (igneous and metamorphic petrology) with mineralogy as a prerequisite. The field version of the course is offered during the three weeks prior to fall quarter and the classroom version is offered in spring quarter. We take 15-20 students around the state of Washington, camping at different outcrop sites where students integrate observational skills, petrologic knowledge, and writing. Petrogenetic associations in various tectonic settings provide the theme of the course. We compare ophiolites vs. arc sequences (volcanic, plutonic, and metamorphic rocks), S- vs. I-type granitoids (plutonic rocks and associated metamorphic rocks), Barrovian vs. Buchan vs. subduction zone metamorphism of different protoliths, and flood-basalt vs. active-arc volcanism. Some basics are covered in the first day at WWU, followed by 17 days of field instruction. Lecture is integrated with outcrop study in the field. For example, students will listen to a lecture about magma differentiation processes as they examine cumulate rocks in the Mt. Stuart batholith, and a lecture about metamorphic facies as they study blueschist facies rocks in the San Juan Islands. Students study multiple outcrops around a site for 1-4 days. They then use their observations (sketches and written descriptions of mineral assemblages, rock types, rock textures, etc.) and analysis techniques (e.g. geochemical data plotting, metamorphic protolith analysis) to write papers in which the data are interpreted in terms of a larger tectonic problem. In advance of the writing process, students use group discussion techniques such as whiteboarding to share their observational evidence and explore interpretations. Student evaluations indicate that despite the intense pace of the course, they enjoy it more. Students also feel that they retain more

  13. Thermal structure, coupling and metamorphism in the Mexican subduction zone beneath Guerrero

    Science.gov (United States)

    Manea, V. C.; Manea, M.; Kostoglodov, V.; Currie, C. A.; Sewell, G.

    2004-08-01

    Temperature is one of the most important factors that controls the extent and location of the seismogenic coupled and transition, partially coupled segments of the subduction interplate fault. The width of the coupled fault inferred from the continuous GPS observations for the steady interseismic period and the transient width of the last slow aseismic slip event (Mw~ 7.5) that occurred in the Guerrero subduction zone in 2001-2002 extends up to 180-220 km from the trench. Previous thermal models do not consider this extremely wide coupled interface in Guerrero subduction zone that is characterized by shallow subhorizontal plate contact. In this study, a finite element model is applied to examine the temperature constraints on the width of the coupled area. The numerical scheme solves a system of 2-D Stokes equation and 2-D steady-state heat transfer equations. The updip limit of the coupling zone is taken between 100 and 150 °C, while the downdip limit is accepted at 450 °C as the transition from partial coupling to stable sliding. From the entire coupled zone, the seismogenic zone extends only up to ~82 km from the trench (inferred from the rupture width of large subduction thrust earthquakes), corresponding to the 250 °C isotherm. Only a small amount of frictional heating is needed to fit the intersection of the 450 °C isotherm and the subducting plate surface at 180-205 km from the trench. The calculated geotherms in the subducting slab and the phase diagram for MORB are used to estimate the metamorphic sequences within the oceanic subducting crust. A certain correlation exists between the metamorphic sequences and the variation of the coupling along the interplate fault.

  14. Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on mars from phyllosilicate mineral assemblages

    Science.gov (United States)

    Ehlmann, B.L.; Mustard, J.F.; Clark, R.N.; Swayze, G.A.; Murchie, S.L.

    2011-01-01

    The enhanced spatial and spectral resolution provided by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) has led to the discovery of numerous hydrated silicate minerals on Mars, particularly in the ancient, cratered crust comprising the southern highlands. Phases recently identified using visible/near-infrared spectra include: smectite, chlorite, prehnite, high-charge phyllosilicates (illite or muscovite), the zeolite analcime, opaline silica, and serpentine. Some mineral assemblages represent the products of aqueous alteration at elevated temperatures. Geologic occurrences of these mineral assemblages are described using examples from west of the Isidis basin near the Nili Fossae and with reference to differences in implied temperature, fluid composition, and starting materials during alteration. The alteration minerals are not distributed homogeneously. Rather, certain craters host distinctive alteration assemblages: (1) prehnite-chlorite-silica, (2) analcime-silica-Fe,Mg-smectite-chlorite, (3) chlorite-illite (muscovite), and (4) serpentine, which furthermore has been found in bedrock units. These assemblages contrast with the prevalence of solely Fe,Mg-smectites in most phyllosilicate-bearing terrains on Mars, and they represent materials altered at depth then exposed by cratering. Of the minerals found to date, prehnite provides the clearest evidence for subsurface, hydrothermal/metamorphic alteration, as it forms only under highly restricted conditions (T = 200 400??C). Multiple mechanisms exist for forming the other individual minerals; however, the most likely formation mechanisms for the characteristic mineralogic assemblages observed are, for (1) and (2), low- grade metamorphism or hydrothermal (400??C has not been found.

  15. High-pressure metamorphism in the Early Variscan subduction complex of the SW Iberian Massif

    Science.gov (United States)

    Rubio Pascual, Francisco J.; Matas, Jerónimo; Martín Parra, Luis M.

    2013-04-01

    Several units exposed in the boundary area of the Ossa Morena Zone (OMZ) and the South Portuguese Zone (SPZ) preserve petrographic and thermobarometric evidence for an early metamorphic episode (M1), developed under a high-P, low to intermediate-T gradient, related to Early Variscan subduction in the SW Iberian Massif. In the OMZ, these are the Cubito-Moura Unit (Pmin ~ 9.2 kbar and T = 395 ± 45 °C), blueschists from its basal mélange (Pmin ~ 12.4 kbar and T = 310 ± 11 °C), and the underlying Fuenteheridos Group (P = 10.9 ± 0.4 kbar and T = 449 ± 31 °C). The equivalent units in the SPZ are the La Minilla Formation (P = 8.7 ± 0.4 kbar and T = 388 ± 16 °C) and the lawsonite pseudomorphs-bearing Pulo do Lobo Formation. All these units formed part of an approximately NE verging orogenic wedge (present coordinates) developed by the accretion of subducted slabs of the outermost margin of Gondwana and other elements of the Rheic Ocean realm, from at least the Middle Devonian to the lowermost Tournaisian. High-pressure rocks were subsequently emplaced on more internal zones of the OMZ that only experienced a younger high-T, low to intermediate-P metamorphism (M2). This high-T event was coeval with magmatic activity from the uppermost Devonian to the Middle Mississippian, probably as a consequence of transtensional lithospheric thinning and/or delamination of the lower crust and mantle lithosphere of the Gondwana margin. Pre-Late Devonian synorogenic sedimentation in forearc and back-arc basins of the subduction complex evolved to a Late Devonian-Middle Mississippian foreland basin system in early collisional stages. Finally, a new Middle-Late Mississippian fold-and-thrust belt with opposite (SW) vergence and new foreland basins developed during late collisional stages.

  16. Omphacite microstructures as time-temperature indicators of blueschist- and eclogite-facies metamorphism

    Science.gov (United States)

    Carpenter, Michael A.

    1982-03-01

    Omphacites from a wide range of geological environments have been examined by transmission electron-microscopy. Their microstructures are sufficiently variable as to be potential indicators of thermal history for blueschist and eclogite metamorphism. In particular, the average size of equiaxed antiphase domains (APD's) arising from cation ordering appears to be a characteristic feature of each environment and increases in the sequence: Franciscan, blueschist (1) ≈ Turkey, blueschist (2) Wine Complex, Canada, amphibolite (1) behaviour in other systems where: (APD size)n 410_2004_Article_BF00375206_TeX2GIFE1.gif ({text{APD size)}}^{text{n}} ∝ {text{e}}^{{text{(}} - {text{Q/RT)}}} \\cdot {text{ }}time{text{.}} . Most omphacites fit into a self-consistent scheme with n=8±2 if the activation energy ( Q) is assumed to be that of cation disordering (75 kcal mole-1), available estimates of peak metamorphic temperature ( T) are used, and a reasonable geological time-scale is taken as 104 108 years. According to this model, APD sizes are set in a relatively short interval of the total history of a rock when its temperature is close to its peak value. APD sizes are much more sensitive to temperature than to time and may be used as a geothermometer which has the advantage of not being reset by re-equilibration at low temperatures. Petrological implications arising from the model are that Allalin metagabbros were metamorphosed at a similar peak temperature to Zermatt-Saas blueschists, Franciscan eclogites reached higher temperatures than has been previously supposed and that the microstructures in some Sesia-Lanzo omphacites are consistent with a high temperature, pre-blueschist origin. Deviation from an ideal coarsening law with n=2 implies that the APD's are not simply stacking mistakes but have some associated structural or compositional modification locally. Excess titanium concentrated at APD's in Red Wine Complex omphacites may account for their anomalously low

  17. Pinite-cordierite from spotted slate of the Brajkovac contact metamorphic aureole (Dudovica locality, central Serbia

    Directory of Open Access Journals (Sweden)

    Vasković Nada

    2013-01-01

    Full Text Available The Paleozoic very low to low-grade metamorphic rocks of the Bukulja-Lazarevac Unit designated as Drina, Golija and Birač formations are contact metamorphosed by the intrusion of the Tertiary Brajkovac granodiorite into spotted slates and hornfelses. In some parts, they are slightly migmatized at the contact. In addition to their outcrops found at the western, eastern and northern parts of the formation, these rocks are also found in boreholes near Dudovica at about 8 km south-west from the pluton. There, at a depth of 110 m, the spotted slates comprise oval to ellipsoid pinite-rich spots which can be regarded as incipient cordierite porphyroblasts (up to 5 mm in diameter overgrowing the existing regional foliation. They are composed of cryptocrystalline mixture of a very fine sericitic material ± light glassy orange „film“ (some kind of an amorphous gel-like material often mixed with limonite matter and are abundant in inclusions: minute quartz and dusty ore minerals (magnetite prevail. In addition, within some spots an increased number of xenotime and monazite inclusions are noted. Minute flakes of neobiotite are formed at the expense of quartz-sericite-chlorite matrix. The secondary chlorite occurring as overgrowths on pinite-cordierite spots shows variable composition (brunsvigite to diabandite. The Mg/Fe+Mg ratio of cryptocrystalline pinitic mixture ranges from 0.14-0.67. The Si vs AlIV+AlVI relations deviate from the ideal muscovite-phengite join due to Tschermak substitution towards chloritic composition or a more complex mixture, including clay minerals (which reflected a decrease of Altot and Si with increase of Fe2+. Obtained data indicates that the cordierite-pinite spots can be related to contact metamorphic processes that occurred within the temperature range 300-450°C. [Projekat Ministarstva nauke Republike Srbije, br. 176019 i br. 176016

  18. Tertiary plate tectonics and high-pressure metamorphism in New Caledonia

    Science.gov (United States)

    Brothers, R.N.; Blake, M.C.

    1973-01-01

    The sialic basement of New Caledonia is a Permian-Jurassic greywacke sequence which was folded and metamorphosed to prehnite-pumpellyite or low-grade greenschist facies by the Late Jurassic. Succeeding Cretaceous-Eocene sediments unconformably overlie this basement and extend outwards onto oceanic crust. Tertiary tectonism occurred in three distinct phases. 1. (1) During the Late Eocene a nappe of peridotite was obducted onto southern New Caledonia from northeast to southwest, but without causing significant metamorphism in the underlying sialic rocks. 2. (2) Oligocene compressive thrust tectonics in the northern part of the island accompanied a major east-west subduction zone, at least 30 km wide, which is identified by an imbricate system of tectonically intruded melanges and by development of lawsonite-bearing assemblages in adjacent country rocks; this high-pressure mineralogy constituted a primary metamorphism for the Cretaceous-Eocene sedimentary pile, but was overprinted on the Mesozoic prehnite-pumpellyite metagreywackes. 3. (3) Post-Oligocene transcurrent faulting along a northwest-southeast line (the sillon) parallel to the west coast caused at least 150 km of dextral offset of the southwest frontal margin of the Eocene ultramafic nappe. At the present time, the tectonics of the southwest Pacific are related to a series of opposite facing subduction (Benioff) zones connected by transform faults extending from New Britain-Solomon Islands south through the New Hebrides to New Zealand and marking the boundary between the Australian and Pacific plates. Available geologic data from this region suggest that a similar geometry existed during the Tertiary and that the microcontinents of New Guinea, New Caledonia and New Zealand all lay along the former plate boundary which has since migrated north and east by a complex process of sea-floor spreading behind the active island arcs. ?? 1973.

  19. Relationships among developmental stage, metamorphic timing, and concentrations of elements in bullfrogs (Rana catesbeiana)

    Energy Technology Data Exchange (ETDEWEB)

    Snodgrass, J.W.; Hopkins, W.A.; Roe, J.H. [Towson University, Towson, MD (United States). Dept. for Biological Science

    2003-07-01

    We collected bullfrog (Rana catesbeiana) larvae from a coal combustion waste settling basin to investigate the effects of developmental stage and timing of metamorphosis on concentrations of a series of trace elements in bullfrog tissues. Bullfrogs at four stages of development (from no hind limbs to recently metamorphosed juveniles) and bullfrogs that metamorphosed in the fall or overwintered in the contaminated basin and metamorphosed in the spring were analyzed for whole-body concentrations of Al, V, Cr, Ni, Cu, As, Pb, Cd, Zn, Ag, Sr, and Se. After the effects of dry mass were removed, tissue concentrations of six elements (Al, V, Cr, Ni, Cu, As, and Pb) decreased from the late larval stage through metamorphosis. Decreases in concentrations through metamorphosis ranged from 40% for Cu to 97% for Al. Tissue concentrations of these elements were also similar or higher in spring; Al and Cr concentrations were 34 and 90% higher in the spring, respectively, whereas As, Ni, Cu, and Pb concentrations were {lt} 10% higher. Concentrations of Cd, Se, and Ag varied among seasons but not among stages; Cd and Ag concentrations were 40 and 62% lower, respectively, and Se concentrations were 21% higher in spring. Concentrations of Zn varied only among stages; concentrations decreased gradually through late larval stage and then increased through metamorphosis. Concentrations of Sr varied among stages, but this variation was dependent on the season. Concentrations of Sr were higher in larval stages during the spring, but because concentrations of Sr increased 122% through metamorphosis in the fall and only 22% in the spring, concentrations were higher in fall metamorphs when compared with spring metamorphs. Our results indicate that metamorphosis and season of metamorphosis affects trace element concentrations in bullfrogs and may have important implications for the health of juveniles and the transfer of pollutants from the aquatic to the terrestrial environment.

  20. Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa.

    Science.gov (United States)

    Moyen, Jean-François; Stevens, Gary; Kisters, Alexander

    2006-08-03

    Although plate tectonics is the central geological process of the modern Earth, its form and existence during the Archaean era (4.0-2.5 Gyr ago) are disputed. The existence of subduction during this time is particularly controversial because characteristic subduction-related mineral assemblages, typically documenting apparent geothermal gradients of 15 degrees C km(-1) or less, have not yet been recorded from in situ Archaean rocks (the lowest recorded apparent geothermal gradients are greater than 25 degrees C km(-1)). Despite this absence from the rock record, low Archaean geothermal gradients are suggested by eclogitic nodules in kimberlites and circumstantial evidence for subduction processes, including possible accretion-related structures, has been reported in Archaean terrains. The lack of spatially and temporally well-constrained high-pressure, low-temperature metamorphism continues, however, to cast doubt on the relevance of subduction-driven tectonics during the first 1.5 Gyr of the Earth's history. Here we report garnet-albite-bearing mineral assemblages that record pressures of 1.2-1.5 GPa at temperatures of 600-650 degrees C from supracrustal amphibolites from the mid-Archaean Barberton granitoid-greenstone terrain. These conditions point to apparent geothermal gradients of 12-15 degrees C-similar to those found in recent subduction zones-that coincided with the main phase of terrane accretion in the structurally overlying Barberton greenstone belt. These high-pressure, low-temperature conditions represent metamorphic evidence for cold and strong lithosphere, as well as subduction-driven tectonic processes, during the evolution of the early Earth.

  1. Petrology and Geochronology of High-Grade Metamorphic Rocks from Cedros Island, Baja California, Mexico

    Science.gov (United States)

    Gonzales, D.; Leech, M. L.

    2014-12-01

    High-grade metamorphic rocks exposed on Cedros Island, Baja California, Mexico, record the Mesozoic subduction history of western North America. Blocks of amphibolite, blueschist, and eclogite crop out in a serpentinite-matrix mélange on the southeast and southwestern parts of Cedros Island. Amphibolite blocks contain Amp + Ep + Ab + Chl ± Ms ± Grt ± Ttn ± Qz; blueschist blocks have the assemblage Na-Amp + Ms + Lw + Qz ± Ttn ± Grt ± Jd ± Chl; and eclogite blocks are comprised primarily of Omp + Grt with retrograde Na-Amp + Ms + Lw. Blueschists from Cedros have been dated using 40Ar/39Ar step-heating of white mica and sodic amphiboles that yield ages from 103 ± 4 Ma to 94.9 ± 1.1 Ma, respectively, that represent cooling during exhumation. Apatite fission-track dating gives ages from 32 ± 4 Ma to 22 ± 3 Ma that record exhumation through the upper crust. Related Mesozoic subduction zone rocks of the Franciscan Complex crop out in a serpentinite-matrix mélange along coastal northern California. The Franciscan rocks are older, yielding 40Ar/39Ar step-heating ages of hornblende from amphibolite ranging from 159 to 156 Ma and represent an older part of the subduction history of the oceanic Farallon plate along western North America. I will determine the prograde and peak metamorphic P-T conditions for these high-grade rocks using petrography, mineral chemistries, and isochemical phase diagram modeling with Perple_X to generate complete P-T paths. I will then supplement these data with Sm-Nd and Lu-Hf geochronology for these high-grade Cedros rocks to evaluate their subduction/exhumation history, and develop a tectonic model for these southernmost Franciscan-type rocks. Ultimately, I will compare my results to Franciscan rocks in northern California to better understand the Mesozoic subduction margin of western North America.

  2. Granulitic metamorphism in the Laouni terrane (Central Hoggar, Tuareg Shield, Algeria)

    Science.gov (United States)

    Bendaoud, Abderrahmane; Derridj, Amel; Ouzegane, Khadidja; Kienast, Jean-Robert

    2004-06-01

    In the Laouni terrane, which belongs to the polycyclic Central Hoggar domain, various areas contain outcrops of formations showing granulite-facies parageneses. This high-temperature metamorphism was accompanied by migmatization and the emplacement of two types of magmatic suite, one of continental affinity (garnet pyroxenites and granulites with orthoferrossilite-fayalite-quartz), and the other of arc affinity (layered metanorites). Paragenetic, thermobarometric and fluid-inclusion studies of the migmatitic metapelites and metabasites make it possible to reconstruct the P- T- aH 2O path undergone by these formations. This path is clockwise in the three studied areas, being characterized by a major decompression (Tamanrasset: 10.5 kbar at 825 °C to 6 kbar at 700 °C; Tidjenouine: 7.5 kbar at 875 °C; to 3.5 kbar at 700 °C; Tin Begane: 13.5 kbar at 850 °C; to 5 kbar at 720 °C), followed by amphibolitization that corresponds to a fall of temperature (from 700 to 600 °C) and an increase in water activity (from 0.2-0.4 to almost 1). The main observed features are in favour of petrogenesis and exhumation related to the Eburnean orogeny. However, the lacks of good-quality dating work and a comparison with juvenile Pan-African formations having undergone high-pressure metamorphism, in some cases reaching the eclogite facies, do not rule out the possibility that high-temperature parageneses are locally due to Pan-African events.

  3. Geochemistry and Petrogenesis of Neoarchean Metamorphic Mafic Rocks in the Wutai Complex

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; LIU Shuwen; Guochun ZHAO; LI Qiugen; Jian ZHANG; LIU Chaohui; K. H. PARK; Y. S. SONG

    2006-01-01

    Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite normalized REE patterns. Rocks in Group #1 are characterized by nearly flat REE patterns (Lan/Ybn=0.86-1.3), the lowest total REEs (29-52 ppm), and weak negative to positive Eu anomalies (Eun/Eun*=0.84-1.02), nearly flat primitive mantle normalized patterns and strong negative Zr(Hf) anomalies. Their geochemical characteristics in REEs and trace elements are similar to those of ocean plateau tholeiite, which imply that this group of rocks can represent remnants of Archean oceanic crust derived from a mantle plume. Rocks in Group #2 are characterized by moderate total REEs (34-116 ppm), LREE-enriched (Lan/Ybn=1.76-4.34) chondrite normalized REE patterns with weak Eu anomalies (Eun/Eun*=0.76-1.16), and negative Nb, Ta, Zr(Hf), Ti anomalies in the primitive mantle normalized spider diagram. The REE and trace element characteristics indicate that they represent arc magmas originating from a sub-arc mantle wedge metasomatized by slabderived fluids. Rocks in Group #3 are characterized by the highest total REEs (61-192 ppm), the strongest LREEs enrichment (Lan/Ybn=7.12-16) with slightly negative Eu anomalies (Eun/Eun*=0.81-0.95) in the chondrite normalized diagram. In the primitive mantle normalized diagram,these rocks are characterized by large negative anomalies in Nb, Ta, Ti, negative to no Zr anomalies.They represent arc magmas originating from a sub-arc mantle wedge enriched in slab-derived melts.The three groups of rocks imply that the formation of the Neoarchean Wutai Complex is related to mantle plumes and island-arc interaction.

  4. Phanerozoic magmatism and associated metamorphism in the Bird's Head, New Guinea

    Science.gov (United States)

    Jost, Benjamin; White, Lloyd; Webb, Max

    2017-04-01

    The Bird's Head is the north-westernmost peninsula of New Guinea. It is characterised by a mountain range exposing a basement of metamorphosed Silurian-Devonian turbidites cross-cut by various granitoid bodies. This area offers a unique window to study pre-Cenozoic tectono-thermal events at the north-eastern margin of eastern Gondwana. We present new field, geochemical, and U-Pb zircon data from this remote, relatively unstudied region. We show that the granitoids intruded the basement rocks in two distinct phases in the Devonian-Carboniferous and the Permian-Triassic. Both events produced highly evolved peraluminous granite and granodiorite, supplemented by fewer metaluminous diorite and gabbro. Abundant country rock xenoliths, associated migmatites, as well as mineralogical and geochemical data suggest that the granitoids were generated by partial melting of the continental crust (S-type). The Permian-Triassic event is further characterised by structures indicating syn-intrusive extension. We propose that Permian-Triassic magmatism in the Bird's Head occurred in an evolved continental-arc environment. Mantle-wedge-derived melts underplated and intruded the lower crust, providing the necessary heat to induce partial melting of the overlying metasedimentary crust. These melts were emplaced during a phase of crustal extension and are the likely cause of high-T/low-P regional metamorphism in the surrounding country rocks. Partial melting in a continental arc setting has been proposed for the generation of S-type granitoids of the Andes and along the western Pacific. The paired metamorphic and igneous rocks that we observe also show similarities to the Buchan type area in NE Scotland and the Cooma Complex in SE Australia, the latter of which is considered to have formed in an Andean-type margin.

  5. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments. DESCRIPTION: The multisensor core logger measures...

  6. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  7. Chemical and mineralogical data and processing methods management system prototype with application to study of the North Caucasus Blybsky Metamorphic Complexes metamorphism PT-condition

    Science.gov (United States)

    Ivanov, Stanislav; Kamzolkin, Vladimir; Konilov, Aleksandr; Aleshin, Igor

    2014-05-01

    There are many various methods of assessing the conditions of rocks formation based on determining the composition of the constituent minerals. Our objective was to create a universal tool for processing mineral's chemical analysis results and solving geothermobarometry problems by creating a database of existing sensors and providing a user-friendly standard interface. Similar computer assisted tools are based upon large collection of sensors (geothermometers and geobarometers) are known, for example, the project TPF (Konilov A.N., 1999) - text-based sensor collection tool written in PASCAL. The application contained more than 350 different sensors and has been used widely in petrochemical studies (see A.N. Konilov , A.A. Grafchikov, V.I. Fonarev 2010 for review). Our prototype uses the TPF project concept and is designed with modern application development techniques, which allows better flexibility. Main components of the designed system are 3 connected datasets: sensors collection (geothermometers, geobarometers, oxygen geobarometers, etc.), petrochemical data and modeling results. All data is maintained by special management and visualization tools and resides in sql database. System utilities allow user to import and export data in various file formats, edit records and plot graphs. Sensors database contains up to date collections of known methods. New sensors may be added by user. Measured database should be filled in by researcher. User friendly interface allows access to all available data and sensors, automates routine work, reduces the risk of common user mistakes and simplifies information exchange between research groups. We use prototype to evaluate peak pressure during the formation of garnet-amphibolite apoeclogites, gneisses and schists Blybsky metamorphic complex of the Front Range of the Northern Caucasus. In particular, our estimation of formation pressure range (18 ± 4 kbar) agrees on independent research results. The reported study was

  8. Growth of metamorphic and peritectic garnets in ultrahigh-pressure metagranite during continental subduction and exhumation in the Dabie orogen

    Science.gov (United States)

    Xia, Qiong-Xia; Wang, Hao-Zheng; Zhou, Li-Gang; Gao, Xiao-Ying; Zheng, Yong-Fei; Van Orman, James Ashton; Xu, Haijun; Hu, Zhaochu

    2016-12-01

    Two generations of garnet are recognized in ultrahigh-pressure (UHP) metagranite from the Dabie orogen by a combined study of petrography, major and trace element profiles in garnet, and phase equilibrium modeling for metagranite. The results enable distinction between metamorphic and peritectic garnet on the basis of BSE images, and major and trace element compositions. Our research provides new insights into the growth of anatectic garnet due to dehydration melting of UHP metamorphic rocks during exhumation from mantle depths. The first generation of garnet (Grt-I) occurs as a broad domain in the center, which is related to metamorphic growth during prograde subduction. This garnet is dark in BSE images, rich in grossular and poor in almandine and pyrope. The chondrite-normalized rare earth element (REE) patterns show LREE depletion and flat MREE-HREE patterns. The second generation of garnet (Grt-II) occurs as a rim of euhedral garnet, or as patches in Grt-I domains, recrystallized after dissolution of preexisting metamorphic garnet in the presence of anatectic melts during exhumation. It is bright in BSE images, poor in grossular, and rich in almandine and pyrope contents. Trace element analyses on Grt-II domains yield high contents of Sc, Cr, Y and HREE and low contents of Ti and MREE. The chondrite-normalized REE patterns exhibit LREE depletion, and steep MREE-HREE patterns. Based on REE partitioning between garnet and zircon/titanite, the last growth times for metamorphic and anatectic garnets are constrained by zircon and titanite U-Pb ages to be 240 Ma and 220 Ma, respectively. Based on anatectic microstructures and a modeled P-T pseudosection, it is suggested that dehydration melting occurred at 2.0-2.5 GPa during exhumation. Melting occurred through the breakdown of phengite via the peritectic reaction: garnet (I) + phengite + plagioclase + quartz → garnet (II) + biotite + K-feldspar + melt.

  9. Tectonic evolvement of metamorphic complexes at Jilin paleocontinental margin during the transition from late Archaean to early Proterozoic

    Institute of Scientific and Technical Information of China (English)

    SUN Zhongshi; DENG Jun; JIANG Yanguo; WANG Jianping; WANG Qingfei; WEI Yanguang

    2004-01-01

    The kinematics and dynamical process of tectonic evolvement of metamorphic complexes at the interim from late Archaean to early Proterozoic is one of the key problems in geosciences. For the disputation on the genesis of metamorphic complexes at the margin of Jilin palaeocontinent, this paper takes the example of Banshigou region, Jilin Province to discuss the dynamical evolution of palaeocontinent during the transition from late Archaean to early Proterozoic (2600-2000 Ma). On the time sequence, from center to palaeocontinental margin, it shows a series of dynamical movements including underplating, horizontal movement, subduction, intraplate extension and separation. And its corresponding sequence of kinematical modes is as follows: vertical movement, horizontal movement, extension and shearing in contact zone,uplift-sliding movement in paleocontinental margin and interformational sliding, resulting in such tectonite sequence, tectonic gneiss, gneissic complex, gneissic complex-mylonite, mylonite and fracture cleavage-mylonite, which consist of the main body of metamorphic complexes. Their palaeostresses are: < 20, 20.40, 21.72, 28.80 and 30.8-69.8 MPa respectively. The deformational metamorphic temperature is between hornblende and low-grade greenschist facies. The general deformational characters of Jilin palaeocontinent reflect a complete dynamic system of crust evolution, which indicates that the formation of the metamorphic complexes and the tectonic evolution are altered from vertical movement to compression to extension. It also indicates a continuous tectonic transformation from deep to shallow, and from ductile to brittle. The transformation between different dynamic mechanisms not only forms tectonic rocks, but also benefits the linking up, exchange and enrichment with rock-forming minerals and ore-forming elements.This research is helpful to classifying regional tectonic events and making further study on the evolution of palaeocontinental dynamics.

  10. The Metamorphic Rocks-Hosted Gold Mineralization At Rumbia Mountains Prospect Area In The Southeastern Arm of Sulawesi Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hasria Hasria

    2017-09-01

    Full Text Available Recently, in Indonesia gold exploration activities  are not only focused along volcanic-magmatic belts, but also starting to shift along metamorphic and sedimentary terrains. The study area is located in Rumbia mountains, Bombana Regency, Southeast Sulawesi Province. This paper is aimed to describe characteristics of alteration and ore mineralization associated  with metamorphic rock-related gold deposits.  The study area is found the placer and  primary gold hosted by metamorphic rocks. The gold is evidently derived from gold-bearing quartz veins hosted by Pompangeo Metamorphic Complex (PMC. These quartz veins are currently recognized in metamorphic rocks at Rumbia Mountains. The quartz veins are mostly sheared/deformed, brecciated, irregular vein, segmented and  relatively massive and crystalline texture with thickness from 1 cm to 15.7 cm. The wallrock are generally weakly altered. Hydrothermal alteration types include sericitization, argillic, inner propylitic, propylitic, carbonization and carbonatization. There some precious metal identified consist of native gold and ore mineralization including pyrite (FeS2, chalcopyrite (CuFeS2, hematite (Fe2O3, cinnabar (HgS, stibnite (Sb2S3 and goethite (FeHO2. The veins contain erratic gold in various grades from below detection limit <0.0002 ppm to 18.4 ppm. Based on those characteristics, it obviously indicates that the primary gold deposit present in the study area is of orogenic gold deposit type. The orogenic gold deposit is one of the new targets for exploration in Indonesia

  11. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: Implications for an archipelago-accretion orogenic model

    Science.gov (United States)

    Li, Hua-Qi; Xu, Zhi-Qin; Webb, A. Alexander G.; Li, Tian-Fu; Ma, Shi-Wei; Huang, Xue-Meng

    2017-04-01

    The Basu metamorphic complex, surrounded by ophiolitic melanges and intruded by a large volume of undeformed granitoid rocks along the eastern segment of the Bangong-Nujiang suture, holds one of the keys to understanding the pre-Cenozoic tectonic evolution of central Tibet. Zircon U-Pb dating of rocks from the Basu metamorphic complex reveals that meta-igneous rocks yield Early Paleozoic crystallization ages of 500-492 Ma and an Early Jurassic metamorphic age of 173 Ma, and that undeformed granitoid rocks yield crystallization ages of approximately 186-174 Ma. Whole rock geochemical and zircon Lu-Hf isotopic data indicate that the undeformed granitoid rocks originated mainly from partial melting of ancient crustal sources, which may reflect a collisional orogenic setting. 40Ar/39Ar dating of biotite from a sillimanite-garnet-biotite paragneiss shows cooling to 300 ± 50 °C at 165 Ma. These data indicate significant Early Jurassic tectonism, during which most of the Basu metamorphic complex was formed. Furthermore, the age data resemble those of the Amdo metamorphic complex located approximately 500 km to the west along the Bangong-Nujiang suture. Together, these complexes may represent a ;destroyed or unrecognized; block, i.e., the Amdo-Tongka block, which may be the eastern extension of the South Qiangtang terrane. Based on the tectonic outlines of the multiple ophiolitic zones and magmatic belts, we suggest a new archipelago-accretion model that attributes the Early Jurassic tectonism to an arc-continent/micro-continent collision. This model further enables the reconstruction of the eastern Tethyan Ocean and the orogenic processes of central Tibet during the Mesozoic.

  12. Porosity evolution, contact metamorphism, and fluid flow in the host basalts of the Skaergaard magma-hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Manning, C.E.

    1989-01-01

    Temporal and spatial variations in porosity during contact metamorphism of the basaltic country rocks to the Skaergaard intrusion in East Greenland resulted in a complex hydrological evolution of the metamorphic aureole. Contrasts in macroscopic porosities in different lithologies led to differences in mineralogical, bulk chemical, and oxygen isotopic alteration, and units with greater macroscopic porosities record larger fluid flux during metamorphism. Calculated Darcy velocities indicate that the horizontal component of fluid flow in the aureole was toward the intrusive contact. In the actinolite + chlorite zone time-integrated fluid flux was higher in aa units ({approximately} 300 kg cm{sup {minus}2}) than in massive units ({approximately} 130 kg cm{sup {minus}2}). Approximately equal time-integrated fluxes of respectively 4 and 5 kg cm{sup {minus}2} in aa and massive units in the pyroxene zone indicate that the volume of fluid flow in the higher grade rocks was independent of primary porosity. These results are consistent with inward fluid migration in the actinolite + chlorite zone through an open network of pores whose abundance varied as a function of primary lava morphology. At higher metamorphic grades fluid fluxes were lower and were independent of primary porosity, probably as a consequence of (1) channelization of fluids due to more extensive pore filling and (2) decreasing horizontal component of flow due to upward migration of fluids near the contact. The results of this study indicate that explicit provision for rock porosity aids interpretation of the nature of fluid flow during contact metamorphism in magma-hydrothermal systems.

  13. A metamorphic mineral source for tungsten in the turbidite-hosted orogenic gold deposits of the Otago Schist, New Zealand

    Science.gov (United States)

    Cave, Ben J.; Pitcairn, Iain K.; Craw, Dave; Large, Ross R.; Thompson, Jay M.; Johnson, Sean C.

    2016-09-01

    The orogenic gold deposits of the Otago Schist, New Zealand, are enriched in a variety of trace elements including Au, As, Ag, Hg, W and Sb. We combine laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) traverses and images to show that detrital rutile is the most important host mineral for W in the subgreenschist facies rocks. Furthermore, the prograde metamorphic recrystallisation of detrital rutile to titanite releases significant amounts of W (potentially 0.41 g/tonne of rock). Scheelite development closely follows the progression of this W-liberating reaction. Scheelite micrograins form early within the fabric of the rock evolving to locally and regionally sourced scheelite-bearing veins. Scheelite from syn-metamorphic veins at Fiddlers Flat and Lake Hāwea shows distinct differences in composition compared with scheelite from late-metamorphic veins at the Macraes Mine, the latter of which is enriched in REEs, Y and Sr. We suggest that the scheelite at Macraes became enriched due to the liberation of these elements during alteration of the Ca-silicate minerals epidote and titanite by the ore-forming fluid. These results are supportive of recent models for orogenic gold mineralisation in the Otago Schist, whereby prograde metamorphic recrystallisation of diagenetic or detrital metal-rich mineral phases (pyrite to pyrrhotite: Au, As, Ag, Hg and Sb; rutile to titanite: W) releases significant amounts of metals into the concurrently developing metamorphic fluids that can be subsequently focussed into regional structures and form significant tungsten-bearing orogenic gold deposits.

  14. Ice Core Investigations

    Science.gov (United States)

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  15. Making an Ice Core.

    Science.gov (United States)

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  16. Ice Core Investigations

    Science.gov (United States)

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  17. Iowa Core Annual Report

    Science.gov (United States)

    Iowa Department of Education, 2015

    2015-01-01

    One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…

  18. Mercury's core evolution

    Science.gov (United States)

    Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim

    2016-10-01

    Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.

  19. Mars' core and magnetism.

    Science.gov (United States)

    Stevenson, D J

    2001-07-12

    The detection of strongly magnetized ancient crust on Mars is one of the most surprising outcomes of recent Mars exploration, and provides important insight about the history and nature of the martian core. The iron-rich core probably formed during the hot accretion of Mars approximately 4.5 billion years ago and subsequently cooled at a rate dictated by the overlying mantle. A core dynamo operated much like Earth's current dynamo, but was probably limited in duration to several hundred million years. The early demise of the dynamo could have arisen through a change in the cooling rate of the mantle, or even a switch in convective style that led to mantle heating. Presently, Mars probably has a liquid, conductive outer core and might have a solid inner core like Earth.

  20. The t-core of an s-core

    OpenAIRE

    Fayers, Matthew

    2010-01-01

    We consider the $t$-core of an $s$-core partition, when $s$ and $t$ are coprime positive integers. Olsson has shown that the $t$-core of an $s$-core is again an $s$-core, and we examine certain actions of the affine symmetric group on $s$-cores which preserve the $t$-core of an $s$-core. Along the way, we give a new proof of Olsson's result. We also give a new proof of a result of Vandehey, showing that there is a simultaneous $s$- and $t$-core which contains all others.

  1. The t-core of an s-core

    OpenAIRE

    Fayers, Matthew

    2010-01-01

    We consider the $t$-core of an $s$-core partition, when $s$ and $t$ are coprime positive integers. Olsson has shown that the $t$-core of an $s$-core is again an $s$-core, and we examine certain actions of the affine symmetric group on $s$-cores which preserve the $t$-core of an $s$-core. Along the way, we give a new proof of Olsson's result. We also give a new proof of a result of Vandehey, showing that there is a simultaneous $s$- and $t$-core which contains all others.

  2. Korrelasjon mellom core styrke, core stabilitet og utholdende styrke i core

    OpenAIRE

    Berg-Olsen, Andrea Marie; Fugelsøy, Eivor; Maurstad, Ann-Louise

    2010-01-01

    Formålet med studien var å se hvilke korrelasjon det er mellom core styrke, core stabilitet og utholdende styrke i core. Testingen bestod av tre hoveddeler hvor vi testet core styrke, core stabilitet og utholdende styrke i core. Innenfor core styrke og utholdende styrke i core ble tre ulike tester utført. Ved måling av core stabilitet ble det gjennomført kun en test. I core styrke ble isometrisk abdominal fleksjon, isometrisk rygg ekstensjon og isometrisk lateral fleksjon testet. Sit-ups p...

  3. Korrelasjon mellom core styrke, core stabilitet og utholdende styrke i core

    OpenAIRE

    Berg-Olsen, Andrea Marie; Fugelsøy, Eivor; Maurstad, Ann-Louise

    2010-01-01

    Formålet med studien var å se hvilke korrelasjon det er mellom core styrke, core stabilitet og utholdende styrke i core. Testingen bestod av tre hoveddeler hvor vi testet core styrke, core stabilitet og utholdende styrke i core. Innenfor core styrke og utholdende styrke i core ble tre ulike tester utført. Ved måling av core stabilitet ble det gjennomført kun en test. I core styrke ble isometrisk abdominal fleksjon, isometrisk rygg ekstensjon og isometrisk lateral fleksjon testet. Sit-ups p...

  4. Earth's inner core: Innermost inner core or hemispherical variations?

    NARCIS (Netherlands)

    Lythgoe, K. H.; Deuss, A.; Rudge, J. F.; Neufeld, J. A.

    2014-01-01

    The structure of Earth's deep inner core has important implications for core evolution, since it is thought to be related to the early stages of core formation. Previous studies have suggested that there exists an innermost inner core with distinct anisotropy relative to the rest of the inner core.

  5. Earth's inner core: Innermost inner core or hemispherical variations?

    NARCIS (Netherlands)

    Lythgoe, K. H.; Deuss, A.; Rudge, J. F.; Neufeld, J. A.

    2014-01-01

    The structure of Earth's deep inner core has important implications for core evolution, since it is thought to be related to the early stages of core formation. Previous studies have suggested that there exists an innermost inner core with distinct anisotropy relative to the rest of the inner core.

  6. X-ray color maps of the zoned garnets from Silgará Formation metamorphic rocks,SantanderMassif, Eastern Cordillera (Colombia

    Directory of Open Access Journals (Sweden)

    Takasu Akira

    2010-12-01

    Full Text Available

    The metamorphic rocks of the Lower Paleozoic Silgará Formation of the Santander Massif, Eastern Cordillera (Colombia, were affected by a Barrovian-type metamorphism under low to high temperature and medium pressure conditions. These rocks contain garnet porphyroblasts, which show several kinds of chemical zoning patterns. The garnet grains behave as closed systems with respect to the rock matrix. Most of the observed zoning patterns are due to gradual changes in physicochemical conditions during growth. However, some garnet grains show complex zoning patterns during multiple deformation and metamorphic events.

  7. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach

    Science.gov (United States)

    Palin, Richard M.; Reuber, Georg S.; White, Richard W.; Kaus, Boris J. P.; Weller, Owen M.

    2017-06-01

    The Tso Morari massif is one of only two regions where ultrahigh-pressure (UHP) metamorphism of subducted crust has been documented in the Himalayan Range. The tectonic evolution of the massif is enigmatic, as reported pressure estimates for peak metamorphism vary from ∼2.4 GPa to ∼4.8 GPa. This uncertainty is problematic for constructing large-scale numerical models of the early stages of India-Asia collision. To address this, we provide new constraints on the tectonothermal evolution of the massif via a combined geodynamic and petrological forward-modelling approach. A prograde-to-peak pressure-temperature-time (P-T-t) path has been derived from thermomechanical simulations tailored for Eocene subduction in the northwestern Himalaya. Phase equilibrium modelling performed along this P-T path has described the petrological evolution of felsic and mafic components of the massif crust, and shows that differences in their fluid contents would have controlled the degree of metamorphic phase transformation in each during subduction. Our model predicts that peak P-T conditions of ∼2.6-2.8 GPa and ∼600-620 ∘C, representative of 90-100 km depth (assuming lithostatic pressure), could have been reached just ∼3 Myr after the onset of subduction of continental crust. This P-T path and subduction duration correlate well with constraints reported for similar UHP eclogite in the Kaghan Valley, Pakistan Himalaya, suggesting that the northwest Himalaya contains dismembered remnants of what may have been a ∼400-km-long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. A maximum overpressure of ∼0.5 GPa was calculated in our simulations for a homogeneous crust, although small-scale mechanical heterogeneities may produce overpressures that are larger in magnitude. Nonetheless, the extremely high pressures for peak metamorphism reported by some workers (up to 4.8 GPa) are unreliable owing to conventional thermobarometry

  8. Chemical mobility during low-grade metamorphism of a Jurassic lava flow: Río Grande Formation, Peru

    Science.gov (United States)

    Aguirre, L.

    Chemical and mineralogical changes produced by very low-grade metamorphism in a 40 meter thick, K-rich, calc-alkaline andesite flow of the marine Jurassic Río Grande Formation of southern coastal Peru are discussed. This metamorphism (=spilitization) was non-deformational and generated spilitic domains at (and near) both vesicular margins of the flow, whereas the massive central zone remained relatively unaltered. The metadomains are characterized by mineral associations of the zeolite facies. Primary minerals are Ca-plagioclase, augitic pyroxene, iron-titanium oxides, and (pseudomorphs after) olivine. Metamorphic minerals are: albite (three generations), K-feldspar, pumpellyite, chlorite, interlayered chlorite-celadonite, celadonite, various mixed-layer Si- and Fe-rich phyllosilicates, "iddingsite," calcite, analcime, titanite, and white mica. The effect of the metamorphism on the rock chemistry is reflected in changes especially observed at the marginal zones of the flow which affect major, trace, and RE elements: 1) strong increase of the iron oxidation ratio (Fe 2O 3/FeO); 2) enrichment in Na 2O accompanied by a concomitant depletion of CaO in non-amygdaloidal domains; 3) depletion of SiO 2; 4) strong enrichment in H 2O and CO 2; 5) marked depletion of Sr and Rb; 6) enrichment in Cl and S; and 7) slight depletion in RE elements, notably in the top zone of the flow. Conversely, elements such as Ti, P, Nb, and Y were fairly immobile, whereas Zr and K were only slightly mobilized. The effect of the metamorphism on the mineral chemistry is expressed by the predominance of metastable equilibrium evidenced by the existence of wide compositional ranges in the phyllosilicates, the incomplete albitization of the Ca-plagioclase, and the Al-rich character of the pumpellyites. The metamorphism is considered to be of hydrothermal-burial type, which takes place at low temperature and pressure — probably about 125-230°C and less than 3 kb, and is produced mainly through

  9. Geochemistry, Nd Isotopic Characteristics of Metamorphic Complexes in Northern Hebei: Implications for Crustal Accretion

    Institute of Scientific and Technical Information of China (English)

    LIU Shuwen; TIAN Wei; L(U) Yongjun; LI Qiugen; FENG Yonggang; K. H. PARK; Y. S. SONG

    2006-01-01

    The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-alkaline granite, as well as metamorphosed Late Paleozoic mafic to granitoid rocks in the Damiao-Changshaoying area. The ~2.49 Ga Dantazi Complex comprises dioritic-trondhjemitic-granodoritic-monzogranitic gneisses metamorphosed in amphibolite to granulite facies. Petrochemical characteristics reveal that most of the rocks belong to a medium- to high-potassium calc-alkaline series, and display Mg# less than 40, right-declined REE patterns with no to obviously positive Eu anomalies, evidently negative Th, Nb, Ta and Ti anomalies in primitive mantlenormalized spider diagrams, εNd(t)=+0.65 to -0.03, and depleted mantle model ages TDM=2.78-2.71 Ga.Study in petrogenesis indicates that the rocks were formed from magmatic mixing between mafic magma from the depleted mantle and granitoid magma from partial melting of recycled crustal mafic rocks in a continental margin setting. The 2.44-2.41 Ga Hongqiyingzi Complex is dominated by metamorphic mafic-granodioritic-monzogranitic gneisses, displaying similar petrochemical features to the Dantazi Complex, namely medium to high potassium callc-alkaline series, and the mafic rocks show evident change in LILEs, negative Th, Nb, Ta, Zr anomalies and positive P anomalies. And the other granitiod samples also exhibit negative Th, Nb, Ta, P and Ti anomalies. All rocks in the Hongqiyingzi Complex show right-declined REE patterns without Eu anomaly. The metamorphic mafic rocks with εNd(t) = -1.64 may not be an identical magmatic evolution series with granitoids that have εNd(t) values of +3.19 to +1.94 and TDM ages of 2.55-2.52 Ga. These granitic rocks originated from hybrid between mafic magma from the depleted mantle and magma from partial melting of juvenile crustal mafic rocks in an island arc setting. All the ~311

  10. UHP-Metamorphic Pyrope Quartzites From Dora Maira: Cathodoluminescence of Silica and Twinning of Coesite

    Science.gov (United States)

    Schertl, H.; Medenbach, O.; Neuser, R. D.

    2005-12-01

    Since the first discovery of metamorphic coesite in ultrahigh-pressure (UHP) rocks from the Dora Maira Massif/Western Alps, much attention was drawn on its characteristics: the paragenesis, influence of OH on the kinetics of the coesite-quartz transition, present day overpressure in coesite inclusions, features like palisade-quartz as typical breakdown product, experimental studies on the rheology of polycrystalline coesite, oxygen isotope signatures, etc. Here we would like to focus on the cathodoluminescence (CL) of coesite and its breakdown products. Since luminescence is triggered even by minor differences in composition or structure of a mineral, in this study the CL microscope is employed not only as a powerful tool to distinguish between different mineral phases but also to characterize different generations of a coesite breakdown product. A second topic concerns the twinning of coesite which is very rarely observed in nature. The investigations were made on pyrope quartzite previously representing a pyrope coesitite at UHP metamorphic conditions (Chopin, 1984; Schertl et al., 1991). Main constituent phases are pyrope, quartz, phengite, talc, and kyanite with minor amounts of coesite and jadeite. The rock can be subdivided in a fine-grained type containing pyropes up to about 1.5 cm and a coarse-grained type with pyrope crystals up to 25 cm. The boundaries between both types are irregular, but they exhibit significant differences concerning their mineral inclusions: inclusions of coesite/quartz (in paragenesis with kyanite and phengite) are only observed in small pyropes whereas in big pyropes no silica phase occurs. Typical mineral inclusions in big pyropes essentially are kyanite, talc, and chlorite with minor amounts of ellenbergerite, Mg-dumortierite and sodic amphibole. Coesite typically shows bluish-green luminescence colours, whereas palisade-like quartz as breakdown product (interpreted to be formed at high temperatures) surrounding coesite is

  11. IGCSE core mathematics

    CERN Document Server

    Wall, Terry

    2013-01-01

    Give your core level students the support and framework they require to get their best grades with this book dedicated to the core level content of the revised syllabus and written specifically to ensure a more appropriate pace. This title has been written for Core content of the revised Cambridge IGCSE Mathematics (0580) syllabus for first teaching from 2013. ? Gives students the practice they require to deepen their understanding through plenty of practice questions. ? Consolidates learning with unique digital resources on the CD, included free with every book. We are working with Cambridge

  12. Core shroud corner joints