WorldWideScience

Sample records for intestinal permeability induced

  1. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice.

    Science.gov (United States)

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-03-14

    To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function.

  2. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.

    Science.gov (United States)

    Lammers, Karen M; Lu, Ruliang; Brownley, Julie; Lu, Bao; Gerard, Craig; Thomas, Karen; Rallabhandi, Prasad; Shea-Donohue, Terez; Tamiz, Amir; Alkan, Sefik; Netzel-Arnett, Sarah; Antalis, Toni; Vogel, Stefanie N; Fasano, Alessio

    2008-07-01

    Celiac disease is an immune-mediated enteropathy triggered by gliadin, a component of the grain protein gluten. Gliadin induces an MyD88-dependent zonulin release that leads to increased intestinal permeability, a postulated early element in the pathogenesis of celiac disease. We aimed to establish the molecular basis of gliadin interaction with intestinal mucosa leading to intestinal barrier impairment. Alpha-gliadin affinity column was loaded with intestinal mucosal membrane lysates to identify the putative gliadin-binding moiety. In vitro experiments with chemokine receptor CXCR3 transfectants were performed to confirm binding of gliadin and/or 26 overlapping 20mer alpha-gliadin synthetic peptides to the receptor. CXCR3 protein and gene expression were studied in intestinal epithelial cell lines and human biopsy specimens. Gliadin-CXCR3 interaction was further analyzed by immunofluorescence microscopy, laser capture microscopy, real-time reverse-transcription polymerase chain reaction, and immunoprecipitation/Western blot analysis. Ex vivo experiments were performed using C57BL/6 wild-type and CXCR3(-/-) mouse small intestines to measure intestinal permeability and zonulin release. Affinity column and colocalization experiments showed that gliadin binds to CXCR3 and that at least 2 alpha-gliadin 20mer synthetic peptides are involved in this binding. CXCR3 is expressed in mouse and human intestinal epithelia and lamina propria. Mucosal CXCR3 expression was elevated in active celiac disease but returned to baseline levels following implementation of a gluten-free diet. Gliadin induced physical association between CXCR3 and MyD88 in enterocytes. Gliadin increased zonulin release and intestinal permeability in wild-type but not CXCR3(-/-) mouse small intestine. Gliadin binds to CXCR3 and leads to MyD88-dependent zonulin release and increased intestinal permeability.

  3. Ascorbic Acid may Exacerbate Aspirin-Induced Increase in Intestinal Permeability.

    Science.gov (United States)

    Sequeira, Ivana R; Kruger, Marlena C; Hurst, Roger D; Lentle, Roger G

    2015-09-01

    Ascorbic acid in combination with aspirin has been used to prevent aspirin-induced oxidative GI damage. We aimed to determine whether ascorbic acid reduces or prevents aspirin-induced changes in intestinal permeability over a 6-hr period using saccharidic probes mannitol and lactulose. The effects of administration of 600 mg aspirin alone, 500 mg ascorbic acid alone and simultaneous dosage of both agents were compared in a cross-over study in 28 healthy female volunteers. These effects were also compared with that of a placebo. The ability of ascorbic acid to mitigate the effects of aspirin when administered either half an hour before or after dosage with aspirin was also assessed in 19 healthy female volunteers. The excretion of lactulose over the 6-hr period was augmented after consumption of either aspirin or ascorbic acid compared with that after consumption of placebo. Dosage with ascorbic acid alone augmented the excretion of lactulose more than did aspirin alone. Simultaneous dosage with both agents augmented the excretion of lactulose in an additive manner. The timing of dosage with ascorbic acid in relation to that with aspirin had no significant effect on the excretion of the two sugars. These findings indicate that ascorbic acid does not prevent aspirin-induced increase in gut permeability rather that both agents augment it to a similar extent. The additive effect on simultaneous dosage with both agents in augmenting the absorption of lactulose suggests that each influences paracellular permeability by different pathways. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  4. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids.

    Science.gov (United States)

    Stenman, Lotta K; Holma, Reetta; Korpela, Riitta

    2012-03-07

    To investigate whether high-fat-feeding is associated with increased intestinal permeability via alterations in bile acid metabolism. Male C57Bl/6J mice were fed on a high-fat (n = 26) or low-fat diet (n = 24) for 15 wk. Intestinal permeability was measured from duodenum, jejunum, ileum and colon in an Ussing chamber system using 4 kDa FITC-labeled dextran as an indicator. Fecal bile acids were analyzed with gas chromatography. Segments of jejunum and colon were analyzed for the expression of farnesoid X receptor (FXR) and tumor necrosis factor (TNF). Intestinal permeability was significantly increased by high-fat feeding in jejunum (median 0.334 for control vs 0.393 for high-fat, P = 0.03) and colon (0.335 for control vs 0.433 for high-fat, P = 0.01), but not in duodenum or ileum. The concentration of nearly all identified bile acids was significantly increased by high-fat feeding (P acid (UDCA) in all bile acids was decreased (1.4% ± 0.1% in high-fat vs 2.8% ± 0.3% in controls, P fat feeding also increased jejunal FXR expression, as well as TNF expression along the intestine, especially in the colon. High-fat-feeding increased intestinal permeability, perhaps by a mechanism related to bile acid metabolism, namely a decreased proportion of fecal UDCA and increased FXR expression.

  5. Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation.

    Directory of Open Access Journals (Sweden)

    Keith C Summa

    Full Text Available The circadian clock orchestrates temporal patterns of physiology and behavior relative to the environmental light:dark cycle by generating and organizing transcriptional and biochemical rhythms in cells and tissues throughout the body. Circadian clock genes have been shown to regulate the physiology and function of the gastrointestinal tract. Disruption of the intestinal epithelial barrier enables the translocation of proinflammatory bacterial products, such as endotoxin, across the intestinal wall and into systemic circulation; a process that has been linked to pathologic inflammatory states associated with metabolic, hepatic, cardiovascular and neurodegenerative diseases - many of which are commonly reported in shift workers. Here we report, for the first time, that circadian disorganization, using independent genetic and environmental strategies, increases permeability of the intestinal epithelial barrier (i.e., gut leakiness in mice. Utilizing chronic alcohol consumption as a well-established model of induced intestinal hyperpermeability, we also found that both genetic and environmental circadian disruption promote alcohol-induced gut leakiness, endotoxemia and steatohepatitis, possibly through a mechanism involving the tight junction protein occludin. Circadian organization thus appears critical for the maintenance of intestinal barrier integrity, especially in the context of injurious agents, such as alcohol. Circadian disruption may therefore represent a previously unrecognized risk factor underlying the susceptibility to or development of alcoholic liver disease, as well as other conditions associated with intestinal hyperpermeability and an endotoxin-triggered inflammatory state.

  6. Psychological stress exacerbates NSAID-induced small bowel injury by inducing changes in intestinal microbiota and permeability via glucocorticoid receptor signaling.

    Science.gov (United States)

    Yoshikawa, Kenichi; Kurihara, Chie; Furuhashi, Hirotaka; Takajo, Takeshi; Maruta, Koji; Yasutake, Yuichi; Sato, Hirokazu; Narimatsu, Kazuyuki; Okada, Yoshikiyo; Higashiyama, Masaaki; Watanabe, Chikako; Komoto, Shunsuke; Tomita, Kengo; Nagao, Shigeaki; Miura, Soichiro; Tajiri, Hisao; Hokari, Ryota

    2017-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are popular painkillers, but they have serious side effects, not only in the upper gastrointestinal tract but also in the small intestine. It is well known that psychological stress may exacerbate various gastrointestinal diseases. The aim of this study was to determine whether psychological stress exacerbates NSAID enteropathy and to determine the possible underlying mechanisms for this. Experiment 1: mice were exposed to water avoidance stress (WAS) or sham stress for 1 h per day for 8 consecutive days, and then enteropathy was induced by indomethacin. Experiment 2: cecal contents from stress (-) or (+) mice were transplanted into mice that had received antibiotics and in which NSAID enteropathy had been induced without WAS. Experiment 3: mifepristone, a glucocorticoid receptor antagonist, was injected before WAS for 8 days. Small intestinal injury, mRNA expression of TNFα, intestinal permeability, and the microbial community were assessed. Psychological stress exacerbated NSAID enteropathy and increased intestinal permeability. Psychological stress induced changes in the ileal microbiota that were characterized by increases in the total number of bacteria and the proportion of Gram-negative bacteria. The increased susceptibility to NSAIDs and intestinal permeability due to WAS was transferable via cecal microbiota transplantation. The increased permeability and aggravation of NSAID enteropathy caused by WAS were blocked by the administration of mifepristone. This study demonstrated a relationship between NSAID enteropathy and psychological stress, and showed the utility of studying the intestinal microbiota in order to elucidate the pathophysiology of NSAID enteropathy. It also showed the impact of stress on the intestinal microbiota and the mucosal barrier in gastrointestinal diseases.

  7. Intestinal permeability induced by lipopolysaccharide and measured by lactulose, rhamnose and mannitol sugars in chickens.

    Science.gov (United States)

    Gilani, S; Howarth, G S; Kitessa, S M; Tran, C D; Forder, R E A; Hughes, R J

    2017-07-01

    Increased intestinal permeability (IP) can lead to compromised health. Limited in vivo IP research has been conducted in chickens. The objectives of the current study were to develop a model of increased IP utilizing lipopolysaccharide (LPS Escherichia coli O55:B5) and to evaluate IP changes using the lactulose, mannitol and rhamnose (LMR) sugar permeability test. In addition, fluorescein isothiocyanate dextran (FITC-d), d-lactate, zonula occludens (ZO-1) and diamine oxidase (DAO) permeability tests were employed. Male Ross chickens were reared until day 14 on the floor in an animal care facility and then transferred to individual cages in three separate experiments. In each of experiments 1 and 2, 36 chicks were randomly allocated to receive either saline (control) or LPS (n=18/group). Lactulose, mannitol and rhamnose sugar concentration in blood was measured at 0, 30, 60, 90, 120 and 180 min in experiment 1, at 60, 90 and 120 min in experiment 2 and at 90 min in experiment 3 (n=16/group). Lipopolysaccharide was injected intraperitoneally at doses of 0.5, 1 and 1 mg/kg BW in experiments 1, 2 and 3, respectively, on days 16, 18 and 20, whereas control received sterile saline. On day 21, only birds in experiments 1 and 2 were fasted for 19.5 h. Chicks were orally gavaged with the LMR sugars (0.25 gL, 0.05 gM, 0.05 gR/bird) followed by blood collection (from the brachial vein) as per time point for each experiment. Only in experiment 3, were birds given an additional oral gavage of FITC-d (2.2 mg/ml per bird) 60 min after the first gavage. Plasma d-lactate, ZO-1 and DAO concentrations were also determined by ELISA in experiment 3 (n=10). Administration of LPS did not affect IP as measured by the LMR sugar test compared with control. This was also confirmed by FITC-d and DAO levels in experiment 3 (P>0.05). The plasma levels of d-lactate were decreased (Psugar can be detected in blood 90 min after the oral gavage. Further studies are needed for the applicability of

  8. Bovine Colostrum Supplementation During Running Training Increases Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    Grant D. Brinkworth

    2009-12-01

    Full Text Available Endurance exercise training can increase intestinal permeability which may contribute to the development of gastrointestinal symptoms in some athletes. Bovine colostrum (BC supplementation reduces intestinal permeability induced by non-steroidal anti-inflammatory drugs. This study aimed to determine whether BC could also reduce intestinal permeability induced by endurance exercise. Thirty healthy adult males (25.0 ± 4.7 yr; mean ± SD completed eight weeks of running three times per week for 45 minutes at their lactate threshold while consuming 60 g/day of BC, whey protein (WP or control (CON. Intestinal permeability was assessed at baseline and after eight weeks by measuring the ratio of urinary lactulose (L and rhamnose (R excretion. After eight weeks the L/R ratio increased significantly more in volunteers consuming BC (251 ± 140% compared with WP (21 ± 35%, P < 0.05 and CON (−7 ± 13%, P < 0.02. The increase in intestinal permeability with BC may have been due to BC inducing greater leakiness of tight junctions between enterocytes or by increasing macromolecular transport as it does in neonatal gut. Further research should investigate the potential for BC to increase intestinal macromolecular transport in adults.

  9. Protection against increased intestinal permeability and bacterial translocation induced by intestinal obstruction in mice treated with viable and heat-killed Saccharomyces boulardii.

    Science.gov (United States)

    Generoso, Simone V; Viana, Mirelle L; Santos, Rosana G; Arantes, Rosa M E; Martins, Flaviano S; Nicoli, Jacques R; Machado, José A N; Correia, Maria Isabel T D; Cardoso, Valbert N

    2011-06-01

    There are substantial evidences suggesting that probiotics can protect the gastrointestinal tract against inflammatory or infectious episodes. The effects of oral treatment with viable or heat-killed cells of Saccharomyces boulardii (Sb) on bacterial translocation, intestinal permeability, histological aspect of the ileum, and some immunological parameters were evaluated in a murine intestinal obstruction (IO) model. Bacterial translocation and intestinal permeability in the IO group were significantly higher when compared to a Sham group (p viable and heat-killed S. boulardii prevented these increases, and the data obtained for IO + Sb and IO + heat-killed Sb groups were similar to those observed in the Sham group (p > 0.05). Histological analysis showed preservation of the ileum mucosa in mice that received both forms of the yeast when compared to the lesions observed in the IO group. The levels of serum interleukin (IL)-10 and intestinal secretory immunoglobulin A (sIgA) were higher in the animals that received both yeast treatments when compared to those from IO and Sham groups. Oral treatment with viable or heat-killed cells of S. boulardii maintained intestinal integrity and modulated the immune system in a murine IO model, preventing bacterial translocation and intestinal lesions.

  10. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.

    Science.gov (United States)

    Fasano, A; Not, T; Wang, W; Uzzau, S; Berti, I; Tommasini, A; Goldblum, S E

    2000-04-29

    We identified zonulin, a novel human protein analogue to the Vibrio cholerae derived Zonula occludens toxin, which induces tight junction disassembly and a subsequent increase in intestinal permeability in non-human primate intestinal epithelia. Zonulin expression was raised in intestinal tissues during the acute phase of coeliac disease, a clinical condition in which tight junctions are opened and permeability is increased.

  11. INTESTINAL PERMEABILITY IN PEDIATRIC GASTROENTEROLOGY

    NARCIS (Netherlands)

    VANELBURG, RM; UIL, JJ; DEMONCHY, JGR; HEYMANS, HSA

    1992-01-01

    The role of the physiologic barrier function of the small bowel and its possible role in health and disease has attracted much attention over the past decade. The intestinal mucosal barrier for luminal macromolecules and microorganism is the result of non-immunologic and immunologic defense

  12. Alterations in Intestinal Permeability After Thermal Injury,

    Science.gov (United States)

    1992-01-01

    circulation, remain un- intestinal mucosal blood flow is markedly decreased after metabolized , and are excreted by the kidney. Mannitol is thermal...is a positive correlation between burn 6. Menzles IS, Pounder R, Laker MP, et al. Abnormal Intes- size and endotoxemia , not every burned patient...develops tinal permeability to sugars In villous atrophy. Lancet. 1979; endotoxemia during the postburn course. It is possible 2:1107-1109. that a

  13. Abnormal intestinal permeability in primary biliary cirrhosis.

    Science.gov (United States)

    Feld, Jordan J; Meddings, Jonathan; Heathcote, E Jenny

    2006-09-01

    Antimitochondrial antibodies (AMAs) found in patients with primary biliary cirrhosis (PBC) cross-react with bacterial proteins and hence molecular mimicry has been proposed as a mechanism for AMA development. Alterations in gastrointestinal permeability would provide a potential route for increased exposure of gut flora to the immune system. In this study we aimed to compare the measured gastrointestinal permeability in patients with PBC to that in patients with liver disease (hepatitis C) and healthy control populations. Subjects drank a mixture of sucrose, lactulose, and mannitol dissolved in water. Eight-hour urinary excretion of the sugars was measured to assess intestinal permeability. Antiendomysial antibody testing was performed to exclude subclinical celiac disease. Eighty-six patients with PBC were evaluated and compared to 69 hepatitis C patients and 155 healthy controls. The mean urinary excretion of sucrose in the PBC patients (133.89 +/- 72.56 mg) was significantly higher than that in hepatitis C patients (101.07+/-63.35) or healthy controls (89.46+/-41.76) (P=0.0001), suggesting abnormal gastric or proximal small intestinal permeability. Sucrose excretion was not increased among patients with hepatitis C compared to healthy controls. The ratio of lactulose:mannitol excretion, reflecting small bowel permeability, was also elevated in the PBC group (0.017+/-0.012) compared to healthy controls (0.012+/-0.007) (P=0.0001) but was equal to that found among patients with hepatitis C (0.016+/-0.011) (P=NS). We conclude that the permeability of both the stomach and the small bowel is increased in patients with PBC, however, it is unclear if it is a cause, consequence, or manifestation of the disease.

  14. Fructokinase, Fructans, Intestinal Permeability, and Metabolic Syndrome: An Equine Connection?

    Science.gov (United States)

    Johnson, Richard J; Rivard, Chris; Lanaspa, Miguel A.; Otabachian-Smith, Silvia; Ishimoto, Takuji; Cicerchi, Christina; Cheeke, Peter R.; MacIntosh, Bridgett; Hess, Tanja

    2012-01-01

    Fructose is a simple sugar present in honey and fruit, but can also exist as a polymer (fructans) in pasture grasses. Mammals are unable to metabolize fructans, but certain gram positive bacteria contain fructanases and can convert fructans to fructose in the gut. Recent studies suggest that fructose generated from bacteria, or directly obtained from the diet, can induce both increased intestinal permeability and features of metabolic syndrome, especially the development of insulin resistance. The development of insulin resistance is driven in part by the metabolism of fructose by fructokinase C in the liver, which results in oxidative stress in the hepatocyte. Similarly, the metabolism of fructose in the small bowel by intestinal fructokinase may lead to increased intestinal permeability and endotoxemia. While speculative, these observations raise the possibility that the mechanism by which fructans induce laminitis could involve intestinal and hepatic fructokinase. Further studies are indicated to determine the role of fructanases, fructose and fructokinase in equine metabolic syndrome and laminitis. PMID:23439477

  15. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Schütz, Tanja

    2000-01-01

    BACKGROUND/AIMS: No information is yet available about the influence of alcohol abuse on the translocation of larger molecules (Mr>1200) through the intestinal mucosa in man. The present study aimed to determine the intestinal permeability to macromolecules in patients with chronic alcohol abuse...... and mild to more advanced stages of liver disease, and to measure the concentration of endotoxins in the plasma, as these compounds derive from the intestinal flora and are suspected to contribute to the development of alcoholic liver disease (ALD). METHODS: The permeability to polyethylene glycol Mr 400......, Mr 1500, Mr 4000, and Mr 10,000 and endotoxin plasma concentrations were measured in 54 patients with alcoholic liver disease, 19 of them with cirrhosis, and in 30 non-alcoholic healthy controls. RESULTS: Permeability to polyethylene glycol Mr 400 was found to be unchanged in patients with ALD...

  16. Quantitation of small intestinal permeability during normal human drug absorption

    OpenAIRE

    Levitt, David G

    2013-01-01

    Background Understanding the quantitative relationship between a drug?s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorpti...

  17. Pathophysiology of increased intestinal permeability in obstructive jaundice

    Science.gov (United States)

    Assimakopoulos, Stelios F; Scopa, Chrisoula D; Vagianos, Constantine E

    2007-01-01

    Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients’ outcome. PMID:18161914

  18. Intestinal permeability - a new target for disease prevention and therapy

    NARCIS (Netherlands)

    Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M.

    2014-01-01

    Data are accumulating that emphasize the important role of the intestinal barrier and intestinal permeability for health and disease. However, these terms are poorly defined, their assessment is a matter of debate, and their clinical significance is not clearly established. In the present review,

  19. Intestinal permeability in exocrine pancreatic insufficiency due to cystic fibrosis or chronic pancreatitis

    NARCIS (Netherlands)

    vanElburg, RM; Uil, JJ; vanAalderen, WMC; Mulder, CJJ; Heymans, HSA

    Disturbances of the intestinal integrity, reflected by an increased intestinal permeability, are reported in cystic fibrosis (CF). Controversy exists whether the increased intestinal permeability is due to CF itself or a consequence of the concomitant exocrine pancreatic insufficiency (PI). We

  20. Quantitation of small intestinal permeability during normal human drug absorption

    Science.gov (United States)

    2013-01-01

    Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting

  1. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress.

    Science.gov (United States)

    Karl, J Philip; Margolis, Lee M; Madslien, Elisabeth H; Murphy, Nancy E; Castellani, John W; Gundersen, Yngvar; Hoke, Allison V; Levangie, Michael W; Kumar, Raina; Chakraborty, Nabarun; Gautam, Aarti; Hammamieh, Rasha; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-06-01

    The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers ( n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress. NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal microbiota responses to stress, resulted in increased intestinal permeability concomitant with

  2. Regulation of intestinal permeability: The role of proteases.

    Science.gov (United States)

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-03-28

    The gastrointestinal barrier is - with approximately 400 m 2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.

  3. Combined effect of rifampicin-induced P-glycoprotein expression and lipopolysaccharide-induced intestinal sepsis on the effective permeability and pharmacokinetics of an anti-malarial candidate CDRI 97/78 in rats.

    Science.gov (United States)

    Singh, Yeshwant; Hidau, Mahendra Kumar; Krishna, Jampala; Singh, Shio Kumar

    2015-01-01

    1. The study aimed to investigate the influences on the pharmacokinetics (PK) of an anti-malarial drug 97/78 in rats pretreated with orally administered rifampicin and bacterial endotoxin lipopolysaccharide (LPS). 2. In-situ intestinal absorption studies were conducted on rats pretreated with rifampicin and LPS or both to estimate effective permeability (Peff) of 97/78. In-vivo studies were then conducted to explore 97/78 PK profile under these conditions. In-situ studies revealed that Peff value decreased to 64% (2.7 ± 0.6) × 10(-4 )cm/s in rats pretreated with rifampicin. This decrease was further enhanced very significantly to 4.5% (0.19 ± 0.03) × 10(-4 )cm/s in rats pretreated both with rifampicin and LPS (p97/78 in rifampicin-pretreated rats. This decrease was further augmented to 12-fold upon rifampicin and LPS pretreatment. 3. Orally administered rifampicin decreased the concentration of 97/78 in circulation. This decrease was further enhanced significantly to a very low level by LPS-induced intestinal sepsis.

  4. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease.

    Science.gov (United States)

    Schwiertz, Andreas; Spiegel, Jörg; Dillmann, Ulrich; Grundmann, David; Bürmann, Jan; Faßbender, Klaus; Schäfer, Karl-Herbert; Unger, Marcus M

    2018-02-12

    Intestinal inflammation and increased intestinal permeability (both possibly fueled by dysbiosis) have been suggested to be implicated in the multifactorial pathogenesis of Parkinson's disease (PD). The objective of the current study was to investigate whether fecal markers of inflammation and impaired intestinal barrier function corroborate this pathogenic aspect of PD. In a case-control study, we quantitatively analyzed established fecal markers of intestinal inflammation (calprotectin and lactoferrin) and fecal markers of intestinal permeability (alpha-1-antitrypsin and zonulin) in PD patients (n = 34) and controls (n = 28, group-matched for age) by enzyme-linked immunosorbent assay. The study design controlled for potential confounding factors. Calprotectin, a fecal marker of intestinal inflammation, and two fecal markers of increased intestinal permeability (alpha-1-antitrypsin and zonulin) were significantly elevated in PD patients compared to age-matched controls. Lactoferrin, as a second fecal marker of intestinal inflammation, showed a non-significant trend towards elevated concentrations in PD patients. None of the four fecal markers correlated with disease severity, PD subtype, dopaminergic therapy, or presence of constipation. Fecal markers reflecting intestinal inflammation and increased intestinal permeability have been primarily investigated in inflammatory bowel disease so far. Our data indicate that calprotectin, alpha-1-antitrypsin and zonulin could be useful non-invasive markers in PD as well. Even though these markers are not disease-specific, they corroborate the hypothesis of an intestinal inflammation as contributing factor in the pathogenesis of PD. Further investigations are needed to determine whether calprotectin, alpha-1-antitrypsin and zonulin can be used to define PD subgroups and to monitor the effect of interventions in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Increasing dietary oat fibre decreases the permeability of intestinal mucus.

    Science.gov (United States)

    Mackie, Alan; Rigby, Neil; Harvey, Pascale; Bajka, Balazs

    2016-10-01

    This study investigates the influence of the dietary fibre β-glucan on nutrient composition and mucus permeability. Pigs were fed a standard diet or a diet containing twice the β-glucan content for 3 days (n = 5 per group), followed by the collection of small intestinal mucus and tissue samples. Samples of the consumed diets were subjected to in vitro digestion to determine β-glucan release, nutrient profile and assessment of mucus permeability. In vitro digestion of the diets indicated that 90% of the β-glucan was released in the proximal small intestine. Measurements of intestinal mucus showed a reduction in permeability to 100 nm latex beads and also lipid from the digested enhanced β-glucan diet. The data from this study show for the first time that reducing mass transfer of bile and lipid through the intestinal mucus layer may be one way in which this decrease in bile reabsorption by soluble fibre is enabled.

  6. Intestinal permeability and carrier-mediated monosaccharide absorption in preterm neonates during the early postnatal period

    NARCIS (Netherlands)

    Rouwet, Ellen V.; Heineman, Erik; Buurman, Wim A.; ter Riet, Gerben; Ramsay, Graham; Blanco, Carlos E.

    2002-01-01

    Immaturity of intestinal epithelial barrier function and absorptive capacity may play a role in the pathophysiology of intestinal complications in preterm neonates during the early postnatal period. We determined the intestinal permeability and carrier-mediated absorption of monosaccharides in

  7. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI Expression in Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Arjun Balakrishnan

    2017-08-01

    Full Text Available As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn’s Disease, Ulcerative colitis, and Infectious enteritis’s. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin. Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  8. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    Science.gov (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  9. Intestinal fatty acid-binding protein and gut permeability responses to exercise.

    Science.gov (United States)

    March, Daniel S; Marchbank, Tania; Playford, Raymond J; Jones, Arwel W; Thatcher, Rhys; Davison, Glen

    2017-05-01

    Intestinal cell damage due to physiological stressors (e.g. heat, oxidative, hypoperfusion/ischaemic) may contribute to increased intestinal permeability. The aim of this study was to assess changes in plasma intestinal fatty acid-binding protein (I-FABP) in response to exercise (with bovine colostrum supplementation, Col, positive control) and compare this to intestinal barrier integrity/permeability (5 h urinary lactulose/rhamnose ratio, L/R). In a double-blind, placebo-controlled, crossover design, 18 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac). For each arm participants performed two baseline (resting) intestinal permeability assessments (L/R) pre-supplementation and one post-exercise following supplementation. Blood samples were collected pre- and post-exercise to determine I-FABP concentration. Two-way repeated measures ANOVA revealed an arm × time interaction for L/R and I-FABP (P exercise in Plac (273% of pre, P exercise values significantly lower with Col (P exercise in Plac (191% of pre-exercise, P = 0.002) but not in the Col arm (107%, P = 0.862) with post-exercise values significantly lower with Col (P = 0.013). Correlations between the increase in I-FABP and L/R were evident for visit one (P = 0.044) but not visit two (P = 0.200) although overall plots/patterns do appear similar for each. These findings suggest that exercise-induced intestinal cellular damage/injury is partly implicated in changes in permeability but other factors must also contribute.

  10. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  11. Computational approaches for modeling human intestinal absorption and permeability.

    Science.gov (United States)

    Subramanian, Govindan; Kitchen, Douglas B

    2006-07-01

    Human intestinal absorption (HIA) is an important roadblock in the formulation of new drug substances. Computational models are needed for the rapid estimation of this property. The measurements are determined via in vivo experiments or in vitro permeability studies. We present several computational models that are able to predict the absorption of drugs by the human intestine and the permeability through human Caco-2 cells. The training and prediction sets were derived from literature sources and carefully examined to eliminate compounds that are actively transported. We compare our results to models derived by other methods and find that the statistical quality is similar. We believe that models derived from both sources of experimental data would provide greater consistency in predictions. The performance of several QSPR models that we investigated to predict outside the training set for either experimental property clearly indicates that caution should be exercised while applying any of the models for quantitative predictions. However, we are able to show that the qualitative predictions can be obtained with close to a 70% success rate.

  12. Intestinal permeability and nutritional status in developmental disorders.

    Science.gov (United States)

    Souza, Nilian Carla Silva; Mendonca, Jacqueline Nakau; Portari, Guilherme Vannucchi; Jordao Junior, Alceu Afonso; Marchini, Julio Sergio; Chiarello, Paula Garcia

    2012-01-01

    Autism is a developmental disorder with a possible connection between dietary components and triggering or worsening of symptoms. An altered intestinal permeability might allow absorption of incompletely digested peptides (gluten and casein) that could produce opioid-like activity on the brain, causing significant changes in behavior. To assess the intestinal permeability and nutritional status of participants with developmental disorders to determine if changes in the intestinal mucosal barrier and/or injury to the intercellular junctions have occurred that might justify application of further dietary modifications. To assess intestinal permeability, the research team analyzed participants urine under fasting conditions, using gas chromatography to determine chromatographic peaks. To assess nutritional status, the team determined participants heights and weights and performed a bioelectric bioimpedance examination at least 4 hours after their most recent meal. In addition, the team determined food intake using three diet diaries. They asked participants and caregivers to register each food consumed during 2 nonconsecutive weekdays and 1 weekend day. The study occurred at the Ribeirao Preto School of Medicine, Sao Paulo University. Seven participants aged 9 to 23 years with developmental disorders (the developmental group, DG) completed the study. The research team recruited them through the Association of Friends of the Autistic Persons of Ribeirao Preto in Ribeirao Preto, Brazil. The control group (CG) consisted of nonsmoking healthy volunteers in the general population who were similar in age to the experimental group and did not suffer from diseases that potentially could influence nutritional status and intestinal function. To assess intestinal permeability, participants ingested 150 mL of an isosmolar solution of the sugars mannitol (2 g) and lactulose (7.5 g) under fasting conditions and the researchers collected all voided urine over a period of 5 hours

  13. Clinical implications of the sugar absorption test: intestinal permeability test to assess mucosal barrier function

    NARCIS (Netherlands)

    Uil, J. J.; van Elburg, R. M.; van Overbeek, F. M.; Mulder, C. J.; vanBerge-Henegouwen, G. P.; Heymans, H. S.

    1997-01-01

    Functional integrity as an aspect of the mucosal barrier function of the small bowel can be estimated by the intestinal permeability for macromolecules. In the first part of this paper, an overview of intestinal permeability and its measurement is given. In the second part of the paper our own

  14. Increased intestinal marker absorption due to regional permeability changes and decreased intestinal transit during sepsis in the rat

    International Nuclear Information System (INIS)

    Wang, Q.; Pantzar, N.; Jeppson, B.; Westroem, B.R.; Karlsson, B.W.

    1994-01-01

    The intestinal barrier properties are impaired during inflammation and sepsis, but the mechanisms behind this are unknown and were therefore investigated during experimental sepsis in rats. The different-sized intestinal absorption markers 51 Cr-labeled ethylenediaminetetraacetic acid (EDTA) and ovalbumin were gavaged to rats made septic by intra-abdominal bacterial implantation and to sham-operated rats. Regional tissue permeability was measured in diffusion chambers, and intestinal transit was evaluated by intestinal accumulation of gavaged 51 Cr-EDTA. In comparison with the sham-operated rats, septic rats had higher 51 Cr-EDTA levels in blood and urine and showed a prolonged intestinal transit. Septic rats also had a lower tissue permeability to both markers in the small intestines but higher permeability to ovalbumin in the colon. Rats receiving morphine to decrease intestinal motility showed similar changes, with a decreased intestinal transit and increased marker absorption. Thr results suggest that the increased intestinal absorption during sepsis was due to regional permeability changes and prolonged intestinal transit. 38 refs., 4 figs., 2 tabs

  15. Assessment of intestinal permeability and bacterial translocation employing nuclear methods in murine mucositis

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Rafaela M.; Takenaka, Isabella K.T.M.; Barros, Patricia A.V.; Moura, Livia P.; Contarini, Sara M.L.; Amorim, Juliana M.; Castilho, Raquel O.; Leite, Camila M.A.; Cardoso, Valbert N.; Diniz, Simone Odilia F. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Mg (Brazil)

    2017-07-01

    Full text: Introduction: Mucositis affects approximately 80% of patients who receive chemotherapy combinations. The lesions are painful, restrict food intake and make patients more susceptible to systemic infections. Some agents and strategies are being studied for controlling mucositis, none of them is used in clinical practice. In Minas Gerais, many studies have addressed the popular use of the plant Arrabidaea chica in the form of tea, to treat intestinal cramps and diarrhea, the main symptoms of mucositis. Objective: To evaluate the potential of Arrabidaea chica extract in the management of the integrity of the intestinal mucosa, using the experimental model of gut mucositis induced by 5-Fluorouracila (5-FU). Methods: The UFMG Ethics Committee for Animal Experimentation (CETEA/UFMG) approved this study (nº 411/2015). Male BALB/c mice between 6-8 weeks of age were randomly divided into four groups (n=9) as follows: 1. Control (CTL) - oral administration of saline solution (10 days); 2. A. chica (AC) - oral administration of A. chica extract (10 days); 3. Mucositis (MUC) - underwent mucositis (5-FU) (10 days); 4. Mucositis + A. chica (MUC+ AC) - underwent mucositis and received oral administration of A. chica extract (10 days). At the 7{sup th} day, mice in the MUC and MUC + AC groups received an intraperitoneal (IP) injection containing 300 mg/kg 5-FU, whereas the animals of the CTL and AC groups received a saline IP injection. After 72 hours (10{sup th} experimental day), intestinal permeability was determined by measuring the radioactivity diffusion in the blood after oral administration of diethylenetriaminepentaacetic acid (DTPA) labelled with technetium-99m ({sup 99m}Tc) and bacterial translocation was determined by measuring the radioactivity diffusion in the blood after oral administration of E. coli labelled with technetium-99m ({sup 99m}Tc). After 4 hours, the mice were euthanized and assessed for intestinal permeability, bacterial translocation and

  16. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    Directory of Open Access Journals (Sweden)

    Monica Vera-Lise Tulstrup

    Full Text Available Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group were dosed by oral gavage with either amoxicillin (AMX, cefotaxime (CTX, vancomycin (VAN, metronidazole (MTZ, or water (CON daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in

  17. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis.

    Directory of Open Access Journals (Sweden)

    Oh-oka Kyoko

    Full Text Available BACKGROUND & AIMS: The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. METHODS: The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2(m/m. In addition, the susceptibility to dextran sodium sulfate (DSS-induced colitis was compared between wild-type mice and mPer2(m/m mice. RESULTS: The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2(m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2(m/m mice. mPer2(m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice. CONCLUSIONS: Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.

  18. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.

    Science.gov (United States)

    Drago, Sandro; El Asmar, Ramzi; Di Pierro, Mariarosaria; Grazia Clemente, Maria; Tripathi, Amit; Sapone, Anna; Thakar, Manjusha; Iacono, Giuseppe; Carroccio, Antonio; D'Agate, Cinzia; Not, Tarcisio; Zampini, Lucia; Catassi, Carlo; Fasano, Alessio

    2006-04-01

    Little is known about the interaction of gliadin with intestinal epithelial cells and the mechanism(s) through which gliadin crosses the intestinal epithelial barrier. We investigated whether gliadin has any immediate effect on zonulin release and signaling. Both ex vivo human small intestines and intestinal cell monolayers were exposed to gliadin, and zonulin release and changes in paracellular permeability were monitored in the presence and absence of zonulin antagonism. Zonulin binding, cytoskeletal rearrangement, and zonula occludens-1 (ZO-1) redistribution were evaluated by immunofluorescence microscopy. Tight junction occludin and ZO-1 gene expression was evaluated by real-time polymerase chain reaction (PCR). When exposed to gliadin, zonulin receptor-positive IEC6 and Caco2 cells released zonulin in the cell medium with subsequent zonulin binding to the cell surface, rearrangement of the cell cytoskeleton, loss of occludin-ZO1 protein-protein interaction, and increased monolayer permeability. Pretreatment with the zonulin antagonist FZI/0 blocked these changes without affecting zonulin release. When exposed to luminal gliadin, intestinal biopsies from celiac patients in remission expressed a sustained luminal zonulin release and increase in intestinal permeability that was blocked by FZI/0 pretreatment. Conversely, biopsies from non-celiac patients demonstrated a limited, transient zonulin release which was paralleled by an increase in intestinal permeability that never reached the level of permeability seen in celiac disease (CD) tissues. Chronic gliadin exposure caused down-regulation of both ZO-1 and occludin gene expression. Based on our results, we concluded that gliadin activates zonulin signaling irrespective of the genetic expression of autoimmunity, leading to increased intestinal permeability to macromolecules.

  19. Combined LDI/SAT test to evaluate intestinal lactose digestion and mucosa permeability

    NARCIS (Netherlands)

    Koetse, H. A.; Klaassen, D.; van der Molen, A. R. H.; Elzinga, H.; Bijsterveld, K.; Boverhof, R.; Stellaard, F.

    2006-01-01

    Background Intestinal mucosal damage causes impaired digestive capacity and increased mucosal permeability. Quantification of damage can be used to improve treatment options. Currently, the Lactose Digestion Index (LDI) and the Sugar Absorption Test (SAT) are used for evaluation. The investigation

  20. Intestinal and gastric permeability in children with eosinophilic esophagitis and reflux esophagitis.

    Science.gov (United States)

    Leung, Aldrich J T; Persad, Sujata; Slae, Mordechai; Abdelradi, Amr; Kluthe, Cheryl; Shirton, Leanne; Danchuk, Ronda; Persad, Rabin; Meddings, Jon; Huynh, Hien Q

    2015-02-01

    Eosinophilic esophagitis (EoE) is an allergic and immune-mediated entity that leads to a characteristic inflammation of esophageal mucosa. Patients complain of dysphagia and reflux-like symptoms. As many as 80% of patients with EoE may also have a history of atopy, and patients with asthma and eczema have previously been shown to have increased intestinal permeability. This study was designed to assess small intestinal and gastric permeability in patients with EoE and to see whether it differed from healthy individuals and patients with reflux esophagitis (RE). Gastric and small intestinal permeability was measured using sugar probe tests containing lactulose, mannitol, and sucrose. Lactulose-to-mannitol (L/M) ratios in the patient's urine were a measure for intestinal permeability, and total sucrose was a measure for gastric permeability. We analyzed samples from 23 patients with EoE, 20 RE, 14 normal upper endoscopy with gastrointestinal symptoms, and 26 healthy controls. All of the 4 groups had L/M ratios less than the upper limit of normal (<0.025). There was no statistically significant difference in gastric permeability between the 4 groups (L/M P = 0.26, sucrose P = 0.46). Our data suggest that an alteration in gastric and intestinal permeability does not play a role in EoE or RE pathogenesis.

  1. Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway.

    Science.gov (United States)

    Liu, Zhihua; Kang, Liang; Li, Chao; Tong, Chao; Huang, Meijin; Zhang, Xingwei; Huang, Nanqi; Moyer, Mary Pat; Qin, Huanlong; Wang, Jianping

    2014-10-03

    Previous studies indicated that the micro integral membrane protein located within the media place of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum (LPKM) to investigate the change of its protective effects and verify the role of micro integral membrane protein on protection of normal intestinal barrier function. Binding assay and intestinal permeability were performed to verify the protective effects of micro integral membrane protein on intestinal permeability in vitro and in vivo. Molecular mechanism was also determined as the zonulin pathway. Clinical data were also collected for further verification of relationship between zonulin level and postoperative septicemia. LPKM got decreased inhibition of EPEC adhesion to NCM460 cells. LPKM had lower ability to alleviate the decrease of intestinal permeability induced by enteropathogenic-e.coli, and prevent enteropathogenic-e.coli -induced increase of zonulin expression. Overexpression of zonulin lowered the intestinal permeability regulated by Lactobacillus plantarum. There was a positive correlation between zonulin level and postoperative septicemia. Therefore, micro integral membrane protein could be necessary for the protective effects of Lactobacillus plantarum on intestinal barrier. MIMP might be a positive factor for Lactobacillus plantarum to protect the intestinal epithelial cells from injury, which could be related to the zonulin pathway.

  2. Transmural intestinal wall permeability in severe ischemia after enteral protease inhibition.

    Directory of Open Access Journals (Sweden)

    Angelina E Altshuler

    Full Text Available In intestinal ischemia, inflammatory mediators in the small intestine's lumen such as food byproducts, bacteria, and digestive enzymes leak into the peritoneal space, lymph, and circulation, but the mechanisms by which the intestinal wall permeability initially increases are not well defined. We hypothesize that wall protease activity (independent of luminal proteases and apoptosis contribute to the increased transmural permeability of the intestine's wall in an acutely ischemic small intestine. To model intestinal ischemia, the proximal jejunum to the distal ileum in the rat was excised, the lumen was rapidly flushed with saline to remove luminal contents, sectioned into equal length segments, and filled with a tracer (fluorescein in saline, glucose, or protease inhibitors. The transmural fluorescein transport was determined over 2 hours. Villi structure and epithelial junctional proteins were analyzed. After ischemia, there was increased transmural permeability, loss of villi structure, and destruction of epithelial proteins. Supplementation with luminal glucose preserved the epithelium and significantly attenuated permeability and villi damage. Matrix metalloproteinase (MMP inhibitors (doxycycline, GM 6001, and serine protease inhibitor (tranexamic acid in the lumen, significantly reduced the fluorescein transport compared to saline for 90 min of ischemia. Based on these results, we tested in an in-vivo model of hemorrhagic shock (90 min 30 mmHg, 3 hours observation for intestinal lesion formation. Single enteral interventions (saline, glucose, tranexamic acid did not prevent intestinal lesions, while the combination of enteral glucose and tranexamic acid prevented lesion formation after hemorrhagic shock. The results suggest that apoptotic and protease mediated breakdown cause increased permeability and damage to the intestinal wall. Metabolic support in the lumen of an ischemic intestine with glucose reduces the transport from the lumen

  3. FROG INTESTINAL PERFUSION TO EVALUATE DRUG PERMEABILITY: APPLICATION TO P-gp AND CYP3A4 SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Neelima eYerasi

    2015-07-01

    Full Text Available AbstractTo evaluate the reliability of using in situ frog intestinal perfusion technique for permeability assessment of carrier transported drugs which are also substrates for CYP enzymes. Single Pass Intestinal Perfusion (SPIP studies were performed in frogs of the species Rana tigrina using established method for rats with some modifications after inducing anesthesia. Effective permeability coefficient (Peff of losartan and midazolam was calculated in the presence and absence of inhibitors using the parallel-tube model. Peff of losartan when perfused alone was found to be 0.427 ± 0.27×10-4cm/s and when it was co-perfused with inhibitors, significant change in Peff was observed. Peff of midazolam when perfused alone was found to be 2.03 ± 0.07 × 10-4cm/s and when it was co-perfused with inhibitors, no significant change in Peff was observed. Comparison of Peff calculated in frog with that of other available models and also humans suggested that the Peff values are comparable and reflected well with human intestinal permeability. It is possible to determine the Peff value for compounds which are dual substrates of P-gp and CYP3A4 using in situ frog intestinal perfusion technique. The calculated Peff values correlated well with reported Peff values of probe drugs. comparison of the Peff value of losartan obtained with that of reported human’s Peff and Caco 2 cell data, and comparison of the Peff value of midazolam with that of reported rat’s Peff, we could conclude that SPIP from model can be reliably used in preclinical studies for permeability estimation. This model may represent a valuable alternative to the low speed and high cost of conventional animal models (typically rodents for the assessment of intestinal permeability.

  4. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes

    Directory of Open Access Journals (Sweden)

    Maciej Hałasa

    2017-04-01

    Full Text Available Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey. Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test and stool zonulin concentration. Baseline L/M tests found that six of the participants (75% in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.

  5. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes.

    Science.gov (United States)

    Hałasa, Maciej; Maciejewska, Dominika; Baśkiewicz-Hałasa, Magdalena; Machaliński, Bogusław; Safranow, Krzysztof; Stachowska, Ewa

    2017-04-08

    Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey). Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test) and stool zonulin concentration. Baseline L/M tests found that six of the participants (75%) in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.

  6. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.

  7. Human in vivo regional intestinal permeability: quantitation using site-specific drug absorption data.

    Science.gov (United States)

    Sjögren, Erik; Dahlgren, David; Roos, Carl; Lennernäs, Hans

    2015-06-01

    Application of information on regional intestinal permeability has been identified as a key aspect of successful pharmaceutical product development. This study presents the results and evaluation of an approach for the indirect estimation of site-specific in vivo intestinal effective permeability (Peff) in humans. Plasma concentration-time profiles from 15 clinical studies that administered drug solutions to specific intestinal regions were collected and analyzed. The intestinal absorption rate for each drug was acquired by deconvolution, using historical intravenous data as reference, and used with the intestinal surface area and the dose remaining in the lumen to estimate the Peff. Forty-three new Peff values were estimated (15 from the proximal small intestine, 11 from the distal small intestine, and 17 from the large intestine) for 14 active pharmaceutical ingredients representing a wide range of biopharmaceutical properties. A good correlation (r(2) = 0.96, slope = 1.24, intercept = 0.030) was established between these indirect jejunal Peff estimates and jejunal Peff measurements determined directly using the single-pass perfusion double balloon technique. On average, Peff estimates from the distal small intestine and large intestine were 90% and 40%, respectively, of those from the proximal small intestine. These results support the use of the evaluated deconvolution method for indirectly estimating regional intestinal Peff in humans. This study presents the first comprehensive data set of estimated human regional intestinal permeability values for a range of drugs. These biopharmaceutical data can be used to improve the accuracy of gastrointestinal absorption predictions used in drug development decision-making.

  8. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  9. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease.

    Science.gov (United States)

    Thomas, Karen E; Sapone, Anna; Fasano, Alessio; Vogel, Stefanie N

    2006-02-15

    Recent studies have demonstrated the importance of TLR signaling in intestinal homeostasis. Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. In this study, we sought to test the hypothesis that gliadin initiates this response by stimulating the innate immune response to increase intestinal permeability and by up-regulating macrophage proinflammatory gene expression and cytokine production. To this end, intestinal permeability and the release of zonulin (an endogenous mediator of gut permeability) in vitro, as well as proinflammatory gene expression and cytokine release by primary murine macrophage cultures, were measured. Gliadin and its peptide derivatives, 33-mer and p31-43, were found to be potent inducers of both a zonulin-dependent increase in intestinal permeability and macrophage proinflammatory gene expression and cytokine secretion. Gliadin-induced zonulin release, increased intestinal permeability, and cytokine production were dependent on myeloid differentiation factor 88 (MyD88), a key adapter molecule in the TLR/IL-1R signaling pathways, but were neither TLR2- nor TLR4-dependent. Our data support the following model for the innate immune response to gliadin in the initiation of CD. Gliadin interaction with the intestinal epithelium increases intestinal permeability through the MyD88-dependent release of zonulin that, in turn, enables paracellular translocation of gliadin and its subsequent interaction with macrophages within the intestinal submucosa. There, the interaction of gliadin with macrophages elicits a MyD88-dependent proinflammatory cytokine milieu that facilitates the interaction of T cells with APCs, leading ultimately to the Ag-specific adaptive immune response seen in patients with CD.

  10. Crystal-liquid Fugacity Ratio as a Surrogate Parameter for Intestinal Permeability.

    Science.gov (United States)

    Zakeri-Milani, Parvin; Fasihi, Zohreh; Akbari, Jafar; Jannatabadi, Ensieh; Barzegar-Jalali, Mohammad; Loebenberg, Raimar; Valizadeh, Hadi

    We assessed the feasibility of using crystal-liquid fugacity ratio (CLFR) as an alternative parameter for intestinal permeability in the biopharmaceutical classification (BCS) of passively absorbed drugs. Dose number, fraction of dose absorbed, intestinal permeability, and intrinsic dissolution rate were used as the input parameters. CLFR was determined using thermodynamic parameters i.e., melting point, molar fusion enthalpy, and entropy of drug molecules obtained using differential scanning calorimetry. The CLFR values were in the range of 0.06-41.76 mole percent. There was a close relationship between CLFR and in vivo intestinal permeability (r > 0.8). CLFR values of greater than 2 mole percent corresponded to complete intestinal absorption. Applying CLFR versus dose number or intrinsic dissolution rate, more than 92% of tested drugs were correctly classified with respect to the reported classification system on the basis of human intestinal permeability and solubility. This investigation revealed that the CLFR might be an appropriate parameter for quantitative biopharmaceutical classification. This could be attributed to the fact that CLFR could be a measure of solubility of compounds in lipid bilayer which was found in this study to be directly proportional to the intestinal permeability of compounds. This classification enables researchers to define characteristics for intestinal absorption of all four BCS drug classes using suitable cutoff points for both intrinsic dissolution rate and crystal-liquid fugacity ratio. Therefore, it may be used as a surrogate for permeability studies. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  11. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-κB Pathway

    Science.gov (United States)

    Al-Sadi, Rana; Guo, Shuhong; Ye, Dongmei; Rawat, Manmeet; Ma, Thomas Y.

    2017-01-01

    Tumor necrosis factor (TNF)-α, a key mediator of intestinal inflammation, causes an increase in intestinal epithelial tight junction (TJ) permeability by activating myosin light chain kinase (MLCK; official name MYLK3) gene. However, the precise signaling cascades that mediate the TNF-α–induced activation of MLCK gene and increase in TJ permeability remain unclear. Our aims were to delineate the upstream signaling mechanisms that regulate the TNF-α modulation of intestinal TJ barrier function with the use of in vitro and in vivo intestinal epithelial model systems. TNF-α caused a rapid activation of both canonical and noncanonical NF-κB pathway. NF-κB–inducing kinase (NIK) and mitogen-activated protein kinase kinase-1 (MEKK-1) were activated in response to TNF-α. NIK mediated the TNF-α activation of inhibitory κB kinase (IKK)-α, and MEKK1 mediated the activation of IKK complex, including IKK-β. NIK/IKK-α axis regulated the activation of both NF-κB p50/p65 and RelB/p52 pathways. Surprisingly, the siRNA induced knockdown of NIK, but not MEKK-1, prevented the TNF-α activation of both NF-κB p50/p65 and RelB/p52 and the increase in intestinal TJ permeability. Moreover, NIK/IKK-α/NF-κB p50/p65 axis mediated the TNF-α–induced MLCK gene activation and the subsequent MLCK increase in intestinal TJ permeability. In conclusion, our data show that NIK/IKK-α/regulates the activation of NF-κB p50/p65 and plays an integral role in the TNF-α–induced activation of MLCK gene and increase in intestinal TJ permeability. PMID:26948423

  12. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse

    Science.gov (United States)

    Arrieta, M C; Madsen, K; Doyle, J; Meddings, J

    2008-01-01

    Background: Defects in the small intestinal epithelial barrier have been associated with inflammatory bowel disease but their role in the causation of disease is still a matter of debate. In some models of disease increased permeability appears to be a very early event. The interleukin 10 (IL10) gene-deficient mouse spontaneously develops colitis after 12 weeks of age. These mice have been shown to have increased small intestinal permeability that appears early in life. Furthermore, the development of colitis is dependent upon luminal agents, as animals do not develop disease if raised under germ-free conditions. Aims: To determine if the elevated small bowel permeability can be prevented, and if by doing so colonic disease is prevented or attenuated. Methods: IL10 gene-deficient (IL10−/−) mice) were treated with AT-1001 (a zonulin peptide inhibitor), a small peptide previously demonstrated to reduce small intestinal permeability. Small intestinal permeability was measured, in vivo, weekly from 4 to 17 weeks of age. Colonic disease was assessed at 8 weeks in Ussing chambers, and at 17 weeks of age inflammatory cytokines and myeloperoxidase were measured in the colon. Colonic permeability and histology were also endpoints. Results: Treated animals showed a marked reduction in small intestinal permeability. Average area under the lactulose/mannitol time curve: 5.36 (SE 0.08) in controls vs 3.97 (SE 0.07) in the high-dose AT-1001 group, p<0.05. At 8 weeks of age there was a significant reduction of colonic mucosal permeability and increased electrical resistance. By 17 weeks of age, secretion of tumour necrosis factor α (TNFα) from a colonic explant was significantly lower in the treated group (25.33 (SE 4.30) pg/mg vs 106.93 (SE 17.51) pg/ml in controls, p<0.01). All other markers also demonstrated a clear reduction of colitis in the treated animals. Additional experiments were performed which demonstrated that AT-1001 was functionally active only in the small

  13. Do intestinal hyperpermeability and the related food antigens play a role in the progression of IgA nephropathy? I. Study of intestinal permeability

    NARCIS (Netherlands)

    Kovács, T.; Kun, L.; Schmelczer, M.; Wagner, L.; Davin, J. C.; Nagy, J.

    1996-01-01

    Intestinal permeability was investigated by using 51Cr-EDTA as a probe molecule in 29 patients with immunoglobulin A nephropathy (IgA NP) and 20 healthy controls in 1990. Intestinal permeability was significantly higher in the IgA NP patients than in the controls (IgA NP, 3.86 +/- 0.29%; controls,

  14. Pseudomonas fluorescens alters epithelial permeability and translocates across Caco-2/TC7 intestinal cells

    Directory of Open Access Journals (Sweden)

    Madi Amar

    2010-11-01

    Full Text Available Abstract Background Pseudomonas fluorescens has long been considered as a psychrotrophic microorganism. Recently, we have shown that clinical strains of P. fluorescens (biovar 1 are able to adapt at a growth temperature of 37°C or above and induce a specific inflammatory response. Interestingly, a highly specific antigen of P. fluorescens, I2, is detected in the serum of patients with Crohn's disease but the possible role of this bacterium in the disease has not yet been explored. In the present study, we examined the ability of a psychrotrophic and a clinical strain of P. fluorescens to modulate the permeability of a Caco-2/TC7 intestinal epithelial model, reorganize the actin cytoskeleton, invade the target cells and translocate across the epithelium. The behaviour of these two strains was compared to that of the well known opportunistic pathogen P. aeruginosa PAO1. Results Both strains of P. fluorescens were found to decrease the transepithelial resistance (TER of Caco-2/TC7 differentiated monolayers. This was associated with an increase in paracellular permeability and F-actin microfilaments rearrangements. Moreover, the invasion and translocation tests demonstrated that the two strains used in this study can invade and translocate across the differentiated Caco-2/TC7 cell monolayers. Conclusions The present work shows for the first time, that P. fluorescens is able to alter the intestinal epithelial barrier function by disorganizing the F-actin microfilament network. Moreover, we reveal that independently of their origins, the two P. fluorescens strains can translocate across differentiated Caco-2/TC7 cell monolayers by using the transcellular pathway. These findings could, at least in part, explain the presence of the P. fluorescens specific I2 antigen in the serum of patients with Crohn's disease.

  15. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease

    OpenAIRE

    Li, Chuanwei; Gao, Min; Zhang, Wen; Chen, Caiyu; Zhou, Faying; Hu, Zhangxu; Zeng, Chunyu

    2016-01-01

    Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA (rRNA) gene belong to Enterobacteriaceae have been detected in atherosclerotic plaques. How intestinal bacteria go into blood is not known. Zonulin reversibly modulate intestinal permeability (IP), the circulating zonulin levels were increased in diabetes, obesity, all of which are risk factors for atherosclerosis. It is unclear whether the circulating zonulin levels were cha...

  16. Involvement of intestinal permeability in the oral absorption of clarithromycin and telithromycin.

    Science.gov (United States)

    Togami, Kohei; Hayashi, Yoshiaki; Chono, Sumio; Morimoto, Kazuhiro

    2014-09-01

    The involvement of intestinal permeability in the oral absorption of clarithromycin (CAM), a macrolide antibiotic, and telithromycin (TEL), a ketolide antibiotic, in the presence of efflux transporters was examined. In order independently to examine the intestinal and hepatic availability, CAM and TEL (10 mg/kg) were administered orally, intraportally and intravenously to rats. The intestinal and hepatic availability was calculated from the area under the plasma concentration-time curve (AUC) after administration of CAM and TEL via different routes. The intestinal availabilities of CAM and TEL were lower than their hepatic availabilities. The intestinal availability after oral administration of CAM and TEL increased by 1.3- and 1.6-fold, respectively, after concomitant oral administration of verapamil as a P-glycoprotein (P-gp) inhibitor. Further, an in vitro transport experiment was performed using Caco-2 cell monolayers as a model of intestinal epithelial cells. The apical-to-basolateral transport of CAM and TEL through the Caco-2 cell monolayers was lower than their basolateral-to-apical transport. Verapamil and bromosulfophthalein as a multidrug resistance-associated proteins (MRPs) inhibitor significantly increased the apical-to-basolateral transport of CAM and TEL. Thus, the results suggest that oral absorption of CAM and TEL is dependent on intestinal permeability that may be limited by P-gp and MRPs on the intestinal epithelial cells. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Effect of acute, slightly increased intra-abdominal pressure on intestinal permeability and oxidative stress in a rat model.

    Directory of Open Access Journals (Sweden)

    Yuxin Leng

    Full Text Available INTRODUCTION: Intra-abdominal hypertension (IAH is known as a common, serious complication in critically ill patients. Bacterial translocation and permeability changes are considered the pathophysiological bases for IAH-induced enterogenic endotoxemia and subsequent multiorgan failure. Nevertheless, the effects of slightly elevated intra-abdominal pressures (IAPs on the intestinal mucosa and the associated mechanisms remain unclear. METHODS: To investigate the acute effects of different nitrogen pneumoperitoneum grades on colonic mucosa, male Sprague-Dawley rats were assigned to six groups with different IAPs (0 [control], 4, 8, 12, 16, and 20 mmHg, n = 6/group. During 90 min of exposure, we dynamically monitored the heart rate and noninvasive hemodynamic parameters. After gradual decompression, arterial blood gas analyses were conducted. Thereafter, structural injuries to the colonic mucosa were identified using light microscopy. Colon permeability was determined using the expression of tight junction proteins, combined with fluorescein isothiocyanate dextran (FD-4 absorption. The pro-oxidant-antioxidant balance was determined based on the levels of malondialdehyde (MDA and antioxidant enzymes. RESULTS: IAH significantly affected the histological scores of the colonic mucosa, tight junction protein expression, mucosal permeability, and pro-oxidant-antioxidant balance. Interestingly, elevations of IAP that were lower than the threshold for IAH also showed a similar, undesirable effect. In the 8 mmHg group, mild hyponatremia, hypocalcemia, and hypoxemia occurred, accompanied by reduced blood and abdominal perfusion pressures. Mild microscopic inflammatory infiltration and increased MDA levels were also detected. Moreover, an 8-mm Hg IAP markedly inhibited the expression of tight junction proteins, although no significant differences in FD-4 permeability were observed between the 0- and 8-mmHg groups. CONCLUSIONS: Acute exposure to slightly

  18. Determination of Regional Intestinal Permeability of Diclofenac and ...

    African Journals Online (AJOL)

    Purpose: To develop a simple and rapid reversed-phase high performance liquid chromatographic (HPLC) method with UV detection for the simultaneous determination of diclofenac, metoprolol tartrate, phenol red and propyl paraben in intestinal segments. Methods: The mobile phase consisted of 55 % methanol, 45 % of ...

  19. Role of non-steroidal anti-inflammatory drugs on intestinal permeability and nonalcoholic fatty liver disease.

    Science.gov (United States)

    Utzeri, Erika; Usai, Paolo

    2017-06-14

    The use of non-steroidal anti-inflammatory drugs (NSAIDs) is widespread worldwide thanks to their analgesic, anti-inflammatory and antipyretic effects. However, even more attention is placed upon the recurrence of digestive system complications in the course of their use. Recent data suggests that the complications of the lower gastro-intestinal tract may be as frequent and severe as those of the upper tract. NSAIDs enteropathy is due to enterohepatic recycling of the drugs resulting in a prolonged and repeated exposure of the intestinal mucosa to the compound and its metabolites. Thus leading to so-called topical effects, which, in turn, lead to an impairment of the intestinal barrier. This process determines bacterial translocation and toxic substances of intestinal origin in the portal circulation, leading to an endotoxaemia. This condition could determine a liver inflammatory response and might promote the development of non-alcoholic steatohepatitis, mostly in patients with risk factors such as obesity, metabolic syndrome and a high fat diet, which may induce a small intestinal bacterial overgrowth and dysbiosis. This alteration of gut microbiota may contribute to nonalcoholic fatty liver disease and its related disorders in two ways: firstly causing a malfunction of the tight junctions that play a critical role in the increase of intestinal permeability, and then secondly leading to the development of insulin resistance, body weight gain, lipogenesis, fibrogenesis and hepatic oxidative stress.

  20. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor.

    Science.gov (United States)

    Xu, Ling-fen; Teng, Xu; Guo, Jing; Sun, Mei

    2012-02-01

    Intestinal barrier dysfunction plays an important role in the pathogenesis of inflammatory bowel disease (IBD). To evaluate the effect of intestinal trefoil factor (ITF) on increased intestinal permeability and its association with tight junction proteins, an in vitro intestinal epithelia barrier model was established with Caco-2 cells and treated with platelet-activating factor (PAF). We found that exposing cells to 0.3 M ITF (30 min before or 30 min after PAF treatment) attenuated the PAF-induced changes in transepithelial electrical resistance and Lucifer yellow flux. A quantitative RT-PCR and western blot analysis revealed that ITF suppressed PAF-induced downregulation of tight junction proteins claudin-1 and ZO-1 expression; furthermore, an abnormal localization and distribution of these proteins was inhibited, as assessed by immunofluorescence staining. These results suggest that ITF decreases mucosal permeability and shows potential as a therapy for treating IBD.

  1. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract.

    Science.gov (United States)

    Zur, Moran; Cohen, Noa; Agbaria, Riad; Dahan, Arik

    2015-07-15

    The purpose of this work was to study the challenges and prospects of regional-dependent absorption in a controlled-release scenario, through the oral biopharmaceutics of the sulfonylurea antidiabetic drug glipizide. The BCS solubility class of glipizide was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in-vitro (PAMPA and Caco-2) and in-vivo in rats. Metoprolol was used as the low/high permeability class boundary marker. Glipizide was found to be a low-solubility compound. All intestinal permeability experimental methods revealed similar trend; a mirror image small intestinal permeability with opposite regional/pH-dependency was obtained, a downward trend for glipizide, and an upward trend for metoprolol. Yet the lowest permeability of glipizide (terminal Ileum) was comparable to the lowest permeability of metoprolol (proximal jejunum). At the colon, similar permeability was evident for glipizide and metoprolol, that was higher than metoprolol's jejunal permeability. We present an analysis that identifies metoprolol's jejunal permeability as the low/high permeability class benchmark anywhere throughout the intestinal tract; we show that the permeability of both glipizide and metoprolol matches/exceeds this threshold throughout the entire intestinal tract, accounting for their success as controlled-release dosage form. This represents a key biopharmaceutical characteristic for a successful controlled-release dosage form. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro

    NARCIS (Netherlands)

    Bijlsma, P. B.; van Raaij, M. T.; Dobbe, C. J.; Timmerman, A.; Kiliaan, A. J.; Taminiau, J. A.; Groot, J. A.

    2001-01-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to

  4. INTESTINAL PERMEABILITY IN PATIENTS WITH CELIAC-DISEASE AND RELATIVES OF PATIENTS WITH CELIAC-DISEASE

    NARCIS (Netherlands)

    VANELBURG, RM; UIL, JJ; MULDER, CJJ; HEYMANS, HSA

    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the

  5. The effects of a multispecies probiotic on migraine and markers of intestinal permeability-results of a randomized placebo-controlled study

    NARCIS (Netherlands)

    Roos, De N.M.; Hemert, Van S.; Rovers, J.M.P.; Smits, M.G.; Witteman, B.J.M.

    2017-01-01

    Background/Objectives:Migraine, associated with several gastrointestinal disorders, may result from increased intestinal permeability, allowing endotoxins to enter the bloodstream. We tested whether probiotics could reduce migraine through an effect on intestinal permeability and

  6. Permeability of plumbagin across human intestinal cell in vitro.

    Science.gov (United States)

    Sumsakul, Wiriyaporn; Na-Bangchang, Kesara

    2016-03-01

    Plumbagin is the active compound isolated from plants used in traditional medicine for treatment of various diseases such as activities malaria, leishmaniasis, viral infections and cancers. The aim of the study was to investigate the permeability of plumbagin across Caco-2 (human epithelial colorectal adenocarcinoma) cell monolayer and its effects on the expression and function of P-glycoprotein. The integrity of Caco-2 cell monolayer was evaluated by measuring trans-epithelial electrical resistance and permeation (Papp) of Lucifer yellow across the cell monolayer. The effect of plumbagin on P-glycoprotein was detected by measuring its interference with the transport of the P-glycoprotein substrate (R123) and the effect on MDR-1 mRNA expression was detected by RT-PCR. The Papp of plumbagin (2-8 µM) for the apical to basolateral and basolateral to apical directions were 10.29-15.96 × 10(-6) and 7.40-9.02 × 10(-6) cm/s, respectively, with the efflux ratios of 0.57-0.73. Plumbagin is not either a substrate or inhibitor of P-glycoprotein. It did not interfere with the P-glycoprotein-mediated R123 transport across Caco-2 cell monolayer, as well as the function of P-glycoprotein and the expression of MDR-1 mRNA. Results suggest moderate permeability of plumbagin across the Caco-2 cell monolayer in both directions. The transport mechanism is likely to be a passive transport.

  7. Enhancing the intestinal membrane permeability of zanamivir: a carrier mediated prodrug approach.

    Science.gov (United States)

    Gupta, Sheeba Varghese; Gupta, Deepak; Sun, Jing; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2011-12-05

    The purpose of this study was to improve the membrane permeability and oral absorption of the poorly permeable anti-influenza agent, zanamivir. The poor oral bioavailability is attributed to the high polarity (cLogP ∼ -5) resulting from the polar and zwitterionic nature of zanamivir. In order to improve the permeability of zanamivir, prodrugs with amino acids were developed to target the intestinal membrane transporter, hPepT1. Several acyloxy ester prodrugs of zanamivir conjugated with amino acids were synthesized and characterized. The prodrugs were evaluated for their chemical stability in buffers at various pHs and for their transport and tissue activation by enzymes. The acyloxy ester prodrugs of zanamivir were shown to competitively inhibit [(3)H]Gly-Sar uptake in Caco-2 cells (IC(50): 1.19 ± 0.33 mM for L-valyl prodrug of zanamivir). The L-valyl prodrug of zanamivir exhibited ∼3-fold higher uptake in transfected HeLa/hPepT1 cells compared to wild type HeLa cells, suggesting, at least in part, carrier mediated transport by the hPepT1 transporter. Further, enhanced transcellular permeability of prodrugs across Caco-2 monolayer compared to the parent drug (P(app) = 2.24 × 10(-6) ± 1.33 × 10(-7) cm/s for L-valyl prodrug of zanamivir), with only parent zanamivir appearing in the receiver compartment, indicates that the prodrugs exhibited both enhanced transport and activation in intestinal mucosal cells. Most significantly, several of these prodrugs exhibited high intestinal jejunal membrane permeability, similar to metoprolol, in the in situ rat intestinal perfusion system, a system highly correlated with human jejunal permeability. In summary, this mechanistic targeted prodrug strategy, to enhance oral absorption via intestinal membrane carriers such as hPepT1, followed by activation to parent drug (active pharmaceutical ingredient or API) in the mucosal cell, significantly improves the intestinal epithelial cell permeability of zanamivir and has the

  8. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Christopher B Forsyth

    Full Text Available Parkinson's disease (PD is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress, and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP. Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha-synuclein (the hallmark of PD, as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier

  9. Intestinal permeability and glucagon-like peptide-2 in children with autism

    DEFF Research Database (Denmark)

    Robertson, Marli A; Sigalet, David L; Holst, Jens Juul

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response...... to feeding. Results were compared with sibling controls and children without developmental disabilities. We enrolled 14 children with autism, 7 developmentally normal siblings of these children and 8 healthy, developmentally normal, unrelated children. Our study did not detect differences in these measures...... of gastrointestinal function in a group of children with autism....

  10. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  11. Increased Serum Zonulin Levels as an Intestinal Permeability Marker in Autistic Subjects.

    Science.gov (United States)

    Esnafoglu, Erman; Cırrık, Selma; Ayyıldız, Sema Nur; Erdil, Abdullah; Ertürk, Emine Yurdakul; Daglı, Abdullah; Noyan, Tevfik

    2017-09-01

    To evaluate the serum levels of zonulin, which regulates tight junctions between enterocytes and is a physiological modulator controlling intestinal permeability, in patients with autism spectrum disorders (ASDs). Serum zonulin levels were determined in 32 patients with ASD and 33 healthy controls using an enzyme-linked immunosorbent assay. The severity of ASD symptoms was assessed with the Childhood Autism Rating Scale. Serum zonulin levels were significantly higher in the patients with ASD (122.3 ± 98.46 ng/mL) compared with the healthy controls (41.89 ± 45.83 ng/mL). There was a positive correlation between zonulin levels and Childhood Autism Rating Scale score when all subjects were assessed (r = 0.523; P zonulin, which regulates intestinal permeability, plays a role in the development of symptoms of ASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Intestinal Permeability Biomarker Zonulin is Elevated in Healthy Aging.

    Science.gov (United States)

    Qi, YanFei; Goel, Ruby; Kim, Seungbum; Richards, Elaine M; Carter, Christy S; Pepine, Carl J; Raizada, Mohan K; Buford, Thomas W

    2017-09-01

    Increased gut permeability ("leaky gut") has been proposed as a potential contributor to age-related inflammation and gut dysbiosis. However, information on the relationship between a leaky gut and inflammation and physical frailty during aging are limited. To investigate the hypothesis that an aging-associated leaky gut is linked to the age-related inflammation and frailty. Two cohorts of healthy adults were studied: young (18-30 years old, n = 19) and older (≥70 years old, n = 18). Serum concentrations of the tumor necrosis factor (TNF)-α and interleukin (IL)-6, zonulin (a marker for leaky gut), and high-mobility group box protein (HMGB1, a nuclear protein triggering inflammation) were measured. Correlations of serum levels of zonulin and HMGB1 with strength of plantar flexor muscles and number of steps taken per day were analyzed. Serum concentration of zonulin and HMGB1 were 22% (P = .005) and 16% (P = .010) higher in the older versus young adults. Serum zonulin was positively associated with concentrations of TNF-α (r = 0.357, P = .032) and IL-6 (r = 0.345, P = .043). Importantly, both zonulin and HMGB1 were negatively correlated with skeletal muscle strength (zonulin: r = -0.332, P = .048; HMGB1: r = -0.383, P = .023), and habitual physical activity (zonulin: r = -0.410, P = .016; HMGB1: r = -0.483, P = .004). Serum zonulin was associated with both systemic inflammation and 2 key indices of physical frailty. These data suggest that a leaky gut may play a critical role in the development of age-related inflammation and frailty. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  13. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2015-01-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hy...... on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers....

  14. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.

    Science.gov (United States)

    Dahan, Arik; West, Brady T; Amidon, Gordon L

    2009-02-15

    In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

  15. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System.

    Science.gov (United States)

    Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick

    2018-01-01

    Despite reasonable predictive power of current cell-based and cell-free absorption models for the assessment of intestinal drug permeability, high costs and lengthy preparation steps hamper their use. The use of a simple artificial membrane (without any lipids present) as intestinal barrier substitute would overcome these hurdles. In the present study, a set of 14 poorly water-soluble drugs, dissolved in 2 different media (fasted state simulated/human intestinal fluids [FaSSIF/FaHIF]), were applied to the donor compartment of an artificial membrane insert system (AMI-system) containing a regenerated cellulose membrane. Furthermore, to investigate the predictive capacity of the AMI-system as substitute for the well-established Caco-2 system to assess intestinal permeability, the same set of 14 drugs dissolved in FaHIF were applied to the donor compartment of a Caco-2 system. For 14 drugs, covering a broad range of physicochemical parameters, a reasonable correlation between both absorption systems was observed, characterized by a Pearson correlation coefficient r of 0.95 (FaHIF). Using the AMI-system, an excellent predictive capacity of FaSSIF as surrogate medium for FaHIF was demonstrated (r = 0.96). Based on the acquired data, the AMI-system appears to be a time- and cost-effective tool for the early-stage estimation of passive intestinal permeability for poorly water-soluble drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. [51Cr]EDTA intestinal permeability in children with cow's milk intolerance

    International Nuclear Information System (INIS)

    Schrander, J.J.; Unsalan-Hooyen, R.W.; Forget, P.P.; Jansen, J.

    1990-01-01

    Making use of [ 51 Cr]EDTA as a permeability marker, we measured intestinal permeability in a group of 20 children with proven cow's milk intolerance (CMI), a group of 17 children with similar complaints where CMI was excluded (sick controls), and a group of 12 control children. [ 51 Cr]EDTA test results (mean +/- SD) were 6.85 +/- 3.64%, 3.42 +/- 0.94%, and 2.61 +/- 0.67% in the group with CMI, the sick control, and the control group, respectively. When compared to both control groups, patients with cow's milk intolerance (CMI) showed a significantly increased small bowel permeability. We conclude that the [ 51 Cr]EDTA test can be helpful for the diagnosis of cow's milk intolerance

  17. (51Cr)EDTA intestinal permeability in children with cow's milk intolerance

    Energy Technology Data Exchange (ETDEWEB)

    Schrander, J.J.; Unsalan-Hooyen, R.W.; Forget, P.P.; Jansen, J. (Academic Hospital Maastricht (Netherlands))

    1990-02-01

    Making use of ({sup 51}Cr)EDTA as a permeability marker, we measured intestinal permeability in a group of 20 children with proven cow's milk intolerance (CMI), a group of 17 children with similar complaints where CMI was excluded (sick controls), and a group of 12 control children. ({sup 51}Cr)EDTA test results (mean +/- SD) were 6.85 +/- 3.64%, 3.42 +/- 0.94%, and 2.61 +/- 0.67% in the group with CMI, the sick control, and the control group, respectively. When compared to both control groups, patients with cow's milk intolerance (CMI) showed a significantly increased small bowel permeability. We conclude that the ({sup 51}Cr)EDTA test can be helpful for the diagnosis of cow's milk intolerance.

  18. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.

    Directory of Open Access Journals (Sweden)

    Zheng Ruan

    Full Text Available Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS challenge. Thirty-two weaned male Sprague Dawley rats (21 ± 1 d of age; 62.26 ± 2.73 g were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA supplemented group (orally 20 mg/kg and 50 mg/kg body. Dietary supplementation with CHA decreased (P<0.05 the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05 in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05 villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05 intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05 by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05 in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS.

  19. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  20. Circulating Zonulin, a Marker of Intestinal Permeability, Is Increased in Association with Obesity-Associated Insulin Resistance

    OpenAIRE

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measure...

  1. Vascular permeability alterations induced by arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Tsai, Ming-Hsien; Wang, Hsiu-Jen; Yu, Hsin-Su; Chang, Louis W

    2004-01-01

    The impact of arsenic on the integrity of blood vessels in vivo via in situ exposure (local injection) of arsenic was investigated. Vascular permeability changes were evaluated by means of the Evans blue assay and the India ink tracer techniques. Rats were intravenously injected with Evans blue followed by intradermal injections of various doses of sodium arsenite on the back skins of the animals. Evans blue at different time points was extracted and assayed as indices of vascular leakage. Skin at various time point injection sites was sampled for arsenic measurement via graphite furnace atomic absorption spectroscopy. Our time course study with Evans blue technique demonstrated a biphasic pattern of vascular permeability change: an early phase of permeability reduction and a later phase of permeability promotion at all dose levels tested. The India ink tracer technique also demonstrated a time-correlated increase in vascular labelling in the tissues examined, signifying an increase in vascular leakage with time. Moreover, we found that despite an early increase in tissue arsenic content at time of injection, tissue arsenic declined rapidly and returned to near control levels after 30-60 min. Thus, an inverse correlation between tissue arsenic content and the extent of vascular permeability was apparent. This study provides the first demonstration that in situ exposure to arsenic will produce vascular dysfunction (vascular leakage) in vivo.

  2. High-fat Diet-induced Intestinal Hyperpermeability is Associated with Increased Bile Acids in the Large Intestine of Mice.

    Science.gov (United States)

    Murakami, Yuki; Tanabe, Soichi; Suzuki, Takuya

    2016-01-01

    Metabolic syndrome is characterized by low-grade chronic systemic inflammation, which is associated with intestinal hyperpermeability. This study examined the effects of 3 high-fat diets (HFDs) composed of different fat sources (soybean oil and lard) on the intestinal permeability, tight junction (TJ) protein expression, and cecal bile acid (BA) concentrations in mice, and then analyzed their interrelations. C57/BL6 mice were fed the control diet, HFD (soybean oil), HFD (lard), and HFD (mix; containing equal concentrations of soybean oil and lard) for 8 wk. Glucose tolerance, intestinal permeability, TJ protein expression, and cecal BA concentration were evaluated. Feeding with the 3 HDFs similarly increased body weight, liver weight, and fat pad weight, and induced glucose intolerance and intestinal hyperpermeability. The expression of TJ proteins, zonula occludens-2 and junctional adhesion molecule-A, were lower in the colons of the 3 HFD groups than in the control group (P acid and ω-muricholic acids, were detected (P < 0.05). These results suggest that the HFD-induced intestinal hyperpermeability is associated with increased BA secretion. The abundance of SBAs in the large intestine may be responsible for the hyperpermeability. © 2015 Institute of Food Technologists®

  3. Intestinal permeability to [51Cr]EDTA in children with Crohn's disease and celiac disease

    International Nuclear Information System (INIS)

    Turck, D.; Ythier, H.; Maquet, E.; Deveaux, M.; Marchandise, X.; Farriaux, J.P.; Fontaine, G.

    1987-01-01

    [ 51 Cr]EDTA was used as a probe molecule to assess intestinal permeability in 7 healthy control adults, 11 control children, 17 children with Crohn's disease, and 6 children with untreated celiac disease. After subjects fasted overnight, 75 kBq/kg (= 2 microCi/kg) 51 Cr-labeled EDTA was given by mouth; 24-h urinary excretion of [ 51 Cr]EDTA was measured and expressed as a percentage of the total oral dose. Mean and SD were as follows: control adults 1.47 +/- 0.62, control children 1.59 +/- 0.55, and patients with Crohn's disease or celiac disease 5.35 +/- 1.94. The difference between control children and patients was statistically significant (p less than 0.001). These results show that intestinal permeability to [ 51 Cr]EDTA is increased among children with active or inactive Crohn's disease affecting small bowel only or small bowel and colon, and with untreated celiac disease. The [ 51 Cr]EDTA permeability test could facilitate the decision to perform more extensive investigations in children suspected of small bowel disease who have atypical or poor clinical and biological symptomatology

  4. Intestinal permeability to [51Cr]EDTA in children with cystic fibrosis

    International Nuclear Information System (INIS)

    Leclercq-Foucart, J.; Forget, P.; Sodoyez-Goffaux, F.; Zappitelli, A.

    1986-01-01

    Intestinal permeability was investigated in 14 children with cystic fibrosis making use of [ 51 Cr]EDTA as probe molecule. Ten normal young adults and 11 children served as controls. After oral administration of [ 51 Cr]EDTA, 24 h urine was collected. Urinary radioactivity was calculated and results expressed as percentage of oral dose excreted in 24 h urine. Mean and SEM were as follows: 2.51 +/- 0.21, 2.35 +/- 0.24, and 13.19 +/- 1.72 for control children, normal adults, and cystic fibrosis patients, respectively. The permeability differences between cystic fibrosis patients and either control children or control adults are significant (p less than 0.001)

  5. Intestinal permeability to 99mTc-diethylenetriaminopentaacetic acid in inflammatory bowel disease

    International Nuclear Information System (INIS)

    Casellas, F.; Aguade, S.; Soriano, B.; Accarino, A.; Molero, J.; Guarner, L.

    1986-01-01

    Intestinal permeability in inflammatory bowel disease and its relation to periods of disease activity has been investigated by measuring the urinary excretion of DTPA labeled with 99mTc. Urine excretion in 10 control subjects was 2.7 +/- 1% of the test dose. Twelve patients with ulcerative colitis excreted 5.08 +/- 1.6% in remission, 10.61 +/- 2% during periods of mild activity, 19.41 +/- 0.9% during moderate activity, and 15.41 +/- 6.3% with severe activity. Sixteen patients with Crohn's disease excreted 5.7 +/- 1.9% in remission, 8.47 +/- 2.8% during mild activity of the disease, and 14.29 +/- 5.8% during moderate activity. No differences were observed between ulcerative colitis and Crohn's disease, or between ileal and colonic forms of Crohn's disease. Excretion in remission was significantly greater than in control subjects and there was a correlation between excretion and disease activity. In serial determinations done in seven patients we found that urine excretion of the test substance correlated with disease activity. We also studied DTPA excretion in 10 cases with gastric or duodenal ulcer (2.28 +/- 1.4%), six cases of acute gastroenteritis (4.87 +/- 3.1%) and nine cases with other intestinal diseases (3.6 +/- 1.1%). In all these cases, DTPA excretion was lower than in inflammatory bowel disease. Our results show that the urinary excretion of DTPA is a simple test that measures accurately the degree of activity of inflammatory bowel disease. The test is useful in Crohn's disease as well as in ulcerative colitis, and detects intestinal permeability abnormalities even in clinical remission. Significantly lower excretions are found in other intestinal diseases. The test may be recommended as a screening test for use in clinical practice

  6. [Effect of multicomponent environment on intestinal permeability of puerarin in biopharmaceutics classification system of Chinese materia medica].

    Science.gov (United States)

    Liu, Yang; Wang, Gang; Dong, Ling; Tang, Ming-Min; Zhu, Mei-Ling; Dong, Hong-Huant; Hou, Cheng-Bo

    2014-12-01

    The evaluation of permeability in biopharmaceutics classification system of Chinese materia medica (CMMBCS) requires multicomponent as a whole in order to conduct research, even in the study of a specific component, should also be put in the multicomponent environment. Based on this principle, the high content components in Gegen Qinlian decoction were used as multicomponent environmental impact factors in the experiment, and the relevant parameters of intestinal permeability about puerarin were measured with using in situ single-pass intestinal perfusion model, to investigate and evaluate the intestinal permeability of puerarin with other high content components. The experimental results showed that different proportions of baicalin, glycyrrhizic acid and berberine had certain influence on intestinal permeability of puerarin, and glycyrrhizic acid could significantly inhibit the intestinal absorption of puerarin, moreover, high concentration of berberine could promote the absorption of puerarin. The research results indicated that the important research ideas of permeability evaluation in biopharmaceutics classification system of Chinese materia medica with fully considering the effects of other ingredients in multicomponent environment.

  7. Intestinal permeability of 51Cr-labelled ethylenediaminetetraacetic acid in patients with Crohn's disease and their healthy relatives

    International Nuclear Information System (INIS)

    Ainsworth, M.; Eriksen, J.; Rasmussen, J.W.; Muckadell, O.B.S. de

    1989-01-01

    An increased intestinal permeability has been proposed as an aetiologic factor in Crohn's disease. The 24-h urinary excretion of 100 μCi 51 Cr-labelled ethylenediaminetetraacetic acid (EDTA) was used to test the permeability in 15 patients with Crohn's disease and in 20 healthy first-degree relatives, who were known to have a genetic predisposition to inflammatory bowel disease. Twenty-eight healthy persons not related to patients with inflammatory bowel disease served as control material. The 51 Cr-EDTA excretion of the relatives was not significantly higher than that of the controls, whereas patients with Crohn's disease had a significantly higher excretion than both the relatives and the controls. Among patients the increased excretion was found only if the small intestine was involved. It is concluded that 1) as a group, patient with Crohn's disease in the small intestine have an increased intestinal permeability, in contrast to their healthy relatives, who have a normal permeability; 2) a considerable overlap of the results of the 51 Cr-EDTA test was found between the groups studied, and the test is not suitable for evaluating individual patients; 3) the results do not support the hypothesis of an increase in intestinal permeability as an aetiologic factor in Crohn's disease. 29 refs

  8. Enhanced Permeability of Etoposide across Everted Sacs of Rat Small Intestine by Vitamin E-TPGS.

    Science.gov (United States)

    Parsa, Abdolhamid; Saadati, Roonak; Abbasian, Zahra; Azad Aramaki, Saeed; Dadashzadeh, Simin

    2013-01-01

    Etoposide, a widely used anticancer drug, exhibits low and variable oral bioavailability mainly because of being substrate for the efflux transporter, P-glycoprotein (P-gp). Therefore, the present study was aimed to investigate the effect of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and PEG 400 as P-gp inhibitors on the intestinal absorption of etoposide. Everted sacs of rat small intestine were incubated in Krebs buffer solution which contained etoposide in the absence or presence of various concentrations of TPGS or PEG 400. The effect of verapamil as a known P-gp inhibitor on the absorption of drug was also studied. The absorptive transport of etoposide was significantly enhanced (p effect on the etoposide transport. No significant difference was found between the permeability values in the absence and presence of the maximum concentration of TPGS for two transport markers, lucifer yellow and imipramine, indicating that the enhancement in etoposide permeability in the presence of TPGS was not due to the compromise in tight junctions or membrane integrity of epithelial cells. The results of the study suggest that the use of TPGS as a safe excipient in etoposide formulations may enhance the oral bioavailability of etoposide and result in a predictable oral absorption.

  9. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice

    Directory of Open Access Journals (Sweden)

    Guiping Guan

    2016-01-01

    Full Text Available The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group or a dietary supplementation with 30 mg/kg dose of chitosan (COS group for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P<0.05 and a decreased jejunal diamine oxidase (DAO activity (P<0.05. Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P<0.05 and a reduced expression of occludin in the ileum (P<0.05. The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements.

  10. The Microbiome Activates CD4 T-cell–mediated Immunity to Compensate for Increased Intestinal PermeabilitySummary

    Directory of Open Access Journals (Sweden)

    Karen L. Edelblum

    2017-09-01

    Full Text Available Background & Aims: Despite a prominent association, chronic intestinal barrier loss is insufficient to induce disease in human subjects or experimental animals. We hypothesized that compensatory mucosal immune activation might protect individuals with increased intestinal permeability from disease. We used a model in which intestinal barrier loss is triggered by intestinal epithelial-specific expression of constitutively active myosin light chain kinase (CA-MLCK. Here we asked whether constitutive tight junction barrier loss impacts susceptibility to enteric pathogens. Methods: Acute or chronic Toxoplasma gondii or Salmonella typhimurium infection was assessed in CA-MLCK transgenic or wild-type mice. Germ-free mice or those lacking specific immune cell populations were used to investigate the effect of microbial-activated immunity on pathogen translocation in the context of increased intestinal permeability. Results: Acute T gondii and S typhimurium translocation across the epithelial barrier was reduced in CA-MLCK mice. This protection was due to enhanced mucosal immune activation that required CD4+ T cells and interleukin 17A but not immunoglobulin A. The protective mucosal immune activation in CA-MLCK mice depended on segmented filamentous bacteria (SFB, because protection against early S typhimurium invasion was lost in germ-free CA-MLCK mice but could be restored by conventionalization with SFB-containing, not SFB-deficient, microbiota. In contrast, chronic S typhimurium infection was more severe in CA-MLCK mice, suggesting that despite activation of protective mucosal immunity, barrier defects ultimately result in enhanced disease progression. Conclusions: Increased epithelial tight junction permeability synergizes with commensal bacteria to promote intestinal CD4+ T-cell expansion and interleukin 17A production that limits enteric pathogen invasion. Keywords: Barrier Function, Tight Junction, Microbiota, CD4 T Cell, Mucosal Immunity

  11. Physicochemical properties and in vitro intestinal permeability properties and intestinal cell toxicity of silica particles, performed in simulated gastrointestinal fluids.

    Science.gov (United States)

    Sakai-Kato, Kumiko; Hidaka, Masayuki; Un, Keita; Kawanishi, Toru; Okuda, Haruhiro

    2014-03-01

    Amorphous silica particles with the primary dimensions of a few tens of nm, have been widely applied as additives in various fields including medicine and food. Especially, they have been widely applied in powders for making tablets and to coat tablets. However, their behavior and biological effects in the gastrointestinal tracts associated with oral administration remains unknown. Amorphous silica particles with diameters of 50, 100, and 200nm were incubated in the fasted-state and fed-state simulated gastric and intestinal fluids. The sizes, intracellular transport into Caco-2 cells (model cells for intestinal absorption), the Caco-2 monolayer membrane permeability, and the cytotoxicity against Caco-2 cells were then evaluated for the silica particles. Silica particles agglomerated in fed-state simultaneous intestinal fluids. The agglomeration and increased particles size inhibited the particles' absorption into the Caco-2 cells or particles' transport through the Caco-2 cells. The in vitro cytotoxicity of silica particles was not observed when the average size was larger than 100nm, independent of the fluid and the concentration. Our study indicated the effect of diet on the agglomeration of silica particles. The sizes of silica particles affected the particles' absorption into or transport through the Caco-2 cells, and cytotoxicity in vitro, depending on the various biological fluids. The findings obtained from our study may offer valuable information to evaluate the behavior of silica particles in the gastrointestinal tracts or safety of medicines or foods containing these materials as additives. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    Science.gov (United States)

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (Plean (Plean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  13. Damage-induced permeability changes around underground excavations

    International Nuclear Information System (INIS)

    Coll, C.

    2005-07-01

    The storage of nuclear waste in deep geological formations is now considered more and more as a potential solution. During excavation, a disturbed zone develops in which damaging can be important and which can lead eventually to the failure of the rock. Fluid flow and permeability in the rock mass can be significantly modified producing a possible security risk. Our work consisted in an experimental study of the hydro-mechanical coupling of two argillaceous rocks: Boom clay (Mol, Belgium) and Opalinus clay (Mont-Terri, Switzerland). Triaxial tests were performed in a saturated state to study the permeability evolution of both clays with isotropic and deviatoric stresses. Argillaceous rocks are geo-materials with complex behaviour governed by numerous coupled processes. Strong physico-chemical interactions between the fluid and the solid particles and their very low permeability required the modification of the experimental set up. Moreover, specific procedures were developed to measure permeability and to detect strain localisation in shear bands. We show that for Boom Clay, permeability is not significantly influenced by strain localisation. For Opalinus clay, fracturing can induce an increase of the permeability at low confining pressure. (author)

  14. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    Directory of Open Access Journals (Sweden)

    Yun-Liang Cui

    2016-01-01

    Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations.

  15. Pathophysiological consequences of VEGF-induced vascular permeability

    Science.gov (United States)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  16. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells

    Energy Technology Data Exchange (ETDEWEB)

    Artursson, P.; Karlsson, J. (Uppsala Univ., (Sweden))

    1991-03-29

    Monolayers of a well differentiated human intestinal epithelial cell line, Caco-2, were used as a model to study passive drug absorption across the intestinal epithelium. Absorption rate constants (expressed as apparent permeability coefficients) were determined for 20 drugs and peptides with different structural properties. The permeability coefficients ranged from approximately 5 x 10{sup {minus} 8} to 5 x 10{sup {minus} 5} cm/s. A good correlation was obtained between data on oral absorption in humans and the results in the Caco-2 model. Drugs that are completely absorbed in humans had permeability coefficients greater than 1 x 10{sup {minus} 6} cm/s. Drugs that are absorbed to greater than 1% but less than 100% had permeability coefficients of 0.1-1.0 x 10{sup {minus} 6} cm/s while drugs and peptides that are absorbed to less than 1% had permeability coefficients of less than or equal to 1 x 10{sup {minus} 7} cm/s. The results indicate that Caco-2 monolayers can be used as a model for studies on intestinal drug absorption.

  17. The effect of salt adaptation on the permeability and cation selectivity of the goldfish intestinal epithelium.

    Science.gov (United States)

    Ellory, J C; Nibelle, J; Smith, M W

    1973-05-01

    1. The short-term uptake of Na by the goldfish mucosa was compared using both inulin and choline as markers of extracellular space. The results were virtually identical, the distribution of both choline and inulin increasing rapidly to measure a space at 1 min which then remained nearly constant during a following 4 min incubation.2. Using inulin as space marker, the uptake of various alkali metal cations was determined from a 1 min contact with the mucosa. The relative rates of uptake were Tl > K > Rb > Cs > Na > Li, with a low selectivity ratio, the range of permeabilities being no greater than 5.3. The selectivity sequence was the same in both salt and fresh-water adapted fish. Of the alkali metal cations tested, only Na showed a significantly decreased uptake on adaptation to salt.4. Isolated intestinal preparations from salt-adapted fish showed a reduced short-circuit current compared with fish adapted to fresh water, the values being 12.3 +/- 1.2 and 35.7 +/- 1.5 muA cm(-2) respectively. In both cases the short-circuit current was equivalent to the net transport of Na measured isotopically.5. In Krebs-Henseleit medium, the measured tissue resistance was approximately 100 Omega cm(-2) for both salt and fresh-water adapted fish.6. It is concluded that regulation of cation transport in goldfish intestinal epithelium is specific for Na and mediated primarily through cellular rather than extracellular pathways.

  18. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease.

    Science.gov (United States)

    Li, Chuanwei; Gao, Min; Zhang, Wen; Chen, Caiyu; Zhou, Faying; Hu, Zhangxu; Zeng, Chunyu

    2016-06-29

    Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA (rRNA) gene belong to Enterobacteriaceae have been detected in atherosclerotic plaques. How intestinal bacteria go into blood is not known. Zonulin reversibly modulate intestinal permeability (IP), the circulating zonulin levels were increased in diabetes, obesity, all of which are risk factors for atherosclerosis. It is unclear whether the circulating zonulin levels were changed in coronary artery disease (CAD) patients and modulate IP. The 16S rRNA gene of bacteria in blood sample was checked by 454 pyrosequencing. The zonulin levels were determined by enzyme-linked immunosorbent assay (ELISA) methods. The distribution of zonulin was detected by confocal immunofluorescence microscopy. Bacteria and Caco-2 cell surface micro-structure were checked by transmission electron microscopy. A high diversity of bacterial 16S rRNA gene can be detected in samples from CAD patients, most of them (99.4%) belong to Enterobacteriaceaes, eg. Rahnella. The plasma zonulin levels were significantly higher in CAD patients. Pseudomonas fluorescens exposure significantly increased zonulin expression and decreased IP in a time dependent manner. The elevated zonulin increase IP and may facilitate enteric translocation by disassembling the tight junctions, which might explain the observed high diversity of bacterial 16S rRNA genes in blood samples.

  19. Tight Junctions, Intestinal Permeability, and Autoimmunity Celiac Disease and Type 1 Diabetes Paradigms

    Science.gov (United States)

    Visser, Jeroen; Rozing, Jan; Sapone, Anna; Lammers, Karen; Fasano, Alessio

    2010-01-01

    Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on celiac disease (CD), an autoimmune enteropathy, and type 1 diabetes (T1D), a hyperglycosaemia caused by a destructive autoimmune process targeting the insulin-producing pancreatic islet cells. Even if environmental factors and genetic susceptibility are clearly involved in the pathogenesis of autoimmunity, for most autoimmune disorders there is no or little knowledge about the causing agent or genetic makeup underlying the disease. In this respect, CD represents a unique autoimmune disorder because a close genetic association with HLA-DQ2 or HLA-DQ8 haplotypes and, more importantly, the environmental trigger (the gliadin fraction of gluten-containing grains wheat, barley, and rye) are known. Conversely, the trigger for autoimmune destruction of pancreatic ß cells in T1D is unclear. Interestingly, recent data suggest that gliadin is also involved in the pathogenesis of T1D. There is growing evidence that increased intestinal permeability plays a pathogenic role in various autoimmune diseases including CD and T1D. Therefore, we hypothesize that besides genetic and environmental factors, loss of intestinal barrier function is necessary to develop autoimmunity. In this review, each of these components will be briefly reviewed. PMID:19538307

  20. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-08-01

    Sulfasalazine is characterized by low intestinal absorption, which essentially enables its colonic targeting and therapeutic action. The mechanisms behind this low absorption have not yet been elucidated. The purpose of this study was to investigate the role of efflux transporters in the intestinal absorption of sulfasalazine as a potential mechanism for its low small-intestinal absorption and colonic targeting following oral administration. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on sulfasalazine bidirectional permeability were studied across Caco-2 cell monolayers, including dose-response analysis. Sulfasalazine in vivo permeability was then investigated in the rat jejunum by single-pass perfusion, in the presence vs. absence of inhibitors. Sulfasalazine exhibited 19-fold higher basolateral-to-apical (BL-AP) than apical-to-basolateral (AP-BL) Caco-2 permeability, indicative of net mucosal secretion. MRP2 inhibitors (MK-571 and indomethacin) and BCRP inhibitors [fumitremorgin C (FTC) and pantoprazole] significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport in a concentration-dependent manner. No effect was observed with the P-gp inhibitors verapamil and quinidine. The IC50 values of the specific MRP2 and BCRP inhibitors MK-571 and FTC on sulfasalazine secretion were 21.5 and 2.0 microM, respectively. Simultaneous inhibition of MRP2 and BCRP completely abolished sulfasalazine Caco-2 efflux. Without inhibitors, sulfasalazine displayed low (vs. metoprolol) in vivo intestinal permeability in the rat model. MK-571 or FTC significantly increased sulfasalazine permeability, bringing it to the low-high permeability boundary. With both MK-571 and FTC present, sulfasalazine displayed high permeability. In conclusion, efflux transport mediated by MRP2 and BCRP, but not P-gp, shifts sulfasalazine permeability from high to low, thereby enabling its

  1. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    Science.gov (United States)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  2. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class

    DEFF Research Database (Denmark)

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, by disrupting the intricate balance between specific bacterial groups within this ecosystem...... potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (n=12 per group) were dosed by oral gavage with either amoxicillin...

  3. Early Changes in Microbial Colonization Selectively Modulate Intestinal Enzymes, but Not Inducible Heat Shock Proteins in Young Adult Swine

    NARCIS (Netherlands)

    Arnal, M.E.; Zhang, J.; Messori, S.; Bosi, P.; Smidt, H.; Lallès, J.P.

    2014-01-01

    Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation.

  4. Pulmonary epithelial permeability in rats with bleomycin-induced pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Anazawa, Yoshiki; Isawa, Toyoharu; Teshima, Takeo; Miki, Makoto; Motomiya, Masakichi (Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer)

    1992-07-01

    This study was performed to investigate the mechanism by which [sup 99m]Tc-DTPA molecules pass through the pulmonary epithelium following inhalation of [sup 99m]Tc-DTPA aerosol. Interstitial pneumonitis was induced in 6-week-old male rats by instilling 1 mg/kg of bleomycin into the trachea. Disappearance of radioactivity from the lungs was measured with a gamma camera every 2 weeks to estimate pulmonary epithelial permeability, and light- and electron-microscopic histopathologic examinations were performed at the same intervals. There was a statistically significant increase in the pulmonary epithelial permeability at 2 weeks after the instillation of bleomycin. However, subsecquent changes in pulmonary epithelial permeability were not uniform; some animals showed recovery and some showed further increase and/or partial recovery. Microscopically, increase in the capillary bed, round cell infiltration, and widening of the interstitial space were observed in addition to the presence of macrophages in the alveolar spaces at 2 weeks. Electron microscopic examination revealed vacuolization, thinning and detachment of the alveolar epithelium, and denudation of the basement membrane. Prominent fibrosis, honeycombing, thinning of the pulmonary epithelium, and increase in collagen fibers were observed after 18 weeks. We consider that vacuolization, thinning, and detachment of the pulmonary epithelium and denudation of the basement membrane are related to the increase in pulmonary epithelial permeability in bleomycin-induced interstitial pneumonitis. (author).

  5. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression.

    Science.gov (United States)

    Zuhl, Micah N; Lanphere, Kathryn R; Kravitz, Len; Mermier, Christine M; Schneider, Suzanne; Dokladny, Karol; Moseley, Pope L

    2014-01-15

    The objectives of this study are threefold: 1) to assess whether 7 days of oral glutamine (GLN) supplementation reduces exercise-induced intestinal permeability; 2) whether supplementation prevents the proinflammatory response; and 3) whether these changes are associated with upregulation of the heat shock response. On separate occasions, eight human subjects participated in baseline testing and in GLN and placebo (PLA) supplementation trials, followed by a 60-min treadmill run. Intestinal permeability was higher in the PLA trial compared with baseline and GLN trials (0.0604 ± 0.047 vs. 0.0218 ± 0.008 and 0.0272 ± 0.007, respectively; P supplementation (0, 4, and 6 mM) on heat-induced (37° or 41.8°C) heat shock protein 70 (HSP70), heat shock factor-1 (HSF-1), and occludin expression. HSF-1 and HSP70 levels increased in 6 mM supplementation at 41°C compared with 0 mM at 41°C (1.785 ± 0.495 vs. 0.6681 ± 0.290, and 1.973 ± 0.325 vs. 1.133 ± 0.129, respectively; P supplementation at 41°C and 6 mM at 41°C compared with 0 mM at 41°C (1.236 ± 0.219 and 1.849 ± 0.564 vs. 0.7434 ± 0.027, respectively; P supplementation prevented exercise-induced permeability, possibly through HSF-1 activation.

  6. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease.

    Science.gov (United States)

    Lerner, Aaron; Matthias, Torsten

    2015-06-01

    The incidence of autoimmune diseases is increasing along with the expansion of industrial food processing and food additive consumption. The intestinal epithelial barrier, with its intercellular tight junction, controls the equilibrium between tolerance and immunity to non-self-antigens. As a result, particular attention is being placed on the role of tight junction dysfunction in the pathogenesis of AD. Tight junction leakage is enhanced by many luminal components, commonly used industrial food additives being some of them. Glucose, salt, emulsifiers, organic solvents, gluten, microbial transglutaminase, and nanoparticles are extensively and increasingly used by the food industry, claim the manufacturers, to improve the qualities of food. However, all of the aforementioned additives increase intestinal permeability by breaching the integrity of tight junction paracellular transfer. In fact, tight junction dysfunction is common in multiple autoimmune diseases and the central part played by the tight junction in autoimmune diseases pathogenesis is extensively described. It is hypothesized that commonly used industrial food additives abrogate human epithelial barrier function, thus, increasing intestinal permeability through the opened tight junction, resulting in entry of foreign immunogenic antigens and activation of the autoimmune cascade. Future research on food additives exposure-intestinal permeability-autoimmunity interplay will enhance our knowledge of the common mechanisms associated with autoimmune progression. Copyright © 2015. Published by Elsevier B.V.

  7. Increased intestinal permeability, measured by serum zonulin, is associated with metabolic risk markers in overweight pregnant women.

    Science.gov (United States)

    Mokkala, Kati; Pellonperä, Outi; Röytiö, Henna; Pussinen, Pirkko; Rönnemaa, Tapani; Laitinen, Kirsi

    2017-04-01

    Increased intestinal permeability with subsequent metabolic endotoxemia, i.e., elevated circulating levels of bacterial lipopolysaccharide, LPS, has been introduced as a novel initiator of obesity related metabolic disturbances in non-pregnant individuals. The objective was to investigate the extent to which intestinal permeability, measured by serum zonulin concentration, is related to metabolic endotoxemia and metabolic risk markers in overweight pregnant women. This was a cross-sectional study including 100 pregnant overweight women in early pregnancy. Serum zonulin was analyzed using ELISA, and markers for metabolic endotoxemia (LPS), inflammation (high-sensitive C-reactive protein and glycoprotein acetylation GlyA), glucose metabolism (fasting glucose and insulin), and lipid metabolism were measured. Higher serum zonulin concentration associated positively with LPS (P=0.02), inflammatory markers (Pzonulin quartiles). All the observed associations were confirmed (Pzonulin concentration, i.e., increased intestinal permeability, contributes to metabolic endotoxemia, systemic inflammation, and insulin resistance in overweight pregnant women. By reinforcing intestinal barrier, it may be possible to manipulate maternal metabolism during pregnancy with subsequent health benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. VEGF-Induced Vascular Permeability Is Mediated by FAK

    OpenAIRE

    Chen, Xiao Lei; Nam, Ju-Ock; Jean, Christine; Lawson, Christine; Walsh, Colin T.; Goka, Erik; Lim, Ssang-Taek; Tomar, Alok; Tancioni, Isabelle; Uryu, Sean; Guan, Jun-Lin; Acevedo, Lisette M.; Weis, Sara M.; Cheresh, David A.; Schlaepfer, David D.

    2012-01-01

    Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF re...

  9. Are self-reported gastrointestinal symptoms among older adults associated with increased intestinal permeability and psychological distress?

    Science.gov (United States)

    Ganda Mall, John-Peter; Östlund-Lagerström, Lina; Lindqvist, Carl Mårten; Algilani, Samal; Rasoal, Dara; Repsilber, Dirk; Brummer, Robert J; V Keita, Åsa; Schoultz, Ida

    2018-03-20

    Despite the substantial number of older adults suffering from gastrointestinal (GI) symptoms little is known regarding the character of these complaints and whether they are associated with an altered intestinal barrier function and psychological distress. Our aim was to explore the relationship between self-reported gut health, intestinal permeability and psychological distress among older adults. Three study populations were included: 1) older adults with GI symptoms (n = 24), 2) a group of older adults representing the general elderly population in Sweden (n = 22) and 3) senior orienteering athletes as a potential model of healthy ageing (n = 27). Questionnaire data on gut-health, psychological distress and level of physical activity were collected. Intestinal permeability was measured by quantifying zonulin in plasma. The level of systemic and local inflammation was monitored by measuring C-reactive protein (CRP), hydrogen peroxide in plasma and calprotectin in stool samples. The relationship between biomarkers and questionnaire data in the different study populations was illustrated using a Principal Component Analysis (PCA). Older adults with GI symptoms displayed significantly higher levels of both zonulin and psychological distress than both general older adults and senior orienteering athletes. The PCA analysis revealed a separation between senior orienteering athletes and older adults with GI symptoms and showed an association between GI symptoms, psychological distress and zonulin. Older adults with GI symptoms express increased plasma levels of zonulin, which might reflect an augmented intestinal permeability. In addition, this group suffer from higher psychological distress compared to general older adults and senior orienteering athletes. This relationship was further confirmed by a PCA plot, which illustrated an association between GI symptoms, psychological distress and intestinal permeability.

  10. (--Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance

    Directory of Open Access Journals (Sweden)

    Eleonora Cremonini

    2018-04-01

    Full Text Available Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. This study investigated whether dietary (--epicatechin (EC supplementation can protect the intestinal barrier against HFD-induced permeabilization and endotoxemia, and mitigate liver damage and insulin resistance. Mechanisms leading to loss of integrity and function of the tight junction (TJ were characterized. Consumption of a HFD for 15 weeks caused obesity, steatosis, and insulin resistance in male C57BL/6J mice. This was associated with increased intestinal permeability, decreased expression of ileal TJ proteins, and endotoxemia. Supplementation with EC (2–20 mg/kg body weight mitigated all these adverse effects. EC acted modulating cell signals and the gut hormone GLP-2, which are central to the regulation of intestinal permeability. Thus, EC prevented HFD-induced ileum NOX1/NOX4 upregulation, protein oxidation, and the activation of the redox-sensitive NF-κB and ERK1/2 pathways. Supporting NADPH oxidase as a target of EC actions, in Caco-2 cells EC and apocynin inhibited tumor necrosis alpha (TNFα-induced NOX1/NOX4 overexpression, protein oxidation and monolayer permeabilization. Together, our findings demonstrate protective effects of EC against HFD-induced increased intestinal permeability and endotoxemia. This can in part underlie EC capacity to prevent steatosis and insulin resistance occurring as a consequence of HFD consumption. Keywords: Intestinal permeability, (--Epicatechin, Steatosis, Insulin resistance, Endotoxemia, NADPH oxidase

  11. Effect of pharmacologically induced smooth muscle activation on permeability in murine colitis

    NARCIS (Netherlands)

    F.J. Zijlstra (Freek); M.E. van Meeteren (Marieke); I.M. Garrelds (Ingrid); M.A.C. Meijssen (Maarten)

    2003-01-01

    textabstractBACKGROUND: Both intestinal permeability and contractility are altered in inflammatory bowel disease. Little is known about their mutual relation. Therefore, an in vitro organ bath technique was developed to investigate the simultaneous effects of inflammation on permeability and smooth

  12. Fecal lactoferrin and intestinal permeability are effective non-invasive markers in the diagnostic work-up of chronic diarrhea.

    Science.gov (United States)

    Caccaro, Roberta; D'Incà, Renata; Martinato, Matteo; Pont, Elisabetta Dal; Pathak, Surajit; Frigo, Anna Chiara; Sturniolo, Giacomo Carlo

    2014-10-01

    Non-invasive markers able to identify patients with chronic diarrhea at risk of organic disease are missing. Aim of the study was to assess the diagnostic ability of intestinal permeability (IP) test and fecal lactoferrin (FL) in distinguishing functional from organic disease in patients with chronic diarrhea. We retrospectively enrolled patients referring to the gastroenterology outpatient clinic for chronic diarrhea. Among the 103 patients included, 40 % had an organic disease, with IP and FL levels significantly higher compared to those with a functional disorder (p chronic diarrhea patients. Together these tests could recognize both the presence of intestinal damage and its site.

  13. Liquid chromatography-tandem mass spectrometry for analysis of intestinal permeability of loperamide in physiological buffer.

    Directory of Open Access Journals (Sweden)

    Miriam S Rubelt

    Full Text Available Analysis of in vitro samples with high salt concentrations represents a major challenge for fast and specific quantification with liquid chromatography-tandem mass spectrometry (LC-MS/MS. To investigate the intestinal permeability of opioids in vitro employing the Ussing chamber technique, we developed and validated a fast, sensitive and selective method based on LC-MS/MS for the determination of loperamide in HEPES-buffered Ringer's solution. Chromatographic separation was achieved with an Atlantis dC18 column, 2.1 mm×20 mm, 3 µm particle size and a gradient consisting of methanol/0.1% formic acid and ammonium acetate. The flow rate was 0.7 ml/min, and the total run time was 3 min. For quantification, two mass transitions for loperamide and a deuterated internal standard (methadone-d(3 were used. The lower limit of loperamide quantification was 0.2 ng/ml. This new LC-MS/MS method can be used for the detection of loperamide in any experimental setup using HEPES-buffered Ringer's solution as a matrix compound.

  14. Dental pulp vascular permeability changes induced by dental bleaching

    Directory of Open Access Journals (Sweden)

    Cristiane da Costa

    2012-02-01

    Full Text Available Aiming to compare the effect of different light sources for dental bleaching on vascular permeability of dental pulps, forty-eight incisors were used. The bleaching agent (35 % hydrogen peroxide was activated by halogen light; LED (Light Emitting Diode or LED, followed by laser phototherapy (LPT (λ = 780 nm; 3 J/cm². After the bleaching procedures, the animals received an intra-arterial dye injection and one hour later were sacrificed. The teeth were diaphanized and photographed. The amount of blue stain content of each dental pulp was quantified using a computer imaging program. The data was statistically compared (p < 0.05. The results showed a significant higher (p < 0.01 dye content in the groups bleached with halogen light, compared with the control, LED and LED plus LPT groups. Thus, tooth bleaching activated by LED or LED plus LPT induces lesser resulted in increased vascular permeability than halogen light.

  15. Bovine colostrum increases pore-forming claudin-2 protein expression but paradoxically not ion permeability possibly by a change of the intestinal cytokine milieu.

    Directory of Open Access Journals (Sweden)

    Peggy Bodammer

    Full Text Available An impaired intestinal barrier function is involved in the pathogenesis of inflammatory bowel disease (IBD. Several nutritional factors are supposed to be effective in IBD treatment but scientific data about the effects on the intestinal integrity remain scarce. Bovine colostrum was shown to exert beneficial effects in DSS-induced murine colitis, and the present study was undertaken to explore the underlying molecular mechanisms. Western blot revealed increased claudin-2 expression in the distal ileum of healthy mice after feeding with colostrum for 14 days, whereas other tight junction proteins (claudin-3, 4, 10, 15 remained unchanged. The colostrum-induced claudin-2 induction was confirmed in differentiated Caco-2 cells after culture with colostrum for 48 h. Paradoxically, the elevation of claudin-2, which forms a cation-selective pore, was neither accompanied by increased ion permeability nor impaired barrier function. In an in situ perfusion model, 1 h exposure of the colonic mucosa to colostrum induced significantly increased mRNA levels of barrier-strengthening cytokine transforming growth factor-β, while interleukine-2, interleukine-6, interleukine-10, interleukine-13, and tumor-necrosis factor-α remained unchanged. Thus, modulation of the intestinal transforming growth factor-β expression might have compensated the claudin-2 increase and contributed to the observed barrier strengthening effects of colostrum in vivo and in vitro.

  16. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male Swiss mice subjected to physical exercise under environmental heat stress.

    Science.gov (United States)

    Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Wanner, Samuel Penna; Santos, Rosana das Graças Carvalho dos; Fernandes, Simone Odília Antunes; Martins, Flaviano dos Santos; Nicoli, Jacques Robert; Coimbra, Cândido Celso; Cardoso, Valbert Nascimento

    2014-02-01

    Dietary supplementation with l-arginine has been shown to improve the intestinal barrier in many experimental models. This study investigated the effects of arginine supplementation on the intestinal permeability and bacterial translocation (BT) induced by prolonged physical exercise under heat stress. Under anesthesia, male Swiss mice (5-wk-old) were implanted with an abdominal sensor to record their core body temperature (T(core)). After recovering from surgery, the mice were divided into 3 groups: a non-supplemented group that was fed the standard diet formulated by the American Institute of Nutrition (AIN-93G; control), a non-supplemented group that was fed the AIN-93G diet and subjected to exertional hyperthermia (H-NS), and a group supplemented with l-arginine at 2% and subjected to exertional hyperthermia (H-Arg). After 7 d of treatment, the H-NS and H-Arg mice were forced to run on a treadmill (60 min, 8 m/min) in a warm environment (34°C). The control mice remained at 24°C. Thirty min before the exercise or control trials, the mice received a diethylenetriamine pentaacetic acid (DTPA) solution labeled with technetium-99m ((99m)Tc-DTPA) or (99m)Tc-Escherichia coli by gavage to assess intestinal permeability and BT, respectively. The H-NS mice terminated the exercise with T(core) values of ∼40°C, and, 4 h later, presented a 12-fold increase in the blood uptake of (99m)Tc-DTPA and higher bacterial contents in the blood and liver than the control mice. Although supplementation with arginine did not change the exercise-induced increase in T(core), it prevented the increases in intestinal permeability and BT caused by exertional hyperthermia. Our results indicate that dietary l-arginine supplementation preserves the integrity of the intestinal epithelium during exercise under heat stress, acting through mechanisms that are independent of T(core) regulation.

  17. Effect of early enteral nutrition (EN) on endotoxin in serum and intestinal permeability in patients with severe acute pancreatitis.

    Science.gov (United States)

    Shen, Q-X; Xu, G-X; Shen, M-H

    2017-06-01

    This work aimed at studying the effect of early enteral nutrition (EN) on serum endotoxin and intestinal permeability in patients with severe acute pancreatitis. 70 cases of patients with severe acute pancreatitis were cured in our hospital from April 2015 to January 2016. Patients selected were randomly divided into two groups including a group of patients having parenteral nutrition (group PN) and that had enteral nutrition (group EN). The results were assessed by: 1) the differences of serum endotoxin level; 2) the differences of the lactulose/mannitol ratio of urine, before intervention and one and two weeks after the intervention. Before the intervention, both groups had similar levels of serum endotoxin and the same lactulose/mannitol excretion rate of urine (p>0.05). One and two weeks after the intervention, the serum endotoxin level and the lactulose/mannitol excretion rate of urine of the group PN were significantly higher than the group EN (pEN has a bigger effect on serum endotoxin and intestinal permeability in patients with severe acute pancreatitis. EN can better promote the elimination of serum endotoxin and reduce intestinal permeability. Therefore, EN deserves clinical expansion.

  18. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers.

    Science.gov (United States)

    Russo, Francesco; Linsalata, Michele; Clemente, Caterina; Chiloiro, Marisa; Orlando, Antonella; Marconi, Emanuele; Chimienti, Guglielmina; Riezzo, Giuseppe

    2012-12-01

    Apart from the intestinal environment, inulin induces physiological effects, which includes a reduction in glucose and lipid concentrations and modulation of gastrointestinal motility through the release of different peptides. We hypothesized that inulin-enriched pasta may also improve small intestine permeability in relation to zonulin and glucagon-like peptide 2 (GLP-2) levels in healthy young subjects. Twenty healthy, young male volunteers completed a randomized, double-blind crossover study consisting of a 2-week run-in period and two 5-week study periods (11% inulin-enriched or control pasta), with an 8-week washout period in between. The intestinal barrier function was assessed by lactulose-mannitol excretion in urine. Zonulin values and GLP-2 release were evaluated by enzyme-linked immunosorbent assay. In the inulin group, the urinary lactulose recovery was significantly lower than the other 2 groups. There were no significant differences in urinary mannitol levels between groups. Accordingly, the lactulose-mannitol excretion ratio was significantly decreased in the inulin-enriched pasta group compared with the other 2 groups. The inulin-enriched pasta group had significantly lower zonulin serum values and significantly higher GLP-2 basal values when compared with the baseline and control pasta groups. The dietary use of inulin-enriched pasta preserves intestinal mucosal barrier functioning and modulates circulating levels of zonulin and GLP-2, suggesting that prebiotics could be used in the prevention of gastrointestinal diseases and metabolic disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Rapid small intestinal permeability assay based on riboflavin and lactulose detected by bis-boronic acid appended benzyl viologens.

    Science.gov (United States)

    Resendez, Angel; Abdul Halim, Md; Landhage, Caroline M; Hellström, Per M; Singaram, Bakthan; Webb, Dominic-Luc

    2015-01-15

    Although organoboronic acids are efficient high-throughput sugar sensors, they have not been pursued for gut permeability studies. A modification of the lactulose/mannitol assay is described by which small intestinal permeability is assessed at the time of urine collection using a lactulose/riboflavin ratio. Volunteers ingested 50mg riboflavin and either 5 g mannitol or 10 g lactulose. Urine was collected for 6 hrs. Riboflavin was assayed by autofluorescence. Riboflavin was removed by C18 solid phase extraction. Lactulose and mannitol were then assayed using 1,1'-bis(2-boronobenzyl)-4,4'-bipyridinium (4,4'oBBV) coupled to the fluorophore HPTS. The temporal profile over 6 hrs for riboflavin paralleled mannitol. Riboflavin recovery in urine was 11.1 ± 1.9 % (mean ± SEM, n=7), similar to mannitol. There was selective binding of 4,4'oBBV to lactulose, likely involving cooperativity between the fructose and galactose moieties. Lower limits of detection and quantification were 90 and 364 μM. The lactulose assay was insensitive to other permeability probes (e.g., sucrose, sucralose) while tolerating glucose or lactose. This assay can be adapted to automated systems. Stability of 4,4'oBBV exceeds 4 years. Riboflavin measured by autofluorescence combined with lactulose measured with 4,4'oBBV represents a useful new chemistry for rapid measurement of intestinal permeability with excellent stability, cost and throughput benefits. Copyright © 2014. Published by Elsevier B.V.

  20. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis

    Science.gov (United States)

    Noti, Mario; Corazza, Nadia; Mueller, Christoph; Berger, Barbara

    2010-01-01

    Although tumor necrosis factor (α) (TNF) exerts proinflammatory activities in a variety of diseases, including inflammatory bowel disease, there is increasing evidence for antiinflammatory actions of TNF. In contrast, glucocorticoids (GCs) are steroid hormones that suppress inflammation, at least in part by regulating the expression and action of TNF. We report that TNF induces extraadrenal production of immunoregulatory GCs in the intestinal mucosa during acute intestinal inflammation. The absence of TNF results in a lack of colonic GC synthesis and exacerbation of dextran sodium sulfate–induced colitis. TNF seems to promote local steroidogenesis by directly inducing steroidogenic enzymes in intestinal epithelial cells. Therapeutic administration of TNF induces GC synthesis in oxazolone-induced colitis and ameliorates intestinal inflammation, whereas inhibition of intestinal GC synthesis abrogates the therapeutic effect of TNF. These data show that TNF suppresses the pathogenesis of acute intestinal inflammation by promoting local steroidogenesis. PMID:20439544

  1. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota.

    Science.gov (United States)

    Wang, Jing-Hua; Bose, Shambhunath; Kim, Gi-Cheol; Hong, Seung-Ug; Kim, Ji-Hun; Kim, Jai-Eun; Kim, Hojun

    2014-01-01

    Increasing evidence has indicated a close association of host-gut flora metabolic interaction with obesity. Flos Lonicera, a traditional herbal medicine, is used widely in eastern Asia for the treatment of various disorders. The aim of this study was to evaluate whether unfermented or fermented formulations of Flos Lonicera could exert a beneficial impact to combat obesity and related metabolic endotoxemia. Obesity and metabolic endotoxemia were induced separately or together in rats through feeding a eight-week high fat diet either alone (HFD control group) or in combination with a single LPS stimulation (intraperitoneal injection, 0.75 mg/kg) (LPS control group). While, the mechanism of action of the Lonicera formulations was explored in vitro using RAW 264.7 and HCT 116 cell lines as models. In cell-based studies, treatment with both unfermented Flos Lonicera (UFL) and fermented Flos Lonicera (FFL) formulations resulted in suppression of LPS-induced NO production and gene expression of vital proinflammatory cytokines (TNF-α, COX-2, and IL-6) in RAW 264.7 cells, reduced the gene expression of zonula occludens (ZO)-1 and claudin-1, and normalized trans epithelial electric resistance (TEER) and horseradish peroxidase (HRP) flux in LPS-treated HCT-116 cells. In an animal study, treatment of HFD as well as HFD+LPS groups with UFL or FFL resulted in a notable decrease in body and adipose tissue weights, ameliorated total cholesterol, HDL, triglyceride, aspartate transaminase and endotoxin levels in serum, reduced the urinary lactulose/mannitol ratio, and markedly alleviated lipid accumulation in liver. In addition, exposure of HFD as well as HFD+LPS groups with UFL or FFL resulted in significant alteration of the distribution of intestinal flora, especially affecting the population of Akkermansia spp. and ratio of Bacteroidetes and Firmicutes. This evidence collectively demonstrates that Flos Lonicera ameliorates obesity and related metabolic endotoxemia via

  2. Ex vivo permeability experiments in excised rat intestinal tissue and in vitro solubility measurements in aspirated human intestinal fluids support age-dependent oral drug absorption.

    Science.gov (United States)

    Annaert, Pieter; Brouwers, Joachim; Bijnens, Ann; Lammert, Frank; Tack, Jan; Augustijns, Patrick

    2010-01-31

    The possible influence of advanced age on intestinal drug absorption was investigated by determining the effects of aging on (i) solubility of model drugs in human intestinal fluids (HIF) obtained from two age groups (18-25 years; 62-72 years); and (ii) transepithelial permeation of model drugs across intestinal tissue excised from young, adult and old rats. Average equilibrium solubility values for 10 poorly soluble compounds in HIF aspirated from both age groups showed high interindividual variability, but did not reveal significant differences. Characterization of the HIF from both age groups demonstrated comparable pH profiles, while concentrations of individual bile salts showed pronounced variability between individuals, however without statistical differences between age groups. Transepithelial permeation of the transcellular probe metoprolol was significantly increased in old rats (38 weeks) compared to the younger age groups, while the modulatory role of P-glycoprotein in transepithelial talinolol transport was observed in adult and old rats but not in young rats. In conclusion, age-dependent permeability of intestinal tissue (rather than age-dependent luminal drug solubility) may contribute to altered intestinal drug absorption in older patients compared to young adults. Copyright 2009 Elsevier B.V. All rights reserved.

  3. In vitro studies of intestinal permeability and hepatic and intestinal metabolism of 8-prenylnaringenin, a potent phytoestrogen from hops (Humulus lupulus L.).

    Science.gov (United States)

    Nikolic, Dejan; Li, Yongmei; Chadwick, Lucas R; van Breemen, Richard B

    2006-05-01

    The absorption potential and metabolism of 8-prenylnaringenin (8-PN) from hops (Humulus lupulus L.) were investigated. 8-PN is a potent estrogen with the potential to be used for the relief of menopausal symptoms in women. Monolayers of the human intestinal epithelial cancer cell line Caco-2 and human hepatocytes were incubated with 8-PN to model its intestinal absorption and hepatic metabolism, respectively. The apparent permeability coefficients for 8-PN in the apical-to-basolateral and basolateral-to-apical directions of a Caco-2 monolayer were 5.2 +/- 0.7 x 10(-5) and 4.9 +/- 0.5 x 10(-5) cm/s, respectively, indicating good intestinal absorption via passive diffusion. Both glucuronide and sulfate conjugates of 8-PN were detected in the Caco-2 cell incubations. The 4'-O-glucuronide was the predominant Caco-2 cell metabolite, followed by 7-O-sulfate and 4'-O-sulfate. Both phase I and phase II metabolites of 8-PN were formed by human hepatocytes. The 7-O-glucuronide was the most abundant hepatocyte metabolite, and no sulfate conjugates were detected. Incubations with various cDNA-expressed UDP-glucuronosyltransferases indicated that the isozymes UGT1A1, UGT1A6, UGT1A8, and UGT1A9 were responsible for glucuronidation of 8-PN. Although orally administered 8-PN should be readily absorbed from the intestine, its bioavailability should be reduced significantly by intestinal and hepatic metabolism.

  4. Water absorption enhances the uptake of mannitol and decreases Cr-EDTA/mannitol permeability ratios in cat small intestine in situ

    NARCIS (Netherlands)

    Bijlsma, P. B.; Fihn, B. M.; Sjöqvist, A.; Groot, J. A.; Taminiau, J. A. J. M.; Jodal, M.

    2002-01-01

    Background: Recently, we hypothesized that mannitol absorption in human intestinal permeability tests is a reflection of small intestinal water absorption and is dependent mainly on the efficiency of the countercurrent multiplier in the villi. This may affect the outcome of clinical double-sugar

  5. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon ( Salmo salar L.).

    Science.gov (United States)

    Knudsen, David; Jutfelt, Fredrik; Sundh, Henrik; Sundell, Kristina; Koppe, Wolfgang; Frøkiaer, Hanne

    2008-07-01

    Saponins are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels of added soya saponins, one diet containing 25% lupin kernel meal, two diets based on 25% lupin kernel meal with different levels of added soya saponins, and one diet containing 25% defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content was examined. Fish fed 25% defatted soyabean meal displayed severe enteritis, whereas fish fed 25% lupin kernel meal had normal intestinal morphology. The combination of soya saponins and fishmeal did not induce morphological changes but fish fed soya saponins in combination with lupin kernel meal displayed significant enteritis. Increased epithelial permeability was observed in fish fed 25% defatted soyabean meal and in fish fed soya saponin concentrate independent of the protein source in the feed. The study demonstrates that soya saponins, in combination with one or several unidentified components present in legumes, induce an inflammatory reaction in the distal intestine of Atlantic salmon. Soya saponins increase the intestinal epithelial permeability but do not, per se, induce enteritis.

  6. Intestinal permeability to (/sup 51/Cr)EDTA in children with Crohn's disease and celiac disease

    Energy Technology Data Exchange (ETDEWEB)

    Turck, D.; Ythier, H.; Maquet, E.; Deveaux, M.; Marchandise, X.; Farriaux, J.P.; Fontaine, G.

    1987-07-01

    (/sup 51/Cr)EDTA was used as a probe molecule to assess intestinal permeability in 7 healthy control adults, 11 control children, 17 children with Crohn's disease, and 6 children with untreated celiac disease. After subjects fasted overnight, 75 kBq/kg (= 2 microCi/kg) /sup 51/Cr-labeled EDTA was given by mouth; 24-h urinary excretion of (/sup 51/Cr)EDTA was measured and expressed as a percentage of the total oral dose. Mean and SD were as follows: control adults 1.47 +/- 0.62, control children 1.59 +/- 0.55, and patients with Crohn's disease or celiac disease 5.35 +/- 1.94. The difference between control children and patients was statistically significant (p less than 0.001). These results show that intestinal permeability to (/sup 51/Cr)EDTA is increased among children with active or inactive Crohn's disease affecting small bowel only or small bowel and colon, and with untreated celiac disease. The (/sup 51/Cr)EDTA permeability test could facilitate the decision to perform more extensive investigations in children suspected of small bowel disease who have atypical or poor clinical and biological symptomatology.

  7. /sup 51/Cr-EDTA//sup 14/C-mannitol intestinal permeability test. Clinical use in screening for coeliac disease

    Energy Technology Data Exchange (ETDEWEB)

    Fotherby, K.J.; Wraight, E.P.; Neale, G.

    1988-01-01

    An intestinal permeability test with a combination of /sup 51/Cr-EDTA and /sup 14/C-mannitol was performed under routine conditions on 176 occasions in 161 adult patients. Of these patients, 116 were under investigation for possible coeliac disease, 33 were known to have coeliac disease, and 12 had inflammatory bowel disease. Small-bowel biopsies were performed in 61 patients. Expressing the results as the ratio of the 6-h urinary recoveries of the two probes was as sensitive as 95%, but more specific for histological mucosal abnormality (62% versus 46%) than measuring the urinary recovery of /sup 51/Cr-EDTA alone. All but two of the patients with active inflammatory bowel disease, whether Crohn's disease or ulcerative colitis, had an abnormal ratio. The /sup 51/Cr-EDTA//sup 14/C-mannitol intestinal permeablity test with a 6-h urine collection is a rapid and simple test of small-intestinal function suitable for routine use. 19 refs.

  8. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... The gastrointestinal tract serves as a potent barrier that prevents luminal bacteria from entering the host. This barrier function is maintained by a well-balanced intestinal flora, an unaltered perme- ability of the intestinal mucosa, and a normal functioning immune system. Furthermore, the intestinal mucosa, in.

  9. Intestinal exposure to PCB 153 induces inflammation via the ATM/NEMO pathway.

    Science.gov (United States)

    Phillips, Matthew C; Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M; Burgueño, Juan; Lang, Jessica K; Toborek, Michal; Abreu, Maria T

    2018-01-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that adversely affect human health. PCBs bio-accumulate in organisms important for human consumption. PCBs accumulation in the body leads to activation of the transcription factor NF-κB, a major driver of inflammation. Despite dietary exposure being one of the main routes of exposure to PCBs, the gut has been widely ignored when studying the effects of PCBs. We investigated the effects of PCB 153 on the intestine and addressed whether PCB 153 affected intestinal permeability or inflammation and the mechanism by which this occurred. Mice were orally exposed to PCB 153 and gut permeability was assessed. Intestinal epithelial cells (IECs) were collected and evaluated for evidence of genotoxicity and inflammation. A human IEC line (SW480) was used to examine the direct effects of PCB 153 on epithelial function. NF-кB activation was measured using a reporter assay, DNA damage was assessed, and cytokine expression was ascertained with real-time PCR. Mice orally exposed to PCB 153 had an increase in intestinal permeability and inflammatory cytokine expression in their IECs; inhibition of NF-кB ameliorated both these effects. This inflammation was associated with genotoxic damage and NF-кB activation. Exposure of SW480 cells to PCB 153 led to similar effects as seen in vivo. We found that activation of the ATM/NEMO pathway by genotoxic stress was upstream of NF-kB activation. These results demonstrate that oral exposure to PCB 153 is genotoxic to IECs and induces downstream inflammation and barrier dysfunction in the intestinal epithelium. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.)

    DEFF Research Database (Denmark)

    Knudsen, Sven David Lausten; Jutfelt, Fredrik; Sundh, Henrik

    2008-01-01

    are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins...... increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels...... of added soya saponins, one diet containing 25 % lupin kernel meal, two diets based on 25 % lupin kernel meal with different levels of added soya saponins, and one diet containing 25 % defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content...

  11. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells.

    Science.gov (United States)

    Costantini, Todd W; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G; Peterson, Carrie Y; Loomis, William H; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P; Coimbra, Raul

    2010-12-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  12. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA).

    Science.gov (United States)

    Petit, Charlotte; Bujard, Alban; Skalicka-Woźniak, Krystyna; Cretton, Sylvian; Houriet, Joëlle; Christen, Philippe; Carrupt, Pierre-Alain; Wolfender, Jean-Luc

    2016-03-01

    At the early drug discovery stage, the high-throughput parallel artificial membrane permeability assay is one of the most frequently used in vitro models to predict transcellular passive absorption. While thousands of new chemical entities have been screened with the parallel artificial membrane permeability assay, in general, permeation properties of natural products have been scarcely evaluated. In this study, the parallel artificial membrane permeability assay through a hexadecane membrane was used to predict the passive intestinal absorption of a representative set of frequently occurring natural products. Since natural products are usually ingested for medicinal use as components of complex extracts in traditional herbal preparations or as phytopharmaceuticals, the applicability of such an assay to study the constituents directly in medicinal crude plant extracts was further investigated. Three representative crude plant extracts with different natural product compositions were chosen for this study. The first extract was composed of furanocoumarins (Angelica archangelica), the second extract included alkaloids (Waltheria indica), and the third extract contained flavonoid glycosides (Pueraria montana var. lobata). For each medicinal plant, the effective passive permeability values Pe (cm/s) of the main natural products of interest were rapidly calculated thanks to a generic ultrahigh-pressure liquid chromatography-UV detection method and because Pe calculations do not require knowing precisely the concentration of each natural product within the extracts. The original parallel artificial membrane permeability assay through a hexadecane membrane was found to keep its predictive power when applied to constituents directly in crude plant extracts provided that higher quantities of the extract were initially loaded in the assay in order to ensure suitable detection of the individual constituents of the extracts. Such an approach is thus valuable for the high

  13. Effect of Gliadin on Permeability of Intestinal Biopsy Explants from Celiac Disease Patients and Patients with Non-Celiac Gluten Sensitivity

    Science.gov (United States)

    Hollon, Justin; Leonard Puppa, Elaine; Greenwald, Bruce; Goldberg, Eric; Guerrerio, Anthony; Fasano, Alessio

    2015-01-01

    Background: Intestinal exposure to gliadin leads to zonulin upregulation and consequent disassembly of intercellular tight junctions and increased intestinal permeability. We aimed to study response to gliadin exposure, in terms of barrier function and cytokine secretion, using intestinal biopsies obtained from four groups: celiac patients with active disease (ACD), celiac patients in remission (RCD), non-celiac patients with gluten sensitivity (GS) and non-celiac controls (NC). Methods: Ex-vivo human duodenal biopsies were mounted in microsnapwells and luminally incubated with either gliadin or media alone. Changes in transepithelial electrical resistance were monitored over 120 min. Media was subsequently collected and cytokines quantified. Results: Intestinal explants from all groups (ACD (n = 6), RCD (n = 6), GS (n = 6), and NC (n = 5)) demonstrated a greater increase in permeability when exposed to gliadin vs. media alone. The increase in permeability in the ACD group was greater than in the RCD and NC groups. There was a greater increase in permeability in the GS group compared to the RCD group. There was no difference in permeability between the ACD and GS groups, between the RCD and NC groups, or between the NC and GS groups. IL-10 was significantly greater in the media of the NC group compared to the RCD and GS groups. Conclusions: Increased intestinal permeability after gliadin exposure occurs in all individuals. Following gliadin exposure, both patients with gluten sensitivity and those with active celiac disease demonstrate a greater increase in intestinal permeability than celiacs in disease remission. A higher concentration of IL-10 was measured in the media exposed to control explants compared to celiac disease in remission or gluten sensitivity. PMID:25734566

  14. Effect of Gliadin on Permeability of Intestinal Biopsy Explants from Celiac Disease Patients and Patients with Non-Celiac Gluten Sensitivity

    Directory of Open Access Journals (Sweden)

    Justin Hollon

    2015-02-01

    Full Text Available Background: Intestinal exposure to gliadin leads to zonulin upregulation and consequent disassembly of intercellular tight junctions and increased intestinal permeability. We aimed to study response to gliadin exposure, in terms of barrier function and cytokine secretion, using intestinal biopsies obtained from four groups: celiac patients with active disease (ACD, celiac patients in remission (RCD, non-celiac patients with gluten sensitivity (GS and non-celiac controls (NC. Methods: Ex-vivo human duodenal biopsies were mounted in microsnapwells and luminally incubated with either gliadin or media alone. Changes in transepithelial electrical resistance were monitored over 120 min. Media was subsequently collected and cytokines quantified. Results: Intestinal explants from all groups (ACD (n = 6, RCD (n = 6, GS (n = 6, and NC (n = 5 demonstrated a greater increase in permeability when exposed to gliadin vs. media alone. The increase in permeability in the ACD group was greater than in the RCD and NC groups. There was a greater increase in permeability in the GS group compared to the RCD group. There was no difference in permeability between the ACD and GS groups, between the RCD and NC groups, or between the NC and GS groups. IL-10 was significantly greater in the media of the NC group compared to the RCD and GS groups. Conclusions: Increased intestinal permeability after gliadin exposure occurs in all individuals. Following gliadin exposure, both patients with gluten sensitivity and those with active celiac disease demonstrate a greater increase in intestinal permeability than celiacs in disease remission. A higher concentration of IL-10 was measured in the media exposed to control explants compared to celiac disease in remission or gluten sensitivity.

  15. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Jing-Hua Wang

    Full Text Available BACKGROUND AND AIM: Increasing evidence has indicated a close association of host-gut flora metabolic interaction with obesity. Flos Lonicera, a traditional herbal medicine, is used widely in eastern Asia for the treatment of various disorders. The aim of this study was to evaluate whether unfermented or fermented formulations of Flos Lonicera could exert a beneficial impact to combat obesity and related metabolic endotoxemia. METHODS: Obesity and metabolic endotoxemia were induced separately or together in rats through feeding a eight-week high fat diet either alone (HFD control group or in combination with a single LPS stimulation (intraperitoneal injection, 0.75 mg/kg (LPS control group. While, the mechanism of action of the Lonicera formulations was explored in vitro using RAW 264.7 and HCT 116 cell lines as models. RESULTS: In cell-based studies, treatment with both unfermented Flos Lonicera (UFL and fermented Flos Lonicera (FFL formulations resulted in suppression of LPS-induced NO production and gene expression of vital proinflammatory cytokines (TNF-α, COX-2, and IL-6 in RAW 264.7 cells, reduced the gene expression of zonula occludens (ZO-1 and claudin-1, and normalized trans epithelial electric resistance (TEER and horseradish peroxidase (HRP flux in LPS-treated HCT-116 cells. In an animal study, treatment of HFD as well as HFD+LPS groups with UFL or FFL resulted in a notable decrease in body and adipose tissue weights, ameliorated total cholesterol, HDL, triglyceride, aspartate transaminase and endotoxin levels in serum, reduced the urinary lactulose/mannitol ratio, and markedly alleviated lipid accumulation in liver. In addition, exposure of HFD as well as HFD+LPS groups with UFL or FFL resulted in significant alteration of the distribution of intestinal flora, especially affecting the population of Akkermansia spp. and ratio of Bacteroidetes and Firmicutes. CONCLUSION: This evidence collectively demonstrates that Flos Lonicera

  16. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Quaranta

    Full Text Available The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.

  17. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity. Circulating zonulin increased with body mass index (BMI, waist to hip ratio (WHR, fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002 contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01 contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  18. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Science.gov (United States)

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity). Circulating zonulin increased with body mass index (BMI), waist to hip ratio (WHR), fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002) contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01) contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  19. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine.

    Science.gov (United States)

    Yang, Hui-Ting; Zou, Song-Song; Zhai, Li-Juan; Wang, Yao; Zhang, Fu-Miao; An, Li-Guo; Yang, Gui-Wen

    2017-12-01

    Numerous bacteria are harbored in the animal digestive tract and are impacted by several factors. Intestinal microbiota homeostasis is critical for maintaining the health of an organism. However, how pathogen invasion affects the microbiota composition has not been fully clarified. The mechanisms for preventing invasion by pathogenic microorganisms are yet to be elucidated. Zebrafish is a useful model for developmental biology, and studies in this organism have gradually become focused on intestinal immunity. In this study, we analyzed the microbiota of normal cultivated and infected zebrafish intestines, the aquarium water and feed samples. We found that the predominant bacteria in the zebrafish intestine belonged to Gammaproteobacteria (67%) and that feed and environment merely influenced intestinal microbiota composition only partially. Intestinal microbiota changed after a pathogenic bacterial challenge. At the genus level, the abundance of some pathogenic intestinal bacteria increased, and these genera included Halomonas (50%), Pelagibacterium (3.6%), Aeromonas (2.6%), Nesterenkonia (1%), Chryseobacterium (3.4‰), Mesorhizobium (1.4‰), Vibrio (1‰), Mycoplasma (0.7‰) and Methylobacterium (0.6‰) in IAh group. However, the abundance of some beneficial intestinal bacteria decreased, and these genera included Nitratireductor (0.8‰), Enterococcus (0.8‰), Brevundimonas (0.7‰), Lactococcus (0.7‰) and Lactobacillus (0.4‰). Additionally, we investigated the innate immune responses after infection. ROS levels in intestine increased in the early stages after a challenge and recovered subsequently. The mRNA levels of antimicrobial peptide genes lectin, hepcidin and defensin1, were upregulated in the intestine after pathogen infection. These results suggested that the invasion of pathogen could change the intestinal microbiota composition and induce intestinal innate immune responses in zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions.Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum.Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage.Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  1. VEGF-induced vascular permeability is mediated by FAK.

    Science.gov (United States)

    Chen, Xiao Lei; Nam, Ju-Ock; Jean, Christine; Lawson, Christine; Walsh, Colin T; Goka, Erik; Lim, Ssang-Taek; Tomar, Alok; Tancioni, Isabelle; Uryu, Sean; Guan, Jun-Lin; Acevedo, Lisette M; Weis, Sara M; Cheresh, David A; Schlaepfer, David D

    2012-01-17

    Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote.

    Science.gov (United States)

    Kuge, Tomoo; Greenwood-Van Meerveld, Beverley; Sokabe, Masahiro

    2006-07-24

    Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function.

  3. High paracellular nutrient absorption in intact bats is associated with high paracellular permeability in perfused intestinal segments.

    Science.gov (United States)

    Brun, Antonio; Price, Edwin R; Gontero-Fourcade, Manuel N; Fernandez-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2014-09-15

    Water-soluble nutrients are absorbed by the small intestine via transcellular and paracellular mechanisms. Based on a few previous studies, the capacity for paracellular nutrient absorption seems greater in flying mammals than in nonflying mammals, but there has been little investigation of the mechanisms driving this difference. Therefore, we studied three species each of bats (Artibeus lituratus, Sturnira lilium and Carollia perspicillata) and nonflying mammals (Akodon montensis, Mus musculus and Rattus norvegicus). Using standard pharmacokinetic techniques in intact animals, we confirmed the greater paracellular nutrient absorption in the fliers, comparing one species in each group. Then we conducted in situ intestinal perfusions on individuals of all species. In both approaches, we measured the absorption of 3OMD-glucose, a nonmetabolizable glucose analog absorbed both paracellularly and transcellularly, as well as L-arabinose, which has no mediated transport. Fractional absorption of L-arabinose was three times higher in the bat (S. lilium: 1.2±0.24) than in the rodent (A. montensis: 0.35±0.04), whereas fractional absorption of 3OMD-glucose was complete in both species (1.46±0.4 and 0.97±0.12, respectively). In agreement, bats exhibited two to 12 times higher l-arabinose clearance per square centimeter nominal surface area than rodents in intestinal perfusions. Using L-arabinose, we estimated that the contribution of the paracellular pathway to total glucose absorption was higher in all three bats (109-137%) than in the rodents (13-39%). These findings contribute to an emerging picture that reliance on the paracellular pathway for nutrient absorption is much greater in bats relative to nonflying mammals and that this difference is driven by differences in intestinal permeability to nutrient-sized molecules. © 2014. Published by The Company of Biologists Ltd.

  4. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes.

    Science.gov (United States)

    Maffeis, Claudio; Martina, Alessia; Corradi, Massimiliano; Quarella, Sara; Nori, Nicole; Torriani, Sandra; Plebani, Mario; Contreas, Giovanna; Felis, Giovanna E

    2016-10-01

    Pancreatic organ-specific autoimmunity in subjects at risk for type 1 diabetes (T1D) is associated with increased intestinal permeability and an aberrant gut microbiota, but these factors have not yet been simultaneously investigated in the same subjects. Thus, the aim of this study was to assess both intestinal permeability and gut microbiota composition in an Italian sample of children at risk for T1D. Ten Italian children with beta cell autoimmunity at risk for T1D and 10 healthy children were involved in a case-control study. The lactulose/mannitol test was used to assess intestinal permeability. Analysis of microbiota composition was performed using polymerase chain reaction followed by denaturing gradient gel electrophoresis, based on the 16S rRNA gene. Intestinal permeability was significantly higher in children at risk for T1D than in healthy controls. Moreover, the gut microbiota of the former differed from that of the latter group: Three microorganisms were detected - Dialister invisus, Gemella sanguinis and Bifidobacterium longum - in association with the pre-pathologic state. The results of this study validated the hypothesis that increased intestinal permeability together with differences in microbiota composition are contemporaneously associated with the pre-pathological condition of T1D in a sample of Italian children. Further studies are necessary to confirm the microbial markers identified in this sample of children as well as to clarify the involvement of microbiota modifications in the mechanisms leading to increased permeability and the autoimmune mechanisms that promote diabetes onset. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Review article: Associations between immune activation, intestinal permeability and the irritable bowel syndrome.

    Science.gov (United States)

    Matricon, J; Meleine, M; Gelot, A; Piche, T; Dapoigny, M; Muller, E; Ardid, D

    2012-12-01

    Irritable bowel syndrome (IBS), one of the most common gastrointestinal disorders, markedly impairing patients' quality of life. Drug development for IBS treatment has been hampered by the lack of understanding of IBS aetiology. In recent years, numerous data have emerged that suggest the involvement of immune activation in IBS, at least in a subset of patients. To determine whether immune activation and intestinal permeabilisation are more frequently observed in IBS patients compared with healthy controls. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, inflammation, immune activation, permeabilisation, intestine, assay, histology and human. The retrieved studies, including blood, faecal and histological studies, were analysed to provide a comprehensive and structured overview of the available data including the type of assay, type of inflammatory marker investigated or intestinal segment studied. Immune activation was more frequently observed in IBS patients than in healthy controls. An increase in the number of mast cells and lymphocytes, an alteration in cytokine levels and intestinal permeabilisation were reported in IBS patients. No consistent changes in the numbers of B cells or enterochromaffin cells or in mucosal serotonin production were demonstrated. The changes observed were modest and often heterogeneous among the studied population. Only appropriate interventions improving irritable bowel syndrome symptoms could highlight and confirm the role of immune activation in this pathophysiology. © 2012 Blackwell Publishing Ltd.

  6. Nasogastric tube syndrome induced by an indwelling long intestinal tube.

    Science.gov (United States)

    Sano, Naoki; Yamamoto, Masayoshi; Nagai, Kentaro; Yamada, Keiichi; Ohkohchi, Nobuhiro

    2016-04-21

    The nasogastric tube (NGT) has become a frequently used device to alleviate gastrointestinal symptoms. Nasogastric tube syndrome (NTS) is an uncommon but potentially life-threatening complication of an indwelling NGT. NTS is characterized by acute upper airway obstruction due to bilateral vocal cord paralysis. We report a case of a 76-year-old man with NTS, induced by an indwelling long intestinal tube. He was admitted to our hospital for treatment of sigmoid colon cancer. He underwent sigmoidectomy to release a bowel obstruction, and had a long intestinal tube inserted to decompress the intestinal tract. He presented acute dyspnea following prolonged intestinal intubation, and bronchoscopy showed bilateral vocal cord paralysis. The NGT was removed immediately, and tracheotomy was performed. The patient was finally discharged in a fully recovered state. NTS be considered in patients complaining of acute upper airway obstruction, not only with a NGT inserted but also with a long intestinal tube.

  7. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model.

    Science.gov (United States)

    Huang, Xiao-Zhong; Li, Zhong-Rong; Zhu, Li-Bin; Huang, Hui-Ya; Hou, Long-Long; Lin, Jing

    2014-08-01

    Butyrate is well known to induce apoptosis in differentiating intestinal epithelial cells. The present study was designed to examine the role of p38 mitogen-activated protein kinase (MAPK) in butyrate-induced intestinal barrier impairment. The intestinal barrier was determined by measuring the transepithelial electrical resistance (TER) in a Caco-2 cell monolayer model. The permeability was determined by measuring transepithelial passage of fluorescein isothiocyanate-conjugated inulin (inulin-FITC). The morphology of the monolayers was examined with scanning electron microscopy. The apoptosis status was determined by annexin V-FITC labeling and flow cytometry. The activity of p38 MAPK was determined by the phosphorylation status of p38 with Western blotting. Butyrate at 5 mM increases the apoptosis rate of Caco-2 cells and induces impairment of intestinal barrier functions as determined by decreased TER and increased inulin-FITC permeability. Butyrate treatment activates p38 MAPK in a concentration- and time-dependent manner. SB203580, a specific p38 inhibitor, inhibits butyrate-induced Caco-2 cell apoptosis. Treatment of SB203580 significantly attenuates the butyrate-induced impairment of barrier functions in the Caco-2 cell monolayer model. p38 MAPK can be activated by butyrate and is involved in the butyrate-induced apoptosis and impairment of intestinal barrier function. Inhibition of p38 MAPK can significantly attenuate butyrate-induced intestinal barrier dysfunction.

  8. Mast cells and histamine alter intestinal permeability during malaria parasite infection.

    Science.gov (United States)

    Potts, Rashaun A; Tiffany, Caitlin M; Pakpour, Nazzy; Lokken, Kristen L; Tiffany, Connor R; Cheung, Kong; Tsolis, Renée M; Luckhart, Shirley

    2016-03-01

    Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels.

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; González-Aguilar, Gustavo A

    2018-02-08

    Mango ( Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10 -6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10 -6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  10. Enhanced Intestinal Permeability of Bufalin by a Novel Bufalin-Peptide-Dendrimer Inclusion through Caco-2 Cell Monolayer.

    Science.gov (United States)

    Chan, Chi-On; Jing, Jing; Xiao, Wei; Tan, Zhexu; Lv, Qiuyue; Yang, Jingyu; Chen, Sibao

    2017-11-29

    Bufalin (BFL) has excellent physiological activities such as defending tumors, improving cardiac function, and so on. However, due to its poor water-solubility and bioavailability, the clinical application of BFL remains limited. In order to improve bioavailability of BFL, in our previous research, a novel peptide-dendrimer (PD) was synthesized and applied to encapsulate BFL. In the present study, we investigate the absorption property and mechanism of BFL in free form and BFL-peptide-dendrimer inclusion (BPDI) delivery system by using the Caco-2 cell monolayer model in vitro. The apparent permeability coefficient ( P app ) values of BFL in free or BPDI form were over 1.0 × 10 -6 cm/s. Meanwhile, their almost equal bi-directional transport and linear transport percentage with time and concentration course indicated that BFL in both forms was absorbed mainly through passive diffusion. The most important result is that the P app values of BFL increased about three-fold more BPDI than those of its free form, which indicated the intestinal permeability of BFL could be improved while BFL was encapsulated in BPDI form. Therefore, PD encapsulation may be a potential delivery system to increase the bioavailability of BFL.

  11. Conjugated primary bile salts reduce permeability of endotoxin through bacteria-stimulated intestinal epithelial cells and synergize with lecithin in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, Simone; Moser, Lydia

    2007-01-01

    Objective: Endotoxemia was shown to be integral in the pathophysiology of obstructive jaundice. In the current study, the role of conjugated primary bile salts (CPBS) and phosphatidylcholine on the permeability of endotoxin through a layer of intestinal epithelial cells and the consequent...

  12. Brief Report: Normal Intestinal Permeability at Elevated Platelet Serotonin Levels in a Subgroup of Children with Pervasive Developmental Disorders in Curacao (The Netherlands Antilles)

    Science.gov (United States)

    Kemperman, Ramses F. J.; Muskiet, Fred D.; Boutier, A. Inge; Kema, Ido P.; Muskiet, Frits A. J.

    2008-01-01

    This study investigated the relationship between platelet (PLT) serotonin (5-HT) and intestinal permeability in children with pervasive developmental disorders (PDD). Differential sugar absorption and PLT 5-HT were determined in 23 children with PDD. PLT 5-HT (2.0-7.1 nmol/10[to the ninth power] PLT) was elevated in 4/23 patients. None exhibited…

  13. Conjugated primary bile salts reduce permeability of endotoxin through intestinal epithelial cells and synergize with phosphatidylcholine in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, S.; Moser, L.

    2007-01-01

    OBJECTIVE: Endotoxemia was shown to be integral in the pathophysiology of obstructive jaundice. In the current study, the role of conjugated primary bile salts (CPBS) and phosphatidylcholine on the permeability of endotoxin through a layer of intestinal epithelial cells and the consequent...

  14. Precision cut intestinal slices are an appropriate ex vivo model to study NSAID-induced intestinal toxicity in rats

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; van der Bij, Hendrik A.; Groothuis, Geny M. M.

    2014-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used therapeutic agents, however, they are associated with a high prevalence of intestinal side effects. In this investigation, rat precision cut intestinal slices (PCIS) were evaluated as an ex vivo model to study NSAID-induced intestinal

  15. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats.

    Science.gov (United States)

    Liu, Xiang-dong; Chen, Zhen-yong; Yang, Peng; Huang, Wen-guang; Jiang, Chun-fang

    2015-12-01

    The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all PSplenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all PSplenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.

  16. Inhibition of IKKß in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality

    Science.gov (United States)

    Dominguez, Jessica A.; Samocha, Alexandr J.; Liang, Zhe; Burd, Eileen M.; Farris, Alton B.; Coopersmith, Craig M.

    2013-01-01

    Objective NF-kB is a critical regulator of cell survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase (IKK)-ß. Design Prospective, randomized, controlled study. Setting Animal laboratories in university medical centers. Subjects and Interventions Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikkßf/Δ) and wild type (WT) mice were subjected to sham laparotomy or cecal ligation and puncture (CLP). Animals were sacrified at 24 hours or followed seven days for survival. Measurements and Main Results Septic WT mice had decreased villus length compared to sham mice while villus atrophy was further exacerbated in septic Vil-Cre/Ikkßf/Δ mice. Sepsis induced an increase in intestinal epithelial apoptosis compared to sham mice which was further exacerbated in Vil-Cre/Ikkßf/Δ mice. Sepsis induced intestinal hyperpermeability in WT mice compared to sham mice, which was further exacerbated in septic Vil-Cre/Ikkßf/Δ mice. This was associated with increased intestinal expression of claudin-2 in septic WT mice, which was further increased in septic Vil-Cre/Ikkßf/Δ mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following CLP, and IL-10 and MCP-1 levels were higher in septic Vil-Cre/Ikkßf/Δ mice than septic WT mice. All septic mice were bacteremic, but no differences in bacterial load were identified between WT and Vil-Cre/Ikkßf/Δ mice. To determine the functional significance of these results, animals were followed for survival. Septic WT mice had lower mortality than septic Vil-Cre/Ikkßf/Δ mice (47% vs. 80%, p<0.05). Anti-TNF administration decreased intestinal apoptosis, permeability and mortality in WT septic mice and a similar improvement in intestinal integrity and survival were seen when anti-TNF was given to Vil-Cre/Ikkßf/Δ mice. Conclusions Enterocyte-specific NF

  17. Inhibition of IKKβ in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality.

    Science.gov (United States)

    Dominguez, Jessica A; Samocha, Alexandr J; Liang, Zhe; Burd, Eileen M; Farris, Alton B; Coopersmith, Craig M

    2013-10-01

    Nuclear factor-κB is a critical regulator of cell-survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase. Prospective, randomized controlled study. Animal laboratories in university medical centers. Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikkβ) and wild-type mice were subjected to sham laparotomy or cecal ligation and puncture. Animals were killed at 24 hours or followed 7 days for survival. Septic wild-type mice had decreased villus length compared with sham mice, whereas villus atrophy was further exacerbated in septic Vil-Cre/Ikkβ mice. Sepsis induced an increase in intestinal epithelial apoptosis compared with sham mice, which was further exacerbated in Vil-Cre/Ikkβ mice. Sepsis induced intestinal hyperpermeability in wild-type mice compared with sham mice, which was further exacerbated in septic Vil-Cre/Ikkβ mice. This was associated with increased intestinal expression of claudin-2 in septic wild-type mice, which was further increased in septic Vil-Cre/Ikkβ mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following cecal ligation and puncture, and interleukin 10 and monocyte chemoattractant protein-1 levels were higher in septic Vil-Cre/Ikkβ mice than in septic wild-type mice. All septic mice were bacteremic, but no differences in bacterial load were identified between wild-type and Vil-Cre/Ikkβ mice. To determine the functional significance of these results, animals were followed for survival. Septic wild-type mice had lower mortality than septic Vil-Cre/Ikkβ mice (47% vs 80%, p<0.05). Antitumor necrosis factor administration decreased intestinal apoptosis, permeability, and mortality in wild-type septic mice, and a similar improvement in intestinal integrity and survival were seen when antitumor necrosis factor was given to Vil-Cre/Ikkβ mice. Enterocyte

  18. Dynamic permeability of simulated fault induced by intermediate velocity friction test

    Science.gov (United States)

    Tanikawa, W.

    2017-12-01

    Co-seismic events induce sudden fluctuations of pore pressure, flow rate, and fluid chemistry at depth. These temporal changes are explained by change in fluid permeability of fault zones during earthquakes, and the permeability change plays an important role in dynamic processes as well. Therefore, I designed a laboratory system to measure the change of water permeability during and after low to high velocity friction tests using simulated fault rocks. Rotary shear apparatus was used to measure the permeability evolution by shear sliding. A pair of hollow cylindrical samples made by Belfast dolerite and Aji granite were used as test specimens. To calculate permeability, a radial flow from the inner wall to the outer wall of the specimen was induced by applying a differential pore pressure between inner and outer walls. I performed test at normal stress of 2 MPa, rotation speed from 0.001 to 0.1 m/s, and slip displacement of 1 to 10 m. The results show that permeability changed during sliding, and higher velocity friction caused more abrupt change in permeability. After sliding test, permeability gradually decreased with time and then became constant. Most test show permeability increased during sliding, and then decreased after slip. Reduction rate of permeability 5min after slip normalized by average permeability increased with slip rate. Fiction coefficient was increased with sliding velocity until 0.018 m/s, then dropped abruptly. It is interesting that around 0.02 m/s of slip rate seems a boundary between permeability enhancement and permeability reduction at. This boundary is consistent with the transition from velocity strengthening to velocity weakening. Velocity dependence of permeability evolution can be explained by the gouge productivity, development of preferred orientation in gouge layer, and change of temperature dependent parameters. Increase of fluid viscosity by cooling of fluid temperature can explain the permeability reduction after slip

  19. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    International Nuclear Information System (INIS)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R 2 = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q 2 ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and

  20. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications.

    Science.gov (United States)

    Fasano, Alessio

    2012-10-01

    One of the most important and overlooked functions of the gastrointestinal tract is to provide a dynamic barrier to tightly controlled antigen trafficking through both the transcellular and paracellular pathways. Intercellular tight junctions (TJ) are the key structures regulating paracellular trafficking of macromolecules. Although steady progress has been made in understanding TJ ultrastructure, relatively little is known about their pathophysiological regulation. Our discovery of zonulin, the only known physiological modulator of intercellular TJ described so far, increased understanding of the intricate mechanisms that regulate gut permeability and led us to appreciate that its up-regulation in genetically susceptible individuals may lead to immune-mediated diseases. This information has translational implications, because the zonulin pathway is currently exploited to develop both diagnostic and therapeutic applications pertinent to a variety of immune-mediated diseases. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L. Is Affected by Dietary Protein Source.

    Directory of Open Access Journals (Sweden)

    Haibin Hu

    Full Text Available In Atlantic salmon (Salmo salar L., and also in other fish species, certain plant protein ingredients can increase fecal water content creating a diarrhea-like condition which may impair gut function and reduce fish growth. The present study aimed to strengthen understanding of the underlying mechanisms by observing effects of various alternative plant protein sources when replacing fish meal on expression of genes encoding proteins playing key roles in regulation of water transport across the mucosa of the distal intestine (DI. A 48-day feeding trial was conducted with five diets: A reference diet (FM in which fish meal (72% was the only protein source; Diet SBMWG with a mix of soybean meal (30% and wheat gluten (22%; Diet SPCPM with a mix of soy protein concentrate (30% and poultry meal (6%; Diet GMWG with guar meal (30% and wheat gluten (14.5%; Diet PM with 58% poultry meal. Compared to fish fed the FM reference diet, fish fed the soybean meal containing diet (SBMWG showed signs of enteritis in the DI, increased fecal water content of DI chyme and higher plasma osmolality. Altered DI expression of a battery of genes encoding aquaporins, ion transporters, tight junction and adherens junction proteins suggested reduced transcellular transport of water as well as a tightening of the junction barrier in fish fed the SBMWG diet, which may explain the observed higher fecal water content and plasma osmolality. DI structure was not altered for fish fed the other experimental diets but alterations in target gene expression and fecal water content were observed, indicating that alterations in water transport components may take place without clear effects on intestinal structure.

  2. The effects of a multispecies probiotic on migraine and markers of intestinal permeability-results of a randomized placebo-controlled study.

    Science.gov (United States)

    de Roos, N M; van Hemert, S; Rovers, J M P; Smits, M G; Witteman, B J M

    2017-12-01

    Migraine, associated with several gastrointestinal disorders, may result from increased intestinal permeability, allowing endotoxins to enter the bloodstream. We tested whether probiotics could reduce migraine through an effect on intestinal permeability and inflammation. In total, 63 patients were randomly allocated to the probiotic (n=31) or the placebo group (n=32). Participants ingested a multispecies probiotic (5x10 9 colony-forming units) or placebo daily for 12 weeks. Migraine was assessed with the Migraine Disability Assessment Scale (MIDAS), the Headache Disability Inventory (HDI) and headache diaries. At baseline and 12 weeks, intestinal permeability was measured with the urinary lactulose/mannitol test and fecal and serum zonulin; inflammation was measured from interleukin (IL) -6, IL-10, tumor necrosis factor-α and C-reactive protein in serum. The MIDAS migraine intensity score significantly decreased in both groups (P<0.001) and the HDI score significantly decreased in the probiotic group (P=0.032) and borderline in the placebo group (P=0.053). In the probiotics group, patients had a median of 6 migraine days in the first month, 4 in the second month (P=0.002) and 5 in the last month, which was not significantly different from the 5, 4, and 4 days in the placebo group. A ⩾2day reduction in migraine days was seen in 12/31 patients in the probiotics group versus 7/29 in the placebo group (ns). Probiotic use did not significantly affect medication use, intestinal permeability or inflammation compared to placebo. In this study, we could not confirm significant benefit from a multispecies probiotic compared to a placebo on the outcome parameters of migraine and intestinal integrity.

  3. A genetically inducible porcine model of intestinal cancer

    DEFF Research Database (Denmark)

    Callesen, Morten M.; Árnadóttir, Sigrid S.; Lyskjær, Iben

    2017-01-01

    of intestinal cancer. Transgenic (TG) minipigs were generated using somatic cell nuclear transfer by handmade cloning. The pigs encode two TG cassettes: (a) an Flp recombinase-inducible oncogene cassette containing KRAS-G12D, cMYC, SV40LT - which inhibits p53 - and pRB and (b) a 4-hydroxytamoxifen (4-OHT...

  4. Characterization of the Respiration-Induced Yeast Mitochondrial Permeability Transition Pore

    OpenAIRE

    Bradshaw, Patrick C.; Pfeiffer, Douglas R.

    2013-01-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable throug...

  5. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability.

    Science.gov (United States)

    Miller, Jonathan M; Beig, Avital; Carr, Robert A; Spence, Julie K; Dahan, Arik

    2012-07-02

    Recently, we have revealed a trade-off between solubility increase and permeability decrease when solubility-enabling oral formulations are employed. We have shown this trade-off phenomenon to be ubiquitous, and to exist whenever the aqueous solubility is increased via solubilizing excipients, regardless if the mechanism involves decreased free fraction (cyclodextrins complexation, surfactant micellization) or simple cosolvent solubilization. Discovering a way to increase drug solubility without concomitant decreased permeability represents a major advancement in oral delivery of lipophilic drugs and is the goal of this work. For this purpose, we sought to elucidate the solubility-permeability interplay when increased apparent solubility is obtained via supersaturation from an amorphous solid dispersion (ASD) formulation. A spray-dried ASD of the lipophilic drug progesterone was prepared in the hydrophilic polymer hydroxypropyl methylcellulose acetate succinate (HPMC-AS), which enabled supersaturation up to 4× the crystalline drug's aqueous solubility (8 μg/mL). The apparent permeability of progesterone from the ASD in HPMC-AS was then measured as a function of increasing apparent solubility (supersaturation) in the PAMPA and rat intestinal perfusion models. In contrast to previous cases in which apparent solubility increases via cyclodextrins, surfactants, and cosolvents resulted in decreased apparent permeability, supersaturation via ASD resulted in no decrease in apparent permeability with increasing apparent solubility. As a result, overall flux increased markedly with increasing apparent solubility via ASD as compared to the other formulation approaches. This work demonstrates that supersaturation via ASDs has a subtle yet powerful advantage over other solubility-enabling formulation approaches. That is, increased apparent solubility may be achieved without the expense of apparent intestinal membrane permeability. Thus, supersaturation via ASDs presents a

  6. Zonulin level, a marker of intestinal permeability, is increased in association with liver enzymes in young adolescents.

    Science.gov (United States)

    Kim, Ji Hee; Heo, Ju Sun; Baek, Kyung Suk; Kim, Soo-Yeon; Kim, Jung Hyun; Baek, Kwang-Hyun; Kim, Ki Eun; Sheen, Youn Ho

    2018-06-01

    Zonulin is acknowledged as the only physiological mediator established to reversibly regulate intestinal permeability through modulation of intercellular tight junctions. We aimed to determine whether there are differences in zonulin levels between 74 subjects with overweight or obesity and 76 with normal-weight and to assess correlations of circulating zonulin levels with anthropometric measures and obesity-related biomarkers. We assessed anthropometric and laboratory measures, including body mass index (BMI) z-score, blood pressure, liver enzymes, lipid profiles, and insulin resistance. Serum zonulin levels were measured using an enzyme-linked immunosorbent assay. The mean age of the participants was 12.8 ± 1.5 years. Circulating serum zonulin levels were significantly increased in subjects with overweight/obesity compared with those of normal-weight (P = 0.03). Zonulin levels were significantly and positively associated with BMI z-score, alanine aminotransferase levels, triglyceride, fasting insulin, and insulin resistance as indicated by the homeostatic model assessment of insulin resistance (HOMA-IR) (all P zonulin levels in adolescents with overweight or obesity (P zonulin levels in this subgroup analysis (P = 0.06). Serum zonulin is a biomarker associated with hepatic metabolic disturbances in young adolescents with overweight or obesity. The positive relationship suggests a potentially relevant pathophysiological mechanism linking zonulin to hepatic metabolism in this age group of young adolescents with overweight or obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Intestinal permeability and fecal eosinophil-derived neurotoxin are the best diagnosis tools for digestive non-IgE-mediated cow's milk allergy in toddlers.

    Science.gov (United States)

    Kalach, Nicolas; Kapel, Nathalie; Waligora-Dupriet, Anne-Judith; Castelain, Marie-Christine; Cousin, Marie Odile; Sauvage, Christine; Ba, Fatimata; Nicolis, Ioannis; Campeotto, Florence; Butel, Marie José; Dupont, Christophe

    2013-02-01

    Food allergy is a common problem in France involving 4%-6% of toddlers. As opposed to IgE-mediated cow's milk allergy (CMA), delayed-onset CMA, mostly, non-IgE-mediated, remains difficult to diagnose in toddlers. Our study assessed the diagnostic performances of intestinal permeability and of fecal markers, in comparison with the standard allergic work-up in children referred for CMA diagnosis. Twenty-five consecutive children, mean age (standard deviation) 6.3 months (4.8) with digestive and/or extra-digestive manifestations suggesting CMA, were prospectively studied based on a standardized allergic work-up (specific cow's protein IgE and IgG, skin prick test, atopy patch test and oral open cow's milk challenge) and digestive work-up including fecal microbiota analysis, intestinal permeability determination (urinary lactitol/mannitol ratio) and fecal markers measurement, i.e., α(1)-antitrypsin, tumor necrosis factor-α, calprotectin, β-defensin2, secretory IgA and eosinophil-derived neurotoxin (EDN). Receiver operating characteristic (ROC) curves were calculated for all markers in order to define cut-off levels. The cow's milk challenge was positive in 11 children and negative in 14. The global test performances, i.e., the number of true positive+negative cases/the total number of cases, were 76% for intestinal permeability; 72% for fecal EDN; contrasting with atopy patch test, 68%; IgE, 60%; skin prick test, 55% and IgG, 52%. In this routine diagnosis allergy work-up for CMA in toddlers, the best efficacy was seen for intestinal permeability compared to IgE, IgG, skin prick test and atopy patch test. Moreover, fecal EDN in a single spot sample displayed a similar performance.

  8. Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability.

    Science.gov (United States)

    Mokkala, Kati; Röytiö, Henna; Munukka, Eveliina; Pietilä, Sami; Ekblad, Ulla; Rönnemaa, Tapani; Eerola, Erkki; Laiho, Asta; Laitinen, Kirsi

    2016-09-01

    Increased intestinal permeability may precede adverse metabolic conditions. The extent to which the composition of the gut microbiota and diet contribute to intestinal permeability during pregnancy is unknown. The aim was to investigate whether the gut microbiota and diet differ according to serum zonulin concentration, a marker of intestinal permeability, in overweight pregnant women. This cross-sectional study included 100 overweight women [mean age: 29 y; median body mass index (in kg/m(2)): 30] in early pregnancy (zonulin (primary outcome) was determined by using ELISA, gut microbiota by 16S ribosomal RNA sequencing, and dietary intake of macro- and micronutrients from 3-d food diaries. The Mann-Whitney U test was used for pairwise comparisons and linear regression and Spearman's nonparametric correlations for relations between serum zonulin and other outcome variables. Women were divided into "low" (zonulin groups on the basis of the median concentration of zonulin (46.4 ng/mL). The richness of the gut microbiota (Chao 1, observed species and phylogenetic diversity) was higher in the low zonulin group than in the high zonulin group (P = 0.01). The abundances of Bacteroidaceae and Veillonellaceae, Bacteroides and Blautia, and Blautia sp. were lower and of Faecalibacterium and Faecalibacterium prausnitzii higher (P zonulin group than in the high zonulin group. Dietary quantitative intakes of n-3 (ω-3) polyunsaturated fatty acids (PUFAs), fiber, and a range of vitamins and minerals were higher (P zonulin group than those in the high zonulin group. The richness and composition of the gut microbiota and the intake of n-3 PUFAs, fiber, and a range of vitamins and minerals in overweight pregnant women are associated with serum zonulin concentration. Modification of the gut microbiota and diet may beneficially affect intestinal permeability, leading to improved metabolic health of both the mother and fetus. This trial was registered at clinicaltrials.gov as NCT

  9. Development of novel amisulpride-loaded liquid self-nanoemulsifying drug delivery systems via dual tackling of its solubility and intestinal permeability.

    Science.gov (United States)

    Gamal, Wael; Fahmy, Rania H; Mohamed, Magdy I

    2017-09-01

    The aim of the current investigation was at enhancing the oral biopharmaceutical behavior; solubility and intestinal permeability of amisulpride (AMS) via development of liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) containing bioenhancing excipients. The components of L-SNEDDS were identified via solubility studies and emulsification efficiency tests, and ternary phase diagrams were constructed to identify the efficient self-emulsification regions. The formulated systems were assessed for their thermodynamic stability, globule size, self-emulsification time, optical clarity and in vitro drug release. Ex vivo evaluation using non-everted gut sac technique was adopted for uncovering the permeability enhancing effect of the formulated systems. The optimum formulations were composed of different ratios of Capryol™ 90 as an oil phase, Cremophor ® RH40 as a surfactant, and Transcutol ® HP as a co-surfactant. All tested formulations were thermodynamically stable with globule sizes ranging from 13.74 to 29.19 nm and emulsification time not exceeding 1 min, indicating the formation of homogenous stable nanoemulsions. In vitro drug release showed significant enhancement from L-SNEDDS formulations compared to aqueous drug suspension. Optimized L-SNEDDS showed significantly higher intestinal permeation compared to plain drug solution with nearly 1.6-2.9 folds increase in the apparent permeability coefficient as demonstrated by the ex vivo studies. The present study proved that AMS could be successfully incorporated into L-SNEDDS for improved dissolution and intestinal permeation leading to enhanced oral delivery.

  10. Disruption of the F-actin cytoskeleton and monolayer barrier integrity induced by PAF and the protective effect of ITF on intestinal epithelium.

    Science.gov (United States)

    Xu, Ling-fen; Xu, Cheng; Mao, Zhi-Qin; Teng, Xu; Ma, Li; Sun, Mei

    2011-02-01

    To explore whether platelet-activating factor (PAF) can disrupt the intestinal epithelial barrier directly and is associated with structural alterations of the F-actin-based cytoskeleton, and to observe the protective effect of intestinal trefoil factor (ITF), we establish an intestinal epithelia barrier model using Caco-2 cells in vitro. Transepithelial electrical resistance and unidirectional flux of lucifer yellow were measured to evaluate barrier permeability; immunofluorescent staining and flow cytometry were applied to observe morphological alterations and to quantify proteins of the F-actin cytoskeleton: the tight junction marker ZO-1 and Claudin-1 were observed using immunofluorescent staining. PAF significantly increased paracellular permeability, at the same time, F-actin and tight junction proteins were disrupted. It was thought that ITF could reverse the high permeability by restoring normal F-actin, ZO-1 and Claudin-1 structures. These results collectively demonstrated that PAF plays an important role in the regulation of mucosal permeability and the effects of PAF are correlated with structural alterations of the F-actin-based cytoskeleton and of tight junctions. ITF can protect intestinal epithelium against PAF-induced disruption by restricting the rearrangement of the F-actin cytoskeleton and of tight junctions.

  11. Relationship between intestinal microflora imbalance and nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    MA Ruijuan

    2015-01-01

    Full Text Available The intestinal microecosystem is composed of natural microflora, intestinal epithelial cells, and intestinal mucosal immune system. Nonalcoholic fatty liver disease (NAFLD is a metabolic stress-induced liver injury associated with insulin resistance and genetic susceptibility. In recent years, there has been increasing evidence showing the involvement of imbalanced intestinal microflora in the pathogenesis of NAFLD. Overgrowth of intestinal microflora, increased permeability of intestinal mucosa, intestinal endotoxemia, and production of inflammatory cytokines play important roles in the development of NAFLD. Further studies on the relationship between intestinal microflora imbalance and the pathogenesis of NAFLD may shed light on the treatment and prevention of NAFLD.

  12. Characterizing the Variable Dust Permeability of Planet-induced Gaps

    Science.gov (United States)

    Weber, Philipp; Benítez-Llambay, Pablo; Gressel, Oliver; Krapp, Leonardo; Pessah, Martin E.

    2018-02-01

    Aerodynamic theory predicts that dust grains in protoplanetary disks will drift radially inward on comparatively short timescales. In this context, it has long been known that the presence of a gap opened by a planet can significantly alter the dust dynamics. In this paper, we carry out a systematic study employing long-term numerical simulations aimed at characterizing the critical particle size for retention outside a gap as a function of particle size, as well as various key parameters defining the protoplanetary disk model. To this end, we perform multifluid hydrodynamical simulations in two dimensions, including different dust species, which we treat as pressureless fluids. We initialize the dust outside of the planet’s orbit and study under which conditions dust grains are able to cross the gap carved by the planet. In agreement with previous work, we find that the permeability of the gap depends both on dust dynamical properties and the gas disk structure: while small dust follows the viscously accreting gas through the gap, dust grains approaching a critical size are progressively filtered out. Moreover, we introduce and compute a depletion factor that enables us to quantify the way in which higher viscosity, smaller planet mass, or a more massive disk can shift this critical size to larger values. Our results indicate that gap-opening planets may act to deplete the inner reaches of protoplanetary disks of large dust grains—potentially limiting the accretion of solids onto forming terrestrial planets.

  13. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation

    DEFF Research Database (Denmark)

    Franek, F; Jarlfors, A; Larsen, F.

    2015-01-01

    ), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol–water partition coefficients (Do:w) were...

  14. Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult Swine.

    Directory of Open Access Journals (Sweden)

    Marie-Edith Arnal

    Full Text Available Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes and protective inducible heat shock proteins (HSP. The hypothesis was tested in swine offspring born to control mothers (n = 12 or mothers treated with the antibiotic amoxicillin around parturition (n = 11, and slaughtered serially at 14, 28 and 42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27 and crypt depth, suggesting a milder or delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-term consequences of this treatment on jejunal alkaline phosphatase (reduced and jejunal and ileal dipeptidylpeptidase IV (increased and decreased, respectively of offspring born to antibiotic-treated dams. Significant interactions between early antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal architecture and function transiently

  15. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Ho, Josephine; Reimer, Raylene A; Doulla, Manpreet; Huang, Carol

    2016-07-26

    The gut microbiome is increasingly recognized as a contributor to disease states. Patients with type 1 diabetes (DM1) have distinct gut microbiota in comparison to non-diabetic individuals, and it has been linked to changes in intestinal permeability, inflammation and insulin resistance. Prebiotics are non-digestible carbohydrates that alter gut microbiota and could potentially improve glycemic control in children with DM1. This pilot study aims to determine the feasibility of a 12-week dietary intervention with prebiotics in children with DM1. This pilot study is a single-centre, randomized, double-blind, placebo-controlled trial in children aged 8 to 17 years with DM1 for at least one year. Participants will be randomized to receive either placebo (maltodextrin 3.3 g orally/day) or prebiotics (oligofructose-enriched inulin 8 g orally/day; Synergy1, Beneo, Mannheim, Germany). Measures to be assessed at baseline, 3 months and 6 months include: anthropometric measures, insulin doses/regimens, frequency of diabetic ketoacidosis, frequency of severe hypoglycemia, average number of episodes of hypoglycemia per week, serum C-peptide, HbA1c, serum inflammatory markers (IL-6, IFN-gamma, TNF-alpha, and IL-10), GLP-1 and GLP-2, intestinal permeability using urine assessment after ingestion of lactulose, mannitol and 3-O-methylglucose, and stool sample collection for gut microbiota profiling. This is a novel pilot study designed to test feasibility for a fully powered study. We hypothesize that consumption of prebiotics will alter gut microbiota and intestinal permeability, leading to improved glycemic control. Prebiotics are a potentially novel, inexpensive, low-risk treatment addition for DM1 that may improve glycemic control by changes in gut microbiota, gut permeability and inflammation. ClinicalTrials.gov: NCT02442544 . Registered on 10 March 2015.

  16. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    IL-8 levels compared with DOX-Form (all P diet. Thus a single dose of DOX induces intestinal toxicity in preweaned pigs...... and may lead to a systemic inflammatory response. The toxicity is affected by type of enteral nutrition with more pronounced GI toxicity when formula is fed compared with bovine colostrum. The results indicate that bovine colostrum may be a beneficial supplementary diet for children subjected...

  17. Radiation-induced intestinal lesions. Prognosis and surgical management

    International Nuclear Information System (INIS)

    Van Haecke, P.; Vitaux, J.; Michot, F.; Hay, J.-M.; Flamant, Y.; Maillard, J.-N.

    1981-01-01

    Thirteen patients with intestinal lesions consecutive to radiotherapy for carcinoma of the uterus were operated upon between 1973 and 1979. The small bowel was involved in 9 patients and the colon and rectum in 4 patients. Urinary tract lesions were associated in 3 patients of each group. Intestinal necrosis, progression of the lesions and extensive pelvic fibrosis were the only criteria of poor prognosis. Twenty-two operations were performed: 4 for urinary tract lesions and 18 for intestinal lesions. Five patients died during the immediate post-operative period and five died within 2 to 30 months after surgery, including 4 whose carcinoma recurred. The operative technique should be selected according to the extent and severity of radiation-induced damage, as determined by pre-operative examination and thorough exploration of the abdominal cavity once opened. Limited lesions of the small bowel can be treated by resection, but intestinal bypass with latero-lateral anastomosis seems to be preferable in cases with extensive lesions. Patients with colorectal lesions should have defunctioning colostomy prior to any other procedure dictated by the state of affairs. Multiple anastomosis, extensive resections and excessive dissections should be avoided [fr

  18. On the electrical intestine turbulence induced by temperature changes

    International Nuclear Information System (INIS)

    Gizzi, A; Cherubini, C; Migliori, S; Filippi, S; Alloni, R; Portuesi, R

    2010-01-01

    Paralytic ileus is a temporary syndrome with impairment of peristalsis and no passage of food through the intestine. Although improvements in supportive measures have been achieved, no therapy useful to specifically reduce or eliminate the motility disorder underlying postoperative ileus has been developed yet. In this paper, we draw a plausible, physiologically fine-tuned scenario, which explains a possible cause of paralytic ileus. To this aim we extend the existing 1D intestinal electrophysiological Aliev–Richards–Wikswo ionic model based on a double-layered structure in two and three dimensions. Thermal coupling is introduced here to study the influence of temperature gradients on intestine tissue which is an important external factor during surgery. Numerical simulations present electrical spiral waves similar to those experimentally observed already in the heart, brain and many other excitable tissues. This fact seems to suggest that such peculiar patterns, here electrically and thermally induced, may play an important role in clinically experienced disorders of the intestine, then requiring future experimental analyses in the search for possible implications for medical and physiological practice and bioengineering

  19. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  20. Mucus reduction promotes acetyl salicylic acid-induced small intestinal mucosal injury in rats.

    Science.gov (United States)

    Suyama, Yosuke; Handa, Osamu; Naito, Yuji; Takayama, Shun; Mukai, Rieko; Ushiroda, Chihiro; Majima, Atsushi; Yasuda-Onozawa, Yuriko; Higashimura, Yasuki; Fukui, Akifumi; Dohi, Osamu; Okayama, Tetsuya; Yoshida, Naohisa; Katada, Kazuhiro; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Konishi, Hideyuki; Itoh, Yoshito

    2018-03-25

    Acetyl salicylic acid (ASA) is a useful drug for the secondary prevention of cerebro-cardiovascular diseases, but it has adverse effects on the small intestinal mucosa. The pathogenesis and prophylaxis of ASA-induced small intestinal injury remain unclear. In this study, we focused on the intestinal mucus, as the gastrointestinal tract is covered by mucus, which exhibits protective effects against various gastrointestinal diseases. ASA was injected into the duodenum of rats, and small intestinal mucosal injury was evaluated using Evans blue dye. To investigate the importance of mucus, Polysorbate 80 (P80), an emulsifier, was used before ASA injection. In addition, rebamipide, a mucus secretion inducer in the small intestine, was used to suppress mucus reduction in the small intestine of P80-administered rats. The addition of P80 reduced the mucus and exacerbated the ASA-induced small intestinal mucosal injury. Rebamipide significantly suppressed P80-reduced small intestinal mucus and P80-increased intestinal mucosal lesions in ASA-injected rats, demonstrating that mucus is important for the protection against ASA-induced small intestinal mucosal injury. These results provide new insight into the mechanism of ASA-induced small intestinal mucosal injury. Mucus secretion-increasing therapy might be useful in preventing ASA-induced small intestinal mucosal injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Modified permeability modeling of coal incorporating sorption-induced matrix shrinkage

    Science.gov (United States)

    Soni, Aman

    The variation in the cleat permeability of coalbed methane (CBM) reservoirs is attributed primarily to two cardinal processes, with opposing effects. Increase in effective stresses with reduction in pore pressure tends to decrease the cleat permeability, whereas the sorption-induced coal matrix shrinkage actuates reduction in the effective stresses which increases the reservoir permeability. The net effect of the two processes determines the pressure-dependent-permeability and, hence, the overall trend of CBM production with depletion. Several analytical models have been developed and used to predict the dynamic behavior of CBM reservoir permeability during production through pressure depletion, all based on combining the two effects. The purpose of this study was to introduce modifications to two most commonly used permeability models, namely the Palmer and Mansoori, and Shi and Durucan, for permeability variation and evaluate their performance when projecting gas production. The basis for the modification is the linear relationship between the volume of sorbed gas and the associated matrix shrinkage. Hence, the impact of matrix shrinkage is incorporated as a function of the amount of gas produced, or that remaining in coal, at any time during production. Since the exact production from a reservoir is known throughout its life, this significantly simplifies the process of permeability modeling. Furthermore, the modification is also expected to streamline the process of modeling by classifying the shrinkage parameters for coals of different regions, but with similar characteristics. A good analogy is the San Juan basin, where sorption characteristics of coal are so well understood and defined that operators no longer carry out laboratory sorption work. The goal is to achieve the same for incorporation of the matrix shrinkage behavior. Another modification is to incorporate the matrix, or grain, compressibility effect of coal as a correction factor in the Shi and

  2. IMPROVEMENT OF INTESTINAL PERMEABILITY WITH ALANYL-GLUTAMINE IN HIV PATIENTS: a randomized, double blinded, placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Robério Dias LEITE

    2013-03-01

    Full Text Available Context Glutamine is the main source of energy of the enterocyte and diarrhea and weight loss are frequent in HIV infected patients. Objective To determine the effect of alanyl-glutamine supplementation on intestinal permeability and absorption in these patients. Methods Randomized double-blinded, placebo-controlled study using isonitrogenous doses of alanyl-glutamine (24 g/day and placebo (glycine, 25 g/day during 10 days. Before and after this nutritional supplementation lactulose and mannitol urinary excretion were determined by high performance liquid chromatography. Results Forty six patients with HIV/AIDS, 36 of whom were male, with 37.28 ± 3 (mean ± standard error years were enrolled. Twenty two and 24 subjects were treated with alanyl-glutamine and with glycine respectively. In nine patients among all in the study protocol that reported diarrhea in the 14 days preceding the beginning of the study, mannitol urinary excretion was significantly lower than patients who did not report this symptom [median (range: 10.51 (3.01–19.75 vs. 15.37 (3.93–46.73; P = 0.0281] and lactulose/mannitol ratio was significantly higher [median (range: 0.04 (0.00–2.89 vs. 0.02 (0.00–0.19; P = 0.0317]. There was also a significant increase in mannitol urinary excretion in the group treated with alanyl-glutamine [median (range: 14.38 (8.25–23.98 before vs 21.24 (6.27–32.99 after treatment; n = 14, P = 0.0382]. Conclusion Our results suggest that the integrity and intestinal absorption are more intensely affected in patients with HIV/AIDS who recently have had diarrhea. Additionally, nutritional supplementation with alanyl-glutamine was associated with an improvement in intestinal absorption. Contexto A glutamina é a principal fonte de energia do enterócito e diarreia e perda de peso são frequentes em pacientes infectados pelo HIV. Objetivo Determinar o efeito da alanil-glutamina sobre a permeabilidade e a absorção intestinais nesses

  3. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  4. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.

    Science.gov (United States)

    Bradshaw, Patrick C; Pfeiffer, Douglas R

    2013-12-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Effect of Hops Derived Prenylated Phenols on TNF-α Induced Barrier Dysfunction in Intestinal Epithelial Cells.

    Science.gov (United States)

    Luescher, Sandro; Urmann, Corinna; Butterweck, Veronika

    2017-04-28

    For the prenylated hops phenols 6- and 8-prenylnaringenin (1 and 2), xanthohumol (3), and isoxanthohumol (4), a variety of biological activities has been described. In the current study, a transwell based in vitro model using the human intestinal epithelial cell line Caco-2 was developed to assess potential beneficial effects of compounds 1-4 on TNF-α-induced impairment of tight junction (TJ) permeability. Transepithelial electrical resistance (TEER) was measured using the latest cellZScope online monitoring device. TNF-α treatment (25 ng/mL) induced a significant decrease in TEER values (204.71 ± 4.57 at 72 h) compared to that in control values (245.94 ± 1.68 at 72 h). To determine preventive effects on TNF-α-induced impairment of TJ permeability, 1-4 were added to the apical compartment of Caco-2 monolayers 1 h before TNF-α treatment; afterward, TNF-α was added to the basolateral compartment to induce TJ dysfunction and incubated for a further 72 h. Using this setting, only 1 and 2 prevented epithelial disruption induced by TNF-α. To evaluate restorative effects of 1-4, TNF-α was added to the basolateral compartment of Caco-2 cell monolayers. After 48 h of incubation, 1-4 were added to the apical side, and TEER values were monitored online for a further 72 h. Under these experimental conditions, only 2 restored TNF-α induced barrier dysfunction.

  6. Deoxynivanelol and Fumonisin, Alone or in Combination, Induce Changes on Intestinal Junction Complexes and in E-Cadherin Expression

    Directory of Open Access Journals (Sweden)

    Karina Basso

    2013-11-01

    Full Text Available Fusariotoxins such as fumonisin B1 (FB1 and deoxynivalenol (DON cause deleterious effects on the intestine of pigs. The aim of this study was to evaluate the effect of these mycotoxins, alone and in combination, on jejunal explants from piglets, using histological, immunohistochemical and ultrastructural assays. Five 24-day old pigs were used for sampling the explants. Forty-eight explants were sampled from each animal. Explants were incubated for 4 hours in culture medium and medium containing FB1 (100 µM, DON (10 µM and both mycotoxins (100 µM FB1 plus 10 µM DON. Exposure to all treatments induced a significant decrease in the normal intestinal morphology and in the number of goblet cells, which were more severe in explants exposed to DON and both mycotoxins. A significant reduction in villus height occurred in groups treated with DON and with co-contamination. Expression of E-cadherin was significantly reduced in explants exposed to FB1 (40%, DON (93% and FB1 plus DON (100%. The ultrastructural assay showed increased intercellular spaces and no junction complexes on enterocytes exposed to mycotoxins. The present data indicate that FB1 and DON induce changes in cell junction complexes that could contribute to increase paracellular permeability. The ex vivo model was adequate for assessing intestinal toxicity induced by exposure of isolated or associated concentrations of 100 µM of FB1 and 10 µM of DON.

  7. Irradiation-induced permeability in pyrocarbon coatings. Final report of work conducted under PWS FD-12

    International Nuclear Information System (INIS)

    Kania, M.J.; Thiele, B.A.; Homan, F.J.

    1982-10-01

    Two US irradiation experiments were planned to provide information to supplement data from the German program on irradiation-induced permeability in pyrocarbon coatings. Hopefully, the data from both programs could be combined to define the onset of neutron-induced permeability in a variety of Biso coatings produced with different process variables (coating temperature, coating gases, and coating rates). The effort was not successful. None of the preirradiation characterization procedures were able to adequately predict irradiation performance. A large amount of within-batch scatter was observed in the fission gas and cesium release data along with significant within-batch variation in coating properties. Additional preirradiation characterization might result in a procedure that could successfully predict irradiation performance, but little can be done about the within-batch variation in coating properties. This variation is probably the result of random movement of particles within the coating furnace during pyrocarbon deposition. 19 figures, 4 tables

  8. The role of mitochondria-derived reactive oxygen species in the pathogenesis of non-steroidal anti-inflammatory drug-induced small intestinal injury.

    Science.gov (United States)

    Handa, O; Majima, A; Onozawa, Y; Horie, H; Uehara, Y; Fukui, A; Omatsu, T; Naito, Y; Yoshikawa, T

    2014-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been implemented in clinical settings for a long time for their anti-inflammatory effects. With the number of NSAID users increasing, gastroenterological physicians and researchers have worked hard to prevent and treat NSAID-induced gastric mucosal injury, an effort that has for the large part being successful. However, the struggle against NSAID-induced mucosal damage has taken on a new urgency due to the discovery of NSAID-induced small intestinal mucosal injury. Although the main mechanism by which NSAIDs induce small intestinal mucosal injury has been thought to depend on the inhibitory effect of NSAIDs on cyclooxygenase (COX) activity, recent studies have revealed the importance of mitochondria-derived reactive oxygen species (ROS) production, which occurs independently of COX-inhibition. ROS production is an especially important factor in the increase of small intestinal epithelial cell permeability, an early stage in the process of small intestinal mucosal injury. By clarifying the precise mechanism, together with its clinical features using novel endoscopy, effective strategies for preventing NSAID-induced small intestinal damage, especially targeting mitochondria-derived ROS production, may be developed.

  9. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  10. Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis

    OpenAIRE

    Nagy, Janice A.; Vasile, Eliza; Feng, Dian; Sundberg, Christian; Brown, Lawrence F.; Detmar, Michael J.; Lawitts, Joel A.; Benjamin, Laura; Tan, Xiaolian; Manseau, Eleanor J.; Dvorak, Ann M.; Dvorak, Harold F.

    2002-01-01

    Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now...

  11. Alcohol-induced premature permeability in mouse placenta-yolk sac barriers in vivo.

    Science.gov (United States)

    Haghighi Poodeh, S; Salonurmi, T; Nagy, I; Koivunen, P; Vuoristo, J; Räsänen, J; Sormunen, R; Vainio, S; Savolainen, M J

    2012-10-01

    Acute alcohol exposure induces malformation and malfunction of placenta-yolk sac tissues in rodents, reducing the labyrinth zone in the placenta and altering the permeability and fluidity of the cell membrane. During normal mouse placentation the cells line up in an optimal way to form a hemotrichorial placenta where layers II and III are connected through gap junctions. These act as molecular sieves that limit the passage of large molecules. PlGF is a developmentally regulated protein that controls the passage of molecules in the vasculosyncytial membranes and media of large blood vessels in the placental villi. In addition to the chorioallontoic placenta, rodents also have another type of placenta that consists of Reichert's membrane within the trophoblast cell layer on the maternal side and the parietal endodermal cells on the embryonic site. This forms a separate materno-fetal transport system. We study here whether alcohol affects these two placental barriers, leading to placental malfunction that in turn diminishes the nutrient supply to the embryo. CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals at 8.75 days post coitum (dpc). The placentas were collected on 9.5, 11.5 and 14.5 dpc and used for histopathological protein studies. Hemotrichorial cell layer structure interactions through connective tissue and gap junction were analyzed by electron microscopy. The permeability of the feto-maternal barrier was visualized with Evans Blue. VEGF, a permeability inducer, was found to be up-regulated in the mouse placenta after acute alcohol exposure, and permeability was also affected by altered structures in the barriers that separate the feto-maternal blood circulation which destroyed the gap junctions in the hemotrichorial cell layer, reduced the thickness of Reichert's membrane and interfered with with Reichert's trophoblast/Reichert's parietal interaction. These defects together could have caused the permeability malfunction

  12. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents

    Directory of Open Access Journals (Sweden)

    Siqueira Francisco JWS

    2011-08-01

    Full Text Available Abstract Background Methotrexate treatment has been associated to intestinal epithelial damage. Studies have suggested an important role of nitric oxide in such injury. The aim of this study was to investigate the role of nitric oxide (NO, specifically iNOS on the pathogenesis of methotrexate (MTX-induced intestinal mucositis. Methods Intestinal mucositis was carried out by three subcutaneous MTX injections (2.5 mg/kg in Wistar rats and in inducible nitric oxide synthase knock-out (iNOS-/- and wild-type (iNOS+/+ mice. Rats were treated intraperitoneally with the NOS inhibitors aminoguanidine (AG; 10 mg/Kg or L-NAME (20 mg/Kg, one hour before MTX injection and daily until sacrifice, on the fifth day. The jejunum was harvested to investigate the expression of Ki67, iNOS and nitrotyrosine by immunohistochemistry and cell death by TUNEL. The neutrophil activity by myeloperoxidase (MPO assay was performed in the three small intestine segments. Results AG and L-NAME significantly reduced villus and crypt damages, inflammatory alterations, cell death, MPO activity, and nitrotyrosine immunostaining due to MTX challenge. The treatment with AG, but not L-NAME, prevented the inhibitory effect of MTX on cell proliferation. MTX induced increased expression of iNOS detected by immunohistochemistry. MTX did not cause significant inflammation in the iNOS-/- mice. Conclusion These results suggest an important role of NO, via activation of iNOS, in the pathogenesis of intestinal mucositis.

  13. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.

    Science.gov (United States)

    Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus

    2013-12-01

    Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data.

  14. Malaria-Associated l-Arginine Deficiency Induces Mast Cell-Associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia

    Science.gov (United States)

    Chau, Jennifer Y.; Tiffany, Caitlin M.; Nimishakavi, Shilpa; Lawrence, Jessica A.; Pakpour, Nazzy; Mooney, Jason P.; Lokken, Kristen L.; Caughey, George H.; Tsolis, Renee M.

    2013-01-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop l-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of l-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with l-arginine or l-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with l-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing l-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  15. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  16. Diabetes-induced mechanophysiological changes in the small intestine and colon

    DEFF Research Database (Denmark)

    Zhao, Mirabella; Liao, Donghua; Zhao, Jingbo

    2017-01-01

    they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut......The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities...... of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how...

  17. A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Jonathan M. Williams

    2013-11-01

    The gut barrier, composed of a single layer of intestinal epithelial cells (IECs held together by tight junctions, prevents the entrance of harmful microorganisms, antigens and toxins from the gut lumen into the blood. Small intestinal homeostasis is normally maintained by the rate of shedding of senescent enterocytes from the villus tip exactly matching the rate of generation of new cells in the crypt. However, in various localized and systemic inflammatory conditions, intestinal homeostasis can be disturbed as a result of increased IEC shedding. Such pathological IEC shedding can cause transient gaps to develop in the epithelial barrier and result in increased intestinal permeability. Although pathological IEC shedding has been implicated in the pathogenesis of conditions such as inflammatory bowel disease, our understanding of the underlying mechanisms remains limited. We have therefore developed a murine model to study this phenomenon, because IEC shedding in this species is morphologically analogous to humans. IEC shedding was induced by systemic lipopolysaccharide (LPS administration in wild-type C57BL/6 mice, and in mice deficient in TNF-receptor 1 (Tnfr1−/−, Tnfr2 (Tnfr2−/−, nuclear factor kappa B1 (Nfκb1−/− or Nfĸb2 (Nfĸb2−/−. Apoptosis and cell shedding was quantified using immunohistochemistry for active caspase-3, and gut-to-circulation permeability was assessed by measuring plasma fluorescence following fluorescein-isothiocyanate–dextran gavage. LPS, at doses ≥0.125 mg/kg body weight, induced rapid villus IEC apoptosis, with peak cell shedding occurring at 1.5 hours after treatment. This coincided with significant villus shortening, fluid exudation into the gut lumen and diarrhea. A significant increase in gut-to-circulation permeability was observed at 5 hours. TNFR1 was essential for LPS-induced IEC apoptosis and shedding, and the fate of the IECs was also dependent on NFκB, with signaling via NFκB1 favoring cell survival and

  18. Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonization and intestinal permeability in broiler chickens.

    Science.gov (United States)

    Prado-Rebolledo, Omar F; Delgado-Machuca, Jaime de Jesus; Macedo-Barragan, Rafael J; Garcia-Márquez, Luis J; Morales-Barrera, Jesus E; Latorre, Juan D; Hernandez-Velasco, Xochitl; Tellez, Guillermo

    2017-02-01

    Two experiments were conducted to evaluate the effect of a lactic acid bacteria-based probiotic (FloraMax-B11 ® ) against Salmonella enterica serovar Enteritidis intestinal colonization and intestinal permeability in broiler chickens. Experiment 1 consisted of two independent trials. In each trial, day-old broiler chicks were assigned to one of two groups: control + S. Enteritidis or probiotic + S. Enteritidis. At 72 h post-S. Enteritidis challenge, haematology and caecal content were evaluated for S. Enteritidis colonization. In Experiment 2, day-old broiler chicks were assigned to one of four groups: negative control; probiotic; control + S. Enteritidis; or probiotic + S. Enteritidis. At 72 h post-S. Enteritidis challenge, chickens in all groups were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). In both trials of Experiment 1, a significant reduction (P < 0.05) in colony-forming units/gram of S. Enteritidis in caecal content and a reduction in the incidence of S. Enteritidis enriched caecal samples were observed in probiotic + S. Enteritidis chickens. In addition, significant heterophilia and lymphopaenia were observed in control + S. Enteritidis chickens. In Experiment 2, a decrease in numbers of S. Enteritidis in caeca were observed in probiotic + S. Enteritidis chickens when compared to control + S. Enteritidis. Also, an increase in serum FITC-d concentration was detected in control + S. Enteritidis. These results suggest that early infection with S. Enteritidis can increase intestinal permeability, but the adverse effects can be prevented by the administration of the probiotic tested.

  19. Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jishan; Chen, Zhongwei [Shool of Mechanical Engineering, The University of Western Australia, WA, 6009 (Australia); Elsworth, Derek [Department of Energy and Mineral Engineering, Penn State University, PA 16802-5000 (United States); Miao, Xiexing; Mao, Xianbiao [State Key Laboratory for Geomechanics and Underground Engineering, China University of Mining and Technology (China)

    2010-07-01

    Although coal-gas interactions have been comprehensively investigated, most prior studies have focused on one or more component processes of effective stress or sorption-induced deformation and for resulting isotropic changes in coal permeability. In this study a permeability model is developed to define the evolution of gas sorption-induced permeability anisotropy under the full spectrum of mechanical conditions spanning prescribed in-situ stresses through constrained displacement. In the model, gas sorption-induced coal directional permeabilities are linked into directional strains through an elastic modulus reduction ratio, R{sub m}. It defines the ratio of coal bulk elastic modulus to coal matrix modulus (0 < R{sub m} < 1) and represents the partitioning of total strain for an equivalent porous coal medium between the fracture system and the matrix. Where bulk coal permeability is dominated by the cleat system, the portioned fracture strains may be used to define the evolution of the fracture permeability, and hence the response of the bulk aggregate. The coal modulus reduction ratio provides a straightforward index to link anisotropy in deformability characteristics to the evolution of directional permeabilities. Constitutive models incorporating this concept are implemented in a finite element model to represent the complex interactions of effective stress and sorption under in-situ conditions. The validity of the model is evaluated against benchmark cases for uniaxial swelling and for constant volume reservoirs then applied to match changes in permeability observed in a field production test within a coalbed reservoir. (author)

  20. Chemo-Mechano Coupling Processes Inducing Evolution of Rock Permeability under Hydrothermal and Stressed Conditions (Invited)

    Science.gov (United States)

    Yasuhara, H.; Takahashi, M.; Kishida, K.; Nakashima, S.

    2013-12-01

    Coupled thermo-hydro-mechano-chemo (THMC) processes prevailing within fractured rocks are of significant importance in case of a long-term geo-sequestration of anthropogenic wastes of high level radioactive materials and carbon dioxide, and an effective recovery of energy from petroleum and geothermal reservoirs typically located in deep underground. The THMC processes should change the mechanical, hydraulic, and transport properties of the host rocks. Under even moderate pressure and temperature conditions, geochemical processes such as mineral dissolution should be active and may induce the change of those properties. Therefore, the effects should be examined in detail. In this work, a suite of long-term permeability experiments using granite, sandstone, and mudstone with or without a single fracture has been conducted under moderate confining pressures ranging 3 - 15 MPa and temperatures of 20 and 90 °C, and monitors the evolution in rock permeability and effluent chemistry throughout the experimental periods. Under net reduction or augmentation of pore/fracture volumes, the net permeability should alternatively increase or decrease with time, depending on the prevailing mechanical and geochemical processes. In granite samples, At 20 °C the observed fracture permeabilities monotonically reduce and reach quasi-steady state in two weeks, but after the temperature is increased to 90 °C those resume decreasing throughout the rest of experiments - the ultimate reductions are roughly two orders of magnitude within 40 days. In mudstone samples, similar results to those in granite samples are obtained (i.e., monotonic reduction and subsequent quasi-steady state). In contrast, in sandstone samples, a monotonic augmentation in permeability has been observed throughout the experiments. A chemo-mechanical model that accounts for temperature-dependent mineral dissolutions at contacting areas and free walls of pore spaces is applied to replicating the experimental

  1. 18 GHz electromagnetic field induces permeability of Gram-positive cocci

    Science.gov (United States)

    Nguyen, The Hong Phong; Shamis, Yury; Croft, Rodney J.; Wood, Andrew; McIntosh, Robert L.; Crawford, Russell J.; Ivanova, Elena P.

    2015-01-01

    The effect of electromagnetic field (EMF) exposures at the microwave (MW) frequency of 18 GHz, on four cocci, Planococcus maritimus KMM 3738, Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923 and S. epidermidis ATCC 14990T, was investigated. We demonstrate that exposing the bacteria to an EMF induced permeability in the bacterial membranes of all strains studied, as confirmed directly by transmission electron microscopy (TEM), and indirectly via the propidium iodide assay and the uptake of silica nanospheres. The cells remained permeable for at least nine minutes after EMF exposure. It was shown that all strains internalized 23.5 nm nanospheres, whereas the internalization of the 46.3 nm nanospheres differed amongst the bacterial strains (S. epidermidis ATCC 14990T~ 0%; Staphylococcus aureus CIP 65.8T S. aureus ATCC 25923, ~40%; Planococcus maritimus KMM 3738, ~80%). Cell viability experiments indicated that up to 84% of the cells exposed to the EMF remained viable. The morphology of the bacterial cells was not altered, as inferred from the scanning electron micrographs, however traces of leaked cytosolic fluids from the EMF exposed cells could be detected. EMF-induced permeabilization may represent an innovative, alternative cell permeability technique for applications in biomedical engineering, cell drug delivery and gene therapy. PMID:26077933

  2. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity

    Science.gov (United States)

    Zang, Arno; Yoon, Jeoung Seok; Stephansson, Ove; Heidbach, Oliver

    2013-11-01

    The occurrence of induced seismic events during hydraulic fracturing of reservoirs to enhance permeability is an unavoidable process. Due to the increased public concern with respect to the risks imposed by induced seismicity, however, the development of a soft stimulation method is needed creating higher permeability with less induced seismicity. We use a discrete element model of naturally fractured rock with pore fluid flow algorithm in order to analyse two scenarios of high-pressure fluid injection (hydraulic fracturing) at depth and associated induced seismicity. The ratio of pumped-in energy to released seismic energy is in agreement with field data. Our results suggest that cyclic reservoir treatment is a safer alternative to conventional hydraulic fracture stimulation as both, the total number of induced events as well as the occurrence of larger magnitude events are lowered. This work is motivated by results of laboratory triaxial indenter tests on granite rock samples where continuous loading leads to a wide fracture process zone while cyclic treatment with frequent starting and stopping of loading fatigues the rock, resulting in smaller damage volume and more persistent fracture growth.

  3. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers.

    Directory of Open Access Journals (Sweden)

    Judit Váradi

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.

  4. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers

    Science.gov (United States)

    Váradi, Judit; Harazin, András; Fenyvesi, Ferenc; Réti-Nagy, Katalin; Gogolák, Péter; Vámosi, György; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Vasvári, Gábor; Róka, Eszter; Haines, David; Deli, Mária A.; Vecsernyés, Miklós

    2017-01-01

    Alpha-melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB) was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines. PMID:28103316

  5. Myxoviruses do not induce non-specific alterations in membrane permeability early on in infection

    International Nuclear Information System (INIS)

    Foster, K.A.; Micklem, K.J.; Bogomolova, N.N.; Boriskin, Y.S.; Pasternak, C.A.

    1983-01-01

    The permeability characteristics of cells infected with myxoviruses have been studied by measuring the concentrative uptake of nutrients, the concentration of intracellular K + , and the maintenance of the Na + gradient across the plasma membrane. Cells either show no change at all (Sendai virus-infected BHK cells and measles virus-infected Vero cells) or they show a decreased ability to concentrate nutrients, while intracellular K + and the Na + gradient remain unchanged (Sendai and influenza virus-infected L-1210 cells, measles virus-infected lymphocytes and mumps virus-infected L-41 cells). In no case, therefore, was a change observed that resembles the non-specific increase in membrane permeability induced by haemolytic paramyxoviruses (35, 42) or the non-specific membrane leakiness postulated to take place in infected cells (8, 9). A preliminary account of some of these findings has been presented (39)

  6. Signalling mechanisms in PAF-induced intestinal failure.

    Science.gov (United States)

    Lautenschläger, Ingmar; Wong, Yuk Lung; Sarau, Jürgen; Goldmann, Torsten; Zitta, Karina; Albrecht, Martin; Frerichs, Inéz; Weiler, Norbert; Uhlig, Stefan

    2017-10-17

    Capillary leakage syndrome, vasomotor disturbances and gut atony are common clinical problems in intensive care medicine. Various inflammatory mediators and signalling pathways are involved in these pathophysiological alterations among them platelet-activating factor (PAF). The related signalling mechanisms of the PAF-induced dysfunctions are only poorly understood. Here we used the model of the isolated perfused rat small intestine to analyse the role of calcium (using calcium deprivation, IP-receptor blockade (2-APB)), cAMP (PDE-inhibition plus AC activator), myosin light chain kinase (inhibitor ML-7) and Rho-kinase (inhibitor Y27632) in the following PAF-induced malfunctions: vasoconstriction, capillary and mucosal leakage, oedema formation, malabsorption and atony. Among these, the PAF-induced vasoconstriction and hyperpermeability appear to be governed by similar mechanisms that involve IP3 receptors, extracellular calcium and the Rho-kinase. Our findings further suggest that cAMP-elevating treatments - while effective against hypertension and oedema - bear the risk of dysmotility and reduced nutrient uptake. Agents such as 2-APB or Y27632, on the other hand, showed no negative side effects and improved most of the PAF-induced malfunctions suggesting that their therapeutic usefulness should be explored.

  7. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L. extract polyphenols and terpenoids in Caco-2 cell monolayers.

    Directory of Open Access Journals (Sweden)

    Almudena Pérez-Sánchez

    Full Text Available Rosemary (Rosmarinus officinalis is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids of a rosemary extract (RE, obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS, and the apparent permeability values (Papp were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability; therefore, RE itself should also be classified into this category.

  8. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers

    Science.gov (United States)

    Arráez-Román, David; González-Álvarez, Isabel; Ibáñez, Elena; Segura-Carretero, Antonio; Bermejo, Marival; Micol, Vicente

    2017-01-01

    Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category. PMID:28234919

  9. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms.

    Science.gov (United States)

    Beatty, Jennifer K; Akierman, Sarah V; Motta, Jean-Paul; Muise, Stacy; Workentine, Matthew L; Harrison, Joe J; Bhargava, Amol; Beck, Paul L; Rioux, Kevin P; McKnight, Gordon Webb; Wallace, John L; Buret, Andre G

    2017-05-01

    Giardia duodenalis is a prevalent cause of acute diarrheal disease worldwide. However, recent outbreaks in Italy and Norway have revealed a link between giardiasis and the subsequent development of chronic post-infectious irritable bowel syndrome. While the mechanisms underlying the causation of post-infectious irritable bowel syndrome remain obscure, recent findings suggest that alterations in gut microbiota communities are linked to the pathophysiology of irritable bowel syndrome. In the present study, we use a laboratory biofilm system to culture and enrich mucosal microbiota from human intestinal biopsies. Subsequently, we show that co-culture with Giardia induces disturbances in biofilm species composition and biofilm structure resulting in microbiota communities that are intrinsically dysbiotic - even after the clearance of Giardia. These microbiota abnormalities were mediated in part by secretory-excretory Giardia cysteine proteases. Using in vitro cell culture and germ-free murine infection models, we show that Giardia-induced disruptions of microbiota promote bacterial invasion, resulting in epithelial apoptosis, tight junctional disruption, and bacterial translocation across an intestinal epithelial barrier. Additionally, these dysbiotic microbiota communities resulted in increased activation of the Toll-like receptor 4 signalling pathway, and overproduction of the pro-inflammatory cytokine IL-1beta in humanized germ-free mice. Previous studies that have sought explanations and risk factors for the development of post-infectious irritable bowel syndrome have focused on features of enteropathogens and attributes of the infected host. We propose that polymicrobial interactions involving Giardia and gut microbiota may cause persistent dysbiosis, offering a new interpretation of the reasons why those afflicted with giardiasis are predisposed to gastrointestinal disorders post-infection. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights

  10. Light-Induced Conversion of Chemical Permeability to Enhance Electron and Molecular Transfer in Nanoscale Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Balgley, Renata; de Ruiter, Graham; Evmenenko, Guennadi; Bendikov, Tatyana; Lahav, Michal; van der Boom, Milko E.

    2016-12-21

    In this paper, we demonstrate how photochemically enhancing the permeability of metal–organic assemblies results in a significant enhancement of the electrochemical activity of metal complexes located within the assembly. The molecular assemblies consist of different layers of redox-active metal complexes ([M(mbpy-py)3][PF6]2; M = Ru or Os) that are separated by redox-inactive spacers consisting of 1,4-bis[2-(4-pyridyl)ethenyl]benzene (BPEB) and PdCl2 of variable thicknesses (0–13.4 nm). UV-irradiation (λ = 254 nm) of our assemblies induces a photochemical reaction in the redox-inactive spacer increasing the permeability of the assembly. The observed increase was evident by trapping organic (nBu4NBF4) and inorganic (NiCl2) salts inside the assemblies, and by evaluating the electrochemical response of quinones absorbed inside the molecular assemblies before and after UV irradiation. The increase in permeability is reflected by higher currents and a change in the directionality of electron transfer, i.e., from mono- to bidirectional, between the redox-active metal complexes and the electrode surface. The supramolecular structure of the assemblies dominates the overall electron transfer properties and overrules possible electron transfer mediated by the extensive π-conjugation of its individual organic components.

  11. Effect of Cryptosporidium parvum infection on the absorptive capacity and paracellular permeability of the small intestine in neonatal calves

    Czech Academy of Sciences Publication Activity Database

    Klein, P.; Kleinová, T.; Volek, Z.; Šimůnek, Jiří

    2008-01-01

    Roč. 152, 1-2 (2008), s. 53-59 ISSN 0304-4017 Institutional research plan: CEZ:AV0Z50450515 Keywords : calves * cryptosporidium parvum * intestinal absorption Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.039, year: 2008

  12. Serosal zinc attenuate serotonin and vasoactive intestinal peptide induced secretion in piglet small intestinal epithelium in vitro

    DEFF Research Database (Denmark)

    Carlson, Dorthe; Sehested, Jakob; Feng, Z

    2008-01-01

    This study addressed the mechanisms by which dietary zinc affects diarrhoea and aimed to study possible interactions between zinc status and the presence of zinc in vitro on secretagogue-induced secretion from piglet intestinal epithelium in Ussing chambers....

  13. Improvements in Measuring Sorption-Induced Strain and Permeability in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2008-10-01

    Total worldwide CBM in-place reserves estimates are between 3500 Tcf and 9500 Tcf. Unminable coal beds have been recommended as good CO2 sequestration sites as the world prepares to sequester large amounts of greenhouse gases. In the U.S., these coal seams have the capacity to adsorb and sequester roughly 50 years of CO2 emissions from all the U.S. coal-fired power plants at today’s output rates. The amount and type of gas ad-sorbed in coal has a strong impact on the permeability of the coal seam. An improved mixed gas adsorption iso-therm model based on the extended-Langmuir theory is discussed and is applied to mixed gas sorption-induced strain based on pure gas strain data and a parameter accounting for gas-gas interactions that is independent of the coal substrate. Advantages and disadvantages of using freestanding versus constrained samples for sorption-induced strain measurements are also discussed. A permeability equation used to model laboratory was found to be very accurate when sorption-induced strain was small, but less accurate with higher strain gases.

  14. Twist1 controls lung vascular permeability and endotoxin-induced pulmonary edema by altering Tie2 expression.

    Science.gov (United States)

    Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Lu, Yongbo; Juan, Aimee M; Chen, Jing; Mammoto, Akiko

    2013-01-01

    Tight regulation of vascular permeability is necessary for normal development and deregulated vascular barrier function contributes to the pathogenesis of various diseases, including acute respiratory distress syndrome, cancer and inflammation. The angiopoietin (Ang)-Tie2 pathway is known to control vascular permeability. However, the mechanism by which the expression of Tie2 is regulated to control vascular permeability has not been fully elucidated. Here we show that transcription factor Twist1 modulates pulmonary vascular leakage by altering the expression of Tie2 in a context-dependent way. Twist1 knockdown in cultured human lung microvascular endothelial cells decreases Tie2 expression and phosphorylation and increases RhoA activity, which disrupts cell-cell junctional integrity and increases vascular permeability in vitro. In physiological conditions, where Ang1 is dominant, pulmonary vascular permeability is elevated in the Tie2-specific Twist1 knockout mice. However, depletion of Twist1 and resultant suppression of Tie2 expression prevent increase in vascular permeability in an endotoxin-induced lung injury model, where the balance of Angs shifts toward Ang2. These results suggest that Twist1-Tie2-Angs signaling is important for controlling vascular permeability and modulation of this mechanism may lead to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability.

  15. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics.

    Science.gov (United States)

    Cao, Feng; Gao, Yahan; Wang, Meng; Fang, Lei; Ping, Qineng

    2013-04-01

    In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.

  16. The role of metabolism in diclofenac-induced intestinal toxicity in rat and human in vitro

    NARCIS (Netherlands)

    Niu, Xiaoyu; Makkinje, Miriam; de Graaf, Inge; Groothuis, Genoveva

    The use of Diclofenac (DCF), a non-steroidal anti-inflammatory drug is associated with severe gastro-intestinal side-effects. The mechanisms of drug-induced intestinal toxicity are largely unknown due to the lack of in vitro models. In vivo rat studies suggested that reactive metabolites of DCF

  17. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    Science.gov (United States)

    Maurya, PK; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, AV; Bjerg, PL; Auken, E.; Fiandaca, G.

    2018-01-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In the present study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: 1) spectral inversion of the induced polarization data through a re-parameterization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; 2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; 3) the use of the geophysical imaging results for supporting the geological modeling and planning of drilling campaigns.

  18. Oxazolone-Induced Intestinal Inflammation in Adult Zebrafish

    NARCIS (Netherlands)

    Brugman, Sylvia; Nieuwenhuis, EES

    2017-01-01

    Zebrafish are an excellent model for the study of intestinal immunity. The availability of several transgenic reporter fish for different innate and adaptive immune cells and the high homology in terms of gut function and morphology enables in depth analysis of the process of intestinal

  19. Oxazolone-induced intestinal inflammation in adult zebrafish

    NARCIS (Netherlands)

    Brugman, Sylvia; Nieuwenhuis, Edward E.S.

    2017-01-01

    Zebrafish are an excellent model for the study of intestinal immunity. The availability of several transgenic reporter fish for different innate and adaptive immune cells and the high homology in terms of gut function and morphology enables in depth analysis of the process of intestinal

  20. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  1. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  2. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  3. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  4. Surgical treatment of radiation induced injuries of the intestine

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, E.H.; Symmonds, R.E.

    1981-12-01

    In the patient who has received high dose irradiation of the pelvis and abdomen, all abdominopelvic operations should be avoided, unless it is absolutely essential. Persisting obstruction, hemorrhage, intestinal perforation with peritonitis and with abscess and fistula formation are valid indications for surgical intervention. Ninety-three patients have been operated upon for these complications after irradiation. Some anastomotic dehiscence occurred in ten patients. Six operative deaths occurred. Of the 93 patients, 65 were managed by means of complete resection of the involved segment of intestine, followed by restoration of intestinal continuity by means of an end-to-end anastomosis. This is the treatment of choice when the involved area can be safely resected. In the absence of actual intestinal necrosis and when segments of strictured small intestine are adherent deep in the pelvis, and intestinal bypass procedure may represent the treatment of choice. This was accomplished in 20 patients, two of whom eventually required a second operation for resection of the bypassed segment of intestine.

  5. Surgical treatment of radiation induced injuries of the intestine

    International Nuclear Information System (INIS)

    Schmitt, E.H.; Symmonds, R.E.

    1981-01-01

    In the patient who has received high dose irradiation of the pelvis and abdomen, all abdominopelvic operations should be avoided, unless it is absolutely essential. Persisting obstruction, hemorrhage, intestinal perforation with peritonitis and with abscess and fistula formation are valid indications for surgical intervention. Ninety-three patients have been operated upon for these complications after irradiation. Some anastomotic dehiscence occurred in ten patients. Six operative deaths occurred. Of the 93 patients, 65 were managed by means of complete resection of the involved segment of intestine, followed by restoration of intestinal continuity by means of an end-to-end anastomosis. This is the treatment of choice when the involved area can be safely resected. In the absence of actual intestinal necrosis and when segments of strictured small intestine are adherent deep in the pelvis, and intestinal bypass procedure may represent the treatment of choice. This was accomplished in 20 patients, two of whom eventually required a second operation for resection of the bypassed segment of intestine

  6. Fecal Markers of Intestinal Inflammation and Permeability Associated with the Subsequent Acquisition of Linear Growth Deficits in Infants

    Science.gov (United States)

    Kosek, Margaret; Haque, Rashidul; Lima, Aldo; Babji, Sudhir; Shrestha, Sanjaya; Qureshi, Shahida; Amidou, Samie; Mduma, Estomih; Lee, Gwenyth; Yori, Pablo Peñataro; Guerrant, Richard L.; Bhutta, Zulfiqar; Mason, Carl; Kang, Gagandeep; Kabir, Mamun; Amour, Caroline; Bessong, Pascal; Turab, Ali; Seidman, Jessica; Olortegui, Maribel Paredes; Quetz, Josiane; Lang, Dennis; Gratz, Jean; Miller, Mark; Gottlieb, Michael

    2013-01-01

    Enteric infections are associated with linear growth failure in children. To quantify the association between intestinal inflammation and linear growth failure three commercially available enzyme-linked immunosorbent assays (neopterin [NEO], alpha-anti-trypsin [AAT], and myeloperoxidase [MPO]) were performed in a structured sampling of asymptomatic stool from children under longitudinal surveillance for diarrheal illness in eight countries. Samples from 537 children contributed 1,169 AAT, 916 MPO, and 954 NEO test results that were significantly associated with linear growth. When combined to form a disease activity score, children with the highest score grew 1.08 cm less than children with the lowest score over the 6-month period following the tests after controlling for the incidence of diarrheal disease. This set of affordable non-invasive tests delineates those at risk of linear growth failure and may be used for the improved assessments of interventions to optimize growth during a critical period of early childhood. PMID:23185075

  7. Role of dietary fiber in formation and prevention of small intestinal ulcers induced by nonsteroidal anti-inflammatory drug.

    Science.gov (United States)

    Satoh, Hiroshi

    2010-01-01

    Recent advances in endoscopic techniques such as capsule endoscopy have revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) often cause ulcers in the small intestine in humans, but there are few effective agents for treatment of small intestinal ulcers. Although the pathogenesis of NSAID-induced intestinal ulcer has been widely studied, dietary factors have seldom been considered. In the present review, the role of dietary fiber (DF) in the formation of NSAID-induced intestinal ulcers is discussed. In previous studies, small intestinal lesions were not observed when NSAIDs were administered to fasted rats, dogs, and cats, but were observed in conventionally-fed animals, suggesting the importance of feeding in the formation of intestinal lesions induced by NSAIDs. However, in animals fed diets containing low or no DF, indomethacin (IND) did not produce lesions in the small intestine, but did produce lesions in animals fed diets supplemented with insoluble dietary fiber (IDF, cellulose). The results suggest that IDF in the diet plays an important role in the formation of NSAID-induced intestinal lesions. On the other hand, addition of soluble dietary fibers (SDFs) such as pectin or mucin to regular diet markedly decreased NSAID-induced intestinal lesions. Thus, IDF and SDF have opposing effects on IND-induced intestinal lesions, i.e., IDF is harmful while SDF is protective. SDFs potentially represent a novel and safe means for protecting the small intestine against NSAID-induced intestinal lesions.

  8. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    International Nuclear Information System (INIS)

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang; Ren Jin

    2007-01-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca 2+ , AAI caused mitochondrial swelling, leakage of Ca 2+ , membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid

  9. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  10. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability

    International Nuclear Information System (INIS)

    Siegal, Tali; Pfeffer, M. Raphael

    1995-01-01

    Purpose: To investigate the profile of biochemical and physiological changes induced in the rat spinal cord by radiation, over a period of 8 months. Methods and Materials: The thoraco-lumbar spinal cords of Fisher rats were irradiated to a dose of 15 Gy. The rats were then followed and killed at various times afterward. Serotonin (5-HT) and its major metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed as well as prostaglandin synthesis. Microvessel permeability was assessed by quantitative evaluation of Evans blue dye extravasation. Results: None of the rats developed neurologic dysfunction, and histologic examination revealed only occasional gliosis in the ventral white matter at 240 days after irradiation. Serotonin levels were unchanged at 2, 14, and 56 days after radiation but increased at 120 and 240 days in the irradiated cord segments when compared to both the nonirradiated thoracic and cervical segments (p 2 (PGE 2 ), thromboxane (TXB 2 ), and prostacyclin [6 keto-PGF1α (6KPGF)] was noted, which returned to normal at 3 days. This was followed after 7 and 14 days by a significant fall off in synthesis of all three prostaglandins. Thereafter, at 28, 56, 120, and 240 days, escalated production of thromboxane followed, while prostacyclin synthesis remained markedly reduced (-88% of control level at 240 days). Up to 7 days after radiation the calculated (TXB 2 (6KPGF)) ratio remained balanced, regardless of the observed abrupt early fluctuations in their rate of synthesis. Later, between 7 and 240 days after radiation, a significant imbalance was present which became more pronounced over time. In the first 24 h after radiation, a 104% increase in microvessel permeability was observed which returned to normal by 3 days. Normal permeability was maintained at 14 and 28 days, but at 120 and 240 days a persistent and significant increase of 98% and 73% respectively above control level was noted. Conclusions: Radiation induces severe impairment in

  11. Precision-cut intestinal slices as an in vitro model to predict NSAID induced intestinal toxicity

    NARCIS (Netherlands)

    Niu, Xiaoyu; van der Bijl, Henk; Groothuis, Geny; de Graaf, Inge

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are associated with high prevalence of gastro-intestinal side-effects. In vivo studies suggest that uncoupling of oxidative phosphorylation is an important cause of the toxicity and that the toxicity is aggravated by enterohepatic circulation.

  12. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ. Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC. It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01. Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01 and suppressed zonulin release (P < 0.05. In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01 and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05 and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05. Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01, decreased the levels of serum zonulin (P < 0.05, normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may

  13. The impact of probiotics and n-3 long-chain polyunsaturated fatty acids on intestinal permeability in pregnancy: a randomised clinical trial.

    Science.gov (United States)

    Mokkala, K; Pussinen, P; Houttu, N; Koivuniemi, E; Vahlberg, T; Laitinen, K

    2018-02-27

    A disruption in intestinal barrier integrity may predispose individuals to metabolic aberrations, particularly during the vulnerable period of pregnancy. We investigated whether intestinal permeability, as measured by serum zonulin concentration, changes over the duration of pregnancy and whether this change is reflected in lipopolysaccharide (LPS) activity. Second, we tested in a randomised double-blind placebo controlled clinical trial the impact of consuming dietary probiotics and/or long chain polyunsaturated fatty acid (LC-PUFA) supplements in lowering serum zonulin concentration and LPS activity. The probiotic supplement was a combination of two bacteria, Bifidobacterium animalis ssp. lactis 420 and Lactobacillus rhamnosus HN001. This study included 200 overweight pregnant women participating in an on-going study; participants were randomised to consume either (1) probiotics, (2) LC-PUFA, (3) probiotics and LC-PUFA, or (4) placebo for each supplement. Blood samples were obtained at early, the baseline, and late pregnancy (mean 14 and 35 weeks of gestation, respectively). Serum zonulin concentration increased from early (mean (standard deviation): 62.7 (12.9) ng/ml) to late pregnancy by 5.3 (95%CI 3.7-6.9) ng/ml, and LPS activity increased from (0.16 (0.04) EU/ml) by 0.04 (95%CI 0.03-0.05) EU/ml. No differences among the intervention groups were detected in the change from early to late pregnancy in serum zonulin concentration (P=0.8) or LPS activity (P=0.2). The change in serum zonulin concentration during the pregnancy was associated with the weeks of follow up (r=0.25, Pzonulin concentration or LPS activity.

  14. Diabetes-induced mechanophysiological changes in the small intestine and colon

    DEFF Research Database (Denmark)

    Zhao, Mirabella; Liao, Donghua; Zhao, Jingbo

    2017-01-01

    The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities...... they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut...... and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients....

  15. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.

    Directory of Open Access Journals (Sweden)

    Lara Bull-Otterson

    Full Text Available Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD. Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.

  16. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Jing Yang

    2018-01-01

    Full Text Available Background. Tanshinone IIA sodium sulfonate (TSS is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS- induced intestinal injury is still unknown. Objective. The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods. Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6 in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3 and Beclin-1 were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results. TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion. The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury.

  17. PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine.

    Science.gov (United States)

    Li, Tiangang; Chen, Wenling; Chiang, John Y L

    2007-02-01

    Mitochondrial sterol 27-hydroxylase (CYP27A1) catalyzes oxidative cleavage of the sterol side chain in the bile acid biosynthetic pathway in the liver and 27-hydroxylation of cholesterol in most tissues. Recent studies suggest that 27-hydroxycholesterol (27-HOC) activates liver orphan receptor alpha (LXRalpha) and induces the cholesterol efflux transporters ABCA1 and ABCG1 in macrophages. The steroid- and bile acid-activated pregnane X receptor (PXR) plays critical roles in the detoxification of bile acids, cholesterol metabolites, and xenobiotics. The role of CYP27A1 in the intestine is not known. This study investigated PXR and CYP27A1 regulation of cholesterol metabolism in the human intestinal cell lines Caco2 and Ls174T. A human PXR ligand, rifampicin, induced CYP27A1 mRNA expression in intestine cells but not in liver cells. Rifampicin induced CYP27A1 gene transcription, increased intracellular 27-HOC levels, and induced ABCA1 and ABCG1 mRNA expression only in intestine cells. A functional PXR binding site was identified in the human CYP27A1 gene. Chromatin immunoprecipitation assays revealed that rifampicin induced the PXR recruitment of steroid receptor coactivator 1 to CYP27A1 chromatin. Cholesterol loading markedly increased intracellular 27-HOC levels in intestine cells. Rifampicin, 27-HOC, and a potent LXRalpha agonist, T0901317, induced ABCA1 and ABCG1 protein expression and stimulated cholesterol efflux from intestine cells to apolipoprotein A-I and HDL. This study suggests an intestine-specific PXR/CYP27A1/LXRalpha pathway that regulates intestine cholesterol efflux and HDL assembly.

  18. The Occurrence of Antibodies Against Gluten in Children with Autism Spectrum Disorders Does Not Correlate with Serological Markers of Impaired Intestinal Permeability.

    Science.gov (United States)

    Józefczuk, Jan; Konopka, Ewa; Bierła, Joanna Beata; Trojanowska, Ilona; Sowińska, Agnieszka; Czarnecki, Rafał; Sobol, Lucjan; Józefczuk, Paweł; Surdy, Weronika; Cukrowska, Bożena

    2018-02-01

    There is evidence that children with autism spectrum disorders (ASDs) display an increased immune reactivity against gluten, which is supposed to be the effect of intestinal barrier abnormalities. The aim of study was to evaluate the relation of antibody induced by gluten to zonulin and intestinal fatty acid binding proteins (I-FABP), that is, serological markers of an impaired gut barrier. The study included 77 patients with ASDs. Zonulin, I-FABP, celiac-specific antibodies, anti-gliadin antibodies (AGA), and antibodies against neural transglutaminase 6 (TG6) of immunoglobulin (Ig) A and IgG classes were detected in sera. Celiac-specific antibodies were negative in all ASD children, four children (5.2%) had positive anti-TG6 antibodies, and increased AGA-IgG production was found in 21 patients (27.3%). Mean levels of zonulin and I-FABP in ASD patients were similar to those found in healthy controls and revealed a negative correlation with age, whereas regression analysis revealed a significant positive relationship between antibody production and the age. Serum concentrations of zonulin and I-FABP showed no statistically significant association with antibody positivity. An increased production of antibodies related to gliadin and neural TG6 in ASD children is not related to serological markers of an impaired intestinal barrier.

  19. Enhanced intestinal permeability and oral bioavailability of enalapril maleate upon complexation with the cationic polymethacrylate Eudragit E100.

    Science.gov (United States)

    Ramírez-Rigo, María V; Olivera, María E; Rubio, Modesto; Manzo, Ruben H

    2014-05-13

    The low bioavailability of enalapril maleate associated to its instability in solid state motivated the development of a polyelectrolyte-drug complex between enalapril maleate and the cationic polymethacrylate Eudragit E100. The solid complexes were characterized by DSC-TG, FT-IR and X-ray diffraction. Their aqueous dispersions were evaluated for drug delivery in bicompartimental Franz cells and electrokinetic potentials. Stability in solid state was also evaluated using an HPLC-UV stability indicating method. Absorption of enalapril maleate was assessed thorough the rat everted gut sac model. In addition, urinary recovery after oral administration in rats was used as an indicator of systemic exposition. The solid materials are stable amorphous solids in which both moieties of enalapril maleate are ionically bonded to the polymer. Their aqueous dispersions exhibited controlled release over more than 7h in physiologic saline solution, being ionic exchange the fundamental mechanism that modified the extent and rate of drug release. Intestinal permeation of enalapril maleate was 1.7 times higher in the presence of the cationic polymer. This increase can be related with the capacity to adhere the mucosa due to the positive zeta potential of the complexes. As a consequence bioavailability was significantly improved (1.39 times) after oral administration of the complexes. In addition, no signs of chemical decomposition were observed after a 14months period. The results indicated that the products are new chemical entities that improve unfavorable properties of a useful drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 2. Observational evidence under snowpacks

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2006-01-01

    Meadow and forest CO2 amounts sampled beneath an approximately meter deep (steady state) snowpack at a subalpine site in southern Rocky Mountains of Wyoming are observed to vary by nearly 200 ppm over periods ranging from 4 to 15 days. This work employs the model of periodic, pressure-induced, advective transport in permeable media developed in...

  1. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  2. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  3. Metaxin deficiency alters mitochondrial membrane permeability and leads to resistance to TNF-induced cell killing.

    Science.gov (United States)

    Ono, Koh; Wang, Xiaofei; Kim, Sung Ouk; Armstrong, Lucas C; Bornstein, Paul; Han, Jiahuai

    2010-02-01

    Metaxin, a mitochondrial outer membrane protein, is critical for TNF-induced cell death in L929 cells. Its deficiency, caused by retroviral insertion-mediated mutagenesis, renders L929 cells resistance to TNF killing. In this study, we further characterized metaxin deficiency-caused TNF resistance in parallel with Bcl-X(L) overexpression-mediated death resistance. We did not find obvious change in mitochondria membrane potential in metaxin-deficient (Met(mut)) and Bcl-X(L)-overexpressing cells, but we did find an increase in the release rate of the mitochondrial membrane potential probe rhodamine 123 (Rh123) that was preloaded into mitochondria. In addition, overexpression of a function-interfering mutant of metaxin (MetaΔTM/C) or Bcl-X(L) in MCF-7.3.28 cells also resulted in an acquired resistance to TNF killing and a faster rate of Rh123 release, indicating a close correlation between TNF resistance and higher rates of the dye release from the mitochondria. The release of Rh123 can be controlled by the mitochondrial membrane permeability transition (PT) pore, as targeting an inner membrane component of the PT pore by cyclosporin A (CsA) inhibited Rh123 release. However, metaxin deficiency and Bcl-X(L) overexpression apparently affect Rh123 release from a site(s) different from that of CsA, as CsA can overcome their effect. Though both metaxin and Bcl-X(L) appear to function on the outer mitochondrial membrane, they do not interact with each other. They may use different mechanisms to increase the permeability of Rh123, since previous studies have suggested that metaxin may influence certain outer membrane porins while Bcl-X(L) may form pores on the outer membrane. The alteration of the mitochondrial outer membrane properties by metaxin deficiency and Bcl-X(L) overexpression, as indicated by a quicker Rh123 release, may be helpful in maintaining mitochondrial integrity.

  4. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability

    International Nuclear Information System (INIS)

    Siegal, T.; Pfeffer, M.R.

    1995-01-01

    To investigate the profile of biochemical and physiological changes induced in the rat spinal cord by radiation, over a period of 8 months. The thoraco-lumbar spinal cords of Fisher rats were irradiated to a dose of 15 Gy. The rats were then followed and killed at various times afterward. Serotonin (5-HT) and its major metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed as well as prostaglandin synthesis. Microvessel permeability was assessed by quantitative evaluation of Evans blue dye extravasation. None of the rats developed neurologic dysfunction, and histologic examination revealed only occasional gliosis in the ventral white matter at 240 days after irradiation. Serotonin levels were unchanged at 2, 14, and 56 days after radiation but increased at 120 and 240 days in the irradiated cord segments when compared to both the nonirradiated thoracic and cervical segments (p 2 (PGE 2 ), thromboxane (TXB 2 ), and prostacyclin [6 keto-PGF1α (6KPGF)] was noted, which returned to normal at 3 days. This was followed after 7 and 14 days by a significant fall off in synthesis of all three prostaglandins. Thereafter, at 28, 56, 120, and 240 days, escalated production of thromboxane followed, white prostacyclin synthesis remained markedly reduced (-88% of control level at 240 days). Up to 7 days after radiation the calculated TXB 2 /6KPGF ratio remained balanced, regardless of the observed abrupt early fluctuations in their rate of synthesis. Later, between 7 and 240 days after radiation, a significant imbalance was present which became more pronounced over time. In the first 24 h after radiation, a 104% increase in microvessel permeability was observed which returned to normal by 3 days. 57 refs., 3 figs

  5. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis.

    Science.gov (United States)

    Perrone, Erin E; Jung, Enjae; Breed, Elise; Dominguez, Jessica A; Liang, Zhe; Clark, Andrew T; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia-induced sepsis is a common cause of morbidity in the intensive care unit. Although pneumonia is initiated in the lungs, extrapulmonary manifestations occur commonly. In light of the key role the intestine plays in the pathophysiology of sepsis, we sought to determine whether MRSA pneumonia induces intestinal injury. FVB/N mice were subjected to MRSA or sham pneumonia and killed 24 h later. Septic animals had a marked increase in intestinal epithelial apoptosis by both hematoxylin-eosin and active caspase 3 staining. Methicillin-resistant S. aureus-induced intestinal apoptosis was associated with an increase in the expression of the proapoptotic proteins Bid and Bax and the antiapoptotic protein Bcl-xL in the mitochondrial pathway. In the receptor-mediated pathway, MRSA pneumonia induced an increase in Fas ligand but decreased protein levels of Fas, FADD, pFADD, TNF-R1, and TRADD. To assess the functional significance of these changes, MRSA pneumonia was induced in mice with genetic manipulations in proteins in either the mitochondrial or receptor-mediated pathways. Both Bid-/- mice and animals with intestine-specific overexpression of Bcl-2 had decreased intestinal apoptosis compared with wild-type animals. In contrast, Fas ligand-/- mice had no alterations in apoptosis. To determine if these findings were organism-specific, similar experiments were performed in mice subjected to Pseudomonas aeruginosa pneumonia. Pseudomonas aeruginosa induced gut apoptosis, but unlike MRSA, this was associated with increased Bcl-2 and TNF-R1 and decreased Fas. Methicillin-resistant S. aureus pneumonia thus induces organism-specific changes in intestinal apoptosis via changes in both the mitochondrial and receptor-mediated pathways, although the former may be more functionally significant.

  6. Tumor Necrosis Factor Induces Developmental Stage-Dependent Structural Changes in the Immature Small Intestine

    Directory of Open Access Journals (Sweden)

    Kathryn S. Brown

    2014-01-01

    Full Text Available Background. Premature infants are commonly subject to intestinal inflammation. Since the human small intestine does not reach maturity until term gestation, premature infants have a unique challenge, as either acute or chronic inflammation may alter the normal development of the intestinal tract. Tumor necrosis factor (TNF has been shown to acutely alter goblet cell numbers and villus length in adult mice. In this study we tested the effects of TNF on villus architecture and epithelial cells at different stages of development of the immature small intestine. Methods. To examine the effects of TNF-induced inflammation, we injected acute, brief, or chronic exposures of TNF in neonatal and juvenile mice. Results. TNF induced significant villus blunting through a TNF receptor-1 (TNFR1 mediated mechanism, leading to loss of villus area. This response to TNFR1 signaling was altered during intestinal development, despite constant TNFR1 protein expression. Acute TNF-mediated signaling also significantly decreased Paneth cells. Conclusions. Taken together, the morphologic changes caused by TNF provide insight as to the effects of inflammation on the developing intestinal tract. Additionally, they suggest a mechanism which, coupled with an immature immune system, may help to explain the unique susceptibility of the immature intestine to inflammatory diseases such as NEC.

  7. Vasoactive Intestinal Polypeptide and Muscarinic Receptors: Supersensitivity Induced by Long-Term Atropine Treatment

    Science.gov (United States)

    Hedlund, Britta; Abens, Janis; Bartfai, Tamas

    1983-04-01

    Long-term treatment of rats with atropine induced large increases in the numbers of muscarinic receptors and receptors for vasoactive intestinal polypeptide in the salivary glands. Since receptors for vasoactive intestinal polypeptide coexist with muscarinic receptors on the same neurons in this preparation, the results suggest that a drug that alters the sensitivity of one receptor may also affect the sensitivity of the receptor for a costored transmitter and in this way contribute to the therapeutic or side effects of the drug.

  8. Liver injury from ampicillin-induced intestinal microbiota distresses ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ampicillin on rat intestinal microflora and liver in the presence of high carbohydrate and protein diets. Methods: Male Wistar albino rats were divided into four groups. The first group served as the control, the second group was treated with ampicillin (50 mg/kg for 3 weeks) and fed with a ...

  9. Saireito (TJ-114, a Japanese traditional herbal medicine, reduces 5-fluorouracil-induced intestinal mucositis in mice by inhibiting cytokine-mediated apoptosis in intestinal crypt cells.

    Directory of Open Access Journals (Sweden)

    Shinichi Kato

    Full Text Available Clinical chemotherapy frequently causes intestinal mucositis as a side effect, which is accompanied by severe diarrhea. We recently showed that the cytokine-mediated apoptotic pathway might be important for the development of intestinal mucositis induced by 5-fluorouracil (5-FU. Saireito, the traditional Japanese herbal (Kampo medicine, is widely used to treat diarrhea and various inflammatory diseases in Japan. In the present study, we investigated the effect of saireito on 5-FU-induced intestinal mucositis in mice, especially in relation to apoptosis in the intestinal crypt. Male C57BL/6 mice were given 5-FU (50 mg/kg, i.p. once daily for 6 days. Intestinal mucositis was evaluated histochemically. Saireito (100-1000 mg/kg was administered p.o. twice daily for 6 days. Repeated 5-FU treatment caused severe intestinal mucositis including morphological damage, which was accompanied by body weight loss and diarrhea. Daily administration of saireito reduced the severity of intestinal mucositis in a dose-dependent manner. Body weight loss and diarrhea during 5-FU treatment were also significantly attenuated by saireito administration. The number of apoptotic and caspase-3-activated cells in the intestinal crypt was increased, and was accompanied by up-regulated tumor necrosis factor (TNF-α and interleukin (IL-1β mRNA within 24 h of the first 5-FU injection. However, all of these measures were significantly lower after saireito administration. These results suggest that saireito attenuates 5-FU-induced intestinal mucositis. This action may come from the reduction of apoptosis in the intestinal crypt via suppression of the up-regulation of inflammatory cytokines. Therefore, saireito may be clinically useful for the prevention of intestinal mucositis during cancer chemotherapy.

  10. Soluble Dietary Fiber Ameliorates Radiation-Induced Intestinal Epithelial-to-Mesenchymal Transition and Fibrosis.

    Science.gov (United States)

    Yang, Jianbo; Ding, Chao; Dai, Xujie; Lv, Tengfei; Xie, Tingbing; Zhang, Tenghui; Gao, Wen; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2017-11-01

    Intestinal fibrosis is a late complication of pelvic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue fibrosis. The aim of this study was to examine the effect of soluble dietary fiber on radiation-induced intestinal EMT and fibrosis in a mouse model. Apple pectin (4% wt/wt in drinking water) was administered to wild-type and pVillin-Cre-EGFP transgenic mice with intestinal fibrosis induced by a single dose of abdominal irradiation of 10 Gy. The effects of pectin on intestinal EMT and fibrosis, gut microbiota, and short-chain fatty acid (SCFA) concentration were evaluated. Intestinal fibrosis in late radiation enteropathy showed increased submucosal thickness and subepithelial collagen deposition. Enhanced green fluorescent protein (EGFP) + /vimentin + and EGFP + /α-smooth muscle actin (SMA) + coexpressing cells were most clearly observed at 2 weeks after irradiation and gradually decreased at 4 and 12 weeks. Pectin significantly attenuated the thickness of submucosa and collagen deposition at 12 weeks (24.3 vs 27.6 µm in the pectin + radiation-treated group compared with radiation-alone group, respectively, P soluble dietary fiber pectin protected the terminal ileum against radiation-induced fibrosis. This effect might be mediated by altered SCFA concentration in the intestinal lumen and reduced EMT in the ileal epithelium.

  11. Cinnamon Extract Improves TNF-a Induced Overproduction of Intestinal ApolipoproteinB-48 Lipoproteins

    Science.gov (United States)

    TNF-alpha stimulates the overproduction of intestinal apolipoproteins. We evaluated whether a water extract of cinnamon (Cinnulin PF®) improved the dyslipidemia induced by TNF-alpha in Triton WR-1339 treated hamsters, and whether Cinnulin PF® inhibits the TNF-alpha-induced over the secretion of apoB...

  12. Altered expression of matrix metalloproteinases and tight junction proteins in rats following PEMF-induced BBB permeability change.

    Science.gov (United States)

    Zhang, Ya Mei; Zhou, Yan; Qiu, Lian Bo; Ding, Gui Rong; Pang, Xiao Feng

    2012-04-01

    To investigate the expression of occludin, ZO-1, MMP-2, and MMP-9 in cerebral microvasculature following Pulse Electromagnetic Field (PEMF) induced BBB permeability change. Sprague-Dawley rats were randomized into PEMF and sham exposed groups (n = 8). After exposure to PEMF at 0.5, 1, 3, 6, and 12 h, BBB permeability was measured by Evans-Blue extravasation. The expression of occludin, ZO-1, MMP-2, and MMP-9 were detected by real-time quantitative reverse transcriptase PCR and western blotting. MMP-2 and MMP-9 activity were detected by EnzChek gelatinase assay. Compared with the sham group, PEMF exposure led to increased permeability of the BBB to EB, which was prolonged after exposure. BBB permeability became progressively more severe, and recovered at 6 h. The gene and protein expression of occludin and ZO-1 were significantly decreased, while MMP-2 and MMP-9 expression were significantly increased after exposure to PEMF. All levels of expression recovered 12 h following PEMF. Changes to BBB permeability were related to the alteration expression of tight junction proteins and matrix metalloproteinase after exposure to PEMF.

  13. pH-induced proton permeability changes of plasma membrane vesicles

    NARCIS (Netherlands)

    Miedema, H; Prins, HBA; Staal, H.

    In vivo studies with leaf cells of aquatic plant species such as Elodea nuttallii revealed the proton permeability and conductance of the plasma membrane to be strongly pH dependent. The question was posed if similar pH dependent permeability changes also occur in isolated plasma membrane vesicles.

  14. Preliminary study of the irradiation-induced modification of skin permeability

    International Nuclear Information System (INIS)

    Coelho, R.; Istin, M.

    1978-01-01

    Irradiation of the skin of an animal leads immediately to a strong increase in vascular permeability. If a dye is at once injected intraveinously it diffuses very rapidly in the irradiated zone, this becomes highly coloured and the colour intensity measurement gives a clue to the severity of the lesions produced. This phenomenon has been used in the past as a pharmacological test to study vascular permeability and is employed in this work to observe the effect of diosmine-titrated flavonoids on vascular permeability in inflammatory diseases. The capillary permeability increase due to local γ irradiation of rabbit skin has been accurately determined by measurement of the colouration observed after injection of Geigy Blue. Diosmine, injected intraperitoneally, protects the vascular system against increased permeability due to ionising radiations [fr

  15. Tooth bleaching induces changes in the vascular permeability of rat incisor pulps.

    Science.gov (United States)

    Ferreira, Vanessa Guarino; Nabeshima, Cleber Keiti; Marques, Márcia Martins; Paris, Adriana Fraga Costa Samos; Gioso, Marco Antônio; dos Reis, Rodrigo Sant'anna Aguiar; Machado, Manoel Eduardo de Lima

    2013-10-01

    To evaluate the inflammatory response in dental pulps of rat incisors subjected to tooth bleaching protocols with different HP concentrations and application times. 42 incisors from Wistar rats were submitted to tooth bleaching using concentrations of 25% or 35% HP for treatment times of 15, 30 or 45 minutes. Four non-bleached teeth were used as controls. The animals received an intravenous injection of India ink immediately after the bleaching procedure and were sacrificed 1 hour later. Six bleached teeth from each group and three controls were made transparent, and one sample from each group was processed for histological analysis. The data were statistically analyzed using Kruskal Wallis and Dunn's tests (P ink content was significantly higher in the samples that were bleached with 35% HP for 30 minutes and with both HP concentrations (25 and 35%) for 45 minutes than in the controls. For the samples bleached with the same HP concentration, the ink content was higher in samples that were bleached for 45 minutes. These results indicate that HP tooth bleaching can induce an increase in vascular permeability in rat incisors. Importantly, this increase is more dependent on the length of the bleaching procedure than on the concentration of the bleaching agent.

  16. Non-metabolic membrane tubulation and permeability induced by bioactive peptides.

    Directory of Open Access Journals (Sweden)

    Antonin Lamazière

    Full Text Available BACKGROUND: Basic cell-penetrating peptides are potential vectors for therapeutic molecules and display antimicrobial activity. The peptide-membrane contact is the first step of the sequential processes leading to peptide internalization and cell activity. However, the molecular mechanisms involved in peptide-membrane interaction are not well understood and are frequently controversial. Herein, we compared the membrane activities of six basic peptides with different size, charge density and amphipaticity: Two cell-penetrating peptides (penetratin and R9, three amphipathic peptides and the neuromodulator substance P. METHODOLOGY/PRINCIPAL FINDINGS: Experiments of X ray diffraction, video-microscopy of giant vesicles, fluorescence spectroscopy, turbidimetry and calcein leakage from large vesicles are reported. Permeability and toxicity experiments were performed on cultured cells. The peptides showed differences in bilayer thickness perturbations, vesicles aggregation and local bending properties which form lipidic tubular structures. These structures invade the vesicle lumen in the absence of exogenous energy. CONCLUSIONS/SIGNIFICANCE: We showed that the degree of membrane permeabilization with amphipathic peptides is dependent on both peptide size and hydrophobic nature of the residues. We propose a model for peptide-induced membrane perturbations that explains the differences in peptide membrane activities and suggests the existence of a facilitated "physical endocytosis," which represents a new pathway for peptide cellular internalization.

  17. Tl(+) induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria.

    Science.gov (United States)

    Korotkov, Sergey M; Nesterov, Vladimir P; Brailovskaya, Irina V; Furaev, Viktor V; Novozhilov, Artemy V

    2013-12-01

    Effects of Tl(+) were studied in experiments with isolated rat heart mitochondria (RHM) injected into 400 mOsm medium containing TlNO3 and a nitrate salt (KNO3 or NH4NO3) or TlNO3 and sucrose. Tl(+) increased permeability of the inner membrane of the RHM to K(+) and H(+). This manifested as an increase of the non-energized RHM swelling, in the order of sucrose rat heart mitochondria increased both the swelling and the inner membrane potential dissipation, as well as decreased basal state and 2,4-dinitrophenol-stimulated respiration. These effects of Tl(+) were suppressed by the MPTP inhibitors (cyclosporine A, ADP, bongkrekic acid, and n-ethylmaleimide), activated in the presence of the MPTP inducer (carboxyatractyloside) or mitoKATP inhibitor (5-hydroxydecanoate), but were not altered in the presence of mitoKATP agonists (diazoxide or pinacidil). We suggest that the greater sensitivity of heart and striated muscles, versus liver, to thallium salts in vivo can result in more vigorous Tl(+) effects on muscle cell mitochondria.

  18. Titanium dioxide induced inflammation in the small intestine.

    Science.gov (United States)

    Nogueira, Carolina Maciel; de Azevedo, Walter Mendes; Dagli, Maria Lucia Zaidan; Toma, Sérgio Hiroshi; Leite, André Zonetti de Arruda; Lordello, Maria Laura; Nishitokukado, Iêda; Ortiz-Agostinho, Carmen Lúcia; Duarte, Maria Irma Seixas; Ferreira, Marcelo Alves; Sipahi, Aytan Miranda

    2012-09-14

    To investigate the effects of titanium dioxide (TiO₂) nanoparticles (NPTiO₂) and microparticles (MPTiO₂) on the inflammatory response in the small intestine of mice. Bl 57/6 male mice received distilled water suspensions containing TiO₂ (100 mg/kg body weight) as NPTiO₂ (66 nm), or MPTiO₂ (260 nm) by gavage for 10 d, once a day; the control group received only distilled water. At the end of the treatment the duodenum, jejunum and ileum were extracted for assessment of cytokines, inflammatory cells and titanium content. The cytokines interleukin (IL)-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IL-23, tumor necrosis factor-α (TNF-α), intracellular interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were evaluated by enzyme-linked immunosorbent assay in segments of jejunum and ileum (mucosa and underlying muscular tissue). CD4+ and CD8+ T cells, natural killer cells, and dendritic cells were evaluated in duodenum, jejunum and ileum samples fixed in 10% formalin by immunohistochemistry. The titanium content was determined by inductively coupled plasma atomic emission spectrometry. We found increased levels of T CD4+ cells (cells/mm²) in duodenum: NP 1240 ± 139.4, MP 1070 ± 154.7 vs 458 ± 50.39 (P NP 908.4 ± 130.3, MP 813.8 ± 103.8 vs 526.6 ± 61.43 (P NP 818.60 ± 123.0, MP 640.1 ± 32.75 vs 466.9 ± 22.4 (P NP 33.98 ± 11.76, MP 74.11 ± 25.65 vs 19.06 ± 3.92 (P NP 17.36 ± 9.96, MP 22.94 ± 7.47 vs 2.19 ± 0.65 (P NP 157.20 ± 75.80, MP 134.50 ± 38.31 vs 22.34 ± 5.81 (P NP 3.71 ± 1.33, MP 5.44 ± 1.67 vs 0.99 ± 019 (P NP 15.85 ± 9.99, MP 34.08 ± 11.44 vs 2.81 ± 0.69 (P NP 780.70 ± 318.50, MP 1409.00 ± 502.20 vs 205.50 ± 63.93 (P < 0.05). Our findings indicate that TiO₂ particles induce a Th1-mediated inflammatory response in the small bowel in mice.

  19. Titanium dioxide induced inflammation in the small intestine

    Science.gov (United States)

    Nogueira, Carolina Maciel; de Azevedo, Walter Mendes; Dagli, Maria Lucia Zaidan; Toma, Sérgio Hiroshi; Leite, André Zonetti de Arruda; Lordello, Maria Laura; Nishitokukado, Iêda; Ortiz-Agostinho, Carmen Lúcia; Duarte, Maria Irma Seixas; Ferreira, Marcelo Alves; Sipahi, Aytan Miranda

    2012-01-01

    AIM: To investigate the effects of titanium dioxide (TiO2) nanoparticles (NPTiO2) and microparticles (MPTiO2) on the inflammatory response in the small intestine of mice. METHODS: Bl 57/6 male mice received distilled water suspensions containing TiO2 (100 mg/kg body weight) as NPTiO2 (66 nm), or MPTiO2 (260 nm) by gavage for 10 d, once a day; the control group received only distilled water. At the end of the treatment the duodenum, jejunum and ileum were extracted for assessment of cytokines, inflammatory cells and titanium content. The cytokines interleukin (IL)-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IL-23, tumor necrosis factor-α (TNF-α), intracellular interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were evaluated by enzyme-linked immunosorbent assay in segments of jejunum and ileum (mucosa and underlying muscular tissue). CD4+ and CD8+ T cells, natural killer cells, and dendritic cells were evaluated in duodenum, jejunum and ileum samples fixed in 10% formalin by immunohistochemistry. The titanium content was determined by inductively coupled plasma atomic emission spectrometry. RESULTS: We found increased levels of T CD4+ cells (cells/mm2) in duodenum: NP 1240 ± 139.4, MP 1070 ± 154.7 vs 458 ± 50.39 (P < 0.01); jejunum: NP 908.4 ± 130.3, MP 813.8 ± 103.8 vs 526.6 ± 61.43 (P < 0.05); and ileum: NP 818.60 ± 123.0, MP 640.1 ± 32.75 vs 466.9 ± 22.4 (P < 0.05). In comparison to the control group, the groups receiving TiO2 showed a statistically significant increase in the levels of the inflammatory cytokines IL-12, IL-4, IL-23, TNF-α, IFN-γ and TGF-β. The cytokine production was more pronounced in the ileum (mean ± SE): IL-12: NP 33.98 ± 11.76, MP 74.11 ± 25.65 vs 19.06 ± 3.92 (P < 0.05); IL-4: NP 17.36 ± 9.96, MP 22.94 ± 7.47 vs 2.19 ± 0.65 (P < 0.05); IL-23: NP 157.20 ± 75.80, MP 134.50 ± 38.31 vs 22.34 ± 5.81 (P < 0.05); TNFα: NP 3.71 ± 1.33, MP 5.44 ± 1.67 vs 0.99 ± 019 (P < 0.05); IFNγ: NP 15.85 ± 9

  20. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  1. Assessment of the Effect of Intestinal Permeability Probes (Lactulose And Mannitol and Other Liquids on Digesta Residence Times in Various Segments of the Gut Determined by Wireless Motility Capsule: A Randomised Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Ivana R Sequeira

    Full Text Available Whilst the use of the mannitol/lactulose test for intestinal permeability has been long established it is not known whether the doses of these sugars modify transit time Similarly it is not known whether substances such as aspirin that are known to increase intestinal permeability to lactulose and mannitol and those such as ascorbic acid which are stated to be beneficial to gastrointestinal health also influence intestinal transit time.Gastric and intestinal transit times were determined with a SmartPill following consumption of either a lactulose mannitol solution, a solution containing 600 mg aspirin, a solution containing 500 mg of ascorbic acid or an extract of blackcurrant, and compared by doubly repeated measures ANOVA with those following consumption of the same volume of a control in a cross-over study in six healthy female volunteers. The dominant frequencies of cyclic variations in gastric pressure recorded by the Smartpill were determined by fast Fourier transforms.The gastric transit times of lactulose mannitol solutions, of aspirin solutions and of blackcurrant juice did not differ from those of the control. The gastric transit times of the ascorbic acid solutions were significantly shorter than those of the other solutions. There were no significant differences between the various solutions either in the total small intestinal or colonic transit times. The intraluminal pHs during the initial quartiles of the small intestinal transit times were lower than those in the succeeding quartiles. This pattern did not vary with the solution that was consumed. The power of the frequencies of cyclic variation in intragastric pressure recorded by the Smartpill declined exponentially with increase in frequency and did not peak at the reported physiological frequencies of gastric contractile activity.Whilst the segmental residence times were broadly similar to those using other methods, the high degree of variation between subjects generally

  2. Effects of experimentally induced intestinal obstruction on the electrolyte profile in dogs

    International Nuclear Information System (INIS)

    Dar, E.M.; Khan, M.A.; Mehmood, A.K.

    2004-01-01

    This study was conducted to quantitatively asses the changes in serum electrolyte profile after experimentally induced upper and lower intestinal obstruction in dogs. Ten dogs of either sex ranging in weight from 20-25 Kg were selected. After thorough physical examination, de-worming and vaccination they were randomly divided into 3 groups. Groups A and B comprised of four animals each while group C had two animals. After preparing the operation site, upper intestinal obstruction was induced in animals of group A and lower intestinal obstruction was induced in all animals of group B through mid line laparotomy under general anesthesia. Animals of group C were kept as control without induction of any obstruction. Proper post-operative care was given to the operated animals. Blood samples were collected from all animals at an interval of 24 hours and evaluated to observe changes in serum sodium, potassium and chloride levels. The results of this study showed marked decline in electrolyte levels in animals of both groups A and B, however this decline was more severe and rapid in group A than group B, while group c acted normally. It can be concluded that upper intestinal obstruction is more fatal in its consequences than lower intestinal obstruction, which is relatively less dangerous in producing its ill effects. (author)

  3. Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Brenda M Geiger

    Full Text Available BACKGROUND: Melanin-concentrating hormone (MCH, an evolutionarily conserved appetite-regulating neuropeptide, has been recently implicated in the pathogenesis of inflammatory bowel disease (IBD. Expression of MCH is upregulated in inflamed intestinal mucosa in humans with colitis and MCH-deficient mice treated with trinitrobenzene-sulfonic acid (TNBS develop an attenuated form of colitis compared to wild type animals. Zebrafish have emerged as a new animal model of IBD, although the majority of the reported studies concern zebrafish larvae. Regulation MCH expression in the adult zebrafish intestine remains unknown. METHODS: In the present study we induced enterocolitis in adult zebrafish by intrarectal administration of TNBS. Follow-up included survival analysis, histological assessment of changes in intestinal architecture, and assessment of intestinal infiltration by myeloperoxidase positive cells and cytokine transcript levels. RESULTS: Treatment with TNBS dose-dependently reduced fish survival. This response required the presence of an intact microbiome, since fish pre-treated with vancomycin developed less severe enterocolitis. At 6 hours post-challenge, we detected a significant influx of myeloperoxidase positive cells in the intestine and upregulation of both proinflammatory and anti-inflammatory cytokines. Most importantly, and in analogy to human IBD and TNBS-induced mouse experimental colitis, we found increased intestinal expression of MCH and its receptor in TNBS-treated zebrafish. CONCLUSIONS: Taken together these findings not only establish a model of chemically-induced experimental enterocolitis in adult zebrafish, but point to effects of MCH in intestinal inflammation that are conserved across species.

  4. FLLL32, a curcumin analog, ameliorates intestinal injury in necrotizing enterocolitis.

    Science.gov (United States)

    Eckert, Jeffrey; Scott, Brian; Lawrence, Shelley M; Ihnat, Michael; Chaaban, Hala

    2017-01-01

    Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that primarily affects premature infants. It is characterized by inflammation and leukocyte infiltration that can progress to intestinal necrosis, perforation, systemic inflammatory response, and death. In this study, we examined the effect of FLLL32, a curcumin analog, on an NEC-like neonatal intestinal injury model. NEC was induced in CD-1 mice pups using the Paneth cell ablation and Klebsiella infection model. Pups were divided into sham, NEC, and NEC + FLLL32 groups. At the end of the experiment, pups were euthanized; whole blood and small intestines were harvested. Intestinal inflammatory cytokine profile, in vivo intestinal permeability using serum fluorescein isothiocyanate-dextran, and histological injury scores were compared between the groups. FLLL32-treated pups had lower intestinal injury, improved intestinal permeability, and lower proinflammatory cytokine profiles compared to those in untreated pups with NEC. These results suggest that FLLL32 plays a protective role in NEC.

  5. Dietary L-arginine supplementation reduces Methotrexate-induced intestinal mucosal injury in rat

    Directory of Open Access Journals (Sweden)

    Koppelmann Tal

    2012-04-01

    Full Text Available Abstract Background Arginine (ARG and nitric oxide maintain the mucosal integrity of the intestine in various intestinal disorders. In the present study, we evaluated the effects of oral ARG supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX-induced intestinal damage in a rat. Methods Male rats were divided into four experimental groups: Control rats, CONTR-ARG rats, were treated with oral ARG given in drinking water 72 hours before and 72 hours following vehicle injection, MTX rats were treated with a single dose of methotrexate, and MTX-ARG rats were treated with oral ARG following injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. RT-PCR was used to determine bax and bcl-2 mRNA expression. Results MTX-ARG rats demonstrated greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in jejunum and ileum and crypt depth in ileum, compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-ARG rats (vs MTX was accompanied by decreased bax mRNA and protein expression and increased bcl-2 protein levels. Conclusions Treatment with oral ARG prevents mucosal injury and improves intestinal recovery following MTX- injury in the rat.

  6. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens.

    Science.gov (United States)

    Awad, Wageha A; Hess, Claudia; Hess, Michael

    2017-02-10

    Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird's health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction's molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as "leaky gut". A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can

  7. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; van der Heide, S.; van den Wijngaard, R. M.; de Jonge, W. J.; Boeckxstaens, G. E.

    2008-01-01

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  8. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; Van der Heide, S.; van den Wijngaard, R. M.; Boeckxstaens, G. E.; de Jonge, Wouter J.

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  9. Fosmidomycin uptake into Plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways.

    Directory of Open Access Journals (Sweden)

    Stefan Baumeister

    Full Text Available BACKGROUND: Highly charged compounds typically suffer from low membrane permeability and thus are generally regarded as sub-optimal drug candidates. Nonetheless, the highly charged drug fosmidomycin and its more active methyl-derivative FR900098 have proven parasiticidal activity against erythrocytic stages of the malaria parasite Plasmodium falciparum. Both compounds target the isoprenoid biosynthesis pathway present in bacteria and plastid-bearing organisms, like apicomplexan parasites. Surprisingly, the compounds are inactive against a range of apicomplexans replicating in nucleated cells, including Toxoplasma gondii. METHODOLOGY/PRINCIPAL FINDINGS: Since non-infected erythrocytes are impermeable for FR90098, we hypothesized that these drugs are taken up only by erythrocytes infected with Plasmodium. We provide evidence that radiolabeled FR900098 accumulates in theses cells as a consequence of parasite-induced new properties of the host cell, which coincide with an increased permeability of the erythrocyte membrane. Babesia divergens, a related parasite that also infects human erythrocytes and is also known to induce an increase in membrane permeability, displays a similar susceptibility and uptake behavior with regard to the drug. In contrast, Toxoplasma gondii-infected cells do apparently not take up the compounds, and the drugs are inactive against the liver stages of Plasmodium berghei, a mouse malaria parasite. CONCLUSIONS/SIGNIFICANCE: Our findings provide an explanation for the observed differences in activity of fosmidomycin and FR900098 against different Apicomplexa. These results have important implications for future screens aimed at finding new and safe molecular entities active against P. falciparum and related parasites. Our data provide further evidence that parasite-induced new permeability pathways may be exploited as routes for drug delivery.

  10. Undernutrition, Vitamin A and Iron Deficiency Are Associated with Impaired Intestinal Mucosal Permeability in Young Bangladeshi Children Assessed by Lactulose/Mannitol Test.

    Directory of Open Access Journals (Sweden)

    Md Iqbal Hossain

    Full Text Available Lactulose/mannitol (L:M test has been used as a non-invasive marker of intestinal mucosal -integrity and -permeability (enteropathy. We investigated the association of enteropathy with anthropometrics, micronutrient- status, and morbidity in children.The urine and blood samples were collected from 925 children aged 6-24 months residing in Mirpur slum of Dhaka, Bangladesh during November 2009 to April 2013. L:M test and micronutrient status were assessed in the laboratory of International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b following standard procedure.Mean±SD age of the children was 13.2±5.2 months and 47.8% were female. Urinary- lactulose recovery was 0.264±0.236, mannitol recovery was 3.423±3.952, and L:M was 0.109±0.158. An overall negative correlation (Spearman's-rho of L:M was found with age (rs = -0.087; p = 0.004, weight-for-age (rs = -0.077; p = 0.010, weight-for-length (rs = -0.060; p = 0.034, mid-upper-arm-circumference (rs = -0.098; p = 0.001 and plasma-retinol (rs = -0.105; p = 0.002; and a positive correlation with plasma α-1-acid glycoprotein (rs = 0.066; p = 0.027. However, most of the correlations were not very strong. Approximately 44% of children had enteropathy as reflected by L:M of ≥0.09. Logistic regression analysis revealed that younger age (infancy (adjusted odds ratio (AOR = 1.35; p = 0.027, diarrhea (AOR = 4.00; p = 0.039 or fever (AOR = 2.18; p = 0.003 within previous three days of L:M test were the risk factors of enteropathy (L:M of ≥0.09.Enteropathy (high L:M is associated with younger age, undernutrition, low vitamin A and iron status, and infection particularly diarrhea and fever.

  11. Stress and Damage Induced Gas Flow Pattern and Permeability Variation of Coal from Songzao Coalfield in Southwest China

    Directory of Open Access Journals (Sweden)

    Minghui Li

    2016-05-01

    Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.

  12. Permeability and morphology of dentin after erosion induced by acidic drinks.

    Science.gov (United States)

    Prati, Carlo; Montebugnoli, Lucio; Suppa, Pietro; Valdrè, Giovanni; Mongiorgi, Romano

    2003-04-01

    The aims of this study were to evaluate 1) the alterations of dentin permeability after single exposure of dentin to several acidic soft drinks with different acid composition; 2) the effectiveness of smear layer on dentin surface to prevent erosion of sound dentin; and 3) the role of brushing procedures. Dentin discs from human third molars were prepared. Each disc was treated with 0.5 M neutral EDTA for 5 minutes to remove the smear layer and to calculate the maximum fluid flow rate for each disc (to which an arbitrary value of 100% was assigned) using a pressure apparatus working at 1.0 psi. An homogeneous thin smear layer was then recreated with an abrasive paper under water. The following acidic drinks were applied for 5 minutes onto dentin surface: cola drink (phosphoric acid), orange fruit juice (ascorbic + citric acid), white wine (tartaric acid), vinegar (acetic acid), and mucolytic syrup (benzoic and tartaric acid). Each sample was then brushed for 3 minutes. Finally, each sample was brushed with a toothpaste and, as the final step, etched with phosphoric acid for 1 minute. Permeability was measured after each step. All acidic drinks were able to statistically increase dentin permeability and to open dentinal tubules by removing the smear layer. The study demonstrated that acidic drinks increased dentin permeability by removing and dissolving the smear layer and smear plugs. The erosion of peritubular dentin and smear plug removal is the main agent responsible for the increase in dentin permeability and probably for clinical dentin hypersensitivity. Brushing procedures reduced dentin permeability, creating a new fine and thin smear layer. Toothpaste may play a protective role in preventing complete smear layer removal and reducing dentin hypersensitivity by producing a new artificial smear layer and deposit inside tubules. The use and the abuse of acidic drinks may damage dentin and increase the risk for dentin hypersensitivity.

  13. Somatostatin does not attenuate intestinal injury in dextran sodium sulphate-induced subacute colitis

    Directory of Open Access Journals (Sweden)

    J. D. van Bergeijk

    1998-01-01

    Full Text Available From several in vitro and in vivo studies involvement of som atostatin (SMS in intestinal inflammation emerge. Acute colitis induced in rats is attenuated by the long-acting SMS analogue octreotide. We studied the potential beneficial effect of SMS on non-acute experimental colitis. BALB/c mice received either saline, SMS-14 (36 or 120 μg daily or octreotide (3 μg daily subcutaneously delivered by implant osmotic pumps. A non-acute colitis was induced by administration of dextran sodium sulphate (DSS 10% in drinking water during 7 days. DSS evoked a mild, superficial pancolitis, most characterized by mucosal ulceration and submucosal influx of neutrophils. Neither SMS-14 nor octreotide reduced mucosal inflammatory score or macroscopical disease activity, although reduction of intestinal levels of interleukin1 β (IL-1 β, IL-6 and IL-10 during DSS was augmented both by SMS and octreotide. A slight increase of neutrophil influx was seen during SMS administration in animals not exposed to DSS. In conclusion, SMS or its long-acting analogue did not reduce intestinal inflammation in non-acute DSS-induced colitis. According to the cytokine profile observed, SMS-14 and octreotide further diminished the reduction of intestinal macrophage and Th2 lymphocyte activity.

  14. [Digestion of pea and soya proteins in the preruminant calf. I. Circulating levels of nutrients, antibody formation and intestinal permeability to macromolecules].

    Science.gov (United States)

    Nunes do Prado, I; Toullec, R; Lallès, J P; Guéguen, J; Hingand, J; Guilloteau, P

    1989-01-01

    Three milk-substitutes (control, pea and soya-bean)were given to 6 preruminant calves. In the control diet protein was almost entirely provided by skim milk powder. In the pea diet a pregelatinized dehulled pea flour provided 33.5% of the protein, the remainder being supplied by skim milk powder. In the soya-bean diet, 73.2% of the protein were provided by a soya-bean isolate and the remainder by whey powder. The concentrations of plasma triglycerides and the free alpha-amino nitrogen in the peripheral blood were lower with the pea and soya-bean diets than with the control diet before the morning meal, but became higher after feeding. That suggested a faster abomasal emptying of fat and protein with the pea and especially the soya-bean diet. Systemic antibody responses were induced against pea protein but not against soya-bean protein. No effect of the diet on the plasma concentration of immunoreactive beta-lactoglobulin was apparent after 6 days, suggesting there was no important change in gut permeability at least at that time.

  15. Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure.

    Science.gov (United States)

    Fishman, Jordan E; Levy, Gal; Alli, Vamsi; Sheth, Sharvil; Lu, Qu; Deitch, Edwin A

    2013-01-01

    Recent studies demonstrate that mechanisms underlying gut barrier failure include systemic processes and less studied luminal processes. We thus tested the hypothesis that mucus layer oxidation is a component of trauma/hemorrhagic shock-induced gut injury and dysfunction. Male Sprague-Dawley rats underwent trauma/hemorrhagic shock. Controls underwent trauma only. Mucus from the terminal 30 cm of the ileum was collected, processed, and analyzed for reactive nitrogen intermediates (RNI)-mediated damage, reactive oxygen species (ROS)-induced damage, and total antioxidant capacity. The distal ileum was stained to quantify the mucus layer; gut permeability was assessed physiologically. A time course study was conducted to determine the temporal sequence of mucus layer damage. The role of free radical-mediated damage to the gut barrier was investigated by the effect of the free radical scavenger dimethyl sulfoxide on trauma/hemorrhagic shock-induced changes on the mucus and on gut permeability. Trauma/hemorrhagic shock increased intestinal permeability, which was associated with evidence of loss of the unstirred mucus layer. These changes correlated with increased ROS- and RNI-mediated mucus damage and loss of mucus total antioxidant capacity. Based on the time course study, ROS-mediated mucus damage and loss of total antioxidant capacity were present immediately following shock, whereas RNI-mediated damage was delayed for 3 h. Dimethyl sulfoxide ameliorated gut barrier loss, ROS-mediated changes to the mucus layer, and loss of total antioxidant capacity. There was no change in RNI-induced changes to the mucus layer. These results support the hypothesis that trauma/hemorrhagic shock leads to mucus damage and gut dysfunction through the generation of free radical species.

  16. Baicalin pharmacokinetic profile of absorption process using novel in-vitro model: cytochrome P450 3A4-induced Caco-2 cell monolayers combined with rat intestinal rinse fluids.

    Science.gov (United States)

    Morisaki, Tomoko; Hou, Xiao-Long; Takahashi, Kyoko; Takahashi, Koichi

    2013-10-01

    This study was designed to investigate baicalin (BG) pharmacokinetic profile in absorption process using a new model and evaluate the potentiality as a new model. The effects of BG on intestinal cytochrome P450 3A4 (CYP3A) protein/mRNA expression, activity and permeability glycoprotein (P-gp) were evaluated in CYP3A4-induced Caco-2 cell monolayers or rats. Intestinal rinse fluids (IF) were obtained from rat were added to modified Caco-2 monolayers. Orally administered BG (7 days pretreatment) inhibited intestinal CYP3A activity and protein expression. Baicalein (B) converted from BG by IF was detected in the upper jejunum in a portion-dependent manner. Subsequently, most BG were converted to B in the caecum. In modified Caco-2 monolayers, BG exhibited no effect on CYP3A4 activity or mRNA, whereas B and BG treated with IF inhibited CYP3A4 transcription and activity. Intestinal CYP3A was inhibited following oral administration of BG to rat. Correspondingly, BG-mediated CYP3A inhibition was shown in vitro using modified Caco-2 monolayers treated with IF. Hence, in-vivo intestinal absorption pharmacokinetic was reproduced in vitro. IF is a key determinant of intestinal absorption, and it facilitated inhibition of CYP3A by B, not BG. © 2013 Royal Pharmaceutical Society.

  17. Introducing enteral feeding induces intestinal subclinical inflammation and respective chromatin changes in preterm pigs

    DEFF Research Database (Denmark)

    Willems, Rhea; Krych, Lukasz; Rybicki, Verena

    2015-01-01

    AIM: To analyze how enteral food introduction affects intestinal gene regulation and chromatin structure in preterm pigs. MATERIALS & METHODS: Preterm pigs were fed parenteral nutrition plus/minus slowly increasing volumes of enteral nutrition. Intestinal gene-expression and chromatin structure...... were analyzed 5 days after birth. RESULTS: Enteral feeding led to differential upregulation of inflammatory and pattern recognition receptor genes, including IL8 (median: 5.8, 95% CI: 3.9-7.8 for formula; median: 2.2, 95% CI: 1.3-3.3 for colostrum) and TLR4 (median: 3.7, 95% CI: 2.6-4.8 for formula...... stimulation with lipopolysaccharide (median: 7.0; interquartile range: 5.63-8.85) compared with naive cells (median 4.2; interquartile range: 2.45-6.33; p = 0.03). CONCLUSION: Enteral feeding, particular with formula, induces subclinical inflammation in the premature intestine and more open chromatin...

  18. Lactobacillus GG and tributyrin supplementation reduce antibiotic-induced intestinal injury.

    Science.gov (United States)

    Cresci, Gail; Nagy, Laura E; Ganapathy, Vadivel

    2013-11-01

    Antibiotic therapy negatively alters the gut microbiota. Lactobacillus GG (LGG) decreases antibiotic-associated diarrhea (AAD) symptoms, but the mechanisms are unknown. Butyrate has beneficial effects on gut health. Altered intestinal gene expression occurs in the absence of gut microbiota. We hypothesized that antibiotic-induced changes in gut microbiota reduce butyrate production, varying genes involved with gut barrier integrity and water and electrolyte absorption, lending to AAD, and that simultaneous supplementation with LGG and/or tributyrin would prevent these changes. C57BL/6 mice aged 6-8 weeks received a chow diet while divided into 8 treatment groups (± saline, ± LGG, ± tributyrin, or both). Mice received treatments orally for 7 days with ± broad-spectrum antibiotics. Water intake was recorded daily and body weight was measured. Intestine tissue samples were obtained and analyzed for expression of genes and proteins involved with water and electrolyte absorption, butyrate transport, and gut integrity via polymerase chain reaction and immunohistochemistry. Antibiotics decreased messenger RNA (mRNA) expression (butyrate transporter and receptor, Na(+)/H(+) exchanger, Cl(-)/HCO3 (-), and a water channel) and protein expression (butyrate transporter, Na(+)/H(+) exchanger, and tight junction proteins) in the intestinal tract. LGG and/or tributyrin supplementation maintained intestinal mRNA expression to that of the control animals, and tributyrin maintained intestinal protein intensity expression to that of control animals. Broad-spectrum antibiotics decrease expression of anion exchangers, butyrate transporter and receptor, and tight junction proteins in mouse intestine. Simultaneous oral supplementation with LGG and/or tributyrin minimizes these losses. Optimizing intestinal health with LGG and/or tributyrin may offer a preventative therapy for AAD.

  19. The role of endogenous nitric oxide and platelet-activating factor in hypoxia-induced intestinal injury in rats.

    Science.gov (United States)

    Caplan, M S; Hedlund, E; Hill, N; MacKendrick, W

    1994-02-01

    Nitric oxide is an endothelium-derived relaxing factor that promotes capillary integrity, inhibits leukocyte adherence and activation, and scavenges oxygen radicals. Because these effects are important in experimental intestinal injury, we studied the role of NO inhibition on hypoxia-induced bowel necrosis in the rat and investigated the interaction between platelet-activating factor (PAF) and NO in this model. Sprague-Dawley rats were treated with either hypoxia, NO synthase inhibition (NG-methyl-L-arginine [LNMA] or NG-nitro-L-arginine methyl ester [L-NAME]), hypoxia+LNMA, hypoxia+LNMA+NO donors, or hypoxia+LNMA+PAF receptor inhibition. Evaluations included blood pressure, superior mesenteric artery blood flow, arterial blood gases, histological intestinal injury, intestinal myeloperoxidase activity, and intestinal PAF activity. We found that hypoxia alone for 90 minutes (10% O2, partial O2 pressure = 45 mm Hg) or LNMA alone had no detrimental effects. However, hypoxia+LNMA together caused hypotension, metabolic acidosis, intestinal injury, increased intestinal myeloperoxidase activity, and elevated intestinal PAF concentrations that were prevented by exogenous L-arginine. Furthermore, the hypotension and intestinal injury was prevented by PAF receptor blockade. We conclude that endogenous NO protects the intestine from hypoxia-induced inflammation and injury, and the balance between local PAF and NO modulates the outcome of hypoxia-stressed intestine.

  20. Effect of Lactobacilli on Paracellular Permeability in the Gut

    Directory of Open Access Journals (Sweden)

    Marie-Louise Johansson Hagslatt

    2011-01-01

    Full Text Available Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells.

  1. Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Eliane von Klitzing

    Full Text Available Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction.Secondary abiotic mice were generated by broad-spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based methods. At day 7 post infection (p.i. with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra-intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney and systemic compartments including spleen and serum.With respect to the intestinal microbiota composition "humanized" mice display

  2. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research

    Science.gov (United States)

    Gonzalez, Liara M.; Moeser, Adam J.

    2014-01-01

    Research in the field of ischemia-reperfusion injury continues to be plagued by the inability to translate research findings to clinically useful therapies. This may in part relate to the complexity of disease processes that result in intestinal ischemia but may also result from inappropriate research model selection. Research animal models have been integral to the study of ischemia-reperfusion-induced intestinal injury. However, the clinical conditions that compromise intestinal blood flow in clinical patients ranges widely from primary intestinal disease to processes secondary to distant organ failure and generalized systemic disease. Thus models that closely resemble human pathology in clinical conditions as disparate as volvulus, shock, and necrotizing enterocolitis are likely to give the greatest opportunity to understand mechanisms of ischemia that may ultimately translate to patient care. Furthermore, conditions that result in varying levels of ischemia may be further complicated by the reperfusion of blood to tissues that, in some cases, further exacerbates injury. This review assesses animal models of ischemia-reperfusion injury as well as the knowledge that has been derived from each to aid selection of appropriate research models. In addition, a discussion of the future of intestinal ischemia-reperfusion research is provided to place some context on the areas likely to provide the greatest benefit from continued research of ischemia-reperfusion injury. PMID:25414098

  3. The myogenic component in distention-induced peristalsis in the guinea pig small intestine.

    Science.gov (United States)

    Donnelly, G; Jackson, T D; Ambrous, K; Ye, J; Safdar, A; Farraway, L; Huizinga, J D

    2001-03-01

    In an in vitro model for distention-induced peristalsis in the guinea pig small intestine, the electrical activity, intraluminal pressure, and outflow of contents were studied simultaneously to search for evidence of myogenic control activity. Intraluminal distention induced periods of nifedipine-sensitive slow wave activity with superimposed action potentials, alternating with periods of quiescence. Slow waves and associated high intraluminal pressure transients propagated aborally, causing outflow of content. In the proximal small intestine, a frequency gradient of distention-induced slow waves was observed, with a frequency of 19 cycles/min in the first 1 cm and 11 cycles/min 10 cm distally. Intracellular recording revealed that the guinea pig small intestinal musculature, in response to carbachol, generated slow waves with superimposed action potentials, both sensitive to nifedipine. These slow waves also exhibited a frequency gradient. In addition, distention and cholinergic stimulation induced high-frequency membrane potential oscillations (~55 cycles/min) that were not associated with distention-induced peristalsis. Continuous distention produced excitation of the musculature, in part neurally mediated, that resulted in periodic occurrence of bursts of distally propagating nifedipine-sensitive slow waves with superimposed action potentials associated with propagating intraluminal pressure waves that caused pulsatile outflow of content at the slow wave frequency.

  4. Skin alterations induced by long-term exposure to uranium and their effect on permeability

    International Nuclear Information System (INIS)

    Ubios, A.M.; Marzorati, M.; Cabrini, R.L.

    1997-01-01

    The skin is a probable route of incorporation of uranium by percutaneous absorption. The changes in epidermal thickness and their effect on skin permeability after uranium exposure are reported herein. Two experiments (A and B) were performed in Wistar rats weighing 60 g. In experiment A the animals were exposed to U 3 O 8 (0.012 g d - 1 ) in 30 daily topical applications. In experiment B the animals were treated as in experiment A, followed by a period of non-exposure of 60 d. Samples of the treated area of skin were taken for histologic studies and for the study of the skin permeability. The epidermal thickness was measured on the histological sections. Epidermis was thinner in experimental than in control animals in both experiments. The values in the control groups were 41.05 ± 14.03 μm (A) and 38.92 ± 16.50 μm (B) and 21.35 ± 10.29 μm (A) and 24.06 ± 16.50 μm (B) in the experimental groups, the differences being statistically significant. Skin permeability was measured placing skin samples in a diffusion cell, in which the upper compartment was filled with a staining solution. The determinations were made with a spectrophotometer. The results revealed that the skin permeability in both experimental groups was higher than in the respective controls, 65% in experiment A and 77% in experiment B. The results revealed that a long term uranium exposure leads to an epidermal atrophy which in turn results in an increased permeability of the skin. 10 refs., 2 figs., 1 tab

  5. The effect of glutamine-enriched enteral nutrition on intestinal permeability in very-low-birth-weight infants : A randomized controlled trial

    NARCIS (Netherlands)

    van den Berg, Anemone; Fetter, Willem P. F.; Westerbeek, Elisabeth A. M.; van der Vegt, Ina M.; van der Molen, Hilda R. A.; van Elburg, Ruurd M.

    2006-01-01

    Background: Very-low-birth-weight (VLBW) infants are susceptible to glutamine depletion. Glutamine depletion has negative effects on intestinal integrity. The lower infection rate in VLBW infants receiving glutamine-enriched enteral nutrition may originate from improved intestinal integrity, as

  6. The effect of glutamine-enriched enteral nutrition on intestinal permeability in very-low-birth-weight infants: A randomized controlled trial

    NARCIS (Netherlands)

    van den Berg, Anemone; Fetter, Willem P. F.; Westerbeek, Elisabeth A. M.; van der Vegt, Ina M.; van der Molen, Hilda R. A.; van Elburg, Ruurd M.

    2006-01-01

    Background: Very-low-birth-weight (VLBW) infants are susceptible to glutamine depletion. Glutamine depletion has negative effects on intestinal integrity. The lower infection rate in VLBW infants receiving glutamine-enriched enteral nutrition may originate from improved intestinal integrity, as

  7. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  8. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model

    Science.gov (United States)

    Jiang, Chun-Bin; Cheng, Mei-Lien; Liu, Chia-Yuan; Chang, Szu-Wen; Chiang Chiau, Jen-Shiu; Lee, Hung-Chang

    2015-01-01

    Background and Aims Intestinal mucositis is a frequently encountered side effect in oncology patients undergoing chemotherapy. No well-established or up to date therapeutic strategies are available. To study a novel way to alleviate mucositis, we investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis in a mouse model. Methods Seventy-two mice were injected saline or 5-Fluorouracil (5-FU) intraperitoneally daily. Mice were either orally administrated daily saline, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi). Diarrhea score, pro-inflammatory cytokines serum levels, intestinal villus height and crypt depth and total RNA from tissue were assessed. Samples of blood, liver and spleen tissues were assessed for translocation. Results Marked diarrhea developed in the 5-FU groups but was attenuated after oral Lcr35 and LaBi administrations. Diarrhea scores decreased significantly from 2.64 to 1.45 and 0.80, respectively (Pprobiotics administration. We also found TNF-α, IL-1β and IL-6 mRNA expressions were up-regulated in intestinal mucositis tissues following 5-FU treatment (TNF-α: 4.35 vs. 1.18, IL-1β: 2.29 vs. 1.07, IL-6: 1.49 vs. 1.02) and that probiotics treatment suppressed this up-regulation (Pprobiotics Lcr35 and LaBi can ameliorate chemotherapy-induced intestinal mucositis in a mouse model. This suggests probiotics may serve as an alternative therapeutic strategy for the prevention or management of chemotherapy-induced mucositis in the future. PMID:26406888

  9. Protective Effects of 5-Androstendiol (5-AED) on Radiation-induced Intestinal Injury

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong Sun; Lee, Seung Sook; Jang, Won Suk; Lee, Sun Joo; Park, Sun Hoo; Kim, MinSook; Cho, Soo Youn [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Moon, Chang Jong; Kim, Sung Ho [Chonnam National University College of Veterinary Medicine, Gwangju (Korea, Republic of)

    2010-11-15

    We examined the radioprotective effects of 5-androstendiol (5-AED), a natural hormone produced in the reticularis of the adrenal cortex, as a result of intestinal damage in gamma-irradiated C3H/HeN mice. Thirty mice (C3H/HeN) were divided into three groups; 1) non-irradiated control group, 2) irradiated group, and 3) 5-AED-treated group prior to irradiation. Next, 5-AED (50 mg/kg per body weight) was subcutaneously injected 24 hours before irradiation. The mice were whole-body irradiated with 10 Gy for the histological examination of jejunal crypt survival and the determination of the villus morphology including crypt depth, crypt size, number of villi, villus height, and length of basal lamina, as well as 5 Gy for the detection of apoptosis. The 5-AED pre-treated group significantly increased the survival of the jejunal crypt, compared to irradiation controls (p<0.05 vs. irradiation controls at 3.5 days after 10 Gy). The evaluation of morphological changes revealed that the administration of 5-AED reduced the radiation-induced intestinal damages such as villus shortening and increased length of the basal lamina of enterocytes (p<0.05 vs irradiation controls on 3.5 day after 10 Gy, respectively). The administration of 5-AED decreased the radiation-induced apoptosis in the intestinal crypt, with no significant difference between the vehicle and 5-AED at 12 hours after 5 Gy. The results of this study suggest that the administration of 5-AED has a protective effect on intestinal damage induced by {gamma}-irradiation. In turn, these results suggest that 5-AED could be a useful candidate for radioprotection against intestinal mucosal injury following irradiation.

  10. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.

  11. Liver injury from ampicillin-induced intestinal microbiota distresses ...

    African Journals Online (AJOL)

    Serum hepatospecific markers (AST, ALT and ALP) were estimated. The antioxidant status of liver tissues was estimated for GSH, MDA, GST, LDH and vitamin C l, in addition to sodium and potassium. Results: Administration of orogastric dose of ampicillin for 3 weeks induced inhibition of E.coli, yeasts, total anaerobes, and ...

  12. Chemotherapy induced intestinal mucositis; from bench to bed

    NARCIS (Netherlands)

    B.A.E. Koning, de (Barbara)

    2008-01-01

    textabstractPart 1 focuses primarily on the pathophysiology of mucositis, in order to gain more insight different experimental mouse models were used. Chapter 2 describes mucositis induced by high dose doxorubicin (DOX)- treatment. DOX is a frequently used cytostatic drug in childhood cancer,

  13. Anti-Ulcer Efficacy of Soluble Epoxide Hydrolase Inhibitor TPPU on Diclofenac-Induced Intestinal Ulcers.

    Science.gov (United States)

    Goswami, Sumanta Kumar; Wan, Debin; Yang, Jun; Trindade da Silva, Carlos A; Morisseau, Christophe; Kodani, Sean D; Yang, Guang-Yu; Inceoglu, Bora; Hammock, Bruce D

    2016-06-01

    Proton pump inhibitors such as omeprazole (OME) reduce the severity of gastrointestinal (GI) ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs) but can also increase the chance of dysbiosis. The aim of this study was to test the hypothesis that preventive use of a soluble epoxide hydrolase inhibitor (sEHI) such as TPPU can decrease NSAID-induced ulcers by increasing anti-inflammatory epoxyeicosatrienoic acids (EETs). Dose- [10, 30, and 100 mg/kg, by mouth (PO)] and time-dependent (6 and 18 hours) ulcerative effects of diclofenac sodium (DCF, an NSAID) were studied in the small intestine of Swiss Webster mice. Dose-dependent effects of TPPU (0.001-0.1 mg/kg per day for 7 days, in drinking water) were evaluated in DCF-induced intestinal toxicity and compared with OME (20 mg/kg, PO). In addition, the effect of treatment was studied on levels of Hb in blood, EETs in plasma, inflammatory markers such as myeloperoxidase (MPO) in intestinal tissue homogenates, and tissue necrosis factor-α (TNF-α) in serum. DCF dose dependently induced ulcers that were associated with both a significant (P ulceration highest at 18 hours. Pretreatment with TPPU dose dependently prevented ulcer formation by DCF, increased the levels of epoxy fatty acids, including EETs, and TPPU's efficacy was comparable to OME. TPPU significantly (P ulcers. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    DEFF Research Database (Denmark)

    Maurya, P. K.; Balbarini, Nicola; Møller, I.

    2018-01-01

    -permeability clay layer from a shallow aquifer. No contamination was expected in this part of the confined aquifer, and confirmation wells were drilled in the zone of increased water electrical conductivity derived from the geophysical results. Water samples from the new wells showed elevated concentrations......At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time......) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data...

  15. Interferon gamma-dependent intestinal pathology contributes to the lethality in bacterial superantigen-induced toxic shock syndrome.

    Directory of Open Access Journals (Sweden)

    Ashenafi Y Tilahun

    2011-02-01

    Full Text Available Toxic shock syndrome (TSS caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-γ (IFN-γ, followed by multiple organ dysfunction and often death. As IFN-γ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-γ or targeted disruption of IFN-γ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-γ(+/+ mice became sick and succumbed to TSS, HLA-DR3.IFN-γ(-/- mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-γ(-/- transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17 and chemokines (KC, rantes, eotaxin and MCP-1 were significantly lower in HLA-DR3.IFN-γ(-/- transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR Vβ8(+ CD4(+ and CD8(+ T cells was even more pronounced in HLA-DR3.IFN-γ(-/- transgenic mice when compared to HLA-DR3.IFN-γ(+/+ mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-γ(+/+ and HLA-DR3.IFN-γ(-/- transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-γ(+/+ transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-γ(-/- transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-γ(+/+ but not HLA-DR3.IFN-γ(-/- mice during TSS. Overall

  16. Intestinal ischemia/reperfusion induces bronchial hyperreactivity and increases serum TNF-alpha in rats

    Directory of Open Access Journals (Sweden)

    Arruda Marcio Jose Cristiano de

    2006-01-01

    Full Text Available INTRODUCTION: Intestinal or hepatic ischemia/reperfusion induces acute lung injury in animal models of multiple organ failure. Tumor necrosis factor (TNF- alpha is involved in the underlying inflammatory mechanism of acute respiratory distress syndrome. Although the inflammatory cascade leading to acute respiratory distress syndrome has been extensively investigated, the mechanical components of acute respiratory distress syndrome are not fully understood. Our hypothesis is that splanchnic ischemia/reperfusion increases airway reactivity and serum TNF-alpha levels. OBJECTIVE: To assess bronchial smooth muscle reactivity under methacholine stimulation, and to measure serum TNF-alpha levels following intestinal and/or hepatic ischemia/reperfusion in rats. METHOD: Rats were subjected to 45 minutes of intestinal ischemia, or 20 minutes of hepatic ischemia, or to both (double ischemia, or sham procedures (control, followed by 120 minutes of reperfusion. The animals were then sacrificed, and the bronchial response to increasing methacholine molar concentrations (10-7 to 3 x 10-4 was evaluated in an ex-vivo bronchial muscle preparation. Serum TNF-alpha was determined by the L929-cell bioassay. RESULTS: Bronchial response (g/100 mg tissue showed increased reactivity to increasing methacholine concentrations in the intestinal ischemia and double ischemia groups, but not in the hepatic ischemia group. Similarly, serum TNF-alpha (pg/mL concentration was increased in the intestinal ischemia and double ischemia groups, but not in the hepatic ischemia group. CONCLUSION: Intestinal ischemia, either isolated or associated with hepatic ischemia, increased bronchial smooth muscle reactivity, suggesting a possible role for bronchial constriction in respiratory dysfunction following splanchnic ischemia/reperfusion. This increase occurred in concomitance with serum TNF-alpha increase, but whether the increase in TNF-alpha caused this bronchial contractility remains

  17. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice.

    Science.gov (United States)

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-02-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome.

  18. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Science.gov (United States)

    Clouard, Caroline; Meunier-Salaün, Marie-Christine; Meurice, Paul; Malbert, Charles-Henri; Val-Laillet, David

    2014-01-01

    The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO) further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow changes in brain regions known to be involved in memory, reward processes and hedonic (i.e., pleasure) evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus, and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation. PMID:25147536

  19. Differences between intestinal segments and soybean meal-induced changes in intestinal mucus composition of common carp Cyprinus carpio L.

    NARCIS (Netherlands)

    Marel, van der M.C.; Propsting, M.J.; Battermann, F.; Jung-Schroers, V.; Hubner, A.; Rombout, J.H.W.M.; Steinhagen, D.

    2014-01-01

    The alimentary tract is a possible site where pathogens and toxins can enter. The alimentary tract is protected, amongst others, by mucus. In this study, tissue samples and crude mucus preparations from different parts of the intestinal tract of Cyprinus carpio (from intestinal bulb onto the

  20. A synthetic peptide corresponding to the carboxy terminus of human immunodeficiency virus type 1 transmembrane glycoprotein induces alterations in the ionic permeability of Xenopus laevis oocytes.

    Science.gov (United States)

    Comardelle, A M; Norris, C H; Plymale, D R; Gatti, P J; Choi, B; Fermin, C D; Haislip, A M; Tencza, S B; Mietzner, T A; Montelaro, R C; Garry, R F

    1997-11-20

    The carboxy-terminal 29 amino acids of the human immunodeficiency virus type 1 transmembrane glycoprotein (HIV-1 TM) are referred to as lentivirus lytic peptide 1 (LLP-1). Synthetic peptides corresponding to LLP-1 have been shown to induce cytolysis and to alter the permeability of cultured cells to various small molecules. To address the mechanisms by which LLP-1 induces cytolysis and membrane permeability changes, various concentrations of LLP-1 were incubated with Xenopus laevis oocytes, and two-electrode, voltage-clamp recording measurements were performed. LLP-1 at concentrations of 75 nM and above induced dramatic alterations in the resting membrane potential and ionic permeability of Xenopus oocytes. These concentrations of LLP-1 appeared to induce a major disruption of plasma membrane electrophysiological integrity. In contrast, concentrations of LLP-1 of 20-50 nM induced changes in membrane ionic permeability that mimic changes induced by compounds, such as the bee venom peptide melittin, that are known to form channel-like structures in biological membranes at sublytic concentrations. An analog of LLP-1 with greatly reduced cytolytic activity failed to alter the electrophysiological properties of Xenopus oocytes. Thus, by altering plasma membrane ionic permeability, the carboxy terminus of TM may contribute to cytolysis of HIV-1-infected CD4+ cells.

  1. High fructose intake fails to induce symptomatic adaptation but may induce intestinal carriers

    Directory of Open Access Journals (Sweden)

    Debra Heilpern

    2010-01-01

    Full Text Available Fructose has several interactions in man, including intolerance and promotion of some diseases. However, fructose in fruits and in prebiotics may be associated with benefits. Adaptation to regular fructose ingestion as defined for lactose could support a beneficial rather than a deleterious effect. This study was undertaken to evaluate symptomatic response and potential underlying mechanisms of fecal bacterial change and breath hydrogen response to short term regular fructose supplementation. Forty-five participants were recruited for a 3 day recall diet questionnaire and a 50 g fructose challenge. Breath hydrogen was measured for 4.5 hrs and symptoms were recorded. Thirty-eight subjects provided stool samples for analysis by selective culture of 4 groups of bacteria, including bifidobacteria and lactobacilli. Intolerant subjects returned a second time 15 days later. Ten of these served as controls and 16 received 30 g fructose twice a day. Ten of the latter returned 27 days later, after stopping fructose for a third challenge test. Student’s paired, unpaired t-tests and Pearson correlations were used. Significance was accepted at P<0.05. After fructose rechallenge there were no significant reductions in symptoms scores in volunteers in either the fructose supplemented or non supplemented groups. However, total breath hydrogen was reduced between test 1 and test 2 (P=0.03 or test 3 (P=0.04 in the group given fructose then discontinued, compared with controls. There were no statistically significant changes in bacterial numbers between test 2 and 1. This study shows that regular consumption of high dose fructose does not follow the lactose model of adaptation. Observed changes in hydrogen breath tests raise the possibility that intestinal carriers of fructose may be induced potentially aggravating medical problems attributed to fructose.

  2. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    International Nuclear Information System (INIS)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-01-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r 2   =  0.77); (2) the permeability of the opened BBB (r 2   =  0.82); (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r 2   =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response

  3. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells.

    Science.gov (United States)

    Qin, Ying; Naito, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-11-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic

  4. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: Prevention by thiol group protecting agents

    International Nuclear Information System (INIS)

    Custodio, Jose B.A.; Cardoso, Carla M.P.; Santos, Maria S.; Almeida, Leonor M.; Vicente, Joaquim A.F.; Fernandes, Maria A.S.

    2009-01-01

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca 2+ -induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20 nmol/mg protein) induced Ca 2+ -dependent mitochondrial swelling, depolarization of membrane potential (ΔΨ), Ca 2+ release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40 nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the ΔΨ, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H 2 O 2 generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca 2+ -induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to

  5. CO2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments

    Science.gov (United States)

    Smith, Megan M.; Sholokhova, Yelena; Hao, Yue; Carroll, Susan A.

    2013-12-01

    The effect of elevated dissolved CO2 concentrations on compositionally and structurally distinct carbonate sample cores from the Weyburn-Midale CO2-enhanced oil recovery and storage site (Canada) was measured from analysis of 3-D sample characterization and fluid chemistry data from core-flood experiments. Experimental conditions (60 °C; 24.8 MPa confining pressure) and brine composition were chosen to mimic in situ reservoir conditions. Mineralogy and pore space distributions within the eight individual cores were characterized with X-ray computed microtomography and scanning electron microscopy both before and after exposure to brine with 0.5 ⩽ pCO2 ⩽ 3 MPa, while solution chemistry and differential fluid pressures were monitored during experiments. Our experimental study aimed to quantify the relationship between fluid flow, heterogeneity, and reaction specific to carbon storage at the Weyburn-Midale field by integrating characterization imaging, pressure data, and solution chemistry. Through the use of non-invasive microtomographic imaging, a variety of dissolution behaviors were observed, with variable effects on the evolution of solution chemistry and permeability as a result of heterogeneity within these two relatively low permeability carbonate samples. Similar-sized, evenly distributed pores, and steadily advancing dissolution fronts suggested that uniform flow velocities were maintained throughout the duration of the higher permeability “Marly” dolostone core experiments. The development of unstable dissolution fronts and fast pathways occurred in the “Vuggy” sample experiments when fluid velocities varied widely within the sample (as a result of increased pore structure heterogeneity). The overall effect of fast pathway development was to increase bulk permeability values by several orders of magnitude, allowing CO2-acidified fluids to travel through the cores largely unmodified by carbonate mineral reaction, as indicated by a lack of change

  6. Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors.

    Directory of Open Access Journals (Sweden)

    Tomohiro Kawahara

    Full Text Available Human rotavirus (RV infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1, which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in

  7. Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors.

    Science.gov (United States)

    Kawahara, Tomohiro; Makizaki, Yutaka; Oikawa, Yosuke; Tanaka, Yoshiki; Maeda, Ayako; Shimakawa, Masaki; Komoto, Satoshi; Moriguchi, Kyoko; Ohno, Hiroshi; Taniguchi, Koki

    2017-01-01

    Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered

  8. Soluble dietary fiber protects against nonsteroidal anti-inflammatory drug-induced damage to the small intestine in cats.

    Science.gov (United States)

    Satoh, Hiroshi; Hara, Toshiko; Murakawa, Daisuke; Matsuura, Masashi; Takata, Kenji

    2010-05-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) often cause ulcers in the small intestine in humans, but there are few effective agents for treatment of small intestinal ulcers. We found that soluble dietary fibers (SDFs), such as pectin, could prevent the formation of small intestinal lesions induced by indomethacin (IND) in cats. To elucidate the mechanism of protection by SDFs, we examined the viscosities of SDFs and the effects of pectin on gastrointestinal absorption of IND and intestinal hypermotility induced by IND. Cats were given regular dry food (RFD-Dry) or RFD-Dry supplemented with pectin, guar gum, polydextrose, or mucin twice daily. IND was administered orally once daily for 3 days. Mucosal lesions in the small intestine were examined 24 h after the final dosing of IND. Plasma concentrations of IND were measured by HPLC. GI motilities were measured using a telemetry system in conscious cats implanted with force transducers. Viscosities of the SDFs were measured using a viscosimeter. In cats given RFD-Dry, IND (3 mg/kg) increased motility and produced many lesions in the lower half of the small intestine; the total lesion area (TLA) was 7.5 +/- 2.6 cm(2) (n = 4). Lesions induced by IND were markedly decreased in cats given RFD-Dry supplemented with 3% pectin, guar gum, polydextrose or mucin; TLAs were 0.6 +/- 0.3, 0.0 +/- 0.0, 1.3 +/- 0.8 and 1.6 +/- 0.5 cm(2) (n = 4) (P 1,200, 1 and 4, respectively. Pectin did not affect the absorption of IND nor did it inhibit IND-induced intestinal hypermotility. SDFs protect the small intestine against NSAID-induced damage, probably by compensating a barrier function of the mucin decreased by IND. Viscosities of the SDFs play a role, at least in part, in the protective effects of the SDFs on the small intestine.

  9. Chemical Sensor Based Upon Stress-Induced Changes in the Permeability of a Magnetoelastic Wire.

    Science.gov (United States)

    Hatab, Nahla A; Crane, Nichole A; Mee, David K; Howell, L Neville; Mooney, Larry R; Hallman, Russell L; Sepaniak, Michael J; Lamberti, Vincent E

    2017-07-05

    We introduce a chemical sensing technology, named ChIMES (Chemical Identification through Magneto-Elastic Sensing), that can detect a broad range of targets and that has the capability of untethered communication through a metallic or nonmetallic barrier. These features enable many applications in which penetrations into the sampled environment are unwanted or infeasible because of health, safety, or environmental concerns, such as following the decomposition of a dangerous material in a sealed container. The sensing element is passive and consists of a target response material hard-coupled to a magnetoelastic wire. When the response material encounters a target, it expands, imposing mechanical stress on the wire and altering its magnetic permeability. Using a remote excitation-detection coil set, the changes in permeability are observed by switching the magnetic domains in the wire and measuring the modifications in the Faraday voltage as the stress is varied. Sensors with different response materials can be arrayed and interrogated individually. We describe the sensor and its associated instrumentation, compare the performance of several types of wire, and evaluate analytical metrics of single and arrayed ChIMES sensors against a suite of volatile organic compounds.

  10. Phosphatidylcholine Reverses Ethanol-Induced Increase in Transepithelial Endotoxin Permeability and Abolishes Transepithelial Leukocyte Activation

    DEFF Research Database (Denmark)

    Mitzscherling, Katja; Volynets, Valentina; Parlesak, Alexandr

    2009-01-01

    activation of human leukocytes. For this purpose, we used a model in which intestinal epithelial cells (Caco-2) were basolaterally cocultivated with mononuclear leukocytes. Cells were challenged apically with endotoxin from Escherichia coli K12 and were incubated with or without the addition of CPBS (1.5 m...... of leukocytes were nearly completely abolished after the apical supplementation of PC with CPBS, but not by CPBS alone. Ethanol up to 66 mM was not able to reverse this effect. A considerable part of the therapeutic and preventive effect of PC supplementation in ALD might result from a reduction of ethanol...

  11. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  12. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  13. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    International Nuclear Information System (INIS)

    Min, Ki-Bok; Stephansson, Ove

    2009-03-01

    Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in jointed rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this project are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. The first part of the study is about the evolution of thermal stresses in the rock during the lifetime of the repository. Critical sections of heat generated stresses around the repository are selected and classified. Fracture data from Forsmark is used to establish fracture network models (DFN) and the models are subjected to the sum of virgin stress and thermal stresses and the shear slip and related permeability change are studied. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the corners of the repository. In the

  14. Intestine-Specific Mttp Deletion Decreases Mortality and Prevents Sepsis-Induced Intestinal Injury in a Murine Model of Pseudomonas aeruginosa Pneumonia

    Science.gov (United States)

    Dominguez, Jessica A.; Xie, Yan; Dunne, W. Michael; Yoseph, Benyam P.; Burd, Eileen M.; Coopersmith, Craig M.; Davidson, Nicholas O.

    2012-01-01

    Background The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the “motor” of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption. Methodology/Principal Findings Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. Conclusions/Significance These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by

  15. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia.

    Directory of Open Access Journals (Sweden)

    Jessica A Dominguez

    Full Text Available The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the "motor" of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO, which exhibit a block in chylomicron assembly together with lipid malabsorption.Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0% dying compared to 5/17 (29% control mice (p<0.05. This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice.These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and

  16. Transient, heat-induced thermal resistance in the small intestine of mouse

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1980-01-01

    Heat-induced thermal resistance has been investigated in mouse jejunum by assaying crypt survival 24 h after treatment. Hyperthermia was achieved by immersing an exteriorized loop of intestine in a bath of Krebs-Ringer solution. Two approaches have been used. In the first, thermal survival curves were obtained following single hyperthermal treatments at temperatures in the range 42 to 44 0 C. Transient thermal resistance, inducted by a plateau in the crypt survival curve, developed during heating at temperatures around 42.5 0 C after 60 to 80 min. In the second series of experiments, a priming heat treatment (40.0, 41.0, 41.5, or 42.0 0 C for 60 min) was followed at varying intervals by a test treatment at 43.0 0 C. A transient resistance to the second treatment was induced, the extent and time of development being dependent upon the priming treatment. Crypt survival curves for thermally resistant intestine showed an increase in thermal D 0 and a decrease in n compared with curves from previously unheated intestine

  17. Antihistamines block radiation-induced increased intestinal blood flow in canines

    Energy Technology Data Exchange (ETDEWEB)

    Cockerham, L.G.; Doyle, T.F.; Donlon, M.A.; Gossett-Hagerman, C.J.

    1985-06-01

    Radiation-induced systemic hypotension is accompanied by increased intestinal blood flow (IBF) and an increased hematocrit (HCT) in dogs. Histamine infusion leads to increased IBF and intestinal edema with consequent secretion of fluid into the intestinal lumen. This study was performed to determine whether these effects could be diminished by prior administration of H1 and H2 histamine blockers. Dogs were given an iv infusion of mepyramine (0.5 mg/min) and cimetidine (0.25 mg/min) for 1 hr before and for 1 hr after radiation (H1 and H2 blockers, respectively). Mean systemic arterial blood pressure (MBP), IBF, and HCT were monitored for 2 hr. Systemic plasma histamine levels were determined simultaneously. Data obtained indicated that the H1 and H2 blockers, given simultaneously, were successful in blocking the increased IBF and the increased HCT seen after 100 Gy, whole-body, gamma radiation. However, the postradiation hypotension was only somewhat affected, with the MBP falling to a level 28% below the preradiation level. Plasma histamine levels reached a sharp peak, as much as 20% above baseline, at 4 min postradiation. These findings implicate histamine in the radiation-induced increase in IBF and HCT but not for the gradual decrease in postradiation blood pressure.

  18. Antihistamines block radiation-induced increased intestinal blood flow in canines

    Energy Technology Data Exchange (ETDEWEB)

    Cockerham, L.G.; Doyle, T.F.; Donlon, M.A.; Gossett-Hagerman, C.J.

    1985-01-01

    Radiation-induced systemic hypotension is accompanied by increased intestinal blood flow (IBF) and an increased hematocrit (HCT) in dogs. Histamine infusion leads to increased IBF and intestinal edema with consequent secretion of fluid into the intestinal lumen. This study was performed to determine whether these effects could be diminished by prior administration of H/sub 1/ and H/sub 2/ histamine blockers. Dogs were given an iv infusion of mepyramine (0.5 mg/min) and cimetidine (0.25 mg/min) for 1 hr before and for 1 hr after radiation (H sub 1 and H sub 2 blockers, respectively). Mean systemic arterial blood pressure (MBP), IBF, and HCT were monitored for 2 hr. Systematic plasma histamine levels were determined simultaneously. Data obtained indicated that the H sub 1 and H sub 2 blockers, given simultaneously, were successful in blocking the increased IBF and the increased HCT seen after 100 Gy, whole-body, gamma radiation. However, the postradiation hypotension was only somewhat affected, with the MBP falling to a level 28% below the preradiation level. Plasma histamine levels reached a sharp peak, as much as 20% above baseline, at 4 min postradiation. These findings implicate histamine in the radiation-induced increase in IBF and HCT but not for the gradual decrease in postradiation blood pressure. (Author)

  19. Bile acid malabsorption or disturbed intestinal permeability in patients treated with enzyme substitution for exocrine pancreatic insufficiency is not caused by bacterial overgrowth

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Graff, Jesper; Philipsen, Else Kirstine

    2003-01-01

    permeability was assessed from urine excretion of ingested 14C-mannitol and 99mTc-diethylenetriaminepentaacetic acid (99mTc-DTPA), and these data were compared with results for 10 age-matched healthy men. RESULTS: No patients had abnormal breath hydrogen or methane concentrations after glucose intake...

  20. Inducible and neuronal nitric oxide synthases exert contrasting effects during rat intestinal recovery following fasting.

    Science.gov (United States)

    Ito, Junta; Uchida, Hiroyuki; Machida, Naomi; Ohtake, Kazuo; Saito, Yuki; Kobayashi, Jun

    2017-04-01

    We investigated the effects of endogenous inducible (iNOS) and neuronal nitric oxide synthase on recovery from intestinal mucosal atrophy caused by fasting-induced apoptosis and decreased cell proliferation during refeeding in rats. Rats were divided into five groups, one of which was fed ad libitum, and four of which underwent 72 h of fasting, followed by refeeding for 0, 6, 24, and 48 h, respectively. iNOS and neuronal nitric oxide synthase mRNA and protein levels in jejunal tissues were measured, and mucosal height was histologically evaluated. Apoptotic indices, interferon-γ (IFN-γ) transcription levels, nitrite levels (as a measure of nitric oxide [NO] production),8-hydroxydeoxyguanosine formation (indicating reactive oxygen species [ROS] levels), crypt cell proliferation, and the motility indices (MI) were also estimated. Associations between mucosal height and NOS protein levels were determined using Spearman's rank correlation test. Notably, we observed significant increases in mucosal height and in neuronal nitric oxide synthase mRNA and protein expression as refeeding time increased. Indeed, there was a significant positive correlation between neuronal nitric oxide synthase protein level and mucosal height during the 48-h refeeding period ( r = 0.725, P fasting. Our finding suggests that refeeding likely repairs fasting-induced jejunal atrophy by suppressing iNOS expression and subsequently inhibiting NO, ROS, and IFN-γ as apoptosis mediators, and by promoting neuronal nitric oxide synthase production and inducing crypt cell proliferation via mechanical stimulation. Impact statement Besides providing new data confirming the involvement of iNOS and nNOS in intestinal mucosal atrophy caused by fasting, this study details their expression and function during recovery from this condition following refeeding. We demonstrate a significant negative correlation between iNOS and nNOS levels during refeeding, and associate this with cell proliferation

  1. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S L; Lye, D J; McKinstry, Craig A.; Vesper, Sephen J.

    2010-01-01

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small intestinal extracts, 24 hours after oral infection with an A. caviae strain, provides evidence of a Th1 type immune response. A large number of gamma-interferon (γ-IFN) induced genes are up-regulated as well as several tumor necrosis factor-alpha (TNF-α) transcripts. A. caviae has always been considered as opportunistic pathogen because it lacks obvious virulence factors. This current effort suggests that an A. caviae strain can colonize the murine intestinal tract and cause what has been described by others as a dysregulatory cytokine response. This response could explain why a number of diarrheal waterborne disease cases have been attributed to A. caviae even though it lacks obvious enteropathogenic properties.

  2. A Review of Anti-Inflammatory Drug-Induced Gastrointestinal Injury: Focus on Prevention of Small Intestinal Injury

    Directory of Open Access Journals (Sweden)

    Shunji Fujimori

    2010-04-01

    Full Text Available Capsule endoscopy and balloon endoscopy, advanced modalities that allow full investigation of the entire small intestine, have revealed that nonsteroidal anti-inflammatory drugs (NSAIDs can cause a variety of abnormalities in the small intestine. Recently, several reports show that traditional NSAIDs (tNSAIDs and acetylsalicylic acid (ASA can induce small intestinal injuries. These reports have shown that the preventive effect of proton pump inhibitors (PPIs does not extend to the small intestine, suggesting that concomitant therapy may be required to prevent small intestinal side effects associated with tNSAID/ASA use. Recently, several randomized controlled trials used capsule endoscopy to evaluate the preventive effect of mucoprotective drugs against tNSAID/ASA-induced small intestinal injury. These studies show that misoprostol and rebamipide reduce the number and types of tNSAID-induced small intestinal mucosal injuries. However, those studies were limited to a small number of subjects and tested short-term tNSAID/ ASA treatment. Therefore, further extensive studies are clearly required to ascertain the beneficial effect of these drugs.

  3. Traditional Herbal Medicine, Rikkunshito, Induces HSP60 and Enhances Cytoprotection of Small Intestinal Mucosal Cells as a Nontoxic Chaperone Inducer

    Directory of Open Access Journals (Sweden)

    Kumiko Tamaki

    2012-01-01

    Full Text Available Increasing incidence of small intestinal ulcers associated with nonsteroidal anti-inflammatory drugs (NSAIDs has become a topic with recent advances of endoscopic technology. However, the pathogenesis and therapy are not fully understood. The aim of this study is to examine the effect of Rikkunshito (TJ-43, a traditional herbal medicine, on expression of HSP60 and cytoprotective ability in small intestinal cell line (IEC-6. Effect of TJ-43 on HSP60 expression in IEC-6 cells was evaluated by immunoblot analysis. The effect of TJ-43 on cytoprotective abilities of IEC-6 cells against hydrogen peroxide or indomethacin was studied by MTT assay, LDH-release assay, caspase-8 activity, and TUNEL. HSP60 was significantly induced by TJ-43. Cell necrosis and apoptosis were significantly suppressed in IEC-6 cells pretreated by TJ-43 with overexpression of HSP60. Our results suggested that HSP60 induced by TJ-43 might play an important role in protecting small intestinal epithelial cells from apoptosis and necrosis in vitro.

  4. Maternal Obesity Induces Sustained Inflammation in Both Fetal and Offspring Large Intestine of Sheep

    Science.gov (United States)

    Yan, Xu; Huang, Yan; Wang, Hui; Du, Min; Hess, Bret W.; Ford, Stephen P.; Nathanielsz, Peter W.; Zhu, Mei-Jun

    2010-01-01

    Background Both maternal obesity and inflammatory bowel diseases (IBDs) are increasing. It was hypothesized that maternal obesity induces an inflammatory response in the fetal large intestine, predisposing offspring to IBDs. Methods Nonpregnant ewes were assigned to a control (Con, 100% of National Research Council [NRC] recommendations) or obesogenic (OB, 150% of NRC) diet from 60 days before conception. The large intestine was sampled from fetuses at 135 days (term 150 days) after conception and from offspring lambs at 22.5 ± 0.5 months of age. Results Maternal obesity enhanced mRNA expression tumor necrosis factor (TNF)α, interleukin (IL)1α, IL1β, IL6, IL8, and monocyte/macrophage chemotactic protein-1 (MCP1), as well as macrophage markers, CD11b, CD14, and CD68 in fetal gut. mRNA expression of Toll-like receptor (TLR) 2 and TLR4 was increased in OB versus Con fetuses; correspondingly, inflammatory NF-κB and JNK signaling pathways were also upregulated. Both mRNA expression and protein content of transforming growth factor (TGF) β was increased. The IL-17A mRNA expression and protein content was higher in OB compared to Con samples, which was associated with fibrosis in the large intestine of OB fetuses. Similar inflammatory responses and enhanced fibrosis were detected in OB compared to Con offspring. Conclusions Maternal obesity induced inflammation and enhanced expression of proinflammatory cytokines in fetal and offspring large intestine, which correlated with increased TGFβ and IL17 expression. These data show that maternal obesity may predispose offspring gut to IBDs. PMID:21674707

  5. Role of Staphylococcus aureus Virulence Factors in Inducing Inflammation and Vascular Permeability in a Mouse Model of Bacterial Endophthalmitis.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    Full Text Available Staphylococcus (S. aureus is a common causative agent of bacterial endophthalmitis, a vision threatening complication of eye surgeries. The relative contribution of S. aureus virulence factors in the pathogenesis of endophthalmitis remains unclear. Here, we comprehensively analyzed the development of intraocular inflammation, vascular permeability, and the loss of retinal function in C57BL/6 mouse eyes, challenged with live S. aureus, heat-killed S. aureus (HKSA, peptidoglycan (PGN, lipoteichoic acid (LTA, staphylococcal protein A (SPA, α-toxin, and Toxic-shock syndrome toxin 1 (TSST1. Our data showed a dose-dependent (range 0.01 μg/eye to 1.0 μg/eye increase in the levels of inflammatory mediators by all virulence factors. The cell wall components, particularly PGN and LTA, seem to induce higher levels of TNF-α, IL-6, KC, and MIP2, whereas the toxins induced IL-1β. Similarly, among the virulence factors, PGN induced higher PMN infiltration. The vascular permeability assay revealed significant leakage in eyes challenged with live SA (12-fold and HKSA (7.3-fold, in comparison to other virulence factors (~2-fold and controls. These changes coincided with retinal tissue damage, as evidenced by histological analysis. The electroretinogram (ERG analysis revealed a significant decline in retinal function in eyes inoculated with live SA, followed by HKSA, SPA, and α-toxin. Together, these findings demonstrate the differential innate responses of the retina to S. aureus virulence factors, which contribute to intraocular inflammation and retinal function loss in endophthalmitis.

  6. Stress, strain, and temperature induced permeability changes in potential repository rocks

    International Nuclear Information System (INIS)

    Heard, H.C.; Duba, A.

    1977-01-01

    Work is in progress to assess the permeability characteristics of coarse-grained igneous rocks as affected by pressure, deviatoric stress, and temperature. In order to predict the long-term behavior of these rocks, both virgin and fractured, permeability and all principal strains resulting from an imposed deviatoric stress under various simulated lithostatic pressures are being measured. In addition, compressional as well as shear velocities and electrical conductivity are being evaluated along these principal directions. These simultaneous measurements are being made initially at 25 0 C on a 15 cm diameter by 30 cm long sample in a pressure apparatus controlled by a mini-computer. Correlation of these data with similar field observations should then allow simplified exploration for a suitable repository site as well as the prediction of the response of a mined cavity with both distance and time at this site. After emplacement of the waste canisters, the mechanical stability and hydrologic integrity of this mined repository will be directly influenced by the fracturing of the surrounding rock which results from local temperature differences and the thermal expansion of that rock. Temperatures (and, hence, these differences) in the vicinity of the repository are expected to be affected by the presence of pore fluids (single- or two-phase) in the rock, the heat capacity and the thermal conductivity of this system. In turn, these are all dependent upon lithostatic pressure, pore pressure, and stress. Thermal expansion (and fracturing) will also be affected by the lithostatic (and effective) pressure, the deviatoric stress field, and the initial anisotropy of the rock

  7. Lattice Boltzmann simulation of dissolution-induced changes in permeability and porosity in 3D CO2 reactive transport

    Science.gov (United States)

    Tian, Zhiwei; Wang, Junye

    2018-02-01

    Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.

  8. Bovine lactoferrin decreases cholera-toxin-induced intestinal fluid accumulation in mice by ganglioside interaction.

    Directory of Open Access Journals (Sweden)

    Fulton P Rivera

    Full Text Available Secretory diarrhea caused by cholera toxin (CT is initiated by binding of CT's B subunit (CTB to GM1-ganglioside on the surface of intestinal cells. Lactoferrin, a breast milk glycoprotein, has shown protective effect against several enteropathogens. The aims of this study were to determine the effect of bovine-lactoferrin (bLF on CT-induced intestinal fluid accumulation in mice, and the interaction between bLF and CT/CTB with the GM1-ganglioside receptor. Fluid accumulation induced by CT was evaluated in the mouse ileal loop model using 56 BALB/c mice, with and without bLF added before, after or at the same time of CT administration. The effect of bLF in the interaction of CT and CTB with GM1-ganglioside was evaluated by a GM1-enzyme-linked immunosorbent assay. bLF decreased CT-induced fluid accumulation in the ileal loop of mice. The greatest effect was when bLF was added before CT (median, 0.066 vs. 0.166 g/cm, with and without bLF respectively, p<0.01. We conclude that bLF decreases binding of CT and CTB to GM1-ganglioside, suggesting that bLF suppresses CT-induced fluid accumulation by blocking the binding of CTB to GM1-ganglioside. bLF may be effective as adjunctive therapy for treatment of cholera diarrhea.

  9. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  10. Transcriptional corepressor MTG16 regulates small intestinal crypt proliferation and crypt regeneration after radiation-induced injury.

    Science.gov (United States)

    Poindexter, Shenika V; Reddy, Vishruth K; Mittal, Mukul K; Williams, Amanda M; Washington, M Kay; Harris, Elizabeth; Mah, Amanda; Hiebert, Scott W; Singh, Kshipra; Chaturvedi, Rupesh; Wilson, Keith T; Lund, P Kay; Williams, Christopher S

    2015-03-15

    Myeloid translocation genes (MTGs) are transcriptional corepressors implicated in development, malignancy, differentiation, and stem cell function. While MTG16 loss renders mice sensitive to chemical colitis, the role of MTG16 in the small intestine is unknown. Histological examination revealed that Mtg16(-/-) mice have increased enterocyte proliferation and goblet cell deficiency. After exposure to radiation, Mtg16(-/-) mice exhibited increased crypt viability and decreased apoptosis compared with wild-type (WT) mice. Flow cytometric and immunofluorescence analysis of intestinal epithelial cells for phospho-histone H2A.X also indicated decreased DNA damage and apoptosis in Mtg16(-/-) intestines. To determine if Mtg16 deletion affected epithelial cells in a cell-autonomous fashion, intestinal crypts were isolated from Mtg16(-/-) mice. Mtg16(-/-) and WT intestinal crypts showed similar enterosphere forming efficiencies when cultured in the presence of EGF, Noggin, and R-spondin. However, when Mtg16(-/-) crypts were cultured in the presence of Wnt3a, they demonstrated higher enterosphere forming efficiencies and delayed progression to mature enteroids. Mtg16(-/-) intestinal crypts isolated from irradiated mice exhibited increased survival compared with WT intestinal crypts. Interestingly, Mtg16 expression was reduced in a stem cell-enriched population at the time of crypt regeneration. This is consistent with MTG16 negatively regulating regeneration in vivo. Taken together, our data demonstrate that MTG16 loss promotes radioresistance and impacts intestinal stem cell function, possibly due to shifting cellular response away from DNA damage-induced apoptosis and towards DNA repair after injury.

  11. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    Directory of Open Access Journals (Sweden)

    Deanna L. Gibson

    2012-08-01

    Full Text Available The gastrointestinal (GI microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

  12. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Directory of Open Access Journals (Sweden)

    Caroline eClouard

    2014-08-01

    Full Text Available The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow (CBF changes in brain regions known to be involved in memory, reward processes and hedonic (i.e. pleasure evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation.

  13. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon

    DEFF Research Database (Denmark)

    Knudsen, D.; Uran, P.; Arnous, Anis

    2007-01-01

    The current work aimed at tracing the causative components for soybean-induced enteritis in Atlantic salmon (Salmo salar L.). Soybean molasses was subjected to phase separation using n-butanol. Three subfractions were obtained as follows: butanol phase, precipitate, and water phase. The biochemical...... composition of soybean molasses and the obtained subfractions were analyzed in detail: Protein, fat, and ash were quantified according to standard methods. Sucrose, raffinose, and stachyose were quantified using high-performance anion-exchange chromatography. Soyasaponins were quantified using reverse...... intestinal morphology. The causative components for soybean-induced enteritis withstand butanol treatment and prolonged heating at 70 degrees C. Sucrose, raffinose, stachyose, nor soybean proteins larger than 10 kDa induce enteritis alone. Soyasaponins, or components that follow the same solubility pattern...

  14. Seirogan (wood creosote) inhibits stress-induced ion secretion in rat intestinal epithelium.

    Science.gov (United States)

    Ataka, Koji; Kuge, Tomoo; Venkova, Kalina; Greenwood-Van Meerveld, Beverley

    2003-07-01

    Acute stress in often associated with abnormalities in gastrointestinal function, including enhanced secretion of water and electrolytes that leads to diarrhea. The goal of our study was to investigate whether Seirogan inhibits stress-induced intestinal secretion in Wistar-Kyoto rats. Electrogenic ion secretion was measured in modified Ussing chambers as an increase in basal short-circuit current (Isc) across isolated rat jejunal or colonic mucosal sheets. Mucosal preparations from rats exposed to cold restraint stress showed a significant increase in basal Isc compared to controls. The cumulative addition of Seirogan to the Ussing chamber caused a concentration-dependent reduction of the stress-induced increase of basal Isc to levels resembling nonstressed controls. In a separate experiment, Seirogan (15 mg/kg) administered by oral gavage inhibited stress-induced secretion and normalized basal Isc in the jejunum and colon. The results suggest that Seirogan may be an effective therapy for patients with stress-associated diarrhea.

  15. Dexmedetomidine Ameliorate CLP-Induced Rat Intestinal Injury via Inhibition of Inflammation.

    Science.gov (United States)

    Chen, Yanqing; Miao, Liyan; Yao, Yusheng; Wu, Weilan; Wu, Xiaodan; Gong, Cansheng; Qiu, Liangcheng; Chen, Jianping

    2015-01-01

    The aim was to verify that dexmedetomidine (DEX) can attenuate CLP-induced intestinal injury via inhibition of inflammation. Male Sprague-Dawley (SD) rats were randomly allocated into Sham group and the other three CLP model groups, in terms of different treatments: placebo, DEX, and yohimbine plus DEX (DEX + YOH) groups. Pathology examination was conducted with HE stain. To identify differences among groups, the levels of DAO, and D-lactate in serum were measured by spectrophotometry, and the levels of TNF-α, IL-1β, and IL-6 in serum and organ were measured by ELISA. The expressions of occludin and TLR4 in tissue were detected by Western blot. The survival rate of an additional group of animals within 7 d was recorded. In DEX group, mortality was lower, histology change was minor, DAO, and D-lactate levels were reduced, and occludin expression was increased; the expressions of TNF-α, IL-1β, IL-6, and TLR4 were also decreased in DEX group. These results indicated that acute intestinal injury induced by CLP was mitigated by DEX treatment. However, these effects of DEX were significantly attenuated by yohimbine in DEX + YOH group. Our study indicated the protective effects of DEX on CLP-induced injury, which may be associated with the inhibition of inflammation via modulating TLR4 pathway and can be blocked by yohimbine.

  16. Endotoxin induced chorioamnionitis prevents intestinal development during gestation in fetal sheep.

    Directory of Open Access Journals (Sweden)

    Tim G A M Wolfs

    Full Text Available Chorioamnionitis is the most significant source of prenatal inflammation and preterm delivery. Prematurity and prenatal inflammation are associated with compromised postnatal developmental outcomes, of the intestinal immune defence, gut barrier function and the vascular system. We developed a sheep model to study how the antenatal development of the gut was affected by gestation and/or by endotoxin induced chorioamnionitis.Chorioamnionitis was induced at different gestational ages (GA. Animals were sacrificed at low GA after 2d or 14d exposure to chorioamnionitis. Long term effects of 30d exposure to chorioamnionitis were studied in near term animals after induction of chorioamnionitis. The cellular distribution of tight junction protein ZO-1 was shown to be underdeveloped at low GA whereas endotoxin induced chorioamnionitis prevented the maturation of tight junctions during later gestation. Endotoxin induced chorioamnionitis did not induce an early (2d inflammatory response in the gut in preterm animals. However, 14d after endotoxin administration preterm animals had increased numbers of T-lymphocytes, myeloperoxidase-positive cells and gammadelta T-cells which lasted till 30d after induction of chorioamnionitis in then near term animals. At early GA, low intestinal TLR-4 and MD-2 mRNA levels were detected which were further down regulated during endotoxin-induced chorioamnionitis. Predisposition to organ injury by ischemia was assessed by the vascular function of third-generation mesenteric arteries. Endotoxin-exposed animals of low GA had increased contractile response to the thromboxane A2 mimetic U46619 and reduced endothelium-dependent relaxation in responses to acetylcholine. The administration of a nitric oxide (NO donor completely restored endothelial dysfunction suggesting reduced NO bioavailability which was not due to low expression of endothelial nitric oxide synthase.Our results indicate that the distribution of the tight

  17. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    International Nuclear Information System (INIS)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A.

    1991-01-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of 51 Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in 51 Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal 51 Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol

  18. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. (Department of Pediatrics, Louisiana State University School of Medicine, New Orleans (USA))

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  19. Notional Permeability

    NARCIS (Netherlands)

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.

    2012-01-01

    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  20. Damage-induced permeability changes around underground excavations; Endommagement des roches argileuses et permeabilite induite au voisinage d'ouvrages souterrains

    Energy Technology Data Exchange (ETDEWEB)

    Coll, C

    2005-07-15

    The storage of nuclear waste in deep geological formations is now considered more and more as a potential solution. During excavation, a disturbed zone develops in which damaging can be important and which can lead eventually to the failure of the rock. Fluid flow and permeability in the rock mass can be significantly modified producing a possible security risk. Our work consisted in an experimental study of the hydro-mechanical coupling of two argillaceous rocks: Boom clay (Mol, Belgium) and Opalinus clay (Mont-Terri, Switzerland). Triaxial tests were performed in a saturated state to study the permeability evolution of both clays with isotropic and deviatoric stresses. Argillaceous rocks are geo-materials with complex behaviour governed by numerous coupled processes. Strong physico-chemical interactions between the fluid and the solid particles and their very low permeability required the modification of the experimental set up. Moreover, specific procedures were developed to measure permeability and to detect strain localisation in shear bands. We show that for Boom Clay, permeability is not significantly influenced by strain localisation. For Opalinus clay, fracturing can induce an increase of the permeability at low confining pressure. (author)

  1. Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore.

    Science.gov (United States)

    Chen, Wei; Feng, Lina; Nie, Hao; Zheng, Xiaodong

    2012-11-01

    Liver cancer is the third leading cause of cancer death worldwide and about half of the patients with liver cancer require adjuvant therapy after surgical resection. Therefore, development of novel agents to eradicate cancer cells may constitute a viable approach to treat patients with liver cancer. Andrographolide, a diterpenoid lactone isolated from Andrographis paniculata, is known to possess potent antioxidant, anti-inflammatory, antineoplastic and antiviral properties. In this study, we investigated the cytotoxic effect of andrographolide on human liver cancer cells and explored the cell death mechanism. Andrographolide induced a cell death distinct from apoptosis in multiple human liver cancer cells. The death was characterized by autophagy as evidenced by the accumulation of LC3 II and autophagosomes, and the formation of puncta GFP-LC3. This autophagy as well as cytotoxicity caused by andrographolide could be effectively prevented by 3-methyladenine (a chemical inhibitor of autophagy). Mechanistic study indicated that andrographolide induced autophagic cell death by disruption of mitochondrial transmembrane potential and elevation of reactive oxygen species, which were correlated with mitochondrial permeability transition pore Inhibition of cyclophilin D (a component of MPTP) by cyclosporin A or abrogation of its expression by small interfering RNA significantly suppressed the cytotoxicity of andrographolide, suggesting that cyclophilin D may play an important role in mediating andrographolide-induced cytotoxicity. Taken together, our findings unveil a novel mechanism of drug action by andrographolide in liver cancer cells and suggest that andrographolide may represent a promising novel agent in the treatment of liver cancer.

  2. Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin.

    Science.gov (United States)

    Costa, Rute A P; Fernandes, Mariana P; de Souza-Pinto, Nadja C; Vercesi, Aníbal E

    2013-02-15

    Mitochondrial oxidative stress followed by membrane permeability transition (MPT) has been considered as a possible mechanism for statins cytotoxicity. Statins use has been associated with reduced risk of cancer incidence, especially prostate cancer. Here we investigated the pathways leading to simvastatin-induced prostate cancer cell death as well as the mechanisms of cell death protection by l-carnitine or piracetam. These compounds are known to prevent and/or protect against cell death mediated by oxidative mitochondrial damage induced by a variety of conditions, either in vivo or in vitro. The results provide evidence that simvastatin induced MPT and cell necrosis were sensitive to either l-carnitine or piracetam in a dose-dependent fashion and mediated by additive mechanisms. When combined, l-carnitine and piracetam acted at concentrations significantly lower than they act individually. These results shed new light into both the cytotoxic mechanisms of statins and the mechanisms underlying the protection against MPT and cell death by the compounds l-carnitine and piracetam. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Role of Intestinal LXRα in Regulating Post-prandial Lipid Excursion and Diet-Induced Hypercholesterolemia and Hepatic Lipid Accumulation

    Directory of Open Access Journals (Sweden)

    Tibiábin Benítez-Santana

    2017-05-01

    Full Text Available Post-prandial hyperlipidemia has emerged as a cardiovascular risk factor with limited therapeutic options. The Liver X receptors (Lxrs are nuclear hormone receptors that regulate cholesterol elimination. Knowledge of their role in regulating the absorption and handling of dietary fats is incomplete. The purpose of this study was to determine the role of intestinal Lxrα in post-prandial intestinal lipid transport. Using Lxrα knockout (nr1h3−/− and intestine-limited Lxrα over-expressing [Tg(fabp2a:EGFP-nr1h3] zebrafish strains, we measured post-prandial lipid excursion with live imaging in larvae and physiological methods in adults. We also conducted a long-term high-cholesterol dietary challenge in adults to examine the chronic effect of modulating nr1h3 gene dose on the development of hypercholesterolemia and hepatic lipid accumulation. Over-expression of Lxrα in the intestine delays the transport of ingested lipids in larvae, while deletion of Lxrα increases the rate of lipid transport. Pre-treating wildtype larvae with the liver-sparing Lxr agonist hyodeoxycholic acid also delayed the rate of intestinal lipid transport in larvae. In adult males, deletion of Lxrα accelerates intestinal transport of ingested lipids. Adult females showed higher plasma Lipoprotein lipase (Lpl activity compared to males, and lower post-gavage blood triacylglycerol (TAG excursion. Despite the sexually dimorphic effect on acute intestinal lipid handling, Tg(fabp2a:EGFP-nr1h3 adults of both sexes are protected from high cholesterol diet (HCD-induced hepatic lipid accumulation, while nr1h3−/− mutants are sensitive to the effects of HCD challenge. These data indicate that intestinal Lxr activity dampens the pace of intestinal lipid transport cell-autonomously. Selective activation of intestinal Lxrα holds therapeutic promise.

  4. Melatonin modulates permeability transition pore and 5-hydroxydecanoate induced KATPchannel inhibition in isolated brain mitochondria.

    Science.gov (United States)

    Waseem, Mohammad; Tabassum, Heena; Parvez, Suhel

    2016-11-01

    There is increasing recognition of the magnitude of mitochondria in neurodegenerative disorders. Mitochondria play a key role in apoptotic and necrotic cell death. Melatonin (Mel), an indoleamine produced in several organs including the pineal gland has been known for its neuroprotective actions. In our study, we have investigated whether the mitochondrial ATP sensitive potassium (mtK ATP ) channel blocker 5-hydroxydecanoate (5-HD) and calcium (Ca 2+ ) affects permeability transition pore (PTP) alterations in isolated brain mitochondria treated with melatonin (Mel) and cyclosporin A (CsA). Mitochondrial swelling, mitochondrial membrane potential (Δψ m ), ROS measurement and mitochondrial respiration were evaluated in isolated brain mitochondria. In our results, mitochondrial swelling stimulated by exposing Ca 2+ ions and 5-HD associated by mPTP opening as depicted by modulation of CsA and Mel. In addition, Ca 2+ and 5-HD decreased Δψ m , depleted intracellular ROS, and inhibition of mitochondrial respiration (state 3 and state 4) in isolated brain mitochondria. Addition of Mel and CsA has shown significant restoration in mitochondrial swelling, Δψ m , intracellular ROS measurement and mitochondrial respiration in isolated brain mitochondria. Therefore, we speculate the modulatory effect of Mel and CsA in mitochondria treated with 5-HD and Ca 2+ hinders the mPTP-mediated mitochondrial dysfunction and cellular oxidative stress. We conclude that inhibition of mPT is one likely mechanism of CsA's and its neuroprotective actions. Development of neuroprotective agents including Mel targeting the mPTP therefore bears hope for future treatment of severe neurodegenerative diseases. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  5. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  6. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    Energy Technology Data Exchange (ETDEWEB)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M. (Washington Univ., St. Louis, MO (USA))

    1988-09-20

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K{sub m} values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 {mu}M. For UV-induced DNA repair synthesis, the apparent K{sub m} values were substantially lower, ranging from 0.11 to 0.44 {mu}M for AG1518 cells and from 0.06 to 0.24 {mu}M for IMR-90 cells. Recent data implicate DNA polymerase {delta} in UV-induced repair synthesis and suggest that DNA polymerases {alpha} and {delta} are both involved in semiconservative replication. They measured K{sub m} values for dGTP and dTTP for polymerases {alpha} and {delta}, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K{sub m} values for DNA polymerase {delta} are much greater than the K{sub m} values for UV-induced repair synthesis, suggesting that when polymerase {delta} functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K{sub m} values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K{sub m} for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo.

  7. Celiac anti-type 2 transglutaminase antibodies induce phosphoproteome modification in intestinal epithelial Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Gaetana Paolella

    Full Text Available BACKGROUND: Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2 activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. METHODS AND PRINCIPAL FINDINGS: We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins, three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. CONCLUSIONS: Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here

  8. Oral activated charcoal adsorbent (AST-120) ameliorates chronic kidney disease-induced intestinal epithelial barrier disruption.

    Science.gov (United States)

    Vaziri, Nosratola D; Yuan, Jun; Khazaeli, Mahyar; Masuda, Yuichi; Ichii, Hirohito; Liu, Shuman

    2013-01-01

    Chronic kidney disease (CKD) impairs intestinal barrier function which by allowing influx of noxious products causes systemic inflammation. We have recently shown that intestinal barrier dysfunction in CKD is due to degradation of epithelial tight junction (TJ) which is, in part, mediated by influx of urea and its conversion to ammonia by microbial urease. We hypothesized that by adsorbing urea and urea-derived ammonia, oral activated charcoal (AST-120) may ameliorate CKD-induced intestinal epithelial barrier disruption and systemic inflammation. Rats were randomized to the CKD or control groups. The CKD group was fed a chow containing 0.7% adenine for 2 weeks. They were then randomized to receive a chow with or without AST-120 (4 g/kg/day) for 2 weeks. Rats consuming regular diet served as controls. Animals were then euthanized, colons were removed and processed for Western blot and immunohistology, and plasma was used to measure endotoxin and oxidative and inflammatory markers. Compared with the controls, the untreated CKD rats showed elevated plasma endotoxin, IL-6, TNF-α, MCP-1, CINC-3, L-selectin, ICAM-1, and malondialdehyde, and depletions of colonic epithelial TJ proteins, claudin-1, occludin, and ZO1. Administration of AST-120 resulted in partial restoration of the epithelial TJ proteins and reduction in plasma endotoxin and markers of oxidative stress and inflammation. CKD animals exhibited depletion of the key protein constituents of the colonic epithelial TJ which was associated with systemic inflammation, oxidative stress and endotoxemia. Administration of AST-120 attenuated uremia-induced disruption of colonic epithelial TJ and the associated endotoxemia, oxidative stress and inflammation. Copyright © 2013 S. Karger AG, Basel.

  9. ACE Inhibitor-Induced Angioedema of the Intestine: Case Report, Incidence, Pathophysiology, Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Gavin Oudit

    2001-01-01

    Full Text Available A case report of fosinopril-induced angioedema of the intestine with a chronic course accompanied by multiple acute exacerbations is described. Angiotensin-converting enzyme (ACE inhibitor-induced angioedema of the intestine (AIAI occurs in a minority of patients taking an ACE inhibitor. The clinical presentation encompasses acute abdominal symptoms, pronounced bowel edema and ascites with occasional facial and/or oropharyngeal swelling. AIAI is diagnosed based on the temporal relationship between the symptomatic presentation and drug use, absence of alternative diagnoses including other causes of angioedema, and the prompt resolution of symptoms upon discontinuation of the ACE inhibitor. Prompt radiological investigation (abdominal computerized tomography and/or ultrasound is critical in making an early diagnosis and in preventing unnecessary surgical intervention. There is a female predominance of AIAI, which may reflect the interaction of estradiol with the various pathways involved in the pathophysiology of AIAI. Management of AIAI consists mainly of conservative measures and discontinuation of the ACE inhibitor. Angiotensin II receptor antagonists should not be considered as appropriate alternatives. Awareness and knowledge of AIAI are important because of the increasing use of ACE inhibitors, current delays in making the diagnosis, obvious management strategies once the diagnosis is made and the dysutility of alternative diagnoses, which may lead to considerable morbidity. AIAI must be considered in patients taking ACE inhibitors who develop gastrointestinal complaints irrespective of the duration of the therapy.

  10. Establishment of peritoneal liquid electrophoretogram from healthy horses and horses submitted to experimentally induced intestinal obstruction

    Directory of Open Access Journals (Sweden)

    A.F.S. Nogueira

    2014-06-01

    Full Text Available The initial inflammatory stages of the colic syndrome include changes known as acute phase response. The aim of this study was to contribute with the establishment of reference values concerning the electrophoretogram of peritoneal liquid from healthy horses and horses submitted to experimentally induced intestinal obstruction. Twenty-one horses were allotted in four groups: duodenal obstruction (DG, ileum obstruction (IG, left-dorsal colon obstruction (MG, and control group (CG. Peritoneal liquid was sampled before obtruction (T0, with 3 hours of obstruction (T3 and 6, 30, 102 and 174 hours after desobstructing (T6, T30, T102 and T174, respectively. Total protein levels were determined by the biuret method and protein fractions were obtained by SDS-PAGE electrophoresis. The acute phase proteins (APP identified were Immunoglobulin-A, ceruloplasmin, transferrin, albumin, α1-antitrypsin, heavy and light chains of immunoglobulin-G, haptoglobin, α1-acid glycoprotein and a still unnamed protein, which was called P24. There was no difference (P>0.3 in protein levels among groups, although a significant difference (P>0.05 was observed between distinct experimental moments in each group evidencing a higher response of the APP in the obstructed groups. The APP fractioning of the peritoneal liquid was standardized to establish a standard curve for healthy equines and those submitted to induced intestinal obstruction. Moreover, it was verified that the SDS-PAGE electrophoresis was sensitive and effective to help diagnose abdominal inflammatory processes.

  11. MDR1 is Related to Intestinal Epithelial Injury Induced by Acetylsalicylic Acid

    Directory of Open Access Journals (Sweden)

    Munehiro Kugai

    2013-10-01

    Full Text Available Background/Aims: Although the cytotoxicity of aspirin against the intestinal epithelium is a major clinical problem, little is known about its pathogenesis. We assessed the involvement of Multi Drug Resistance (MDR 1 in intestinal epithelial cell injury caused by aspirin using MDR1 gene-transfected Caco2 cells. Methods: Caco2 cells were treated with various concentrations of aspirin for 24 h. After treatment of Caco2 cells with verapamil, a specific inhibitor of MDR1, we assessed the extent of cell injury using a WST-8 assay at 24 h after aspirin-stimulation. We performed the same procedure in MDR1 gene-transfected Caco2 cells. To determine the function of MDR1 in the metabolism of aspirin, flux study was performed using 14C-labeled aspirin. Results: The level of aspirin-induced cell injury was higher in verapamil-treated Caco2 cells than in control cells and was less serious in MDR1-transfected Caco2 cells than in control vector-transfected cells. The efflux of 14C-labeled aspirin was higher in verapamil-treated Caco2 cells than in control cells. Conclusion: These data suggest that aspirin effux occurs through the MDR1 transporter and that the MDR1 transporter is involved in the pathogenesis of aspirin-induced cell injury.

  12. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    C.V. Araújo

    2015-06-01

    Full Text Available Apolipoprotein E (APOE=gene, apoE=protein is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/- and wild-type (APOE+/+ C57BL6J male and female mice (N=86 were given either Ala-Gln (100 mM or phosphate buffered saline (PBS by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU challenge (450 mg/kg, via intraperitoneal injection. Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1 and B-cell lymphoma 2 (Bcl-2 intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001 in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05 were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.

  13. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Araújo, C.V.; Lazzarotto, C.R.; Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de; Ribeiro, R.A.; Bertolini, L.R.; Lima, A.A.M.; Brito, G.A.C.; Oriá, R.B.

    2015-01-01

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE -/- ) and wild-type (APOE +/+ ) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE -/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE +/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE -/- -challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge

  14. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, C.V. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Lazzarotto, C.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Ribeiro, R.A. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Bertolini, L.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Lima, A.A.M. [Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Brito, G.A.C. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Oriá, R.B. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil)

    2015-04-28

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE{sup -/-}) and wild-type (APOE{sup +/+}) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE{sup -/-} mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE{sup +/+} mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE{sup -/-}-challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU

  15. Sex-dependent Differences in Intestinal Tumorigenesis Induced in Apc1638N/+ Mice by Exposure to {gamma} Rays

    Energy Technology Data Exchange (ETDEWEB)

    Trani, Daniela [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Maastricht Radiation Oncology (MaastRO) Lab, GROW-School for Oncology and Developmental Biology, University of Maastricht (Netherlands); Moon, Bo-Hyun [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Kallakury, Bhaskar; Hartmann, Dan P. [Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Datta, Kamal [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Fornace, Albert J., E-mail: af294@georgetown.edu [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-01-01

    Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of {gamma} rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-{alpha} were also assessed by immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of {gamma} rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-{alpha} in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.

  16. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase.

    Directory of Open Access Journals (Sweden)

    Amol Bhargava

    Full Text Available Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1, suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK. Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.

  17. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase.

    Science.gov (United States)

    Bhargava, Amol; Cotton, James A; Dixon, Brent R; Gedamu, Lashitew; Yates, Robin M; Buret, Andre G

    2015-01-01

    Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.

  18. Consequences of PAI-1 specific deletion in endothelium on radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Rannou, Emilie

    2015-01-01

    Radiation-induced injury to healthy tissues is a real public health problem, since they are one of the most limiting factors that restrict efficiency of radiation therapy. This problematic is also part of the French Cancer Plan 2014-2017, and involves clinical research. Concepts surrounding the development of radiation-induced damage have gradually evolved into a contemporary and integrated view of the pathogenesis, involving all compartments of target tissue. Among them, endothelium seems to be central in the sequence of interrelated events that lead to the development of radiation-induced damage, although there are rare concrete elements that support this concept. By using new transgenic mouse models, this PhD project provides a direct demonstration of an endothelium-dependent continuum in evolution of radiation-induced intestinal damage. Indeed, changes in the endothelial phenotype through targeted deletion of the gene SERPINE1, chosen because of its key role in the development of radiation enteritis, influences various parameters of the development of the disease. Thus, lack of PAI-1 secretion by endothelial cells significantly improves survival of the animals, and limits severity of early and late tissue damage after a localized small bowel irradiation. Furthermore, these mice partially KO for PAI-1 showed a decrease in the number of apoptotic intestinal stem cells in the hours following irradiation, a decrease in the macrophages infiltrate density one week after irradiation, and a change in the polarization of macrophages throughout the pathophysiological process. In an effort to protect healthy tissues from radiation therapy side effects, without hindering the cancer treatment, PAI-1 seems to be an obvious therapeutic target. Conceptually, this work represents the direct demonstration of the link between endothelium phenotype and radiation enteritis pathogenesis. (author)

  19. Lutein Induces Autophagy via Beclin-1 Upregulation in IEC-6 Rat Intestinal Epithelial Cells.

    Science.gov (United States)

    Chang, Chi-Jen; Lin, Ji-Fan; Hsiao, Chien-Yu; Chang, Hsun-Hao; Li, Hsin-Ju; Chang, Hsun-Hsien; Lee, Gon-Ann; Hung, Chi-Feng

    2017-01-01

    Lutein is a carotenoid with anti-oxidant properties. Autophagy, an evolutionarily conserved catabolic cellular pathway for coping with stress conditions, is responsive to reactive oxygen species (ROS) and degrades damaged organelles. We previously demonstrated that lutein can induce anti-oxidant enzymes to relieve methotrexate-induced ROS stress. We therefore hypothesized that lutein, which activates ROS-scavenging enzymes, can also induce autophagy for cell survival. In this study, we demonstrated that lutein treatment attenuated the reduction in cell viability caused by H 2 O 2 . Lutein dose-dependently induced the processing of microtubule-associated protein light chain 3 (LC3)-II, an autophagy marker protein, and accumulation of LC3-positive puncta in rat intestinal IEC-6 cells. Furthermore, (a) direct observation of autophagosome formation through transmission electron microscopy, (b) upregulation of autophagy-related genes including ATG4A, ATG5, ATG7, ATG12, and beclin-1 (BENC1), and (c) increased BECN1/Bcl-2 ratio confirmed the induction of autophagy by lutein. The results revealed that bafilomycin-A1-induced inhibition of autophagy reduced cell viability and increased apoptosis in lutein-treated cells, indicating a protective role of lutein-induced autophagy. Lutein treatment also activated adenosine monophosphate-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK), and p-38, but had no effects on the induction of extracellular signal-related kinase or inhibition of mTOR; however, the inhibition of activated AMPK, JNK, or p-38 did not attenuate lutein-induced autophagy. Finally, increased BECN1 expression levels were detected in lutein-treated cells, and BECN1 knockdown abolished autophagy induction. These results suggest that lutein-induced autophagy was mediated by the upregulation of BECN1 in IEC-6 cells. We are the first to demonstrate that lutein induces autophagy. Elevated autophagy in lutein-treated IEC-6 cells may have a protective role

  20. Optical clearing of skin using flash lamp-induced enhancement of epidermal permeability.

    Science.gov (United States)

    Tuchin, V V; Altshuler, G B; Gavrilova, A A; Pravdin, A B; Tabatadze, D; Childs, J; Yaroslavsky, I V

    2006-10-01

    Strong light scattering in skin prevents precise targeting of optical energy in therapeutic and diagnostic applications. Optical immersion based on matching refractive index of scattering centers with that of surrounding matter through introduction of an exogenous index-matching agent can alleviate the problem. However, slow diffusion of the index-matching agent through skin barrier makes practical implementation of this approach difficult. We propose a method of accelerating penetration of the index-matching compounds by enhancing skin permeability through creating a lattice of micro-zones (islets) of limited thermal damage in the stratum corneum (SC). A flash lamp (intense pulsed light) system and an island mask with a pattern of absorbing centers (center size approximately 75-120 microm, lattice pitch approximately 450-500 microm) were used to create the lattice of islets of damage (LID). Index-matching agents, such as glucose solution, propylene glycol solution, and glycerol solution, were applied. Experimental results of optical clearing ex vivo rat and pig skin, and ex vivo and in vivo human skin are presented. Optical transmission spectra of the skin samples with LID were measured during some 2 hours after application of index-matching chemical agents. In order to assess and compare the clearing rate under different treatment and clearing agents we calculated the quantity that we call "relative transmittance": T(rel) = I(t)(lambda)/I(0)(lambda), were I(t)(lambda) is the intensity measured at elapsed time t. The dynamics of relative transmittance of skin samples at 470 and 650 nm shows that the implementation of limited thermal damage technique leads to a 3-10-fold increase of optical clearing (rise of transmittance) rate compared to the results obtained when the samples were treated with high-intensity light pulses but without the use of island damage mask (IDM). It was observed from the plotted spectra of relative transmittance that the maximum increase of

  1. Evaluation of damage-induced permeability using a three-dimensional Adaptive Continuum/Discontinuum Code (AC/DC)

    Science.gov (United States)

    Fabian, Dedecker; Peter, Cundall; Daniel, Billaux; Torsten, Groeger

    Digging a shaft or drift inside a rock mass is a common practice in civil engineering when a transportation way, such as a motorway, railway tunnel or storage shaft is to be built. In most cases, the consequences of the disturbance on the medium must be known in order to estimate the behaviour of the disturbed rock mass. Indeed, excavating part of the rock causes a new distribution of the stress field around the excavation that can lead to micro-cracking and even to the failure of some rock volume in the vicinity of the shaft. Consequently, the formed micro-cracks modify the mechanical and hydraulic properties of the rock. In this paper, we present an original method for the evaluation of damage-induced permeability. ITASCA has developed and used discontinuum models to study rock damage by building particle assemblies and checking the breakage of bonds under stress. However, such models are limited in size by the very large number of particles needed to model even a comparatively small volume of rock. In fact, a large part of most models never experiences large strains and does not require the accurate description of large-strain/damage/post-peak behaviour afforded by a discontinuum model. Thus, a large model frequently can be separated into a strongly strained “core” area to be represented by a Discontinuum and a peripheral area for which continuum zones would be adequate. Based on this observation, Itasca has developed a coupled, three-dimensional, continuum/discontinuum modelling approach. The new approach, termed Adaptive Continuum/Discontinuum Code (AC/DC), is based on the use of a periodic discontinuum “base brick” for which more or less simplified continuum equivalents are derived. Depending on the level of deformation in each part of the model, the AC/DC code can dynamically select the appropriate brick type to be used. In this paper, we apply the new approach to an excavation performed in the Bure site, at which the French nuclear waste agency

  2. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility.

    Science.gov (United States)

    Ge, Xiaolong; Ding, Chao; Zhao, Wei; Xu, Lizhi; Tian, Hongliang; Gong, Jianfeng; Zhu, Minsheng; Li, Jieshou; Li, Ning

    2017-01-13

    The gastrointestinal motility is affected by gut microbiota and the relationship between them has become a hot topic. However, mechanisms of microbiota in regulating motility have not been well defined. We thus investigated the effect of microbiota depletion by antibiotics on gastrointestinal motility, colonic serotonin levels, and bile acids metabolism. After 4 weeks with antibiotics treatments, gastrointestinal and colon transit, defecation frequency, water content, and other fecal parameters were measured and analyzed in both wild-type and antibiotics-treated mice, respectively. Contractility of smooth muscle, serotonin levels, and bile acids levels in wild-type and antibiotics-treated mice were also analyzed. After antibiotics treatment, the richness and diversity of intestinal microbiota decreased significantly, and the fecal of mice had less output (P Antibiotics treatment in mice also resulted in delayed gastrointestinal and colonic motility (P antibiotics-treated mice, serotonin, tryptophan hydroxylase 1, and secondary bile acids levels were decreased. Gut microbiota play an important role in the regulation of intestinal bile acids and serotonin metabolism, which could probably contribute to the association between gut microbiota and gastrointestinal motility as intermediates.

  3. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Gremy, O.

    2006-12-01

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  4. Intestinal Barrier and Behavior.

    Science.gov (United States)

    Julio-Pieper, M; Bravo, J A

    2016-01-01

    The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses. © 2016 Elsevier Inc. All rights reserved.

  5. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang [Department of General Surgery, Xingqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Yang, Hua, E-mail: hwbyang@126.com [Department of General Surgery, Xingqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  6. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    International Nuclear Information System (INIS)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-01-01

    Highlights: ► Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. ► The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. ► GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. ► GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  7. Mucoadhesive formulation of Bidens pilosa L. (Asteraceae reduces intestinal injury from 5-fluorouracil-induced mucositis in mice

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Marcelino de Ávila

    2015-01-01

    Full Text Available Gastrointestinal mucositis induced during cancer treatment is considered a serious dose-limiting side effect of chemotherapy and/or radiotherapy. Frequently, interruption of the cancer treatment due to this pathology leads to a reduction in cure rates, increase of treatment costs and decrease life quality of the patient. Natural products such as Bidens pilosa L. (Asteraceae, represent a potential alternative for the treatment of mucositis given its anti-inflammatory properties. In this study, B. pilosa glycolic extract was formulated (BPF with poloxamer, a mucoadhesive copolymer, was used for treatment of 5-fluorouracil (5-FU-induced mucositis in mice. As expected, animals only treated with 5-FU (200 mg/kg presented marked weight loss, reduction of intestinal villi, crypts and muscular layer, which was associated with severe disruption of crypts, edema, inflammatory infiltrate and vacuolization in the intestinal tissue, as compared to the control group and healthy animals only treated with BPF. On the other hand, the treatment of intestinal mucositis-bearing mice with BPF (75, 100 or 125 mg/kg managed to mitigate clinical and pathologic changes, noticeably at 100 mg/kg. This dose led to the restoration of intestinal proliferative activity through increasing Ki-67 levels; modulated the expression of Bax, Bcl2 and p53 apoptotic markers protecting intestinal cells from cell death. Moreover, this treatment regulated lipid peroxidation and inflammatory infiltration. No acute toxic effects were observed with this formulation. This work demonstrated that BPF was safe and effective against 5-FU-induced intestinal mucositis in mice. Additional studies are already in progress to further characterize the mechanisms involved in the protective effects of this technological formulation toward the development of a new medicine for the prevention and treatment of intestinal injury in patients undergoing chemotherapy/radiotherapy.

  8. Protective effect of Holothurian intestine against indomethacin induced gastric mucosal damage in rats

    Science.gov (United States)

    Li, Xiaoyu; Qiao, Xuejing; Zhang, Cuiping; Gao, Hua; Niu, Qinghui; Wu, Tong; Zhang, Qi; Tian, Zibin

    2017-06-01

    Our study aimed to investigate the protective effects of Holothurian intestines (HI) on NSAIDs-induced gastric mucosal damage and the possible mechanism. At first, 60 male Wistar rats were induced of gastric lesions with indomethacin (IDM, 30 mg kg-1). The rats were pretreated for 15 consecutive days with saline, sucralfate, or HI (0.4 g kg-1d-1, 0.8 g kg-1d-1 and 1.6 g kg-1d-1) prior to IDM treatment, followed by evaluations of macroscopic damage and microscopic features; and investigation of the levels of inflammatory cytokines, oxidative stress parameters, gastric mucosal prostaglandin E2 (PGE2) and total hexosamine in tissues. The expression of COX-1 and COX-2 mRNA in the gastric tissue were determined by quantitative polymerase chain reaction (qPCR). Pathological gastric ulcer indexes, levels of pro-inflammatory cytokines (IL-1β, IL-17, TNF-α) and lipid peroxidation were significantly decreased in HI-treated groups, whereas the levels of protective factors (TGF-β, GSH, SOD activity and PGE2) were significantly elevated especially in the group with HI 1.6 g kg-1d-1 ( P < 0.05). Furthermore, the expression of COX-2 mRNA decreased significantly in HI groups ( P < 0.05). The study investigates that holothurian intestines may act as a kind of marine medicine which have protective effect on IDM-induced gastric ulcer, which could be a dietary preventive agent for the prevention of gastric damage.

  9. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    Full Text Available Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell–Garnetts (MG and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism. Keywords: Induced magnetic field, Nanoliquids, Heat source/sink, Series expansion method, Chemical reaction, Thermal radiation

  10. Manganese ions enhance mitochondrial H2O2emission from Krebs cycle oxidoreductases by inducing permeability transition.

    Science.gov (United States)

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Using earth-tide induced water pressure changes to measure in situ permeability: A comparison with long-term pumping tests

    Science.gov (United States)

    Allègre, Vincent; Brodsky, Emily E.; Xue, Lian; Nale, Stephanie M.; Parker, Beth L.; Cherry, John A.

    2016-04-01

    Good constraints on hydrogeological properties are an important first step in any quantitative model of groundwater flow. Field estimation of permeability is difficult as it varies over orders of magnitude in natural systems and is scale-dependent. Here we directly compare permeabilities inferred from tidal responses with conventional large-scale, long-term pumping tests at the same site. Tidally induced water pressure changes recorded in wells are used to infer permeability at ten locations in a densely fractured sandstone unit. Each location is either an open-hole well or a port in a multilevel monitoring well. Tidal response is compared at each location to the results of two conventional, long-term and large scale pumping tests performed at the same site. We obtained consistent values between the methods for a range of site-specific permeabilities varying from ˜10-15 m2 to 10-13 m2 for both open wells with large open intervals and multilevel monitoring well. We conclude that the tidal analysis is able to capture passive and accurate estimates of permeability.

  12. Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse.

    Science.gov (United States)

    Dawson, P A; Huxley, S; Gardiner, B; Tran, T; McAuley, J L; Grimmond, S; McGuckin, M A; Markovich, D

    2009-07-01

    Sulfate (SO(4)(2-)) is an abundant component of intestinal mucins and its content is decreased in certain gastrointestinal diseases, including inflammatory bowel disease. In this study, the hyposulfataemic NaS1 sulfate transporter null (Nas1(-/-)) mice were used to investigate the physiological consequences of disturbed sulfate homeostasis on (1) intestinal sulfomucin content and mRNA expression; (2) intestinal permeability and proliferation; (3) dextran sulfate sodium (DSS)-induced colitis; and (4) intestinal barrier function against the bacterial pathogen, Campylobacter jejuni. Intestinal sulfomucins and sialomucins were detected by high iron diamine staining, permeability was assessed by fluorescein isothiocyanate (FITC)-dextran uptake, and proliferation was assessed by 5-bromodeoxyuridine (BrdU) incorporation. Nas1(-/-) and wild-type (Nas1(+/+)) mice received DSS in drinking water, and intestinal damage was assessed by histological, clinical and haematological measurements. Mice were orally inoculated with C jejuni, and intestinal and systemic infection was assessed. Ileal mRNA expression profiles of Nas1(-/-) and Nas1(+/+) mice were determined by cDNA microarrays and validated by quantitative real-time PCR. Nas1(-/-) mice exhibited reduced intestinal sulfomucin content, enhanced intestinal permeability and DSS-induced colitis, and developed systemic infections when challenged orally with C jejuni. The transcriptional profile of 41 genes was altered in Nas1(-/-) mice, with the most upregulated gene being pancreatic lipase-related protein 2 and the most downregulated gene being carbonic anhydrase 1 (Car1). Sulfate homeostasis is essential for maintaining a normal intestinal metabolic state, and hyposulfataemia leads to reduced intestinal sulfomucin content, enhanced susceptibility to toxin-induced colitis and impaired intestinal barrier to bacterial infection.

  13. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Quaroni, Andrea [Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853–6401 (United States); Autore, Giuseppina [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Severino, Lorella [Department of Pathology and Animal Health, Division of Toxicology, School of Veterinary Medicine, University of Naples “Federico II”, Via Delpino 1, 80137 Naples (Italy); Marzocco, Stefania, E-mail: smarzocco@unisa.it [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy)

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  14. Short-Chain Fatty Acids Activate AMP-Activated Protein Kinase and Ameliorate Ethanol-Induced Intestinal Barrier Dysfunction in Caco-2 Cell Monolayers

    NARCIS (Netherlands)

    Eamin, E.E.; Masclee, A.A.; Dekker, J.; Pieters, H.J.; Jonkers, D.M.

    2013-01-01

    Short-chain fatty acids (SCFAs) have been shown to promote intestinal barrier function, but their protective effects against ethanol-induced intestinal injury and underlying mechanisms remain essentially unknown. The aim of the study was to analyze the influence of SCFAs on ethanol-induced barrier

  15. Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats.

    Science.gov (United States)

    Martin, O C B; Lin, C; Naud, N; Tache, S; Raymond-Letron, I; Corpet, D E; Pierre, F H

    2015-01-01

    Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme. Using a factorial design we studied if microbiota could be involved in heme-induced carcinogenesis, by modulating peroxidation. Rats treated or not with an antibiotic cocktail were given a control or a hemoglobin-diet. Fecal bacteria were counted on agar and TBARs concentration assayed in fecal water. The suppression of microbiota by antibiotics was associated with a reduction of crypt height and proliferation and with a cecum enlargement, which are characteristics of germ-free rats. Rats given hemoglobin diets had increased fecal TBARs, which were suppressed by the antibiotic treatment. A duplicate experiment in rats given dietary hemin yielded similar results. These data show that the intestinal microbiota is involved in enhancement of lipoperoxidation by heme iron. We thus suggest that microbiota could play a role in the heme-induced promotion of colorectal carcinogenesis.

  16. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure.

    Science.gov (United States)

    El Asmar, Ramzi; Panigrahi, Pinaki; Bamford, Penelope; Berti, Irene; Not, Tarcisio; Coppa, Giovanni V; Catassi, Carlo; Fasano, Alessio; El Asmar, Rahzi

    2002-11-01

    Enteric infections have been implicated in the pathogenesis of both food intolerance and autoimmune diseases secondary to the impairment of the intestinal barrier. On the basis of our recent discovery of zonulin, a modulator of small-intestinal tight junctions, we asked whether microorganisms might induce zonulin secretion and increased small-intestinal permeability. Both ex vivo mammalian small intestines and intestinal cell monolayers were exposed to either pathogenic or nonpathogenic enterobacteria. Zonulin production and changes in paracellular permeability were monitored in Ussing chambers and micro-snapwells. Zonula occludens 1 protein redistribution after bacteria colonization was evaluated on cell monolayers. Small intestines exposed to enteric bacteria secreted zonulin. This secretion was independent of either the species of the small intestines or the virulence of the microorganisms tested, occurred only on the luminal aspect of the bacteria-exposed small-intestinal mucosa, and was followed by a decrease in small-intestinal tissue resistance (transepithelial electrical resistance). The transepithelial electrical resistance decrement was secondary to the zonulin-induced tight junction disassembly, as also shown by the disengagement of the protein zonula occludens 1 protein from the tight junctional complex. This zonulin-driven opening of the paracellular pathway may represent a defensive mechanism, which flushes out microorganisms and contributes to the host response against bacterial colonization of the small intestine.

  17. Loss of guanylyl cyclase C (GCC signaling leads to dysfunctional intestinal barrier.

    Directory of Open Access Journals (Sweden)

    Xiaonan Han

    2011-01-01

    Full Text Available Guanylyl Cyclase C (GCC signaling via uroguanylin (UGN and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT and GCC deficient (GCC-/- mice with and without lipopolysaccharide (LPS challenge, as well as in UGN deficient (UGN-/- mice. IFNγ and myosin light chain kinase (MLCK levels were determined by real time PCR. Expression of tight junction proteins (TJPs, phosphorylation of myosin II regulatory light chain (MLC, and STAT1 activation were examined in intestinal epithelial cells (IECs and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi. We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury.

  18. Oral and nasal administration of chicken type II collagen suppresses adjuvant arthritis in rats with intestinal lesions induced by meloxicam.

    Science.gov (United States)

    Zheng, Yong-Qiu; Wei, Wei; Shen, Yu-Xian; Dai, Min; Liu, Li-Hua

    2004-11-01

    To investigate the curative effects of oral and nasal administration of chicken type II collagen (CII) on adjuvant arthritis (AA) in rats with meloxicam-induced intestinal lesions. AA model in Sprague-Dawley (SD) rats with or without intestinal lesions induced by meloxicam was established and those rats were divided randomly into six groups which included AA model, AA model+meloxicam, AA model+oral CII, AA model+nasal CII, AA model+ meloxicam+oral C II and AA model+meloxicam+nasal CII (n = 12). Rats was treated with meloxicam intragastrically for 7 d from d 14 after immunization with complete Freund's adjuvant (CFA), and then treated with chicken CII intragastrically or nasally for 7 d. Histological changes of right hind knees were examined. Hind paw secondary swelling and intestinal lesions were evaluated. Synoviocyte proliferation was measured by 3-(4,5-dimethylthiazol-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) method. Activities of myeloperoxidase (MPO) and diamine oxidase (DAO) from supernatants of intestinal homogenates were assayed by spectrophotometric analysis. Intragastrical administration of meloxicam (1.5 mg/kg) induced multiple intestinal lesions in AA rats. There was a significant decrease of intestinal DAO activities in AA+meloxicam group (P<0.01) and AA model group (P<0.01) compared with normal group. DAO activities of intestinal homogenates in AA+meloxicam group were significantly less than those in AA rats (P<0.01). There was a significant increase of intestinal MPO activities in AA+meloxicam group compared with normal control (P<0.01). Oral or nasal administration of CII (20 microg/kg) could suppress the secondary hind paw swelling(P<0.05 for oral CII; P<0.01 for nasal CII), synoviocyte proliferation (P<0.01) and histopathological degradation in AA rats, but they had no significant effects on DAO and MPO changes. However, oral administration of CII (20 microg/kg) showed the limited efficacy on arthritis in AA+meloxicam model and the

  19. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore

    International Nuclear Information System (INIS)

    Gharanei, M.; Hussain, A.; Janneh, O.; Maddock, H.L.

    2013-01-01

    Chemotherapeutic agents such as doxorubicin are known to cause or exacerbate cardiovascular cell death when an underlying heart condition is present. However, the mechanism of doxorubicin-induced cardiotoxicity is unclear. Here we assess the cardiotoxic effects of doxorubicin in conditions of myocardial ischaemia reperfusion and the mechanistic basis of protection, in particular the role of the mitochondrial permeability transition pore (mPTP) in such protection. The effects of doxorubicin (1 μM) ± cyclosporine A (CsA, 0.2 μM; inhibits mPTP) were investigated in isolated male Sprague–Dawley rats using Langendorff heart and papillary muscle contraction models subjected to simulated ischaemia and reperfusion injury. Isolated rat cardiac myocytes were used in an oxidative stress model to study the effects of drug treatment on mPTP by confocal microscopy. Western blot analysis evaluated the effects of drug treatment on p-Akt and p-Erk 1/2 levels. Langendorff and the isometric contraction models showed a detrimental effect of doxorubicin throughout reperfusion/reoxygenation as well as increased p-Akt and p-Erk levels. Interestingly, CsA not only reversed the detrimental effects of doxorubicin, but also reduced p-Akt and p-Erk levels. In the sustained oxidative stress assay to study mPTP opening, doxorubicin decreased the time taken to depolarization and hypercontracture, but these effects were delayed in the presence of CsA. Collectively, our data suggest for the first that doxorubicin exacerbates myocardial injury in an ischaemia reperfusion model. If the inhibition of mPTP ameliorates the cardiotoxic effects of doxorubicin, then more selective inhibitors of mPTP should be further investigated for their utility in patients receiving doxorubicin. - Highlights: ► Doxorubicin exacerbates myocardial ischaemia reperfusion injury. ► Co-treatment with CsA protects against doxorubicin induced myocardial injury. ► CsA delays doxorubicin induced mPTP opening in laser

  20. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore

    Energy Technology Data Exchange (ETDEWEB)

    Gharanei, M.; Hussain, A. [Department of Biomolecular and Sport Sciences, Coventry University, Cox Street, Coventry, CV1 5FB (United Kingdom); Janneh, O. [Department of Biomolecular and Sport Sciences, Coventry University, Cox Street, Coventry, CV1 5FB (United Kingdom); Pharmacology Research Laboratories, 70, Pembroke Place, The University of Liverpool, Liverpool. L69 3GF (United Kingdom); Maddock, H.L., E-mail: h.maddock@coventry.ac.uk [Department of Biomolecular and Sport Sciences, Coventry University, Cox Street, Coventry, CV1 5FB (United Kingdom)

    2013-04-15

    Chemotherapeutic agents such as doxorubicin are known to cause or exacerbate cardiovascular cell death when an underlying heart condition is present. However, the mechanism of doxorubicin-induced cardiotoxicity is unclear. Here we assess the cardiotoxic effects of doxorubicin in conditions of myocardial ischaemia reperfusion and the mechanistic basis of protection, in particular the role of the mitochondrial permeability transition pore (mPTP) in such protection. The effects of doxorubicin (1 μM) ± cyclosporine A (CsA, 0.2 μM; inhibits mPTP) were investigated in isolated male Sprague–Dawley rats using Langendorff heart and papillary muscle contraction models subjected to simulated ischaemia and reperfusion injury. Isolated rat cardiac myocytes were used in an oxidative stress model to study the effects of drug treatment on mPTP by confocal microscopy. Western blot analysis evaluated the effects of drug treatment on p-Akt and p-Erk 1/2 levels. Langendorff and the isometric contraction models showed a detrimental effect of doxorubicin throughout reperfusion/reoxygenation as well as increased p-Akt and p-Erk levels. Interestingly, CsA not only reversed the detrimental effects of doxorubicin, but also reduced p-Akt and p-Erk levels. In the sustained oxidative stress assay to study mPTP opening, doxorubicin decreased the time taken to depolarization and hypercontracture, but these effects were delayed in the presence of CsA. Collectively, our data suggest for the first that doxorubicin exacerbates myocardial injury in an ischaemia reperfusion model. If the inhibition of mPTP ameliorates the cardiotoxic effects of doxorubicin, then more selective inhibitors of mPTP should be further investigated for their utility in patients receiving doxorubicin. - Highlights: ► Doxorubicin exacerbates myocardial ischaemia reperfusion injury. ► Co-treatment with CsA protects against doxorubicin induced myocardial injury. ► CsA delays doxorubicin induced mPTP opening in laser

  1. The Effect of Acupuncture and Electro-acupuncture at ST41 on Intestinal Hypomotility Induced with Loperamide in Rats

    Directory of Open Access Journals (Sweden)

    Lee Sang-mi

    2009-12-01

    Full Text Available Objectives : The purpose of this study was to compare the effect of acpuncture and electro-acupuncture of low(EA(L and high(EA(H frequency at Haegye(ST41 on intestinal hypomotility induced with loperamide in rats. Methods : We made suppressed state of intestinal motility with loperamide in rats and carried out needle retention acupuncture, low frequency electro-acupuncture and high frequency electro-acupuncture at ST41 in rats devided into pre-treatment group and post-treatment group. We fed charcoal to them after the treatment and measured the travel rate of charcoal in the gastrointestinal track to analyze which treatment is more effective in state of intestinal hypomotility. Results : None of acupuncture, EA(L and EA(H at ST41 had significant influences on intestinal motility of rat in normal state. Needle retention at ST41 did not significantly increase intestinal motility suppressed with loperamide in rats. Pre-treatment of EA(L and EA(H at ST41 significantly increased intestinal motility suppressed with loperamide in rats. Post-treatment of EA(L and EA(H at ST41 did not have significant influences on intestinal motility of rat in normal state. Conclusions : These results suggest that treatment of EA(L and EA(H at ST41 may be effective on gastric disorders such as intestinal hypomotility and its effect had more prevention than cure. Further study is necessary to know more effects of ST41 and electro-acupuncture of low and high frequency.

  2. Direct observation of defects and increased ion permeability of a membrane induced by structurally disordered Cu/Zn-superoxide dismutase aggregates.

    Directory of Open Access Journals (Sweden)

    Inhee Choi

    Full Text Available Interactions between protein aggregates and a cellular membrane have been strongly implicated in many protein conformational diseases. However, such interactions for the case of Cu/Zn superoxide dismutase (SOD1 protein, which is related to fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS, have not been explored yet. For the first time, we report the direct observation of defect formation and increased ion permeability of a membrane induced by SOD1 aggregates using a supported lipid bilayer and membrane patches of human embryonic kidney cells as model membranes. We observed that aggregated SOD1 significantly induced the formation of defects within lipid membranes and caused the perturbation of membrane permeability, based on surface plasmon resonance spectroscopy, atomic force microscopy and electrophysiology. In the case of apo SOD1 with an unfolded structure, we found that it bound to the lipid membrane surface and slightly perturbed membrane permeability, compared to other folded proteins (holo SOD1 and bovine serum albumin. The changes in membrane integrity and permeability were found to be strongly dependent on the type of proteins and the amount of aggregates present. We expect that the findings presented herein will advance our understanding of the pathway by which structurally disordered SOD1 aggregates exert toxicity in vivo.

  3. Direct observation of defects and increased ion permeability of a membrane induced by structurally disordered Cu/Zn-superoxide dismutase aggregates.

    Science.gov (United States)

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Nam, Joo Hyun; Kim, Sung Joon; Sung, Jung-Joon; Kang, Taewook; Yi, Jongheop

    2011-01-01

    Interactions between protein aggregates and a cellular membrane have been strongly implicated in many protein conformational diseases. However, such interactions for the case of Cu/Zn superoxide dismutase (SOD1) protein, which is related to fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS), have not been explored yet. For the first time, we report the direct observation of defect formation and increased ion permeability of a membrane induced by SOD1 aggregates using a supported lipid bilayer and membrane patches of human embryonic kidney cells as model membranes. We observed that aggregated SOD1 significantly induced the formation of defects within lipid membranes and caused the perturbation of membrane permeability, based on surface plasmon resonance spectroscopy, atomic force microscopy and electrophysiology. In the case of apo SOD1 with an unfolded structure, we found that it bound to the lipid membrane surface and slightly perturbed membrane permeability, compared to other folded proteins (holo SOD1 and bovine serum albumin). The changes in membrane integrity and permeability were found to be strongly dependent on the type of proteins and the amount of aggregates present. We expect that the findings presented herein will advance our understanding of the pathway by which structurally disordered SOD1 aggregates exert toxicity in vivo. © 2011 Choi et al.

  4. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens.

    Science.gov (United States)

    Quinteiro-Filho, W M; Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Sakai, M; Sá, L R M; Ferreira, A J P; Palermo-Neto, J

    2010-09-01

    Studies on environmental consequences of stress on animal production have grown substantially in the last few years for economic and animal welfare reasons. Physiological, hormonal, and immunological deficits as well as increases in animals' susceptibility to diseases have been reported after different stressors in broiler chickens. The aim of the current experiment is to describe the effects of 2 different heat stressors (31 +/- 1 and 36 +/- 1 degrees C/10 h per d) applied to broiler chickens from d 35 to 42 of life on the corticosterone serum levels, performance parameters, intestinal histology, and peritoneal macrophage activity, correlating and discussing the obtained data under a neuroimmune perspective. In our study, we demonstrated that heat stress (31 +/- 1 and 36 +/- 1 degrees C) increased the corticosterone serum levels and decreased BW gain and food intake. Only chickens submitted to 36 +/- 1 degrees C, however, presented a decrease in feed conversion and increased mortality. We also showed a decrease of bursa of Fabricius (31 +/- 1 and 36 +/- 1 degrees C), thymus (36 +/- 1 degrees C), and spleen (36 +/- 1 degrees C) relative weights and of macrophage basal (31 +/- 1 and 36 +/- 1 degrees C) and Staphylococcus aureus-induced oxidative burst (31 +/- 1 degrees C). Finally, mild multifocal acute enteritis characterized by an increased presence of lymphocytes and plasmocytes within the jejunum's lamina propria was also observed. The stress-induced hypothalamic-pituitary-adrenal axis activation was taken as responsible for the negative effects observed on the chickens' performance and immune function and also the changes of the intestinal mucosa. The present obtained data corroborate with others in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.

  5. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells.

    Science.gov (United States)

    Blais, M; Pouliot, Y; Gauthier, S; Boutin, Y; Lessard, M

    2014-01-01

    Bovine colostrum is well known for its beneficial properties on health and development. It contains a wide variety of bioactive ingredients that are known to promote a number of cellular processes. Therefore the use of colostrum whey as a feed additive to promote intestinal health has been proposed, yet little is known about mechanisms implicated in its beneficial properties on intestinal epithelial cells. In the present paper, casein were removed from bovine colostrum and the remaining liquid, rich in bioactive compounds, was evaluated for its capacity to modulate cellular processes in porcine intestinal epithelial cell line IPEC-J2 and human colon adenocarcinoma cell line Caco-2/15. First, we verified the effect of colostrum whey and cheese whey on processes involved in intestinal wound healing, including cell proliferation, attachment, morphology and migration. Our results showed that colostrum whey promoted proliferation and migration, and decreased specifically the attachment of Caco-2/15 cells on the culture dish. On the other hand, cheese whey induced proliferation and morphological changes in IPEC-J2 cells, but failed to induce migration. The gene expression profile of IPEC-J2 cells following colostrum whey treatment was evaluated by microarray analysis. Results revealed that the expression of a significant number of genes involved in cell migration, adhesion and proliferation was indeed affected in colostrum whey-treated cells. In conclusion, colostrum specific bioactive content could be beneficial for intestinal epithelial cell homoeostasis by controlling biological processes implicated in wound healing through a precise gene expression programme.

  6. Enhanced platelet adhesion induces angiogenesis in intestinal inflammation and inflammatory bowel disease microvasculature

    Science.gov (United States)

    Rutella, Sergio; Vetrano, Stefania; Correale, Carmen; Graziani, Cristina; Sturm, Andreas; Spinelli, Antonino; De Cristofaro, Raimondo; Repici, Alessandro; Malesci, Alberto; Danese, Silvio

    2011-01-01

    Abstract Although angiogenesis is viewed as a fundamental component of inflammatory bowel disease (IBD) pathogenesis, we presently lack a thorough knowledge of the cell type(s) involved in its induction and maintenance in the inflamed intestinal mucosa. This study aimed to determine whether platelet (PLT) adhesion to inflamed intestinal endothelial cells of human origin may favour angiogenesis. Unstimulated or thrombin-activated human PLT were overlaid on resting or tumour necrosis factor (TNF)-α-treated human intestinal microvascular endothelial cells (HIMEC), in the presence or absence of blocking antibodies to either vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, integrin αvβ3, tissue factor (TF) or fractalkine (FKN). PLT adhesion to HIMEC was evaluated by fluorescence microscopy, and release of angiogenic factors (VEGF and soluble CD40L) was measured by ELISA. A matrigel tubule formation assay was used to estimate PLT capacity to induce angiogenesis after co-culturing with HIMEC. TNF-α up-regulated ICAM-1, αvβ3 and FKN expression on HIMEC. When thrombin-activated PLT were co-cultured with unstimulated HIMEC, PLT adhesion increased significantly, and this response was further enhanced by HIMEC activation with TNF-α. PLT adhesion to HIMEC was VCAM-1 and TF independent but ICAM-1, FKN and integrin αvβ3 dependent. VEGF and sCD40L were undetectable in HIMEC cultures either before or after TNF-α stimulation. By contrast, VEGF and sCD40L release significantly increased when resting or activated PLT were co-cultured with TNF-α-pre-treated HIMEC. These effects were much more pronounced when PLT were derived from IBD patients. Importantly, thrombin-activated PLT promoted tubule formation in HIMEC, a functional estimate of their angiogenic potential. In conclusion, PLT adhesion to TNF-α-pre-treated HIMEC is mediated by ICAM-1, FKN and αvβ3, and is associated with VEGF and sCD40L release. These findings suggest that

  7. Administration of Protein kinase D1 induce an immunomodulatory effect on lipopolysaccharide-induced intestinal inflammation in a co-culture model of intestinal epithelial Caco-2 cells and RAW 264.7 macrophage cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke

    2017-01-01

    the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF......-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10–100 ng/ml) following induction...

  8. IL-18Rα-deficient CD4+T cells induce intestinal inflammation in the CD45RBhitransfer model of colitis despite impaired innate responsiveness

    DEFF Research Database (Denmark)

    Holmkvist, Petra; Pool, Lieneke; Hägerbrand, Karin

    2016-01-01

    IL-18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T-cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL-18Rα and provide evidence that IL-18Rα expression is induced on these ce......IL-18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T-cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL-18Rα and provide evidence that IL-18Rα expression is induced...

  9. Thermally induced permeability reduction due to particle migration in sandstones: the effect of temperature on kaolinite mobilisation and aggregation

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Yuan, Hao

    2012-01-01

    The seasonal imbalance in supply and demand of renewable energy requires seasonal storage, which potentially may be achieved by hot water injection in geothermal aquifers to minimize heat loss by advection. A reduction of porosity and permeability is a risk of heating the rock above the in...... the interaction energy between quartz and kaolinite particles for different saturating fluids. The results are compared to the published data addressing the effect of temperature on permeability. This provides a qualitative explanation for the observed changes in permeability with temperature for the tests...

  10. Effect of humic acids on intestinal viscosity, leaky gut and ammonia excretion in a 24 h feed restriction model to induce intestinal permeability in broiler chickens

    Science.gov (United States)

    Humic acids (HA) are produced by biodegradation of organic matter that involves physical, chemical and microbiological processes, hence, HA are a complex mixture of many different acids containing carboxyl and phenolate groups. The purpose of this study was to evaluate the effect of HA on intestina...

  11. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function.

    Science.gov (United States)

    Clemente, M G; De Virgiliis, S; Kang, J S; Macatagney, R; Musu, M P; Di Pierro, M R; Drago, S; Congia, M; Fasano, A

    2003-02-01

    Despite the progress made in understanding the immunological aspects of the pathogenesis of coeliac disease (CD), the early steps that allow gliadin to cross the intestinal barrier are still largely unknown. The aim of this study was to establish whether gliadin activates a zonulin dependent enterocyte intracellular signalling pathway(s) leading to increased intestinal permeability. The effect of gliadin on the enterocyte actin cytoskeleton was studied on rat intestinal epithelial (IEC-6) cell cultures by fluorescence microscopy and spectrofluorimetry. Zonulin concentration was measured on cell culture supernatants by enzyme linked immunosorbent assay. Transepithelial intestinal resistance (Rt) was measured on ex vivo intestinal tissues mounted in Ussing chambers. Incubation of cells with gliadin led to a reversible protein kinase C (PKC) mediated actin polymerisation temporarily coincident with zonulin release. A significant reduction in Rt was observed after gliadin addition on rabbit intestinal mucosa mounted in Ussing chambers. Pretreatment with the zonulin inhibitor FZI/0 abolished the gliadin induced actin polymerisation and Rt reduction but not zonulin release. Gliadin induces zonulin release in intestinal epithelial cells in vitro. Activation of the zonulin pathway by PKC mediated cytoskeleton reorganisation and tight junction opening leads to a rapid increase in intestinal permeability.

  12. Mechanisms of Intestinal Barrier Dysfunction in Sepsis.

    Science.gov (United States)

    Yoseph, Benyam P; Klingensmith, Nathan J; Liang, Zhe; Breed, Elise R; Burd, Eileen M; Mittal, Rohit; Dominguez, Jessica A; Petrie, Benjamin; Ford, Mandy L; Coopersmith, Craig M

    2016-07-01

    induce a significant increase in intestinal permeability mediated through a common pathway involving alterations in claudin 2, claudin 5, JAM-A, and occludin although model-specific differences in ZO-1 were also identified.

  13. A Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Zahra Izadi

    2014-12-01

    Full Text Available More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs, in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horizontal permeability anisotropy and stress sensitivity are often ignored or inaccurately taken into account when simulating fluid flow in NFRs. The aim of this paper is to present an integrated approach for evaluating the dynamic and true anisotropic nature of permeability in naturally fractured reservoirs. Among other features, this approach considers the effect of reservoir depletion on reservoir permeability tensor, allowing more realistic production forecasts. In this approach the NFR is discretized into grids for which an analytical model yields full permeability tensors. Then, fluid flow is modelled using the finite-element method to obtain pore-pressure distribution within the reservoir. Next, another analytical model evaluates the change in the aperture of individual fractures as a function of effective stress and rock mechanical properties. The permeability tensor of each grid is then updated based on the apertures obtained for the current time step. The integrated model proceeds according to the next prescribed time increments.

  14. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function

    Science.gov (United States)

    Wu, Richard Y.; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C.; Scruten, Erin; Johnson-Henry, Kathene C.; Napper, Scott; O’Brien, Catherine; Jones, Nicola L.; Sherman, Philip M.

    2017-01-01

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics. PMID:28098206

  15. Role of p53 in Anticancer Drug Treatment- and Radiation-Induced Injury in Normal Small Intestine

    International Nuclear Information System (INIS)

    Jin, Shi

    2012-01-01

    In the human gastrointestinal tract, the functional mucosa of the small intestine has the highest capacity for absorption of nutrients and rapid proliferation rates, making it vulnerable to chemoradiotherapy. Recent understanding of the protective role of p53-mediated cell cycle arrest in the small intestinal mucosa has led researchers to explore new avenues to mitigate mucosal injury during cancer treatment. A traditional p53 inhibitor and two other molecules that exhibit strong protective effects on normal small intestinal epithelium during anticancer drug treatment and radiation therapy are introduced in this work. The objective of this review was to update current knowledge regarding potential mechanisms and targets that inhibit the side effects induced by chemoradiotherapy

  16. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function.

    Science.gov (United States)

    Wu, Richard Y; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C; Scruten, Erin; Johnson-Henry, Kathene C; Napper, Scott; O'Brien, Catherine; Jones, Nicola L; Sherman, Philip M

    2017-01-18

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics.

  17. Modulatory effect of fenugreek seed mucilage and spent turmeric on intestinal and renal disaccharidases in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kumar, G Suresh; Shetty, A K; Salimath, P V

    2005-06-01

    To elucidate the effect of feeding fenugreek seed mucilage and spent turmeric (10%) on disaccharidases activities, the specific activities of intestinal and renal disaccharidases viz., sucrase, maltase and lactase were measured in streptozotocin induced diabetic rats. Specific activities of intestinal disaccharidases were increased significantly during diabetes and amelioration of these activities during diabetes was clearly visible by supplementing fenugreek seed mucilage and spent turmeric in the diet. However during diabetes renal disaccharidases activities were significantly lower than those in the control rats. Fenugreek seed mucilage and spent turmeric supplementations were beneficial in alleviating the reduction in maltase activity during diabetes, however not much change in the activities of sucrase and lactase was observed upon feeding. This positive influence of feeding fenugreek seed mucilage and spent turmeric on intestinal and renal disaccharidases clearly indicates their beneficial role in the management of diabetes.

  18. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    Science.gov (United States)

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  19. Hypoxia Inducible Factor (HIF Hydroxylases as Regulators of Intestinal Epithelial Barrier FunctionSummary

    Directory of Open Access Journals (Sweden)

    Mario C. Manresa

    2017-05-01

    Full Text Available Human health is dependent on the ability of the body to extract nutrients, fluids, and oxygen from the external environment while at the same time maintaining a state of internal sterility. Therefore, the cell layers that cover the surface areas of the body such as the lung, skin, and gastrointestinal mucosa provide vital semipermeable barriers that allow the transport of essential nutrients, fluid, and waste products, while at the same time keeping the internal compartments free of microbial organisms. These epithelial surfaces are highly specialized and differ in their anatomic structure depending on their location to provide appropriate and effective site-specific barrier function. Given this important role, it is not surprising that significant disease often is associated with alterations in epithelial barrier function. Examples of such diseases include inflammatory bowel disease, chronic obstructive pulmonary disease, and atopic dermatitis. These chronic inflammatory disorders often are characterized by diminished tissue oxygen levels (hypoxia. Hypoxia triggers an adaptive transcriptional response governed by hypoxia-inducible factors (HIFs, which are repressed by a family of oxygen-sensing HIF hydroxylases. Here, we review recent evidence suggesting that pharmacologic hydroxylase inhibition may be of therapeutic benefit in inflammatory bowel disease through the promotion of intestinal epithelial barrier function through both HIF-dependent and HIF-independent mechanisms. Keywords: Epithelial Barrier, Inflammatory Bowel Disease, Hypoxia, Hypoxia-Inducible Factor (HIF Hydroxylases

  20. The Protective Role of Ginkgo Biloba against Radiation Induced Injury on Rat Gastro-intestinal Tract

    International Nuclear Information System (INIS)

    El-Ghazaly, M.A.; Gharib, O.A.; El-Sheikh, M.M.; Khayyal, M.T.

    2015-01-01

    Ginkgo Biloba extract (EGb 761) is an antioxidant substance exhibits a wide variety of biological activities. The present study was performed to evaluate oxidative stress and inflammatory parameters of gastrointestinal injury induced by exposing rats to acute doses of γ-rays and the potential value of EGb 761 in preventing changes in these parameters. Male albino rats were treated orally with the extract in a dose of 100 mg/ kg for 7 successive days before whole body exposure to acute radiation levels of 2 and 6 Gray (Gy). Control groups were run concurrently. The rats were sacrificed 3 days after irradiation. Various inflammatory mediators and biochemical parameters were determined in the stomach and intestine. Both tissues were also examined histopathologically. Exposure to radiation led to dose dependent changes in the level of oxidative stress biomarkers (elevation of thiobarbituric acid reactive substance (TBARS) and nitrite associated with a glutathione (GSH) decrease as well as in the level of inflammatory parameters (elevation of Tumour necrosis factorα (TNF-α) and myeloperoxidase (MPO) associated with depletion of prostaglandin E 2 (PGE 2 ). Pre-treatment with EGb 761 protected against the changes in both oxidative stress biomarkers and inflammatory mediators. EGb 761 exerted a protective effect against the radiation induced gastrointestinal damage, possibly through its anti-inflammatory and anti-oxidant properties.

  1. Kinetics of the flash-induced P515 response in relation to the H+-permeability of the membrane bound ATPase in spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.L.; van Kooten, O.; Vredenberg, W.J.

    1985-08-01

    The effect of dicyclohexylcarbodiimide (DCCD) on the kinetics of the flash-induced P515 response and on the activity of the ATPase was investigated in isolated spinach chloroplasts. It was found that after the addition of 5 X 10(-8)mol DCCD the rate of ATP hydrolysis induced by a period of 60 sec illumination was decreased to less than 5% of its original value. At this concentration, hardly any effect, if at all, could be detected on the kinetics of the flash-induced P515 response, neither in dark-adapted nor in light-activated chloroplasts. It was concluded that the presence of concentrations of DCCD, sufficiently high to affect the ATPase activity, does not affect the kinetics of the flash-induced P515 response. Since DCCD decreases the H+ permeability of the membrane-bound ATPase, it was concluded that this permeability coefficient for protons is not an important factor in the regulation of the flash-induced membrane potential and, therefore, does not affect the kinetics of the flash-induced P515 response.

  2. Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability.

    Science.gov (United States)

    Huang, Yu; He, Qing

    2017-06-01

    The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice.

    Science.gov (United States)

    Neelakantan, Harshini; Vance, Virginia; Wetzel, Michael D; Wang, Hua-Yu Leo; McHardy, Stanton F; Finnerty, Celeste C; Hommel, Jonathan D; Watowich, Stanley J

    2018-01-01

    There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD + ) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD + salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD + and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to

  4. Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis.

    Directory of Open Access Journals (Sweden)

    Christoph Thelemann

    Full Text Available Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD and involve CD4(+ T cells, which are activated by major histocompatibility complex class II (MHCII molecules on antigen-presenting cells (APCs. However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC affects CD4(+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL-10 receptor-blocking antibodies (anti-IL10R mAb. To assess the role of interferon (IFN-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+ T-helper type (Th1 cells - but not group 3 innate lymphoid cells (ILCs or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+ T cells and forkhead box P3 (FoxP3(+ regulatory T (Treg cells. IFN-γ produced mainly by CD4(+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

  5. Protective Effect of Royal Jelly against Phenylhydrazine-induced Histological Injuries of Small Intestine of Mice: Morphometric Analyses

    Directory of Open Access Journals (Sweden)

    Hojat Anbara

    2016-01-01

    Full Text Available Background and Objectives: Phenylhydrazine (PHZ, as a known hemolytic agent, causes toxicity in different tissues at various levels. The aim of the current study was to examine the possible protective effects of royal jelly (RJ against PHZ-induced histological injuries of small intestine in mice.   Methods: In this experimental study, adult male mice were randomly divided into four groups of 8 mice each. PHZ was administered intraperitoneally to two groups of mice (at a dose of 60mg/kg every 48 hours for 35 days. One of the groups received RJ (100mg/kg orally 4 hours before PHZ administration. The third group only received RJ, and the forth group was considered as control. Twenty-four hours after the last treatment, different segments of small intestine were dissected out, then histological sections were prepared and quantitative morphometric assessments were performed. To compare the groups, one-way ANOVA and multiple comparative Tukey tests were used. The significance level was considered to be p<0.05.   Results: In this study, PHZ caused significant decreases in depth of duodenal crypts, distribution rate of the goblet cells in ileal villi, width of duodenal and jejunal villi, and height of villi in all three segments of small intestine. Co-administration of RJ partially improved the changes in the above parameters.   Conclusion: From results of this study, it seems that RJ as a free radical scavenger could reduce PHZ-induced intestinal toxicity in mouse.

  6. An orally active Cannabis extract with high content in cannabidiol attenuates chemical induced intestinal inflammation and hypermotility in the mouse

    Directory of Open Access Journals (Sweden)

    Ester Pagano

    2016-10-01

    Full Text Available Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD, here named CBD BDS for CBD botanical drug substance, on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS. Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol. The amounts of CBD in the colon, brain and liver after the oral treatments were measured by HPLC coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion or orally (only at one dose. In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.

  7. Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis.

    Science.gov (United States)

    Singh, Vishal; Yeoh, Beng San; Chassaing, Benoit; Zhang, Benyue; Saha, Piu; Xiao, Xia; Awasthi, Deepika; Shashidharamurthy, Rangaiah; Dikshit, Madhu; Gewirtz, Andrew; Vijay-Kumar, Matam

    2016-07-01

    Lipocalin 2 (Lcn2) is a multifunctional innate immune protein whose expression closely correlates with extent of intestinal inflammation. However, whether Lcn2 plays a role in the pathogenesis of gut inflammation is unknown. Herein, we investigated the extent to which Lcn2 regulates inflammation and gut bacterial dysbiosis in mouse models of IBD. Lcn2 expression was monitored in murine colitis models and upon microbiota ablation/restoration. WT and Lcn2 knockout ( Lcn2 KO) mice were analyzed for gut bacterial load, composition by 16S rRNA gene pyrosequencing and, their colitogenic potential by co-housing with Il-10 KO mice. Acute (dextran sodium sulfate) and chronic (IL-10R neutralization and T-cell adoptive transfer) colitis was induced in WT and Lcn2 KO mice with or without antibiotics. Lcn2 expression was dramatically induced upon inflammation and was dependent upon presence of a gut microbiota and MyD88 signaling. Use of bone-marrow chimeric mice revealed non-immune cells are the major contributors of circulating Lcn2. Lcn2 KO mice exhibited elevated levels of entA -expressing gut bacteria burden and, moreover, a broadly distinct bacterial community relative to WT littermates. Lcn2 KO mice developed highly colitogenic T-cells and exhibited exacerbated colitis upon exposure to DSS or neutralization of IL-10. Such exacerbated colitis could be prevented by antibiotic treatment. Moreover, exposure to the microbiota of Lcn2 KO mice, via cohousing, resulted in severe colitis in Il-10 KO mice. Lcn2 is a bacterially-induced, MyD88-dependent, protein that play an important role in gut homeostasis and a pivotal role upon challenge. Hence, therapeutic manipulation of Lcn2 levels may provide a strategy to help manage diseases driven by alteration of the gut microbiota.

  8. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens.

    Science.gov (United States)

    Gadde, Ujvala Deepthi; Oh, Sungtaek; Lee, Youngsub; Davis, Ellen; Zimmerman, Noah; Rehberger, Tom; Lillehoj, Hyun Soon

    2017-10-01

    This study investigated the effects of Bacillus subtilis-based probiotics on the performance, modulation of host inflammatory responses and intestinal barrier gene expression of broilers subjected to LPS challenge. Chickens were randomly allocated to one of the 3 dietary treatment groups - control, antibiotic, or probiotic. At 14days, half of the chickens in each treatment were injected with LPS (1mg/kg body weight), and the other half injected with sterile PBS. Chickens fed probiotics weighed significantly more than controls at 15days of age, irrespective of immune challenge. LPS challenge significantly reduced weight gain at 24h post-injection, and the probiotics did not alleviate the LPS-induced reduction of weight gain. Serum α-1-AGP levels were significantly higher in LPS-injected chickens, and probiotic supplementation significantly reduced their levels. The percentages of CD4+ lymphocytes were significantly increased in probiotic groups in the absence of immunological challenge but were reduced during LPS challenge compared to controls. CD8+ lymphocytes were significantly reduced in probiotic-fed birds. The LPS-induced increase in the expression of cytokines IL8 and TNFSF15 was reduced by probiotic supplementation, and IL17F, iNOS expression was found to be significantly elevated in probiotic-fed birds subjected to LPS challenge. The reduced gene expression of tight junction proteins (JAM2, occludin and ZO1) and MUC2 induced by LPS challenge was reversed by probiotic supplementation. The results indicate that B. subtilis-based probiotics differentially regulate intestinal immune and tight junction protein mRNA expression during states of LPS-mediated immunological challenge. Published by Elsevier Ltd.

  9. Non-steroidal Anti-inflammatory Drug Induced Injury to the Small Intestine

    Directory of Open Access Journals (Sweden)

    Ilja Tachecí

    2010-01-01

    Full Text Available Non-steroidal anti-inflammatory drug (NSAIDs induced enteropathy represents an important complication of one of the most commonly used drugs worldwide. Due to previous diagnostics difficulties the real prevalence of this disease was underestimated for a long time. The pathogenesis of NSAID-enteropathy is more multifactorial and complex than formerly assumed but has still not been fully uncovered. A combination of the local and systemic effect plays an important role in pathogenesis. Thanks to novel enteroscopy methods (wireless capsule endoscopy, double balloon enteroscopy, small bowel lesions are described in a substantial section of NSAID users although most are clinically asymptomatic. The other non-invasive tests (small bowel permeability, faecal calprotectin, scintigraphy using faecal excretion of 111-indium-labelled leukocytes etc. proposed for diagnostics are not generally used in clinical practice, mainly because of their non-specificity. Despite intensive research into possible treatment, the main measure for patients with NSAID-enteropathy is still withdrawal of NSAIDs. Double balloon enteroscopy plays an important role in the treatment of complications (bleeding, strictures.

  10. Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc1l1 expression

    Directory of Open Access Journals (Sweden)

    Takuya Kikuchi

    2016-11-01

    Conclusion: Intestinal CREBH regulates dietary cholesterol flow from the small intestine by controlling the expression of multiple intestinal transporters. We propose that intestinal CREBH could be a therapeutic target for hypercholesterolemia.

  11. Identification of an intestine-specific promoter and inducible expression of bacterial α-galactosidase in mammalian cells by a lac operon system.

    Science.gov (United States)

    Ya-Feng, Zhai; Gang, Shu; Xiao-Tong, Zhu; Zhi-Qi, Zhang; Xia-Jing, Lin; Song-Bo, Wang; Li-Na, Wang; Yong-Liang, Zhang; Qing-Yan, Jiang

    2012-10-30

    α-galactosidase has been widely used in animal husbandry to reduce anti-nutritional factors (such as α-galactoside) in feed. Intestine-specific and substrate inducible expression of α-galactosidase would be highly beneficial for transgenic animal production. To achieve the intestine-specific and substrate inducible expression of α-galactosidase, we first identified intestine-specific promoters by comparing the transcriptional activity and tissue specificity of four intestine-specific promoters from human intestinal fatty acid binding protein, rat intestinal fatty acid binding protein, human mucin-2 and human lysozyme. We made two chimeric constructs combining the promoter and enhancer of human mucin-2, rat intestinal trefoil factor and human sucrase-isomaltase. Then a modified lac operon system was constructed to investigate the induction of α-galactosidase expression and enzyme activity by isopropyl β-D-1-thiogalactopyranoside (IPTG) and an α-galactosidase substrate, α-lactose.We declared that the research carried out on human (Zhai Yafeng) was in compliance with the Helsinki Declaration, and experimental research on animals also followed internationally recognized guidelines. The activity of the human mucin-2 promoter was about 2 to 3 times higher than that of other intestine-specific promoters. In the lac operon system, the repressor significantly decreased (P lactose supplementation reversed (P operon system in an intestine-derived cell line, which could be of great value for gene therapy applications and transgenic animal production.

  12. The role of metabolism in Diclofenac-induced intestinal toxicity in human ex vivo

    NARCIS (Netherlands)

    Niu, Xiaoyu; Makkinje, Miriam; de Graaf, Inge; Groothuis, Genoveva

    2012-01-01

    The use of Diclofenac (DCF: 2-(2,6-dichloranilino) phenyl acetic acid ), a non-steroidal anti-inflammatory drug is associated with severe gastro-intestinal side-effects. In vivo rat studies suggest that reactive metabolites of DCF, produced by the liver, play an important role in the intestinal

  13. Consequences of Mrp2 deficiency for diclofenac-induced toxicity in rat intestine in vitro

    NARCIS (Netherlands)

    Niu, Xiaoyu; van de Vegte, Dennis; Makkinje, Miriam; de Graaf, Inge; Groothuis, Genoveva

    Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug (NSAID), is associated with high prevalence of severe intestinal side-effects. The reactive metabolite diclofenac acylglucuronide (DAG) formed in the liver, and transported by bile into the intestine was reported to be involved in

  14. FLLL32, a curcumin analog, ameliorates intestinal injury in necrotizing enterocolitis

    Directory of Open Access Journals (Sweden)

    Eckert J

    2017-06-01

    Full Text Available Jeffrey Eckert,1 Brian Scott,1,2 Shelley M Lawrence,3 Michael Ihnat,4 Hala Chaaban1 1Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 2Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 3Department of Pediatrics, University of California San Diego, San Diego, CA, 4Department of Pharmaceutical Sciences, University of Oklahoma, College of Pharmacy, Oklahoma City, OK, USA Background: Necrotizing enterocolitis (NEC is a devastating gastrointestinal disease that primarily affects premature infants. It is characterized by inflammation and leukocyte infiltration that can progress to intestinal necrosis, perforation, systemic inflammatory response, and death. In this study, we examined the effect of FLLL32, a curcumin analog, on an NEC-like neonatal intestinal injury model. Methods: NEC was induced in CD-1 mice pups using the Paneth cell ablation and Klebsiella infection model. Pups were divided into sham, NEC, and NEC + FLLL32 groups. At the end of the experiment, pups were euthanized; whole blood and small intestines were harvested. Intestinal inflammatory cytokine profile, in vivo intestinal permeability using serum fluorescein isothiocyanate-dextran, and histological injury scores were compared between the groups. Results and conclusion: FLLL32-treated pups had lower intestinal injury, improved intestinal permeability, and lower proinflammatory cytokine profiles compared to those in untreated pups with NEC. These results suggest that FLLL32 plays a protective role in NEC. Keywords: necrotizing enterocolitis, neonatal intestinal inflammation, curcumin, FLLL32, STAT3 inhibitors

  15. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  16. Electroacupuncture Inhibits Inflammation Reaction by Upregulating Vasoactive Intestinal Peptide in Rats with Adjuvant-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Tian-Feng He

    2011-01-01

    Full Text Available Acupuncture is emerging as an alternative therapy for rheumatoid arthritis (RA. However, the molecular mechanism underlying this beneficial effect of acupuncture has not been fully understood. Here, we demonstrated that electroacupuncture at acupoints Zusanli (ST36, Xuanzhong (GB39; and Shenshu (BL23 markedly decreased the paw swelling and the histologic scores of inflammation in the synovial tissue, and reduced the body weight loss in an adjuvant-induced arthritis rat model. However, the electrical stimulation at nonacupoint did not produce any beneficial effects against the experimental arthritis. Most interestingly, the electroacupuncture treatment resulted in an enhanced immunostaining for vasoactive intestinal peptide (VIP, a potent anti-inflammatory neuropeptide, in the synovial tissue. Moreover, the VIP-immunostaining intensity was significantly negatively correlated with the scores of inflammation in the synovial tissue (r=−0.483, P=.0026. In conclusion, these findings suggest that electroacupuncture may offer therapeutic benefits for the treatment of RA, at least partially through the induction of VIP expression.

  17. Efficacious intestinal permeation enhancement induced by the sodium salt of 10-undecylenic acid, a medium chain fatty acid derivative.

    Science.gov (United States)

    Brayden, David J; Walsh, Edwin

    2014-09-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to ten millimolars of the three agents reduced TEER and increased the Papp of [(14)C]-mannitol across Caco-2 monolayers and rat intestinal mucosae, a concentration that matched increases in plasma membrane permeability seen in HCS. Although C11 was the most efficacious enhancer in vitro, it damaged monolayers and tissue mucosae more than the other two agents at similar concentrations and exposure times and was therefore not pursued further. Rat jejunal and colonic in situ intestinal instillations of 100 mM C10 or uC11 with FITC-dextran 4000 (FD4) solutions yielded comparable regional enhancement ratios of ~10 and 30%, respectively, for each agent with acceptable tissue histology. Mini-tablets of uC11 and FD4 however delivered more FD4 compared to C10-FD-4 mini-tablets in both regions, as reflected by a statistically higher AUC, and with no evidence of membrane perturbation. The unsaturated bond in uC11 therefore confers a reduction in lipophilicity and cytotoxicity compared to C11, and the resulting permeation enhancement is on a par with or superior to that of C10, a key component of formulations in current phase II oral peptide clinical trials.

  18. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish.

    Science.gov (United States)

    Zhang, Jin-Xiu; Guo, Lin-Ying; Feng, Lin; Jiang, Wei-Dan; Kuang, Sheng-Yao; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Zhou, Xiao-Qiu

    2013-01-01

    β-Conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR), feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na(+),K(+)-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-Conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and glutathione (GSH) content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR) gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects.

  19. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish.

    Directory of Open Access Journals (Sweden)

    Jin-Xiu Zhang

    Full Text Available β-Conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR, feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na(+,K(+-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-Conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD, catalase (CAT, glutathione-S-transferase (GST, glutathione peroxidase (GPx and glutathione reductase (GR activities and glutathione (GSH content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8, tumor necrosis factor-α (TNF-α, and transforming growth factor-β (TGF-β genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects.

  20. Goat milk with and without increased concentrations of lysozyme improves repair of intestinal cell damage induced by enteroaggregative Escherichia coli.

    Science.gov (United States)

    Carvalho, Eunice B; Maga, Elizabeth A; Quetz, Josiane S; Lima, Ila F N; Magalhães, Hemerson Y F; Rodrigues, Felipe A R; Silva, Antônio V A; Prata, Mara M G; Cavalcante, Paloma A; Havt, Alexandre; Bertolini, Marcelo; Bertolini, Luciana R; Lima, Aldo A M

    2012-08-11

    Enteroaggregative Escherichia coli (EAEC) causes diarrhea, malnutrition and poor growth in children. Human breast milk decreases disease-causing bacteria by supplying nutrients and antimicrobial factors such as lysozyme. Goat milk with and without human lysozyme (HLZ) may improve the repair of intestinal barrier function damage induced by EAEC. This work investigates the effect of the milks on intestinal barrier function repair, bacterial adherence in Caco-2 and HEp-2 cells, intestinal cell proliferation, migration, viability and apoptosis in IEC-6 cells in the absence or presence of EAEC. Rat intestinal epithelial cells (IEC-6, ATCC, Rockville, MD) were used for proliferation, migration and viability assays and human colon adenocarcinoma (Caco-2, ATCC, Rockville, MD) and human larynx carcinoma (HEp-2, ATCC, Rockville, MD) cells were used for bacterial adhesion assays. Goats expressing HLZ in their milk were generated and express HLZ in milk at concentration of 270 μg/ml. Cells were incubated with pasteurized milk from either transgenic goats expressing HLZ or non-transgenic control goats in the presence and absence of EAEC strain 042 (O44:H18). Cellular proliferation was significantly greater in the presence of both HLZ transgenic and control goat milk compared to cells with no milk. Cellular migration was significantly decreased in the presence of EAEC alone but was restored in the presence of milk. Milk from HLZ transgenic goats had significantly more migration compared to control milk. Both milks significantly reduced EAEC adhesion to Caco-2 cells and transgenic milk resulted in less colonization than control milk using a HEp-2 assay. Both milks had significantly increased cellular viability as well as less apoptosis in both the absence and presence of EAEC. These data demonstrated that goat milk is able to repair intestinal barrier function damage induced by EAEC and that goat milk with a higher concentration of lysozyme offers additional protection.

  1. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn's disease.

    Science.gov (United States)

    Prantera, Cosimo; Lochs, Herbert; Grimaldi, Maria; Danese, Silvio; Scribano, Maria Lia; Gionchetti, Paolo

    2012-03-01

    Bacteria might be involved in the development and persistence of inflammation in patients with Crohn's disease (CD), and antibiotics could be used in therapy. We performed a clinical phase 2 trial to determine whether a gastroresistant formulation of rifaximin (extended intestinal release [EIR]) induced remission in patients with moderately active CD. We performed a multicenter, randomized, double-blind trial of the efficacy and safety of 400, 800, and 1200 mg rifaximin-EIR, given twice daily to 402 patients with moderately active CD for 12 weeks. Data from patients given rifaximin-EIR were compared with those from individuals given placebo, and collected during a 12-week follow-up period. The primary end point was remission (Crohn's Disease Activity Index <150) at the end of the treatment period. At the end of the 12-week treatment period, 62% of patients who received the 800-mg dosage of rifaximin-EIR (61 of 98) were in remission, compared with 43% of patients who received placebo (43 of 101) (P = .005). A difference was maintained throughout the 12-week follow-up period (45% [40 of 89] vs 29% [28 of 98]; P = .02). Remission was achieved by 54% (56 of 104) and 47% (47 of 99) of the patients given the 400-mg and 1200-mg dosages of rifaximin-EIR, respectively; these rates did not differ from those of placebo. Patients given the 400-mg and 800-mg dosages of rifaximin-EIR had low rates of withdrawal from the study because of adverse events; rates were significantly higher among patients given the 1200-mg dosage (16% [16 of 99]). Administration of 800 mg rifaximin-EIR twice daily for 12 weeks induced remission with few adverse events in patients with moderately active CD. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model.

    Directory of Open Access Journals (Sweden)

    Marjorie Buttet

    Full Text Available The metabolic syndrome (MetS greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD. By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP and blood clearance (ApoC2. These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG, while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the

  3. Intestinal Insulin Signaling Encodes Two Different Molecular Mechanisms for the Shortened Longevity Induced by Graphene Oxide in Caenorhabditis elegans

    Science.gov (United States)

    Zhao, Yunli; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2016-04-01

    Graphene oxide (GO) has been shown to cause multiple toxicities in various organisms. However, the underlying molecular mechanisms for GO-induced shortened longevity are still unclear. We employed Caenorhabditis elegans to investigate the possible involvement of insulin signaling pathway in the control of GO toxicity and its underlying molecular mechanisms. Mutation of daf-2, age-1, akt-1, or akt-2 gene induced a resistant property of nematodes to GO toxicity, while mutation of daf-16 gene led to a susceptible property of nematodes to GO toxicity, suggesting that GO may dysregulate the functions of DAF-2/IGF-1 receptor, AGE-1, AKT-1 and AKT-2-mediated kinase cascade, and DAF-16/FOXO transcription factor. Genetic interaction analysis suggested the involvement of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the control of GO toxicity on longevity. Moreover, intestinal RNA interference (RNAi) analysis demonstrated that GO reduced longevity by affecting the functions of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the intestine. DAF-16 could also regulate GO toxicity on longevity by functioning upstream of SOD-3, which encodes an antioxidation system that prevents the accumulation of oxidative stress. Therefore, intestinal insulin signaling may encode two different molecular mechanisms responsible for the GO toxicity in inducing the shortened longevity. Our results highlight the key role of insulin signaling pathway in the control of GO toxicity in organisms.

  4. Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis.

    Science.gov (United States)

    Cotton, James A; Bhargava, Amol; Ferraz, Jose G; Yates, Robin M; Beck, Paul L; Buret, Andre G

    2014-07-01

    Giardia duodenalis (syn. G. intestinalis, G. lamblia) infections are a leading cause of waterborne diarrheal disease that can also result in the development of postinfectious functional gastrointestinal disorders via mechanisms that remain unclear. Parasite numbers exceed 10(6) trophozoites per centimeter of gut at the height of an infection. Yet the intestinal mucosa of G. duodenalis-infected individuals is devoid of signs of overt inflammation. G. duodenalis infections can also occur concurrently with infections with other proinflammatory gastrointestinal pathogens. Little is known of whether and how this parasite can attenuate host inflammatory responses induced by other proinflammatory stimuli, such as a gastrointestinal pathogen. Identifying hitherto-unrecognized parasitic immunomodulatory pathways, the present studies demonstrated that G. duodenalis trophozoites attenuate secretion of the potent neutrophil chemoattractant interleukin-8 (CXCL8); these effects were observed in human small intestinal mucosal tissues and from intestinal epithelial monolayers, activated through administration of proinflammatory interleukin-1β or Salmonella enterica serovar Typhimurium. This attenuation is caused by the secretion of G. duodenalis cathepsin B cysteine proteases that degrade CXCL8 posttranscriptionally. Furthermore, the degradation of CXCL8 via G. duodenalis cathepsin B cysteine proteases attenuates CXCL8-induced chemotaxis of human neutrophils. Taken together, these data demonstrate for the first time that G. duodenalis trophozoite cathepsins are capable of attenuating a component of their host's proinflammatory response induced by a separate proinflammatory stimulus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin.

    Directory of Open Access Journals (Sweden)

    Tomoko Shiobara

    Full Text Available Previous results demonstrated that capsaicin induces the reversible tight junctions (TJ opening via cofilin activation. The present study investigated the mechanisms underlying the reversible TJ opening and compared the effect to the irreversible opening induced by actin inhibitors. Capsaicin treatment induced the F-actin alteration unique to capsaicin compared to actin-interacting agents such as latrunculin A, which opens TJ irreversibly. Along with TJ opening, capsaicin decreased the level of F-actin at bicellular junctions but increased it at tricellular junctions accompanied with its concentration on the apical side of the lateral membrane. No change in TJ protein localization was observed upon exposure to capsaicin, but the amount of occludin was decreased significantly. In addition, cosedimentation analyses suggested a decrease in the interactions forming TJ, thereby weakening TJ tightness. Introduction of cofilin, LIMK and occludin into the cell monolayers confirmed their contribution to the transepithelial electrical resistance decrease. Finally, exposure of monolayers to capsaicin augmented the paracellular passage of both charged and uncharged compounds, as well as of insulin, indicating that capsaicin can be employed to modulate epithelial permeability. Our results demonstrate that capsaicin induces TJ opening through a unique mechanism, and suggest that it is a new type of paracellular permeability enhancer.

  6. Rapid reversal of human intestinal ischemia-reperfusion induced damage by shedding of injured enterocytes and reepithelialisation.

    Directory of Open Access Journals (Sweden)

    Joep P M Derikx

    . At the same time, M30 immunoreactivity was absent in intact epithelial lining. CONCLUSIONS: This is the first human study to clarify intestinal IR induced cell damage and repair and its direct consequences. It reveals a unique, endogenous clearing mechanism for injured enterocytes: rapid detachment of damaged apoptotic enterocytes into the lumen. This process is followed by repair of the epithelial continuity within an hour, resulting in a normal epithelial lining.

  7. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Gil-Cardoso, Katherine; Ginés, Iris; Pinent, Montserrat; Ardévol, Anna; Blay, Mayte; Terra, Ximena

    2016-12-01

    Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.

  8. Protective effect of an herbal preparation (HemoHIM) on radiation-induced intestinal injury in mice.

    Science.gov (United States)

    Kim, Sung Ho; Lee, Hae June; Kim, Joong Sun; Moon, Changjong; Kim, Jong Choon; Park, Hae-Ran; Jung, Uhee; Jang, Jong Sik; Jo, Sung Kee

    2009-12-01

    The protective properties of an herbal preparation (HemoHIM) against intestinal damage were examined by evaluating its effects on jejunal crypt survival, morphological changes, and apoptosis in gamma-irradiated mice. The mice were whole-body irradiated with 12 Gy for the examination of jejunal crypt survival and any morphological changes and with 2 Gy for the detection of apoptosis and Ki-67 labeling. Irradiation was conducted using (60)Co gamma-rays. HemoHIM treatment was administered intraperitonially at a dosage of 50 mg/kg of body weight at 36 and 12 hours pre-irradiation and 30 minutes post-irradiation or orally at a dosage of 250 mg/kg of body weight/day for 7 or 11 days before necropsy. The HemoHIM-treated group displayed a significant increase in survival of jejunal crypts, when compared to the irradiation controls. HemoHIM treatment decreased intestinal morphological changes such as crypt depth, villus height, mucosal length, and basal lamina length of 10 enterocytes after irradiation. Furthermore, the administration of HemoHIM protected intestinal cells from irradiation-induced apoptosis. These results suggested that HemoHIM may be therapeutically useful to reduce intestinal injury following irradiation.

  9. Nitric oxide protects the heart from ischemia-induced apoptosis and mitochondrial damage via protein kinase G mediated blockage of permeability transition and cytochrome c release

    Directory of Open Access Journals (Sweden)

    Jekabsone Aiste

    2009-08-01

    Full Text Available Abstract Background Heart ischemia can rapidly induce apoptosis and mitochondrial dysfunction via mitochondrial permeability transition-induced cytochrome c release. We tested whether nitric oxide (NO can block this damage in isolated rat heart, and, if so, by what mechanisms. Methods Hearts were perfused with 50 μM DETA/NO (NO donor, then subjected to 30 min stop-flow ischemia or ischemia/reperfusion. Isolated heart mitochondria were used to measure the rate of mitochondrial oxygen consumption and membrane potential using oxygen and tetraphenylphosphonium-selective electrodes. Mitochondrial and cytosolic cytochrome c levels were measured spectrophotometrically and by ELISA. The calcium retention capacity of isolated mitochondria was measured using the fluorescent dye Calcium Green-5N. Apoptosis and necrosis were evaluated by measuring the activity of caspase-3 in cytosolic extracts and the activity of lactate dehydrogenase in perfusate, respectively. Results 30 min ischemia caused release of mitochondrial cytochrome c to the cytoplasm, inhibition of the mitochondrial respiratory chain, and stimulation of mitochondrial proton permeability. 3 min perfusion with 50 μM DETA/NO of hearts prior to ischemia decreased this mitochondrial damage. The DETA/NO-induced blockage of mitochondrial cytochrome c release was reversed by a protein kinase G (PKG inhibitor KT5823, or soluble guanylate cyclase inhibitor ODQ or protein kinase C inhibitors (Ro 32-0432 and Ro 31-8220. Ischemia also stimulated caspase-3-like activity, and this was substantially reduced by pre-perfusion with DETA/NO. Reperfusion after 30 min of ischemia caused no further caspase activation, but was accompanied by necrosis, which was completely prevented by DETA/NO, and this protection was blocked by the PKG inhibitor. Incubation of isolated heart mitochondria with activated PKG blocked calcium-induced mitochondrial permeability transition and cytochrome c release. Perfusion of non

  10. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, M G; Giordano, M E; De Nuccio, F

    2005-01-01

    Control of cell volume is a fundamental and highly conserved physiological mechanism, essential for survival under varying environmental and metabolic conditions. Epithelia (such as intestine, renal tubule, gallbladder and gills) are tissues physiologically exposed to osmotic stress. Therefore......, the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium...

  11. Effect of Exercise Intensity on Neurotrophic Factors and Blood-Brain Barrier Permeability Induced by Oxidative-Nitrosative Stress in Male College Students.

    Science.gov (United States)

    Roh, Hee-Tae; Cho, Su-Youn; Yoon, Hyung-Gi; So, Wi-Young

    2017-06-01

    We investigated the effects of aerobic exercise intensity on oxidative-nitrosative stress, neurotrophic factor expression, and blood-brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative-nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p exercise (p exercise (p exercise (p exercise (p .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.

  12. Role of Rho proteins in carbachol-induced contractions in intact and permeabilized guinea-pig intestinal smooth muscle.

    Science.gov (United States)

    Otto, B; Steusloff, A; Just, I; Aktories, K; Pfitzer, G

    1996-01-01

    1. The aim of this study was to determine whether the low molecular mass GTPase RhoA or related proteins are involved in carbachol- and high-K(+)-induced contractions in intact intestinal smooth muscle as well as the carbachol-induced increase in Ca2+ sensitivity of the myofilaments in permeabilized preparations. 2. The carbachol-induced increase in the Ca2+ sensitivity of force production in beta-escin-permeabilized intestinal smooth muscle was enhanced in preparations that were loaded with the constitutively active mutant of RhoA, Val14RhoA, and was inhibited by exoenzyme C3 from Clostridium botulinum, which ADP-ribosylates and inactivates small GTPases of the Rho family. The effect of C3 on Ca2+