WorldWideScience

Sample records for intestinalis transcriptional profiling

  1. Transcription of meiotic-like-pathway genes in Giardia intestinalis

    Directory of Open Access Journals (Sweden)

    Sandra P Melo

    2008-06-01

    Full Text Available The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.

  2. Transcription of meiotic-like-pathway genes in Giardia intestinalis.

    Science.gov (United States)

    Melo, Sandra P; Gómez, Vanessa; Castellanos, Isabel C; Alvarado, Magda E; Hernández, Paula C; Gallego, Amanda; Wasserman, Moisés

    2008-06-01

    The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.

  3. Transcription of meiotic-like-pathway genes in Giardia intestinalis

    OpenAIRE

    2008-01-01

    The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively ...

  4. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis.

    Science.gov (United States)

    Yokomori, Rui; Shimai, Kotaro; Nishitsuji, Koki; Suzuki, Yutaka; Kusakabe, Takehiro G; Nakai, Kenta

    2016-01-01

    The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.

  5. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Mangano, Valentina [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Bakiu, Rigers [Department of Crop Production, Agricultural University of Tirana, Tirana (Albania); Cammarata, Matteo; Parrinello, Nicolò [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2013-09-15

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  6. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Piccinni, Ester [Department of Biology, University of Padova, Padova (Italy); Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Basso, Giuseppe [Department of Woman and Child Health, University of Padova, Padova (Italy); Spolaore, Barbara [CRIBI Biotechnology Centre, University of Padova, Padova (Italy); Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2014-07-01

    Highlights: • Ciona intestinalis have a functional phytochelatin synthase (PCS) gene (cipcs). • CiPCS amino acid sequence is phylogentically related to other metazoan PCSs. • CiPCS catalyze the synthesis of PC2. • cipcs are mostly transcribed in circulating hemocytes, in both tunic and blood lacunae. • Cadmium exposure results in a significant increase of cipcs and cipcna transcription. - Abstract: The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96 h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.

  7. Hereditary profiles of disorderly transcription?

    Directory of Open Access Journals (Sweden)

    Simons Johannes WIM

    2006-04-01

    Full Text Available Abstract Background Microscopic examination of living cells often reveals that cells from some cell strains appear to be in a permanent state of disarray without obvious reason. In all probability such a disorderly state affects cell functioning. The aim of this study was to establish whether a disorderly state could occur that adversely affects gene expression profiles and whether such a state might have biomedical consequences. To this end, the expression profiles of the 14 genes of the proteasome derived from the GEO SAGE database were utilized as a model system. Results By adopting the overall expression profile as the standard for normal expression, deviation in transcription was frequently observed. Each deviating tissue exhibited its own characteristic profile of over-expressed and under-expressed genes. Moreover such a specific deviating profile appeared to be epigenetic in origin and could be stably transmitted to a clonal derivative e.g. from a precancerous normal tissue to its tumor. A significantly greater degree of deviation was observed in the expression profiles from the tumor tissues. The changes in the expression of different genes display a network of interdependencies. Therefore our hypothesis is that deviating profiles reflect disorder in the localization of genes within the nucleus The underlying cause(s for these disorderly states remain obscure; it could be noise and/or deterministic chaos. Presence of mutational damage does not appear to be predominantly involved. Conclusion As disturbances in expression profiles frequently occur and have biomedical consequences, its determination could prove of value in several fields of biomedical research. Reviewers This article was reviewed by Trey Ideker, Itai Yanai and Stephan Beck

  8. Transcriptional profiling of epidermal differentiation.

    Science.gov (United States)

    Radoja, Nada; Gazel, Alix; Banno, Tomohiro; Yano, Shoichiro; Blumenberg, Miroslav

    2006-10-03

    In epidermal differentiation basal keratinocytes detach from the basement membrane, stop proliferating, and express a new set of structural proteins and enzymes, which results in an impermeable protein/lipid barrier that protects us. To define the transcriptional changes essential for this process, we purified large quantities of basal and suprabasal cells from human epidermis, using the expression of beta4 integrin as the discriminating factor. The expected expression differences in cytoskeletal, cell cycle, and adhesion genes confirmed the effective separation of the cell populations. Using DNA microarray chips, we comprehensively identify the differences in genes expressed in basal and differentiating layers of the epidermis, including the ECM components produced by the basal cells, the proteases in both the basal and suprabasal cells, and the lipid and steroid metabolism enzymes in suprabasal cells responsible for the permeability barrier. We identified the signaling pathways specific for the two populations and found two previously unknown paracrine and one juxtacrine signaling pathway operating between the basal and suprabasal cells. Furthermore, using specific expression signatures, we identified a new set of late differentiation markers and mapped their chromosomal loci, as well as a new set of melanocyte-specific markers. The data represent a quantum jump in understanding the mechanisms of epidermal differentiation.

  9. TRANSFAC: transcriptional regulation, from patterns to profiles.

    Science.gov (United States)

    Matys, V; Fricke, E; Geffers, R; Gössling, E; Haubrock, M; Hehl, R; Hornischer, K; Karas, D; Kel, A E; Kel-Margoulis, O V; Kloos, D-U; Land, S; Lewicki-Potapov, B; Michael, H; Münch, R; Reuter, I; Rotert, S; Saxel, H; Scheer, M; Thiele, S; Wingender, E

    2003-01-01

    The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data. Structured fields for expression patterns have been introduced for transcription factors from human and mouse, using the CYTOMER database on anatomical structures and developmental stages. The functionality of Match, a tool for matrix-based search of transcription factor binding sites, has been enhanced. For instance, the program now comes along with a number of tissue-(or state-)specific profiles and new profiles can be created and modified with Match Profiler. The GENE table was extended and gained in importance, containing amongst others links to LocusLink, RefSeq and OMIM now. Further, (direct) links between factor and target gene on one hand and between gene and encoded factor on the other hand were introduced. The TRANSFAC public release is available at http://www.gene-regulation.com. For yeast an additional release including the latest data was made available separately as TRANSFAC Saccharomyces Module (TSM) at http://transfac.gbf.de. For CYTOMER free download versions are available at http://www.biobase.de:8080/index.html.

  10. Single molecule transcription profiling with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jason [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States); Mishra, Bud [Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Pittenger, Bede [Veeco Instruments, Santa Barbara, CA 93117 (United States); Magonov, Sergei [Veeco Instruments, Santa Barbara, CA 93117 (United States); Troke, Joshua [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Gimzewski, James K [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States)

    2007-01-31

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations.

  11. Transcriptional and post-transcriptional profile of human chromosome 21.

    Science.gov (United States)

    Nikolaev, Sergey I; Deutsch, Samuel; Genolet, Raphael; Borel, Christelle; Parand, Leila; Ucla, Catherine; Schütz, Frederic; Duriaux Sail, Genevieve; Dupré, Yann; Jaquier-Gubler, Pascale; Araud, Tanguy; Conne, Beatrice; Descombes, Patrick; Vassalli, Jean-Dominique; Curran, Joseph; Antonarakis, Stylianos E

    2009-08-01

    Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.

  12. Identification of epididymis-specific transcripts in the mouse and rat by transcriptional profiling

    Institute of Scientific and Technical Information of China (English)

    Daniel S. Johnston; Terry T. Turner; Joshua N. Finger; Tracy L. Owtscharuk; S. Kopf; Scott A. Jelinsky

    2007-01-01

    As part of our efforts to identify novel contraceptive targets in the epididymis we performed transcriptional profiling on each of the 10 and 19 segments of the mouse and rat epididymidis, respectively, using Affymetrix whole genome microarrays. A total of 17 096 and 16 360 probe sets representing transcripts were identified as being expressed in the segmented mouse and rat epididymal transcriptomes, respectively. Comparison of the expressed murine transcripts against a mouse transcriptional profiling database derived from 22 other mouse tissues identified 77transcripts that were expressed uniquely in the epididymis. The expression of these genes was further evaluated by reverse transcription polymerase chain reaction (RT-PCR) analysis of RNA from 21 mouse tissues. RT-PCR analysis confirmed epididymis-specific expression of Defensin Beta 13 and identified two additional genes with expression restricted only to the epididymis and testis. Comparison of the 16 360 expressed transcripts in the rat epididymis with data of 21 other tissues from a rat transcriptional profiling database identified 110 transcripts specific for the epididymis.Sixty-two of these transcripts were further investigated by qPCR analysis. Only Defensin 22 (E3 epididymal protein)was shown to be completely specific for the epididymis. In addition, 14 transcripts showed more than 100-fold selective expression in the epididymis. The products of these genes might play important roles in epididymal and/or sperm function and further investigation and validation as contraceptive targets are warranted. The results of the studies described in this report are available at the Mammalian Reproductive Genetics (MRG) Database (http://mrg.genetics.washington.edu/).

  13. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    Science.gov (United States)

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray

  14. Matrix formulation of a universal microbial transcript profiling system

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, J P; Ng, J; Sokhansanj, B A

    2000-11-01

    DNA chips and microarrays are used to profile gene transcription. Unfortunately, the initial fabrication cost for a chip and the reagent costs to amplify thousands of open reading frames for a microarray are over $100K for a typical 4 Mbase bacterial genome. To avoid these expensive steps, a matrix formulation of a universal hybrid chip-microarray approach to transcript profiling is demonstrated for synthetic data. Initial considerations for application to the 4.3 Mbase bacterium Yersinia pestis are also presented. This approach can be applied to arbitrary bacteria by recalculating a matrix and pseudoinverse. This approach avoids the large upfront expenses associated with DNA chips and microarrays.

  15. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    Science.gov (United States)

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R; Nislow, Corey

    2013-05-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  16. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    Directory of Open Access Journals (Sweden)

    Harm van Bakel

    2013-05-01

    Full Text Available Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  17. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles.

    Science.gov (United States)

    Meka, A; Bakthavatchalu, V; Sathishkumar, S; Lopez, M C; Verma, R K; Wallet, S M; Bhattacharyya, I; Boyce, B F; Handfield, M; Lamont, R J; Baker, H V; Ebersole, J L; Kesavalu, L

    2010-02-01

    Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. This investigation aimed to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and was analysed for transcript profiles using Murine GeneChip((R)) arrays to provide a molecular profile of the events that occur following infection of these tissues. After P. gingivalis infection, 6452 and 2341 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P transcription of a broad array of host genes, the profiles of which differed between inflamed soft tissues and calvarial bone.

  18. Transcriptional profiling of rhesus monkey embryonic stem cells.

    Science.gov (United States)

    Byrne, James A; Mitalipov, Shoukhrat M; Clepper, Lisa; Wolf, Don P

    2006-12-01

    Embryonic stem cells (ESCs) may be able to cure or alleviate the symptoms of various degenerative diseases. However, unresolved issues regarding survival, functionality, and tumor formation mean a prudent approach should be adopted towards advancing ESCs into human clinical trials. The rhesus monkey provides an ideal model organism for developing strategies to prevent immune rejection and test the feasibility, safety, and efficacy of ESC-based medical treatments. Transcriptional profiling of rhesus monkey ESCs provides a foundation for pre-clinical ESC research in this species. In the present study, we used microarray technology, immunocytochemistry, reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qPCR) to characterize and transcriptionally profile rhesus monkey ESCs. We identified 367 stemness gene candidates that were highly (>85%) conserved across five different ESC lines. Rhesus monkey ESC lines maintained a pluripotent undifferentiated state over a wide range of POU5F1 (also known as OCT4) expression levels, and comparisons between rhesus monkey, mouse, and human stemness genes revealed five mammalian stemness genes: CCNB1, GDF3, LEFTB, POU5F1, and NANOG. These five mammalian genes are strongly expressed in rhesus monkey, mouse, and human ESCs, albeit only in the undifferentiated state, and represent the core key mammalian stemness factors.

  19. Transcriptional profile of a myotube starvation model of atrophy

    Science.gov (United States)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  20. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease.

    Science.gov (United States)

    Schaker, Patricia D C; Palhares, Alessandra C; Taniguti, Lucas M; Peters, Leila P; Creste, Silvana; Aitken, Karen S; Van Sluys, Marie-Anne; Kitajima, João P; Vieira, Maria L C; Monteiro-Vitorello, Claudia B

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression.

  1. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease

    Science.gov (United States)

    Taniguti, Lucas M.; Peters, Leila P.; Creste, Silvana; Aitken, Karen S.; Van Sluys, Marie-Anne; Kitajima, João P.; Vieira, Maria L. C.; Monteiro-Vitorello, Claudia B.

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression. PMID:27583836

  2. Taxonomy Icon Data: Ciona intestinalis (Sea squirt) [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Ciona intestinalis (Sea squirt) Ciona intestinalis Chordata/Urochordata,Cephalochordata Ciona_intest...inalis_L.png Ciona_intestinalis_NL.png Ciona_intestinalis_S.png Ciona_intestinalis_NS.png h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intestinalis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intest...inalis&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intest...inalis&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ciona+intestinalis&t=NS ...

  3. Global transcriptional profiles of Trichophyton rubrum in response to Flucytosine

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Trichophyton rubrum (T.rubrum) is one of the most common human fungal pathogens that cause chronic infections of the skin and nails. To identify antifungal responsive genes, cDNA microarray analysis was performed for T. rubrum to reveal global transcriptional profiles of drug-specific responses to 5-Flucytosine (5-FC). cDNA microarray was constructed from the T. rubrum expressed sequence tag (ESTs) database, the minimum inhibitory concentration (MIC) of 5-FC was determined, and microarray hybridization and data analysis were applied. The expression pattern of 7 genes observed by microarray was confirmed by the quantitative real-time reverser transcription polymerase chain reaction (RT-PCR). Data analysis indicated that a total of 474 genes were found differentially expressed, 196 showed an increase in expression and 278 showed a decrease in expression. Marked down-regulation of genes involved in nucleotide metabolism (such as CDC21), transcription (such as E2F1), and RNA processing (such as SGN1, RIM4 and NOP1) was observed. Other genes involved in signal transduction, chaperones, inorganic ion transport, secondary metabolite biosynthesis, amino acid transport, lipid transport and potential drug resistance mechanism were also affected by 5-FC. Quantitative real-time RT-PCR of the selected genes confirmed the reliability of the microarray results. This is the first analysis of transcriptional profiles in response to 5-FC for T. rubrum. The findings may be valuable for the identification of genes involved in mechanisms of action and mechanisms of antifungal drug resistance of 5-FC.

  4. Transcriptional Profiling of Egg Allergy and Relationship to Disease Phenotype

    Science.gov (United States)

    Kosoy, Roman; Agashe, Charuta; Grishin, Alexander; Leung, Donald Y.; Wood, Robert A.; Sicherer, Scott H.; Jones, Stacie M.; Burks, A. Wesley; Davidson, Wendy F.; Lindblad, Robert W.; Dawson, Peter; Merad, Miriam; Kidd, Brian A.; Dudley, Joel T.; Sampson, Hugh A.

    2016-01-01

    Background Egg allergy is one of the most common food allergies of childhood. There is a lack of information on the immunologic basis of egg allergy beyond the role of IgE. Objective To use transcriptional profiling as a novel approach to uncover immunologic processes associated with different phenotypes of egg allergy. Methods Peripheral blood mononuclear cells (PBMCs) were obtained from egg-allergic children who were defined as reactive (BER) or tolerant (BET) to baked egg, and from food allergic controls (AC) who were egg non-allergic. PBMCs were stimulated with egg white protein. Gene transcription was measured by microarray after 24 h, and cytokine secretion by multiplex assay after 5 days. Results The transcriptional response of PBMCs to egg protein differed between BER and BET versus AC subjects. Compared to the AC group, the BER group displayed increased expression of genes associated with allergic inflammation as well as corresponding increased secretion of IL-5, IL-9 and TNF-α. A similar pattern was observed for the BET group. Further similarities in gene expression patterns between BER and BET groups, as well as some important differences, were revealed using a novel Immune Annotation resource developed for this project. This approach identified several novel processes not previously associated with egg allergy, including positive associations with TLR4-stimulated myeloid cells and activated NK cells, and negative associations with an induced Treg signature. Further pathway analysis of differentially expressed genes comparing BER to BET subjects showed significant enrichment of IFN-α and IFN-γ response genes, as well as genes associated with virally-infected DCs. Conclusions Transcriptional profiling identified several novel pathways and processes that differed when comparing the response to egg allergen in BET, BER, and AC groups. We conclude that this approach is a useful hypothesis-generating mechanism to identify novel immune processes associated

  5. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    Directory of Open Access Journals (Sweden)

    Alagna Fiammetta

    2012-09-01

    Full Text Available Abstract Background Olive (Olea europaea L. fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF, suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the

  6. Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions

    Directory of Open Access Journals (Sweden)

    Harel Josée

    2007-03-01

    Full Text Available Abstract Background To better understand effects of iron restriction on Actinobacillus pleuropneumoniae and to identify new potential vaccine targets, we conducted transcript profiling studies using a DNA microarray containing all 2025 ORFs of the genome of A. pleuropneumoniae serotype 5b strain L20. This is the first study involving the use of microarray technology to monitor the transcriptome of A. pleuropneumoniae grown under iron restriction. Results Upon comparing growth of this pathogen in iron-sufficient versus iron-depleted medium, 210 genes were identified as being differentially expressed. Some genes (92 were identified as being up-regulated; many have confirmed or putative roles in iron acquisition, such as the genes coding for two TonB energy-transducing proteins and the hemoglobin receptor HgbA. Transcript profiling also led to identification of some new iron acquisition systems of A. pleuropneumoniae. Genes coding for a possible Yfe system (yfeABCD, implicated in the acquisition of chelated iron, were detected, as well as genes coding for a putative enterobactin-type siderophore receptor system. ORFs for homologs of the HmbR system of Neisseria meningitidis involved in iron acquisition from hemoglobin were significantly up-regulated. Down-regulated genes included many that encode proteins containing Fe-S clusters or that use heme as a cofactor. Supplementation of the culture medium with exogenous iron re-established the expression level of these genes. Conclusion We have used transcriptional profiling to generate a list of genes showing differential expression during iron restriction. This strategy enabled us to gain a better understanding of the metabolic changes occurring in response to this stress. Many new potential iron acquisition systems were identified, and further studies will have to be conducted to establish their role during iron restriction.

  7. Transcription profiling data set of different states of Mycoplasma gallisepticum

    Directory of Open Access Journals (Sweden)

    Tatiana A. Semashko

    2017-03-01

    Here we present the data for transcription profiling of M. gallisepticum under different types of exposures: genetic knock-out mutants, cell culture exposed to sublethal concentrations of antibiotics and well-characterized heat stress effect. Mutants have transposon insertion to hypothetical membrane protein, lactate dehydrogenase, helicase with unknown function, 1-deoxy-d-xylulose 5-phosphate reductoisomerase or potential sigma factor. For inhibition of important cell systems, treatment with carbonyl cyanide m-chlorophenylhydrazone (CCCP, novobiocin or tetracycline were chosen. Data are available via NCBI Gene Expression Omnibus (GEO with the accession number GSE85777 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85777

  8. Novel transcriptional profile in wrist muscles from cerebral palsy patients

    Directory of Open Access Journals (Sweden)

    Subramaniam Shankar

    2009-07-01

    Full Text Available Abstract Background Cerebral palsy (CP is an upper motor neuron disease that results in a progressive movement disorder. Secondary to the neurological insult, muscles from CP patients often become spastic. Spastic muscle is characterized by an increased resistance to stretch, but often develops the further complication of contracture which represents a prominent disability in children with CP. This study's purpose is to characterize alterations of spastic muscle on the transcriptional level. Increased knowledge of spastic muscle may lead to novel therapies to improve the quality of life for children with CP. Method The transcriptional profile of spastic muscles were defined in children with cerebral palsy and compared to control patients using Affymetrix U133A chips. Expression data were verified using quantitative-PCR (QPCR and validated with SDS-PAGE for select genes. Significant genes were determined using a 2 × 2 ANOVA and results required congruence between 3 preprocessing algorithms. Results CP patients clustered independently and 205 genes were significantly altered, covering a range of cellular processes. Placing gene expression in the context of physiological pathways, the results demonstrated that spastic muscle in CP adapts transcriptionally by altering extracellular matrix, fiber type, and myogenic potential. Extracellular matrix adaptations occur primarily in the basal lamina although there is increase in fibrillar collagen components. Fiber type is predominately fast compared to normal muscle as evidenced by contractile gene isoforms and decrease in oxidative metabolic gene transcription, despite a paradoxical increased transcription of slow fiber pathway genes. We also found competing pathways of fiber hypertrophy with an increase in the anabolic IGF1 gene in parallel with a paradoxical increase in myostatin, a gene responsible for stopping muscle growth. We found evidence that excitation-contraction coupling genes are altered in

  9. A transcriptional profile of aging in the human kidney.

    Directory of Open Access Journals (Sweden)

    Graham E J Rodwell

    2004-12-01

    Full Text Available In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age.

  10. A transcriptional profile of aging in the human kidney.

    Science.gov (United States)

    Rodwell, Graham E J; Sonu, Rebecca; Zahn, Jacob M; Lund, James; Wilhelmy, Julie; Wang, Lingli; Xiao, Wenzhong; Mindrinos, Michael; Crane, Emily; Segal, Eran; Myers, Bryan D; Brooks, James D; Davis, Ronald W; Higgins, John; Owen, Art B; Kim, Stuart K

    2004-12-01

    In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age.

  11. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  12. Distinct transcriptional profiles characterize oral epithelium-microbiota interactions.

    Science.gov (United States)

    Handfield, Martin; Mans, Jeffrey J; Zheng, Gaolin; Lopez, M Cecilia; Mao, Song; Progulske-Fox, Ann; Narasimhan, Giri; Baker, Henry V; Lamont, Richard J

    2005-06-01

    Transcriptional profiling, bioinformatics, statistical and ontology tools were used to uncover and dissect genes and pathways of human gingival epithelial cells that are modulated upon interaction with the periodontal pathogens Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Consistent with their biological and clinical differences, the common core transcriptional response of epithelial cells to both organisms was very limited, and organism-specific responses predominated. A large number of differentially regulated genes linked to the P53 apoptotic network were found with both organisms, which was consistent with the pro-apoptotic phenotype observed with A. actinomycetemcomitans and anti-apoptotic phenotype of P. gingivalis. Furthermore, with A. actinomycetemcomitans, the induction of apoptosis did not appear to be Fas- or TNF(alpha)-mediated. Linkage of specific bacterial components to host pathways and networks provided additional insight into the pathogenic process. Comparison of the transcriptional responses of epithelial cells challenged with parental P. gingivalis or with a mutant of P. gingivalis deficient in production of major fimbriae, which are required for optimal invasion, showed major expression differences that reverberated throughout the host cell transcriptome. In contrast, gene ORF859 in A. actinomycetemcomitans, which may play a role in intracellular homeostasis, had a more subtle effect on the transcriptome. These studies help unravel the complex and dynamic interactions between host epithelial cells and endogenous bacteria that can cause opportunistic infections.

  13. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis

    Science.gov (United States)

    2012-01-01

    Background Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. Methods We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. Results We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. Conclusions In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most

  14. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Transcriptional profiles of Treponema denticola in response to environmental conditions.

    Science.gov (United States)

    McHardy, Ian; Keegan, Caroline; Sim, Jee-Hyun; Shi, Wenyuan; Lux, Renate

    2010-10-27

    The periodontal pathogen T. denticola resides in a stressful environment rife with challenges, the human oral cavity. Knowledge of the stress response capabilities of this invasive spirochete is currently very limited. Whole genome expression profiles in response to different suspected stresses including heat shock, osmotic downshift, oxygen and blood exposure were examined. Most of the genes predicted to encode conserved heat shock proteins (HSPs) were found to be induced under heat and oxygen stress. Several of these HSPs also seem to be important for survival in hypotonic solutions and blood. In addition to HSPs, differential regulation of many genes encoding metabolic proteins, hypothetical proteins, transcriptional regulators and transporters was observed in patterns that could betoken functional associations. In summary, stress responses in T. denticola exhibit many similarities to the corresponding stress responses in other organisms but also employ unique components including the induction of hypothetical proteins.

  16. Transcript profiling of a novel plant meristem, the monocot cambium.

    Science.gov (United States)

    Zinkgraf, Matthew; Gerttula, Suzanne; Groover, Andrew

    2017-06-01

    While monocots lack the ability to produce a vascular cambium or woody growth, some monocot lineages evolved a novel lateral meristem, the monocot cambium, which supports secondary radial growth of stems. In contrast to the vascular cambium found in woody angiosperm and gymnosperm species, the monocot cambium produces secondary vascular bundles, which have an amphivasal organization of tracheids encircling a central strand of phloem. Currently there is no information concerning the molecular genetic basis of the development or evolution of the monocot cambium. Here we report high-quality transcriptomes for monocot cambium and early derivative tissues in two monocot genera, Yucca and Cordyline. Monocot cambium transcript profiles were compared to those of vascular cambia and secondary xylem tissues of two forest tree species, Populus trichocarpa and Eucalyptus grandis. Monocot cambium transcript levels showed that there are extensive overlaps between the regulation of monocot cambia and vascular cambia. Candidate regulatory genes that vary between the monocot and vascular cambia were also identified, and included members of the KANADI and CLE families involved in polarity and cell-cell signaling, respectively. We suggest that the monocot cambium may have evolved in part through reactivation of genetic mechanisms involved in vascular cambium regulation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  17. In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis

    Institute of Scientific and Technical Information of China (English)

    Ibrahim; Darah; Sheh-Hong; Lim

    2015-01-01

    Objective:To extract the bioactive compound from Enteromorpha intestinalis(E. intestinalis) and determine its in vitro antimicrobial activity. Methods: E. intestinalis was extracted by methanol and subjected to antimicrobial screening. The antimicrobial activity was studied by using disc diffusion and broth dilution method. The effect of the extract on the growth profile of the bacterial was also examined via time-kill assay. Microscopy observations using SEM was done to determine the major alterations in the microstructure of methicillin-resistant Staphylococcus aureus(MRSA). Results: The results showed methanolic extract of E. intestinalis exhibited a favourable antimicrobial activity against tested bacteria with produced inhibition zone ranging from 8.0-19.0 mm. However, all the tested fungi and yeast were resistant to the extract treatment. Time kill assay suggested that methanolic extract of E. intestinalis had completely inhibited MRSA growth and also exhibited prolonged antibacterial activity. The main abnormalities noted from the microscopic observations were the structural deterioration in the normal morphology and complete collapsed of the bacteria cells after 36 h of treatment. Conclusions: The significant antibacterial activity shown by crude extract suggested its potential against MRSA infection. The extract may have potential to develop as antibacterial agent in pharmaceutical use.

  18. In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis

    Institute of Scientific and Technical Information of China (English)

    Ibrahim Darah; Sheh-Hong Lim

    2015-01-01

    To extract the bioactive compound from Enteromorpha intestinalis (E. intestinalis) and determine its in vitro antimicrobial activity. Methods: E. intestinalis was extracted by methanol and subjected to antimicrobial screening. The antimicrobial activity was studied by using disc diffusion and broth dilution method. The effect of the extract on the growth profile of the bacterial was also examined via time-kill assay. Microscopy observations using SEM was done to determine the major alterations in the microstructure of methicillin-resistant Staphylococcus aureus (MRSA). Results: The results showed methanolic extract of E. intestinalis exhibited a favourable antimicrobial activity against tested bacteria with produced inhibition zone ranging from 8.0-19.0 mm. However, all the tested fungi and yeast were resistant to the extract treatment. Time kill assay suggested that methanolic extract of E. intestinalis had completely inhibited MRSA growth and also exhibited prolonged antibacterial activity. The main abnormalities noted from the microscopic observations were the structural deterioration in the normal morphology and complete collapsed of the bacteria cells after 36 h of treatment. Conclusions: The significant antibacterial activity shown by crude extract suggested its potential against MRSA infection. The extract may have potential to develop as antibacterial agent in pharmaceutical use.

  19. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly

    National Research Council Canada - National Science Library

    Gregory J. Ragland; David L. Denlinger; Daniel A. Hahn

    2010-01-01

    .... We used transcriptional profiling to identify key groups of genes and pathways differentially regulated during pupal diapause, dynamically regulated across diapause development, and differentially...

  20. Distinct cardiac transcriptional profiles defining pregnancy and exercise.

    Directory of Open Access Journals (Sweden)

    Eunhee Chung

    Full Text Available BACKGROUND: Although the hypertrophic responses of the heart to pregnancy and exercise are both considered to be physiological processes, they occur in quite different hormonal and temporal settings. In this study, we have compared the global transcriptional profiles of left ventricular tissues at various time points during the progression of hypertrophy in exercise and pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: The following groups of female mice were analyzed: non-pregnant diestrus cycle sedentary control, mid-pregnant, late-pregnant, and immediate-postpartum, and animals subjected to 7 and 21 days of voluntary wheel running. Hierarchical clustering analysis shows that while mid-pregnancy and both exercise groups share the closest relationship and similar gene ontology categories, late pregnancy and immediate post-partum are quite different with high representation of secreted/extracellular matrix-related genes. Moreover, pathway-oriented ontological analysis shows that metabolism regulated by cytochrome P450 and chemokine pathways are the most significant signaling pathways regulated in late pregnancy and immediate-postpartum, respectively. Finally, increases in expression of components of the proteasome observed in both mid-pregnancy and immediate-postpartum also result in enhanced proteasome activity. Interestingly, the gene expression profiles did not correlate with the degree of cardiac hypertrophy observed in the animal groups, suggesting that distinct pathways are employed to achieve similar amounts of cardiac hypertrophy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that cardiac adaptation to the later stages of pregnancy is quite distinct from both mid-pregnancy and exercise. Furthermore, it is very dynamic since, by 12 hours post-partum, the heart has already initiated regression of cardiac growth, and 50 genes have changed expression significantly in the immediate-postpartum compared to late-pregnancy. Thus, pregnancy

  1. Pneumatosis intestinalis: CT findings and clinical features

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye Lin; Lee, Hae Kyung; Park, Seong Jin; Yi, Boem Ha; Ko, Bong Min; Hong, Hyun Sook; Paik, Sang Hyun [Soonchunhyang University Hospital Bucheon, Bucheon (Korea, Republic of)

    2008-02-15

    The purpose of this study is to evaluate the CT findings and clinical features of patients with pneumatosis intestinalis. From January 2001 to October 2007, 15 patients with pneumatosis intestinalis were diagnosed by the use of CT. We analyzed the clinical features and CT findings to assess the involvement site, the presence of portal and mesenteric vein gas, and the existence of accompanied ischemic change. Of the 15 patients, five patients had end stage renal disease (33.3%), two patients underwent a gastrectomy, one patient underwent a laminectomy, one patient had tuberculous enteritis, one patient had lung cancer and one patient had pneumonia. Four patients presented with no specific disease. There was portal or mesenteric venous gas in six cases, and strangulation or an ischemic change of the bowel in five cases. Otherwise, pneumatosis intestinalis was associated with hydropneumoperitoneum in two cases, pneumoperitoneum in one case and a single case of perforated appendicitis. Nine patients underwent surgery for ischemic change of the bowel, pneumoperitoneum, appendicitis, and a clinical sign of panperitonitis. Among the remaining six patients, three patients recovered and were discharged, and three patients expired during progression of the disease. End stage renal disease is the most common condition associated with pneumatosis intestinalis. The presence of portomesenteric venous gas, ischemic change of the bowel, and linear pneumatosis intestinalis are indicative of a poor prognosis.

  2. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  3. Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon

    Directory of Open Access Journals (Sweden)

    Schmidt Silvia

    2010-05-01

    Full Text Available Abstract Background Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three Pachycladon species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species. Results Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase, the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases, water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis. Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not. Conclusions We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three Pachycladon species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study

  4. Sputum is a surrogate for bronchoalveolar lavage for monitoring Mycobacterium tuberculosis transcriptional profiles in TB patients.

    Science.gov (United States)

    Garcia, Benjamin J; Loxton, Andre G; Dolganov, Gregory M; Van, Tran T; Davis, J Lucian; de Jong, Bouke C; Voskuil, Martin I; Leach, Sonia M; Schoolnik, Gary K; Walzl, Gerhard; Strong, Michael; Walter, Nicholas D

    2016-09-01

    Pathogen-targeted transcriptional profiling in human sputum may elucidate the physiologic state of Mycobacterium tuberculosis (M. tuberculosis) during infection and treatment. However, whether M. tuberculosis transcription in sputum recapitulates transcription in the lung is uncertain. We therefore compared M. tuberculosis transcription in human sputum and bronchoalveolar lavage (BAL) samples from 11 HIV-negative South African patients with pulmonary tuberculosis. We additionally compared these clinical samples with in vitro log phase aerobic growth and hypoxic non-replicating persistence (NRP-2). Of 2179 M. tuberculosis transcripts assayed in sputum and BAL via multiplex RT-PCR, 194 (8.9%) had a p-value <0.05, but none were significant after correction for multiple testing. Categorical enrichment analysis indicated that expression of the hypoxia-responsive DosR regulon was higher in BAL than in sputum. M. tuberculosis transcription in BAL and sputum was distinct from both aerobic growth and NRP-2, with a range of 396-1020 transcripts significantly differentially expressed after multiple testing correction. Collectively, our results indicate that M. tuberculosis transcription in sputum approximates M. tuberculosis transcription in the lung. Minor differences between M. tuberculosis transcription in BAL and sputum suggested lower oxygen concentrations or higher nitric oxide concentrations in BAL. M. tuberculosis-targeted transcriptional profiling of sputa may be a powerful tool for understanding M. tuberculosis pathogenesis and monitoring treatment responses in vivo.

  5. Influence of mRNA decay rates on the computational prediction of transcription rate profiles from gene expression profiles

    Indian Academy of Sciences (India)

    Chi-Fang Chin; Arthur Chun-Chieh Shih; Kuo-Chin Fan

    2007-12-01

    The abundance of an mRNA species depends not only on the transcription rate at which it is produced, but also on its decay rate, which determines how quickly it is degraded. Both transcription rate and decay rate are important factors in regulating gene expression. With the advance of the age of genomics, there are a considerable number of gene expression datasets, in which the expression profiles of tens of thousands of genes are often non-uniformly sampled. Recently, numerous studies have proposed to infer the regulatory networks from expression profiles. Nevertheless, how mRNA decay rates affect the computational prediction of transcription rate profiles from expression profiles has not been well studied. To understand the influences, we present a systematic method based on a gene dynamic regulation model by taking mRNA decay rates, expression profiles and transcription profiles into account. Generally speaking, an expression profile can be regarded as a representation of a biological condition. The rationale behind the concept is that the biological condition is reflected in the changing of gene expression profile. Basically, the biological condition is either associated to the cell cycle or associated to the environmental stresses. The expression profiles of genes that belong to the former, so-called cell cycle data, are characterized by periodicity, whereas the expression profiles of genes that belong to the latter, so-called condition-specific data, are characterized by a steep change after a specific time without periodicity. In this paper, we examine the systematic method on the simulated expression data as well as the real expression data including yeast cell cycle data and condition-specific data (glucose-limitation data). The results indicate that mRNA decay rates do not significantly influence the computational prediction of transcription-rate profiles for cell cycle data. On the contrary, the magnitudes and shapes of transcription-rate profiles for

  6. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Exposed to Bacillus anthracis in vitro

    Science.gov (United States)

    2013-03-11

    Bacillus cereus group of bacteria, are attributed to poly- γ-D-glutamate acid (PGA) capsule, lethal toxin (LT) and edema toxin (ET) [10-12]. These toxins...M, Hellman M, Muhie S, et al. (2013) Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Exposed to Bacillus anthracis in vitro...author and source are credited. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Exposed to Bacillus anthracis in vitro Rasha

  7. Transcriptional profiling of intrinsic PNS factors in the postnatal mouse.

    Science.gov (United States)

    Smith, Robin P; Lerch-Haner, Jessica K; Pardinas, Jose R; Buchser, William J; Bixby, John L; Lemmon, Vance P

    2011-01-01

    Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth.

  8. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast.

    Science.gov (United States)

    Young, Conor P; Hillyer, Cory; Hokamp, Karsten; Fitzpatrick, Darren J; Konstantinov, Nikifor K; Welty, Jacqueline S; Ness, Scott A; Werner-Washburne, Margaret; Fleming, Alastair B; Osley, Mary Ann

    2017-01-26

    Quiescent cells have a low level of gene activity compared to growing cells. Using a yeast model for cellular quiescence, we defined the genome-wide profiles of three species of histone methylation associated with active transcription between growing and quiescent cells, and correlated these profiles with the presence of RNA polymerase II and transcripts. Quiescent cells retained histone methylations normally associated with transcriptionally active chromatin and had many transcripts in common with growing cells. Quiescent cells also contained significant levels of RNA polymerase II, but only low levels of the canonical initiating and elongating forms of the polymerase. The RNA polymerase II associated with genes in quiescent cells displayed a distinct occupancy profile compared to its pattern of occupancy across genes in actively growing cells. Although transcription is generally repressed in quiescent cells, analysis of individual genes identified a period of active transcription during the development of quiescence. The data suggest that the transcript profile and histone methylation marks in quiescent cells were established both in growing cells and during the development of quiescence and then retained in these cells. Together, this might ensure that quiescent cells can rapidly adapt to a changing environment to resume growth.

  9. A saturation screen for cis-acting regulatory DNA in the Hox genes of Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Keys, David N.; Lee, Byung-in; Di Gregorio, Anna; Harafuji, Naoe; Detter, Chris; Wang, Mei; Kahsai, Orsalem; Ahn, Sylvia; Arellano, Andre; Zhang, Quin; Trong, Stephan; Doyle, Sharon A.; Satoh, Noriyuki; Satou, Yutaka; Saiga, Hidetoshi; Christian, Allen; Rokhsar, Dan; Hawkins, Trevor L.; Levine, Mike; Richardson, Paul

    2005-01-05

    A screen for the systematic identification of cis-regulatory elements within large (>100 kb) genomic domains containing Hox genes was performed by using the basal chordate Ciona intestinalis. Randomly generated DNA fragments from bacterial artificial chromosomes containing two clusters of Hox genes were inserted into a vector upstream of a minimal promoter and lacZ reporter gene. A total of 222 resultant fusion genes were separately electroporated into fertilized eggs, and their regulatory activities were monitored in larvae. In sum, 21 separable cis-regulatory elements were found. These include eight Hox linked domains that drive expression in nested anterior-posterior domains of ectodermally derived tissues. In addition to vertebrate-like CNS regulation, the discovery of cis-regulatory domains that drive epidermal transcription suggests that C. intestinalis has arthropod-like Hox patterning in the epidermis.

  10. Transcriptional profile of Haemophilus influenzae: effects of iron and heme.

    Science.gov (United States)

    Whitby, Paul W; Vanwagoner, Timothy M; Seale, Thomas W; Morton, Daniel J; Stull, Terrence L

    2006-08-01

    Haemophilus influenzae requires either heme or a porphyrin and iron source for growth. Microarray studies of H. influenzae strain Rd KW20 identified 162 iron/heme-regulated genes, representing approximately 10% of the genome, with > or =1.5-fold changes in transcription in response to iron/heme availability in vitro. Eighty genes were preferentially expressed under iron/heme restriction; 82 genes were preferentially expressed under iron/heme-replete conditions.

  11. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    Science.gov (United States)

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Transcriptional Profiling of Caudal Fin Regeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Michael Schebesta

    2006-01-01

    Full Text Available Regeneration of severed limbs in adult animals is restricted to urodele amphibians. Mammals, including humans, have very limited regenerative capabilities and even with proper treatment, only the tips of our digits can grow back. Teleost fish can regenerate amputated fins, the evolutionary ancestors of limbs. To elucidate the principles of limb-fin regeneration, we performed an Affymetrix microarray screen on regenerating caudal fins 12, 24, 48, and 72 h post amputation. Approximately 15,000 zebrafish transcripts were analyzed, identifying 829 transcripts as differentially expressed during regeneration. Of those, 563 were up-regulated and 266 were down-regulated. We constructed a comprehensive database containing expression data, functional assignment, and background information from the literature for each differentially expressed transcript. In order to validate our findings, we employed three approaches: (1 microarray expression analysis of genes previously implicated in fin regeneration, (2 RT-PCR analysis of genes newly identified as differentially expressed during regeneration, and (3 in situ hybridization of the up-regulated genes bambi, dlx5A, and her6. Moreover, we show that Smad 1/5/8 proteins, effector molecules of Bmp signaling, are phosphorylated during fin regeneration. Taken together, we provide a comprehensive database of fin regeneration that will serve as an important tool for understanding the molecular mechanisms of regeneration.

  13. Transcriptional profiling of the dose response: a more powerful approach for characterizing drug activities.

    Directory of Open Access Journals (Sweden)

    Rui-Ru Ji

    2009-09-01

    Full Text Available The dose response curve is the gold standard for measuring the effect of a drug treatment, but is rarely used in genomic scale transcriptional profiling due to perceived obstacles of cost and analysis. One barrier to examining transcriptional dose responses is that existing methods for microarray data analysis can identify patterns, but provide no quantitative pharmacological information. We developed analytical methods that identify transcripts responsive to dose, calculate classical pharmacological parameters such as the EC50, and enable an in-depth analysis of coordinated dose-dependent treatment effects. The approach was applied to a transcriptional profiling study that evaluated four kinase inhibitors (imatinib, nilotinib, dasatinib and PD0325901 across a six-logarithm dose range, using 12 arrays per compound. The transcript responses proved a powerful means to characterize and compare the compounds: the distribution of EC50 values for the transcriptome was linked to specific targets, dose-dependent effects on cellular processes were identified using automated pathway analysis, and a connection was seen between EC50s in standard cellular assays and transcriptional EC50s. Our approach greatly enriches the information that can be obtained from standard transcriptional profiling technology. Moreover, these methods are automated, robust to non-optimized assays, and could be applied to other sources of quantitative data.

  14. Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions

    Science.gov (United States)

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest. PMID:25774904

  15. Target Identification for CNS Diseases by Transcriptional Profiling

    OpenAIRE

    Altar, C. Anthony; Vawter, Marquis P.; Ginsberg, Stephen D.

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild ...

  16. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus.

    Science.gov (United States)

    Xie, Xiu-lan; Shen, Shu-ling; Yin, Xue-ren; Xu, Qian; Sun, Chong-de; Grierson, Donald; Ferguson, Ian; Chen, Kun-song

    2014-07-01

    The AP2/ERF gene family encodes plant-specific transcription factors. In model plants, AP2/ERF genes have been shown to be expressed in response to developmental and environmental stimuli, and many function downstream of the ethylene, biotic, and abiotic stress signaling pathways. In citrus, ethylene is effective in regulation citrus fruit quality, such as degreening and aroma. However, information about the citrus AP2/ERF family is limited, and would enhance our understanding of fruit responses to environmental stress, fruit development and quality. CitAP2/ERF genes were isolated using the citrus genome database, and their expression patterns analyzed by real-time PCR using various orange organs and samples from a fruit developmental series. 126 sequences with homologies to AP2/ERF proteins were identified from the citrus genome, and, on the basis of their structure and sequence, assigned to the ERF family (102), AP2 family (18), RAV family (4) and Soloist (2). MEME motif analysis predicted the defining AP2/ERF domain and EAR repressor domains. Analysis of transcript accumulation in Citrus sinensis cv. 'Newhall' indicated that CitAP2/ERF genes show organ-specific and temporal expression, and provided a framework for understanding the transcriptional regulatory roles of AP2/ERF gene family members in citrus. Hierarchical cluster analysis and t tests identified regulators that potentially function during orange fruit growth and development.

  17. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Directory of Open Access Journals (Sweden)

    Nada M Porter

    Full Text Available BACKGROUND: Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses. METHODOLOGY/PRINCIPAL FINDINGS: F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES, and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging. CONCLUSIONS/SIGNIFICANCE: We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular

  18. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Science.gov (United States)

    Porter, Nada M; Bohannon, Julia H; Curran-Rauhut, Meredith; Buechel, Heather M; Dowling, Amy L S; Brewer, Lawrence D; Popovic, Jelena; Thibault, Veronique; Kraner, Susan D; Chen, Kuey Chu; Blalock, Eric M

    2012-01-01

    Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses. F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES), and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging. We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter effects of SD in young

  19. What we have learned from transcript profile analyses of male and female gametes in flowering plants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Double fertilization is one of the predominant features of sexual reproduction in flowering plants but, because of the physical inaccessibility of gametes, the essential molecular mechanisms in these processes are largely unknown. Based on the techniques for isolating highly purified gametes from several species and well-developed methods for manipulating RNA from limited quantities of gametes, genome-wide investigations of gamete transcription profiles were recently conducted in flowering plants. In this review, we survey the accumulated knowledge on gamete collection and purification, cDNA library construction, and transcript profile analysis to assess our understanding of the molecular mechanisms of gamete specialization and fertilization.

  20. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex

    Science.gov (United States)

    Ianov, Lara; Rani, Asha; Beas, Blanca S.; Kumar, Ashok; Foster, Thomas C.

    2016-01-01

    Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function. PMID:27242522

  1. Massively parallel digital transcriptional profiling of single cells

    Science.gov (United States)

    Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.

    2017-01-01

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601

  2. Transcription profiling reveals stage- and function-dependent expression patterns in the filarial nematode Brugia malayi

    Directory of Open Access Journals (Sweden)

    Li Ben-Wen

    2012-05-01

    Full Text Available Abstract Background Brugia malayi is a nematode parasite that causes lymphatic filariasis, a disfiguring and disabiling tropical disease. Although a first draft genome sequence was released in 2007, very little is understood about transcription programs that govern developmental changes required for the parasite’s development and survival in its mammalian and insect hosts. Results We used a microarray with probes that represent some 85% of predicted genes to generate gene expression profiles for seven parasite life cycle stages/sexes. Approximately 41% of transcripts with detectable expression signals were differentially expressed across lifecycle stages. Twenty-six percent of transcripts were exclusively expressed in a single parasite stage, and 27% were expressed in all stages studied. K-means clustering of differentially expressed transcripts revealed five major transcription patterns that were associated with parasite lifecycle stages or gender. Examination of known stage-associated transcripts validated these data sets and suggested that newly identified stage or gender-associated transcripts may exercise biological functions in development and reproduction. The results also indicate that genes with similar transcription patterns were often involved in similar functions or cellular processes. For example, nuclear receptor family gene transcripts were upregulated in gene expression pattern four (female-enriched while protein kinase gene family transcripts were upregulated in expression pattern five (male-enriched. We also used pair-wise comparisons to identify transcriptional changes between life cycle stages and sexes. Conclusions Analysis of gene expression patterns of lifecycle in B. malayi has provided novel insights into the biology of filarial parasites. Proteins encoded by stage-associated and/or stage-specific transcripts are likely to be critically important for key parasite functions such as establishment and maintenance of

  3. Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems.

    OpenAIRE

    Nestor, Colm E; Ottaviano, Raffaele; Reinhardt, Diana; Cruickshanks, Hazel A; Mjoseng, Heidi K.; McPherson, Rhoanne C; Lentini, Antonio; Thomson, John P; Dunican, Donncha S; Pennings, Sari; Anderton, Stephen M.; Benson, Mikael; Meehan, Richard R

    2015-01-01

    BackgroundThe DNA methylation profile of mammalian cell lines differs from the primary tissue from which they were derived, exhibiting increasing divergence from the in vivo methylation profile with extended time in culture. Few studies have directly examined the initial epigenetic and transcriptional consequences of adaptation of primary mammalian cells to culture, and the potential mechanisms through which this epigenetic dysregulation occurs is unknown.ResultsWe demonstrate that adaptation...

  4. Global transcriptional profiling reveals Streptococcus agalactiae genes controlled by the MtaR transcription factor

    Directory of Open Access Journals (Sweden)

    Cvek Urska

    2008-12-01

    Full Text Available Abstract Background Streptococcus agalactiae (group B Streptococcus; GBS is a significant bacterial pathogen of neonates and an emerging pathogen of adults. Though transcriptional regulators are abundantly encoded on the GBS genome, their role in GBS pathogenesis is poorly understood. The mtaR gene encodes a putative LysR-type transcriptional regulator that is critical for the full virulence of GBS. Previous studies have shown that an mtaR- mutant transports methionine at reduced rates and grows poorly in normal human plasma not supplemented with methionine. The decreased virulence of the mtaR mutant was correlated with a methionine transport defect; however, no MtaR-regulated genes were identified. Results Microarray analysis of wild-type GBS and an mtaR mutant revealed differential expression of 12 genes, including 1 upregulated and 11 downregulated genes in the mtaR mutant. Among the downregulated genes, we identified a cluster of cotranscribed genes encoding a putative methionine transporter (metQ1NP and peptidase (pdsM. The expression of four genes potentially involved in arginine transport (artPQ and arginine biosynthesis (argGH was downregulated and these genes localized to two transcriptional units. The virulence factor cspA, which encodes an extracellular protease, was downregulated. Additionally, the SAN_1255 locus, which putatively encodes a protein displaying similarity to plasminogen activators, was downregulated. Conclusion To our knowledge, this is the first study to describe the global influence of MtaR on GBS gene expression. This study implicates the metQ1NP genes as encoding the MtaR-regulated methionine transporter, which may provide a mechanistic explanation for the methionine-dependent growth defect of the mtaR mutant. In addition to modulating the expression of genes involved in metabolism and amino acid transport, inactivation of mtaR affected the expression of other GBS genes implicated in pathogenesis. These findings

  5. Transcription profiles of non-immortalized breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Holland James F

    2006-04-01

    Full Text Available Abstract Background Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Methods Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs were used in addition to commercially-available normal breast epithelial cells (HMECs, established breast cancer cell lines (T-est and established normal breast cells (N-est. The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. Results According to Significance Analysis of Microarray (SAM and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p Conclusion The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research.

  6. Revealing the bovine embryo transcript profiles during early in vivo embryonic development.

    Science.gov (United States)

    Vallée, Maud; Dufort, Isabelle; Desrosiers, Stéphanie; Labbe, Aurélie; Gravel, Catherine; Gilbert, Isabelle; Robert, Claude; Sirard, Marc-André

    2009-07-01

    Gene expression profiling is proving to be a powerful approach for the identification of molecular mechanisms underlying complex cellular functions such as the dynamic early embryonic development. The objective of this study was to perform a transcript abundance profiling analysis of bovine early embryonic development in vivo using a bovine developmental array. The molecular description of the first week of life at the mRNA level is particularly challenging when considering the important fluctuations in RNA content that occur between developmental stages. Accounting for the different intrinsic RNA content between developmental stages was achieved by restricting the reaction time during the global amplification steps and by using spiked controls and reference samples. Analysis based on intensity values revealed that most of the transcripts on the array were present at some point during in vivo bovine early embryonic development, while the varying number of genes detected in each developmental stage confirmed the dynamic profile of gene expression occurring during embryonic development. Pair-wise comparison of gene expression showed a marked difference between oocytes and blastocysts profiles, and principal component analysis revealed that the majority of the transcripts could be regrouped into three main clusters representing distinct RNA abundance profiles. Overall, these data provide a detailed temporal profile of the abundance of mRNAs revealing the richness of signaling processes in early mammalian development. Results presented here provide better knowledge of bovine in vivo embryonic development and contribute to the progression of our current knowledge regarding the first week of life in mammals.

  7. Genome-wide transcription profile of endothelial cells after cardiac transplantation in the rat.

    Science.gov (United States)

    Mikalsen, B; Fosby, B; Wang, J; Hammarström, C; Bjaerke, H; Lundström, M; Kasprzycka, M; Scott, H; Line, P-D; Haraldsen, G

    2010-07-01

    Transcriptome analyses of organ transplants have until now usually focused on whole tissue samples containing activation profiles from different cell populations. Here, we enriched endothelial cells from rat cardiac allografts and isografts, establishing their activation profile at baseline and on days 2, 3 and 4 after transplantation. Modulated transcripts were assigned to three categories based on their regulation profile in allografts and isografts. Categories A and B contained the majority of transcripts and showed similar regulation in both graft types, appearing to represent responses to surgical trauma. By contrast, category C contained transcripts that were partly allograft-specific and to a large extent associated with interferon-gamma-responsiveness. Several transcripts were verified by immunohistochemical analysis of graft lesions, among them the matricellular protein periostin, which was one of the most highly upregulated transcripts but has not been associated with transplantation previously. In conclusion, the majority of the differentially expressed genes in graft endothelial cells are affected by the transplantation procedure whereas relatively few are associated with allograft rejection.

  8. Tannerella forsythia infection-induced calvarial bone and soft tissue transcriptional profiles.

    Science.gov (United States)

    Bakthavatchalu, V; Meka, A; Sathishkumar, S; Lopez, M C; Bhattacharyya, I; Boyce, B F; Mans, J J; Lamont, R J; Baker, H V; Ebersole, J L; Kesavalu, L

    2010-10-01

    Tannerella forsythia is associated with subgingival biofilms in adult periodontitis, although the molecular mechanisms contributing to chronic inflammation and loss of periodontal bone remain unclear. We examined changes in the host transcriptional profiles during a T. forsythia infection using a murine calvarial model of inflammation and bone resorption. Tannerella forsythia was injected into the subcutaneous soft tissue over calvariae of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated and Murine GeneChip (Affymetrix, Santa Clara, CA) array analysis of transcript profiles showed that 3226 genes were differentially expressed in the infected soft tissues (P < 0.05) and 2586 genes were differentially transcribed in calvarial bones after infection. Quantitative real-time reverse transcription-polymerase chain reaction analysis of transcription levels of selected genes corresponded well with the microarray results. Biological pathways significantly impacted by T. forsythia infection in calvarial bone and soft tissue included leukocyte transendothelial migration, cell adhesion molecules (immune system), extracellular matrix-receptor interaction, adherens junction, and antigen processing and presentation. Histologic examination revealed intense inflammation and increased osteoclasts in calvariae compared with controls. In conclusion, localized T. forsythia infection differentially induces transcription of a broad array of host genes, and the profiles differ between inflamed soft tissues and calvarial bone.

  9. Transcriptional profiling identifies physicochemical properties of nanomaterials that are determinants of the in vivo pulmonary response

    DEFF Research Database (Denmark)

    Halappanavar, Sabina; Saber, Anne Thoustrup; Decan, Nathalie;

    2015-01-01

    We applied transcriptional profiling to elucidate the mechanisms associated with pulmonary responses to titanium dioxide (TiO2) nanoparticles (NPs) of different sizes and surface coatings, and to determine if these responses are modified by NP size, surface area, surface modification, and embeddi...

  10. Comparison of cellular and tissue transcriptional profiles in canine mammary tumor

    NARCIS (Netherlands)

    Pawlowski, K.M.; Krol, M.; Majewska, A.; Badowska-Kozakiewicz, A.; Mol, J.A.; Malicka, E.; Motyl, T.

    2009-01-01

    J Physiol Pharmacol. 2009 May;60 Suppl 1:85-94. Comparison of cellular and tissue transcriptional profiles in canine mammary tumor. Pawlowski KM, Krol M, Majewska A, Badowska-Kozakiewicz A, Mol JA, Malicka E, Motyl T. Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw

  11. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    DEFF Research Database (Denmark)

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T

    2009-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database...

  12. Transcriptional profiling of bovine milk using RNA sequencing

    Directory of Open Access Journals (Sweden)

    Wickramasinghe Saumya

    2012-01-01

    Full Text Available Abstract Background Cow milk is a complex bioactive fluid consumed by humans beyond infancy. Even though the chemical and physical properties of cow milk are well characterized, very limited research has been done on characterizing the milk transcriptome. This study performs a comprehensive expression profiling of genes expressed in milk somatic cells of transition (day 15, peak (day 90 and late (day 250 lactation Holstein cows by RNA sequencing. Milk samples were collected from Holstein cows at 15, 90 and 250 days of lactation, and RNA was extracted from the pelleted milk cells. Gene expression analysis was conducted by Illumina RNA sequencing. Sequence reads were assembled and analyzed in CLC Genomics Workbench. Gene Ontology (GO and pathway analysis were performed using the Blast2GO program and GeneGo application of MetaCore program. Results A total of 16,892 genes were expressed in transition lactation, 19,094 genes were expressed in peak lactation and 18,070 genes were expressed in late lactation. Regardless of the lactation stage approximately 9,000 genes showed ubiquitous expression. Genes encoding caseins, whey proteins and enzymes in lactose synthesis pathway showed higher expression in early lactation. The majority of genes in the fat metabolism pathway had high expression in transition and peak lactation milk. Most of the genes encoding for endogenous proteases and enzymes in ubiquitin-proteasome pathway showed higher expression along the course of lactation. Conclusions This is the first study to describe the comprehensive bovine milk transcriptome in Holstein cows. The results revealed that 69% of NCBI Btau 4.0 annotated genes are expressed in bovine milk somatic cells. Most of the genes were ubiquitously expressed in all three stages of lactation. However, a fraction of the milk transcriptome has genes devoted to specific functions unique to the lactation stage. This indicates the ability of milk somatic cells to adapt to different

  13. Target identification for CNS diseases by transcriptional profiling.

    Science.gov (United States)

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2009-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  14. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Directory of Open Access Journals (Sweden)

    Weindruch Richard

    2007-03-01

    Full Text Available Abstract Background Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. Results We identified 712 transcripts that are differentially expressed in young (5 month old and old (25-month old mouse skeletal muscle. Caloric restriction (CR completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P +/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. Conclusion These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.

  15. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas.

    Science.gov (United States)

    Ivascu, Claudia; Wasserkort, Reinhold; Lesche, Ralf; Dong, Jun; Stein, Harald; Thiel, Andreas; Eckhardt, Florian

    2007-01-01

    Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.

  16. Research resource: the dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis.

    Science.gov (United States)

    Zimmermann, Céline; Stévant, Isabelle; Borel, Christelle; Conne, Béatrice; Pitetti, Jean-Luc; Calvel, Pierre; Kaessmann, Henrik; Jégou, Bernard; Chalmel, Frédéric; Nef, Serge

    2015-04-01

    Sertoli cells (SCs), the only somatic cells within seminiferous tubules, associate intimately with developing germ cells. They not only provide physical and nutritional support but also secrete factors essential to the complex developmental processes of germ cell proliferation and differentiation. The SC transcriptome must therefore adapt rapidly during the different stages of spermatogenesis. We report comprehensive genome-wide expression profiles of pure populations of SCs isolated at 5 distinct stages of the first wave of mouse spermatogenesis, using RNA sequencing technology. We were able to reconstruct about 13 901 high-confidence, nonredundant coding and noncoding transcripts, characterized by complex alternative splicing patterns with more than 45% comprising novel isoforms of known genes. Interestingly, roughly one-fifth (2939) of these genes exhibited a dynamic expression profile reflecting the evolving role of SCs during the progression of spermatogenesis, with stage-specific expression of genes involved in biological processes such as cell cycle regulation, metabolism and energy production, retinoic acid synthesis, and blood-testis barrier biogenesis. Finally, regulatory network analysis identified the transcription factors endothelial PAS domain-containing protein 1 (EPAS1/Hif2α), aryl hydrocarbon receptor nuclear translocator (ARNT/Hif1β), and signal transducer and activator of transcription 1 (STAT1) as potential master regulators driving the SC transcriptional program. Our results highlight the plastic transcriptional landscape of SCs during the progression of spermatogenesis and provide valuable resources to better understand SC function and spermatogenesis and its related disorders, such as male infertility.

  17. Conversion of cDNA differential display results (DDRT-PCR into quantitative transcription profiles

    Directory of Open Access Journals (Sweden)

    Koopmann Birger

    2005-04-01

    Full Text Available Abstract Background Gene expression studies on non-model organisms require open-end strategies for transcription profiling. Gel-based analysis of cDNA fragments allows to detect alterations in gene expression for genes which have neither been sequenced yet nor are available in cDNA libraries. Commonly used protocols for gel-based transcript profiling are cDNA differential display (DDRT-PCR and cDNA-AFLP. Both methods have been used merely as qualitative gene discovery tools so far. Results We developed procedures for the conversion of cDNA Differential Display data into quantitative transcription profiles. Amplified cDNA fragments are separated on a DNA sequencer and detector signals are converted into virtual gel images suitable for semi-automatic analysis. Data processing consists of four steps: (i cDNA bands in lanes corresponding to samples treated with the same primer combination are matched in order to identify fragments originating from the same transcript, (ii intensity of bands is determined by densitometry, (iii densitometric values are normalized, and (iv intensity ratio is calculated for each pair of corresponding bands. Transcription profiles are represented by sets of intensity ratios (control vs. treatment for cDNA fragments defined by primer combination and DNA mobility. We demonstrated the procedure by analyzing DDRT-PCR data on the effect of secondary metabolites of oilseed rape Brassica napus on the transcriptome of the pathogenic fungus Leptosphaeria maculans. Conclusion We developed a data processing procedure for the quantitative analysis of amplified cDNA fragments separated by electrophoresis. The system utilizes common software and provides an open-end alternative to DNA microarray analysis of the transcriptome. It is expected to work equally well with DDRT-PCR and cDNA-AFLP data and be useful particularly in reseach on organisms for which microarray analysis is not available or economical.

  18. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Diego Lijavetzky

    Full Text Available BACKGROUND: Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar 'Muscat Hamburg' to determine tissue-specific as well as common developmental programs. METHODOLOGY/PRINCIPAL FINDINGS: Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. CONCLUSIONS/SIGNIFICANCE: A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are

  19. Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Vialou, Vincent; Heller, Elizabeth A; Yieh, Lynn; LaBonté, Benoit; Peña, Catherine J; Shen, Li; Wittenberg, Gayle M; Nestler, Eric J

    2017-02-15

    Examining transcriptional regulation by antidepressants in key neural circuits implicated in depression and understanding the relation to transcriptional mechanisms of susceptibility and natural resilience may help in the search for new therapeutic agents. Given the heterogeneity of treatment response in human populations, examining both treatment response and nonresponse is critical. We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine, and a rapidly acting, non-monoamine-based antidepressant, ketamine, in mice subjected to chronic social defeat stress, a validated depression model, and used RNA sequencing to analyze transcriptional profiles associated with susceptibility, resilience, and antidepressant response and nonresponse in the prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. We identified similar numbers of responders and nonresponders after ketamine or imipramine treatment. Ketamine induced more expression changes in the hippocampus; imipramine induced more expression changes in the nucleus accumbens and amygdala. Transcriptional profiles in treatment responders were most similar in the PFC. Nonresponse reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptibility-associated transcriptional changes and induced resilience-associated transcription in the PFC. We generated a uniquely large resource of gene expression data in four interconnected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by antidepressant drugs and in both reversing susceptibility- and inducing resilience-associated molecular adaptations. In addition, we found region-specific effects of each drug, suggesting both common and unique effects of imipramine versus ketamine. Copyright © 2016 Society of Biological

  20. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    Science.gov (United States)

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early

  1. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  2. Pneumatosis Cystoides Intestinalis: A Rare Benign Cause of Pneumoperitoneum

    Directory of Open Access Journals (Sweden)

    Puneet Devgun

    2013-01-01

    Full Text Available Pneumatosis cystoides intestinalis is a rare gastrointestinal complication in the course of connective tissue diseases, especially in scleroderma, that can lead to pneumoperitoneum or obstruction. Findings on plain radiography may reveal radiolucent linear or bubbly circular air bubbles in the bowel wall, with or without free gas accumulation in the peritoneal cavity. Treatment of pneumatosis cystoides intestinalis ranges from supportive care to laparotomy.

  3. Pseudocystic pheochromocytoma associated with pneumatosis cystoides intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Alanen, A.; Kormano, M.

    1982-02-01

    The authors report a case of a large pseudocystic pheochromocytoma, which initially was operated on and histologically diagnosed as a pancreatic pseudocyst. After recurrence, a multilocular cystic tumor was found both by ultrasonography and CT. ERCP demonstrated a cut-off of the pancreatic duct. Re-operation revealed a cystic adrenal tumor anastomosed to the stomach. The operation was complicated by a hypertensive crisis and a subsequent subendocardial infarction. In the preoperative period the patient had continuous diarrhea and pneumatosis cystoides intestinalis was demonstrated by double contrast barium enema. The pneumatosis disappeared within three months but a recurrent tumor appeared. The importance of CT in the preoperative work-up of upper abdominal lesions is emphasized, as atypical cystic masses may cause differential diagnostic problems in surgery or even in localized biopsies, while CT would give a better overall view of the tumor.

  4. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Gravesen, Eva; Mace, Maria L.

    2016-01-01

    The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling...... and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC was induced in CU rats, which lead to extensive changes in the transcriptional profile. Among the 10,153 genes...... with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding...

  5. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    Science.gov (United States)

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  7. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    Science.gov (United States)

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

  8. Transcription profile analysis reveals that zygotic division results in uneven distribution of specific transcripts in apical/basal cells of tobacco.

    Directory of Open Access Journals (Sweden)

    Ligang Ma

    Full Text Available BACKGROUND: Asymmetric zygotic division in higher plants results in the formation of an apical cell and a basal cell. These two embryonic cells possess distinct morphologies and cell developmental fates. It has been proposed that unevenly distributed cell fate determinants and/or distinct cell transcript profiles may be the underlying reason for their distinct fates. However, neither of these hypotheses has convincing support due to technical limitations. METHODOLOGY/PRINCIPAL FINDINGS: Using laser-controlled microdissection, we isolated apical and basal cells and constructed cell type-specific cDNA libraries. Transcript profile analysis revealed difference in transcript composition. PCR and qPCR analysis confirmed that transcripts of selected embryogenesis-related genes were cell-type preferentially distributed. Some of the transcripts that existed in zygotes were found distinctly existed in apical or basal cells. The cell type specific de novo transcription was also found after zygotic cell division. CONCLUSIONS/SIGNIFICANCE: Thus, we found that the transcript diversity occurs between apical and basal cells. Asymmetric zygotic division results in the uneven distribution of some embryogenesis related transcripts in the two-celled proembryos, suggesting that a differential distribution of some specific transcripts in the apical or basal cells may involve in guiding the two cell types to different developmental destinies.

  9. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    2008-03-01

    Full Text Available Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-Apo(100/100Mttp(flox/flox Mx1-Cre. Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.

  10. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    2008-03-01

    Full Text Available Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-Apo(100/100Mttp(flox/flox Mx1-Cre. Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.

  11. Transcript profiling of Elf5+/- mammary glands during pregnancy identifies novel targets of Elf5.

    Directory of Open Access Journals (Sweden)

    Renee L Rogers

    Full Text Available BACKGROUND: Elf5, an epithelial specific Ets transcription factor, plays a crucial role in the pregnancy-associated development of the mouse mammary gland. Elf5(-/- embryos do not survive, however the Elf5(+/- mammary gland displays a severe pregnancy-associated developmental defect. While it is known that Elf5 is crucial for correct mammary development and lactation, the molecular mechanisms employed by Elf5 to exert its effects on the mammary gland are largely unknown. PRINCIPAL FINDINGS: Transcript profiling was used to investigate the transcriptional changes that occur as a result of Elf5 haploinsufficiency in the Elf5(+/- mouse model. We show that the development of the mouse Elf5(+/- mammary gland is delayed at a transcriptional and morphological level, due to the delayed increase in Elf5 protein in these glands. We also identify a number of potential Elf5 target genes, including Mucin 4, whose expression, is directly regulated by the binding of Elf5 to an Ets binding site within its promoter. CONCLUSION: We identify novel transcriptional targets of Elf5 and show that Muc4 is a direct target of Elf5, further elucidating the mechanisms through which Elf5 regulates proliferation and differentiation in the mammary gland.

  12. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing.

    Science.gov (United States)

    Rukov, Jakob L; Gravesen, Eva; Mace, Maria L; Hofman-Bang, Jacob; Vinther, Jeppe; Andersen, Claus B; Lewin, Ewa; Olgaard, Klaus

    2016-03-15

    The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC was induced in CU rats, which lead to extensive changes in the transcriptional profile. Among the 10,153 genes with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding, organic substance, and ossification. The individually affected genes were of relevance to osteogenic transformation, tissue calcification, and Wnt modulation. Downregulation of the Klotho gene in uremia is believed to be involved in the development of VC, but it is debated whether the effect is caused by circulating Klotho only or if Klotho is produced locally in the vasculature. We found that Klotho was neither expressed in the normal aorta nor calcified aorta by RNA-seq. In conclusion, we demonstrated extensive changes in the transcriptional profile of the uremic calcified aorta, which were consistent with a shift in phenotype from vascular tissue toward an osteochondrocytic transcriptome profile. Moreover, neither the normal vasculature nor calcified vasculature in CU expresses Klotho.

  13. Breeding response of transcript profiling in developing seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Li Xiaodan

    2009-05-01

    Full Text Available Abstract Background The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. Results Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, β-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, α-CT and SUC1 were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. Conclusion This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low

  14. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle

    Directory of Open Access Journals (Sweden)

    Lehnert Sigrid A

    2010-06-01

    Full Text Available Abstract Background Two types of horns are evident in cattle - fixed horns attached to the skull and a variation called scurs, which refers to small loosely attached horns. Cattle lacking horns are referred to as polled. Although both the Poll and Scurs loci have been mapped to BTA1 and 19 respectively, the underlying genetic basis of these phenotypes is unknown, and so far, no candidate genes regulating these developmental processes have been described. This study is the first reported attempt at transcript profiling to identify genes and pathways contributing to horn and scurs development in Brahman cattle, relative to polled counterparts. Results Expression patterns in polled, horned and scurs tissues were obtained using the Agilent 44 k bovine array. The most notable feature when comparing transcriptional profiles of developing horn tissues against polled was the down regulation of genes coding for elements of the cadherin junction as well as those involved in epidermal development. We hypothesize this as a key event involved in keratinocyte migration and subsequent horn development. In the polled-scurs comparison, the most prevalent differentially expressed transcripts code for genes involved in extracellular matrix remodelling, which were up regulated in scurs tissues relative to polled. Conclusion For this first time we describe networks of genes involved in horn and scurs development. Interestingly, we did not observe differential expression in any of the genes present on the fine mapped region of BTA1 known to contain the Poll locus.

  15. Upgrading Root Physiology for Stress Tolerance by Ectomycorrhizas: Insights from Metabolite and Transcriptional Profiling into Reprogramming for Stress Anticipation

    National Research Council Canada - National Science Library

    Zhi-Bin Luo; Dennis Janz; Xiangning Jiang; Cornelia Göbel; Henning Wildhagen; Yupeng Tan; Heinz Rennenberg; Ivo Feussner; Andrea Polle

    2009-01-01

    .... To elucidate the basis of EM-induced physiological changes and their involvement in stress adaptation, we investigated metabolic and transcriptional profiles in EM and non-EM roots of gray poplar (Populus × canescens...

  16. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance

    Directory of Open Access Journals (Sweden)

    Singh Mohan B

    2008-06-01

    Full Text Available Abstract Background Despite the importance of the shoot apical meristem (SAM in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. Results In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag. Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation

  17. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought

    Directory of Open Access Journals (Sweden)

    Tiago Benedito Dos Santos

    2015-06-01

    Full Text Available Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1 in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible, the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.

  18. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Directory of Open Access Journals (Sweden)

    Horia Todor

    Full Text Available Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  19. Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids.

    Science.gov (United States)

    Ellison, Christopher K; Burton, Ronald S

    2008-10-14

    Hybridization between populations can disrupt gene expression, frequently resulting in deleterious hybrid phenotypes. Reduced fitness in interpopulation hybrids of the marine copepod Tigriopus californicus has been traced to interactions between the nuclear and mitochondrial genomes. Here, we determine transcript levels of four to six genes involved in the mitochondrial oxidative phosphorylation pathway for a series of parental and inbred hybrid lines using RT-qPCR. Both nuclear and mitochondrial-encoded genes are included in the analysis. Although all genes studied are up-regulated under salinity stress, only expression of genes located on the mtDNA differed among lines. Because mitochondrial genes are transcribed by a dedicated RNA polymerase encoded in the nuclear genome, we compare transcript levels among hybrid lines with different combinations of mitochondrial RNA polymerase and mtDNA genotypes. Lines bearing certain mtDNA-mitochondrial RNA polymerase genotypic combinations show a diminished capacity to up-regulate mitochondrial genes in response to hypoosmotic stress. Effects on the transcriptional profile depend on the specific interpopulation cross and are correlated with viability effects. We hypothesize that disruption of the mitochondrial transcriptional system in F(2) hybrids may play a central role in hybrid breakdown.

  20. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Science.gov (United States)

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  1. Two Cases of Pneumatosis Intestinalis during Cetuximab Therapy for Advanced Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    James A. Miller

    2015-01-01

    Full Text Available Pneumatosis intestinalis is a rare but known potential complication of treatment with cetuximab. Here we present two cases of pneumatosis intestinalis occurring in patients who were receiving cetuximab as treatment for advanced head and neck cancer. In both cases, cetuximab was discontinued after discovery of the pneumatosis intestinalis.

  2. Distinctive characteristics of transcriptional profiles from two epithelial cell lines upon interaction with Actinobacillus actinomycetemcomitans.

    Science.gov (United States)

    Mans, J J; Baker, H V; Oda, D; Lamont, R J; Handfield, M

    2006-08-01

    Transcriptional profiling and gene ontology analyses were performed to investigate the unique responses of two different epithelial cell lines to an Actinobacillus actinomycetemcomitans challenge. A total of 2867 genes were differentially regulated among all experimental conditions. The analysis of these 2867 genes revealed that the predominant specific response to infection in HeLa cells was associated with the regulation of enzyme activity, RNA metabolism, nucleoside and nucleic acid transport and protein modification. The predominant specific response in immortalized human gingival keratinocytes (IHGK) was associated with the regulation of angiogenesis, chemotaxis, transmembrane receptor protein tyrosine kinase signaling, cell differentiation, apoptosis and response to stress. Of particular interest, stress response genes were significantly - yet differently - affected in both cell lines. In HeLa cells, only three regulated genes impacted the response to stress, and the response to unfolded protein was the only term that passed the ontology filters. This strikingly contrasted with the profiles obtained for IHGK, in which 61 regulated genes impacted the response to stress and constituted an extensive network of cell responses to A. actinomycetemcomitans interaction (response to pathogens, oxidative stress, unfolded proteins, DNA damage, starvation and wounding). Hence, while extensive similarities were found in the transcriptional profiles of these two epithelial cell lines, significant differences were highlighted. These differences were predominantly found in pathways that are associated with host-pathogen interactions.

  3. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

    DEFF Research Database (Denmark)

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J;

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we...

  4. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  5. Characterization of the transcriptional profile in primary astrocytes after oxidative stress induced by Paraquat

    DEFF Research Database (Denmark)

    Olesen, Birgitte S. M. Thuesen; Clausen, Jørgen; Vang, Ole

    2008-01-01

    antioxidative defense systems. The purpose of the present study was to investigate the antioxidative response at the transcriptional level following exposure of primary astrocytes to a pro-oxidant, Paraquat (PQ). This was done by investigating the time-dependent expression of selected genes encoding...... the antioxidative enzymes Mn- and CuZn superoxide dismutase (SOD) and catalase as well as the transcription factor component AP-1. Paraquat induced the expression of Mn- and CuZn SOD, catalase and decreases the expression of c-jun (a part of AP-1). Furthermore, the gene expression profiles were investigated after......, and Bcl-2-associated death promoter. Thus, we could demonstrate a PQ-inducible effect of the mRNA of antioxidative enzymes, as well as the mRNAs of possible enzymes involved in the protection against oxidative stress....

  6. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  7. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes.

    Science.gov (United States)

    Chen, Junwen; Hou, Kai; Qin, Peng; Liu, Hongchang; Yi, Bin; Yang, Wenting; Wu, Wei

    2014-07-07

    Stevia (Stevia rebaudiana) is an important medicinal plant that yields diterpenoid steviol glycosides (SGs). SGs are currently used in the preparation of medicines, food products and neutraceuticals because of its sweetening property (zero calories and about 300 times sweeter than sugar). Recently, some progress has been made in understanding the biosynthesis of SGs in Stevia, but little is known about the molecular mechanisms underlying this process. Additionally, the genomics of Stevia, a non-model species, remains uncharacterized. The recent advent of RNA-Seq, a next generation sequencing technology, provides an opportunity to expand the identification of Stevia genes through in-depth transcript profiling. We present a comprehensive landscape of the transcriptome profiles of three genotypes of Stevia with divergent SG compositions characterized using RNA-seq. 191,590,282 high-quality reads were generated and then assembled into 171,837 transcripts with an average sequence length of 969 base pairs. A total of 80,160 unigenes were annotated, and 14,211 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Gene sequences of all enzymes known to be involved in SG synthesis were examined. A total of 143 UDP-glucosyltransferase (UGT) unigenes were identified, some of which might be involved in SG biosynthesis. The expression patterns of eight of these genes were further confirmed by RT-QPCR. RNA-seq analysis identified candidate genes encoding enzymes responsible for the biosynthesis of SGs in Stevia, a non-model plant without a reference genome. The transcriptome data from this study yielded new insights into the process of SG accumulation in Stevia. Our results demonstrate that RNA-Seq can be successfully used for gene identification and transcript profiling in a non-model species.

  8. Genome-Wide Transcriptional Profiling of the Response of Staphylococcus aureus to Cryptotanshinone

    Directory of Open Access Journals (Sweden)

    Haihua Feng

    2009-01-01

    Full Text Available Staphylococcus aureus (S. aureus strains with multiple antibiotic resistances are increasingly widespread, and new agents are required for the treatment of S. aureus. Cryptotanshinone (CT, a major tanshinone of medicinal plant Salvia miltiorrhiza Bunge, demonstrated effective in vitro antibacterial activity against all 21 S. aureus strains tested in this experiment. Affymetrix GeneChips were utilized to determine the global transcriptional response of S. aureus ATCC 25923 to treatment with subinhibitory concentrations of CT. Transcriptome profiling indicated that the antibacterial action of CT may be associated with its action as active oxygen radical generator; S. aureus undergoes an oxygen-limiting state upon exposure to CT.

  9. Comparative transcriptional profiling of human Merkel cells and Merkel cell carcinoma.

    Science.gov (United States)

    Mouchet, Nicolas; Coquart, Nolwenn; Lebonvallet, Nicolas; Le Gall-Ianotto, Christelle; Mogha, Ariane; Fautrel, Alain; Boulais, Nicholas; Dréno, Brigitte; Martin, Ludovic; Hu, Weiguo; Galibert, Marie-Dominique; Misery, Laurent

    2014-12-01

    Merkel cell carcinoma is believed to be derived from Merkel cells after infection by Merkel cell polyomavirus (MCPyV) and other poorly understood events. Transcriptional profiling using cDNA microarrays was performed on cells from MCPy-negative and MCPy-positive Merkel cell carcinomas and isolated normal Merkel cells. This microarray revealed numerous significantly upregulated genes and some downregulated genes. The extensive list of genes that were identified in these experiments provides a large body of potentially valuable information of Merkel cell carcinoma carcinogenesis and could represent a source of potential targets for cancer therapy.

  10. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    Science.gov (United States)

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  11. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  12. Transcriptional profiling of endocrine cerebro-osteodysplasia using microarray and next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Piya Lahiry

    Full Text Available BACKGROUND: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-generation sequencing can offer a richer and more comprehensive picture. METHODOLOGY/PRINCIPAL FINDINGS: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-generation mRNA sequencing (mRNA-seq of skin fibroblasts from ECO-affected subjects. We then validated a subset of differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain reaction (qRT-PCR. Finally, we used gene ontology (GO to identify critical pathways and processes that were abnormal according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially expressed genes with much better correlation to qRT-PCR results than the microarray (r² = 0.794 and 0.137, respectively. Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways. CONCLUSIONS/SIGNIFICANCE: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the microarray. The two platforms generated different but complementary hypotheses for further evaluation.

  13. Cytometric Approach for Detection of Encephalitozoon intestinalis, an Emergent Agent▿

    Science.gov (United States)

    Barbosa, Joana; Rodrigues, Acácio Gonçalves; Pina-Vaz, Cidália

    2009-01-01

    Encephalitozoon intestinalis is responsible for intestinal disease in patients with AIDS and immunocompetent patients. The infectious form is a small spore that is resistant to water treatment procedures. Its detection is very important, but detection is very cumbersome and time-consuming. Our main objective was to develop and optimize a specific flow cytometric (FC) protocol for the detection of E. intestinalis in hospital tap water and human feces. To determine the optimal specific antibody (Microspor-FA) concentration, a known concentration of E. intestinalis spores (Waterborne, Inc.) was suspended in hospital tap water and stool specimens with different concentrations of Microspor-FA, and the tap water and stool specimens were incubated under different conditions. The sensitivity limit and specificity were also evaluated. To study spore infectivity, double staining with propidium iodide (PI) and Microspor-FA was undertaken. Distinct approaches for filtration and centrifugation of the stool specimens were used. E. intestinalis spores stained with 10 μg/ml of Microspor-FA at 25°C overnight provided the best results. The detection limit was 5 × 104 spores/ml, and good specificity was demonstrated. Simultaneous staining with Microspor-FA and PI ensured that the E. intestinalis spores were dead and therefore noninfectious. With the stool specimens, better spore recovery was observed with a saturated solution of NaCl and centrifugation at 1,500 × g for 15 min. A new approach for the detection of E. intestinalis from tap water or human feces that ensures that the spores are not viable is now available and represents an important step for the prevention of this threat to public health. PMID:19439525

  14. SNPs and Hox gene mapping in Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Biffali Elio

    2008-01-01

    Full Text Available Abstract Background The tunicate Ciona intestinalis (Enterogona, Ascidiacea, a major model system for evolutionary and developmental genetics of chordates, harbours two cryptic species. To assess the degree of intra- and inter-specific genetic variability, we report the identification and analysis of C. intestinalis SNP (Single Nucleotide Polymorphism markers. A SNP subset was used to determine the genetic distance between Hox-5 and -10 genes. Results DNA fragments were amplified from 12 regions of C. intestinalis sp. A. In total, 128 SNPs and 32 one bp indels have been identified within 8 Kb DNA. SNPs in coding regions cause 4 synonymous and 12 non-synonymous substitutions. The highest SNP frequency was detected in the Hox5 and Hox10 intragenic regions. In C. intestinalis, these two genes have lost their archetypal topology within the cluster, such that Hox10 is located between Hox4 and Hox5. A subset of the above primers was used to perform successful amplification in C. intestinalis sp. B. In this cryptic species, 62 SNPs were identified within 3614 bp: 41 in non-coding and 21 in coding regions. The genetic distance of the Hox-5 and -10 loci, computed combining a classical backcross approach with the application of SNP markers, was found to be 8.4 cM (Haldane's function. Based on the physical distance, 1 cM corresponds to 39.5 Kb. Linkage disequilibrium between the aforementioned loci was calculated in the backcross generation. Conclusion SNPs here described allow analysis and comparisons within and between C. intestinalis cryptic species. We provide the first reliable computation of genetic distance in this important model chordate. This latter result represents an important platform for future studies on Hox genes showing deviations from the archetypal topology.

  15. Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Chen Xiaowei S

    2011-11-01

    Full Text Available Abstract Background Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites Giardia intestinalis and Trichomonas vaginalis. Results We have identified the previously 'missing' Giardia RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs. Conclusions Results indicate that Giardia intestinalis and Trichomonas vaginalis, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes.

  16. Transcription profiling of 12 asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides.

    Science.gov (United States)

    Sun, Lili; Wang, Zhiying; Zou, Chuanshan; Cao, Chuanwang

    2014-04-01

    As the main group of detoxification enzymes, cytochrome P450 monoxygenases (P450s) catalyse an extremely diverse range of reactions that play an important role in the detoxification of foreign compounds. Transcription profiling of 12 Lymantria dispar P450 genes from the CYP6 subfamily believed to be involved in insecticide metabolism was performed in this study. Life-stage transcription profiling of CYP6 genes revealed significant variations between eggs, larvae, pupae, and adult males and females. Exposure of larvae to sublethal doses of deltamethrin, omethoate, and carbaryl enhanced the transcription of most of the CYP6 P450 genes, with induction peaking between 24 and 72 h after exposure. Transcription profiles were dependent on the levels of insecticide exposure and the various developmental stages.

  17. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    Directory of Open Access Journals (Sweden)

    Peng eSun

    2015-06-01

    Full Text Available Rehmannia glutinosa, a herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR, thickening adventitious root (TAR, and the developing tuberous root (DTR. Expression profiling identified a total of 6,974 differentially expressed unigenes during root developmental. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation.

  18. Age-related behaviors have distinct transcriptional profiles in Caenorhabditis elegans.

    Science.gov (United States)

    Golden, Tamara R; Hubbard, Alan; Dando, Caroline; Herren, Michael A; Melov, Simon

    2008-12-01

    There has been a great deal of interest in identifying potential biomarkers of aging. Biomarkers of aging would be useful to predict potential vulnerabilities in an individual that may arise well before they are chronologically expected, due to idiosyncratic aging rates that occur between individuals. Prior attempts to identify biomarkers of aging have often relied on the comparisons of long-lived animals to a wild-type control. However, the effect of interventions in model systems that prolong lifespan (such as single gene mutations or caloric restriction) can sometimes be difficult to interpret due to the manipulation itself having multiple unforeseen consequences on physiology, unrelated to aging itself. The search for predictive biomarkers of aging therefore is problematic, and the identification of metrics that can be used to predict either physiological or chronological age would be of great value. One methodology that has been used to identify biomarkers for numerous pathologies is gene expression profiling. Here, we report whole-genome expression profiles of individual wild-type Caenorhabditis elegans covering the entire wild-type nematode lifespan. Individual nematodes were scored for either age-related behavioral phenotypes, or survival, and then subsequently associated with their respective gene expression profiles. This facilitated the identification of transcriptional profiles that were highly associated with either physiological or chronological age. Overall, our approach serves as a paradigm for identifying potential biomarkers of aging in higher organisms that can be repeatedly sampled throughout their lifespan.

  19. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids.

    Science.gov (United States)

    Farrow, Scott C; Hagel, Jillian M; Facchini, Peter J

    2012-05-01

    Benzylisoquinoline alkaloids (BIAs) are a large and diverse group of ~2500 specialized metabolites found predominantly in plants of the order Ranunculales. Research focused on BIA metabolism in a restricted number of plant species has identified many enzymes and cognate genes involved in the biosynthesis of compounds such as morphine, sanguinarine and berberine. However, the formation of most BIAs remains uncharacterized at the molecular biochemical level. Herein a compendium of sequence- and metabolite-profiling resources from 18 species of BIA-accumulating cell cultures was established, representing four related plant families. Our integrated approach consisted of the construction of EST libraries each containing approximately 3500 unigenes per species for a total of 58,787 unigenes. The EST libraries were manually triaged using known BIA-biosynthetic genes as queries to identify putative homologs with similar or potentially different functions. Sequence resources were analyzed in the context of the targeted metabolite profiles obtained for each cell culture using electrospray-ionization and collision-induced dissociation mass spectrometry. Fragmentation analysis was used for the identification or structural characterization coupled with the relative quantification of 72 BIAs, which establishes a key resource for future work on alkaloid biosynthesis. The metabolite profile obtained for each species provides a rational basis for the prediction of enzyme function in BIA metabolism. The metabolic frameworks assembled through the integration of transcript and metabolite profiles allow a comparison of BIA metabolism across several plant species and families. Taken together, these data represent an important tool for the discovery of BIA biosynthetic genes.

  20. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Science.gov (United States)

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  1. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Directory of Open Access Journals (Sweden)

    Sang Woo Kim

    Full Text Available Non-coding RNAs (ncRNAs play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT, in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  2. Circulating Human Eosinophils Share a Similar Transcriptional Profile in Asthma and Other Hypereosinophilic Disorders

    Science.gov (United States)

    Barnig, Cindy; Dembélé, Doulaye; Paul, Nicodème; Poirot, Anh; Uring-Lambert, Béatrice; Georgel, Philippe; de Blay, Fréderic; Bahram, Seiamak

    2015-01-01

    Eosinophils are leukocytes that are released into the peripheral blood in a phenotypically mature state and are capable of being recruited into tissues in response to appropriate stimuli. Eosinophils, traditionally considered cytotoxic effector cells, are leukocytes recruited into the airways of asthma patients where they are believed to contribute to the development of many features of the disease. This perception, however, has been challenged by recent findings suggesting that eosinophils have also immunomodulatory functions and may be involved in tissue homeostasis and wound healing. Here we describe a transcriptome-based approach–in a limited number of patients and controls—to investigate the activation state of circulating human eosinophils isolated by flow cytometry. We provide an overview of the global expression pattern in eosinophils in various relevant conditions, e.g., eosinophilic asthma, hypereosinophilic dermatological diseases, parasitosis and pulmonary aspergillosis. Compared to healthy subjects, circulating eosinophils isolated from asthma patients differed in their gene expression profile which is marked by downregulation of transcripts involved in antigen presentation, pathogen recognition and mucosal innate immunity, whereas up-regulated genes were involved in response to non-specific stimulation, wounding and maintenance of homeostasis. Eosinophils from other hypereosinophilic disorders displayed a very similar transcriptional profile. Taken together, these observations seem to indicate that eosinophils exhibit non-specific immunomodulatory functions important for tissue repair and homeostasis and suggest new roles for these cells in asthma immunobiology. PMID:26524763

  3. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Kehua Wang

    2017-06-01

    Full Text Available Perennial ryegrass (Lolium perenne is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.

  4. Meloidogyne javanica Chorismate Mutase Transcript Expression Profile Using Real-Time Quantitative RT-PCR.

    Science.gov (United States)

    Painter, Janet E; Lambert, Kris N

    2003-03-01

    A developmental expression profile of the Meloidodgyne javanica esophageal gland gene chorismate mutase-1 (Mj-cm-1) could suggest when in the lifecycle of the nematode the Mj-cm-1 product is functional. This study used real-time quantitative RT-PCR to examine the variation in Mj-cm-1 transcript levels over six timepoints in the nematode lifecycle: egg, infective second-stage juveniles (Inf-J2), 2-day post-inoculation (pi), 7-day pi, 14-day pi, and adult. The Mj-cm-1 mRNA levels peaked at 2-day pi, about 100-fold above levels expressed at the egg and Inf-J2 stages. Some expression of Mj-cm-1 remained during the 7-day pi, 14-day pi, and adult stages. High transcript levels of the beta-actin control gene M. javanica Beta-actin-1 (Mj-ba-1) demonstrated the presence of cDNA at all timepoints. The peak in Mj-cm-1 transcript expression at 2-day pi as well as the previously shown esophageal gland localization of Mj-cm-1 mRNA suggest that the product of this gene may be involved early in the establishment of parasitism.

  5. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  6. Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber.

    Science.gov (United States)

    Li, Jian-Wu; Liu, Jun; Zhang, He; Xie, Cong-Hua

    2011-03-01

    To identify genes induced during Pseudoperonospora cubensis (Berk. and Curk.) Rostov. infection in cucumber (Cucumis sativus L.), the suppression subtractive hybridization (SSH) was performed using mixed cDNAs prepared from cucumber seedlings inoculated with the pathogen as a tester and cDNA from uninfected cucumber seedlings as a driver. A forward subtractive cDNA library (FSL) and a reverse subtractive cDNA library (RSL) were constructed, from which 1,416 and 1,128 recombinant clones were isolated, respectively. Differential screening of the preferentially expressed recombinant clones identified 58 unique expressed sequence tags (ESTs) from FSL and 29 from RSL. The ESTs with significant protein homology were sorted into 13 functional categories involved in nearly the whole process of plant defense such as signal transduction and cell defense, transcription, cell cycle and DNA processing, protein synthesis, protein fate, proteins with binding functions, transport, metabolism and energy. The expressions of twenty-five ESTs by real-time quantitative RT-PCR confirmed that differential gene regulation occurred during P. cubensis infection and inferred that higher and earlier expression of transcription factors and signal transduction associated genes together with ubiquitin/proteasome and polyamine biosynthesis pathways may contribute to the defense response of cucumber to P. cubensis infection. The transcription profiling of selected down-regulated genes revealed that suppression of the genes in reactive oxygen species scavenging system and photosynthesis pathway may inhibit disease development in the host tissue.

  7. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs

    Science.gov (United States)

    2010-01-01

    Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease which causes great economic losses worldwide. Many virulence factors are involved in the pathogenesis, namely capsular polysaccharides, RTX toxins, LPS and many iron acquisition systems. In order to identify genes that are expressed in vivo during a natural infection, we undertook transcript profiling experiments with an A. pleuropneumoniae DNA microarray, after recovery of bacterial mRNAs from serotype 5b-infected porcine lungs. AppChip2 contains 2033 PCR amplicons based on the genomic sequence of App serotype 5b strain L20, representing more than 95% of ORFs greater than 160 bp in length. Results Transcriptional profiling of A. pleuropneumoniae recovered from the lung of a pig suffering from a natural infection or following growth of the bacterial isolate in BHI medium was performed. An RNA extraction protocol combining beadbeating and hot-acid-phenol was developed in order to maximize bacterial mRNA yields and quality following total RNA extraction from lung lesions. Nearly all A. pleuropneumoniae transcripts could be detected on our microarrays, and 150 genes were deemed differentially expressed in vivo during the acute phase of the infection. Our results indicate that, for example, gene apxIVA from an operon coding for RTX toxin ApxIV is highly up-regulated in vivo, and that two genes from the operon coding for type IV fimbriae (APL_0878 and APL_0879) were also up-regulated. These transcriptional profiling data, combined with previous comparative genomic hybridizations performed by our group, revealed that 66 out of the 72 up-regulated genes are conserved amongst all serotypes and that 3 of them code for products that are predicted outer membrane proteins (genes irp and APL_0959, predicted to code for a TonB-dependent receptor and a filamentous hemagglutinin/adhesin respectively) or lipoproteins (gene APL_0920). Only 4 of 72 up-regulated genes

  8. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs

    Directory of Open Access Journals (Sweden)

    Harel Josée

    2010-02-01

    Full Text Available Abstract Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease which causes great economic losses worldwide. Many virulence factors are involved in the pathogenesis, namely capsular polysaccharides, RTX toxins, LPS and many iron acquisition systems. In order to identify genes that are expressed in vivo during a natural infection, we undertook transcript profiling experiments with an A. pleuropneumoniae DNA microarray, after recovery of bacterial mRNAs from serotype 5b-infected porcine lungs. AppChip2 contains 2033 PCR amplicons based on the genomic sequence of App serotype 5b strain L20, representing more than 95% of ORFs greater than 160 bp in length. Results Transcriptional profiling of A. pleuropneumoniae recovered from the lung of a pig suffering from a natural infection or following growth of the bacterial isolate in BHI medium was performed. An RNA extraction protocol combining beadbeating and hot-acid-phenol was developed in order to maximize bacterial mRNA yields and quality following total RNA extraction from lung lesions. Nearly all A. pleuropneumoniae transcripts could be detected on our microarrays, and 150 genes were deemed differentially expressed in vivo during the acute phase of the infection. Our results indicate that, for example, gene apxIVA from an operon coding for RTX toxin ApxIV is highly up-regulated in vivo, and that two genes from the operon coding for type IV fimbriae (APL_0878 and APL_0879 were also up-regulated. These transcriptional profiling data, combined with previous comparative genomic hybridizations performed by our group, revealed that 66 out of the 72 up-regulated genes are conserved amongst all serotypes and that 3 of them code for products that are predicted outer membrane proteins (genes irp and APL_0959, predicted to code for a TonB-dependent receptor and a filamentous hemagglutinin/adhesin respectively or lipoproteins (gene APL_0920. Only 4

  9. Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora

    Directory of Open Access Journals (Sweden)

    Shapiro-Ilan David I

    2009-12-01

    Full Text Available Abstract Background The success of a biological control agent depends on key traits, particularly reproductive potential, environmental tolerance, and ability to be cultured. These traits can deteriorate rapidly when the biological control agent is reared in culture. Trait deterioration under laboratory conditions has been widely documented in the entomopathogenic nematode (EPN Heterorhabditis bacteriophora (Hb but the specific mechanisms behind these genetic processes remain unclear. This research investigates the molecular mechanisms of trait deterioration of two experimental lines of Hb, an inbred line (L5M and its original parental line (OHB. We generated transcriptional profiles of two experimental lines of Hb, identified the differentially expressed genes (DEGs and validated their differential expression in the deteriorated line. Results An expression profiling study was performed between experimental lines L5M and OHB of Hb with probes for 15,220 ESTs from the Hb transcriptome. Microarray analysis showed 1,185 DEGs comprising of 469 down- and 716 up-regulated genes in trait deteriorated nematodes. Analysis of the DEGs showed that trait deterioration involves massive changes of the transcripts encoding enzymes involved in metabolism, signal transduction, virulence and longevity. We observed a pattern of reduced expression of enzymes related to primary metabolic processes and induced secondary metabolism. Expression of sixteen DEGs in trait deteriorated nematodes was validated by quantitative reverse transcription-PCR (qRT-PCR which revealed similar expression kinetics for all the genes tested as shown by microarray. Conclusion As the most closely related major entomopathogen to C. elegans, Hb provides an attractive near-term application for using a model organism to better understand interspecies interactions and to enhance our understanding of the mechanisms underlying trait deterioration in biological control agents. This information

  10. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    Science.gov (United States)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  11. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    Science.gov (United States)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  12. Pneumatosis Intestinalis in a Patient with Acute Promyelocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Abhishek Mangaonkar

    2015-01-01

    Full Text Available Pneumatosis Intestinalis is a rare condition characterized by the presence of gas within the intestinal wall. We describe a case of a 33-year-old woman with acute promyelocytic leukemia who developed nausea and nonbloody diarrhea. CT showed intramural air in transverse and descending colon. Patient clinically improved with conservative management.

  13. Age-related behaviors have distinct transcriptional profiles in C.elegans

    Science.gov (United States)

    Golden, Tamara R.; Hubbard, Alan; Dando, Caroline; Herren, Michael A.; Melov, Simon

    2008-01-01

    Summary There has been a great deal of interest in identifying potential biomarkers of aging (Butler et al. 2004). Biomarkers of aging would be useful to predict potential vulnerabilities in an individual that may arise well before they are chronologically expected, due to idiosyncratic aging rates that occur between individuals. Prior attempts to identify biomarkers of aging have often relied on the comparisons of long-lived animals to a wild-type control (Dhahbi et al. 2004). However, the effect of interventions in model systems that prolong lifespan (such as single gene mutations, or caloric restriction) can sometimes be difficult to interpret due to the manipulation itself having multiple unforeseen consequences on physiology, unrelated to aging itself (Gems et al. 2002; Partridge & Gems 2006). The search for predictive biomarkers of aging therefore is problematic, and the identification of metrics that can be used to predict either physiological or chronological age would be of great value (Butler et al. 2004). One methodology which has been used to identify biomarkers for numerous pathologies is gene expression profiling. Here, we report whole-genome expression profiles of individual wild-type Caenorhabditis elegans covering the entire wild-type nematode life span. Individual nematodes were scored for either age-related behavioral phenotypes, or survival, and then subsequently associated with their respective gene expression profiles. This facilitated the identification of transcriptional profiles that were highly associated with either physiological or chronological age. Overall, our approach serves as a paradigm for identifying potential biomarkers of aging in higher organisms that can be repeatedly sampled throughout their lifespan. PMID:18778409

  14. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape.

    Science.gov (United States)

    Sherwood, Richard I; Hashimoto, Tatsunori; O'Donnell, Charles W; Lewis, Sophia; Barkal, Amira A; van Hoff, John Peter; Karun, Vivek; Jaakkola, Tommi; Gifford, David K

    2014-02-01

    We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.

  15. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Engelmann, Péter;

    2016-01-01

    Previously we have identified lysenin as a key protein constituent of the secretome from Eisenia fetida coelomocytes and revealed its critical importance in priming interactions between the cells and the protein corona around nanosilver. As alterations of the protein environment can directly affect...... the corona composition, the extent to which nanoparticles influence the cells’ protein secretion profile is of remarkable interest that has rarely acquired attention. Here, we have probed transcriptional responses of E. fetida coelomocytes to the representative nanosilver NM-300K (15 nm) in a time...... suppressed over time indicating a negative feedback cycle. This may limit further enrichment of lysenin in the corona and thereby decrease the lysenin-assisted uptake of the nanoparticles. Other differentially expressed genes were those involved in metal stress (likewise in AgNO3-stressed cells) and in Toll...

  16. Giardia intestinalis incorporates heme into cytosolic cytochrome b₅.

    Science.gov (United States)

    Pyrih, Jan; Harant, Karel; Martincová, Eva; Sutak, Robert; Lesuisse, Emmanuel; Hrdý, Ivan; Tachezy, Jan

    2014-02-01

    The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.

  17. Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data

    Directory of Open Access Journals (Sweden)

    King Benjamin L

    2011-08-01

    Full Text Available Abstract Background We introduce Glaucoma Discovery Platform (GDP, an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets. Description Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-Gpnmb+ strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM. Conclusion Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages

  18. Oviductal transcriptional profiling of a bovine fertility model by next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Angela Maria Gonella-Diaza

    2017-09-01

    Full Text Available In cattle, the oviduct plays a fundamental role in the reproductive process. Oviductal functions are controlled by the ovarian sex steroids: estradiol and progesterone. Here, we tested the hypothesis that the exposure to contrasting sex steroid milieus differentially impacts the oviductal transcriptional profile. We manipulated growth of the pre-ovulatory follicle to obtain cows that ovulated a larger (LF group or a smaller (SF group follicle. The LF group presented greater proestrus/estrus concentrations of estradiol and metaestrus concentrations of progesterone (Gonella-Diaza et al. 2015 [1], Mesquita et al. 2014 [2]. Also, the LF group was associated with greater fertility in timed-artificial insemination programs (Pugliesi et al. 2016 [3]. Cows were slaughtered on day 4 of the estrous cycle and total RNA was extracted from ampulla and isthmus fragments and analyzed by RNAseq. The resulting reads were mapped to the bovine genome (Bos taurus UMD 3.1, NCBI. The differential expression analyses revealed that 325 and 367 genes in ampulla and 274 and 316 genes in the isthmus were up-regulated and down-regulated in LF samples, respectively. To validate the RNAseq results, transcript abundance of 23 genes was assessed by qPCR and expression patterns were consistent between the two techniques. A functional enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID software. Processes enriched in the LF group included tissue morphology changes (extracellular matrix remodeling, cellular changes (proliferation, and secretion changes (growth factors, ions and metal transporters. An overview of the gene expression data was deposited in the NCBI's Gene Expression Omnibus (GEO and is accessible through the accession number GSE65681. In conclusion, differences in the peri-ovulatory sex steroid milieu modify the oviductal gene expression profiles. Such differences may be associated with the greater fertility

  19. A strong anti-inflammatory signature revealed by liver transcription profiling of Tmprss6-/- mice.

    Directory of Open Access Journals (Sweden)

    Michela Riba

    Full Text Available Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe(-/- mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe(-/- deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.

  20. Transcriptional profiling of midgut immunity response and degeneration in the wandering silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Qiuyun Xu

    Full Text Available BACKGROUND: Lepidoptera insects have a novel development process comprising several metamorphic stages during their life cycle compared with vertebrate animals. Unlike most Lepidoptera insects that live on nectar during the adult stage, the Bombyx mori silkworm adults do not eat anything and die after egg-laying. In addition, the midguts of Lepidoptera insects produce antimicrobial proteins during the wandering stage when the larval tissues undergo numerous changes. The exact mechanisms responsible for these phenomena remain unclear. PRINCIPAL FINDINGS: We used the silkworm as a model and performed genome-wide transcriptional profiling of the midgut between the feeding stage and the wandering stage. Many genes concerned with metabolism, digestion, and ion and small molecule transportation were down-regulated during the wandering stage, indicating that the wandering stage midgut loses its normal functions. Microarray profiling, qRT-PCR and western blot proved the production of antimicrobial proteins (peptides in the midgut during the wandering stage. Different genes of the immune deficiency (Imd pathway were up-regulated during the wandering stage. However, some key genes belonging to the Toll pathway showed no change in their transcription levels. Unlike butterfly (Pachliopta aristolochiae, the midgut of silkworm moth has a layer of cells, indicating that the development of midgut since the wandering stage is not usual. Cell division in the midgut was observed only for a short time during the wandering stage. However, there was extensive cell apoptosis before pupation. The imbalance of cell division and apoptosis probably drives the continuous degeneration of the midgut in the silkworm since the wandering stage. CONCLUSIONS: This study provided an insight into the mechanism of the degeneration of the silkworm midgut and the production of innate immunity-related proteins during the wandering stage. The imbalance of cell division and apoptosis

  1. Transcriptional profiling of bone marrow stromal cells in response to Porphyromonas gingivalis secreted products.

    Directory of Open Access Journals (Sweden)

    Durga Reddi

    Full Text Available Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting (periodontal tissues. Porphyromonas gingivalis is an oral pathogen highly implicated in the pathogenesis of this disease. It can exert its effects to a number of cells, including osteogenic bone marrow stromal cells which are important for homeostastic capacity of the tissues. By employing gene microarray technology, this study aimed to describe the overall transcriptional events (>2-fold regulation elicited by P. gingivalis secreted products in bone marrow stromal cells, and to dissect further the categories of genes involved in bone metabolism, inflammatory and immune responses. After 6 h of challenge with P. gingivalis, 271 genes were up-regulated whereas 209 genes were down-regulated, whereas after 24 h, these numbers were 259 and 109, respectively. The early (6 h response was characterised by regulation of genes associated with inhibition of cell cycle, induction of apoptosis and loss of structural integrity, whereas the late (24 h response was characterised by induction of chemokines, cytokines and their associated intracellular pathways (such as NF-κB, mediators of connective tissue and bone destruction, and suppression of regulators of osteogenic differentiation. The most strongly up-regulated genes were lipocalin 2 (LCN2 and serum amyloid A3 (SAA3, both encoding for proteins of the acute phase inflammatory response. Collectively, these transcriptional changes elicited by P. gingivalis denote that the fundamental cellular functions are hindered, and that the cells acquire a phenotype commensurate with propagated innate immune response and inflammatory-mediated tissue destruction. In conclusion, the global transcriptional profile of bone marrow stromal cells in response to P. gingivalis is marked by deregulated homeostatic functions, with implications in the pathogenesis of periodontitis.

  2. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans.

    Science.gov (United States)

    Baker, J L; Abranches, J; Faustoferri, R C; Hubbard, C J; Lemos, J A; Courtney, M A; Quivey, R

    2015-12-01

    The aciduricity of Streptococcus mutans is an important virulence factor of the organism, required to both out-compete commensal oral microorganisms and cause dental caries. In this study, we monitored transcriptional changes that occurred as a continuous culture of either an acid-tolerant strain (UA159) or an acid-sensitive strain (fabM::Erm) moved from steady-state growth at neutral pH, experienced glucose-shock and acidification of the culture, and transitioned to steady-state growth at low pH. Hence, the timing of elements of the acid tolerance response (ATR) could be observed and categorized as acute vs. adaptive ATR mechanisms. Modulation of branched chain amino acid biosynthesis, DNA/protein repair mechanisms, reactive oxygen species metabolizers and phosphoenolpyruvate:phosphotransferase systems occurred in the initial acute phase, immediately following glucose-shock, while upregulation of F1 F0 -ATPase did not occur until the adaptive phase, after steady-state growth had been re-established. In addition to the archetypal ATR pathways mentioned above, glucose-shock led to differential expression of genes suggesting a re-routing of resources away from the synthesis of fatty acids and proteins, and towards synthesis of purines, pyrimidines and amino acids. These adjustments were largely transient, as upon establishment of steady-state growth at acidic pH, transcripts returned to basal expression levels. During growth at steady-state pH 7, fabM::Erm had a transcriptional profile analogous to that of UA159 during glucose-shock, indicating that even during growth in rich media at neutral pH, the cells were stressed. These results, coupled with a recently established collection of deletion strains, provide a starting point for elucidation of the acid tolerance response in S. mutans.

  3. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Directory of Open Access Journals (Sweden)

    Stromberg Arnold J

    2009-09-01

    Full Text Available Abstract Background Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. Methods Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR. Results Statistical analyses revealed 3,327 (35.3% differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. Conclusion The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to

  4. Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes.

    Science.gov (United States)

    Gazel, Alix; Nijhawan, Rajiv I; Walsh, Rebecca; Blumenberg, Miroslav

    2008-05-01

    Epidermal keratinocytes respond to extracellular influences by activating cytoplasmic signal transduction pathways that change gene expression. Using pathway-specific transcriptional profiling, we identified the genes regulated by two such pathways, p38 and ERK. These pathways are at the fulcrum of epidermal differentiation, proliferative and inflammatory skin diseases. We used SB203580 and PD98059 as specific inhibitors and Affymetrix Hu133Av2 microarrays, to identify the genes regulated after 1, 4, 24, and 48 h and compared them to genes regulated by JNK. Unexpectedly, inhibition of MAPK pathways is compensated by activation of the NFkappaB pathway and suppression of the DUSP enzymes. Both pathways promote epidermal differentiation; however, there is a surprising disconnect between the expression of steroid synthesis enzymes and differentiation markers. The p38 pathway induces the expression of extracellular matrix and proliferation-associated genes, while suppressing microtubule-associated genes. The ERK pathway induces nuclear envelope and mRNA splicing proteins, while suppressing steroid synthesis and mitochondrial energy production enzymes. Transcription factors SRY, c-FOS, and N-Myc are the principal targets of the p38 pathway, Elk-1 SAP1 and HLH2 of ERK, while FREAC-4, ARNT and USF are shared. The results suggest a list of targets potentially useful in therapeutic interventions in cutaneous diseases and wound healing.

  5. PCBs are associated with altered gene transcript profiles in arctic Beluga Whales (Delphinapterus leucas).

    Science.gov (United States)

    Noël, Marie; Loseto, Lisa L; Helbing, Caren C; Veldhoen, Nik; Dangerfield, Neil J; Ross, Peter S

    2014-01-01

    High trophic level arctic beluga whales (Delphinapterus leucas) are exposed to persistent organic pollutants (POP) originating primarily from southern latitudes. We collected samples from 43 male beluga harvested by Inuvialuit hunters (2008-2010) in the Beaufort Sea to evaluate the effects of POPs on the levels of 13 health-related gene transcripts using quantitative real-time polymerase chain reaction. Consistent with their role in detoxification, the aryl hydrocarbon receptor (Ahr) (r(2) = 0.18, p = 0.045 for 2008 and 2009) and cytochrome P450 1A1 (Cyp1a1) (r(2) = 0.20, p development. Factor 1 explained 56% of gene profiles, with these latter 11 gene transcripts displaying greater abundance in years coinciding with periods of low sea ice extent (2008 and 2010). δ(13)C results suggested a shift in feeding ecology and/or change in condition of these ice edge-associated beluga whales during these two years. While this provides insight into the legacy of PCBs in a remote environment, the possible impacts of a changing ice climate on the health of beluga underscores the need for long-term studies.

  6. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis.

    Science.gov (United States)

    Mascher, Thorsten; Zähner, Dorothea; Merai, Michelle; Balmelle, Nadège; de Saizieu, Antoine B; Hakenbeck, Regine

    2003-01-01

    The ciaR-ciaH system is one of 13 two-component signal-transducing systems of the human pathogen Streptococcus pneumoniae. Mutations in the histidine protein kinase CiaH confer increased resistance to beta-lactam antibiotics and interfere with the development of genetic competence. In order to identify the genes controlled by the cia system, the cia regulon, DNA fragments targeted by the response regulator CiaR were isolated from restricted chromosomal DNA using the solid-phase DNA binding assay and analyzed by hybridization to an oligonucleotide microarray representing the S. pneumoniae genome. A set of 18 chromosomal regions containing 26 CiaR target sites were detected and proposed to represent the minimal cia regulon. The putative CiaR target loci included genes important for the synthesis and modification of cell wall polymers, peptide pheromone and bacteriocin production, and the htrA-spo0J region. In addition, the transcription profile of cia loss-of-function mutants and those with an apparent activated cia system representing the off and on states of the regulatory system were analyzed. The transcript analysis confirmed the cia-dependent expression of seven putative target loci and revealed three additional cia-regulated loci. Five putative target regions were silent under all conditions, and for the remaining three regions, no cia-dependent expression could be detected. Furthermore, the competence regulon, including the comCDE operon required for induction of competence, was completely repressed by the cia system.

  7. In Vivo Functional and Transcriptional Profiling of Bone Marrow Stem Cells after Transplantation into Ischemic Myocardium

    Science.gov (United States)

    Sheikh, Ahmad Y.; Huber, Bruno C.; Narsinh, Kazim H.; Spin, Joshua M.; van der Bogt, Koen; de Almeida, Patricia E.; Ransohoff, Katherine J.; Kraft, Daniel L.; Fajardo, Giovanni; Ardigo, Diego; Ransohoff, Julia; Bernstein, Daniel; Fischbein, Michael P.; Robbins, Robert C.; Wu, Joseph C.

    2011-01-01

    Objective Clinical trials of bone marrow-derived stem cell therapy for the heart have yielded variable results. The basic mechanism(s) that underlie their potential efficacy remains unknown. In the present study, we evaluate the survival kinetics, transcriptional response, and functional outcome of intramyocardial bone marrow mononuclear cell (BMMC) transplantation for cardiac repair in murine myocardial infarction model. Methods and Results We utilized molecular-genetic bioluminescence imaging and high throughput transcriptional profiling to evaluate the in vivo survival kinetics and gene expression changes of transplanted BMMCs after their engraftment into ischemic myocardium. Our results demonstrate short-lived survival of cells following transplant, with less than 1% of cells surviving by 6 weeks post-transplantation. Moreover, transcriptomic analysis of BMMCs revealed non-specific upregulation of various cell regulatory genes with a marked downregulation of cell differentiation and maturation pathways. BMMC therapy caused limited improvement of heart function as assessed by echocardiography, invasive hemodynamics, and positron emission tomography (PET). Histological evaluation of cell fate further confirmed findings of the in vivo cell tracking and transcriptomic analysis. Conclusions Collectively, these data suggest that BMMC therapy, in its present iteration, may be less efficacious than once thought. Additional refinement of existing cell delivery protocols should be considered to induce better therapeutic efficacy. PMID:22034515

  8. Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response

    Directory of Open Access Journals (Sweden)

    Bei eLi

    2015-03-01

    Full Text Available Petunias are important ornamentals with the capacity for cold acclimation. So far, there is limited information concerning gene regulation and signaling pathways related to the cold stress response in petunias. A custom-designed petunia microarray representing 24816 genes was used to perform transcriptome profiling in petunia seedlings subjected to cold at 2°C for 0.5 h, 2 h, 24 h and 5 d. A total of 2071 transcripts displayed differential expression patterns under cold stress, of which 1149 were up-regulated and 922 were down-regulated. Gene ontology enrichment analysis demarcated related biological processes, suggesting a possible link between flavonoid metabolism and plant adaptation to low temperatures. Many novel stress-responsive regulators were revealed, suggesting that diverse regulatory pathways may exist in petunias in addition to the well-characterized CBF pathway. The expression changes of selected genes under cold and other abiotic stress conditions were confirmed by real-time RT-PCR. Furthermore, weighted gene co-expression network analysis divided the petunia genes on the array into 65 modules that showed high co-expression and identified stress-specific hub genes with high connectivity. Our identification of these transcriptional responses and groups of differentially expressed regulators will facilitate the functional dissection of the molecular mechanism in petunias responding to environment stresses and extend our ability to improve cold tolerance in plants.

  9. Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Li Shu-tao

    2012-07-01

    Full Text Available Abstract Background Methyl jasmonate (MeJA has been successfully used as an effective elicitor to enhance production of taxol and other taxanes in cultured Taxus cells. However the mechanism of MeJA-mediated taxane biosynthesis remains unclear. Genomic information for species in the genus Taxus is currently unavailable. Therefore, information about the transcriptome of Taxus cells and specifically, description of changes in gene expression in response to MeJA, is needed for the better exploration of the biological mechanisms of MeJA-mediated taxane biosynthesis. Results In this research, the transcriptome profiles of T. chinensis cells at 16 hours (T16 after MeJA treatment and of mock-treated cells (T0 were analyzed by “RNA-seq” to investigate the transcriptional alterations of Taxus cell in response to MeJA elicitation. More than 58 million reads (200 bp in length of cDNA from both samples were generated, and 46,581 unigenes were found. There were 13,469 genes found to be expressed differentially between the two timepoints, including all of the known jasmonate (JA biosynthesis/JA signaling pathway genes and taxol-related genes. The qRT-PCR results showed that the expression profiles of 12 randomly selected DEGs and 10 taxol biosynthesis genes were found to be consistent with the RNA-Seq data. MeJA appeared to stimulate a large number of genes involved in several relevant functional categories, such as plant hormone biosynthesis and phenylpropanoid biosynthesis. Additionally, many genes encoding transcription factors were shown to respond to MeJA elicitation. Conclusions The results of a transcriptome analysis suggest that exogenous application of MeJA could induce JA biosynthesis/JA signaling pathway/defence responses, activate a series of transcription factors, as well as increase expression of genes in the terpenoid biosynthesis pathway responsible for taxol synthesis. This comprehensive description of gene expression information could

  10. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    Directory of Open Access Journals (Sweden)

    Yue-Yue Zhou

    Full Text Available D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs, reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  11. Translation by polysome: theory of ribosome profile on a single mRNA transcript

    CERN Document Server

    Sharma, Ajeet K

    2011-01-01

    The process of polymerizing a protein by a ribosome, using a messenger RNA (mRNA) as the corresponding template, is called {\\it translation}. Ribosome may be regarded as a molecular motor for which the mRNA template serves also as the track. Often several ribosomes may translate the same (mRNA) simultaneously. The ribosomes bound simultaneously to a single mRNA transcript are the members of a polyribosome (or, simply, {\\it polysome}). Experimentally measured {\\it polysome profile} gives the distribution of polysome {\\it sizes}. Recently a breakthrough in determining the instantaneous {\\it positions} of the ribosomes on a given mRNA track has been achieved and the technique is called {\\it ribosome profiling} \\cite{ingolia10,guo10}. Motivated by the success of these techniques, we have studied the spatio-temporal organization of ribosomes by extending a theoretical model that we have reported elsewhere \\cite{sharma11}. This extended version of our model incorporates not only (i) mechano-chemical cycle of indivi...

  12. Transcriptional profile in response to ionizing radiation at low dose in Deinococcus radiodurans

    Institute of Scientific and Technical Information of China (English)

    Chen Huan; Xu Zhenjian; Tian Bing; Chen Weiwei; Hu Songnian; Hua Yuejin

    2007-01-01

    The genome-wide transcription profile of Deinococcus radiodurans cells was investigated after treatment with low dose irradiation (2 kGy). From the expression profile, we found that the process of DNA repair was induced in order, i.e. genes involved in base excision repair, nucleotide excision repair and single-strand annealing were induced immediately after ionizing radiation, and genes for recombination repair, including recA, recD and recQ were then activated. Especially, recD and recQ were specifically induced at low dose irradiation, and this phenomenon informed us that these two genes would play a certain role in anti-oxidation. Some genes such as ddrA and ssb were activated during the whole repair phase. Furthermore, the response of oxidative stress-related genes under low dose irradiation showed a different pattern from that of the acute high-level irradiation, many anti-oxidative genes were induced to scavenge reactive oxygen species directly, other associated systems also changed their expression patterns during the recovery time, such as iron metabolism systems, intracellular mutagenic precursors sanitize systems. These characteristics indicate that there is a powerful and orderly recovery process in Deinococcus radiodurans.

  13. Non-Additive Transcriptional Profiles Underlie Dikaryotic Superiority in Pleurotus ostreatus Laccase Activity

    Science.gov (United States)

    Castanera, Raúl; Omarini, Alejandra; Santoyo, Francisco; Pérez, Gúmer; Pisabarro, Antonio G.; Ramírez, Lucía

    2013-01-01

    Background The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. Methodology/Principal Findings We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. Conclusions/Significance Our results suggested that the dikaryotic superiority observed in laccase activity was due to non-additive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage. PMID:24039902

  14. Non-additive transcriptional profiles underlie dikaryotic superiority in Pleurotus ostreatus laccase activity.

    Directory of Open Access Journals (Sweden)

    Raúl Castanera

    Full Text Available BACKGROUND: The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. METHODOLOGY/PRINCIPAL FINDINGS: We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. CONCLUSIONS/SIGNIFICANCE: Our results suggested that the dikaryotic superiority observed in laccase activity was due to non-additive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage.

  15. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Niggli Felix K

    2006-06-01

    Full Text Available Abstract Background The Epstein-Barr virus (EBV is associated with lymphoid malignancies, including Burkitt's lymphoma (BL, and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines. Results To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2, and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2, and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions. Conclusion Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.

  16. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs

    Directory of Open Access Journals (Sweden)

    Heinze Dar M

    2012-02-01

    Full Text Available Abstract Background Ixodes scapularis ticks are hematophagous arthropods capable of transmitting many infectious agents to humans. The process of blood feeding is an extended and continuous interplay between tick and host responses. While this process has been studied extensively in vitro, no global understanding of the host response to ticks has emerged. Methods To address this issue, we used PCR-arrays to measure skin-specific expression of 233 discrete genes at 8 time points during primary and secondary infestations of mice with pathogen-free I. scapularis nymphs. Selected results were then validated at the mRNA and protein levels by additional real-time PCR and bioplex assay. Results Primary infestation was characterized by the late induction of an innate immune response. Lectin pattern recognition receptors, cytokines, and chemokines were upregulated consistent with increased neutrophil and macrophage migration. Gene ontology and pathway analyses of downregulated genes suggested inhibition of gene transcription and Th17 immunity. During the secondary infestation, additional genes were modulated suggesting a broader involvement of immune cells including CD8 and CD4 positive T lymphocytes. The cytokine response showed a mixed Th1/Th2 profile with a potential for T regulatory cell activity. Key gene ontology clusters observed during the secondary infestation were cell migration and activation. Matrix metalloproteinases were upregulated, apoptosis-related genes were differentially modulated, and immunoreceptor signaling molecules were upregulated. In contrast, transcripts related to mitogenic, WNT, Hedgehog, and stress pathways were downregulated. Conclusions Our results support a model of tick feeding where lectin pattern recognition receptors orchestrate an innate inflammatory response during primary infestation that primes a mixed Th1/Th2 response upon secondary exposure. Tick feeding inhibits gene transcription and Th17 immunity. Salivary

  17. Transcriptional network profile on synovial fluid T cells in psoriatic arthritis.

    Science.gov (United States)

    Fiocco, Ugo; Martini, Veronica; Accordi, Benedetta; Caso, Francesco; Costa, Luisa; Oliviero, Francesca; Scanu, Anna; Facco, Monica; Boso, Daniele; Gatto, Mariele; Felicetti, Mara; Frallonardo, Paola; Ramonda, Roberta; Piva, Lucia; Zambello, Renato; Agostini, Carlo; Scarpa, Raffaele; Basso, Giuseppe; Semenzato, Gianpietro; Dayer, Jean-Michel; Punzi, Leonardo; Doria, Andrea

    2015-09-01

    The objective of the study was to quantify the transcriptional profile, as the main T cell lineage-transcription factors on synovial fluid (SF) T cells, in relation to SF cytokines and T cell frequencies (%) of psoriatic arthritis (PsA) patients. Reverse phase protein array was employed to identify interleukin (IL)-23Rp19-, FOXP3- and related orphan receptor gamma T (RORγt)- protein and Janus associated tyrosine kinases 1 (JAK1), signal transducer and activator and transcription 1 (STAT1), STAT3 and STAT5 phosphoproteins in total T cell lysates from SF of PsA patients. IL-1β, IL-2, IL-6, IL-21 and interferon (INF)-γ were measured using a multiplex bead immunoassay in SF from PsA patients and peripheral blood (PB) from healthy controls (HC). Frequencies of CD4(+)CD25(-), CD4(+)CD25(high) FOXP3(+) and CD4(+)CD25(high) CD127(low) Treg, and either mean fluorescence intensity (MFI) of FOXP3(+) on CD4(+) Treg or MFI of classic IL-6 receptor (IL-6R) α expression on CD4(+)CD25(-) helper/effector T cells (Th/eff) and Treg cells, were quantified in SF of PsA patients and in PB from HC by flow cytometry (FC). In PsA SF samples, IL-2, IL-21 and IFN-γ were not detectable, whereas IL-6 and IL-1β levels were higher than in SF of non-inflammatory osteoarthritis patients. Higher levels of IL-23R-, FOXP3- and RORγt proteins and JAK1, STAT1, STAT3 and STAT5 were found in total T cells from SF of PsA patients compared with PB from HC. Direct correlations between JAK1 Y1022/Y1023 and STAT5 Y694, and STAT3 Y705 and IL6, were found in SF of PsA patients. Increased proportion of CD4(+)CD25(high) FOXP3(+) and CD4(+)CD25(high) CD127(low) Treg cells and brighter MFI of IL-6Rα were observed both on CD4(+)CD25(high)- and CD4(+)CD25(-) T cells in PsA SF. The study showed a distinctive JAK1/STAT3/STAT5 transcriptional network on T cells in the joint microenvironment, outlining the interplay of IL-6, IL-23, IL-1β and γC cytokines in the polarization and plasticity of Th17 and Treg cells

  18. Transcriptional Profiling of Swine Lung Tissue after Experimental Infection with Actinobacillus pleuropneumoniae

    Directory of Open Access Journals (Sweden)

    Xuewei Li

    2013-05-01

    Full Text Available Porcine pleuropneumonia is a highly contagious respiratory disease that causes great economic losses worldwide. In this study, we aimed to explore the underlying relationship between infection and injury by investigation of the whole porcine genome expression profiles of swine lung tissues post-inoculated with experimentally Actinobacillus pleuropneumoniae. Expression profiling experiments of the control group and the treatment group were conducted using a commercially available Agilent Porcine Genechip including 43,603 probe sets. Microarray analysis was conducted on profiles of lung from challenged versus non-challenged swine. We found 11,929 transcripts, identified as differentially expressed at the p ≤0.01 level. There were 1188 genes annotated as swine genes in the GenBank Data Base. GO term analysis identified a total of 89 biological process categories, 82 cellular components and 182 molecular functions that were significantly affected, and at least 27 biological process categories that were related to the host immune response. Gene set enrichment analysis identified 13 pathways that were significantly associated with host response. Many proinflammatory-inflammatory cytokines were activated and involved in the regulation of the host defense response at the site of inflammation; while the cytokines involved in regulation of the host immune response were suppressed. All changes of genes and pathways of induced or repressed expression not only led to a decrease in antigenic peptides presented to T lymphocytes by APCs via the MHC and alleviated immune response injury induced by infection, but also stimulated stem cells to produce granulocytes (neutrophils, eosinophils, and basophils and monocyte, and promote neutrophils and macrophages to phagocytose bacterial and foreign antigen at the site of inflammation. The defense function of swine infection with Actinobacillus pleuropneumoniae was improved, while its immune function was decreased.

  19. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  20. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients

    OpenAIRE

    2014-01-01

    Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done ...

  1. Transcriptional profiling of human dendritic cell populations and models--unique profiles of in vitro dendritic cells and implications on functionality and applicability.

    Directory of Open Access Journals (Sweden)

    Kristina Lundberg

    Full Text Available BACKGROUND: Dendritic cells (DCs comprise heterogeneous populations of cells, which act as central orchestrators of the immune response. Applicability of primary DCs is restricted due to their scarcity and therefore DC models are commonly employed in DC-based immunotherapy strategies and in vitro tests assessing DC function. However, the interrelationship between the individual in vitro DC models and their relative resemblance to specific primary DC populations remain elusive. OBJECTIVE: To describe and assess functionality and applicability of the available in vitro DC models by using a genome-wide transcriptional approach. METHODS: Transcriptional profiling was performed with four commonly used in vitro DC models (MUTZ-3-DCs, monocyte-derived DCs, CD34-derived DCs and Langerhans cells (LCs and nine primary DC populations (dermal DCs, LCs, blood and tonsillar CD123(+, CD1c(+ and CD141(+ DCs, and blood CD16(+ DCs. RESULTS: Principal Component Analysis showed that transcriptional profiles of each in vitro DC model most closely resembled CD1c(+ and CD141(+ tonsillar myeloid DCs (mDCs among primary DC populations. Thus, additional differentiation factors may be required to generate model DCs that more closely resemble other primary DC populations. Also, no model DC stood out in terms of primary DC resemblance. Nevertheless, hierarchical clustering showed clusters of differentially expressed genes among individual DC models as well as primary DC populations. Furthermore, model DCs were shown to differentially express immunologically relevant transcripts and transcriptional signatures identified for each model DC included several immune-associated transcripts. CONCLUSION: The unique transcriptional profiles of in vitro DC models suggest distinct functionality in immune applications. The presented results will aid in the selection of an appropriate DC model for in vitro assays and assist development of DC-based immunotherapy.

  2. The genome-wide binding profile of the Sulfolobus solfataricus transcription factor Ss-LrpB shows binding events beyond direct transcription regulation.

    Science.gov (United States)

    Nguyen-Duc, Trong; van Oeffelen, Liesbeth; Song, Ningning; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge; Charlier, Daniel; Peeters, Eveline

    2013-11-25

    Gene regulatory processes are largely resulting from binding of transcription factors to specific genomic targets. Leucine-responsive Regulatory Protein (Lrp) is a prevalent transcription factor family in prokaryotes, however, little information is available on biological functions of these proteins in archaea. Here, we study genome-wide binding of the Lrp-like transcription factor Ss-LrpB from Sulfolobus solfataricus. Chromatin immunoprecipitation in combination with DNA microarray analysis (ChIP-chip) has revealed that Ss-LrpB interacts with 36 additional loci besides the four previously identified local targets. Only a subset of the newly identified binding targets, concentrated in a highly variable IS-dense genomic region, is also bound in vitro by pure Ss-LrpB. There is no clear relationship between the in vitro measured DNA-binding specificity of Ss-LrpB and the in vivo association suggesting a limited permissivity of the crenarchaeal chromatin for transcription factor binding. Of 37 identified binding regions, 29 are co-bound by LysM, another Lrp-like transcription factor in S. solfataricus. Comparative gene expression analysis in an Ss-lrpB mutant strain shows no significant Ss-LrpB-mediated regulation for most targeted genes, with exception of the CRISPR B cluster, which is activated by Ss-LrpB through binding to a specific motif in the leader region. The genome-wide binding profile presented here implies that Ss-LrpB is associated at additional genomic binding sites besides the local gene targets, but acts as a specific transcription regulator in the tested growth conditions. Moreover, we have provided evidence that two Lrp-like transcription factors in S. solfataricus, Ss-LrpB and LysM, interact in vivo.

  3. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7

    Directory of Open Access Journals (Sweden)

    Hennig Lars

    2010-10-01

    Full Text Available Abstract Background The clock-controlled RNA-binding protein AtGRP7 influences circadian oscillations of its own transcript at the post-transcriptional level. To identify additional targets that are regulated by AtGRP7, transcript profiles of transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox and wild type plants were compared. Results Approximately 1.4% of the transcripts represented on the Affymetrix ATH1 microarray showed changes in steady-state abundance upon AtGRP7 overexpression. One third of the differentially expressed genes are controlled by the circadian clock, and they show a distinct bias of their phase: The up-regulated genes preferentially peak around dawn, roughly opposite to the AtGRP7 peak abundance whereas the down-regulated genes preferentially peak at the end of the day. Further, transcripts responsive to abiotic and biotic stimuli were enriched among AtGRP7 targets. Transcripts encoding the pathogenesis-related PR1 and PR2 proteins were elevated in AtGRP7-ox plants but not in plants overexpressing AtGRP7 with a point mutation in the RNA-binding domain, indicating that the regulation involves RNA binding activity of AtGRP7. Gene set enrichment analysis uncovered components involved in ribosome function and RNA metabolism among groups of genes upregulated in AtGRP7-ox plants, consistent with its role in post-transcriptional regulation. Conclusion Apart from regulating a suite of circadian transcripts in a time-of-day dependent manner AtGRP7, both directly and indirectly, affects other transcripts including transcripts responsive to abiotic and biotic stimuli. This suggests a regulatory role of AtGRP7 in the output of the endogenous clock and a complex network of transcripts responsive to external stimuli downstream of the AtGRP7 autoregulatory circuit.

  4. Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates

    Science.gov (United States)

    Barish, Scott; Li, Qingyun; Pan, Jia W.; Soeder, Charlie; Jones, Corbin; Volkan, Pelin C.

    2017-01-01

    Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1–4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors—the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs. PMID:28102318

  5. Pantoea intestinalis sp. nov., isolated from the human gut.

    Science.gov (United States)

    Prakash, Om; Nimonkar, Yogesh; Vaishampayan, Ankita; Mishra, Mrinal; Kumbhare, Shreyas; Josef, Neetha; Shouche, Yogesh S

    2015-10-01

    A novel bacterial strain, 29Y89BT, was isolated from a faecal sample of a healthy human subject. Cells were Gram-stain-negative, motile, non-spore-forming and rod-shaped. Strain 29Y89BT formed cream-coloured colonies 2 mm in diameter on trypticase soy agar and showed optimum growth at 35 °C. Strain 29Y89BT showed highest 16S rRNA gene sequence similarity to Pantoea gaviniae A18/07T (98.4 %) followed by Pantoea calida 1400/07T (97.2 %). Multi-locus sequence analysis using atpD (ATP synthase β subunit), gyrB (DNA gyrase), infB (initiation translation factor 2) and rpoB (RNA polymerase β subunit) genes also supported the result of 16S rRNA gene sequence based phylogeny. Strain 29Y89BT showed 62 and 40.7 % DNA-DNA relatedness with P. calida DSM 22759T and P. gaviniae DSM 22758T. Strain 29Y89BT contained C17  : 0 cyclo, C19  : 0 cyclo ω8c, C16 : 0, C14 : 0 and C12 : 0 as predominant fatty acids. In addition, strain 29Y89BT showed physiological and phenotypic differences from its closest relatives P. gaviniae DSM 22758T and P. calida DSM 22759T. The polar lipid profile mainly comprised phospholipids. The DNA G+C content was 59.1 mol%. Thus, based on the findings of the current study, strain 29Y89BT showed clear delineations from its closest relatives P. gaviniae DSM 22758T and P. calida DSM 22759T, and is thus considered to represent a novel species of the genus Pantoea, for which the name Pantoea intestinalis sp. nov. is proposed. The type strain is 29Y89BT ( = DSM 28113T = MCC 2554T).

  6. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.

    Science.gov (United States)

    Zhu, Gengrui; Chen, Guanxing; Zhu, Jiantang; Zhu, Yan; Lu, Xiaobing; Li, Xiaohui; Hu, Yingkao; Yan, Yueming

    2015-01-01

    NAC (NAM, ATAF1/2, CUC2) transcription factors are involved in regulating plant developmental processes and response to environmental stresses. Brachypodium distachyon is an emerging model system for cereals, temperate grasses and biofuel crops. In this study, a comprehensive investigation of the molecular characterizations, phylogenetics and expression profiles under various abiotic stresses of the NAC gene family in Brachypodium distachyon was performed. In total, 118 BNAC genes in B. distachyon were identified, of which 22 (18.64%) were tandemly duplicated and segmentally duplicated, respectively. The Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC) algorithms showed that they were divided into two clades and fourteen subfamilies, supported by similar motif compositions within one subfamily. Some critical amino acids detected using DIVERGE v3.0 might contribute to functional divergence among subfamilies. The different exon-intron organizations among subfamilies revealed structural differentiation. Promoter sequence predictions showed that the BNAC genes were involved in various developmental processes and diverse stress responses. Three NAC domain-encoding genes (BNAC012, BNAC078 and BNAC108), orthologous of NAC1, were targeted by five miRNA164 (Bdi-miR164a-c, e, f), suggesting that they might function in lateral organ enlargement, floral development and the responses to abiotic stress. Eleven (~9.32%) BNAC proteins containing α-helical transmembrane motifs were identified. 23 representative BNAC genes were analyzed by quantitative real-time PCR, showing different expression patterns under various abiotic stresses, of which 18, 17 and 11 genes were up-regulated significantly under drought, H2O2 and salt stresses, respectively. Only four and two genes were up-regulated under cold and cadmium stresses, respectively. Dynamic transcriptional expression analysis revealed that six genes showed constitutive expression and period

  7. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.

    Directory of Open Access Journals (Sweden)

    Gengrui Zhu

    Full Text Available NAC (NAM, ATAF1/2, CUC2 transcription factors are involved in regulating plant developmental processes and response to environmental stresses. Brachypodium distachyon is an emerging model system for cereals, temperate grasses and biofuel crops. In this study, a comprehensive investigation of the molecular characterizations, phylogenetics and expression profiles under various abiotic stresses of the NAC gene family in Brachypodium distachyon was performed. In total, 118 BNAC genes in B. distachyon were identified, of which 22 (18.64% were tandemly duplicated and segmentally duplicated, respectively. The Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC algorithms showed that they were divided into two clades and fourteen subfamilies, supported by similar motif compositions within one subfamily. Some critical amino acids detected using DIVERGE v3.0 might contribute to functional divergence among subfamilies. The different exon-intron organizations among subfamilies revealed structural differentiation. Promoter sequence predictions showed that the BNAC genes were involved in various developmental processes and diverse stress responses. Three NAC domain-encoding genes (BNAC012, BNAC078 and BNAC108, orthologous of NAC1, were targeted by five miRNA164 (Bdi-miR164a-c, e, f, suggesting that they might function in lateral organ enlargement, floral development and the responses to abiotic stress. Eleven (~9.32% BNAC proteins containing α-helical transmembrane motifs were identified. 23 representative BNAC genes were analyzed by quantitative real-time PCR, showing different expression patterns under various abiotic stresses, of which 18, 17 and 11 genes were up-regulated significantly under drought, H2O2 and salt stresses, respectively. Only four and two genes were up-regulated under cold and cadmium stresses, respectively. Dynamic transcriptional expression analysis revealed that six genes showed constitutive expression and period

  8. Transcriptional Profiling of Hilar Nodes from Pigs after Experimental Infection with Actinobacillus Pleuropneumoniae

    Directory of Open Access Journals (Sweden)

    Shumin Yu

    2013-11-01

    Full Text Available The gram-negative bacterium Actinobacillus pleuropneumoniae (APP is an inhabitant of the porcine upper respiratory tract and the causative agent of porcine pleuropneumonia (PP. In recent years, knowledge about the proinflammatory cytokine and chemokine gene expression that occurs in lung and lymph node of the APP-infected swine has been advanced. However, systematic gene expression profiles on hilar nodes from pigs after infection with Actinobacillus pleuropneumoniae have not yet been reported. The transcriptional responses were studied in hilar nodes (HN from swine experimentally infected with APP and the control groupusing Agilent Porcine Genechip, including 43,603 probe sets. 9,517 transcripts were identified as differentially expressed (DE at the p ≤ 0.01 level by comparing the log2 (normalized signal of the two groups named treatment group (TG and controls (CG. Eight hundred and fifteen of these DE transcripts were annotated as pig genes in the GenBank database (DB. Two hundred and seventy-two biological process categories (BP, 75 cellular components and 171 molecular functions were substantially altered in the TG compared to CG. Many BP were involved in host immune responses (i.e., signaling, signal transmission, signal transduction, response to stimulus, oxidation reduction, response to stress, immune system process, signaling pathway, immune response, cell surface receptor linked signaling pathway. Seven DE gene pathways (VEGF signaling pathway, Long-term potentiation, Ribosome, Asthma, Allograft rejection, Type I diabetes mellitus and Cardiac muscle contraction and statistically significant associations with host responses were affected. Many cytokines (including NRAS, PI3K, MAPK14, CaM, HSP27, protein phosphatase 3, catalytic subunit and alpha isoform, mediating the proliferation and migration of endothelial cells and promoting survival and vascular permeability, were activated in TG, whilst many immunomodulatory cytokines were

  9. Identification of key transcription factors in caerulein-induced pancreatitis through expression profiling data.

    Science.gov (United States)

    Qi, Dachuan; Wu, Bo; Tong, Danian; Pan, Ye; Chen, Wei

    2015-08-01

    The current study aimed to isolate key transcription factors (TFs) in caerulein-induced pancreatitis, and to identify the difference between wild type and Mist1 knockout (KO) mice, in order to elucidate the contribution of Mist1 to pancreatitis. The gene profile of GSE3644 was downloaded from the Gene Expression Omnibus database then analyzed using the t-test. The isolated differentially expressed genes (DEGs) were mapped into a transcriptional regulatory network derived from the Integrated Transcription Factor Platform database and in the network, the interaction pairs involving at least one DEG were screened. Fisher's exact test was used to analyze the functional enrichment of the target genes. A total of 1,555 and 3,057 DEGs were identified in the wild type and Mist1KO mice treated with caerulein, respectively. DEGs screened in Mist1KO mice were predominantly enriched in apoptosis, mitogen-activated protein kinase signaling and other cancer-associated pathways. A total of 188 and 51 TFs associated with pathopoiesis were isolated in Mist1KO and wild type mice, respectively. Out of the top 10 TFs (ranked by P-value), 7 TFs, including S-phase kinase-associated protein 2 (Skp2); minichromosome maintenance complex component 3 (Mcm3); cell division cycle 6 (Cdc6); cyclin B1 (Ccnb1); mutS homolog 6 (Msh6); cyclin A2 (Ccna2); and cyclin B2 (Ccnb2), were expressed in the two types of mouse. These TFs were predominantly involved in phosphorylation, DNA replication, cell division and DNA mismatch repair. In addition, specific TFs, including minichromosome maintenance complex component 7 (Mcm7); lymphoid-specific helicase (Hells); and minichromosome maintenance complex component 6 (Mcm6), that function in the unwinding of DNA were identified to participate in Mist1KO pancreatitis. The DEGs, including Cdc6, Mcm6, Msh6 and Wdr1 are closely associated with the regulation of caerulein-induced pancreatitis. Furthermore, other identified TFs were also involved in this type of

  10. Transcriptional profiling of hilar nodes from pigs after experimental infection with Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Yu, Shumin; Zuo, Zhicai; Cui, Hengmin; Li, Mingzhou; Peng, Xi; Zhu, Ling; Zhang, Ming; Li, Xuewei; Xu, Zhiwen; Gan, Meng; Deng, Junliang; Fang, Jing; Ma, Jideng; Su, Shengqun; Wang, Ya; Shen, Liuhong; Ma, Xiaoping; Ren, Zhihua; Wu, Bangyuan; Hu, Yanchun

    2013-11-29

    The gram-negative bacterium Actinobacillus pleuropneumoniae (APP) is an inhabitant of the porcine upper respiratory tract and the causative agent of porcine pleuropneumonia (PP). In recent years, knowledge about the proinflammatory cytokine and chemokine gene expression that occurs in lung and lymph node of the APP-infected swine has been advanced. However, systematic gene expression profiles on hilar nodes from pigs after infection with Actinobacillus pleuropneumoniae have not yet been reported. The transcriptional responses were studied in hilar nodes (HN) from swine experimentally infected with APP and the control groupusing Agilent Porcine Genechip, including 43,603 probe sets. 9,517 transcripts were identified as differentially expressed (DE) at the p ≤ 0.01 level by comparing the log2 (normalized signal) of the two groups named treatment group (TG) and controls (CG). Eight hundred and fifteen of these DE transcripts were annotated as pig genes in the GenBank database (DB). Two hundred and seventy-two biological process categories (BP), 75 cellular components and 171 molecular functions were substantially altered in the TG compared to CG. Many BP were involved in host immune responses (i.e., signaling, signal transmission, signal transduction, response to stimulus, oxidation reduction, response to stress, immune system process, signaling pathway, immune response, cell surface receptor linked signaling pathway). Seven DE gene pathways (VEGF signaling pathway, Long-term potentiation, Ribosome, Asthma, Allograft rejection, Type I diabetes mellitus and Cardiac muscle contraction) and statistically significant associations with host responses were affected. Many cytokines (including NRAS, PI3K, MAPK14, CaM, HSP27, protein phosphatase 3, catalytic subunit and alpha isoform), mediating the proliferation and migration of endothelial cells and promoting survival and vascular permeability, were activated in TG, whilst many immunomodulatory cytokines were suppressed

  11. Pneumatosis Intestinalis: A Case Report and Approach to Management

    Directory of Open Access Journals (Sweden)

    Sean Donovan

    2011-01-01

    Full Text Available Pneumatosis intestinalis (PI, defined as gas within the bowel wall, is an uncommon radiographic sign which can represent a wide spectrum of diseases and a variety of underlying diagnoses. Because its etiology can vary greatly, management of PI ranges from surgical intervention to outpatient observation (see, Greenstein et al. (2007, Morris et al. (2008, and Peter et al. (2003. Since PI is infrequently encountered, clinicians may be unfamiliar with its diagnosis and management; this unfamiliarity, combined with the potential necessity for urgent intervention, may place the clinician confronted with PI in a precarious medical scenario. We present a case of pneumatosis intestinalis in a patient who posed a particularly challenging diagnostic dilemma for the primary team. Furthermore, we explore the differential diagnosis prior to revealing the intervention offered to our patient; our concise yet inclusive differential and thought process for rapid evaluation may be of benefit to clinicians presented with similar clinical scenarios.

  12. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites

    KAUST Repository

    Wong, Ka-Chun

    2015-04-20

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene\\'s function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins\\' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/∼wkc/FullSignalRanker/ © 2015 IEEE.

  13. Benzo (a) pyrene induced tumorigenesity of human immortalized oral epithelial cells: transcription profiling

    Institute of Scientific and Technical Information of China (English)

    LI Jin-zhong; PAN Hong-ya; ZHENG Jia-wei; ZHOU Xiao-jian; ZHANG Ping; CHEN Wan-tao; ZHANG Zhi-yuan

    2008-01-01

    Background The present study was designed to examine and analyze the global gene expression changes during the tumorigenesis of a human immortalized oral epithelial cell line, and search for the possible genes that may play a role in the carcinogenesis of oral cancer associated with benzo (a) pyrene.Methods The human immortalized oral epithelial cells, which have been established through transfection of E6/E7 genasof human papillomavirus type 16 and proved to be non-tumorigenic in nude mice, were treated with benzo (a) pyrene.Tumorigenesity of the treated cells were examined through nude mice subcutaneous injection. The global gene expression profiles of immortalized cells and the tumorigenic cells were acquired through hybridization of a microarray of Affymetrix U133 plus 2.0. The data were analyzed using Spring 7.0 software and treated statistically using one-way analysis of variance (ANOVA). The differentially expressed genes were classified using a Venn diagram and annotated with gene ontology. Several highlighted genes were validated in cells using a real-time polymerase chain reaction.Results There were 883 differentially expressed genes during the tumorigenesis and most of them changed expression in the early stage of tumorigenesis. These genes mainly involved in macromolecule metabolism and signal transduction,possessed the molecular function of transition metal ion binding, nucleotide binding and kinase activity; their protein products were mainly integral to membranes or localized in the nucleus and cytoskeleton. The expression patterns of IGFBP3, S100A8, MAP2K, KRT6B, GDF15, MET were validated in cells using a real-time polymerase chain reaction; the expression of IGFBP3 was further validated in clinical oral cancer specimens.Concluslona This study provides the global transcription profiling associated with the tumorigenesis of oral epithelial cells exposed to benzo (a) pyrene; IGFBP3 may play a potential role in the initiation of oral cancer related to

  14. Surgical aspects of pneumatosis cystoides intestinalis: two case reports

    OpenAIRE

    Schröpfer, Engelbert; Meyer, Thomas

    2009-01-01

    Introduction Pneumatosis cystoides intestinalis is a rare disease usually caused by an underlying condition. It is defined as air filled cysts within the wall of the gastrointestinal tract. The purpose of this paper is the development of an algorithm for the surgical therapy of PCI based one two case reports. Case presentations A 17-year-old girl with Down syndrome and leucopenia due to chemotherapy for acute lymphatic leukemia was admitted with acute septic conditions and PCI. Explorative la...

  15. Recurrent pneumatosis intestinalis in a patient with dermatomyositis

    OpenAIRE

    2013-01-01

    A 51-year-old woman with dermatomyositis (DM) on chronic immunosuppressive therapy was hospitalised for evaluation of haematuria. Surprisingly, abdominal imaging demonstrated pneumoperitoneum and pneumatosis intestinalis (PI). Her abdominal examination and white cell count were normal, but she subsequently developed nausea and fever. Owing to concern for perforation, a hemicolectomy was performed. Pathology revealed PI without inflammatory, ischaemic or neoplastic features, and she recovered ...

  16. Pneumatosis intestinalis leading to perioperative hypovolemic shock: Case report

    Directory of Open Access Journals (Sweden)

    Nishio Minoru

    2011-05-01

    Full Text Available Abstract Pneumatosis intestinalis (PI is an uncommon disorder defined as multiple foci of gas within the intestinal wall. Despite recognition of an increasing number of cases of PI, the optimal management strategy, whether through surgical or other means, remains controversial. The present report describes the case of a patient with PI who underwent exploratory laparotomy without specific findings and who ultimately died due to extensive intestinal hemorrhage that was possibly triggered by surgery.

  17. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Su Zhen

    2011-07-01

    Full Text Available Abstract Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.

  18. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    Directory of Open Access Journals (Sweden)

    Chavez Adela

    2008-07-01

    Full Text Available Abstract Background Anaplasma phagocytophilum (Ap is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6 and pathogenesis (human; HL-60 and HMEC-1. Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6 and the human (HL-60 and HMEC-1 cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins paralogs (of 114 total, through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.

  19. Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling

    Directory of Open Access Journals (Sweden)

    Rumballe Bree A

    2011-09-01

    Full Text Available Abstract Background The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic in situ screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the limited scope of microarray-based technology, which is largely based on "gene-centric" models. Results To address this, the polyadenylated RNA and microRNA transcriptomes of the 15.5 dpc mouse kidney were profiled using strand-specific RNA-sequencing (RNA-Seq to a depth sufficient to complement spatial maps from pre-existing microarray datasets. The transcriptional complexity of RNAs arising from mouse RefSeq loci was catalogued; including 3568 alternatively spliced transcripts and 532 uncharacterized alternate 3' UTRs. Antisense expressions for 60% of RefSeq genes was also detected including uncharacterized non-coding transcripts overlapping kidney progenitor markers, Six2 and Sall1, and were validated by section in situ hybridization. Analysis of genes known to be involved in kidney development, particularly during mesenchymal-to-epithelial transition, showed an enrichment of non-coding antisense transcripts extended along protein-coding RNAs. Conclusion The resulting resource further refines the transcriptomic cartography of kidney organogenesis by integrating deep RNA sequencing data with locus-based information from previously published expression atlases. The added resolution of RNA-Seq has provided the basis for a transition from classical gene-centric models of kidney development towards more accurate and detailed "transcript-centric" representations, which highlights the extent of transcriptional complexity of genes that direct complex development events.

  20. Focusing on Ciona intestinalis (Tunicata innate immune system. Evolutionary implications

    Directory of Open Access Journals (Sweden)

    N Parrinello

    2009-03-01

    Full Text Available Phylogenetic analyses based on molecular data provide compelling evidence that ascidians are of critical importance for studying chordate immune system evolution. The Ciona intestinalis draft genome sequence allows searches for phylogenetic relationships, gene cloning and expression of immunorelevant molecules. Acidians lack of the pivotal components of the vertebrate recombinatory adaptive immunity, i.e., MHC, TCRs and dimeric immunoglobulins. However, bioinformatic sequence analyses recognized genic elements indicating the essential features of the Ig superfamily and ancestor proto-MHC genes, suggesting a primitive pre-duplication and pre-recombination status. C. intestinalis genes for individuality in the absence of MHC could encode diverse molecular markers, including a wide panel of complement factors that could be responsible for self-nonself discrimination. Genome analysis reveals a number of innate immunity vertebrate-like genes which encode Toll-like and virus receptors, complement pathways components and receptors, CD94/NK-receptor-like, lectins, TNF, IL1-R, collagens. However, pure homology seeking for vertebrate-specific immunorelevant molecules is of limited value, and functional screening methods may be a more promising approach for tracing the immune system evolution. C. intestinalis, which displays acute and chronic inflammatory reactions, is a model organism for studying innate immunity genes expression and functions.

  1. Natural variation of model mutant phenotypes in Ciona intestinalis.

    Directory of Open Access Journals (Sweden)

    Paolo Sordino

    Full Text Available BACKGROUND: The study of ascidians (Chordata, Tunicata has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.

  2. Profiling of sperm gene transcripts in crossbred (Bos taurus x Bos indicus) bulls.

    Science.gov (United States)

    H M, Yathish; Kumar, Subodh; Dubey, Prem P; Modi, Rajendra P; Chaudhary, Rajni; A, Siva Kumar; Ghosh, Subrata K; Sarkar, Mihir; B, Sivamani

    2017-02-01

    Crossbred cattle in some sectors of the world have a significant role in enhancing milk production thereby enhancing the per capita milk availability as a human food source. However, there are certain constraints associated with crossbred animals, such as disease susceptibility, increased reproductive problems, repeat breeding and poor seminal quality. The semen of crossbred bulls has a poor freezing capacity, increased cryo-damage, poor mass cell motility, greater percentages of dead/abnormal sperm and poor initial and post-freeze cell motility. The rejection rate of crossbred bulls for cryostorage of semen has been reported to be as great as 50% as a result of unacceptable semen quality. The identification of superior bulls using molecular technologies is needed which necessitates identification of the genes having a role in sperm function. The present study was, therefore, conducted to gain information on identification and expression of genes having a role in sperm motility in crossbred bulls. The gene transcripts in bulls with sperm of superior and inferior quality were profiled in Vrindavani crossbred cattle by microarray analyses and the results were verified by real time-quantitative PCR. Microarray analyses revealed 19,454 genes which were differentially expressed. At a two-fold cut off, 305 genes were differentially (Pbulls with superior motility.

  3. Exploring the mode of action of bioactive compounds by microfluidic transcriptional profiling in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Paul Murima

    Full Text Available Most candidate anti-bacterials are identified on the basis of their whole cell anti-bacterial activity. A critical bottleneck in the early discovery of novel anti-bacterials is tracking the structure activity relationship (SAR of the novel compounds synthesized during the hit to lead and lead optimization stage. It is often very difficult for medicinal chemists to visualize if the novel compounds synthesized for understanding SAR of a particular scaffold have similar molecular mechanism of action (MoA as that of the initial hit. The elucidation of the molecular MoA of bioactive inhibitors is critical. Here, a new strategy and routine assay for MoA de-convolution, using a microfluidic platform for transcriptional profiling of bacterial response to inhibitors with whole cell activity has been presented. First a reference transcriptome compendium of Mycobacterial response to various clinical and investigational drugs was built. Using feature reduction, it was demonstrated that subsets of biomarker genes representative of the whole genome are sufficient for MoA classification and deconvolution in a medium-throughput microfluidic format ultimately leading to a cost effective and rapid tool for routine antibacterial drug-discovery programs.

  4. Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts

    Institute of Scientific and Technical Information of China (English)

    Chunliang Li; Ying Yang; Junjie Gu; Yu Ma; Ying Jin

    2009-01-01

    Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy. ES cells of mouse and human have been successfully generated and applied in a wide range of research. However, no genuine ES cell lines have been obtained from rat to date. In this study, we identified pluripotent cells in early rat embryos using specific antibodies against markers of pluripotent stem cells. Subsequently, by modifying the culture medium for rat blastocysts, we derived pluripotent rat ES-llke cell lines, which expressed pluripotency markers and formed embryoid bodies (EBs) in vitro. Importantly, these rat ES-like cells were able to produce teratomas. Both EBs and teratomas contained tissues from all three embryonic germ layers, in addition, from the rat ES-like cells, we derived a rat primitive endoderm (PrE) cell line. Furthermore, we conducted transcriptional profiling of the rat ES-like cells and identified the unique molecular signature of the rat pluripotent stem cells. Our analysis demonstrates that multiple signaling pathways, including the BMP, Activin and roTOR pathways, may be involved in keeping the rat ES-like cells in an undifferentiated state. The cell lines and information obtained in this study will accelerate our understanding of the molecular regulation underlying pluripotency and guide us in the appropriate manipulation of ES cells from a particular species.

  5. Transcriptional Profiling Reveals Differential Gene Expression of Amur Ide (Leuciscus waleckii during Spawning Migration

    Directory of Open Access Journals (Sweden)

    Jun Cui

    2015-06-01

    Full Text Available Amur ide (Leuciscus waleckii, an important aquaculture species, inhabits neutral freshwater but can tolerate high salinity or alkalinity. As an extreme example, the population in Dali Nor lake inhabits alkalized soda water permanently, and migrates from alkaline water to neutral freshwater to spawn. In this study, we performed comparative transcriptome profiling study on the livers of Amur ide to interrogate the expression differences between the population that permanently inhabit freshwater in Ganggeng Nor lake (FW and the spawning population that recently migrated from alkaline water into freshwater (SM. A total of 637,234,880 reads were generated, resulting in 53,440 assembled contigs that were used as reference sequences. Comparisons of these transcriptome files revealed 444 unigenes with significant differential expression (p-value ≤ 0.01, fold-change ≥ 2, including 246 genes that were up-regulated in SM and 198 genes that were up-regulated in FW. The gene ontology (GO enrichment analysis and KEGG pathway analysis indicated that the mTOR signaling pathway, Janus kinase-signal transducer and activator of transcription (JAK-STAT signaling pathway, and oxidative phosphorylation were highly likely to affect physiological changes during spawning migration. Overall, this study demonstrates that transcriptome changes played a role in Amur ide spawning migration. These results provide a foundation for further analyses on the physiological and molecular mechanisms underlying Amur ide spawning migration.

  6. Refined anatomical isolation of functional sleep circuits exhibits distinctive regional and circadian gene transcriptional profiles.

    Science.gov (United States)

    Winrow, Christopher J; Tanis, Keith Q; Rigby, Alison M; Taylor, Rhonda R; Serikawa, Kyle; McWhorter, Mollie; Tokiwa, George Y; Marton, Matthew J; Stone, David J; Koblan, Kenneth S; Renger, John J

    2009-05-19

    Powerful new approaches to study molecular variation in distinct neuronal populations have recently been developed enabling a more precise investigation of the control of neural circuits involved in complex behaviors such as wake and sleep. We applied laser capture microdissection (LCM) to isolate precise brain nuclei from rat CNS at opposing circadian time points associated with wake and sleep. Discrete anatomical and temporal analysis was performed to examine the extent of variation in the transcriptional control associated with both identifiable anatomical nuclei and with light/dark cycle. Precise isolation of specific brain nuclei regulating sleep and arousal, including the LC, SCN, TMN, VTA, and VLPO, demonstrated robust changes in gene expression. Many of these differences were not observed in previous studies where whole brain lysates or gross dissections were used to probe for changes in gene expression. The robust and differential profiles of genomic data obtained from the approaches used herein underscore the requirement for careful anatomical refinement in CNS gene expression studies designed to understand genomic control within behaviorally-linked, but functionally isolated brain nuclei.

  7. Transcriptional Profile of HIV-induced Nuclear Translocation of Amyloid β in Brain Endothelial Cells

    Science.gov (United States)

    András, Ibolya E.; Rampersaud, Evadnie; Eum, Sung Yong; Toborek, Michal

    2015-01-01

    Background and Aims Increased amyloid deposition in HIV-infected brains may contribute to the pathogenesis of neurocognitive dysfunction in infected patients. We have previously shown that exposure to HIV results in enhanced amyloid β (Aβ) levels in human brain microvascular endothelial cells, suggesting that brain endothelial cells contribute to accumulation of Aβ in HIV-infected brains. Importantly, Aβ not only accumulates in the cytoplasm of HIV-exposed cells but also enters the nuclei of brain endothelial cells. Methods cDNA microarray analysis was performed in order to examine changes in the transcriptional profile associated with Aβ nuclear entry in the presence of HIV-1. Results Gene network analysis indicated that inhibition of nuclear entry of Aβ resulted in enrichment in gene sets involved in apoptosis and survival, endoplasmic reticulum stress response, immune response, cell cycle, DNA damage, oxidative stress, cytoskeleton remodeling and transforming growth factor b (TGFβ) receptor signaling. Conclusions The obtained data indicate that HIV-induced Aβ nuclear uptake affects several cellular stress-related pathways relevant for HIV-induced Aβ pathology. PMID:25446617

  8. Transcriptional Profiling Reveals Differential Gene Expression of Amur Ide (Leuciscus waleckii) during Spawning Migration

    Science.gov (United States)

    Cui, Jun; Xu, Jian; Zhang, Songhao; Wang, Kai; Jiang, Yanliang; Mahboob, Shahid; Al-Ghanim, Khalid A.; Xu, Peng

    2015-01-01

    Amur ide (Leuciscus waleckii), an important aquaculture species, inhabits neutral freshwater but can tolerate high salinity or alkalinity. As an extreme example, the population in Dali Nor lake inhabits alkalized soda water permanently, and migrates from alkaline water to neutral freshwater to spawn. In this study, we performed comparative transcriptome profiling study on the livers of Amur ide to interrogate the expression differences between the population that permanently inhabit freshwater in Ganggeng Nor lake (FW) and the spawning population that recently migrated from alkaline water into freshwater (SM). A total of 637,234,880 reads were generated, resulting in 53,440 assembled contigs that were used as reference sequences. Comparisons of these transcriptome files revealed 444 unigenes with significant differential expression (p-value ≤ 0.01, fold-change ≥ 2), including 246 genes that were up-regulated in SM and 198 genes that were up-regulated in FW. The gene ontology (GO) enrichment analysis and KEGG pathway analysis indicated that the mTOR signaling pathway, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, and oxidative phosphorylation were highly likely to affect physiological changes during spawning migration. Overall, this study demonstrates that transcriptome changes played a role in Amur ide spawning migration. These results provide a foundation for further analyses on the physiological and molecular mechanisms underlying Amur ide spawning migration. PMID:26096003

  9. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    Science.gov (United States)

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  10. Effect of L-carnitine on the hepatic transcript profile in piglets as animal model

    Directory of Open Access Journals (Sweden)

    Kluge Holger

    2011-10-01

    Full Text Available Abstract Background Carnitine has attracted scientific interest due to several health-related effects, like protection against neurodegeneration, mitochondrial decay, and oxidative stress as well as improvement of glucose tolerance and insulin sensitivity. The mechanisms underlying most of the health-related effects of carnitine are largely unknown. Methods To gain insight into mechanisms through which carnitine exerts its beneficial metabolic effects, we fed piglets either a control or a carnitine supplemented diet, and analysed the transcriptome in the liver. Results Transcript profiling revealed 563 genes to be differentially expressed in liver by carnitine supplementation. Clustering analysis of the identified genes revealed that most of the top-ranked annotation term clusters were dealing with metabolic processes. Representative genes of these clusters which were significantly up-regulated by carnitine were involved in cellular fatty acid uptake, fatty acid activation, fatty acid β-oxidation, glucose uptake, and glycolysis. In contrast, genes involved in gluconeogenesis were down-regulated by carnitine. Moreover, clustering analysis identified genes involved in the insulin signaling cascade to be significantly associated with carnitine supplementation. Furthermore, clustering analysis revealed that biological processes dealing with posttranscriptional RNA processing were significantly associated with carnitine supplementation. Conclusion The data suggest that carnitine supplementation has beneficial effects on lipid and glucose homeostasis by inducing genes involved in fatty acid catabolism and glycolysis and repressing genes involved in gluconeogenesis.

  11. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression

    Directory of Open Access Journals (Sweden)

    Adam Rodney D

    2007-04-01

    Full Text Available Abstract Background Giardia intestinalis is a protist found in freshwaters worldwide, and is the most common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still much debated. Histones are small, highly conserved proteins that associate tightly with DNA to form chromatin within the nucleus. There are two classes of core histone genes in higher eukaryotes: DNA replication-independent histones and DNA replication-dependent ones. Results We identified two copies each of the core histone H2a, H2b and H3 genes, and three copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of each gene share extensive DNA sequence identities throughout their coding and 5' noncoding regions, which suggests these copies have arisen from relatively recent gene duplications or gene conversions. The transcription start sites are at triplet A sequences 1–27 nucleotides upstream of the translation start codon for each gene. We determined that a 50 bp region upstream from the start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp sequence called the histone motif (him is essential for its activity. The Giardia core histone genes are constitutively expressed at approximately equivalent levels and their mRNAs are polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex that binds him may also be a part of the protein complexes that bind other promoter elements described previously in Giardia. Conclusion In contrast to other eukaryotes, the Giardia genome has only a single class of core histone genes that encode replication-independent histones. Our inability to locate a gene encoding the linker histone H1 leads us to speculate that the H1 protein may not be required for the compaction of Giardia's small and gene-rich genome.

  12. Transcriptional profiling of UlaR-regulated genes in Streptococcus pneumoniae

    NARCIS (Netherlands)

    Shafeeq, Sulman; Afzal, Muhammad; Henriques-Normark, Birgitta; Kuipers, Oscar P

    2015-01-01

    The transcriptional regulator UlaR belongs to the family of PRD-containing transcriptional regulators, which are mostly involved in the regulation of carbohydrate metabolism. The role of the transcriptional regulator UlaR in Streptococcus pneumoniae has recently been described [1]. Here, we report d

  13. Variations of transcript profiles between sea otters Enhydra lutris from Prince William Sound, Alaska, and clinically normal reference otters

    Science.gov (United States)

    Miles, A. Keith; Bowen, Lizabeth; Ballachey, Brenda E.; Bodkin, James L.; Murray, M.; Estes, J.L.; Keister, Robin A.; Stott, J.L.

    2012-01-01

    Development of blood leukocyte gene transcript profiles has the potential to expand condition assessments beyond those currently available to evaluate wildlife health, including sea otters Enhydra lutris, both individually and as populations. The 10 genes targeted in our study represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumor suppression, cellular stress-response, xenobiotic metabolizing enzymes, and antioxidant enzymes. These genes can be modified by biological, physical, or anthropogenic impacts and consequently provide information on the general type of stressors present in a given environment. We compared gene transcript profiles of sea otters sampled in 2008 among areas within Prince William Sound impacted to varying degrees by the 1989 ‘Exxon Valdez’ oil spill with those of captive and wild reference sea otters. Profiles of sea otters from Prince William Sound showed elevated transcription in genes associated with tumor formation, cell death, organic exposure, inflammation, and viral exposure when compared to the reference sea otter group, indicating possible recent and chronic exposure to organic contaminants. Sea otters from historically designated oiled areas within Prince William Sound 19 yr after the oil spill had higher transcription of genes associated with tumor formation, cell death, heat shock, and inflammation than those from areas designated as less impacted by the spill.

  14. Transcription profiles of endothelial cells in the rat ductus arteriosus during a perinatal period.

    Directory of Open Access Journals (Sweden)

    Norika Mengchia Liu

    Full Text Available Endothelial cells (ECs lining the blood vessels serve a variety of functions and play a central role in the homeostasis of the circulatory system. Since the ductus arteriosus (DA has different arterial characteristics from its connecting vessels, we hypothesized that ECs of the DA exhibited a unique gene profile involved in the regulation of DA-specific morphology and function. Using a fluorescence-activated cell sorter, we isolated ECs from pooled tissues from the DA or the descending aorta of Wistar rat fetuses at full-term of gestation (F group or neonates 30 minutes after birth (N group. Using anti-CD31 and anti-CD45 antibodies as cell surface markers for ECs and hematopoietic derived cells, respectively, cDNAs from the CD31-positive and CD45-negative cells were hybridized to the Affymetrix GeneChip® Rat Gene 1.0 ST Array. Among 26,469 gene-level probe sets, 82 genes in the F group and 81 genes in the N group were expressed at higher levels in DA ECs than in aortic ECs (p2.0. In addition to well-known endothelium-enriched genes such as Tgfb2 and Vegfa, novel DA endothelium-dominant genes including Slc38a1, Capn6, and Lrat were discovered. Enrichment analysis using GeneGo MetaCore software showed that DA endothelium-related biological processes were involved in morphogenesis and development. We identified many overlapping genes in each process including neural crest-related genes (Hoxa1, Hoxa4, and Hand2, etc and the second heart field-related genes (Tbx1, Isl1, and Fgf10, etc. Moreover, we found that regulation of epithelial-to-mesenchymal transition, cell adhesion, and retinol metabolism are the active pathways involved in the network via potential interactions with many of the identified genes to form DA-specific endothelia. In conclusion, the present study uncovered several significant differences of the transcriptional profile between the DA and aortic ECs. Newly identified DA endothelium-dominant genes may play an important role in DA

  15. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity.

    Directory of Open Access Journals (Sweden)

    Kirsi H Pietiläinen

    2008-03-01

    Full Text Available BACKGROUND: The acquired component of complex traits is difficult to dissect in humans. Obesity represents such a trait, in which the metabolic and molecular consequences emerge from complex interactions of genes and environment. With the substantial morbidity associated with obesity, a deeper understanding of the concurrent metabolic changes is of considerable importance. The goal of this study was to investigate this important acquired component and expose obesity-induced changes in biological pathways in an identical genetic background. METHODS AND FINDINGS: We used a special study design of "clonal controls," rare monozygotic twins discordant for obesity identified through a national registry of 2,453 young, healthy twin pairs. A total of 14 pairs were studied (eight male, six female; white, with a mean +/- standard deviation (SD age 25.8 +/- 1.4 y and a body mass index (BMI difference 5.2 +/- 1.8 kg/m(2. Sequence analyses of mitochondrial DNA (mtDNA in subcutaneous fat and peripheral leukocytes revealed no aberrant heteroplasmy between the co-twins. However, mtDNA copy number was reduced by 47% in the obese co-twin's fat. In addition, novel pathway analyses of the adipose tissue transcription profiles exposed significant down-regulation of mitochondrial branched-chain amino acid (BCAA catabolism (p < 0.0001. In line with this finding, serum levels of insulin secretion-enhancing BCAAs were increased in obese male co-twins (9% increase, p = 0.025. Lending clinical relevance to the findings, in both sexes the observed aberrations in mitochondrial amino acid metabolism pathways in fat correlated closely with liver fat accumulation, insulin resistance, and hyperinsulinemia, early aberrations of acquired obesity in these healthy young adults. CONCLUSIONS: Our findings emphasize a substantial role of mitochondrial energy- and amino acid metabolism in obesity and development of insulin resistance.

  16. Metabolic Profiling of Retrograde Pathway Transcription Factors Rtg1 and Rtg3 Knockout Yeast

    Directory of Open Access Journals (Sweden)

    Zanariah Hashim

    2014-07-01

    Full Text Available Rtg1 and Rtg3 are two basic helix-loop-helix (bHLH transcription factors found in yeast Saccharomyces cerevisiae that are involved in the regulation of the mitochondrial retrograde (RTG pathway. Under RTG response, anaplerotic synthesis of citrate is activated, consequently maintaining the supply of important precursors necessary for amino acid and nucleotide synthesis. Although the roles of Rtg1 and Rtg3 in TCA and glyoxylate cycles have been extensively reported, the investigation of other metabolic pathways has been lacking. Characteristic dimer formation in bHLH proteins, which allows for combinatorial gene expression, and the link between RTG and other regulatory pathways suggest more complex metabolic signaling involved in Rtg1/Rtg3 regulation. In this study, using a metabolomics approach, we examined metabolic alteration following RTG1 and RTG3 deletion. We found that apart from TCA and glyoxylate cycles, which have been previously reported, polyamine biosynthesis and other amino acid metabolism were significantly altered in RTG-deficient strains. We revealed that metabolic alterations occurred at various metabolic sites and that these changes relate to different growth phases, but the difference can be detected even at the mid-exponential phase, when mitochondrial function is repressed. Moreover, the effect of metabolic rearrangements can be seen through the chronological lifespan (CLS measurement, where we confirmed the role of the RTG pathway in extending the yeast lifespan. Through a comprehensive metabolic profiling, we were able to explore metabolic phenotypes previously unidentified by other means and illustrate the possible correlations of Rtg1 and Rtg3 in different pathways.

  17. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Chunqing Liu

    2015-08-01

    Full Text Available Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74% of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  18. Transcriptional profiling defines the effects of nickel in human epidermal keratinocytes.

    Science.gov (United States)

    Gazel, Alix; Rosdy, Martin; Tornier, Carine; De Fraissinette, Anne De Brugerolle; Blumenberg, Miroslav

    2008-12-01

    Nickel is a ubiquitous and virtually unavoidable environmental pollutant and occupational hazard, but its molecular and cellular effects are not well understood. Human epidermal keratinocytes are the sentinel and the primary target for nickel. We treated with nickel salts skin equivalents containing differentiating epidermal keratinocytes grown on air-liquid interface in standard cell culture conditions. We identified the transcriptional profiles affected by nickel in reconstructed human epidermis (RHE) using DNA microarrays. The Ni-regulated genes were determined at two time points, immediate-early, 30 min after treatment, and late, at 6 h. Using in silico data analysis, we determined that 134 genes are regulated by nickel; of these, 97 are induced and 37 suppressed. Functional categories of regulated genes suggest that Ni inhibits apoptosis, promotes cell cycle and induces synthesis of extracellular matrix proteins and extracellular proteases. Importantly, Ni also regulates a set of secreted signaling proteins, inducing VEGF, amphiregulin, PGF, GDF15, and BST2, while suppressing IL-18, galectin-3, and LITAF. These secreted proteins may be important in Ni-caused allergic reactions. Ni induced inhibitors of the NFkappaB signaling pathway, and suppressed its activators. Correspondingly, NFkappaB binding sites were found to be overrepresented in the Ni-suppressed genes, whereas cFOS/AP1 binding sites were common in the Ni-induced genes. Significant parallels were found between the Ni-regulated genes and the genes regulated by TGFbeta, EGF, glucocorticoids, or Oncostatin-M. The comprehensive identification of Ni-regulated genes in human epidermal equivalents significantly advances our understanding of the molecular effects of nickel in skin.

  19. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection.

    Science.gov (United States)

    Pelle, Karell G; Oh, Keunyoung; Buchholz, Kathrin; Narasimhan, Vagheesh; Joice, Regina; Milner, Danny A; Brancucci, Nicolas Mb; Ma, Siyuan; Voss, Till S; Ketman, Ken; Seydel, Karl B; Taylor, Terrie E; Barteneva, Natasha S; Huttenhower, Curtis; Marti, Matthias

    2015-01-01

    During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion. This study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages

  20. Transcriptional profiles of the response of methicillin-resistant Staphylococcus aureus to pentacyclic triterpenoids.

    Directory of Open Access Journals (Sweden)

    Pooi Yin Chung

    Full Text Available Staphylococcus aureus is an important human pathogen in both hospital and the community that has demonstrated resistance to all currently available antibiotics over the last two decades. Multidrug-resistant isolates of methicillin-resistant S. aureus (MRSA exhibiting decreased susceptibilities to glycopeptides has also emerged, representing a crucial challenge for antimicrobial therapy and infection control. The availability of complete whole-genome nucleotide sequence data of various strains of S. aureus presents an opportunity to explore novel compounds and their targets to address the challenges presented by antimicrobial drug resistance in this organism. Study compounds α-amyrin [3β-hydroxy-urs-12-en-3-ol (AM], betulinic acid [3β-hydroxy-20(29-lupaene-28-oic acid (BA] and betulinaldehyde [3β-hydroxy-20(29-lupen-28-al (BE] belong to pentacyclic triterpenoids and were reported to exhibit antimicrobial activities against bacteria and fungi, including S. aureus. The MIC values of these compounds against a reference strain of methicillin-resistant S. aureus (MRSA (ATCC 43300 ranged from 64 µg/ml to 512 µg/ml. However, the response mechanisms of S. aureus to these compounds are still poorly understood. The transcription profile of reference strain of MRSA treated with sub-inhibitory concentrations of the three compounds was determined using Affymetrix GeneChips. The findings showed that these compounds regulate multiple desirable targets in cell division, two-component system, ABC transporters, fatty acid biosynthesis, peptidoglycan biosynthesis, aminoacyl-tRNA synthetase, ribosome and β-lactam resistance pathways which could be further explored in the development of therapeutic agents for the treatment of S. aureus infections.

  1. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture.

    Directory of Open Access Journals (Sweden)

    Michael S Weiss

    Full Text Available BACKGROUND: Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. METHODOLOGY/PRINCIPAL FINDINGS: TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. CONCLUSIONS/SIGNIFICANCE: This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a

  2. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xue-Nong Li; Yan-Qing Ding; Guo-Bing Liu

    2003-01-01

    AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L)for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reversetranscription. The probes were mixed and hybridized on the microarray at 60 ℃ for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semiquantitative RT-PCR.RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000.Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22 % of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52 % of the investigated genes) and 68 genes were down-regulated (holding 1.70 % of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.

  3. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    Science.gov (United States)

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy. PMID:26734764

  4. Gene Transcript Profiling in Sea Otters Post-Exxon Valdez Oil Spill: A Tool for Marine Ecosystem Health Assessment

    Directory of Open Access Journals (Sweden)

    Lizabeth Bowen

    2016-06-01

    Full Text Available Using a panel of genes stimulated by oil exposure in a laboratory study, we evaluated gene transcription in blood leukocytes sampled from sea otters captured from 2006–2012 in western Prince William Sound (WPWS, Alaska, 17–23 years after the 1989 Exxon Valdez oil spill (EVOS. We compared WPWS sea otters to reference populations (not affected by the EVOS from the Alaska Peninsula (2009, Katmai National Park and Preserve (2009, Clam Lagoon at Adak Island (2012, Kodiak Island (2005 and captive sea otters in aquaria. Statistically, sea otter gene transcript profiles separated into three distinct clusters: Cluster 1, Kodiak and WPWS 2006–2008 (higher relative transcription; Cluster 2, Clam Lagoon and WPWS 2010–2012 (lower relative transcription; and Cluster 3, Alaska Peninsula, Katmai and captive sea otters (intermediate relative transcription. The lower transcription of the aryl hydrocarbon receptor (AHR, an established biomarker for hydrocarbon exposure, in WPWS 2010–2012 compared to earlier samples from WPWS is consistent with declining hydrocarbon exposure, but the pattern of overall low levels of transcription seen in WPWS 2010–2012 could be related to other factors, such as food limitation, pathogens or injury, and may indicate an inability to mount effective responses to stressors. Decreased transcriptional response across the entire gene panel precludes the evaluation of whether or not individual sea otters show signs of exposure to lingering oil. However, related studies on sea otter demographics indicate that by 2012, the sea otter population in WPWS had recovered, which indicates diminishing oil exposure.

  5. Gene transcript profiling in sea otters post-Exxon Valdez oil spill: A tool for marine ecosystem health assessment

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Ballachey, Brenda E.; Waters, Shannon C.; Bodkin, James L.

    2016-01-01

    Using a panel of genes stimulated by oil exposure in a laboratory study, we evaluated gene transcription in blood leukocytes sampled from sea otters captured from 2006–2012 in western Prince William Sound (WPWS), Alaska, 17–23 years after the 1989 Exxon Valdez oil spill (EVOS). We compared WPWS sea otters to reference populations (not affected by the EVOS) from the Alaska Peninsula (2009), Katmai National Park and Preserve (2009), Clam Lagoon at Adak Island (2012), Kodiak Island (2005) and captive sea otters in aquaria. Statistically, sea otter gene transcript profiles separated into three distinct clusters: Cluster 1, Kodiak and WPWS 2006–2008 (higher relative transcription); Cluster 2, Clam Lagoon and WPWS 2010–2012 (lower relative transcription); and Cluster 3, Alaska Peninsula, Katmai and captive sea otters (intermediate relative transcription). The lower transcription of the aryl hydrocarbon receptor (AHR), an established biomarker for hydrocarbon exposure, in WPWS 2010–2012 compared to earlier samples from WPWS is consistent with declining hydrocarbon exposure, but the pattern of overall low levels of transcription seen in WPWS 2010–2012 could be related to other factors, such as food limitation, pathogens or injury, and may indicate an inability to mount effective responses to stressors. Decreased transcriptional response across the entire gene panel precludes the evaluation of whether or not individual sea otters show signs of exposure to lingering oil. However, related studies on sea otter demographics indicate that by 2012, the sea otter population in WPWS had recovered, which indicates diminishing oil exposure.

  6. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.

    Science.gov (United States)

    Bath, Chris

    2013-06-01

    differentiation pathway in human corneal epithelium according to an optimized protocol for maintenance of expression profiles. Isolated total RNA from basal limbal crypts (BLCs), superficial limbal crypts (SLCs), paracentral/central cornea and limbal stroma was amplified and converted to fragmented cDNA libraries for use in deep paired-end next-generation sequencing. Global transcriptional profiling was carried out using bioinformatics. The location of primitive cells in BLCs, migratory and activated cells in SLCs and differentiated cells in paracentral/central cornea was evident from mapping of significantly upregulated genes in each compartment to the gene ontology (GO). Interestingly, many GO terms in BLCs were also involved in neurogenic processes, whereas many GO terms in SLCs were related to vasculature. Mapping upregulated genes in BLCs to pathway annotations in Kyoto Encyclopedia of Genes and Genomes described many active pathways as signalling and cancer-associated pathways. We supply extensive information on possible novel biomarkers, reveal insight into both active pathways and novel regulators of LESCs such as Lrig1 and SOX9 and provide an immense amount of data for future exploration (Bath et al. 2013b). Selective ex vivo expansion of LESCs in hypoxia and the comprehensive molecular characterization of corneal epithelial subpopulations in situ are expected to be beneficial for the future treatment of LSCD by cultured limbal epithelial transplantation. © 2013 Acta Ophthalmologica Scandinavica Foundation.

  7. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks

    Science.gov (United States)

    Vértes, Petra E.; Rittman, Timothy; Whitaker, Kirstie J.; Romero-Garcia, Rafael; Váša, František; Wagstyl, Konrad; Fonagy, Peter; Dolan, Raymond J.; Jones, Peter B.; Goodyer, Ian M.

    2016-01-01

    Human functional magnetic resonance imaging (fMRI) brain networks have a complex topology comprising integrative components, e.g. long-distance inter-modular edges, that are theoretically associated with higher biological cost. Here, we estimated intra-modular degree, inter-modular degree and connection distance for each of 285 cortical nodes in multi-echo fMRI data from 38 healthy adults. We used the multivariate technique of partial least squares (PLS) to reduce the dimensionality of the relationships between these three nodal network parameters and prior microarray data on regional expression of 20 737 genes. The first PLS component defined a transcriptional profile associated with high intra-modular degree and short connection distance, whereas the second PLS component was associated with high inter-modular degree and long connection distance. Nodes in superior and lateral cortex with high inter-modular degree and long connection distance had local transcriptional profiles enriched for oxidative metabolism and mitochondria, and for genes specific to supragranular layers of human cortex. In contrast, primary and secondary sensory cortical nodes in posterior cortex with high intra-modular degree and short connection distance had transcriptional profiles enriched for RNA translation and nuclear components. We conclude that, as predicted, topologically integrative hubs, mediating long-distance connections between modules, are more costly in terms of mitochondrial glucose metabolism. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574314

  8. Genome-wide profiling of H3K56 acetylation and transcription factor binding sites in human adipocytes.

    Directory of Open Access Journals (Sweden)

    Kinyui Alice Lo

    Full Text Available The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte

  9. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis

    Directory of Open Access Journals (Sweden)

    Song Yuepeng

    2012-06-01

    Full Text Available Abstract Background Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis. Results Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique. Conclusion The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of

  10. CATMA, a comprehensive genome-scale resource for silencing and transcript profiling of Arabidopsis genes

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2007-10-01

    Full Text Available Abstract Background The Complete Arabidopsis Transcript MicroArray (CATMA initiative combines the efforts of laboratories in eight European countries 1 to deliver gene-specific sequence tags (GSTs for the Arabidopsis research community. The CATMA initiative offers the power and flexibility to regularly update the GST collection according to evolving knowledge about the gene repertoire. These GST amplicons can easily be reamplified and shared, subsets can be picked at will to print dedicated arrays, and the GSTs can be cloned and used for other functional studies. This ongoing initiative has already produced approximately 24,000 GSTs that have been made publicly available for spotted microarray printing and RNA interference. Results GSTs from the CATMA version 2 repertoire (CATMAv2, created in 2002 were mapped onto the gene models from two independent Arabidopsis nuclear genome annotation efforts, TIGR5 and PSB-EuGène, to consolidate a list of genes that were targeted by previously designed CATMA tags. A total of 9,027 gene models were not tagged by any amplified CATMAv2 GST, and 2,533 amplified GSTs were no longer predicted to tag an updated gene model. To validate the efficacy of GST mapping criteria and design rules, the predicted and experimentally observed hybridization characteristics associated to GST features were correlated in transcript profiling datasets obtained with the CATMAv2 microarray, confirming the reliability of this platform. To complete the CATMA repertoire, all 9,027 gene models for which no GST had yet been designed were processed with an adjusted version of the Specific Primer and Amplicon Design Software (SPADS. A total of 5,756 novel GSTs were designed and amplified by PCR from genomic DNA. Together with the pre-existing GST collection, this new addition constitutes the CATMAv3 repertoire. It comprises 30,343 unique amplified sequences that tag 24,202 and 23,009 protein-encoding nuclear gene models in the TAIR6 and Eu

  11. Physiological basis and transcriptional profiling of three salt-tolerant mutant lines of rice

    Directory of Open Access Journals (Sweden)

    Concha Domingo

    2016-09-01

    Full Text Available Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62 and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of

  12. Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice

    Science.gov (United States)

    Domingo, Concha; Lalanne, Eric; Catalá, María M.; Pla, Eva; Reig-Valiente, Juan L.; Talón, Manuel

    2016-01-01

    Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt

  13. Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Michelle B Ryndak

    Full Text Available Mycobacterium tuberculosis (M. tb infection is initiated by the few bacilli inhaled into the alveolus. Studies in lungs of aerosol-infected mice provided evidence for extensive replication of M. tb in non-migrating, non-antigen-presenting cells in the alveoli during the first 2-3 weeks post-infection. Alveoli are lined by type II and type I alveolar epithelial cells (AEC which outnumber alveolar macrophages by several hundred-fold. M. tb DNA and viable M. tb have been demonstrated in AEC and other non-macrophage cells of the kidney, liver, and spleen in autopsied tissues from latently-infected subjects from TB-endemic regions indicating systemic bacterial dissemination during primary infection. M. tb have also been demonstrated to replicate rapidly in A549 cells (type II AEC line and acquire increased invasiveness for endothelial cells. Together, these results suggest that AEC could provide an important niche for bacterial expansion and development of a phenotype that promotes dissemination during primary infection. In the current studies, we have compared the transcriptional profile of M. tb replicating intracellularly in A549 cells to that of M. tb replicating in laboratory broth, by microarray analysis. Genes significantly upregulated during intracellular residence were consistent with an active, replicative, metabolic, and aerobic state, as were genes for tryptophan synthesis and for increased virulence (ESAT-6, and ESAT-6-like genes, esxH, esxJ, esxK, esxP, and esxW. In contrast, significant downregulation of the DevR (DosR regulon and several hypoxia-induced genes was observed. Stress response genes were either not differentially expressed or were downregulated with the exception of the heat shock response and those induced by low pH. The intra-type II AEC M. tb transcriptome strongly suggests that AEC could provide a safe haven in which M. tb can expand dramatically and disseminate from the lung prior to the elicitation of adaptive immune

  14. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma R

    2009-02-01

    Full Text Available Abstract Background A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN from transcript profiling data. Results The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting problem and solved finally by formulating a Linear Program (LP. A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known

  15. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.

    Science.gov (United States)

    Hirose, Osamu; Yoshida, Ryo; Imoto, Seiya; Yamaguchi, Rui; Higuchi, Tomoyuki; Charnock-Jones, D Stephen; Print, Cristin; Miyano, Satoru

    2008-04-01

    Statistical inference of gene networks by using time-course microarray gene expression profiles is an essential step towards understanding the temporal structure of gene regulatory mechanisms. Unfortunately, most of the current studies have been limited to analysing a small number of genes because the length of time-course gene expression profiles is fairly short. One promising approach to overcome such a limitation is to infer gene networks by exploring the potential transcriptional modules which are sets of genes sharing a common function or involved in the same pathway. In this article, we present a novel approach based on the state space model to identify the transcriptional modules and module-based gene networks simultaneously. The state space model has the potential to infer large-scale gene networks, e.g. of order 10(3), from time-course gene expression profiles. Particularly, we succeeded in the identification of a cell cycle system by using the gene expression profiles of Saccharomyces cerevisiae in which the length of the time-course and number of genes were 24 and 4382, respectively. However, when analysing shorter time-course data, e.g. of length 10 or less, the parameter estimations of the state space model often fail due to overfitting. To extend the applicability of the state space model, we provide an approach to use the technical replicates of gene expression profiles, which are often measured in duplicate or triplicate. The use of technical replicates is important for achieving highly-efficient inferences of gene networks with short time-course data. The potential of the proposed method has been demonstrated through the time-course analysis of the gene expression profiles of human umbilical vein endothelial cells (HUVECs) undergoing growth factor deprivation-induced apoptosis. Supplementary Information and the software (TRANS-MNET) are available at http://daweb.ism.ac.jp/~yoshidar/software/ssm/.

  16. Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress.

    Science.gov (United States)

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate

  17. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes.

    Science.gov (United States)

    Mohammadi, Mohsen; Kav, Nat N V; Deyholos, Michael K

    2007-05-01

    We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced 'little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed.

  18. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling.

    Directory of Open Access Journals (Sweden)

    James M Billingsley

    2015-03-01

    Full Text Available The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers

  19. Transcriptional and Enzymatic Profiling of Pleurotus ostreatus Laccase Genes in Submerged and Solid-State Fermentation Cultures

    Science.gov (United States)

    Castanera, Raúl; Pérez, Gúmer; Omarini, Alejandra; Alfaro, Manuel; Pisabarro, Antonio G.; Faraco, Vincenza; Amore, Antonella

    2012-01-01

    The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors. PMID:22467498

  20. Transcript and protein expression profile of PF11_0394, a Plasmodium falciparum protein expressed in salivary gland sporozoites

    Directory of Open Access Journals (Sweden)

    Schlarman Maggie S

    2012-03-01

    Full Text Available Abstract Background Plasmodium falciparum malaria is a significant problem around the world today, thus there is still a need for new control methods to be developed. Because the sporozoite displays dual infectivity for both the mosquito salivary glands and vertebrate host tissue, it is a good target for vaccine development. Methods The P. falciparum gene, PF11_0394, was chosen as a candidate for study due to its potential role in the invasion of host tissues. This gene, which was selected using a data mining approach from PlasmoDB, is expressed both at the transcriptional and protein levels in sporozoites and likely encodes a putative surface protein. Using reverse transcription-polymerase chain reaction (RT-PCR and green fluorescent protein (GFP-trafficking studies, a transcript and protein expression profile of PF11_0394 was determined. Results The PF11_0394 protein has orthologs in other Plasmodium species and Apicomplexans, but none outside of the group Apicomplexa. PF11_0394 transcript was found to be present during both the sporozoite and erythrocytic stages of the parasite life cycle, but no transcript was detected during axenic exoerythrocytic stages. Despite the presence of transcript throughout several life cycle stages, the PF11_0394 protein was only detected in salivary gland sporozoites. Conclusions PF11_0394 appears to be a protein uniquely detected in salivary gland sporozoites. Even though a specific function of PF11_0394 has not been determined in P. falciparum biology, it could be another candidate for a new vaccine.

  1. Whole genome expression profiling shows that BRG1 transcriptionally regulates UV inducible genes and other novel targets in human cells.

    Science.gov (United States)

    Zhang, Ling; Nemzow, Leah; Chen, Hua; Hu, Jennifer J; Gong, Feng

    2014-01-01

    UV irradiation is known to cause cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), and plays a large role in the development of cancer. Tumor suppression, through DNA repair and proper cell cycle regulation, is an integral factor in maintaining healthy cells and preventing development of cancer. Transcriptional regulation of the genes involved in the various tumor suppression pathways is essential for them to be expressed when needed and to function properly. BRG1, an ATPase catalytic subunit of the SWI/SNF chromatin remodeling complex, has been identified as a tumor suppressor protein, as it has been shown to play a role in Nucleotide Excision Repair (NER) of CPDs, suppress apoptosis, and restore checkpoint deficiency, in response to UV exposure. Although BRG1 has been shown to regulate transcription of some genes that are instrumental in proper DNA damage repair and cell cycle maintenance in response to UV, its role in transcriptional regulation of the whole genome in response to UV has not yet been elucidated. With whole genome expression profiling in SW13 cells, we show that upon UV induction, BRG1 regulates transcriptional expression of many genes involved in cell stress response. Additionally, our results also highlight BRG1's general role as a master regulator of the genome, as it transcriptionally regulates approximately 4.8% of the human genome, including expression of genes involved in many pathways. RT-PCR and ChIP were used to validate our genome expression analysis. Importantly, our study identifies several novel transcriptional targets of BRG1, such as ATF3. Thus, BRG1 has a larger impact on human genome expression than previously thought, and our studies will provide inroads for future analysis of BRG1's role in gene regulation.

  2. Refining the Ciona intestinalis model of central nervous system regeneration.

    Directory of Open Access Journals (Sweden)

    Carl Dahlberg

    Full Text Available BACKGROUND: New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism. METHODOLOGY/PRINCIPAL FINDINGS: We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage. CONCLUSIONS/SIGNIFICANCE: The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.

  3. Transcription profiling of Epstein-Barr virus nuclear antigen (EBNA-1 expressing cells suggests targeting of chromatin remodeling complexes.

    Directory of Open Access Journals (Sweden)

    Ramakrishna Sompallae

    Full Text Available The Epstein-Barr virus (EBV encoded nuclear antigen (EBNA-1 regulates virus replication and transcription, and participates in the remodeling of the cellular environment that accompanies EBV induced B-cell immortalization and malignant transformation. The putative cellular targets of these effects of EBNA-1 are largely unknown. To address this issue we have profiled the transcriptional changes induced by short- and long-term expression of EBNA-1 in the EBV negative B-cell lymphoma BJAB. Three hundred and nineteen cellular genes were regulated in a conditional transfectant shortly after EBNA-1 induction while a ten fold higher number of genes was regulated upon continuous EBNA-1 expression. Promoter analysis of the differentially regulated genes demonstrated a significant enrichment of putative EBNA-1 binding sites suggesting that EBNA-1 may directly influence the transcription of a subset of genes. Gene ontology analysis of forty seven genes that were consistently regulated independently on the time of EBNA-1 expression revealed an unexpected enrichment of genes involved in the maintenance of chromatin architecture. The interaction network of the affected gene products suggests that EBNA-1 may promote a broad rearrangement of the cellular transcription landscape by altering the expression of key components of chromatin remodeling complexes.

  4. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination.

    Science.gov (United States)

    Layat, Elodie; Leymarie, Juliette; El-Maarouf-Bouteau, Hayat; Caius, José; Langlade, Nicolas; Bailly, Christophe

    2014-12-01

    Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.......Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient...... in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal...

  6. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes

    DEFF Research Database (Denmark)

    Frederiksen, C M; Højlund, K; Hansen, L;

    2008-01-01

    . It is unknown whether reduced mitochondrial biogenesis or other transcriptional alterations co-exist with impaired insulin responsiveness in primary human muscle cells from patients with type 2 diabetes. METHODS: Using cDNA microarray technology and global pathway analysis with the Gene Map Annotator...... and Pathway Profiler (GenMapp 2.1) and Gene Set Enrichment Analysis (GSEA 2.0.1), we examined transcript levels in myotubes established from obese patients with type 2 diabetes and matched obese healthy participants, who had been extensively metabolically characterised both in vivo and in vitro. We have...... previously reported reduced basal lipid oxidation and impaired insulin-stimulated glycogen synthesis and glucose oxidation in these diabetic myotubes. RESULTS: No single gene was differently expressed after correction for multiple testing, and no biological pathway was differently expressed using either...

  7. Transcription Profiling of Malaria-Naïve and Semi-immune Colombian Volunteers in a Plasmodium vivax Sporozoite Challenge.

    Directory of Open Access Journals (Sweden)

    Monica L Rojas-Peña

    Full Text Available Continued exposure to malaria-causing parasites in endemic regions of malaria induces significant levels of acquired immunity in adult individuals. A better understanding of the transcriptional basis for this acquired immunological response may provide insight into how the immune system can be boosted during vaccination, and into why infected individuals differ in symptomology.Peripheral blood gene expression profiles of 9 semi-immune volunteers from a Plasmodium vivax malaria prevalent region (Buenaventura, Colombia were compared to those of 7 naïve individuals from a region with no reported transmission of malaria (Cali, Colombia after a controlled infection mosquito bite challenge with P. vivax. A Fluidigm nanoscale quantitative RT-PCR array was used to survey altered expression of 96 blood informative transcripts at 7 timepoints after controlled infection, and RNASeq was used to contrast pre-infection and early parasitemia timepoints. There was no evidence for transcriptional changes prior to the appearance of blood stage parasites at day 12 or 13, at which time there was a strong interferon response and, unexpectedly, down-regulation of transcripts related to inflammation and innate immunity. This differential expression was confirmed with RNASeq, which also suggested perturbations of aspects of T cell function and erythropoiesis. Despite differences in clinical symptoms between the semi-immune and malaria naïve individuals, only subtle differences in their transcriptomes were observed, although 175 genes showed significantly greater induction or repression in the naïve volunteers from Cali.Gene expression profiling of whole blood reveals the type and duration of the immune response to P. vivax infection, and highlights a subset of genes that may mediate adaptive immunity.

  8. HIV Skews the Lineage-Defining Transcriptional Profile of Mycobacterium tuberculosis-Specific CD4+ T Cells.

    Science.gov (United States)

    Riou, Catherine; Strickland, Natalie; Soares, Andreia P; Corleis, Björn; Kwon, Douglas S; Wherry, E John; Wilkinson, Robert J; Burgers, Wendy A

    2016-04-01

    HIV-infected persons are at greater risk of developing tuberculosis (TB) even before profound CD4 loss occurs, suggesting that HIV alters CD4(+) T cell functions capable of containing bacterial replication. An effective immune response to Mycobacterium tuberculosis most likely relies on the development of a balanced CD4 response, in which distinct CD4(+) Th subsets act in synergy to control the infection. To define the diversity of M. tuberculosis-specific CD4(+) Th subsets and determine whether HIV infection impacts such responses, the expression of lineage-defining transcription factors T-bet, Gata3, RORγt, and Foxp3 was measured in M. tuberculosis-specific CD4(+) T cells in HIV-uninfected (n = 20) and HIV-infected individuals (n = 20) with latent TB infection. Our results show that, upon 5-d restimulation in vitro, M. tuberculosis-specific CD4(+) T cells from healthy individuals have the ability to exhibit a broad spectrum of Th subsets, defined by specific patterns of transcription factor coexpression. These transcription factor profiles were skewed in HIV-infected individuals where the proportion of T-bet(high)Foxp3(+) M. tuberculosis-specific CD4(+) T cells was significantly decreased (p = 0.002) compared with HIV-uninfected individuals, a change that correlated inversely with HIV viral load (p = 0.0007) and plasma TNF-α (p = 0.027). Our data demonstrate an important balance in Th subset diversity defined by lineage-defining transcription factor coexpression profiles that is disrupted by HIV infection and suggest a role for HIV in impairing TB immunity by altering the equilibrium of M. tuberculosis-specific CD4(+) Th subsets.

  9. Transcriptional profiling of Bacillus anthracis Sterne (34F2 during iron starvation.

    Directory of Open Access Journals (Sweden)

    Paul E Carlson

    Full Text Available Lack of available iron is one of many environmental challenges that a bacterium encounters during infection and adaptation to iron starvation is important for the pathogen to efficiently replicate within the host. Here we define the transcriptional response of B. anthracis Sterne (34F(2 to iron depleted conditions. Genome-wide transcript analysis showed that B. anthracis undergoes considerable changes in gene expression during growth in iron-depleted media, including the regulation of known and candidate virulence factors. Two genes encoding putative internalin proteins were chosen for further study. Deletion of either gene (GBAA0552 or GBAA1340 resulted in attenuation in a murine model of infection. This attenuation was amplified in a double mutant strain. These data define the transcriptional changes induced during growth in low iron conditions and illustrate the potential of this dataset in the identification of putative virulence determinants for future study.

  10. Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family

    Directory of Open Access Journals (Sweden)

    Rothblatt Jonathan

    2008-07-01

    Full Text Available Abstract Background In contrast to the three mammalian p53 family members, p53, which is generally involved in DNA damage responses, and p63 and p73 which are primarily needed for developmental regulation, cep-1 encodes for the single C. elegans p53-like gene. cep-1 acts as a transcription activator in a primordial p53 pathway that involves CEP-1 activation and the CEP-1 dependent transcriptional induction of the worm BH3 only domain encoding genes egl-1 and ced-13 to induce germ cell apoptosis. EGL-1 and CED-13 proteins inactivate Bcl-2 like CED-9 to trigger CED-4 and CED-3 caspase dependent germ cell apoptosis. To address the function of p53 in global transcriptional regulation we investigate genome-wide transcriptional responses upon DNA damage and cep-1 deficiency. Results Examining C. elegans expression profiles using whole genome Affymetrix GeneChip arrays, we found that 83 genes were induced more than two fold upon ionizing radiation (IR. None of these genes, with exception of an ATP ribosylase homolog, encode for known DNA repair genes. Using two independent cep-1 loss of function alleles we did not find genes regulated by cep-1 in the absence of IR. Among the IR-induced genes only three are dependent on cep-1, namely egl-1, ced-13 and a novel C. elegans specific gene. The majority of IR-induced genes appear to be involved in general stress responses, and qRT-PCR experiments indicate that they are mainly expressed in somatic tissues. Interestingly, we reveal an extensive overlap of gene expression changes occurring in response to DNA damage and in response to bacterial infection. Furthermore, many genes induced by IR are also transcriptionally regulated in longevity mutants suggesting that DNA damage and aging induce an overlapping stress response. Conclusion We performed genome-wide gene expression analyses which indicate that only a surprisingly small number of genes are regulated by CEP-1 and that DNA damage induced apoptosis via the

  11. Functional genomics in chickens: development of integrated-systems microarrays for transcriptional profiling and discovery of regulatory pathways.

    Science.gov (United States)

    Cogburn, L A; Wang, X; Carre, W; Rejto, L; Aggrey, S E; Duclos, M J; Simon, J; Porter, T E

    2004-01-01

    The genetic networks that govern the differentiation and growth of major tissues of economic importance in the chicken are largely unknown. Under a functional genomics project, our consortium has generated 30 609 expressed sequence tags (ESTs) and developed several chicken DNA microarrays, which represent the Chicken Metabolic/Somatic (10 K) and Neuroendocrine/Reproductive (8 K) Systems (http://udgenome.ags.udel.edu/cogburn/). One of the major challenges facing functional genomics is the development of mathematical models to reconstruct functional gene networks and regulatory pathways from vast volumes of microarray data. In initial studies with liver-specific microarrays (3.1 K), we have examined gene expression profiles in liver during the peri-hatch transition and during a strong metabolic perturbation-fasting and re-feeding-in divergently selected broiler chickens (fast vs. slow-growth lines). The expression of many genes controlling metabolic pathways is dramatically altered by these perturbations. Our analysis has revealed a large number of clusters of functionally related genes (mainly metabolic enzymes and transcription factors) that control major metabolic pathways. Currently, we are conducting transcriptional profiling studies of multiple tissues during development of two sets of divergently selected broiler chickens (fast vs. slow growing and fat vs. lean lines). Transcriptional profiling across multiple tissues should permit construction of a detailed genetic blueprint that illustrates the developmental events and hierarchy of genes that govern growth and development of chickens. This review will briefly describe the recent acquisition of chicken genomic resources (ESTs and microarrays) and our consortium's efforts to help launch the new era of functional genomics in the chicken.

  12. RNA-seq for comparative transcript profiling of kenaf under salinity stress.

    Science.gov (United States)

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2017-03-01

    Kenaf (Hibiscus cannabinus L.) is an economically important global natural fiber crop. As a consequence of the increased demand for food crops and the reduction of available arable land, kenaf cultivation has increasingly shifted to saline and alkaline land. To investigate the molecular mechanism of salinity tolerance in kenaf, we performed Illumina high-throughput RNA sequencing on shoot tips of kenaf and identified 71,318 unigenes, which were annotated using four different protein databases. In total, 2,384 differentially expressed genes (DEGs) were identified between the salt-stressed and the control plants, 1,702 of these transcripts were up-regulated and 683 transcripts were down-regulated. Thirty-seven transcripts belonging to 15 transcription-factor families that respond to salt stress were identified. Gene ontology function enrichment analysis revealed that the genes encoding antioxidant enzymes were up-regulated. The amino acid metabolism and carbohydrate metabolism pathways were highly enriched among these DEGs under salt stress conditions. In order to confirm the RNA-seq data, we randomly selected 20 unigenes for analysis using a quntitative real-time polymerase chain reaction. Our study not only provided the large-scale assessment of transcriptome resources of kenaf but also guidelines for understanding the mechanism underlying salt stress responses in kenaf.

  13. Transcriptional profiles of chicken embryo cell cultures following infection with infectious bursal disease virus

    DEFF Research Database (Denmark)

    Li, Yiping; Handberg, K.J.; Juul-Madsen, H.R.

    2007-01-01

    -host interaction, we measured steady-state levels of transcripts from 28 cellular genes of chicken embryo (CE) cell cultures infected with IBDV vaccine stain Bursine-2 during a 7-day infection course by use of the quantitative real-time RT-PCR SYBR green method. Of the genes tested, 21 genes (IRF-1, IFN 1...

  14. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets

    Directory of Open Access Journals (Sweden)

    Zhou Xiaobo

    2009-08-01

    Full Text Available Abstract Background Human peripheral blood monocytes (Mo consist of subsets distinguished by expression of CD16 (FCγRIII and chemokine receptors. Classical CD16- Mo express CCR2 and migrate in response to CCL2, while a minor CD16+ Mo subset expresses CD16 and CX3CR1 and migrates into tissues expressing CX3CL1. CD16+ Mo produce pro-inflammatory cytokines and are expanded in certain inflammatory conditions including sepsis and HIV infection. Results To gain insight into the developmental relationship and functions of CD16+ and CD16- Mo, we examined transcriptional profiles of these Mo subsets in peripheral blood from healthy individuals. Of 16,328 expressed genes, 2,759 genes were differentially expressed and 228 and 250 were >2-fold upregulated and downregulated, respectively, in CD16+ compared to CD16- Mo. CD16+ Mo were distinguished by upregulation of transcripts for dendritic cell (DC (SIGLEC10, CD43, RARA and macrophage (MΦ (CSF1R/CD115, MafB, CD97, C3aR markers together with transcripts relevant for DC-T cell interaction (CXCL16, ICAM-2, LFA-1, cell activation (LTB, TNFRSF8, LST1, IFITM1-3, HMOX1, SOD-1, WARS, MGLL, and negative regulation of the cell cycle (CDKN1C, MTSS1, whereas CD16- Mo were distinguished by upregulation of transcripts for myeloid (CD14, MNDA, TREM1, CD1d, C1qR/CD93 and granulocyte markers (FPR1, GCSFR/CD114, S100A8-9/12. Differential expression of CSF1R, CSF3R, C1QR1, C3AR1, CD1d, CD43, CXCL16, and CX3CR1 was confirmed by flow cytometry. Furthermore, increased expression of RARA and KLF2 transcripts in CD16+ Mo coincided with absence of cell surface cutaneous lymphocyte associated antigen (CLA expression, indicating potential imprinting for non-skin homing. Conclusion These results suggest that CD16+ and CD16- Mo originate from a common myeloid precursor, with CD16+ Mo having a more MΦ – and DC-like transcription program suggesting a more advanced stage of differentiation. Distinct transcriptional programs, together

  15. Diagnostic laparoscopy for pneumatosis intestinalis in a very elderly patient: A case report

    Directory of Open Access Journals (Sweden)

    Shuhei Ito

    2017-09-01

    Conclusion: Diagnostic laparoscopy may be a useful option for definitively ruling out the lethal conditions associated with pneumatosis intestinalis in frail elderly patients with severe conditions in the emergency setting.

  16. Common coinfections of Giardia intestinalis and Helicobacter pylori in non-symptomatic Ugandan children.

    Directory of Open Access Journals (Sweden)

    Johan Ankarklev

    Full Text Available BACKGROUND: The protozoan parasite Giardia intestinalis and the pathogenic bacterium Helicobacter pylori are well known for their high prevalences in human hosts worldwide. The prevalence of both organisms is known to peak in densely populated, low resource settings and children are infected early in life. Different Giardia genotypes/assemblages have been associated with different symptoms and H. pylori with induction of cancer. Despite this, not much data are available from sub-Saharan Africa with regards to the prevalence of different G. intestinalis assemblages and their potential association with H. pylori infections. METHODOLOGY/PRINCIPAL FINDINGS: Fecal samples from 427 apparently healthy children, 0-12 years of age, living in urban Kampala, Uganda were analyzed for the presence of H. pylori and G. intestinalis. G. intestinalis was found in 86 (20.1% out of the children and children age 1<5 years had the highest rates of colonization. H. pylori was found in 189 (44.3% out of the 427 children and there was a 3-fold higher risk of concomitant G. intestinalis and H. pylori infections compared to non-concomitant G. intestinalis infection, OR = 2.9 (1.7-4.8. No significant association was found in the studied population with regard to the presence of Giardia and gender, type of toilet, source of drinking water or type of housing. A panel of 45 G. intestinalis positive samples was further analyzed using multi-locus genotyping (MLG on three loci, combined with assemblage-specific analyses. Giardia MLG analysis yielded a total of five assemblage AII, 25 assemblage B, and four mixed assemblage infections. The assemblage B isolates were highly genetically variable but no significant association was found between Giardia assemblage type and H. pylori infection. CONCLUSIONS/SIGNIFICANCE: This study shows that Giardia assemblage B dominates in children in Kampala, Uganda and that the presence of H. pylori is an associated risk factor for G

  17. Arsenic (+ 3 Oxidation State) Methyltransferase and the Methylation of Arsenicals in the Invertebrate Chordate Ciona intestinalis

    OpenAIRE

    Thomas, David J; Nava, Gerardo M.; Cai, Shi-Ying; Boyer, James L.; Hernández-Zavala, Araceli; Gaskins, H. Rex

    2009-01-01

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+ 3 oxidation state) methyltransferase (As3mt) yielding mono-, di-, and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation, a comparative genomic approach focusing on the invertebrate chordate Ciona intestinalis was used. Bioinformatic analyses identified an As3mt gene in the C. intestinalis genome. Constitutive As3mt RNA expression was obs...

  18. Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    2009-10-01

    Full Text Available Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR using combined data from the Baltimore Longitudinal Study of Aging (BLSA and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20 with kidney aging (uncorrected p = 3.6 x 10(-5, empirical p = 0.01 that explains 1%-2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans.

  19. Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

    Science.gov (United States)

    Wheeler, Heather E; Metter, E Jeffrey; Tanaka, Toshiko; Absher, Devin; Higgins, John; Zahn, Jacob M; Wilhelmy, Julie; Davis, Ronald W; Singleton, Andrew; Myers, Richard M; Ferrucci, Luigi; Kim, Stuart K

    2009-10-01

    Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6 x 10(-5), empirical p = 0.01) that explains 1%-2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans.

  20. Omics-Based Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes during Early Infestation by Small Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Weilin Zhang

    2015-12-01

    Full Text Available The small brown planthopper (SBPH is one of the destructive pests of rice. Although different biochemical pathways that are involved in rice responding to planthopper infestation have been documented, it is unclear which individual metabolic pathways are responsive to planthopper infestation. In this study, an omics-based comparative transcriptional profiling of two contrasting rice genotypes, an SBPH-resistant and an SBPH-susceptible rice line, was assessed for rice individual metabolic pathways responsive to SBPH infestation. When exposed to SBPH, 166 metabolic pathways were differentially regulated; of these, more than one-third of metabolic pathways displayed similar change patterns between these two contrasting rice genotypes; the difference of change pattern between these two contrasting rice genotypes mostly lies in biosynthetic pathways and the obvious difference of change pattern lies in energy metabolism pathways. Combining the Pathway Tools Omics Viewer with the web tool Venn, 21 and 6 metabolic pathways which potentially associated with SBPH resistance and susceptibility, respectively were identified. This study presents an omics-based comparative transcriptional profiling of SBPH-resistant and SBPH-susceptible rice plants during early infestation by SBPH, which will be very informative in studying rice-insect interaction. The results will provide insight into how rice plants respond to early infestation by SBPH from the biochemical pathways perspective.

  1. Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato.

    Science.gov (United States)

    Mysore, Kirankumar S; Crasta, Oswald R; Tuori, Robert P; Folkerts, Otto; Swirsky, Peter B; Martin, Gregory B

    2002-11-01

    The disease resistance gene Pto encodes a serine/threonine protein kinase that confers resistance in tomato to Pseudomonas syringae pv. tomato strains that express the effector protein AvrPto. Pto-mediated resistance to bacterial speck disease also requires Prf, a protein with leucine-rich repeats and a putative nucleotide-binding site, although the role of Prf in the defense pathway is not known. We used GeneCalling, an open-architecture, mRNA-profiling technology, to identify genes that are either induced or suppressed in leaves 4 h after bacterial infection in the Pto- and Prf-mediated tomato-Pseudomonas(avrPto) interaction. Over 135 000 individual cDNA fragments representing an estimated 90% of the transcripts expressed in tomato leaves were examined and 432 differentially expressed genes were identified. The genes encode over 25 classes of proteins including 11 types of transcription factors and many signal transduction components. Differential expression of 91% of the genes required both Pto and Prf. Interestingly, differential expression of 32 genes did not require Pto but was dependent on Prf. Thus, our data support a role for Prf early in the Pto pathway and indicate that Prf can also function as an independent host recognition determinant of bacterial infection. Comprehensive expression profiling of the Pto-mediated defense response allows the development of many new hypotheses about the molecular basis of resistance to bacterial speck disease.

  2. Transcriptional profiling revealed the anti-proliferative effect of MFN2 deficiency and identified risk factors in lung adenocarcinoma.

    Science.gov (United States)

    Lou, Yuqing; Zhang, Yanwei; Li, Rong; Gu, Ping; Xiong, Liwen; Zhong, Hua; Zhang, Wei; Han, Baohui

    2016-07-01

    Mitofusin-2 (MFN2) was initially identified as a hyperplasia suppressor in hyper-proliferative vascular smooth muscle cells (VSMCs) of hypertensive rat arteries, which has also been implicated in various cancers. There exists a controversy in whether it is an oncogene or exerting anti-proliferative effect on tumor cells. Our previous cell cycle analysis and MTT assay showed that cell proliferation was inhibited in MFN2 deficient A549 human lung adenocarcinoma cells, without investigating the changes in regulatory network or addressing the underlying mechanisms. Here, we performed expression profiling in MFN2 knockdown A549 cells and found that cancer-related pathways were among the most susceptible pathways to MFN2 deficiency. Through comparison with expression profiling of a cohort consisting of 61 pairs of tumor-normal matched samples from The Cancer Genome Atlas (TCGA), we teased out the specific pathways to address the impact that MFN2 ablation had on A549 cells, as well as identified a few genes whose expression level associated with clinicopathologic parameters. In addition, transcriptional factor target enrichment analysis identified E2F as a potential transcription factor that was deregulated in response to MFN2 deficiency. Although bioinformatics analysis usually entail further verification, our study provided considerable information for future scientific inquiries in related areas as well as a paradigm for characterizing perturbation in regulatory network.

  3. Transcriptional profiling of canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) constitutively overexpressing a spermidine synthase gene.

    Science.gov (United States)

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease.

  4. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    Science.gov (United States)

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-02-17

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.

  5. Transcriptional Profiling of Canker-Resistant Transgenic Sweet Orange (Citrus sinensis Osbeck Constitutively Overexpressing a Spermidine Synthase Gene

    Directory of Open Access Journals (Sweden)

    Xing-Zheng Fu

    2013-01-01

    Full Text Available Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT and the transgenic line (TG9 by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease.

  6. Pneumatosis Intestinalis: Can We Avoid Surgical Intervention in Nonsurgical Patients?

    Directory of Open Access Journals (Sweden)

    Ayman Al-Talib

    2009-09-01

    Full Text Available Pneumatosis intestinalis (PI is the presence of gas within the wall of the gastrointestinal tract and represents a tremendous spectrum of conditions and outcomes, ranging from benign diseases to abdominal sepsis and death. It is seen with increased frequency in patients who are immunocompromised because of steroids, chemotherapy, radiation therapy, or AIDS. PI may result from intraluminal bacterial gas entering the bowel wall due to increased mucosal permeability caused by defects in bowel wall lymphoid tissue. We present a case of PI who was treated conservatively and in whom PI resolved completely and we present a literature review of conservative management. It is not difficult to make a precise diagnosis of PI and to prevent unnecessary surgical intervention, especially when PI presents without clinical evidence of peritonitis. Conservative treatment is possible and safe for selected patients. Awareness of these rare causes of PI and close observation of selected patients without peritonitis may prevent unnecessary invasive surgical explorations.

  7. Recurrent pneumatosis intestinalis in a patient with dermatomyositis.

    Science.gov (United States)

    Zarbalian, Yousef; von Rosenvinge, Erik C; Twadell, William; Mikdashi, Jamal

    2013-08-23

    A 51-year-old woman with dermatomyositis (DM) on chronic immunosuppressive therapy was hospitalised for evaluation of haematuria. Surprisingly, abdominal imaging demonstrated pneumoperitoneum and pneumatosis intestinalis (PI). Her abdominal examination and white cell count were normal, but she subsequently developed nausea and fever. Owing to concern for perforation, a hemicolectomy was performed. Pathology revealed PI without inflammatory, ischaemic or neoplastic features, and she recovered uneventfully. Her immunosuppressive therapy was discontinued. Six months later, a follow-up CT of the abdomen revealed recurrence of PI. As she was asymptomatic, she was managed conservatively with resolution of PI on subsequent imaging. PI is characterised by the presence of gas within the wall of the intestine. Its aetiology is often unclear but this case highlights the association between PI and both immunosuppressive therapy and DM. A review of PI in patients with DM suggests that clinically stable patients may be observed, while avoiding surgical intervention.

  8. Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae

    Science.gov (United States)

    Tai, Siew Leng; Snoek, Ishtar; Luttik, Marijke A. H.; Almering, Marinka J. H.; Walsh, Michael C.; Pronk, Jack T.; Daran, Jean-Marc

    2007-01-01

    The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether Saccharomyces cerevisiae genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 S. cerevisiae genes that showed a strong and consistent transcriptional upregulation under anaerobic conditions, irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate). Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (eug1Δ, izh2Δ, plb2Δ, ylr413wΔ and yor012wΔ) conferred a significant disadvantage relative to a tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very limited predictive value for the contribution of individual genes to fitness under specific environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers an efficient approach to select relevant leads for functional analysis studies. PMID:17322208

  9. Complementary Post Transcriptional Regulatory Information is Detected by PUNCH-P and Ribosome Profiling

    Science.gov (United States)

    Zur, Hadas; Aviner, Ranen; Tuller, Tamir

    2016-01-01

    Two novel approaches were recently suggested for genome-wide identification of protein aspects synthesized at a given time. Ribo-Seq is based on sequencing all the ribosome protected mRNA fragments in a cell, while PUNCH-P is based on mass-spectrometric analysis of only newly synthesized proteins. Here we describe the first Ribo-Seq/PUNCH-P comparison via the analysis of mammalian cells during the cell-cycle for detecting relevant differentially expressed genes between G1 and M phase. Our analyses suggest that the two approaches significantly overlap with each other. However, we demonstrate that there are biologically meaningful proteins/genes that can be detected to be post-transcriptionally regulated during the mammalian cell cycle only by each of the approaches, or their consolidation. Such gene sets are enriched with proteins known to be related to intra-cellular signalling pathways such as central cell cycle processes, central gene expression regulation processes, processes related to chromosome segregation, DNA damage, and replication, that are post-transcriptionally regulated during the mammalian cell cycle. Moreover, we show that combining the approaches better predicts steady state changes in protein abundance. The results reported here support the conjecture that for gaining a full post-transcriptional regulation picture one should integrate the two approaches. PMID:26898226

  10. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    Directory of Open Access Journals (Sweden)

    Ashraf S A El-Sayed

    Full Text Available Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  11. Genome-wide dynamic transcriptional profiling in clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2012-03-01

    Full Text Available Abstract Background Clostridium beijerinckii is a prominent solvent-producing microbe that has great potential for biofuel and chemical industries. Although transcriptional analysis is essential to understand gene functions and regulation and thus elucidate proper strategies for further strain improvement, limited information is available on the genome-wide transcriptional analysis for C. beijerinckii. Results The genome-wide transcriptional dynamics of C. beijerinckii NCIMB 8052 over a batch fermentation process was investigated using high-throughput RNA-Seq technology. The gene expression profiles indicated that the glycolysis genes were highly expressed throughout the fermentation, with comparatively more active expression during acidogenesis phase. The expression of acid formation genes was down-regulated at the onset of solvent formation, in accordance with the metabolic pathway shift from acidogenesis to solventogenesis. The acetone formation gene (adc, as a part of the sol operon, exhibited highly-coordinated expression with the other sol genes. Out of the > 20 genes encoding alcohol dehydrogenase in C. beijerinckii, Cbei_1722 and Cbei_2181 were highly up-regulated at the onset of solventogenesis, corresponding to their key roles in primary alcohol production. Most sporulation genes in C. beijerinckii 8052 demonstrated similar temporal expression patterns to those observed in B. subtilis and C. acetobutylicum, while sporulation sigma factor genes sigE and sigG exhibited accelerated and stronger expression in C. beijerinckii 8052, which is consistent with the more rapid forespore and endspore development in this strain. Global expression patterns for specific gene functional classes were examined using self-organizing map analysis. The genes associated with specific functional classes demonstrated global expression profiles corresponding to the cell physiological variation and metabolic pathway switch. Conclusions The results from this

  12. Transcript levels of major interleukins in relation to the clinicopathological profile of patients with tuberculous intervertebral discs and healthy controls.

    Directory of Open Access Journals (Sweden)

    Chong Liu

    Full Text Available The purpose of the present study was to simultaneously examine the transcript levels of a large number of interleukins (ILs; IL-9, IL-10, IL-12, IL-13, IL-16, IL-17, IL-18, IL-26, and IL-27 and investigate their correlation with the clinicopathological profiles of patients with tuberculous intervertebral discs.Clinical data were collected from 150 patients participating in the study from January 2013 to December 2013. mRNA expression levels in 70 tuberculous, 70 herniated, and 10 control intervertebral disc specimens were determined by real-time polymerase chain reaction.IL-10, IL-16, IL-17, IL-18, and IL-27 displayed stronger expression in tuberculous spinal disc tissue than in normal intervertebral disc tissue (P<0.05. Our results illustrated multiple correlations among IL-10, IL-16, IL-17, IL-18, and IL-27 mRNA expression in tuberculous samples. Smoking habits were found to have a positive correlation with IL-17 transcript levels and a negative correlation with IL-10 transcript levels (P<0.05. Pain intensity, symptom duration, C-reactive protein levels, and the erythrocyte sedimentation rate exhibited multiple correlations with the transcript levels of several ILs (P<0.05.The experimental data imply a double-sided effect on the activity of ILs in tuberculous spinal intervertebral discs, suggesting that they may be involved in intervertebral discs destruction. Our findings also suggest that smoking may affect the intervertebral discs destruction process of spinal tuberculosis. However, further studies are necessary to elucidate the exact role of ILs in the intervertebral discs destruction process of spinal tuberculosis.

  13. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses.

    Science.gov (United States)

    Ayenew, Biruk; Degu, Asfaw; Manela, Neta; Perl, Avichai; Shamir, Michal O; Fait, Aaron

    2015-01-01

    As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m(-2)s(-1)), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m(-2)s(-1) under controlled condition. When LC-MS and GC-MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. HL enhanced polyphenol metabolism while HT and its combination with HL induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1, and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under HL suggests enhanced fueling of the precursor toward the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3',5' hydroxylase and flavonoid 3' hydroxylase was observed under high light (HL) and combined cues which were accompanied by characteristic metabolite profiles. HT decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT, and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses.

  14. Metabolite Profiling and Transcript Analysis Reveal Specificities in the Response of a Berry Derived Cell Culture to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Biruk eAyenew

    2015-09-01

    Full Text Available As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (2500 µmol m-2s-1, high temperature (40 0C and their combination in comparison to 25 0C and 100 µmol m-2s-1 under controlled condition. When LC-MS and GC-MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. High light enhanced polyphenol metabolism while high temperature and its combination with high light induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1 and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under high light suggests enhanced fueling of the precursor towards the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3’,5’ hydroxylase and flavonoid 3’ hydroxylase was observed under high light and combined cues which were accompanied by characteristic metabolite profiles. High temperature decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses.

  15. Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Zhang, Xiao-Yan

    2005-01-01

    . The obtained data provided a robust determination of expression patterns that make possible an accurate assessment of the molecular events along the chondrogenic differentiation pathway. In addition, time-course expression profiles were described for eight highly regulated genes that have not been associated...

  16. Transcriptional profiling of tissue plasticity: Role of shifts in gene expression and technical limitations

    NARCIS (Netherlands)

    Flück, Martin; Däpp, Christoph; Schmutz, Silvia; Wit, Ernst; Hoppeler, Hans

    2005-01-01

    Reprogramming of gene expression has been recognized as a main instructive modality for the adjustments of tissues to various kinds of stress. The recent application of gene expression profiling has provided a powerful tool to elucidate the molecular pathways underlying such tissue remodeling. Howev

  17. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Randy J Hempel

    Full Text Available Johne's disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP, an intracellular bacterium. The events of pathogen survival within the host cell(s, chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection.

  18. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis.

    Science.gov (United States)

    Hempel, Randy J; Bannantine, John P; Stabel, Judith R

    2016-01-01

    Johne's disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection.

  19. Expression Profiles of the Nuclear Receptors and Their Transcriptional Coregulators During Differentiation of Neural Stem Cells

    Science.gov (United States)

    Androutsellis-Theotokis, A.; Chrousos, G. P.; McKay, R. D.; DeCherney, A. H.; Kino, T.

    2013-01-01

    Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0–5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUPTFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands. PMID:22990992

  20. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Joaquin Giner-Lamia

    Full Text Available Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM and toxic concentrations (3 µM in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper.

  1. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought

    Directory of Open Access Journals (Sweden)

    Pang Edwin CK

    2007-09-01

    Full Text Available Abstract Background Cultivated chickpea (Cicer arietinum has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. Results The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. Conclusion The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.

  2. Transcript profiling of individual twin blastomeres derived by splitting two-cell stage murine embryos.

    Science.gov (United States)

    Roberts, R Michael; Katayama, Mika; Magnuson, Scott R; Falduto, Michael T; Torres, Karen E O

    2011-03-01

    In invertebrates and amphibians, informational macromolecules in egg cytoplasm are organized to provide direction to the formation of embryonic lineages, but it is unclear whether vestiges of such prepatterning exist in mammals. Here we examined whether twin blastomeres from 2-cell stage mouse embryos differ in mRNA content. mRNA from 26 blastomeres derived from 13 embryos approximately mid-way through their second cell cycle was subjected to amplification. Twenty amplified samples were hybridized to arrays. Of those samples that hybridized successfully, 12 samples in six pairs were used in the final analysis. Probes displaying normalized values >0.25 (n = 4573) were examined for consistent bias in expression within blastomere pairs. Although transcript content varied between both individual embryos and twin blastomeres, no consistent asymmetries were observed for the majority of genes, with only 178 genes displaying a >1.4-fold difference in expression across all six pairs. Although class discovery clustering showed that blastomere pairs separated into two distinct groups in terms of their differentially expressed genes, when the data were tested for significance of asymmetrical expression, only 39 genes with >1.4-fold change ratios in six of six blastomere pairs passed the two-sample t-test (P < 0.05). Transcripts encoding proteins implicated in RNA processing and cytoskeletal organization were among the most abundant, differentially distributed mRNA, suggesting that a stochastically based lack of synchrony in cell cycle progression between the two cells might explain at least some and possibly all of the asymmetries in transcript composition.

  3. Transcriptional profiling of summer wheat, grown under different realistic UV-B irradiation regimes.

    Science.gov (United States)

    Zinser, Christian; Seidlitz, Harald K; Welzl, Gerhard; Sandermann, Heinrich; Heller, Werner; Ernst, Dieter; Rau, Werner

    2007-07-01

    There is limited information on the impact of present-day ultraviolet-B (UV-B) radiation on a reprogramming of gene expression in crops. Summer wheat was cultivated in controlled environmental facilities under simulated realistic climatic conditions. We investigated the effect of different regimes of UV-B radiation on summer wheat (Triticum aestivum L.) cultivars Nandu, Star and Turbo. Until recently, these were most important in Bavaria. Different cultivars of crops often show great differences in their sensitivity towards UV-B radiation. To identify genes that might be involved in UV-B defence mechanisms, we first analyzed selected genes known to be involved in plant defence mechanisms. RNA gel blot analysis of RNA isolated from the flag leaf of 84-day-old plants showed differences in transcript levels among the cultivars. Flag leaves are known to be important for grain development, which was completed at 84 days post-anthesis. Catalase 2 (Cat2) transcripts were elevated by increased UV irradiation in all cultivars with highest levels in cv. Nandu. Pathogenesis-related protein 1 (PR1) transcripts were elevated only in cv. Star. A minor influence on transcripts for phenylalanine ammonia-lyase (PAL) was observed in all three cultivars. This indicates different levels of acclimation to UV-B radiation in the wheat cultivars studied. To analyze these responses in more detail, UV-B-exposed flag leaves of 84-day-old wheat (cv. Nandu) were pooled to isolate cDNAs of induced genes by suppression-subtractive hybridization (SSH). Among the initially isolated cDNA clones, 13 were verified by RNA gel blot analysis showing an up-regulation at elevated levels of UV-B radiation. Functional classification revealed genes encoding proteins associated with protein assembly, chaperonins, programmed cell death and signal transduction. We also studied growth, flowering time, ear development and yield as more typical agricultural parameters. Plant growth of young plants was reduced at

  4. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Directory of Open Access Journals (Sweden)

    Aaron E Walworth

    Full Text Available In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L., a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora', which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT. Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5 gene was down-regulated and associated with five other differentially expressed (DE genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2, a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5, and a VERNALIZATION1-like gene (VcVRN1, may function as integrators in place of FLOWERING LOCUS C (FLC in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1, LEAFY-like (VcLFY, APETALA1-like (VcAP1, CAULIFLOWER 1-like (VcCAL1, and FRUITFULL-like (VcFUL genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of

  5. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Science.gov (United States)

    Walworth, Aaron E; Chai, Benli; Song, Guo-Qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these

  6. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing

    Directory of Open Access Journals (Sweden)

    Anderson Donald M

    2006-04-01

    duplication in dinoflagellates, which would contribute to the transcriptional complexity of these organisms. The MPSS data also demonstrate that a significant number of dinoflagellate mRNAs are transcriptionally regulated, indicating that dinoflagellates commonly employ transcriptional gene regulation along with the post-transcriptional regulation that has been well documented in these organisms.

  7. Effects of wildfire on sea otter (Enhydra lutris) gene transcript profiles

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Kolden, Crystal A.; Saarinen, Justin A.; Bodkin, James L.; Murray, Michael J.; Tinker, M. Tim

    2015-01-01

    Wildfires have been shown to impact terrestrial species over a range of temporal scales. Little is known, however, about the more subtle toxicological effects of wildfires, particularly in downstream marine or downwind locations from the wildfire perimeter. These down-current effects may be just as substantial as those effects within the perimeter. We used gene transcription technology, a sensitive indicator of immunological perturbation, to study the effects of the 2008 Basin Complex Fire on the California coast on a sentinel marine species, the sea otter (Enhydra lutris). We captured sea otters in 2008 (3 mo after the Basin Complex Fire was controlled) and 2009 (15 mo after the Basin Complex Fire was controlled) in the adjacent nearshore environment near Big Sur, California. Gene responses were distinctly different between Big Sur temporal groups, signifying detoxification of PAHs, possible associated response to potential malignant transformation, and suppression of immune function as the primary responses of sea otters to fire in 2008 compared to those captured in 2009. In general, gene transcription patterns in the 2008 sea otters were indicative of molecular reactions to organic exposure, malignant transformation, and decreased ability to respond to pathogens that seemed to consistent with short-term hydrocarbon exposure.

  8. Molecular cloning, bioinformatics analysis, and transcriptional profiling of JAZ1 and JAZ2 from Salvia miltiorrhiza.

    Science.gov (United States)

    Zhou, Yangyun; Zhou, Xun; Li, Qing; Chen, Junfeng; Xiao, Ying; Zhang, Lei; Chen, Wansheng

    2017-01-01

    Production of major effective metabolites, tanshinones and lithospermic acid B (LAB), was dramatically enhanced by exogenous jasmonate (JA) treatment in Salvia miltiorrhiza. However, the molecular mechanism of such metabolic activation in S. miltiorrhiza has not been elucidated yet. Here, we focused on jasmonate ZIM-domain (JAZ) proteins that act as repressors of JA signaling. Open reading frames of two novel genes, SmJAZ1 and SmJAZ2, from S. miltiorrhiza were amplified according to the annotation of S. miltiorrhiza transcriptome. Compared to plant JAZs, SmJAZ1 and SmJAZ2 were clustered into different groups by phylogenetic analysis. Organ expression pattern was studied by real-time quantitative PCR (RT-qPCR), showing higher transcription level of both genes in stems than roots and leaves. The two SmJAZs responded to methyl jasmonate at early stage and the transcriptional level significantly increased at 4 H. Our experimental results indicate that SmJAZ1 and SmJAZ2 are JA responsive and presented similar expression trend in JA response. The whole research will certainly facilitate further characterization of JAs effect on effective metabolites and help to ultimately achieve high yield of target compounds (tanshinones and LAB).

  9. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Lopez, Oswaldo; Batek Rios, Josef M.; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Pasa-Tolic, Ljiljana; Stacey, Gary

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairs in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  10. Blood Genome-Wide Transcriptional Profiles of HER2 Negative Breast Cancers Patients

    Directory of Open Access Journals (Sweden)

    Ovidiu Balacescu

    2016-01-01

    Full Text Available Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2− breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of “chemokine signaling,” “IL-8 signaling,” and “communication between innate and adaptive immune cells” pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients.

  11. Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles

    Directory of Open Access Journals (Sweden)

    Oswaldo eValdes-Lopez

    2016-04-01

    Full Text Available Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1,849 and 3,091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified ten key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  12. Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus

    Directory of Open Access Journals (Sweden)

    Li Xianyao

    2010-07-01

    Full Text Available Abstract Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1 causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi. Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB, cell cycle regulation (cyclin B2, CDK1, and CKI3, matrix metalloproteinases (MMPs and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR. A bioinformatics tool (Ingenuity Pathway Analysis used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections.

  13. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress.

    Directory of Open Access Journals (Sweden)

    Yin-Huan Wu

    Full Text Available Salt stress has some remarkable influence on chrysanthemum growth and productivity. To understand the molecular mechanisms associated with salt stress and identify genes of potential importance in cultivated chrysanthemum, we carried out transcriptome sequencing of chrysanthemum. Two cDNA libraries were generated from the control and salt-treated samples (Sample_0510_control and Sample_0510_treat of leaves. By using the Illumina Solexa RNA sequencing technology, 94 million high quality sequencing reads and 161,522 unigenes were generated and then we annotated unigenes through comparing these sequences to diverse protein databases. A total of 126,646 differentially expressed transcripts (DETs were identified in leaf. Plant hormones, amino acid metabolism, photosynthesis and secondary metabolism were all changed under salt stress after the complete list of GO term and KEGG enrichment analysis. The hormone biosynthesis changing and oxidative hurt decreasing appeared to be significantly related to salt tolerance of chrysanthemum. Important protein kinases and major transcription factor families involved in abiotic stress were differentially expressed, such as MAPKs, CDPKs, MYB, WRKY, AP2 and HD-zip. In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of chrysanthemum under salt stress.

  14. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    Science.gov (United States)

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  15. Reference Genes in the Pathosystem Phakopsora pachyrhizi/ Soybean Suitable for Normalization in Transcript Profiling

    Directory of Open Access Journals (Sweden)

    Daniela Hirschburger

    2015-09-01

    Full Text Available Phakopsora pachyrhizi is a devastating pathogen on soybean, endangering soybean production worldwide. Use of Host Induced Gene Silencing (HIGS and the study of effector proteins could provide novel strategies for pathogen control. For both approaches quantification of transcript abundance by RT-qPCR is essential. Suitable stable reference genes for normalization are indispensable to obtain accurate RT-qPCR results. According to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE guidelines and using algorithms geNorm and NormFinder we tested candidate reference genes from P. pachyrhizi and Glycine max for their suitability in normalization of transcript levels throughout the infection process. For P. pachyrhizi we recommend a combination of CytB and PDK or GAPDH for in planta experiments. Gene expression during in vitro stages and over the whole infection process was found to be highly unstable. Here, RPS14 and UbcE2 are ranked best by geNorm and NormFinder. Alternatively CytB that has the smallest Cq range (Cq: quantification cycle could be used. We recommend specification of gene expression relative to the germ tube stage rather than to the resting urediospore stage. For studies omitting the resting spore and the appressorium stages a combination of Elf3 and RPS9, or PKD and GAPDH should be used. For normalization of soybean genes during rust infection Ukn2 and cons7 are recommended.

  16. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    Science.gov (United States)

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  17. Transcriptional Profile of Ki-Ras-Induced Transformation of Thyroid Cells

    DEFF Research Database (Denmark)

    Visconti, Roberta; Federico, Antonella; Coppola, Valeria

    2007-01-01

    Abstract In the last years, an increasing number of experiments has provided compelling evidence for a casual role of Ras protein mutations, resulting in their constitutive activation, in thyroid carcinogenesis. However, despite the clear involvement of Ras proteins in thyroid carcinogenesis, the...... in human thyroid carcinoma cell lines and tumor samples, our results, therefore, providing a new molecular profile of the genes involved in thyroid neoplastic transformation....

  18. Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila

    OpenAIRE

    2004-01-01

    Genome-wide microarray analysis (Affymetrix array) was used (i) to determine whether only one gene, the cytochrome P450 enzyme Cyp6g1, is differentially transcribed in dichlorodiphenyltrichloroethane (DDT)-resistant vs. -susceptible Drosophila; and (ii) to profile common genes differentially transcribed across a DDT-resistant field isolate [Rst(2)DDTWisconsin] and a laboratory DDT-selected population [Rst(2)DDT91-R]. Statistical analysis (ANOVA model) identified 158 probe sets that were diffe...

  19. Generalized stochastic profiling of transcriptional regulatory heterogeneities in tissues, tumors, and cultured cells

    OpenAIRE

    2013-01-01

    Single-cell variations in gene and protein expression are important during development and disease. Cell-to-cell heterogeneities can be directly inspected one cell at a time, but global methods are usually not sensitive enough to work with such a small amount of starting material. Here, we provide a detailed protocol for stochastic profiling, a method that infers single-cell regulatory heterogeneities by repeatedly sampling small collections of cells at random. Repeated stochastic sampling is...

  20. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing

    OpenAIRE

    Rukov, Jakob L.; Gravesen, Eva; Mace, Maria L.; Hofman-Bang, Jacob; Vinther, Jeppe; Andersen, Claus B.; Lewin, Ewa; Olgaard, Klaus

    2016-01-01

    The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC w...

  1. Transcript Profiling Distinguishes Complete Treatment Responders With Locally Advanced Cervical Cancer1234

    Science.gov (United States)

    Fernandez-Retana, Jorge; Lasa-Gonsebatt, Federico; Lopez-Urrutia, Eduardo; Coronel-Martínez, Jaime; Cantu De Leon, David; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; Perez-Montiel, Delia; Reynoso-Noveron, Nancy; Vazquez-Romo, Rafael; Perez-Plasencia, Carlos

    2015-01-01

    Cervical cancer (CC) mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC) have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription–polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment. PMID:25926073

  2. Transcript Profiling Distinguishes Complete Treatment Responders With Locally Advanced Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-Retana

    2015-04-01

    Full Text Available Cervical cancer (CC mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription–polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment.

  3. Transcript profiles of mitochondrial and cytoplasmic manganese superoxide dismutases in Exopalaemon carinicauda under ammonia stress

    Science.gov (United States)

    Ren, Hai; Li, Jian; Li, Jitao; Liu, Ping; Liang, Zhongxiu; Wu, Jianhua

    2015-05-01

    Superoxide dismutase (SOD) is one of the most important antioxidant defense enzymes, and is considered as the first line against oxidative stress. In this study, we cloned a mitochondrial manganese (Mn) SOD ( mMnSOD) cDNA from the ridgetail white prawn Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) methods. The full-length cDNA for mMnSOD was 1 014-bp long, containing a 5'-untranslated region (UTR) of 37-bp, a 3'-UTR of 321-bp with a poly (A) tail, and included a 657-bp open reading frame encoding a protein of 218 amino acids with a 16-amino-acid signal peptide. The protein had a calculated molecular weight of 23.87 kDa and a theoretical isoelectric point of 6.75. The mMnSOD sequence included two putative N-glycosylation sites (NHT and NLS), the MnSOD signature sequence 180DVWEHAYY187, and four putative Mn binding sites (H48, H96, D180, and H184). Sequence comparison showed that the mMnSOD deduced amino acid sequence of E. carinicauda shared 97%, 95%, 89%, 84%, 82%, 72%, and 69% identity with that of Macrobrachium rosenbergii, Macrobrachium nipponense, Fenneropeneaus chinensis, Callinectes sapidus, Perisesarma bidens, Danio rerio, and Homo sapiens, resectively. Quantitative real-time RT-PCR analysis showed that mMnSOD transcripts were present in all E. carinicauda tissues examined, with the highest levels in the hepatopancreas. During an ammonia stress treatment, the transcript levels of mMnSOD and cMnSOD were up-regulated at 12 h in hemocytes and at 24 h in the hepatopancreas. As the duration of the ammonia stress treatment extended to 72 h, the transcript levels of mMnSOD and cMnSOD significantly decreased both in hemocytes and hepatopancreas. These findings indicate that the SOD system is induced to respond to acute ammonia stress, and may be involved in environmental stress responses in E. carinicauda.

  4. Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a Dengue Disease Model.

    Science.gov (United States)

    Morrison, Juliet; Rathore, Abhay P S; Mantri, Chinmay K; Aman, Siti A B; Nishida, Andrew; St John, Ashley L

    2017-09-15

    There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8(+) T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease.IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs

  5. LncRNA profiling of human lymphoid progenitors reveals transcriptional divergence of B and T lineages

    Science.gov (United States)

    Casero, David; Sandoval, Salemiz; Seet, Christopher S.; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M.

    2015-01-01

    To elucidate the transcriptional landscape that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitors spanning the earliest stages of B and T lymphoid specification. Over 3000 novel long non-coding RNA genes (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage-specific and more lineage-specific than protein coding patterns. Protein-coding genes co-expressed with neighboring lncRNA genes were enriched for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships between the earliest progenitors in the human bone marrow and thymus. PMID:26502406

  6. Genomic-wide transcriptional profiling in primary myoblasts reveals Runx1-regulated genes in muscle regeneration

    Directory of Open Access Journals (Sweden)

    Kfir Baruch Umansky

    2015-12-01

    Full Text Available In response to muscle damage the muscle adult stem cells are activated and differentiate into myoblasts that regenerate the damaged tissue. We have recently showed that following myopathic damage the level of the Runx1 transcription factor (TF is elevated and that during muscle regeneration this TF regulates the balance between myoblast proliferation and differentiation (Umansky et al.. We employed Runx1-dependent gene expression, Chromatin Immunoprecipitation sequencing (ChIP-seq, Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq and histone H3K4me1/H3K27ac modification analyses to identify a subset of Runx1-regulated genes that are co-occupied by the TFs MyoD and c-Jun and are involved in muscle regeneration (Umansky et al.. The data is available at the GEO database under the superseries accession number GSE56131.

  7. Transcription profiles of Streptococcus pneumoniae grown under different conditions of normal gravitation

    Science.gov (United States)

    Allen, C. A.; Galindo, C. L.; Pandya, U.; Watson, D. A.; Chopra, A. K.; Niesel, D. W.

    2007-02-01

    High-aspect rotating vessels (HARVs) are used to study the effects low-shear modeled microgravity (LSMMG) on bacterial gene expression. LSMMG is generated by orienting HARVs with the axis of rotation perpendicular to the gravity vector while gravitational controls are oriented with the axis of rotation parallel to the gravity vector. Microarray analysis was performed on Streptococcus pneumoniae TIGR4 grown in HARVs under three conditions (LSMMG, 1×g, and static) to determine if global transcriptional activity is altered between different gravitational controls and LSMMG. Results revealed 101 differentially expressed genes under static conditions compared to 1×g, 46 genes between 1×g and LSMMG, and nine genes between static and LSMMG. Hierarchical cluster analysis revealed 15 genes exhibiting similar expression patterns under static conditions compared to 1×g. These results indicate that rotation, in addition to low-shear forces, might contribute to bacterial adaptation to the LSMMG.

  8. Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses

    Directory of Open Access Journals (Sweden)

    Alejandra Urrutia

    2016-09-01

    Full Text Available Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes.

  9. Prerequisites, performance and profits of transcriptional profiling the abiotic stress response.

    Science.gov (United States)

    Kilian, Joachim; Peschke, Florian; Berendzen, Kenneth W; Harter, Klaus; Wanke, Dierk

    2012-02-01

    During the last decade, microarrays became a routine tool for the analysis of transcripts in the model plant Arabidopsis thaliana and the crop plant species rice, poplar or barley. The overwhelming amount of data generated by gene expression studies is a valuable resource for every scientist. Here, we summarize the most important findings about the abiotic stress responses in plants. Interestingly, conserved patterns of gene expression responses have been found that are common between different abiotic stresses or that are conserved between different plant species. However, the individual histories of each plant affect the inter-comparability between experiments already before the onset of the actual stress treatment. This review outlines multiple aspects of microarray technology and highlights some of the benefits, limitations and also pitfalls of the technique. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  10. Transcriptional profiling at different sites in lungs of pigs during acute bacterial respiratory infection

    DEFF Research Database (Denmark)

    Mortensen, Shila; Skovgaard, Kerstin; Hedegaard, Jakob

    2011-01-01

    The local transcriptional response was studied in different locations of lungs from pigs experimentally infected with the respiratory pathogen Actinobacillus pleuropneumoniae serotype 5B, using porcine cDNA microarrays. This infection gives rise to well-demarcated infection loci in the lung...... of apoptosis and the complement system. Interferon-g was downregulated in both necrotic and bordering areas. Evidence of neutrophil recruitment was seen by the up-regulation of chemotactic factors for neutrophils. In conclusion, we found subsets of genes expressed at different levels in the three selected...... of induced genes as, in unaffected areas a large part of differently expressed genes were involved in systemic reactions to infections, while differently expressed genes in necrotic areas were mainly concerned with homeostasis regulation....

  11. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells.

    Science.gov (United States)

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.

  12. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  13. A Brassica exon array for whole-transcript gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Christopher G Love

    Full Text Available Affymetrix GeneChip® arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip® arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip® arrays whose probes are localised primarily in 3' exons. Plant whole-transcript (WT GeneChip® arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip® Brassica Exon 1.0 ST Array is a 5 µM feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5, with ≤98% sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18, and categorisation by Gene Ontologies (GO based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.

  14. Effect of Soybean Coumestrol on Bradyrhizobium japonicum Nodulation Ability, Biofilm Formation, and Transcriptional Profile

    Science.gov (United States)

    Lee, Hae-In; Lee, Jin-Hwan; Park, Ki-Hun; Sangurdekar, Dipen

    2012-01-01

    Flavonoids, secondary plant metabolites which mainly have a polyphenolic structure, play an important role in plant-microbe communications for nitrogen-fixing symbiosis. Among 10 polyphenolic compounds isolated from soybean roots in our previous study, coumestrol showed the highest antioxidant activity. In this study, its effect on the soybean nodulation was tested. The soybean symbiont Bradyrhizobium japonicum USDA110 pretreated with 20 μM coumestrol enhanced soybean nodulation by increasing the number of nodules 1.7-fold compared to the control. We also tested the effect of coumestrol on B. japonicum biofilm formation. At a concentration of 2 μM, coumestrol caused a higher degree of biofilm formation than two major soybean isoflavonoids, genistein and daidzein, although no biofilm formation was observed at a concentration of 20 μM each compound. A genome-wide transcriptional analysis was performed to obtain a comprehensive snapshot of the B. japonicum response to coumestrol. When the bacterium was incubated in 20 μM coumestrol for 24 h, a total of 371 genes (139 upregulated and 232 downregulated) were differentially expressed at a 2-fold cutoff with a q value of less than 5%. No common nod gene induction was found in the microarray data. However, quantitative reverse transcription-PCR (qRT-PCR) data showed that incubation for 12 h resulted in a moderate induction (ca. 2-fold) of nodD1 and nodABC, indicating that soybean coumestrol is a weak inducer of common nod genes. In addition, disruption of nfeD (bll4952) affected the soybean nodulation by an approximate 30% reduction in the average number of nodules. PMID:22307307

  15. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling.

    Directory of Open Access Journals (Sweden)

    Mónica Sebastiana

    Full Text Available Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.

  16. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling.

    Science.gov (United States)

    Sebastiana, Mónica; Vieira, Bruno; Lino-Neto, Teresa; Monteiro, Filipa; Figueiredo, Andreia; Sousa, Lisete; Pais, Maria Salomé; Tavares, Rui; Paulo, Octávio S

    2014-01-01

    Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.

  17. An inducible HSP70 gene from the midge Chironomus dilutus: Characterization and transcription profile under environmental stress

    Science.gov (United States)

    Karouna-Renier, N. K.; Rao, K.R.

    2009-01-01

    In the present study, we identified and characterized an inducible heat shock protein 70 (HSP70) from the midge Chironomus dilutus and investigated the transcriptional profile of the gene under baseline and environmentally stressful conditions. Using real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), we observed increased expression of CD-HSP70-1 in response to both heat shock and copper stress. We also investigated the expression of this gene during midge development. All C. dilutus developmental stages expressed CD-HSP70-1 under normal conditions, although at extremely low levels. Phylogenetic analysis of the amino acid sequence demonstrated distinct clustering of this gene with inducible HSP70s from other insect species. ?? 2008 The Authors.

  18. Transcriptional profiling of rats subjected to gestational undernourishment: implications for the developmental variations in metabolic traits.

    Directory of Open Access Journals (Sweden)

    Tiffany J Morris

    Full Text Available A link has been established between prenatal nutrition and the development of metabolic and cardiovascular diseases later in life, a process referred to as developmental programming. It has been suggested that the trajectory of development is shifted by alterations in the maternal nutritional state leading to changes in developmental plasticity, in part underpinned by epigenetic changes in gene regulation. However, to date, only candidate gene approaches have been used to assess expression and molecular changes in the offspring of maternally undernourished animals. Furthermore, most work has focused on animals at an age where the programmed phenotype is already manifest and little is known about changes in gene expression in the offspring prior to development of obesity and related metabolic disorders. Gene expression profiles of liver, retroperitoneal white adipose fat, and biceps femoris skeletal muscle tissue from young adult male rats (55 days old in which nutritional status had been manipulated in utero by maternal undernutrition (UN were compared to the profiles of offspring of ad libitum fed mothers serving as the control group (AD (8 offspring/group. The expression profiles were determined using the Illumina RatRef-12 BeadChip. No significant changes in expression were identified for skeletal muscle or white adipose tissue. However, studies of liver tissue showed 249 differentially expressed genes (143 up regulated, 106 down regulated. Although the animals at day 55 have yet to develop obesity they already show biochemical abnormalities and by day 110 express a phenotype characterized by increased adiposity and altered insulin sensitivity. An analysis of pathways affected suggests that intrauterine programming of UN animals to favor fat as an energy source results in mitochondrial dysfunction which initially affects the postnatal hepatic function and subsequently, via the resultant metabolic changes in other organs leads to the evolution

  19. Transcriptional profiling of rats subjected to gestational undernourishment: implications for the developmental variations in metabolic traits.

    Science.gov (United States)

    Morris, Tiffany J; Vickers, Mark; Gluckman, Peter; Gilmour, Stewart; Affara, Nabeel

    2009-09-29

    A link has been established between prenatal nutrition and the development of metabolic and cardiovascular diseases later in life, a process referred to as developmental programming. It has been suggested that the trajectory of development is shifted by alterations in the maternal nutritional state leading to changes in developmental plasticity, in part underpinned by epigenetic changes in gene regulation. However, to date, only candidate gene approaches have been used to assess expression and molecular changes in the offspring of maternally undernourished animals. Furthermore, most work has focused on animals at an age where the programmed phenotype is already manifest and little is known about changes in gene expression in the offspring prior to development of obesity and related metabolic disorders. Gene expression profiles of liver, retroperitoneal white adipose fat, and biceps femoris skeletal muscle tissue from young adult male rats (55 days old) in which nutritional status had been manipulated in utero by maternal undernutrition (UN) were compared to the profiles of offspring of ad libitum fed mothers serving as the control group (AD) (8 offspring/group). The expression profiles were determined using the Illumina RatRef-12 BeadChip. No significant changes in expression were identified for skeletal muscle or white adipose tissue. However, studies of liver tissue showed 249 differentially expressed genes (143 up regulated, 106 down regulated). Although the animals at day 55 have yet to develop obesity they already show biochemical abnormalities and by day 110 express a phenotype characterized by increased adiposity and altered insulin sensitivity. An analysis of pathways affected suggests that intrauterine programming of UN animals to favor fat as an energy source results in mitochondrial dysfunction which initially affects the postnatal hepatic function and subsequently, via the resultant metabolic changes in other organs leads to the evolution of a phenotype

  20. Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Filip Simunovic

    Full Text Available BACKGROUND: Epidemiological data suggest that the male gender is one of the risks factors for the development of Parkinson Disease (PD. Also, differences in the clinical manifestation and the course of PD have been observed between males and females. However, little is known about the molecular aspects underlying gender-specificity in PD. To address this issue, we determined the gene expression profiles of male and female dopamine (DA neurons in sporadic PD. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed Affymetrix-based microarrays on laser microdissected DA neurons from postmortem brains of sporadic PD patients and age-matched controls across genders. Pathway enrichment demonstrated that major cellular pathways involved in PD pathogenesis showed different patterns of deregulation between males and females with more prominent downregulation of genes related to oxidative phosphorylation, apoptosis, synaptic transmission and transmission of nerve impulse in the male population. In addition, we found upregulation of gene products for metabolic processes and mitochondrial energy consumption in the age-matched male control neurons. On the single cell level, selected data validation using quantitative Real-Time (qRT-PCR was consistent with microarray raw data and supported some of the observations from data analysis. CONCLUSIONS/SIGNIFICANCE: On the molecular level, our results provide evidence that the expression profiles of aged normal and PD midbrain DA neurons are gender-specific. The observed differences in the expression profiles suggest a disease bias of the male gender, which could be in concordance with clinical observations that the male gender represents a risk factor for sporadic PD. Validation of gene expression by qRT-PCR supported the microarray results, but also pointed to several caveats involved in data interpretation.

  1. Transcriptional profiling of thymidine-producing strain recombineered from Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Jin-Sook Kim

    2015-12-01

    Full Text Available DNA microarrays were used to compare the expression profiles of a thymidine overproducing strain (BLT013 and its isogenic parent, Escherichia coli BL21(DE3, when each was grown under well-defined thymidine production conditions with glycerol as carbon source. Here we describe the experimental procedures and methods in detail to reproduce the results and provide resource to be applied to similar engineering approach (available at Gene Expression Omnibus database under GSE69963. Taken together, the microarray data provide a basis for new testable hypotheses regarding enhancement of thymidine productivity and attaining a more complete understanding of nucleotide metabolism in bacteria.

  2. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Singh, Anil Kumar; Sharma, Vishal; Pal, Awadhesh Kumar; Acharya, Vishal; Ahuja, Paramvir Singh

    2013-08-01

    NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.

  3. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  4. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P.

    Science.gov (United States)

    Bruce, W; Folkerts, O; Garnaat, C; Crasta, O; Roth, B; Bowen, B

    2000-01-01

    To determine the scope of gene expression controlled by the maize transcription factors C1/R and P, which are responsible for activating flavonoid synthesis, we used GeneCalling, an open-ended, gel-based, mRNA-profiling technology, to analyze cell suspension lines of the maize inbred Black Mexican Sweet (BMS) that harbored estradiol-inducible versions of these factors. BMS cells were transformed with a continually expressed estrogen receptor/maize C1 activator domain fusion gene (ER-C1) and either a fusion of C1 and R (CRC), P, or luciferase genes regulated by a promoter containing four repeats of an estrogen receptor binding site. Increasing amounts of luciferase activity, anthocyanins, and flavan-4-ols were detected in the respective cell lines after the addition of estradiol. The expression of both known and novel genes was detected simultaneously in these BMS lines by profiling the mRNA isolated from replicate samples at 0, 6, and 24 hr after estradiol treatment. Numerous cDNA fragments were identified that showed a twofold or greater difference in abundance at 6 and 24 hr than at 0 hr. The cDNA fragments from the known flavonoid genes, except chalcone isomerase (chi1), were induced in the CRC-expressing line after hormone induction, whereas only the chalcone synthase (c2) and flavanone/dihydroflavonol reductase (a1) genes were induced in the P-expressing line, as was expected. Many novel cDNA fragments were also induced or repressed by lines expressing CRC alone, P alone, or both transcription factors in unique temporal patterns. The temporal differences and the evidence of repression indicate a more diverse set of regulatory controls by CRC or P than originally expected. GeneCalling analysis was successful in detecting members of complex metabolic pathways and uncovering novel genes that were either coincidentally regulated or directly involved in such pathways.

  5. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen.

    Directory of Open Access Journals (Sweden)

    Jonathan J Hansen

    Full Text Available BACKGROUND: Inflammatory bowel diseases (IBD may be caused in part by aberrant immune responses to commensal intestinal microbes including the well-characterized anaerobic gut commensal Bacteroides thetaiotaomicron (B. theta. Healthy, germ-free HLA-B27 transgenic (Tg rats develop chronic colitis when colonized with complex gut commensal bacteria whereas non-transgenic (nTg rats remain disease-free. However, the role of B. theta in causing disease in Tg rats is unknown nor is much known about how gut microbes respond to host inflammation. METHODS: Tg and nTg rats were monoassociated with a human isolate of B. theta. Colonic inflammation was assessed by histologic scoring and tissue pro-inflammatory cytokine measurement. Whole genome transcriptional profiling of B. theta recovered from ceca was performed using custom GeneChips and data analyzed using dChip, Significance Analysis of Microarrays, and Gene Set Enrichment Analysis (GSEA software. Western Blots were used to determine adaptive immune responses to a differentially expressed B. theta gene. RESULTS: B. theta monoassociated Tg rats, but not nTg or germ-free controls, developed chronic colitis. Transcriptional profiles of cecal B. theta were significantly different in Tg vs. nTg rats. GSEA revealed that genes in KEGG canonical pathways involved in bacterial growth and metabolism were downregulated in B. theta from Tg rats with colitis though luminal bacterial concentrations were unaffected. Bacterial genes in the Gene Ontology molecular function "receptor activity", most of which encode nutrient binding proteins, were significantly upregulated in B. theta from Tg rats and include a SusC homolog that induces adaptive immune responses in Tg rats. CONCLUSIONS: B. theta induces colitis in HLA-B27 Tg rats, which is associated with regulation of bacterial genes in metabolic and nutrient binding pathways that may affect host immune responses. These studies of the host-microbial dialogue may lead to

  6. Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar

    Directory of Open Access Journals (Sweden)

    Gupta Manoj K

    2010-09-01

    Full Text Available Abstract Background Functional and molecular integrity of cardiomyocytes (CMs derived from induced pluripotent stem (iPS cells is essential for their use in tissue repair, disease modelling and drug screening. In this study we compared global transcriptomes of beating clusters (BCs microdissected from differentiating human iPS cells and embryonic stem (ES cells. Results Hierarchical clustering and principal component analysis revealed that iPS-BCs and ES-BCs cluster together, are similarly enriched for cardiospecific genes and differ in expression of only 1.9% of present transcripts. Similarly, sarcomeric organization, electrophysiological properties and calcium handling of iPS-CMs were indistinguishable from those of ES-CMs. Gene ontology analysis revealed that among 204 genes that were upregulated in iPS-BCs vs ES-BCs the processes related to extracellular matrix, cell adhesion and tissue development were overrepresented. Interestingly, 47 of 106 genes that were upregulated in undifferentiated iPS vs ES cells remained enriched in iPS-BCs vs ES-BCs. Most of these genes were found to be highly expressed in fibroblasts used for reprogramming and 34% overlapped with the recently reported iPS cell-enriched genes. Conclusions These data suggest that iPS-BCs are transcriptionally highly similar to ES-BCs. However, iPS-BCs appear to share some somatic cell signature with undifferentiated iPS cells. Thus, iPS-BCs may not be perfectly identical to ES-BCs. These minor differences in the expression profiles may occur due to differential cellular composition of iPS-BCs and ES-BCs, due to retention of some genetic profile of somatic cells in differentiated iPS cell-derivatives, or both.

  7. Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus Metarhizium anisopliae.

    Science.gov (United States)

    Junges, Ângela; Boldo, Juliano Tomazzoni; Souza, Bárbara Kunzler; Guedes, Rafael Lucas Muniz; Sbaraini, Nicolau; Kmetzsch, Lívia; Thompson, Claudia Elizabeth; Staats, Charley Christian; de Almeida, Luis Gonzaga Paula; de Vasconcelos, Ana Tereza Ribeiro; Vainstein, Marilene Henning; Schrank, Augusto

    2014-01-01

    Fungal chitin metabolism involves diverse processes such as metabolically active cell wall maintenance, basic nutrition, and different aspects of virulence. Chitinases are enzymes belonging to the glycoside hydrolase family 18 (GH18) and 19 (GH19) and are responsible for the hydrolysis of β-1,4-linkages in chitin. This linear homopolymer of N-acetyl-β-D-glucosamine is an essential constituent of fungal cell walls and arthropod exoskeletons. Several chitinases have been directly implicated in structural, morphogenetic, autolytic and nutritional activities of fungal cells. In the entomopathogen Metarhizium anisopliae, chitinases are also involved in virulence. Filamentous fungi genomes exhibit a higher number of chitinase-coding genes than bacteria or yeasts. The survey performed in the M. anisopliae genome has successfully identified 24 genes belonging to glycoside hydrolase family 18, including three previously experimentally determined chitinase-coding genes named chit1, chi2 and chi3. These putative chitinases were classified based on domain organization and phylogenetic analysis into the previously described A, B and C chitinase subgroups, and into a new subgroup D. Moreover, three GH18 proteins could be classified as putative endo-N-acetyl-β-D-glucosaminidases, enzymes that are associated with deglycosylation and were therefore assigned to a new subgroup E. The transcriptional profile of the GH18 genes was evaluated by qPCR with RNA extracted from eight culture conditions, representing different stages of development or different nutritional states. The transcripts from the GH18 genes were detected in at least one of the different M. anisopliae developmental stages, thus validating the proposed genes. Moreover, not all members from the same chitinase subgroup presented equal patterns of transcript expression under the eight distinct conditions studied. The determination of M. anisopliae chitinases and ENGases and a more detailed study concerning the enzymes

  8. Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Hui eWei

    2014-04-01

    Full Text Available The anaerobic, thermophilic bacterium, Clostridium thermocellum, secretes multi-protein enzyme complexes, termed cellulosomes, which synergistically interact with the microbial cell surface and efficiently disassemble plant cell wall biomass. C. thermocellum has also been considered a potential consolidated bioprocessing (CBP organism due to its ability to produce the biofuel products, hydrogen and ethanol. We found that C. thermocellum fermentation of pretreated yellow poplar (PYP produced 30% and 39% of ethanol and hydrogen product concentrations, respectively, compared to fermentation of cellobiose. RNA-seq was used to analyze the transcriptional profiles of these cells. The PYP-grown cells taken for analysis at the late stationary phase showed 1211 genes up-regulated and 314 down-regulated by more than 2-fold compared to the cellobiose-grown cells. These affected genes cover a broad spectrum of specific functional categories. The transcriptional analysis was further validated by sub-proteomics data taken from the literature; as well as by quantitative reverse transcription-PCR (qRT-PCR analyses of selected genes. Specifically, 47 cellulosomal protein-encoding genes, genes for 4 pairs of SigI-RsgI for polysaccharide sensing, 7 cellodextrin ABC transporter genes, and a set of NAD(PH hydogenase and alcohol dehydrogenase genes were up-regulated for cells growing on PYP compared to cellobiose. These genes could be potential candidates for future studies aimed at gaining insight into the regulatory mechanism of this organism as well as for improvement of C. thermocellum in its role as a CBP organism.

  9. Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L.

    Science.gov (United States)

    Malik, Aubid Hussain; Ashraf, Nasheeman

    2017-02-28

    Crocus sativus belongs to Iridaceae family and is the only plant species which produces apocarotenoids like crocin, picrocrocin, and safranal in significant quantities. Besides their organoleptic properties, Crocus apocarotenoids have been found to possess remarkable pharmacological potential. Although apocarotenoid biosynthetic pathway has been worked out to a great degree, but the mechanism that regulates the tissue and developmental stage-specific production of Crocus apocarotenoids is not known. To identify the genes regulating apocarotenoid biosynthesis in Crocus, transcriptome wide identification of zinc-finger transcription factors was undertaken. 81 zinc-finger transcription factors were identified which grouped into eight subfamilies. C2H2, C3H, and AN20/AN1 were the major subfamilies with 29, 20, and 14 members, respectively. Expression profiling revealed CsSAP09 as a potential candidate for regulation of apocarotenoid biosynthesis. CsSAP09 was found to be highly expressed in stigma at anthesis stage corroborating with the accumulation pattern of apocarotenoids. CsSAP09 was nuclear localized and activated reporter gene transcription in yeast. It was highly induced in response to oxidative, salt and dehydration stresses, ABA and methyl jasmonate. Furthermore, upstream region of CsSAP09 was found to contain stress and light responsive elements. To our knowledge, this is the first report on the study of a gene family in C. sativus and may provide basic insights into the putative role of zinc finger genes. It may also serve as a valuable resource for functional characterization of these genes aimed towards unraveling their role in regulation of apocarotenoid biosynthesis.

  10. Transcriptional Profiling of Vibrio parahaemolyticus exsA reveals a complex activation network for type III secretion

    Directory of Open Access Journals (Sweden)

    Aaron C. Liu

    2015-10-01

    Full Text Available Vibrio parahaemolyticus (Vp is a marine halophilic bacterium that is commonly associated with oysters and shrimp. Human consumption of contaminated shellfish can result in Vp mediated gastroenteritis and severe diarrheal disease. Vp encodes two type 3 secretion systems (T3SS-I and T3SS-II that have been functionally implicated in cytotoxicity and enterotoxicity respectively. In this study, we profiled protein secretion and temporal promoter activities associated with exsA and exsB gene expression. exsA is an AraC-like transcriptional activator that is critical for activating multiple operons that encode T3SS-1 genes, whereas exsB is thought to encode an outer membrane pilotin component for T3SS-1. The exsBA genetic locus has two predicted promoter elements. The predicted exsB and exsA promoters were individually cloned upstream of luxCDABE genes in reporter plasmid constructs allowing for in situ, real-time quantitative light emission measurements under many growth conditions. Low calcium growth conditions supported maximal exsB and exsA promoter activation. exsB promoter activity exhibited high basal activity and resulted in an exsBA co-transcript. Furthermore, a separate proximal exsA promoter showed initial low basal activity yet eventually exceeded that of exsB and reached maximal levels after 2.5 hours corresponding to an entry into early log phase. exsA promoter activity was significantly higher at 30oC than 37oC, which also coincided with increased secretion levels of specific T3SS-1 effector proteins. Lastly, bioinformatic analyses identified a putative expanded ExsA binding motif for multiple transcriptional operons. These findings suggest a two wave model of Vp T3SS-I induction that integrates two distinct promoter elements and environmental signals into a complex ExsA activation framework.

  11. Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus Metarhizium anisopliae.

    Directory of Open Access Journals (Sweden)

    Ângela Junges

    Full Text Available Fungal chitin metabolism involves diverse processes such as metabolically active cell wall maintenance, basic nutrition, and different aspects of virulence. Chitinases are enzymes belonging to the glycoside hydrolase family 18 (GH18 and 19 (GH19 and are responsible for the hydrolysis of β-1,4-linkages in chitin. This linear homopolymer of N-acetyl-β-D-glucosamine is an essential constituent of fungal cell walls and arthropod exoskeletons. Several chitinases have been directly implicated in structural, morphogenetic, autolytic and nutritional activities of fungal cells. In the entomopathogen Metarhizium anisopliae, chitinases are also involved in virulence. Filamentous fungi genomes exhibit a higher number of chitinase-coding genes than bacteria or yeasts. The survey performed in the M. anisopliae genome has successfully identified 24 genes belonging to glycoside hydrolase family 18, including three previously experimentally determined chitinase-coding genes named chit1, chi2 and chi3. These putative chitinases were classified based on domain organization and phylogenetic analysis into the previously described A, B and C chitinase subgroups, and into a new subgroup D. Moreover, three GH18 proteins could be classified as putative endo-N-acetyl-β-D-glucosaminidases, enzymes that are associated with deglycosylation and were therefore assigned to a new subgroup E. The transcriptional profile of the GH18 genes was evaluated by qPCR with RNA extracted from eight culture conditions, representing different stages of development or different nutritional states. The transcripts from the GH18 genes were detected in at least one of the different M. anisopliae developmental stages, thus validating the proposed genes. Moreover, not all members from the same chitinase subgroup presented equal patterns of transcript expression under the eight distinct conditions studied. The determination of M. anisopliae chitinases and ENGases and a more detailed study

  12. A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Marc W Schmid

    Full Text Available The acquisition of distinct cell fates is central to the development of multicellular organisms and is largely mediated by gene expression patterns specific to individual cells and tissues. A spatially and temporally resolved analysis of gene expression facilitates the elucidation of transcriptional networks linked to cellular identity and function. We present an approach that allows cell type-specific transcriptional profiling of distinct target cells, which are rare and difficult to access, with unprecedented sensitivity and resolution. We combined laser-assisted microdissection (LAM, linear amplification starting from <1 ng of total RNA, and RNA-sequencing (RNA-Seq. As a model we used the central cell of the Arabidopsis thaliana female gametophyte, one of the female gametes harbored in the reproductive organs of the flower. We estimated the number of expressed genes to be more than twice the number reported previously in a study using LAM and ATH1 microarrays, and identified several classes of genes that were systematically underrepresented in the transcriptome measured with the ATH1 microarray. Among them are many genes that are likely to be important for developmental processes and specific cellular functions. In addition, we identified several intergenic regions, which are likely to be transcribed, and describe a considerable fraction of reads mapping to introns and regions flanking annotated loci, which may represent alternative transcript isoforms. Finally, we performed a de novo assembly of the transcriptome and show that the method is suitable for studying individual cell types of organisms lacking reference sequence information, demonstrating that this approach can be applied to most eukaryotic organisms.

  13. Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum).

    Science.gov (United States)

    Zhong, Daibin; Wang, Mei-Hui; Pai, Aditi; Yan, Guiyun

    2013-05-01

    The flour beetle, Tribolium castaneum, is an intermediate host for the tapeworm Hymenolepis diminuta and has become an important genetic model to explore immune responses to parasite infection in insect hosts. The present study examined the immune responses to tapeworm infection in resistant (TIW1) and susceptible (cSM) strains of the red flour beetle, T. castaneum, using real-time quantitative reverse transcription PCR on 29 immunity-related genes that exhibit antimicrobial properties. Thirteen of the 29 genes showed constitutive differences in expression between the two strains. Fourteen to fifteen of the 29 genes exhibited significant differences in transcription levels when beetles were challenged with tapeworm parasite in the resistant and susceptible strains. Nine genes (GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2 and serpin29) in cSM and 13 genes (lysozyme2, proPO1, GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2, proPO2/3, PGRP-LE and PGRP-SB) in TIW1 were up-regulated by infections or showed parasite infection-induced expression. Seven genes (attacin2, coleoptericin1, defensin1, defensin2, lysozyme2, PGRP-SA and PGRP-SB) were more than 10 folds higher in the resistant TIW1 strain than in the susceptible cSM strain after exposure to tapeworm parasites. This study demonstrated the effects of genetic background, the transcription profile to parasite infection, and identified the immunity-related genes that were significantly regulated by the infection of tapeworms in Tribolium beetles.

  14. Transcriptional profiling of suberoylanilide hydroxamic acid (SAHA regulated genes in mineralizing dental pulp cells at early and late time points

    Directory of Open Access Journals (Sweden)

    Henry F. Duncan

    2015-09-01

    Full Text Available Dental pulp tissue can be damaged by a range of irritants, however, if the irritation is removed and/or the tooth is adequately restored, pulp regeneration is possible (Mjör and Tronstad, 1974 [1]. At present, dental restorative materials limit healing by impairing mineralization and repair processes and as a result new biologically-based materials are being developed (Ferracane et al., 2010 [2]. Previous studies have highlighted the benefit of epigenetic modification by histone deacetylase inhibitor (HDACi application to dental pulp cells (DPCs, which induces changes to chromatin architecture, promoting gene expression and cellular-reparative events (Duncan et al., 2013 [3]; Paino et al., 2014 [4]. In this study a genome-wide transcription profiling in epigenetically-modified mineralizing primary DPC cultures was performed, at relatively early and late time-points, to identify differentially regulated transcripts that may provide novel therapeutic targets for use in restorative dentistry. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO: GSE67175.

  15. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    Aquino-Ferreira Roseli

    2010-02-01

    Full Text Available Abstract Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.

  16. Phenotypic and transcriptional profiling in Entamoeba histolytica reveal costs to fitness and adaptive responses associated with metronidazole resistance

    Directory of Open Access Journals (Sweden)

    Gil M Penuliar

    2015-05-01

    Full Text Available Antimicrobial chemotherapy is critical in the fight against infectious diseases caused by Entamoeba histolytica. Among the drugs available for the treatment of amebiasis, metronidazole (MTZ is considered the drug of choice. Recently, in vitro studies have described MTZ resistance and the potential mechanisms involved. Costs to fitness and adaptive responses associated with resistance, however, have not been investigated. In this study we generated an HM-1 derived strain resistant to 12 µM MTZ (MTZR. We examined its phenotypic and transcriptional profile to determine the consequences and mRNA level changes associated with MTZ resistance. Our results indicated increased cell size and granularity, and decreased rates in cell division, adhesion, phagocytosis, cytopathogenicity, and glucose consumption. Transcriptome analysis revealed 142 differentially expressed genes in MTZR. In contrast to other MTZ resistant parasites, MTZR did not down-regulate pyruvate:ferredoxin oxidoreductase, but showed increased expression of genes for a hypothetical protein (HP1 and several iron-sulfur flavoproteins, and downregulation of genes for leucine-rich proteins. Fisher’s exact test showed 24 significantly enriched GO terms in MTZR, and a 3-way comparison of modulated genes in MTZR against those of MTZR cultured without MTZ and HM-1 cultured with MTZ, showed that 88 genes were specific to MTZR. Overall, our findings suggested that MTZ resistance is associated with specific transcriptional changes and decreased parasite virulence.

  17. Phenotypic and transcriptional profiling in Entamoeba histolytica reveal costs to fitness and adaptive responses associated with metronidazole resistance

    Science.gov (United States)

    Penuliar, Gil M.; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2015-01-01

    Antimicrobial chemotherapy is critical in the fight against infectious diseases caused by Entamoeba histolytica. Among the drugs available for the treatment of amebiasis, metronidazole (MTZ) is considered the drug of choice. Recently, in vitro studies have described MTZ resistance and the potential mechanisms involved. Costs to fitness and adaptive responses associated with resistance, however, have not been investigated. In this study we generated an HM-1 derived strain resistant to 12 μM MTZ (MTZR). We examined its phenotypic and transcriptional profile to determine the consequences and mRNA level changes associated with MTZ resistance. Our results indicated increased cell size and granularity, and decreased rates in cell division, adhesion, phagocytosis, cytopathogenicity, and glucose consumption. Transcriptome analysis revealed 142 differentially expressed genes in MTZR. In contrast to other MTZ resistant parasites, MTZR did not down-regulate pyruvate:ferredoxin oxidoreductase, but showed increased expression of genes for a hypothetical protein (HP1) and several iron-sulfur flavoproteins, and downregulation of genes for leucine-rich proteins. Fisher's exact test showed 24 significantly enriched GO terms in MTZR, and a 3-way comparison of modulated genes in MTZR against those of MTZR cultured without MTZ and HM-1 cultured with MTZ, showed that 88 genes were specific to MTZR. Overall, our findings suggested that MTZ resistance is associated with specific transcriptional changes and decreased parasite virulence. PMID:25999919

  18. Alternative exon usage creates novel transcript variants of tumor suppressor SHREW-1 gene with differential tissue expression profile

    Science.gov (United States)

    Klemmt, Petra A. B.; Resch, Eduard; Smyrek, Isabell; Engels, Knut; Stelzer, Ernst H. K.

    2016-01-01

    ABSTRACT Shrew-1, also called AJAP1, is a transmembrane protein associated with E-cadherin-mediated adherence junctions and a putative tumor suppressor. Apart from its interaction with β-catenin and involvement in E-cadherin internalization, little structure or function information exists. Here we explored shrew-1 expression during postnatal differentiation of mammary gland as a model system. Immunohistological analyses with antibodies against either the extracellular or the cytoplasmic domains of shrew-1 consistently revealed the expression of full-length shrew-1 in myoepithelial cells, but only part of it in luminal cells. While shrew-1 localization remained unaltered in myoepithelial cells, nuclear localization occurred in luminal cells during lactation. Based on these observations, we identified two unknown shrew-1 transcript variants encoding N-terminally truncated proteins. The smallest shrew-1 protein lacks the extracellular domain and is most likely the only variant present in luminal cells. RNA analyses of human tissues confirmed that the novel transcript variants of shrew-1 exist in vivo and exhibit a differential tissue expression profile. We conclude that our findings are essential for the understanding and interpretation of future functional and interactome analyses of shrew-1 variants. PMID:27870635

  19. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Ludovic Tailleux

    Full Text Available BACKGROUND: Transcriptional profiling using microarrays provides a unique opportunity to decipher host pathogen cross-talk on the global level. Here, for the first time, we have been able to investigate gene expression changes in both Mycobacterium tuberculosis, a major human pathogen, and its human host cells, macrophages and dendritic cells. METHODOLOGY/PRINCIPAL FINDINGS: In addition to common responses, we could identify eukaryotic and microbial transcriptional signatures that are specific to the cell type involved in the infection process. In particular M. tuberculosis shows a marked stress response when inside dendritic cells, which is in accordance with the low permissivity of these specialized phagocytes to the tubercle bacillus and to other pathogens. In contrast, the mycobacterial transcriptome inside macrophages reflects that of replicating bacteria. On the host cell side, differential responses to infection in macrophages and dendritic cells were identified in genes involved in oxidative stress, intracellular vesicle trafficking and phagosome acidification. CONCLUSIONS/SIGNIFICANCE: This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments.

  20. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells.

    Science.gov (United States)

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2016-10-04

    High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Transcription profiling of the Neurospora crassa response to a group of synthetic (thioxanthones and a natural acetophenone

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-06-01

    Full Text Available Xanthones are a class of heterocyclic compounds characterized by a dibenzo-γ-pyrone nucleus. Analysis of their mode of action in cells, namely uncovering alterations in gene expression, is important because these compounds have potential therapeutic applications. Thus, we studied the transcriptional response of the filamentous fungus Neurospora crassa to a group of synthetic (thioxanthone derivatives with antitumor activity using high throughput RNA sequencing. The induction of ABC transporters in N. crassa, particularly atrb and cdr4, is a common consequence of the treatment with xanthones. In addition, we found a group of genes repressed by all of the tested (thioxanthone derivatives, that are evocative of genes downregulated during oxidative stress. The transcriptional response of N. crassa treated with an acetophenone isolated from the soil fungus Neosartorya siamensis shares some features with the (thioxanthone-elicited gene expression profiles. Two of the (thioxanthone derivatives and the N. siamensis-derived acetophenone inhibited the growth of N. crassa. Our work also provides framework datasets that may orientate future studies on the mechanisms of action of some groups of xanthones.

  2. Simultaneous Transcriptional and Epigenomic Profiling from Specific Cell Types within Heterogeneous Tissues In Vivo

    Directory of Open Access Journals (Sweden)

    Hyun Cheol Roh

    2017-01-01

    Full Text Available Epigenomic mechanisms direct distinct gene expression programs for different cell types. Various in vivo tissues have been subjected to epigenomic analysis; however, these studies have been limited by cellular heterogeneity, resulting in composite gene expression and epigenomic profiles. Here, we introduce “NuTRAP,” a transgenic mouse that allows simultaneous isolation of cell-type-specific translating mRNA and chromatin from complex tissues. Using NuTRAP, we successfully characterize gene expression and epigenomic states of various adipocyte populations in vivo, revealing significant differences compared to either whole adipose tissue or in vitro adipocyte cell lines. We find that chromatin immunoprecipitation sequencing (ChIP-seq using NuTRAP is highly efficient, scalable, and robust with even limited cell input. We further demonstrate the general utility of NuTRAP by analyzing hepatocyte-specific epigenomic states. The NuTRAP mouse is a resource that provides a powerful system for cell-type-specific gene expression and epigenomic profiling.

  3. Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program.

    Directory of Open Access Journals (Sweden)

    Dunja Knapp

    Full Text Available Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression - early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation.

  4. Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of Ramie (Boehmeria nivea L. Gaud.

    Directory of Open Access Journals (Sweden)

    Xing Huang

    Full Text Available In vitro organogenesis, one of the most common pathways leading to in vitro plant regeneration, is widely used in biotechnology and the fundamental study of plant biology. Although previous studies have constructed a complex regulatory network model for Arabidopsis in vitro organogenesis, no related study has been reported in ramie. To generate more complete observations of transcriptome content and dynamics during ramie in vitro organogenesis, we constructed a reference transcriptome library and ten digital gene expression (DGE libraries for illumina sequencing. Approximately 111.34 million clean reads were obtained for transcriptome and the DGE libraries generated between 13.5 and 18.8 million clean reads. De novo assembly produced 43,222 unigenes and a total of 5,760 differentially expressed genes (DEGs were filtered. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database, 26 auxin related and 11 cytokinin related DEGs were selected for qRT-PCR validation of two ramie cultivars, which had high (Huazhu No. 5 or extremely low (Dazhuhuangbaima shoot regeneration abilities. The results revealed differing regulation patterns of auxin and cytokinin in different genotypes. Here we report the first genome-wide gene expression profiling of in vitro organogenesis in ramie and provide an overview of transcription and phytohormone regulation during the process. Furthermore, the auxin and cytokinin related genes have distinct expression patterns in two ramie cultivars with high or extremely low shoot regeneration ability, which has given us a better understanding of the in vitro organogenesis mechanism. This result will provide a foundation for future phytohormone research and lead to improvements of the ramie regeneration system.

  5. Transcriptome-Wide Identification and Expression Profiling Analysis of Chrysanthemum Trihelix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Aiping Song

    2016-02-01

    Full Text Available Trihelix transcription factors are thought to feature a typical DNA-binding trihelix (helix-loop-helix-loop-helix domain that binds specifically to the GT motif, a light-responsive DNA element. Members of the trihelix family are known to function in a number of processes in plants. Here, we characterize 20 trihelix family genes in the important ornamental plant chrysanthemum (Chrysanthemum morifolium. Based on transcriptomic data, 20 distinct sequences distributed across four of five groups revealed by a phylogenetic tree were isolated and amplified. The phylogenetic analysis also identified four pairs of orthologous proteins shared by Arabidopsis and chrysanthemum and five pairs of paralogous proteins in chrysanthemum. Conserved motifs in the trihelix proteins shared by Arabidopsis and chrysanthemum were analyzed using MEME, and further bioinformatic analysis revealed that 16 CmTHs can be targeted by 20 miRNA families and that miR414 can target 9 CmTHs. qPCR results displayed that most chrysanthemum trihelix genes were highly expressed in inflorescences, while 20 CmTH genes were in response to phytohormone treatments and abiotic stresses. This work improves our understanding of the various functions of trihelix gene family members in response to hormonal stimuli and stress.

  6. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles.

    Directory of Open Access Journals (Sweden)

    Raúl Castanera

    2016-06-01

    Full Text Available Transposable elements (TEs are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.

  7. Transcriptional profiling of the parr-smolt transformation in Atlantic salmon

    Science.gov (United States)

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of smolts compared to parr. Smolts had higher levels of gill Na+/K+-ATPase activity, plasma cortisol and plasma thyroid hormones relative to parr. Across all five tissues, stringent microarray analyses identified 48 features that were differentially expressed in smolts compared to parr. Using a less stringent method we found 477 features that were differentially expressed at least 1.2-fold in smolts, including 172 features in the gill. Smolts had higher mRNA levels of genes involved in transcription, protein biosynthesis and folding, electron transport, oxygen transport, and sensory perception and lower mRNA levels for genes involved in proteolysis. Quantitative RT-PCR was used to confirm differential expression in select genes identified by microarray analyses and to quantify expression of other genes known to be involved in smolting. This study expands our understanding of the molecular processes that underlie smolting in Atlantic salmon and identifies genes for further investigation.

  8. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Muazzez Gürgan

    2015-06-01

    Full Text Available Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C and heat (42 °C stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F. The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS bacteria under temperature stress.

  9. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    Science.gov (United States)

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study.

  10. Pathophysiological defects and transcriptional profiling in the RBM20-/- rat model.

    Directory of Open Access Journals (Sweden)

    Wei Guo

    Full Text Available Our recent study indicated that RNA binding motif 20 (Rbm20 alters splicing of titin and other genes. The current goals were to understand how the Rbm20(-/- rat is related to physiological, structural, and molecular changes leading to heart failure. We quantitatively and qualitatively compared the expression of titin isoforms between Rbm20(-/- and wild type rats by real time RT-PCR and SDS agarose electrophoresis. Isoform changes were linked to alterations in transcription as opposed to translation of titin messages. Reduced time to exhaustion with running in knockout rats also suggested a lower maximal cardiac output or decreased skeletal muscle performance. Electron microscopic observations of the left ventricle from knockout animals showed abnormal myofibril arrangement, Z line streaming, and lipofuscin deposits. Mutant skeletal muscle ultrastructure appeared normal. The results suggest that splicing alterations in Rbm20(-/- rats resulted in pathogenic changes in physiology and cardiac ultrastructure. Secondary changes were observed in message levels for many genes whose splicing was not directly affected. Gene and protein expression data indicated the activation of pathophysiological and muscle stress-activated pathways. These data provide new insights on Rbm20 function and how its malfunction leads to cardiomyopathy.

  11. Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling

    Directory of Open Access Journals (Sweden)

    Moolenaar Wouter H

    2008-08-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA is a lipid mediator that acts through specific G protein-coupled receptors to stimulate the proliferation, migration and survival of many cell types. LPA signaling has been implicated in development, wound healing and cancer. While LPA signaling pathways have been studied extensively, it remains unknown how LPA affects global gene expression in its target cells. Results We have examined the temporal program of global gene expression in quiescent mouse embryonic fibroblasts stimulated with LPA using 32 k oligonucleotide microarrays. In addition to genes involved in growth stimulation and cytoskeletal reorganization, LPA induced many genes that encode secreted factors, including chemokines, growth factors, cytokines, pro-angiogenic and pro-fibrotic factors, components of the plasminogen activator system and metalloproteases. Strikingly, epidermal growth factor induced a broadly overlapping expression pattern, but some 7% of the genes (105 out of 1508 transcripts showed differential regulation by LPA. The subset of LPA-specific genes was enriched for those associated with cytoskeletal remodeling, in keeping with LPA's ability to regulate cell shape and motility. Conclusion This study highlights the importance of LPA in programming fibroblasts not only to proliferate and migrate but also to produce many paracrine mediators of tissue remodeling, angiogenesis, inflammation and tumor progression. Furthermore, our results show that G protein-coupled receptors and receptor tyrosine kinases can signal independently to regulate broadly overlapping sets of genes in the same cell type.

  12. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles

    Science.gov (United States)

    Castanera, Raúl; López-Varas, Leticia; Borgognone, Alessandra; LaButti, Kurt; Lapidus, Alla; Schmutz, Jeremy; Grimwood, Jane; Pisabarro, Antonio G.; Grigoriev, Igor V.; Ramírez, Lucía

    2016-01-01

    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation. PMID:27294409

  13. Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol.

    Science.gov (United States)

    Pereira-Caro, G; Mateos, R; Traka, M H; Bacon, J R; Bongaerts, R; Sarriá, B; Bravo, L; Kroon, P A

    2013-06-01

    The anticarcinogenic activity of hydroxytyrosyl ethyl ether (HTy-Et) compared to its precursor hydroxytyrosol (HTy) has been studied in human Caco-2 colon adenocarcinoma cells. 451 and 977 genes were differentially expressed in Caco-2 cells exposed to HTy or HTy-Et for 24h, respectively, compared with untreated cells (P<0.005; FDR=0), using Affymetrix microarrays. Results showed that both HTy and HTy-Et inhibited cell proliferation and arrested the cell cycle by up-regulating p21 and CCNG2 and down-regulating CCNB1 protein expression. HTy and HTy-Et also altered the transcription of specific genes involved in apoptosis, as suggested by the up-regulation of BNIP3, BNIP3L, PDCD4 and ATF3 and the activation of caspase-3. Moreover, these polyphenols up-regulated xenobiotic metabolizing enzymes UGT1A10 and CYP1A1, enhancing carcinogen detoxification. In conclusion, these results highlight that HTy and its derivative HTy-Et modulate molecular mechanisms involved in colon cancer, with HTy-Et being more effective than HTy.

  14. Comparative Transcriptional Profiling of Two Contrasting Barley Genotypes under Salinity Stress during the Seedling Stage

    Directory of Open Access Journals (Sweden)

    Runhong Gao

    2013-01-01

    Full Text Available Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype and Hua 30 (a salt sensitive genotype in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley.

  15. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres.

    Directory of Open Access Journals (Sweden)

    Karla D Passalacqua

    Full Text Available BACKGROUND: Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains. METHODOLOGY/PRINCIPAL FINDINGS: Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group--a pneumonia-causing B. cereus strain (G9241, an attenuated strain of B. anthracis (Sterne 34F(2, and an avirulent B. cereus strain (10987--during exponential growth in two distinct atmospheric environments: 14% CO(2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO(2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment. CONCLUSIONS/SIGNIFICANCE: We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study

  16. Single-cell transcript profiling of barley attacked by the powdery mildew fungus

    DEFF Research Database (Denmark)

    Gjetting, Torben; Hagedorn, Peter; Schweizer, Patrick

    2007-01-01

    attacked at the same time may resist fungal penetration. To date, the mixed cellular responses seen even in susceptible host leaves have made it difficult to relate induced changes in gene expression to resistance or susceptibility in bulk leaf samples. By microextraction of cell-specific m......RNA and subsequent cDNA array analysis, we have successfully obtained separate gene expression profiles for specific mildew-resistant and -infected barley cells. Thus, for the first time, it is possible to identify genes that are specifically regulated in infected cells and, presumably, involved in fungal...... establishment. Further, although much is understood about the genetic basis of effective papilla resistance associated with mutant mlo barley, we provide here the first evidence for gene regulation associated with effective papilla-based nonspecific resistance expressed in nominally "susceptible" wild...

  17. Transcriptional profiling of mycobacterial antigen-induced responses in infants vaccinated with BCG at birth

    Directory of Open Access Journals (Sweden)

    Hill Adrian VS

    2009-02-01

    Full Text Available Abstract Background Novel tuberculosis (TB vaccines recently tested in humans have been designed to boost immunity induced by the current vaccine, Mycobacterium bovis Bacille Calmette-Guérin (BCG. Because BCG vaccination is used extensively in infants, this population group is likely to be the first in which efficacy trials of new vaccines will be conducted. However, our understanding of the complexity of immunity to BCG in infants is inadequate, making interpretation of vaccine-induced immune responses difficult. Methods To better understand BCG-induced immunity, we performed gene expression profiling in five 10-week old infants routinely vaccinated with BCG at birth. RNA was extracted from 12 hour BCG-stimulated or purified protein derivative of tuberculin (PPD-stimulated PBMC, isolated from neonatal blood collected 10 weeks after vaccination. RNA was hybridised to the Sentrix® HumanRef-8 Expression BeadChip (Illumina to measure expression of >16,000 genes. Results We found that ex vivo stimulation of PBMC with PPD and BCG induced largely similar gene expression profiles, except that BCG induced greater macrophage activation. The peroxisome proliferator-activated receptor (PPAR signaling pathway, including PPAR-γ, involved in activation of the alternative, anti-inflammatory macrophage response was down-regulated following stimulation with both antigens. In contrast, up-regulation of genes associated with the classic, pro-inflammatory macrophage response was noted. Further analysis revealed a decrease in the expression of cell adhesion molecules (CAMs, including integrin alpha M (ITGAM, which is known to be important for entry of mycobacteria into the macrophage. Interestingly, more leukocyte genes were down-regulated than up-regulated. Conclusion Our results suggest that a combination of suppressed and up-regulated genes may be key in determining development of protective immunity to TB induced by vaccination with BCG.

  18. Transcriptional profiles of glutathione-S-Transferase isoforms, Cyp, and AOE genes in atrazine-exposed zebrafish embryos.

    Science.gov (United States)

    Glisic, Branka; Hrubik, Jelena; Fa, Svetlana; Dopudj, Nela; Kovacevic, Radmila; Andric, Nebojsa

    2016-02-01

    Glutathione-S-transferase (GST) superfamily consists of multiple members involved in xenobiotic metabolism. Expressional pattern of the GST isoforms in adult fish has been used as a biomarker of exposure to environmental chemicals. However, GST transcriptional responses vary across organs, thus requiring a cross-tissue examination of multiple mRNAs for GST profiling in an animal after chemical exposure. Zebrafish embryos express all GST isoforms as adult fish and could therefore represent an alternative model for identification of biomarkers of exposure. To evaluate such a possibility, we studied a set of cytosolic and microsomal GST isoform-specific expression profiles in the zebrafish embryos after exposure to atrazine, a widely used herbicide. Expression of the GST isoforms was compared with that of CYP genes involved in the phase I of xenobiotic metabolism and antioxidant enzyme (AOE) genes. Using quantitative real-time PCR, we showed dynamic changes in the expressional pattern of twenty GST isoforms, cyp1a, cyp3a65, ahr2, and four AOEs in early development of zebrafish. Acute (48 and 72 h) exposure of 24 h-old embryos to atrazine, from environmentally relevant (0.005 mg/L) to high (40 mg/L) concentrations, caused a variety of transient, albeit minor changes (atrazine (5 and 40 mg/L). In summary, an analysis of the response of multiple systems in the zebrafish embryos provided a comprehensive understanding of atrazine toxicity and its potential impact on biological processes.

  19. Heat shock transcription factors in banana: genome-wide characterization and expression profile analysis during development and stress response

    Science.gov (United States)

    Wei, Yunxie; Hu, Wei; Xia, Feiyu; Zeng, Hongqiu; Li, Xiaolin; Yan, Yu; He, Chaozu; Shi, Haitao

    2016-01-01

    Banana (Musa acuminata) is one of the most popular fresh fruits. However, the rapid spread of fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) in tropical areas severely affected banana growth and production. Thus, it is very important to identify candidate genes involved in banana response to abiotic stress and pathogen infection, as well as the molecular mechanism and possible utilization for genetic breeding. Heat stress transcription factors (Hsfs) are widely known for their common involvement in various abiotic stresses and plant-pathogen interaction. However, no MaHsf has been identified in banana, as well as its possible role. In this study, genome-wide identification and further analyses of evolution, gene structure and conserved motifs showed closer relationship of them in every subgroup. The comprehensive expression profiles of MaHsfs revealed the tissue- and developmental stage-specific or dependent, as well as abiotic and biotic stress-responsive expressions of them. The common regulation of several MaHsfs by abiotic and biotic stress indicated the possible roles of them in plant stress responses. Taken together, this study extended our understanding of MaHsf gene family and identified some candidate MaHsfs with specific expression profiles, which may be used as potential candidates for genetic breeding in banana. PMID:27857174

  20. Integrative miRNA-mRNA profiling of adipose tissue unravels transcriptional circuits induced by sleep fragmentation.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Obstructive sleep apnea (OSA is a prevalent condition and strongly associated with metabolic disorders. Sleep fragmentation (SF is a major consequence of OSA, but its contribution to OSA-related morbidities is not known. We hypothesized that SF causes specific perturbations in transcriptional networks of visceral fat cells, leading to systemic metabolic disturbances. We simultaneously profiled visceral adipose tissue mRNA and miRNA expression in mice exposed to 6 hours of SF during sleep, and developed a new computational framework based on gene set enrichment and network analyses to merge these data. This approach leverages known gene product interactions and biologic pathways to interrogate large-scale gene expression profiling data. We found that SF induced the activation of several distinct pathways, including those involved in insulin regulation and diabetes. Our integrative methodology identified putative controllers and regulators of the metabolic response during SF. We functionally validated our findings by demonstrating altered glucose and lipid homeostasis in sleep-fragmented mice. This is the first study to link sleep fragmentation with widespread disruptions in visceral adipose tissue transcriptome, and presents a generalizable approach to integrate mRNA-miRNA information for systematic mapping of regulatory networks.

  1. Transcriptional profiling of the circulating immune response to lassa virus in an aerosol model of exposure.

    Directory of Open Access Journals (Sweden)

    Shikha Malhotra

    Full Text Available Lassa virus (LASV is a significant human pathogen that is endemic to several countries in West Africa. Infection with LASV leads to the development of hemorrhagic fever in a significant number of cases, and it is estimated that thousands die each year from the disease. Little is known about the complex immune mechanisms governing the response to LASV or the genetic determinants of susceptibility and resistance to infection. In the study presented here, we have used a whole-genome, microarray-based approach to determine the temporal host response in the peripheral blood mononuclear cells (PBMCs of non-human primates (NHP following aerosol exposure to LASV. Sequential sampling over the entire disease course showed that there are strong transcriptional changes of the immune response to LASV exposure, including the early induction of interferon-responsive genes and Toll-like receptor signaling pathways. However, this increase in early innate responses was coupled with a lack of pro-inflammatory cytokine response in LASV exposed NHPs. There was a distinct lack of cytokines such as IL1β and IL23α, while immunosuppressive cytokines such as IL27 and IL6 were upregulated. Comparison of IRF/STAT1-stimulated gene expression with the viral load in LASV exposed NHPs suggests that mRNA expression significantly precedes viremia, and thus might be used for early diagnostics of the disease. Our results provide a transcriptomic survey of the circulating immune response to hemorrhagic LASV exposure and provide a foundation for biomarker identification to allow clinical diagnosis of LASV infection through analysis of the host response.

  2. Transcriptional profiling of the circulating immune response to lassa virus in an aerosol model of exposure.

    Science.gov (United States)

    Malhotra, Shikha; Yen, Judy Y; Honko, Anna N; Garamszegi, Sara; Caballero, Ignacio S; Johnson, Joshua C; Mucker, Eric M; Trefry, John C; Hensley, Lisa E; Connor, John H

    2013-01-01

    Lassa virus (LASV) is a significant human pathogen that is endemic to several countries in West Africa. Infection with LASV leads to the development of hemorrhagic fever in a significant number of cases, and it is estimated that thousands die each year from the disease. Little is known about the complex immune mechanisms governing the response to LASV or the genetic determinants of susceptibility and resistance to infection. In the study presented here, we have used a whole-genome, microarray-based approach to determine the temporal host response in the peripheral blood mononuclear cells (PBMCs) of non-human primates (NHP) following aerosol exposure to LASV. Sequential sampling over the entire disease course showed that there are strong transcriptional changes of the immune response to LASV exposure, including the early induction of interferon-responsive genes and Toll-like receptor signaling pathways. However, this increase in early innate responses was coupled with a lack of pro-inflammatory cytokine response in LASV exposed NHPs. There was a distinct lack of cytokines such as IL1β and IL23α, while immunosuppressive cytokines such as IL27 and IL6 were upregulated. Comparison of IRF/STAT1-stimulated gene expression with the viral load in LASV exposed NHPs suggests that mRNA expression significantly precedes viremia, and thus might be used for early diagnostics of the disease. Our results provide a transcriptomic survey of the circulating immune response to hemorrhagic LASV exposure and provide a foundation for biomarker identification to allow clinical diagnosis of LASV infection through analysis of the host response.

  3. Multiparametric analysis, sorting, and transcriptional profiling of plant protoplasts and nuclei according to cell type.

    Science.gov (United States)

    Galbraith, David W; Janda, Jaroslav; Lambert, Georgina M

    2011-01-01

    Flow cytometry has been employed for the analysis of higher plants for approximately the last 30 years. For the angiosperms, ∼500,000 species, itself a daunting number, parametric measurements enabled through the use of flow cytometers started with basic descriptors of the individual cells and their contents, and have both inspired the development of novel cytometric methods that subsequently have been applied to organisms within other kingdoms of life, and adopted cytometric methods devised for other species, particularly mammals. Higher plants offer unique challenges in terms of flow cytometric analysis, notably the facts that their organs and tissues are complex three-dimensional assemblies of different cell types, and that their individual cells are, in general, larger than those of mammals.This chapter provides an overview of the general types of parametric measurement that have been applied to plants, and provides detailed methods for selected examples based on the plant model Arabidopsis thaliana. These illustrate the use of flow cytometry for the analysis of protoplasts and nuclear DNA contents (genome size and the cell cycle). These are further integrated with measurements focusing on specific cell types, based on transgenic expression of Fluorescent Proteins (FPs), and on analysis of the spectrum of transcripts found within protoplasts and nuclei. These measurements were chosen in particular to illustrate, respectively, the issues encountered in the flow analysis and sorting of large biological cells, typified by protoplasts; how to handle flow analyses under conditions that require processing of large numbers of samples in which the individual samples contain only a very small minority of objects of interest; and how to deal with exceptionally small amounts of RNA within the sorted samples.

  4. Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities.

    Science.gov (United States)

    Traven, Ana; Jänicke, Amrei; Harrison, Paul; Swaminathan, Angavai; Seemann, Torsten; Beilharz, Traude H

    2012-01-01

    Understanding multicellular fungal structures is important for designing better strategies against human fungal pathogens. For example, the ability to form multicellular biofilms is a key virulence property of the yeast Candida albicans. C. albicans biofilms form on indwelling medical devices and are drug resistant, causing serious infections in hospital settings. Multicellular fungal communities are heterogeneous, consisting of cells experiencing different environments. Heterogeneity is likely important for the phenotypic characteristics of communities, yet it is poorly understood. Here we used colonies of the yeast Saccharomyces cerevisiae as a model fungal multicellular structure. We fractionated the outside colony layers from the cells in the center by FACS, using a Cit1-GFP marker expressed exclusively on the outside. Transcriptomics analysis of the two subpopulations revealed that the outside colony layers are actively growing by fermentative metabolism, while the cells residing on the inside are in a resting state and experience changes to mitochondrial activity. Our data shows several parallels with C. albicans biofilms providing insight into the contributions of heterogeneity to biofilm phenotypes. Hallmarks of C. albicans biofilms - the expression of ribosome and translation functions and activation of glycolysis and ergosterol biosynthesis occur on the outside of colonies, while expression of genes associates with sulfur assimilation is observed in the colony center. Cell wall restructuring occurs in biofilms, and cell wall functions are enriched in both fractions: the outside cells display enrichment of cell wall biosynthesis enzymes and cell wall proteins, while the inside cells express cell wall degrading enzymes. Our study also suggests that noncoding transcription and posttranscriptional mRNA regulation play important roles during growth of yeast in colonies, setting the scene for investigating these pathways in the development of multicellular

  5. Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities.

    Directory of Open Access Journals (Sweden)

    Ana Traven

    Full Text Available Understanding multicellular fungal structures is important for designing better strategies against human fungal pathogens. For example, the ability to form multicellular biofilms is a key virulence property of the yeast Candida albicans. C. albicans biofilms form on indwelling medical devices and are drug resistant, causing serious infections in hospital settings. Multicellular fungal communities are heterogeneous, consisting of cells experiencing different environments. Heterogeneity is likely important for the phenotypic characteristics of communities, yet it is poorly understood. Here we used colonies of the yeast Saccharomyces cerevisiae as a model fungal multicellular structure. We fractionated the outside colony layers from the cells in the center by FACS, using a Cit1-GFP marker expressed exclusively on the outside. Transcriptomics analysis of the two subpopulations revealed that the outside colony layers are actively growing by fermentative metabolism, while the cells residing on the inside are in a resting state and experience changes to mitochondrial activity. Our data shows several parallels with C. albicans biofilms providing insight into the contributions of heterogeneity to biofilm phenotypes. Hallmarks of C. albicans biofilms - the expression of ribosome and translation functions and activation of glycolysis and ergosterol biosynthesis occur on the outside of colonies, while expression of genes associates with sulfur assimilation is observed in the colony center. Cell wall restructuring occurs in biofilms, and cell wall functions are enriched in both fractions: the outside cells display enrichment of cell wall biosynthesis enzymes and cell wall proteins, while the inside cells express cell wall degrading enzymes. Our study also suggests that noncoding transcription and posttranscriptional mRNA regulation play important roles during growth of yeast in colonies, setting the scene for investigating these pathways in the development

  6. Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin.

    Science.gov (United States)

    Houlahan, Kathleen E; Prokopec, Stephenie D; Moffat, Ivy D; Lindén, Jere; Lensu, Sanna; Okey, Allan B; Pohjanvirta, Raimo; Boutros, Paul C

    2015-02-03

    In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake. As the hypothalamus is the central nervous systems' regulatory center for food-intake and energy balance. Therefore, mRNA abundances in hypothalamic tissue from two rat strains with widely differing sensitivities to TCDD-induced wasting syndrome: TCDD-sensitive Long-Evans rats and TCDD-resistant Han/Wistar rats, 23h after exposure to TCDD (100μg/kg) or corn oil vehicle. TCDD exposure caused minimal transcriptional dysregulation in the hypothalamus, with only 6 genes significantly altered in Long-Evans rats and 15 genes in Han/Wistar rats. Two of the most dysregulated genes were Cyp1a1 and Nqo1, which are induced by TCDD across a wide range of tissues and are considered sensitive markers of TCDD exposure. The minimal response of the hypothalamic transcriptome to a lethal dose of TCDD at an early time-point suggests that the hypothalamus is not the predominant site of initial events leading to hypophagia and associated wasting. TCDD may affect feeding behaviour via events upstream or downstream of the hypothalamus, and further work is required to evaluate this at the level of individual hypothalamic nuclei and subregions. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Effect of colonial tunicate presence on Ciona intestinalis recruitment within a mussel farming environment

    Directory of Open Access Journals (Sweden)

    Jeff Davidson

    2012-12-01

    Full Text Available Aquatic invasive species decrease yields and increase costs in aquaculture operations worldwide. Anecdotal evidence from Prince Edward Island (PEI, Canada estuaries suggested that recruitment of the non-indigenous solitary tunicate Ciona intestinalis may be lower on aquaculture gear where colonial tunicates (Botryllus schlosseri and Botrylloides violaceus are already present. We tested this interspecific competition hypothesis by comparing C. intestinalis recruitment on un-fouled settlement plates to those pre-settled with Botryllus schlosseri or Botrylloides violaceus. C. intestinalis occurred on all plates after 2 month, but it was much more abundant (~80% coverage on unfouled plates than on pre-settled plates (<10% coverage. However, C. intestinalis showed higher individual growth on pre-settled plates than on unfouled plates. High reproductive potential for C. intestinalis appears to result in rapid recruitment to control plates, but this may be impeded on pre-settled plates due to competition for space, negative settlement cues produced by the colonial tunicates, allelopathy or overgrowth.

  8. Stable transfection of Eimeria intestinalis and investigation of its life cycle, reproduction and immunogenicity

    Directory of Open Access Journals (Sweden)

    Tuanyuan eShi

    2016-05-01

    Full Text Available Rabbit coccidiosis, caused by infection of Eimeria spp. is one of the most severe parasitic diseases in rabbits. E. intestinalis is one of the most immunogenic species in rabbit coccidia. Due to the lack of genomic information and unsuccessful in vitro cultivation, genetic manipulation of rabbit coccidia lagged behind other apicomplexan parasites. Using regulatory sequences from E. tenella, we obtained a transgenic line of E. intestinalis expressing yellow fluorescent protein (YFP. YFP was continuously expressed throughout the whole life cycle. Morphological features of E. intestinalis in the different developmental stages were dynamically observed with the transgenic line. Some important features in the endogenous development stages were observed. Trophozoites were found as early as 4 h post inoculation. Two-types of schizonts and merozoites were observed in first three of the four schizogonies. Beside jejunum and ileum, gametogony stage and oocysts were also found in the duodenum and vermiform appendix. In addition, the transgenic strain was highly immunogenic but less pathogenic than the wild type. Considering the high immunogenicity of E. intestinalis and amenability to transfection with foreign genes, transgenic E. intestinalis could be a promising oral eukaryotic vaccine vector.

  9. 哺乳动物转录因子DNA结合谱%DNA-binding profiles of mammalian transcription factors

    Institute of Scientific and Technical Information of China (English)

    谷光明; 王进科

    2012-01-01

    The differential gene expression is the molecular base of development and responses to stimuli of organisms. Transcription factors (TFs) play important regulatory roles in this kind of differential gene expression. Therefore, to elucidate how these TFs regulate the complex differential gene expression, it is necessary to identify all target genes of them and construct the gene transcription regulatory network controlled by them. DNA binding is a key step for TFs regulating gene transcription. Therefore, in order to identify their target genes, it is indispensable to identify all possible DNA sequences that can be recognized and bound by TFs at the molecular level of their interactions with DNA, i.e., construction of the DNA-binding profiles of TFs. In recent years, along with the development of DNA microarray and high-throughput DNA sequencing techniques, there appeared some revolutionary new techniques for constructing DNA-binding profiles of TFs, which greatly promotes studies in this field. These techniques include ChlP-chip and ChlP-Seq for constructing in vivo DNA-binding profiles of TFs, dsDNA microarray, SELEX-SAGE, Bind-n-Seq, MMP-SELEX, EMSA-Seq, and HiTS-FLIP for constructing in vitro DNA-binding profiles of TFs. This paper reviewed these techniques.%基因差异表达是生物发育和对刺激作出应答的分子基础,转录因子在这种基因差异表达中发挥着重要的调控作用.因此,要弄清楚转录因子调控基因差异表达的机理,就必须鉴定出它们全部的靶基因并构建其操纵的转录调控网络.对基因组DNA的序列特异性结合是转录因子调控基因转录的关键环节.因此,要鉴定转录因子的靶基因,就必须从它们与DNA相互作用的分子水平,鉴定它们能够识别并结合的全部DNA序列,即转录因子DNA结合谱.近年来随着DNA微阵列芯片和高通量DNA测序技术的产生和快速发展,出现了建立转录因子体内及体外DNA结合谱的一系列革命性的

  10. [Study of anemia in giardiasis intestinalis in Tunisian preschool children].

    Science.gov (United States)

    Gharbi, T; Chaker, E; Boughedir, J; el Mabrouk, S; Ben Rayana, M C

    1999-11-01

    The present work is based upon a prospective in study done in a semi-urban area of suburbs of Tunis, from february to November 1997. A total of 302 children aged between 6 month to 5 years were enrolled in the survey. The study aimed at assessing the extention of parasitoses in preschool aged children. The relationship between the Giardiasis intestinalis and ferropenic anemia. The prevalence of anemia is 31.78% (n = 302). The parasitologic analysis has shown that 113 children out of 302 are infected; 37.41%. We observed an obvious predominance of Giardia Lamblia: 62% (n = 113) pathogenic protozoon. The rate of anemia parasited children is amounted to 19.78%. During the Giardiasis, anemia is present in 23.17% of the cases. The Polyparasitism concerns 16% of the infested children. This anemia could be caused by a global bad absorption syndrome or by a ferro-elective bad absorption. A proper sanitary education, a purification action and also a curative treatment of the beaners carriers will be the only guarantees to decrease its morbidity.

  11. Clinical analysis of 20 cases of pneumatosis cystoides intestinalis

    Directory of Open Access Journals (Sweden)

    Rui TONG

    2016-03-01

    Full Text Available Objective  To review the experiences of diagnosis and treatment of pneumatosis cystoides intestinalis (PCI, and study the clinical characteristics of the disease in order to improve the diagnosis and treatment. Methods  Clinical data from 20 patients with endoscopically confirmed PCI were retrospectively analyzed. They were admitted to the Chinese PLA General Hospital from June 1995 to June 2015. Results  Among the patients 16 of them were male,and the other four were female. The main clinical manifestations were abdominal distention, diarrhea, abdominal pain and mucous bloody stool. The diagnosis relied mainly on colonoscopy and pathological examination. Laparoscopy assisted colorectal cancer resection was performed in 1 patient, laparostomy and repair of sigmoid colon perforation in 1, endoscopic treatment in 5 cases, drug administration and hyperbaric oxygen therapy in 2, drug treatment alone in 7, and no treatment in 4. Conclusions  The final diagnosis depends on endoscopic findings. No treatment is recommended to patients with no symptoms. The management of patients with PCI includes antibiotics, oxygen therapy, endoscopic therapy, surgery, and appropriate therapy related to the underlying cause of PCI. The prognosis is good. DOI: 10.11855/j.issn.0577-7402.2016.02.09

  12. Pneumatosis intestinalis in children after allogeneic bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, A.M.; Kanof, M.E.; Lake, A.M.; Kramer, S.S.; Jones, B.; Saral, R.; Santos, G.W.

    1987-01-01

    Four children, ages 3 to 8 years, developed pneumatosis intestinalis (PI) after allogeneic bone marrow transplantation (BMT) for acute leukemia or severe aplastic anemia. PI was detected at a median of 48 days (range, 10-63 days) after BMT and was associated with abdominal symptoms and clinical signs. All patients had severe systemic and/or highgrade cutaneous acute graft-versus-host disease (AGVHD) at some time after BMT and were receiving corticosteroids at the time of development of PI; however, PI was associated with concomitant severe AGVHD in only one patient. One patient with PI had Hafnia alvei bacteremia and another patient had gastroenteritis due to rotavirus and adenovirus. All patients were treated with supportive care and systemic broad-spectrum antibiotics, and PI resolved 2-16 days after onset. Two patients died with BMT-associated complications unrelated to PI. Multiple factors contribute to the development of PI after BMT, and the prognosis for recovery from PI is good with medical management alone. Overall survival in these patients is dependent on the frequency and severity of other conditions, such as AGVHD and opportunistic infections, after BMT.

  13. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant

    Indian Academy of Sciences (India)

    Swadhin Swain; Nidhi Singh; Ashis Kumar Nandi

    2015-03-01

    A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

  14. Transcriptional Profiles Uncover Aspergillus flavus-Induced Resistance in Maize Kernels

    Directory of Open Access Journals (Sweden)

    Zhi-Yuan Chen

    2011-06-01

    Full Text Available Aflatoxin contamination caused by the opportunistic pathogen A. flavus is a major concern in maize production prior to harvest and through storage. Previous studies have highlighted the constitutive production of proteins involved in maize kernel resistance against A. flavus’ infection. However, little is known about induced resistance nor about defense gene expression and regulation in kernels. In this study, maize oligonucleotide arrays and a pair of closely-related maize lines varying in aflatoxin accumulation were used to reveal the gene expression network in imbibed mature kernels in response to A. flavus’ challenge. Inoculated kernels were incubated 72 h via the laboratory-based Kernel Screening Assay (KSA, which highlights kernel responses to fungal challenge. Gene expression profiling detected 6955 genes in resistant and 6565 genes in susceptible controls; 214 genes induced in resistant and 2159 genes induced in susceptible inoculated kernels. Defense related and regulation related genes were identified in both treatments. Comparisons between the resistant and susceptible lines indicate differences in the gene expression network which may enhance our understanding of the maize-A. flavus interaction.

  15. Transcriptional Profiling of Cutaneous MRGPRD Free Nerve Endings and C-LTMRs

    Directory of Open Access Journals (Sweden)

    Ana Reynders

    2015-02-01

    Full Text Available Cutaneous C-unmyelinated MRGPRD+ free nerve endings and C-LTMRs innervating hair follicles convey two opposite aspects of touch sensation: a sensation of pain and a sensation of pleasant touch. The molecular mechanisms underlying these diametrically opposite functions are unknown. Here, we used a mouse model that genetically marks C-LTMRs and MRGPRD+ neurons in combination with fluorescent cell surface labeling, flow cytometry, and RNA deep-sequencing technology (RNA-seq. Cluster analysis of RNA-seq profiles of the purified neuronal subsets revealed 486 and 549 genes differentially expressed in MRGPRD-expressing neurons and C-LTMRs, respectively. We validated 48 MRGPD- and 68 C-LTMRs-enriched genes using a triple-staining approach, and the Cav3.3 channel, found to be exclusively expressed in C-LTMRs, was validated using electrophysiology. Our study greatly expands the molecular characterization of C-LTMRs and suggests that this particular population of neurons shares some molecular features with Aβ and Aδ low-threshold mechanoreceptors.

  16. Explore Small Molecule-induced Genome-wide Transcriptional Profiles for Novel Inflammatory Bowel Disease Drug

    Science.gov (United States)

    Cai, Xiaoshu; Chen, Yang; Gao, Zhen; Xu, Rong

    2016-01-01

    Abstract Inflammatory Bowel Disease (IBD) is a chronic and relapsing disorder, which affects millions people worldwide. Current drug options cannot cure the disease and may cause severe side effects. We developed a systematic framework to identify novel IBD drugs exploiting millions of genomic signatures for chemical compounds. Specifically, we searched all FDA-approved drugs for candidates that share similar genomic profiles with IBD. In the evaluation experiments, our approach ranked approved IBD drugs averagely within top 26% among 858 candidates, significantly outperforming a state-of-art genomics-based drug repositioning method (p-value < e-8). Our approach also achieved significantly higher average precision than the state-of-art approach in predicting potential IBD drugs from clinical trials (0.072 vs. 0.043, p<0.1) and off-label IBD drugs (0.198 vs. 0.138, p<0.1). Furthermore, we found evidences supporting the therapeutic potential of the top-ranked drugs, such as Naloxone, in literature and through analyzing target genes and pathways. PMID:27570643

  17. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    Science.gov (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Transcriptional profiling of peripheral blood in pancreatic adenocarcinoma patients identifies diagnostic biomarkers.

    Science.gov (United States)

    Caba, Octavio; Prados, Jose; Ortiz, Raúl; Jiménez-Luna, Cristina; Melguizo, Consolación; Alvarez, Pablo J; Delgado, Juan R; Irigoyen, Antonio; Rojas, Ignacio; Pérez-Florido, Javier; Torres, Carolina; Perales, Sonia; Linares, Ana; Aránega, Antonia

    2014-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy associated with poor survival rates. Fast detection of PDAC appears to be the most relevant strategy to improve the long-term survival of patients. Our objective was to identify new markers in peripheral blood that differentiates between PDAC patients and healthy controls. Peripheral blood samples from PDAC patients (n = 18) and controls (n = 18) were analyzed by whole genome cDNA microarray hybridization. The most relevant genes were validated by quantitative real-time PCR (RT-qPCR) in the same set of samples. Finally, our gene prediction set was tested in a blinded set of new peripheral blood samples (n = 30). Microarray studies identified 87 genes differentially expressed in peripheral blood samples from PDAC patients. Four of these genes were selected for analysis by RT-qPCR, which confirmed the previously observed changes. In our blinded validation study, the combination of CLEC4D and IRAK3 predicted the diagnosis of PDAC with 93 % accuracy, with a sensitivity of 86 % and specificity of 100 %. Peripheral blood gene expression profiling is an useful tool for the diagnosis of PDAC. We present a validated four-gene predictor set (ANKRD22, CLEC4D, VNN1, and IRAK3) that may be useful in PDAC diagnosis.

  19. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato.

    Science.gov (United States)

    Koul, Archana; Yogindran, Sneha; Sharma, Deepak; Kaul, Sanjana; Rajam, Manchikatla Venkat; Dhar, Manoj K

    2016-11-01

    Carotenoid biosynthetic pathway is one of the highly significant and very well elucidated secondary metabolic pathways in plants. microRNAs are the potential regulators, widely known for playing a pivotal role in the regulation of various biological as well as metabolic processes. miRNAs may assist in the metabolic engineering of the secondary metabolites for the production of elite genotypes with increased biomass and content of various metabolites. miRNA mediated regulation of carotenoid biosynthetic genes has not been elucidated so far. To illustrate the potential regulatory role of miRNAs in carotenoid biosynthesis, transcript profiling of the known miRNAs and their possible target carotenoid genes was undertaken at eight different developmental stages of tomato, using stem-loop PCR approach combined with quantitative RT-PCR. The inter-relationship amongst carotenoid content, biosynthetic genes and miRNAs was studied in depth. Comparative expression profiles of miRNA and target genes showed variable expression in different tissues studied. The expression level of miRNAs and their target carotenoid genes displayed similar pattern in the vegetative tissues as compared to the reproductive ones, viz. fruit (different stages), indicating the possibility of regulation of carotenoid biosynthesis at various stages of fruit development. This was later confirmed by the HPLC analysis of the carotenoids. The present study has further enhanced the understanding of regulation of carotenoid biosynthetic pathway in plants. The identified miRNAs can be employed to manipulate the biosynthesis of different carotenoids, through metabolic engineering for the production of lycopene rich tomatoes.

  20. Transcript profiling of candidate genes in testis of pigs exhibiting large differences in androstenone levels

    Directory of Open Access Journals (Sweden)

    Oeth Paul

    2010-01-01

    Full Text Available Abstract Background Boar taint is an unpleasant odor and flavor of the meat and occurs in a high proportion of uncastrated male pigs. Androstenone, a steroid produced in testis and acting as a sex pheromone regulating reproductive function in female pigs, is one of the main compounds responsible for boar taint. The primary goal of the present investigation was to determine the differential gene expression of selected candidate genes related to levels of androstenone in pigs. Results Altogether 2560 boars from the Norwegian Landrace and Duroc populations were included in this study. Testicle samples from the 192 boars with most extreme high or low levels of androstenone in fat were used for RNA extraction, and 15 candidate genes were selected and analyzed by real-competitive PCR analysis. The genes Cytochrome P450 c17 (CYP17A1, Steroidogenic acute regulatory protein (STAR, Aldo-keto reductase family 1 member C4 (AKR1C4, Short-chain dehydrogenase/reductase family member 4 (DHRS4, Ferritin light polypeptide (FTL, Sulfotransferase family 2A, dehydroepiandrosterone-preferring member 1 (SULT2A1, Cytochrome P450 subfamily XIA polypeptide 1 (CYP11A1, Cytochrome b5 (CYB5A, and 17-beta-Hydroxysteroid dehydrogenase IV (HSD17B4 were all found to be significantly (P CYP19A2 was down-regulated and progesterone receptor membrane component 1 (PGRMC1 was up-regulated in high-androstenone Duroc boars only, while CYP21 was significantly down-regulated (2.5 in high-androstenone Landrace only. The genes Nuclear Receptor co-activator 4 (NCOA4, Sphingomyrlin phosphodiesterase 1 (SMPD1 and 3β-hydroxysteroid dehydrogenase (HSD3B were not significantly differentially expressed in any breeds. Additionally, association studies were performed for the genes with one or more detected SNPs. Association between SNP and androstenone level was observed in CYB5A only, suggesting cis-regulation of the differential transcription in this gene. Conclusion A large pig material of

  1. How yeast re-programmes its transcriptional profile in response to different nutrient impulses

    Directory of Open Access Journals (Sweden)

    Pir Pınar

    2011-09-01

    Full Text Available Abstract Background A microorganism is able to adapt to changes in its physicochemical or nutritional environment and this is crucial for its survival. The yeast, Saccharomyces cerevisiae, has developed mechanisms to respond to such environmental changes in a rapid and effective manner; such responses may demand a widespread re-programming of gene activity. The dynamics of the re-organization of the cellular activities of S. cerevisiae in response to the sudden and transient removal of either carbon or nitrogen limitation has been studied by following both the short- and long-term changes in yeast's transcriptomic profiles. Results The study, which spans timescales from seconds to hours, has revealed the hierarchy of metabolic and genetic regulatory switches that allow yeast to adapt to, and recover from, a pulse of a previously limiting nutrient. At the transcriptome level, a glucose impulse evoked significant changes in the expression of genes concerned with glycolysis, carboxylic acid metabolism, oxidative phosphorylation, and nucleic acid and sulphur metabolism. In ammonium-limited cultures, an ammonium impulse resulted in the significant changes in the expression of genes involved in nitrogen metabolism and ion transport. Although both perturbations evoked significant changes in the expression of genes involved in the machinery and process of protein synthesis, the transcriptomic response was delayed and less complex in the case of an ammonium impulse. Analysis of the regulatory events by two different system-level, network-based approaches provided further information about dynamic organization of yeast cells as a response to a nutritional change. Conclusions The study provided important information on the temporal organization of transcriptomic organization and underlying regulatory events as a response to both carbon and nitrogen impulse. It has also revealed the importance of a long-term dynamic analysis of the response to the

  2. Fatty Acid and Transcript Profiling in Developing Seeds of Three Brassica napus Cultivars

    Directory of Open Access Journals (Sweden)

    Petkova Mariana

    2015-12-01

    Full Text Available Fatty acid levels and gene expression profiles for selected genes associated with the synthesis of fatty acids (FA, triacylglycerol, and oil body proteins were examined in three oilseed rape (Brassica napus cultivars that have utility for cultivar development in our spring canola breeding program. The seed oil content of Bronowski, Q2, and Westar was 39.0, 40.1, and 40.6%, respectively at 40 days after flowering (DAF. During the 20 to 40 day period of seed development, cultivars had varying levels of palmitic, stearic, oleic, linoleic, α-linolenic, eicosenoic, and erucic acid. In general, the percentage of each FA was similar among the cultivars during seed development. However, the level of oleic acid was lower and the levels of eicosenoic acid and erucic acid were higher in Bronowski than in Q2 and Westar seeds; linoleic acid also tended to be lower in Bronowski. Gene expression among the cultivars was similar from 10 to 40 DAF. The few exceptions were that expression of KAS1 and SAD were higher in Westar and Q2 than in Bronowski at 25 DAF, SAD was highest in Q2, intermediate in Westar, and lowest in Bronowski at 35 DAF, FAD2 was higher in Q2 than in Bronowski at 35 DAF, FAD3 was higher in Q2 than in Bronowski at 15 DAF and Q2 and Westar at 25 and 30 DAF, and FAE1 was higher in Westar and Q2 than in Bronowski at 30 DAF. Correlation analysis for gene expression against DAF for each genotype supported a common trend in gene expression among the three cultivars with gene expression tending to decrease over time; except for LPAAT, which tended to increase. The correlation between the level of FAs and expression of genes by genotype indicated no general trend; rather correlations seem to depend on the genotype.

  3. Within and between whorls: comparative transcriptional profiling of Aquilegia and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Claudia Voelckel

    Full Text Available BACKGROUND: The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels. METHODOLOGY/PRINCIPAL FINDINGS: We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource. CONCLUSIONS/SIGNIFICANCE: Our comparative gene expression analyses suggest that 1 petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2 petals of A. formosa and A. thaliana may be independently derived, 3 staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4 staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology.

  4. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    Science.gov (United States)

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  5. [Prevalence of Encephalitozoon intestinalis and Enterocytozoon bieneusi in HIV positive patients to Maracaibo, Venezuela].

    Science.gov (United States)

    Rivero-Rodríguez, Zulbey; Hernández Sierra, Amparo; Arráiz, Nailet; Bracho Mora, Angela; Villalobos Perozo, Rafael

    2013-03-01

    Microsporidioses are considered emerging and opportunistic infections in immunocompromised individuals worldwide. The purpose of this study was to identify the species of intestinal microsporidia in patients with HIV-AIDS from the Servicio Autónomo Hospital Universitario de Maracaibo, Venezuela (SAHUM). Fecal samples were collected from 50 patients with confirmed diagnosis of HIV, during the years 2007 and 2008; the CD4 values were obtained from 42 patients. The samples were analyzed by separate PCRs to identify Encephalitozoon intestinalis and Enterocytozoon bieneusi. Microsporidia species showed a 36% prevalence: ten patients had Encephalitozoon intestinalis, four Enterocytozoon bieneusi and four both species. An inverse and statistically significant relationship between the CD4 count and the presence of microsporidia in the fecal sample was also found. It is remarkable the high prevalence of microsporidia species observed in the HIV patients studied, with a predominance of E. intestinalis.

  6. Genome-wide analyses of recombination suggest that Giardia intestinalis assemblages represent different species.

    Science.gov (United States)

    Xu, Feifei; Jerlström-Hultqvist, Jon; Andersson, Jan O

    2012-10-01

    Giardia intestinalis is a major cause of waterborne enteric disease in humans. The species is divided into eight assemblages suggested to represent separate Giardia species based on host specificities and the genetic divergence of marker genes. We have investigated whether genome-wide recombination occurs between assemblages using the three available G. intestinalis genomes. First, the relative nonsynonymous substitution rates of the homologs were compared for 4,009 positional homologs. The vast majority of these comparisons indicate genetic isolation without interassemblage recombinations. Only a region of 6 kbp suggests genetic exchange between assemblages A and E, followed by gene conversion events. Second, recombination-detecting software fails to identify within-gene recombination between the different assemblages for most of the homologs. Our results indicate very low frequency of recombination between the syntenic core genes, suggesting that G. intestinalis assemblages are genetically isolated lineages and thus should be viewed as separated Giardia species.

  7. THE EFFECT OF TARGETED KNOCKOUT MUTATION ON THE TRANSCRIPTIONAL PROFILE OF THE KIDNEY IN TSC2 MUTANT LONG-EVANS (EKER) RATS.

    Science.gov (United States)

    The effect of a targeted knockout mutation on the transcriptional profile of the kidney inTsc2 mutant Long-Evans (Eker) rats. Renal cell carcinoma (RCC) is the most common tumor of the adult kidney, accounting for up to 80% of malignant renal neoplasms. Hereditary...

  8. Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp. PCC 6803

    NARCIS (Netherlands)

    Schriek, S.; Aguirre-von-Wobeser, E.; Nodop, A.; Becker, A.; Ibelings, B.W.; Bok, J.; Staiger, D.; Matthijs, H.C.P.; Pistorius, E.K.; Michel, K.P.

    2008-01-01

    Transcript profiling of nitrate-grown Synechocystis sp. PCC 6803 PsbO-free mutant cells in comparison to wild-type (WT) detected substantial deviations. Because we had previously observed phenotypical differences between Synechocystis sp. PCC 6803 WT and its corresponding PsbO-free mutant when

  9. Whole genome transcript profiling from fingerstick blood samples: a comparison and feasibility study

    Directory of Open Access Journals (Sweden)

    Williams Adam R

    2009-12-01

    Full Text Available Abstract Background Whole genome gene expression profiling has revolutionized research in the past decade especially with the advent of microarrays. Recently, there have been significant improvements in whole blood RNA isolation techniques which, through stabilization of RNA at the time of sample collection, avoid bias and artifacts introduced during sample handling. Despite these improvements, current human whole blood RNA stabilization/isolation kits are limited by the requirement of a venous blood sample of at least 2.5 mL. While fingerstick blood collection has been used for many different assays, there has yet to be a kit developed to isolate high quality RNA for use in gene expression studies from such small human samples. The clinical and field testing advantages of obtaining reliable and reproducible gene expression data from a fingerstick are many; it is less invasive, time saving, more mobile, and eliminates the need of a trained phlebotomist. Furthermore, this method could also be employed in small animal studies, i.e. mice, where larger sample collections often require sacrificing the animal. In this study, we offer a rapid and simple method to extract sufficient amounts of high quality total RNA from approximately 70 μl of whole blood collected via a fingerstick using a modified protocol of the commercially available Qiagen PAXgene RNA Blood Kit. Results From two sets of fingerstick collections, about 70 uL whole blood collected via finger lancet and capillary tube, we recovered an average of 252.6 ng total RNA with an average RIN of 9.3. The post-amplification yields for 50 ng of total RNA averaged at 7.0 ug cDNA. The cDNA hybridized to Affymetrix HG-U133 Plus 2.0 GeneChips had an average % Present call of 52.5%. Both fingerstick collections were highly correlated with r2 values ranging from 0.94 to 0.97. Similarly both fingerstick collections were highly correlated to the venous collection with r2 values ranging from 0.88 to 0

  10. Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata.

    Directory of Open Access Journals (Sweden)

    Francesca Scolari

    Full Text Available BACKGROUND: Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active. METHODOLOGY/PRINCIPAL FINDINGS: We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female. CONCLUSIONS/SIGNIFICANCE: We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male

  11. Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer.

    Science.gov (United States)

    Zhang, Jialing; Yan, Bin; Späth, Stephan Stanislaw; Qun, Hu; Cornelius, Shaleeka; Guan, Daogang; Shao, Jiaofang; Hagiwara, Koichi; Van Waes, Carter; Chen, Zhong; Su, Xiulan; Bi, Yongyi

    2015-01-01

    Colorectal cancer (CRC) is a heterogeneous disease that is associated with a gradual accumulation of genetic and epigenetic alterations. Among all CRC stages, stage II tumors are highly heterogeneous with a high relapse rate in about 20-25 % of stage II CRC patients following surgery. Thus, a comprehensive analysis of gene signatures to identify aggressive and metastatic phenotypes in stage II CRC is desired for a more accurate disease classification and outcome prediction. By utilizing a Cancer Array, containing 440 oncogenes and tumor suppressors to profile mRNA expression, we identified a larger number of differentially expressed genes in poorly differentiated stage II colorectal adenocarcinoma tissues, compared to their matched normal tissues. Ontology and Ingenuity Pathway Analysis (IPA) indicated that these genes are involved in functional mechanisms associated with several transcription factors. Genomic alterations of these genes were also investigated through The Cancer Genome Atlas (TCGA) database, utilizing 195 published CRC specimens. The percentage of genomic alterations in these genes was ranked based on their mRNA expression, copy number variations and mutations. This data was further combined with published microarray studies from a large set of CRC tumors classified based on prognostic features. This led to the identification of eight candidate genes including RPN2, HMGB1, AARS, IGFBP3, STAT1, HYOU1, NQO1 and PEA15 that were associated with the progressive phenotype. In particular, RPN2 and HMGB1 displayed a higher genomic alteration frequency in CRC, compared to eight other major solid cancers. Immunohistochemistry was performed on additional 78 stage I-IV CRC samples, where RPN2 protein immunostaining exhibited a significant association with stage III/IV tumors, distant metastasis, and poor differentiation, indicating that RPN2 expression is associated with poor prognosis. Further, our study revealed significant transcriptional regulatory

  12. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing

    Science.gov (United States)

    2014-01-01

    Background Recently, RNA sequencing (RNA-seq) has rapidly emerged as a major transcriptome profiling system. Elucidation of the bovine mammary gland transcriptome by RNA-seq is essential for identifying candidate genes that contribute to milk composition traits in dairy cattle. Results We used massive, parallel, high-throughput, RNA-seq to generate the bovine transcriptome from the mammary glands of four lactating Holstein cows with extremely high and low phenotypic values of milk protein and fat percentage. In total, we obtained 48,967,376–75,572,578 uniquely mapped reads that covered 82.25% of the current annotated transcripts, which represented 15549 mRNA transcripts, across all the four mammary gland samples. Among them, 31 differentially expressed genes (p < 0.05, false discovery rate q < 0.05) between the high and low groups of cows were revealed. Gene ontology and pathway analysis demonstrated that the 31 differently expressed genes were enriched in specific biological processes with regard to protein metabolism, fat metabolism, and mammary gland development (p < 0.05). Integrated analysis of differential gene expression, previously reported quantitative trait loci, and genome-wide association studies indicated that TRIB3, SAA (SAA1, SAA3, and M-SAA3.2), VEGFA, PTHLH, and RPL23A were the most promising candidate genes affecting milk protein and fat percentage. Conclusions This study investigated the complexity of the mammary gland transcriptome in dairy cattle using RNA-seq. Integrated analysis of differential gene expression and the reported quantitative trait loci and genome-wide association study data permitted the identification of candidate key genes for milk composition traits. PMID:24655368

  13. Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Scolari, Francesca; Gomulski, Ludvik M; Ribeiro, José M C; Siciliano, Paolo; Meraldi, Alice; Falchetto, Marco; Bonomi, Angelica; Manni, Mosè; Gabrieli, Paolo; Malovini, Alberto; Bellazzi, Riccardo; Aksoy, Serap; Gasperi, Giuliano; Malacrida, Anna R

    2012-01-01

    Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active. We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs) from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female. We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male recovery dynamics in terms of accessory gland gene expression profiles and correlated remating

  14. Transcriptional profiling of the effect of lipopolysaccharide (LPS pretreatment in blood from probiotics-treated dairy cows

    Directory of Open Access Journals (Sweden)

    Sarah Adjei-Fremah

    2016-12-01

    Full Text Available Probiotic supplements are beneficial for animal health and rumen function; and lipopolysaccharides (LPS from gram negative bacteria have been associated with inflammatory diseases. In this study the transcriptional profile in whole blood collected from probiotics-treated cows was investigated in response to stimulation with lipopolysaccharides (LPS in vitro. Microarray experiment was performed between LPS-treated and control samples using the Agilent one-color bovine v2 bovine (v2 4x44K array slides. Global gene expression analysis identified 13,658 differentially expressed genes (fold change cutoff ≥ 2, P < 0.05, 3816 upregulated genes and 9842 downregulated genes in blood in response to LPS. Treatment with LPS resulted in increased expression of TLR4 (Fold change (FC = 3.16 and transcription factor NFkB (FC = 5.4 and decreased the expression of genes including TLR1 (FC = −2.54, TLR3 (FC = −2.43, TLR10 (FC = −3.88, NOD2 (FC = −2.4, NOD1 (FC = −2.45 and pro-inflammatory cytokine IL1B (−3.27. The regulation of the genes involved in inflammation signaling pathway suggests that probiotics may stimulate the innate immune response of animal against parasitic and bacterial infections. We have provided a detailed description of the experimental design, microarray experiment and normalization and analysis of data which have been deposited into NCBI Gene Expression Omnibus (GEO: GSE75240.

  15. Clinical and CT features of benign pneumatosis intestinalis in pediatric hematopoietic stem cell transplant and oncology patients

    Energy Technology Data Exchange (ETDEWEB)

    McCarville, M.B.; Goodin, Geoffrey S. [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); The University of Tennessee College of Medicine, Department of Radiology, Memphis, TN (United States); Whittle, Sarah B. [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); Li, Chin-Shang; Smeltzer, Matthew P. [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); Hale, Gregory A. [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); The University of Tennessee College of Medicine, Department of Pediatrics, Memphis, TN (United States); Kaufman, Robert A. [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); The University of Tennessee College of Medicine, Department of Radiology, Memphis, TN (United States); The University of Tennessee College of Medicine, Department of Pediatrics, Memphis, TN (United States)

    2008-10-15

    Pneumatosis intestinalis in children is associated with a wide variety of underlying conditions and often has a benign course. The CT features of this condition have not been systematically investigated. Defining benign pneumatosis intestinalis as pneumatosis intestinalis that resolved with medical management alone, we sought to: (1) determine whether the incidence of benign pneumatosis intestinalis had increased at our pediatric cancer hospital; (2) characterize CT features of benign pneumatosis intestinalis; and (3) determine the relationship between imaging features and clinical course of benign pneumatosis intestinalis in this cohort. Radiology reports from November 1994 to December 2006 were searched for ''pneumatosis intestinalis,'' ''free intraperitoneal air,'' and ''portal venous air or gas.'' Corresponding imaging was reviewed by two radiologists who confirmed pneumatosis intestinalis and recorded the presence of extraluminal free air, degree of intramural gaseous distension, number of involved bowel segments, and time to pneumatosis resolution. The search revealed 12 boys and 4 girls with pneumatosis intestinalis; 11 were hematopoietic stem cell transplant recipients. The annual incidences of benign pneumatosis have not changed at our institution. Increases in intramural distension marginally correlated with the number of bowel segments involved (P=0.08). Three patients had free air and longer times to resolution of pneumatosis (P=0.03). Male children may be at increased risk of benign pneumatosis intestinalis. The incidence of benign pneumatosis at our institution is proportional to the number of hematopoietic stem cell transplants. The degree of intramural distension may correlate with the number of bowel segments involved. Patients with free air have a longer time to resolution of benign pneumatosis. (orig.)

  16. Changes in Dietary Fat Content Rapidly Alters the Mouse Plasma Coagulation Profile without Affecting Relative Transcript Levels of Coagulation Factors.

    Directory of Open Access Journals (Sweden)

    Audrey C A Cleuren

    Full Text Available Obesity is associated with a hypercoagulable state and increased risk for thrombotic cardiovascular events.Establish the onset and reversibility of the hypercoagulable state during the development and regression of nutritionally-induced obesity in mice, and its relation to transcriptional changes and clearance rates of coagulation factors as well as its relation to changes in metabolic and inflammatory parameters.Male C57BL/6J mice were fed a low fat (10% kcal as fat; LFD or high fat diet (45% kcal as fat; HFD for 2, 4, 8 or 16 weeks. To study the effects of weight loss, mice were fed the HFD for 16 weeks and switched to the LFD for 1, 2 or 4 weeks. For each time point analyses of plasma and hepatic mRNA levels of coagulation factors were performed after overnight fasting, as well as measurements of circulating metabolic and inflammatory parameters. Furthermore, in vivo clearance rates of human factor (F VII, FVIII and FIX proteins were determined after 2 weeks of HFD-feeding.HFD feeding gradually increased the body and liver weight, which was accompanied by a significant increase in plasma glucose levels from 8 weeks onwards, while insulin levels were affected after 16 weeks. Besides a transient rise in cytokine levels at 2 weeks after starting the HFD, no significant effect on inflammation markers was present. Increased plasma levels of fibrinogen, FII, FVII, FVIII, FIX, FXI and FXII were observed in mice on a HFD for 2 weeks, which in general persisted throughout the 16 weeks of HFD-feeding. Interestingly, with the exception of FXI the effects on plasma coagulation levels were not paralleled by changes in relative transcript levels in the liver, nor by decreased clearance rates. Switching from HFD to LFD reversed the HFD-induced procoagulant shift in plasma, again not coinciding with transcriptional modulation.Changes in dietary fat content rapidly alter the mouse plasma coagulation profile, thereby preceding plasma metabolic changes, which

  17. Transcript profiles in longissimus dorsi muscle and subcutaneous adipose tissue: a comparison of pigs with different postweaning growth rates.

    Science.gov (United States)

    Pilcher, C M; Jones, C K; Schroyen, M; Severin, A J; Patience, J F; Tuggle, C K; Koltes, J E

    2015-05-01

    Although most pigs recover rapidly from stresses associated with the transition of weaning, a portion of the population lags behind their contemporaries in growth performance. The underlying biological and molecular mechanisms involved in postweaning differences in growth performance are poorly understood. The objective of this experiment was to use transcriptional profiling of skeletal muscle and adipose tissue to develop a better understanding of the metabolic basis for poor weaned-pig transition. A total of 1,054 pigs was reared in commercial conditions and weighed at birth, weaning, and 3 wk postweaning. Transition ADG (tADG) was calculated as the ADG for the 3-wk period postweaning. Nine pigs from both the lowest 10th percentile (low tADG) and the 60th to 70th percentile (high tADG) were harvested at 3 wk postweaning. Differential expression analysis was conducted in longissimus dorsi muscle (LM) and subcutaneous adipose tissue using RNA-Seq methodology. In LM, 768 transcripts were differentially expressed (DE), 327 with higher expression in low tADG and 441 with higher expression in high tADG pigs (q muscle metabolism and physiology, functional annotation analysis of the DE transcripts was conducted using DAVID and Pathway Studio analytic tools. The group of DE genes with lower expression in LM of low tADG pigs was enriched in genes with functions related to muscle contraction, glucose metabolism, cytoskeleton organization, muscle development, and response to hormone stimulus (enrichment score > 1.3). The list of DE genes with higher expression in low tADG LM was enriched in genes with functions related to protein catabolism (enrichment score > 1.3). Analysis of known gene-gene interactions identified possible regulators of these differences in gene expression in LM of high and low tADG pigs; these include forkhead box O1 (FOXO1), growth hormone (GH1), and the glucocorticoid receptor (NR3C1). Differences in gene expression between poor transitioning pigs and

  18. Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem).

    Science.gov (United States)

    Narnoliya, Lokesh K; Rajakani, Raja; Sangwan, Neelam S; Gupta, Vikrant; Sangwan, Rajender S

    2014-05-01

    Azadirachta indica (neem) is a medicinally important plant that is valued for its bioactive secondary metabolites. Higher levels of the bioactive phytochemicals are accumulated in fruits than in other tissues. In the present study, a total of 387 and 512 ESTs, respectively, from endocarp and mesocarp of neem fruits were isolated and analyzed. Out of them 318 ESTs (82.17%) clones from endocarp and 418 ESTs (81.64%) from mesocarp encoded putative proteins that could be classified into three major gene ontology categories: biological process, molecular function and cellular component. From the analyses of contigs, 73 unigenes from the forward subtracted library and 35 unigenes from the reverse subtracted library were obtained. The ESTs from mesocarp encoded cytochrome P450 enzymes, which indicated hydroxylation to be a major metabolic event and that biogeneration of hydroxylated neem fruit phytochemicals was differentially regulated with developmental stage-specificity of synthesis. Through this study, we present the first report of any gene expression data in neem tissues. Neem hydroxy-methyl glutaryl-coenzyme A reductase (NHMGR) gene was used as expressing control vis-a-vis subtracted tissues. NHMGR was present in fruit, endocarp and mesocarp tissues, but absent in subtractive libraries, revealing that it was successfully eliminated during subtraction. Eight genes of interest from subtracted libraries were profiled for their expression in fruit, mesocarp and endocarp. Expression profiles validated the quality of the libraries and functional diversity of the tissues. The subtractive cDNA library and EST database described in this study represent a valuable transcript sequence resource for future research aimed at improving the economically important medicinal plant.

  19. Imaging brain gene expression profiles by antipsychotics: region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol.

    Science.gov (United States)

    de Bartolomeis, Andrea; Marmo, Federica; Buonaguro, Elisabetta Filomena; Rossi, Rodolfo; Tomasetti, Carmine; Iasevoli, Felice

    2013-11-01

    Induction of motor disorders is considered the clinical landmark differentiating typical from atypical antipsychotics, and has been mainly correlated to dopamine D2 receptors blockade in striatum. This view is challenged by benzamides, such as amisulpride, which display low liability for motor side effects despite being D2/D3 receptors high-affinity blocking agents. These effects have been explained with the prominent presynaptic action of amisulpride or with the fast dissociation at D2 receptors, but there is scarce information on the effects of amisulpride on postsynaptic signaling. We carried out a molecular imaging study of gene expression after acute administration of haloperidol (0.8 mg/kg), amisulpride (10 or 35 mg/kg), or vehicle, focusing on postsynaptic genes that are key regulators of synaptic plasticity, such as Arc, c-fos, Zif-268, Norbin, Homer. The last one has been associated to schizophrenia both in clinical and preclinical studies, and is differentially induced by antipsychotics with different D2 receptors affinity. Topography of gene expression revealed that amisulpride, unlike haloperidol, triggers transcripts expression peak in medial striatal regions. Correlation analysis of gene expression revealed a prevalent correlated gene induction within motor corticostriatal regions by haloperidol and a more balanced gene induction within limbic and motor corticostriatal regions by amisulpride. Despite the selective dopaminergic profile of both compounds, our results demonstrated a differential modulation of postsynaptic molecules by amisulpride and haloperidol, the former impacting preferentially medial regions of striatum whereas the latter inducing strong gene expression in lateral regions. Thus, we provided a possible molecular profile of amisulpride, putatively explaining its "atypical atypicality".

  20. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor, Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    Directory of Open Access Journals (Sweden)

    Rebecca Louise Harris

    2012-01-01

    Full Text Available Background. The asialoglycoprotein receptor (ASGPR is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2, encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR, expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver.

  1. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  2. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L..

    Directory of Open Access Journals (Sweden)

    Zhi Zou

    Full Text Available WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III. Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae, comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  3. Effects of phenol on metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis larvae.

    Science.gov (United States)

    Cao, C W; Sun, L L; Niu, F; Liu, P; Chu, D; Wang, Z Y

    2016-02-01

    Phenol, also known as carbolic acid or phenic acid, is a priority pollutant in aquatic ecosystems. The present study has investigated metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis under phenol stress. Exposure of C. kiinensis larvae to three sublethal doses of phenol (1, 10 and 100 µM) inhibited cytochrome P450 enzyme activity during the 96 h exposure period. The P450 activity measured after the 24 h exposure to phenol stress could be used to assess the level (low or high) of phenol contamination in the environment. To investigate the potential of cytochrome P450 genes as molecular biomarkers to monitor phenol contamination, the cDNA of ten CYP6 genes from the transcriptome of C. kiinensis were identified and sequenced. The open reading frames of the CYP6 genes ranged from 1266 to 1587 bp, encoding deduced polypeptides composed of between 421 and 528 amino acids, with predicted molecular masses from 49.01 to 61.94 kDa and isoelectric points (PI) from 6.01 to 8.89. Among the CYP6 genes, the mRNA expression levels of the CYP6EW3, CYP6EV9, CYP6FV1 and CYP6FV2 genes significantly altered in response to phenol exposure; therefore, these genes could potentially serve as biomarkers in the environment. This study shows that P450 activity combined with one or multiple CYP6 genes could be used to monitor phenol pollution.

  4. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    Science.gov (United States)

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  5. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling.

    Science.gov (United States)

    Jahn, Martin T; Markert, Sebastian M; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-10-31

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  6. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    Science.gov (United States)

    Jahn, Martin T.; Markert, Sebastian M.; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-10-01

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  7. Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality.

    Science.gov (United States)

    Bibova, Ilona; Hot, David; Keidel, Kristina; Amman, Fabian; Slupek, Stephanie; Cerny, Ondrej; Gross, Roy; Vecerek, Branislav

    2015-01-01

    Bordetella pertussis, the causative agent of human whooping cough (pertussis) produces a complex array of virulence factors in order to establish efficient infection in the host. The RNA chaperone Hfq and small regulatory RNAs are key players in posttranscriptional regulation in bacteria and have been shown to play an essential role in virulence of a broad spectrum of bacterial pathogens. This study represents the first attempt to characterize the Hfq regulon of the human pathogen B. pertussis under laboratory conditions as well as upon passage in the host and indicates that loss of Hfq has a profound effect on gene expression in B. pertussis. Comparative transcriptional profiling revealed that Hfq is required for expression of several virulence factors in B. pertussis cells including the Type III secretion system (T3SS). In striking contrast to the wt strain, T3SS did not become operational in the hfq mutant passaged either through mice or macrophages thereby proving that Hfq is required for the functionality of the B. pertussis T3SS. Likewise, expression of virulence factors vag8 and tcfA encoding autotransporter and tracheal colonization factor, respectively, was strongly reduced in the hfq mutant. Importantly, for the first time we demonstrate that B. pertussis T3SS can be activated upon contact with macrophage cells in vitro.

  8. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  9. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    KAUST Repository

    Jahn, Martin T.

    2016-10-31

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  10. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    Science.gov (United States)

    Jahn, Martin T.; Markert, Sebastian M.; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-01-01

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology. PMID:27796326

  11. Oxidative and excitatory mechanisms of developmental neurotoxicity: transcriptional profiles for chlorpyrifos, diazinon, dieldrin, and divalent nickel in PC12 cells.

    Science.gov (United States)

    Slotkin, Theodore A; Seidler, Frederic J

    2009-04-01

    Oxidative stress and excitotoxicity underlie the developmental neurotoxicity of numerous chemicals. We compared the effects of organophosphates (chlorpyrifos and diazinon), an organo-chlorine (dieldrin), and a metal [divalent nickel (Ni2+)] to determine how these mechanisms contribute to similar or dissimilar neurotoxic outcomes. We used PC12 cells as a model of developing neurons and evaluated transcriptional profiles for genes for oxidative stress responses and glutamate receptors. Chlorpyrifos had a greater effect on oxidative-stress-related genes in differentiating cells compared with the undifferentiated state. Chlorpyrifos and diazinon showed significant concordance in their effects on glutathione-related genes, but they were negatively correlated for effects on catalase and superoxide dismutase isoforms and had no concordance for effects on ionotropic glutamate receptors. Surprisingly, the correlations were stronger between diazinon and dieldrin than between the two organophosphates. The effects of Ni2+ were the least similar for genes related to oxidative stress but had significant concordance with dieldrin for effects on glutamate receptors. Our results point to underlying mechanisms by which different organophosphates produce disparate neurotoxic outcomes despite their shared property as cholinesterase inhibitors. Further, apparently unrelated neurotoxicants may produce similar outcomes because of convergence on oxidative stress and excitotoxicity. The combined use of cell cultures and microarrays points to specific end points that can distinguish similarities and disparities in the effects of diverse developmental neurotoxicants.

  12. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

    Directory of Open Access Journals (Sweden)

    Gwendal Le Martelot

    Full Text Available Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.

  13. Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice

    Directory of Open Access Journals (Sweden)

    Van Anh Le Thi

    2011-08-01

    Full Text Available Abstract Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR. Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1 is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM/FAS1 (FASCIATA1, GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4 and MAP (MICROTUBULE-ASSOCIATED PROTEIN were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless

  14. Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines.

    Directory of Open Access Journals (Sweden)

    Liang Wang

    Full Text Available BACKGROUND: Expression level of many genes shows abundant natural variation in human populations. The variations in gene expression are believed to contribute to phenotypic differences. Emerging evidence has shown that microRNAs (miRNAs are one of the key regulators of gene expression. However, past studies have focused on the miRNA target genes and used loss- or gain-of-function approach that may not reflect natural association between miRNA and mRNAs. METHODOLOGY/PRINCIPAL FINDINGS: To examine miRNA regulatory effect on global gene expression under endogenous condition, we performed pair-wise correlation coefficient analysis on expression levels of 366 miRNAs and 14,174 messenger RNAs (mRNAs in 90 immortalized lymphoblastoid cell lines, and observed significant correlations between the two species of RNA transcripts. We identified a total of 7,207 significantly correlated miRNA-mRNA pairs (false discovery rate q<0.01. Of those, 4,085 pairs showed positive correlations while 3,122 pairs showed negative correlations. Gene ontology analyses on the miRNA-correlated genes revealed significant enrichments in several biological processes related to cell cycle, cell communication and signal transduction. Individually, each of three miRNAs (miR-331, -98 and -33b demonstrated significant correlation with the genes in cell cycle-related biological processes, which is consistent with important role of miRNAs in cell cycle regulation. CONCLUSIONS/SIGNIFICANCE: This study demonstrates feasibility of using naturally expressed transcript profiles to identify endogenous correlation between miRNA and miRNA. By applying this genome-wide approach, we have identified thousands of miRNA-correlated genes and revealed potential role of miRNAs in several important cellular functions. The study results along with accompanying data sets will provide a wealth of high-throughput data to further evaluate the miRNA-regulated genes and eventually in phenotypic variations of

  15. Characterization of global transcription profile of normal and HPV-immortalized keratinocytes and their response to TNF treatment

    Directory of Open Access Journals (Sweden)

    Colo Anna

    2008-06-01

    Full Text Available Abstract Background Persistent infection by high risk HPV types (e.g. HPV-16, -18, -31, and -45 is the main risk factor for development of cervical intraepithelial neoplasia and cervical cancer. Tumor necrosis factor (TNF is a key mediator of epithelial cell inflammatory response and exerts a potent cytostatic effect on normal or HPV16, but not on HPV18 immortalized keratinocytes. Moreover, several cervical carcinoma-derived cell lines are resistant to TNF anti-proliferative effect suggesting that the acquisition of TNF-resistance may constitute an important step in HPV-mediated carcinogenesis. In the present study, we compared the gene expression profiles of normal and HPV16 or 18 immortalized human keratinocytes before and after treatment with TNF for 3 or 60 hours. Methods In this study, we determined the transcriptional changes 3 and 60 hours after TNF treatment of normal, HPV16 and HPV18 immortalized keratinocytes by microarray analysis. The expression pattern of two genes observed by microarray was confirmed by Northern Blot. NF-κB activation was also determined by electrophoretic mobility shift assay (EMSA using specific oligonucleotides and nuclear protein extracts. Results We observed the differential expression of a common set of genes in two TNF-sensitive cell lines that differs from those modulated in TNF-resistant ones. This information was used to define genes whose differential expression could be associated with the differential response to TNF, such as: KLK7 (kallikrein 7, SOD2 (superoxide dismutase 2, 100P (S100 calcium binding protein P, PI3 (protease inhibitor 3, skin-derived, CSTA (cystatin A, RARRES1 (retinoic acid receptor responder 1, and LXN (latexin. The differential expression of the KLK7 and SOD2 transcripts was confirmed by Northern blot. Moreover, we observed that SOD2 expression correlates with the differential NF-κB activation exhibited by TNF-sensitive and TNF-resistant cells. Conclusion This is the first in

  16. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate

    Directory of Open Access Journals (Sweden)

    Andersson Jan O

    2010-10-01

    Full Text Available Abstract Background Giardia intestinalis is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the Giardia intestinalis species, we have performed genome sequencing and analysis of a wild-type Giardia intestinalis sample from the assemblage E group, isolated from a pig. Results We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse Giardia intestinalis isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of Giardia revealed differential rates of divergence among cellular processes. Conclusions Our results indicate that despite a well conserved core of genes there is significant genome variation between Giardia isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the Giardia genomes and enables the identification of functionally important variation.

  17. Occurrence and possible biological role of the endocannabinoid system in the sea squirt Ciona intestinalis.

    Science.gov (United States)

    Matias, Isabel; McPartland, John M; Di Marzo, Vincenzo

    2005-06-01

    A cannabinoid receptor orthologue (CiCBR) has been described in the sea squirt Ciona intestinalis. Here we report that CiCBR mRNA expression is highest in cerebral ganglion, branchial pharynx, heart and testis of C. intestinalis, and that this organism also contains cannabinoid receptor ligands and some of the enzymes for ligand biosynthesis and inactivation. Using liquid chromatography-mass spectrometry, the endocannabinoid anandamide was found in all tissues analysed (0.063-5.423 pmol/mg of lipid extract), with the highest concentrations being found in brain and heart. The endocannabinoid 2-arachidonoylglycerol (2-AG) was fivefold more abundant than anandamide, and was most abundant in stomach and intestine and least abundant in heart and ovaries (2.677-50.607 pmol/mg of lipid extract). Using phylogenomic analysis, we identified orthologues of several endocannabinoid synthesizing and degrading enzymes. In particular, we identified and partly sequenced a fatty acid amide hydrolase (FAAH) orthologue, showing 44% identity with human FAAH and containing nearly all the amino acids necessary for a functional FAAH enzyme. Ciona intestinalis also contained specific binding sites for cannabinoid receptor ligands, and an amidase enzyme with pH-dependency and subcellular/tissue distribution similar to mammalian FAAHs. Finally, a typical C. intestinalis behavioural response, siphon reopening after closure induced by mechanical stimulation, was inhibited by the cannabinoid receptor agonist HU-210, and this effect was significantly attenuated by mammalian cannabinoid receptor antagonists.

  18. A genomic overview of short genetic variations in a basal chordate, Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Satou Yutaka

    2012-05-01

    Full Text Available Abstract Background Although the Ciona intestinalis genome contains many allelic polymorphisms, there is only limited data analyzed systematically. Establishing a dense map of genetic variations in C. intestinalis is necessary not only for linkage analysis, but also for other experimental biology including molecular developmental and evolutionary studies, because animals from natural populations are typically used for experiments. Results Here, we identified over three million candidate short genomic variations within a 110 Mb euchromatin region among five C. intestinalis individuals. The average nucleotide diversity was approximately 1.1%. Genetic variations were found at a similar density in intergenic and gene regions. Non-synonymous and nonsense nucleotide substitutions were found in 12,493 and 1,214 genes accounting for 81.9% and 8.0% of the entire gene set, respectively, and over 60% of genes in the single animal encode non-identical proteins between maternal and paternal alleles. Conclusions Our results provide a framework for studying evolution of the animal genome, as well as a useful resource for a wide range of C. intestinalis researchers.

  19. Bacteroides faecis and Bacteroides intestinalis recovered from clinical specimens of human intestinal origin.

    Science.gov (United States)

    Lee, Yangsoon; Kim, Hyun Soo; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon; Chong, Yunsop

    2015-01-01

    We report three cases of recently named Bacteroides spp. isolates, two B. faecis isolates and one B. intestinalis isolate from clinical specimens of inpatients at a Korean tertiary-care hospital in 2011. All isolates were susceptible to piperacillin-tazobactam, imipenem, meropenem, chloramphenicol, and metronidazole.

  20. Free Air Intraperitoneally During Chemotherapy for Acute Lymphoblastic Leukemia : Consider Pneumatosis Cystoides Intestinalis

    NARCIS (Netherlands)

    Groninger, Ellis; Hulscher, Jan B. F.; Timmer, Bert; Tamminga, Rienk Y. J.; Broens, Paul M. A.

    2010-01-01

    Intraperitoneal free air in a child with acute lymphoblastic leukemia (ALL) treated with induction chemotherapy is an ominous sign suspective of gastrointestinal perforation. We report a case of pneumatosis cystoides intestinalis (PCI) with free intraperitoneal air without bowel perforation in a chi

  1. Free Air Intraperitoneally During Chemotherapy for Acute Lymphoblastic Leukemia : Consider Pneumatosis Cystoides Intestinalis

    NARCIS (Netherlands)

    Groninger, Ellis; Hulscher, Jan B. F.; Timmer, Bert; Tamminga, Rienk Y. J.; Broens, Paul M. A.

    Intraperitoneal free air in a child with acute lymphoblastic leukemia (ALL) treated with induction chemotherapy is an ominous sign suspective of gastrointestinal perforation. We report a case of pneumatosis cystoides intestinalis (PCI) with free intraperitoneal air without bowel perforation in a

  2. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Yijing Zhang

    Full Text Available Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell

  3. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb.

    Science.gov (United States)

    Shen, Yaou; Zhang, Yongzhong; Chen, Jie; Lin, Haijian; Zhao, Maojun; Peng, Huanwei; Liu, Li; Yuan, Guangsheng; Zhang, Suzhi; Zhang, Zhiming; Pan, Guangtang

    2013-03-01

    Lead (Pb) has become one of the most abundant heavy metal pollutants of the environment. With its large biomass, maize could be an important object for studying the phytoremediation of Pb-contaminated soil. In our previous research, we screened 19 inbred lines of maize for Pb concentration, and line 178 was identified to be a hyperaccumulator for Pb in both the roots and aboveground parts. To identify important genes and metabolic pathways related to Pb accumulation and tolerance, line 178 was underwent genome expression profile under Pb stress and a control (CK). A total of approximately 11 million cDNA tags were sequenced and 4 665 539 and 4 936 038 clean tags were obtained from the libraries of the test and CK, respectively. In comparison to CK, 2379 and 1832 genes were identified up- or downregulated, respectively, more than fivefolds under Pb stress. Interestingly, all the genes were related to cellular processes and signaling, information storage and processing or metabolism functions. Particularly, the genes involved in posttranslational modification, protein turnover and chaperones; signal transduction, carbohydrate transport and metabolism; and lipid transport and metabolism significantly changed under the treatment. In addition, seven pathways including ribosome, photosynthesis, and carbon fixation were affected significantly, with 118, 12, 34, 21, 18, 72 and 43 differentially expressed genes involved. The significant upregulation of the ribosome pathway may reveal an important secret for Pb tolerance of line 178. And the sharp increase of laccase transcripts and metal ion transporters were suggested to account in part for Pb hyperaccumulation in the line. Copyright © Physiologia Plantarum 2012.

  4. Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: transcript profile and therapeutic effects.

    Directory of Open Access Journals (Sweden)

    Zenaida P Lopez-Dee

    Full Text Available Thrombospondin-1 (TSP-1 is a matricellular protein with regulatory functions in inflammation and cancer. The type 1 repeats (TSR domains of TSP-1 have been shown to interact with a wide range of proteins that result in the anti-angiogenic and anti-tumor properties of TSP-1. To ascertain possible functions and evaluate potential therapeutic effects of TSRs in inflammatory bowel disease, we conducted clinical, histological and microarray analyses on a mouse model of induced colitis. We used dextran sulfate sodium (DSS to induce colitis in wild-type (WT mice for 7 days. Simultaneously, mice were injected with either saline or one form of TSP-1 derived recombinant proteins, containing either (1 the three type 1 repeats of the TSP-1 (3TSR, (2 the second type 1 repeat (TSR2, or (3 TSR2 with the RFK sequence (TSR2+RFK. Total RNA isolated from the mice colons were processed and hybridized to mouse arrays. Array data were validated by real-time qPCR and immunohistochemistry. Histological and disease indices reveal that the mice treated with the TSRs show different patterns of leukocytic infiltration and that 3TSR treatment was the most effective in decreasing inflammation in DSS-induced colitis. Transcriptional profiling revealed differentially expressed (DE genes, with the 3TSR-treated mice showing the least deviation from the WT-water controls. In conclusion, this study shows that 3TSR treatment is effective in attenuating the inflammatory response to DSS injury. In addition, the transcriptomics work unveils novel genetic data that suggest beneficial application of the TSR domains in inflammatory bowel disease.

  5. Effect of iron limitation and fur gene inactivation on the transcriptional profile of the strict anaerobe Clostridium acetobutylicum.

    Science.gov (United States)

    Vasileva, Delyana; Janssen, Holger; Hönicke, Daniel; Ehrenreich, Armin; Bahl, Hubert

    2012-07-01

    Iron is a nutrient of critical importance for the strict anaerobe Clostridium acetobutylicum, as it is involved in numerous basic cellular functions and metabolic pathways. A gene encoding a putative ferric uptake regulator (Fur) has been identified in the genome of C. acetobutylicum. In this work, we inactivated the fur gene by using insertional mutagenesis. The resultant mutant showed a slow-growing phenotype and enhanced sensitivity to oxidative stress, but essentially no dramatic change in its fermentation pattern. A unique feature of its physiology was the overflowing production of riboflavin. To gain further insights into the role of the Fur protein and the mechanisms for establishment of iron balance in C. acetobutylicum, we characterized and compared the gene-expression profile of the fur mutant and the iron-limitation stimulon of the parental strain. Not surprisingly, a repertoire of iron-transport systems was upregulated in both microarray datasets, suggesting that they are regulated by Fur according to the availability of iron. In addition, iron limitation and inactivation of fur affected the expression of several genes involved in energy metabolism. Among them, two genes, encoding a lactate dehydrogenase and a flavodoxin, were highly induced. In order to support the function of the latter, the ribDBAH operon responsible for riboflavin biosynthesis was also upregulated significantly. Furthermore, the iron-starvation response of C. acetobutylicum involved transcriptional modifications that were not detected in the fur mutant, suggesting that there exist additional mechanisms for adaptation to low-iron environments. Collectively, these results demonstrate that the strict anaerobe C. acetobutylicum senses and responds to availability of iron on multiple levels using a sophisticated system, and that Fur plays an important role in this process.

  6. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

    Directory of Open Access Journals (Sweden)

    Kelsi M Sandoz

    Full Text Available A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV and small cell variant (SCV forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV, 5 (late LCV, 7 (intermediate forms, 14 (early SCV, and 21 days (late SCV post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG, a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.

  7. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

    Science.gov (United States)

    Sandoz, Kelsi M; Popham, David L; Beare, Paul A; Sturdevant, Daniel E; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.

  8. Effects of tumor necrosis factor-alpha (TNF alpha) in epidermal keratinocytes revealed using global transcriptional profiling.

    Science.gov (United States)

    Banno, Tomohiro; Gazel, Alix; Blumenberg, Miroslav

    2004-07-30

    Identification of tumor necrosis factor-alpha (TNF alpha) as the key agent in inflammatory disorders, e.g. rheumatoid arthritis, Crohn's disease, and psoriasis, led to TNF alpha-targeting therapies, which, although avoiding many of the side-effects of previous drugs, nonetheless causes other side-effects, including secondary infections and cancer. By controlling gene expression, TNF alpha orchestrates the cutaneous responses to environmental damage and inflammation. To define TNF alpha action in epidermis, we compared the transcriptional profiles of normal human keratinocytes untreated and treated with TNF alpha for 1, 4, 24, and 48 h by using oligonucleotide microarrays. We found that TNF alpha regulates not only immune and inflammatory responses but also tissue remodeling, cell motility, cell cycle, and apoptosis. Specifically, TNF alpha regulates innate immunity and inflammation by inducing a characteristic large set of chemokines, including newly identified TNF alpha targets, that attract neutrophils, macrophages, and skin-specific memory T-cells. This implicates TNF alpha in the pathogenesis of psoriasis, fixed drug eruption, atopic and allergic contact dermatitis. TNF alpha promotes tissue repair by inducing basement membrane components and collagen-degrading proteases. Unexpectedly, TNF alpha induces actin cytoskeleton regulators and integrins, enhancing keratinocyte motility and attachment, effects not previously associated with TNF alpha. Also unanticipated was the influence of TNF alpha upon keratinocyte cell fate by regulating cell-cycle and apoptosis-associated genes. Therefore, TNF alpha initiates not only the initiation of inflammation and responses to injury, but also the subsequent epidermal repair. The results provide new insights into the harmful and beneficial TNF alpha effects and define the mechanisms and genes that achieve these outcomes, both of which are important for TNF alpha-targeted therapies.

  9. Expression Profiles and RNAi Silencing of Inhibitor of Apoptosis Transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Puglise, Jason M; Estep, Alden S; Becnel, James J

    2016-03-01

    Effective mosquito control is vital to curtail the devastating health effects of many vectored diseases. RNA interference (RNAi)-mediated control of mosquitoes is an attractive alternative to conventional chemical pesticides. Previous studies have suggested that transcripts for inhibitors of apoptosis (IAPs) may be good RNAi targets. To revisit and extend previous reports, we examined the expression of Aedes aegypti (L.) IAPs (AaeIAPs) 1, 2, 5, 6, 9, and a viral IAP-associated factor (vIAF) as well as Anopheles quadrimaculatus Say and Culex quinquefasciatus Say IAP1 homologs (AquIAP1 and CquIAP1) in adult females. Expression profiles of IAPs suggested that some older female mosquitoes had significantly higher IAP mRNA levels when compared to the youngest ones. Minor differences in expression of AaeIAPs were observed in mosquitoes that imbibed a bloodmeal, but the majority of the time points (up to 48 h) were not significantly different. Although in vitro experiments with the Ae. aegypti Aag-2 cell line demonstrated that the various AaeIAPs could be effectively knocked down within one day after dsRNA treatment, only Aag-2 cells treated with dsIAP1 displayed apoptotic morphology. Gene silencing and mortality were also evaluated after topical application and microinjection of the same dsRNAs into female Ae. aegypti. In contrast to previous reports, topical administration of dsRNA against AaeIAP1 did not yield a significant reduction in gene expression or increased mortality. Knockdown of IAP1 and other IAPs by microinjection did not result in significant mortality. In toto, our findings suggest that IAPs may not be suitable RNAi targets for controlling adult mosquito populations.

  10. Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin.

    Science.gov (United States)

    Houlahan, Kathleen E; Prokopec, Stephenie D; Sun, Ren X; Moffat, Ivy D; Lindén, Jere; Lensu, Sanna; Okey, Allan B; Pohjanvirta, Raimo; Boutros, Paul C

    2015-10-15

    Polychlorinated dibenzodioxins are environmental contaminants commonly produced as a by-product of industrial processes. The most potent of these, 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), is highly lipophilic, leading to bioaccumulation. White adipose tissue (WAT) is a major site for energy storage, and is one of the organs in which TCDD accumulates. In laboratory animals, exposure to TCDD causes numerous metabolic abnormalities, including a wasting syndrome. We therefore investigated the molecular effects of TCDD exposure on WAT by profiling the transcriptomic response of WAT to 100μg/kg of TCDD at 1 or 4days in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. A comparative analysis was conducted simultaneously in identically treated TCDD-resistant Han/Wistar (Kuopio; H/W) rats one day after exposure to the same dose. We sought to identify transcriptomic changes coinciding with the onset of toxicity, while gaining additional insight into later responses. More transcriptional responses to TCDD were observed at 4days than at 1day post-exposure, suggesting WAT shows mostly secondary responses. Two classic AHR-regulated genes, Cyp1a1 and Nqo1, were significantly induced by TCDD in both strains, while several genes involved in the immune response, including Ms4a7 and F13a1 were altered in L-E rats alone. We compared genes affected by TCDD in rat WAT and human adipose cells, and observed little overlap. Interestingly, very few genes involved in lipid metabolism exhibited altered expression levels despite the pronounced lipid mobilization from peripheral fat pads by TCDD in L-E rats. Of these genes, the lipolysis-associated Lpin1 was induced slightly over 2-fold in L-E rat WAT on day 4.

  11. Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus.

    Science.gov (United States)

    Wang, Houmiao; Lei, Yong; Wan, Liyun; Yan, Liying; Lv, Jianwei; Dai, Xiaofeng; Ren, Xiaoping; Guo, Wei; Jiang, Huifang; Liao, Boshou

    2016-02-27

    Aflatoxin contamination caused by Aspergillus flavus in peanut (Arachis hypogaea) including in pre- and post-harvest stages seriously affects industry development and human health. Even though resistance to aflatoxin production in post-harvest peanut has been identified, its molecular mechanism has been poorly understood. To understand the mechanism of peanut response to aflatoxin production by A. flavus, RNA-seq was used for global transcriptome profiling of post-harvest seed of resistant (Zhonghua 6) and susceptible (Zhonghua 12) peanut genotypes under the fungus infection and aflatoxin production stress. A total of 128.72 Gb of high-quality bases were generated and assembled into 128, 725 unigenes (average length 765 bp). About 62, 352 unigenes (48.43%) were annotated in the NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Swiss-Prot, KEGG Ortholog, Protein family, Gene Ontology, or eukaryotic Ortholog Groups database and more than 93% of the unigenes were expressed in the samples. Among obtained 30, 143 differentially expressed unigenes (DEGs), 842 potential defense-related genes, including nucleotide binding site-leucine-rich repeat proteins, polygalacturonase inhibitor proteins, leucine-rich repeat receptor-like kinases, mitogen-activated protein kinase, transcription factors, ADP-ribosylation factors, pathogenesis-related proteins and crucial factors of other defense-related pathways, might contribute to peanut response to aflatoxin production. Notably, DEGs involved in phenylpropanoid-derived compounds biosynthetic pathway were induced to higher levels in the resistant genotype than in the susceptible one. Flavonoid, stilbenoid and phenylpropanoid biosynthesis pathways were enriched only in the resistant genotype. This study provided the first comprehensive analysis of transcriptome of post-harvest peanut seeds in response to aflatoxin production, and would contribute to better understanding of molecular interaction between

  12. Rhythmic profiles of cell cycle and circadian clock gene transcripts in mice: a possible association between two periodic systems.

    Science.gov (United States)

    Weigl, Yuval; Ashkenazi, Israel E; Peleg, Leah

    2013-06-15

    The circadian system shapes the rhythms of most biological functions. The regulation of the cell cycle by a circadian clock was suggested to operate via stages S, G2 and G2/M. This study investigated a possible time link at stages G1 and G1/S as well. The daily expression profiles of cell cycle markers (Ccnd1, Ccne1 and Pcna) and circadian clock genes (Per2 and Clock) were monitored in liver and esophagus (low and high proliferation index, respectively) of BALB/c mice. Locomotor activity displayed a 24 h rhythm, establishing the circadian organization of the suprachiasmatic nucleus. In the liver, the mRNA level of Per2 and Clock fitted the circadian rhythm with a 7.5 h shift. This temporal pattern suggests that the liver harbors a functional circadian clock. The rhythm of the analyzed cell cycle genes, however, was of low significance fitness and showed an opposite peak time between Pcna and Clock. These results indicate a weak regulatory role of the circadian clock. In the esophagus, the rhythms of Clock and Per2 mRNA had a similar peak time and non-circadian periods. These results suggest either that the esophagus does not harbor a functional circadian apparatus or that the phenotypes stem from differences in phase and amplitude of the rhythms of its various cell types. The similarity in the rhythm parameters of Clock, Ccne1 and Pcna transcripts questions the control of the circadian clock on the cell cycle along the G1 and G1/S stages. Yet the G1/S transition may play a role in modulating the local clock of proliferating tissues.

  13. Molecular cloning, transcriptional profiling, and subcellular localization of signal transducer and activator of transcription 2 (STAT2) ortholog from rock bream, Oplegnathus fasciatus.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Priyathilaka, Thanthrige Thiunuwan; Thulasitha, William Shanthakumar; Jayasinghe, J D H E; Wan, Qiang; Nam, Bo-Hye; Lee, Jehee

    2017-08-30

    Signal transducer and activator of transcription 2 (STAT2) is a key element that transduces signals from the cell membrane to the nucleus via the type I interferon-signaling pathway. Although the structural and functional aspects of STAT proteins are well studied in mammals, information on teleostean STATs is very limited. In this study, a STAT paralog, which is highly homologous to the STAT2 members, was identified from a commercially important fish species called rock bream and designated as RbSTAT2. The RbSTAT2 gene was characterized at complementary DNA (cDNA) and genomic sequence levels, and was found to possess structural features common with its mammalian counterparts. The complete cDNA sequence was distributed into 24 exons in the genomic sequence. The promoter proximal region was analyzed and found to contain potential transcription factor binding sites to regulate the transcription of RbSTAT2. Phylogenetic studies and comparative genomic structure organization revealed the distinguishable evolution for fish and other vertebrate STAT2 orthologs. Transcriptional quantification was performed by SYBR Green quantitative real-time PCR (qPCR) and the ubiquitous expression of RbSTAT2 transcripts was observed in all tissues analyzed from healthy fish, with a remarkably high expression in blood cells. Significantly (Prock bream irido virus; RBIV), bacterial (Edwardsiella tarda and Streptococcus iniae), and immune stimulants (poly I:C and LPS). Antiviral potential was further confirmed by WST-1 assay, by measuring the viability of rock bream heart cells treated with RBIV. In addition, results of an in vitro challenge experiment signified the influence of rock bream interleukin-10 (RbIL-10) on transcription of RbSTAT2. Subcellular localization studies by transfection of pEGFP-N1/RbSTAT2 into rock bream heart cells revealed that the RbSTAT2 was usually located in the cytoplasm and translocated near to the nucleus upon poly I:C administration. Altogether, these

  14. Spatial and Molecular Epidemiology of Giardia intestinalis Deep in the Amazon, Brazil.

    Directory of Open Access Journals (Sweden)

    Beatriz Coronato Nunes

    Full Text Available Current control policies for intestinal parasitosis focuses on soil-transmitted helminths, being ineffective against Giardia intestinalis, a highly prevalent protozoon that impacts children's nutritional status in developing countries. The objective of this study was to explore spatial and molecular epidemiology of Giardia intestinalis in children of Amerindian descent in the Brazilian Amazon.A cross sectional survey was performed in the Brazilian Amazon with 433 children aged 1 to 14 years. Fecal samples were processed through parasitological techniques and molecular characterization. Prevalence of G. intestinalis infection was 16.9% (73/433, reaching 22.2% (35/158 among children aged 2-5 years, and a wide distribution throughout the city with some hot spots. Positivity-rate was similar among children living in distinct socioeconomic strata (48/280 [17.1%] and 19/116 [16.4%] below and above the poverty line, respectively. Sequencing of the β-giardin gene revealed 52.2% (n = 12 of assemblage A and 47.8% (n = 11 of assemblage B with high haplotype diversity for the latter. The isolates clustered into two well-supported G. intestinalis clades. A total of 38 haplotypes were obtained, with the following subassemblages distribution: 5.3% (n = 2 AII, 26.3% (n = 10 AIII, 7.9% (n = 3 BIII, and 60.5% (n = 23 new B genotypes not previously described.Giardia intestinalis infection presents a high prevalence rate among Amerindian descended children living in Santa Isabel do Rio Negro/Amazon. The wide distribution observed in a small city suggests the presence of multiple sources of infection, which could be related to environmental contamination with feces, possibly of human and animal origin, highlighting the need of improving sanitation, safe water supply and access to diagnosis and adequate treatment of infections.

  15. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Riley, Caroline Hasselbalch; Thomassen, Mads

    2013-01-01

    Gene expression profiling studies in the Philadelphia-negative chronic myeloproliferative neoplasms have revealed significant deregulation of several immune and inflammation genes that might be of importance for clonal evolution due to defective tumor immune surveillance. Other mechanisms might...... be down-regulation of major histocompatibility (MHC) class I and II genes, which are used by tumor cells to escape antitumor T-cell-mediated immune responses. We have performed whole blood transcriptional profiling of genes encoding human leukocyte antigen (HLA) class I and II molecules, β2-microglobulin...... treatment with epigenome modulating agents (DNA-hypomethylators and DNA-hyperacetylators [histone deacetylase inhibitors]) and interferon-α2, our findings call for prospective transcriptional studies of HLA genes during treatment with these agents....

  16. Hepatic gene transcription profiles in turbot (Scophthalmus maximus) experimentally exposed to heavy fuel oil nº 6 and to styrene.

    Science.gov (United States)

    Diaz de Cerio, Oihane; Bilbao, Eider; Ruiz, Pamela; Pardo, Belén G; Martínez, Paulino; Cajaraville, Miren P; Cancio, Ibon

    2017-02-01

    Oil and chemical spills in the marine environment, although sporadic, are highly dangerous to biota inhabiting coastal and estuarine areas. Effects of spilled compounds in exposed organisms occur at different biological organization levels: from molecular, cellular or tissue levels to the physiological one. The present study aims to determine the specific hepatic gene transcription profiles observed in turbot juveniles under exposure to fuel oil n °6 and styrene vs controls using an immune enriched turbot (Scophthalmus maximus) oligo-microarray containing 2716 specific gene probes. After 3 days of exposure, fuel oil specifically induced aryl hydrocarbon receptor mediated transcriptional response through up-regulation of genes, such as ahrr and cyp1a1. More gene transcripts were regulated after 14 days of exposure involved in ribosomal biosynthesis, immune modulation, and oxidative response among the most significantly regulated functional pathways. On the contrary, gene transcription alterations caused by styrene did not highlight any significantly regulated molecular or metabolic pathway. This was also previously reported at cell and tissue level where no apparent responses were distinguishable. For the fuel oil experiment, obtained specific gene profiles could be related to changes in cell-tissue organization in the same individuals, such as increased hepatocyte vacuolization, decrease in melano-macrophage centers and the regulation of leukocyte numbers. In conclusion, the mode of action reflected by gene transcription profiles analyzed hereby in turbot livers could be linked with the responses previously reported at higher biological organization levels. Molecular alterations described hereby could be preceding observed alterations at cell and tissue levels.

  17. Nutrition modulates Fto and Irx3 gene transcript levels, but does not alter their DNA methylation profiles in rat white adipose tissues.

    Science.gov (United States)

    Nowacka-Woszuk, Joanna; Pruszynska-Oszmalek, Ewa; Szydlowski, Maciej; Szczerbal, Izabela

    2017-02-05

    The fat mass and obesity associated (Fto) and iroquois homeobox 3 (Irx3) genes have been recognised as important obesity-related genes. Studies on the expression of these genes in the fat tissue of human and mouse have produced inconsistent results, while similar data on rat are limited. Environmental factors such as diet, should be considered as potential modulators of gene transcript levels through epigenetic mechanisms including DNA methylation. The aim of this study was to evaluate transcription levels and DNA methylation profiles of rat Fto and Irx3 genes in two white adipose tissue depots in response to high-fat and high-protein diets. The relative transcript levels of Fto and Irx3 were shown to be tissue-specific with higher levels detected in subcutaneous fat tissue than in abdominal fat tissue. Moreover, negative correlations between the transcripts of both genes were observed for subcutaneous fat tissue. The identified interactions (e.g. diet×duration of diet regimen) indicated that the diet had an impact on the transcript level; however, this effect was dependent on the duration of the diet regimen. The high-fat diet led to upregulation of Fto and Irx3 linearly with time across the two tissues. DNA methylation of the regulatory regions of the studied genes was very low and not related with the tissue, diet, or duration of diet regimen. Our study revealed that diet was an important factor modulating transcription of Fto and Irx3, but its affect depended on its duration. In contrast, the DNA methylation profiles of Fto and Irx3 were not altered by nutrition, which may indicate that the feeding type, when applied postnatally, did not affect DNA methylation of these genes.

  18. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?

    Directory of Open Access Journals (Sweden)

    Oscar Franzén

    2009-08-01

    Full Text Available Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16x coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB. The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species.

  19. Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition

    Directory of Open Access Journals (Sweden)

    Tomotaka eShinya

    2016-04-01

    Full Text Available Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected three-year old hybrid Eucalyptus (Eucalyptus urophylla x E. grandis genotypes (AM063 and AM380 that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0% and 48.2%, -cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA and sucrose synthase (SUSY were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase (UGP and xyloglucan endotransglucoxylase (XTH than those in AM380. Most monolignol biosynthesis- related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase (PAL, cinnamate-4-hydroxylase (C4H and 4-coumarate-CoA ligase (4CL. Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents

  20. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases

    Directory of Open Access Journals (Sweden)

    Daria Lavysh

    2017-02-01

    Full Text Available Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases.

  1. Genome Sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a Third Thermoplasmatales-Related Methanogenic Archaeon from Human Feces.

    Science.gov (United States)

    Borrel, Guillaume; Harris, Hugh M B; Parisot, Nicolas; Gaci, Nadia; Tottey, William; Mihajlovski, Agnès; Deane, Jennifer; Gribaldo, Simonetta; Bardot, Olivier; Peyretaillade, Eric; Peyret, Pierre; O'Toole, Paul W; Brugère, Jean-François

    2013-07-11

    "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1 is a methanogenic archaeon found in the human gut and is a representative of the novel order of methanogens related to Thermoplasmatales. Its complete genome sequence is presented here.

  2. Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes

    Science.gov (United States)

    2010-01-01

    Background The GeneChip® Medicago Genome Array, developed for Medicago truncatula, is a suitable platform for transcript profiling in tetraploid alfalfa [Medicago sativa (L.) subsp. sativa]. However, previous research involving cross-species hybridization (CSH) has shown that sequence variation between two species can bias transcript profiling by decreasing sensitivity (number of expressed genes detected) and the accuracy of measuring fold-differences in gene expression. Results Transcript profiling using the Medicago GeneChip® was conducted with elongating stem (ES) and post-elongation stem (PES) internodes from alfalfa genotypes 252 and 1283 that differ in stem cell wall concentrations of cellulose and lignin. A protocol was developed that masked probes targeting inter-species variable (ISV) regions of alfalfa transcripts. A probe signal intensity threshold was selected that optimized both sensitivity and accuracy. After masking for both ISV regions and previously identified single-feature polymorphisms (SFPs), the number of differentially expressed genes between the two genotypes in both ES and PES internodes was approximately 2-fold greater than the number detected prior to masking. Regulatory genes, including transcription factor and receptor kinase genes that may play a role in development of secondary xylem, were significantly over-represented among genes up-regulated in 252 PES internodes compared to 1283 PES internodes. Several cell wall-related genes were also up-regulated in genotype 252 PES internodes. Real-time quantitative RT-PCR of differentially expressed regulatory and cell wall-related genes demonstrated increased sensitivity and accuracy after masking for both ISV regions and SFPs. Over 1,000 genes that were differentially expressed in ES and PES internodes of genotypes 252 and 1283 were mapped onto putative orthologous loci on M. truncatula chromosomes. Clustering simulation analysis of the differentially expressed genes suggested co

  3. Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes

    Directory of Open Access Journals (Sweden)

    Jung Hans-Joachim G

    2010-05-01

    Full Text Available Abstract Background The GeneChip® Medicago Genome Array, developed for Medicago truncatula, is a suitable platform for transcript profiling in tetraploid alfalfa [Medicago sativa (L. subsp. sativa]. However, previous research involving cross-species hybridization (CSH has shown that sequence variation between two species can bias transcript profiling by decreasing sensitivity (number of expressed genes detected and the accuracy of measuring fold-differences in gene expression. Results Transcript profiling using the Medicago GeneChip® was conducted with elongating stem (ES and post-elongation stem (PES internodes from alfalfa genotypes 252 and 1283 that differ in stem cell wall concentrations of cellulose and lignin. A protocol was developed that masked probes targeting inter-species variable (ISV regions of alfalfa transcripts. A probe signal intensity threshold was selected that optimized both sensitivity and accuracy. After masking for both ISV regions and previously identified single-feature polymorphisms (SFPs, the number of differentially expressed genes between the two genotypes in both ES and PES internodes was approximately 2-fold greater than the number detected prior to masking. Regulatory genes, including transcription factor and receptor kinase genes that may play a role in development of secondary xylem, were significantly over-represented among genes up-regulated in 252 PES internodes compared to 1283 PES internodes. Several cell wall-related genes were also up-regulated in genotype 252 PES internodes. Real-time quantitative RT-PCR of differentially expressed regulatory and cell wall-related genes demonstrated increased sensitivity and accuracy after masking for both ISV regions and SFPs. Over 1,000 genes that were differentially expressed in ES and PES internodes of genotypes 252 and 1283 were mapped onto putative orthologous loci on M. truncatula chromosomes. Clustering simulation analysis of the differentially expressed genes

  4. Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants.

    Science.gov (United States)

    Bond, Donna M; Albert, Nick W; Lee, Robyn H; Gillard, Gareth B; Brown, Chris M; Hellens, Roger P; Macknight, Richard C

    2016-01-01

    Transcription factors (TFs) coordinate precise gene expression patterns that give rise to distinct phenotypic outputs. The identification of genes and transcriptional networks regulated by a TF often requires stable transformation and expression changes in plant cells. However, the production of stable transformants can be slow and laborious with no guarantee of success. Furthermore, transgenic plants overexpressing a TF of interest can present pleiotropic phenotypes and/or result in a high number of indirect gene expression changes. Therefore, fast, efficient, high-throughput methods for assaying TF function are needed. Agroinfiltration is a simple plant biology method that allows transient gene expression. It is a rapid and powerful tool for the functional characterisation of TF genes in planta. High throughput RNA sequencing is now a widely used method for analysing gene expression profiles (transcriptomes). By coupling TF agroinfiltration with RNA sequencing (named here as Infiltration-RNAseq), gene expression networks and gene function can be identified within a few weeks rather than many months. As a proof of concept, we agroinfiltrated Medicago truncatula leaves with M. truncatula LEGUME ANTHOCYANIN PRODUCITION 1 (MtLAP1), a MYB transcription factor involved in the regulation of the anthocyanin pathway, and assessed the resulting transcriptome. Leaves infiltrated with MtLAP1 turned red indicating the production of anthocyanin pigment. Consistent with this, genes encoding enzymes in the anthocyanin biosynthetic pathway, and known transcriptional activators and repressors of the anthocyanin biosynthetic pathway, were upregulated. A novel observation was the induction of a R3-MYB transcriptional repressor that likely provides transcriptional feedback inhibition to prevent the deleterious effects of excess anthocyanins on photosynthesis. Infiltration-RNAseq is a fast and convenient method for profiling TF-mediated gene expression changes. We utilised this method

  5. Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria

    Directory of Open Access Journals (Sweden)

    Liles W Conrad

    2006-11-01

    Full Text Available Abstract Background The development and outcome of cerebral malaria (CM reflects a complex interplay between parasite-expressed virulence factors and host response to infection. The murine CM model, Plasmodium berghei ANKA (PbA, which simulates many of the features of human CM, provides an excellent system to study this host/parasite interface. We designed "combination" microarrays that concurrently detect genome-wide transcripts of both PbA and mouse, and examined parasite and host transcriptional programs during infection of CM-susceptible (C57BL/6 and CM-resistant (BALB/c mice. Results Analysis of expression data from brain, lung, liver, and spleen of PbA infected mice showed that both host and parasite gene expression can be examined using a single microarray, and parasite transcripts can be detected within whole organs at a time when peripheral blood parasitemia is low. Parasites display a unique transcriptional signature in each tissue, and lung appears to be a large reservoir for metabolically active parasites. In comparisons of susceptible versus resistant animals, both host and parasite display distinct, organ-specific transcriptional profiles. Differentially expressed mouse genes were related to humoral immune response, complement activation, or cell-cell interactions. PbA displayed differential expression of genes related to biosynthetic activities. Conclusion These data show that host and parasite gene expression profiles can be simultaneously analysed using a single "combination" microarray, and that both the mouse and malaria parasite display distinct tissue- and strain-specific responses during infection. This technology facilitates the dissection of host-pathogen interactions in experimental cerebral malaria and could be extended to other disease models.

  6. TRANSCRIPTIONAL PROFILES IN LIVER FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDES: PROPICONAZOLE, TRIADIMEFON, AND MYCLOBUTANIL

    Science.gov (United States)

    Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study (Allen et al. 2006) under...

  7. DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken.

    Science.gov (United States)

    Gao, Qingqing; Xia, Le; Liu, Juanhua; Wang, Xiaobo; Gao, Song; Liu, Xiufan

    2016-11-01

    Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Differential transcript profiles of MHC class Ib(Qa-1, Qa-2, and Qa-10) and Aire genes during the ontogeny of thymus and other tissues.

    Science.gov (United States)

    Melo-Lima, Breno Luiz; Evangelista, Adriane Feijó; de Magalhães, Danielle Aparecida Rosa; Passos, Geraldo Aleixo; Moreau, Philippe; Donadi, Eduardo Antonio

    2014-01-01

    Qa-2 and Qa-1 are murine nonclassical MHC class I molecules involved in the modulation of immune responses by interacting with T CD8(+) and NK cell inhibitory receptors. During thymic education, the Aire