WorldWideScience

Sample records for intestinal peptide transporter

  1. Transport of peptidomimetic drugs by the intestinal Di/tri-peptide transporter, PepT1

    DEFF Research Database (Denmark)

    Brodin, Birger; Nielsen, Carsten Uhd; Steffansen, Bente

    2002-01-01

    capable of transporting a number of orally administered peptidomimetic drugs. Absorbed peptides may be hydrolysed in the cells due to the high peptidase activity present in the cytosol. Peptidomimetic drugs may, if resistant to the cellular enzyme activity, pass the basolateral membrane via a basolateral......The apical membrane of small intestinal enterocytes possess an uptake system for di- and tripeptides. The physiological function of the system is to transport small peptides resulting from digestion of dietary protein. Moreover, due to the broad substrate specificity of the system, it is also...... peptide transport mechanism and enter the systemic circulation. As the number of new peptide and peptidomimetic drugs are rapidly increasing, the peptide transport system has gained increasing attention as a possible drug delivery system for small peptides and peptide-like compounds. In this paper we give...

  2. Transport of peptidomimetic drugs by the intestinal Di/tri-peptide transporter, PepT1

    DEFF Research Database (Denmark)

    Brodin, Birger; Nielsen, Carsten Uhd; Steffansen, Bente

    2002-01-01

    peptide transport mechanism and enter the systemic circulation. As the number of new peptide and peptidomimetic drugs are rapidly increasing, the peptide transport system has gained increasing attention as a possible drug delivery system for small peptides and peptide-like compounds. In this paper we give...... an updated introduction to the transport system and discuss the substrate characteristics of the di/tri-peptide transporter system with special emphasis on chemically modified substrates and prodrugs....

  3. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  4. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Zhang, Yan; Liu, Jingbo

    2015-09-23

    The objective of this study was to investigate the transepithelial transport of RVPSL (Arg-Val-Pro-Ser-Leu), an egg-white-derived peptide with angiotensin I-converting enzyme (ACE) inhibitory and antihypertensive activity, in human intestinal Caco-2 cell monolayers. Results revealed that RVPSL could be passively transported across Caco-2 cell monolayers. However, during the process of transport, 36.31% ± 1.22% of the initial RVPSL added to the apical side was degraded, but this degradation decreased to 23.49% ± 0.68% when the Caco-2 cell monolayers were preincubated with diprotin A (P transport from the apical side to the basolateral side was investigated, the apparent permeability coefficient (Papp) was (6.97 ± 1.11) × 10(-6) cm/s. The transport route of RVPSL appears to be the paracellular pathway via tight junctions, as only cytochalasin D, a disruptor of tight junctions (TJs), significantly increased the transport rate (P transport across Caco-2 cell monolayers was studied by mutation of RVPSL. It was found that N-terminal Pro residues were more beneficial for transport of pentapeptides across Caco-2 cell monolayers than Arg and Val. Furthermore, RVPSL could be more easily transported as smaller peptides, especially in the form of dipeptides and tripeptides.

  5. Model prodrugs designed for the intestinal peptide transporter. A synthetic approach for coupling of hydroxy-containing compounds to dipeptides

    DEFF Research Database (Denmark)

    Friedrichsen, G M; Nielsen, C U; Steffansen, B

    2001-01-01

    The human peptide transporter, hPepT1, situated in the small intestine, may be exploited to increase absorption of drugs or model drugs by attaching them to a dipeptide, which is recognised by hPepT1. A synthetic protocol for this kind of model prodrugs was developed, in which model drugs...

  6. Model prodrugs for the intestinal peptide transporter. a synthetic approach for coupling of hydroxy-containing compounds to dieptides

    DEFF Research Database (Denmark)

    Friedrichsen, G; Nielsen, Carsten Uhd; Steffansen, Bente

    2001-01-01

    The human peptide transporter, hPepT1, situated in the small intestine, may be exploited to increase absorption of drugs or model drugs by attaching them to a dipeptide, which is recognised by hPepT1. A synthetic protocol for this kind of model prodrugs was developed, in which model drugs...

  7. Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo.

    Science.gov (United States)

    Yamaguchi, Shunsuke; Ito, Shingo; Kurogi-Hirayama, Mio; Ohtsuki, Sumio

    2017-09-28

    Methodology to enhance intestinal absorption of macromolecular drugs is an important challenge for developing next-generation biomedicines. So far, various cationic cell-penetrating peptides have been reported to facilitate uptake of certain bioactive proteins. However, cyclic peptides might be better candidates, as they are more metabolically stable than linear peptides. Accordingly, we hypothesized that suitable cyclic peptides would promote the absorption of macromolecules across intestinal epithelium. To test this idea, we adopted Caco-2 cell permeability assay as an in vitro human intestinal absorption model, and M13 phage as a model of macromolecules. Successive screenings of a phage library displaying cyclic heptapeptides via a short GGGS linker yielded 3 hits. Among them, phage displaying cyclic heptapeptide DNPGNET (DNP-phage) showed the greatest permeability across a Caco-2 cell monolayer and mouse intestinal epithelium. Interestingly, DNPGNET (DNP) does not contain any basic amino acids. Its isoelectric point (pI) was estimated to be 2.72. It did not reduce the viability or tight-junction integrity of Caco-2 cells at concentrations up to 100μM for 24h. Uptake of either DNP-phage or a fluorescence-labeled DNP derivative (AC-DNPGNET-CGGGS modified with 5/6-FAM at the C-terminal; the cysteines serve to generate the cyclic peptide via disulfide bond formation, and GGGS is the phage linker) by Caco-2 cells was inhibited by low temperature, unlabeled AC-DNPGNET-CGGGS and EIPA, a macropinocytosis inhibitor. Thus, DNP appears to facilitate transcellular permeability of phages via macropinocytosis, but not paracellular diffusion. These findings indicate that DNP is a promising candidate as a carrier to promote intestinal absorption of macromolecular drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Prodrugs of purine and pyrimidine analogues for the intestinal di/tri-peptide transporter PepT1

    DEFF Research Database (Denmark)

    Thomsen, Anne Engelbrecht; Friedrichsen, Gerda Marie; Sørensen, Arne Hagsten

    2003-01-01

    A general drug delivery approach for increasing oral bioavailability of purine and pyrimidine analogues such as acyclovir may be to link these compounds reversibly to stabilized dipeptide pro-moieties with affinity for the human intestinal di/tri-peptide transporter, hPepT1. In the present study......, novel L-Glu-Sar and D-Glu-Ala ester prodrugs of acyclovir and 1-(2-hydroxyethyl)-linked thymine were synthesized and their affinities for hPepT1 in Caco-2 cells were determined. Furthermore, the degradation of the prodrugs was investigated in various aqueous and biological media and compared...... to the corresponding hydrolysis of the prodrug valaciclovir. Affinity studies showed that the L-Glu-Sar prodrugs had high affinity for hPepT1 (K(i) approximately 0.2-0.3 mM), whereas the D-Glu-Ala prodrugs had poor affinity (K(i) approximately 50 mM). The pH-rate profiles of the prodrugs D-Glu[1-(2-hydroxyethyl...

  9. Quantification of egg ovalbumin hydrolysate-derived anti-hypertensive peptides in an in vitro model combining luminal digestion with intestinal Caco-2 cell transport.

    Science.gov (United States)

    Grootaert, Charlotte; Jacobs, Griet; Matthijs, Bea; Pitart, Judit; Baggerman, Geert; Possemiers, Sam; Van der Saag, Hans; Smagghe, Guy; Van Camp, John; Voorspoels, Stefan

    2017-09-01

    Food-derived peptides can impact blood pressure through several mechanisms. However, their fate in the gastro-intestinal tract and bioavailability are difficult to assess because of their fast degradation and challenging analysis in physiologically relevant matrices. The aim of this study was to construct an in vitro bioavailability methodology in which luminal digestion is combined with Caco-2 cell transport. Egg ovalbumin hydrolysate, both in pure form and mixed with a food matrix, was used as a test case. Results indicate that a food matrix protected bioactive peptides from luminal digestion, especially in small intestine. Moreover, the Caco-2 absorption peak was extended over a longer time period (>60min) compared to the pure peptide solutions (~15min) which in total resulted in a 3-12 times higher absorption of the bioactive sequences after 60min compared to fasted conditions. These results suggest further investigation is warranted towards peptide-based functional foods with improved gastro-intestinal stability and longer-term release in the blood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Acyclovir prodrug for the intestinal di/tri-peptide transporter PEPT1

    DEFF Research Database (Denmark)

    Thomsen, Anne Engelbrecht; Christensen, Michael Søberg; Bagger, Morten Aavad

    2004-01-01

    It has previously been shown that the prodrug Glu(acyclovir)-Sar has a high affinity for PEPT1 in Caco-2 cells. However, affinity does not necessarily lead to translocation by the transporter which is necessary for achieving an increased oral bioavailability. Therefore i.v. and p.o. doses of Glu......(acyclovir)-Sar, acyclovir and valacyclovir were given to rats and the collected blood samples were analysed via LC-MS-MS. Furthermore, Caco-2 cell monolayers were exposed apically to Glu(acyclovir)-Sar, acyclovir, and valacyclovir and the concentration of drug and prodrugs in the cell extracts were determined and taken...... as a measure for intracellular accumulation. In addition, bi-directional transport studies of Glu(acyclovir)-Sar across Caco-2 cell monolayers and in vitro metabolism studies of Glu(acyclovir)-Sar in various media of rat origin were performed. For these purposes HPLC-UV analysis was applied. Oral...

  11. Bile Acid-regulated Peroxisome Proliferator-activated Receptor-α (PPARα) Activity Underlies Circadian Expression of Intestinal Peptide Absorption Transporter PepT1/Slc15a1*

    Science.gov (United States)

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-01-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  12. Bile acid-regulated peroxisome proliferator-activated receptor-α (PPARα) activity underlies circadian expression of intestinal peptide absorption transporter PepT1/Slc15a1.

    Science.gov (United States)

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-09-05

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. In Vitro and Clinical Evaluations of the Drug-Drug Interaction Potential of a Metabotropic Glutamate 2/3 Receptor Agonist Prodrug with Intestinal Peptide Transporter 1.

    Science.gov (United States)

    Pak, Y Anne; Long, Amanda J; Annes, William F; Witcher, Jennifer W; Knadler, Mary Pat; Ayan-Oshodi, Mosun A; Mitchell, Malcolm I; Leese, Phillip; Hillgren, Kathleen M

    2017-02-01

    Despite peptide transporter 1 (PEPT1) being responsible for the bioavailability for a variety of drugs, there has been little study of its potential involvement in drug-drug interactions. Pomaglumetad methionil, a metabotropic glutamate 2/3 receptor agonist prodrug, utilizes PEPT1 to enhance absorption and bioavailability. In vitro studies were conducted to guide the decision to conduct a clinical drug interaction study and to inform the clinical study design. In vitro investigations determined the prodrug (LY2140023 monohydrate) is a substrate of PEPT1 with K m value of approximately 30 µM, whereas the active moiety (LY404039) is not a PEPT1 substrate. In addition, among the eight known PEPT1 substrates evaluated in vitro, valacyclovir was the most potent inhibitor (IC 50 = 0.46 mM) of PEPT1-mediated uptake of the prodrug. Therefore, a clinical drug interaction study was conducted to evaluate the potential interaction between the prodrug and valacyclovir in healthy subjects. No effect of coadministration was observed on the pharmacokinetics of the prodrug, valacyclovir, or either of their active moieties. Although in vitro studies showed potential for the prodrug and valacyclovir interaction via PEPT1, an in vivo study showed no interaction between these two drugs. PEPT1 does not appear to easily saturate because of its high capacity and expression in the intestine. Thus, a clinical interaction at PEPT1 is unlikely even with a compound with high affinity for the transporter. Copyright © 2017 by The Author(s).

  14. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  15. Drug Transporters in the Intestine

    DEFF Research Database (Denmark)

    Steffansen, Bente

    2016-01-01

    that may impact drug absorption. Thus absorptive transporters may facilitate BA of APIs that are substrates/victims for the transporters and have permeability-limited absorption, i.e. those that are classified in the biopharmaceutics classification system (BCS) Class 3 and 4. On the other hand, exsorptive...... transporters may restrict BA of APIs that are victims for these efflux transporters, especially those APIs classified to have solubility-limited absorption, i.e. compounds in BCS Class 2 and 4. The aim of the present Chapter is to review drug transporters (DTs) present within the intestine and to discuss...... and exemplify their roles in drug absorption/exsorption and in drug-drug interactions (DDIs). Although focus in the present Chapter is on DTs that are mentioned in American and European regulatory guidances, the intestinal transporters for nutrients and endogens (endogenous compounds) are also briefly...

  16. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    Two human di/tri-peptide transporters, hPepT1 and hPepT2 have been identified and functionally characterized. In the small intestine hPepT1 is exclusively expressed, whereas both PepT1 and PepT2 are expressed in the proximal tubule. The transport via di/tri-peptide transporters is proton-dependen...

  17. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    , and the transporters thus belong to the Proton-dependent Oligopeptide Transporter (POT)-family. The transporters are not drug targets per se, however due to their uniquely broad substrate specificity; they have proved to be relevant drug targets at the level of drug transport. Drug molecules such as oral active beta......Two human di/tri-peptide transporters, hPepT1 and hPepT2 have been identified and functionally characterized. In the small intestine hPepT1 is exclusively expressed, whereas both PepT1 and PepT2 are expressed in the proximal tubule. The transport via di/tri-peptide transporters is proton-dependent....../tri-peptide transporters from vesicular storages 3) changes in gene transcription/mRNA stability. The aim of the present review is to discuss physiological, patho-physiological and drug-induced regulation of di/tri-peptide transporter mediated transport....

  18. Structural Design of Oligopeptides for Intestinal Transport Model.

    Science.gov (United States)

    Hong, Seong-Min; Tanaka, Mitsuru; Koyanagi, Riho; Shen, Weilin; Matsui, Toshiro

    2016-03-16

    Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.

  19. Radioiodination of vasoactive intestinal peptide (VIP)

    International Nuclear Information System (INIS)

    Wang, Y.; Wang, L.; Yin, D.

    2002-01-01

    In recent years, increasing biochemical and radiochemical research has been performed to develop radiolabelled peptides as specific ligands for tumour associated receptors. VIP, a 28-amino acid peptide containing two tyrosines and three lysines, has demonstrated that various tumour cells express significantly higher amounts of VIP-receptors and could be applied to the clinic diagnosis. For these purposes, radiohalogenation of VIP by direct and indirect method was studied. Direct labelling works well for radioiodine but is limited to dehalogenation of labelling products in vivo. Conjugate labelling methods including Boltonhunter and wood reagents were developed but introduction of such a molecule to peptides may lead to the decrease of biological activity in vivo. In order to resolve these problems, N-Succinimidyl-3-(tri-nbutylstannyl) benzoate (ATE) was elected for the radioiodination of VIP and already employed to radioiodination of IgG successfully. The in vitro stability and biological activity would be compared in these two methods. Vasoactive intestinal peptide (VIP) and human immunoglobulin (IgG) were radioiodinated by direct and indirect methods. Iodogen was employed in direct method and N-Succinimidyl-3-(tri-n-butylstannyl) benzoate (ATE) was applied as a prosthetic group in the conjugation labelling. The subject of our study was optimizing the radiohalogenation of IgG and VIP followed by separation and analysis of reaction products. The advantages and disadvantages were illustrated by comparing the in vitro stability and biological activity in these two methods. Na 123 I was prepared by nuclear reaction of 124 Te(p, 2n) 123 I using cyclone-30. More than 95% of radiochemical purity, more than 95% of radionuclide purity and about 100 mCi/mL of radioactivity concentration were obtained. ATE was supplied by Dr. Pozzi and radioiodinated with iodogen and 96% of labelling efficiency was obtained. The stability of radioactive S 125 IB kept well in dark at 4

  20. The indirect radioiodination of vasoactive intestinal peptide

    International Nuclear Information System (INIS)

    Wang Lihua; Li Junling; Yin Duanzhi; Zhang Lei; Zhang Xiuli; Wang Yongxian

    2002-01-01

    Objective: To seek for an effective way to acquire radiolabeled vasoactive intestinal peptide (VIP) with excellent in vivo stability. N-succinimidyl-3-iodo-125-benzoate (S 125 IB) came from radioiodination of N-succinimidyl-3-(tri-n-butylstannyl) benzoate (ATE) precursor and then conjugated with VIP to form 125 IBA-VIP. The labelling procedure was optimized; the in vitro stability and biological activity were evaluated. Methods: 1) Radiolabeling of ATE precursor was achieved with iodogen oxidant and the influential factors were considered in this procedure. The labeling efficiency was determined by thin layer chromatography (TLC) and the purification was carried out by Sep-pak silica gel cartridge. The stability was detected by TLC after 2 h storage in dark at 4 degree C. 2) Conjugation of S 125 IB and VIP. The labelling efficiency was determined with RP TLC and the purification was carried out with high performance liquid chromatography (HPLC, RP C18 column). Trichloroacetic acid (TCA) precipitation method was applied to evaluate the in vitro stability while the biological activity was determined by cell binding experiments with SGC7901 cell lines. Results: 1) S 125 IB experiments. The radioiodination of ATE was performed well for 5 min at 25 degree C with 10 micrograms of iodogen at suitable mole ratio (3-8:1) of ATE/Na 125 I, the labelling efficiency was about 96%. The stability was kept well at 4 degree C in dark, no significant decrease of S 125 IB was observed. 2) The conjugation efficiency of S 125 IB and VIP was above 75% with TLC. HPLC showed the different retention time (t R ) as follows, 125 IBA-VIP: 13.3 min, S 125 IB: 19.6 min, VIP: 8.32 min. The stability of 125 IBA-VIP was better than 125 I-VIP from direct radioiodination of VIP with iodogen oxidant, only 2.85% decrease was found after 7 d at 4 degree C. The biological activity of 125 IBA-VIP was kept as well as 125 I-VIP under the condition of 37 degree C 60 min. Conclusions: The indirect

  1. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    Science.gov (United States)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  2. Sodium recirculation and isotonic transport in toad small intestine

    DEFF Research Database (Denmark)

    Nedergaard, Signe Nielsen; Larsen, Erik Hviid; Ussing, Hans H.

    1999-01-01

    Small intestine; leaky epithelia; solute-coupled water transport; Na*O+ recirculation; lateral intercellular space; flux ratio analysi......Small intestine; leaky epithelia; solute-coupled water transport; Na*O+ recirculation; lateral intercellular space; flux ratio analysi...

  3. In vitro evaluation of N-methyl amide tripeptidomimetics as substrates for the human intestinal di-/tri-peptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Andersen, Rikke; Nielsen, Carsten Uhd; Begtrup, Mikael

    2006-01-01

    of structural properties of 6859 N-methyl amide tripeptidomimetics. In vitro extracellular degradation of the selected tripeptidomimetics as well as affinity for and transepithelial transport via hPEPT1 were investigated in Caco-2 cells. Decreased apparent degradation was observed for all tripeptidomimetics...

  4. Temporal changes in the intestinal growth promoting effects of glucagon-like peptide 2 following intestinal resection

    DEFF Research Database (Denmark)

    Kaji, Tatsuru; Tanaka, Hiroaki; Redstone, Heather

    2008-01-01

    BACKGROUND: We investigated the effects of variations in the postresection timing of glucagon-like peptide-2 (GLP-2) administration on intestinal morphology and activity. METHODS: A rat model of 90% intestinal resection (SBR) with exclusively parenteral nutritional (TPN) was used. Early versus late...... that the intestinal adaptive and growth promoting actions of GLP-2 may be mediated by non-neuronal effector pathways. Although further studies are required, early treatment with GLP-2 following resection may maximize intestinal growth....

  5. Intestinal antimicrobial peptides during homeostasis, infection and disease

    Directory of Open Access Journals (Sweden)

    Luciana R Muniz

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs, including defensins and cathelicidins, constitute an arsenal of innate regulators of paramount importance in the gut. The intestinal epithelium is exposed to myriad of enteric pathogens and these endogenous peptides are essential to fend off microbes and protect against infections. It is becoming increasingly evident that AMPs shape the composition of the commensal microbiota and help maintain intestinal homeostasis. They contribute to innate immunity, hence playing important functions in health and disease. AMP expression is tightly controlled by the engagement of pattern recognition receptors (PRRs and their impairment is linked to abnormal host responses to infection and inflammatory bowel diseases (IBD. In this review, we provide an overview of the mucosal immune barriers and the intricate crosstalk between the host and the microbiota during homeostasis. We focus on the AMPs and pay particular attention to how PRRs promote their secretion in the intestine. Furthermore, we discuss their production and main functions in three different scenarios, at steady state, throughout infection with enteric pathogens and IBD.

  6. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  7. Vasoactive intestinal peptide and electrical activity influence neuronal survival

    International Nuclear Information System (INIS)

    Brenneman, D.E.; Eiden, L.E.

    1986-01-01

    Blockage of electrical activity in dissociated spinal cord cultures results in a significant loss of neurons during a critical period in development. Decreases in neuronal cell numbers and 125 I-labeled tetanus toxin fixation produced by electrical blockage with tetrodotoxin (TTX) were prevented by addition of vasoactive intestinal peptide (VIP) to the nutrient medium. The most effective concentration of VIP was 0.1 nM. At higher concentrations, the survival-enhancing effect of VIP on TTX-treated cultures was attenuated. Addition of the peptide alone had no significant effect on neuronal cell counts or tetanus toxin fixation. With the same experimental conditions, two closely related peptides, PHI-27 (peptide, histidyl-isoleucine amide) and secretin, were found not to increase the number of neurons in TTX-treated cultures. Interference with VIP action by VIP antiserum resulted in neuronal losses that were not significantly different from those observed after TTX treatment. These data indicate that under conditions of electrical blockade a neurotrophic action of VIP on neuronal survival can be demonstrated

  8. Intestinal transport and metabolism of acrylamide

    International Nuclear Information System (INIS)

    Zoedl, Bettina; Schmid, Diethart; Wassler, Georg; Gundacker, Claudia; Leibetseder, Valentin; Thalhammer, Theresia; Ekmekcioglu, Cem

    2007-01-01

    There has been an intensive debate whether dietary exposure to acrylamide could increase the risk of human cancer since the first description of the presence of acrylamide in food in 2002. As the intestinal mechanisms of acrylamide absorption are poorly investigated we studied the transport of acrylamide in differentiated Caco-2 cells and its effects on biotransformation enzymes (CYP2E1 and glutathione S-transferase) and glutathione levels. We found that the apparent permeability of [1- 14 C] acrylamide from the basal to the apical compartment was approximately 20% higher compared to that in the opposite direction. No differences were detected for apical-basal transport against a basal gradient. Transport rates from the apical to the basal chamber at 4 deg. C were about 50% lower than at 37 deg. C. Concentration dependent transport from apical to basal was linear. Predominantly, basal to apical transport was decreased when energy metabolism of the cells was inhibited by application of sodium azide and 2-deoxy-D-glucose. Finally, more acrylamide was transported at luminal pH 6 compared to pH 7.4 from basal to the apical direction. Increasing levels of acrylamide showed no effects on the activity of glutathione S-transferase but resulted in a depletion of total glutathione concentrations. In conclusion transport of acrylamide in the intestine is mediated primarily by passive processes possibly combined with a modest energy- and pH-dependent active secretory component. Depletion of cellular glutathione levels may be one potential mechanism for acrylamide (geno)toxicity

  9. Select cognitive deficits in Vasoactive Intestinal Peptide deficient mice

    Directory of Open Access Journals (Sweden)

    Hagopian Arkady

    2008-07-01

    Full Text Available Abstract Background The neuropeptide vasoactive intestinal peptide (VIP is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.

  10. Intestinal fructose transport and malabsorption in humans.

    Science.gov (United States)

    Jones, Hilary F; Butler, Ross N; Brooks, Doug A

    2011-02-01

    Fructose is a hexose sugar that is being increasingly consumed in its monosaccharide form. Patients who exhibit fructose malabsorption can present with gastrointestinal symptoms that include chronic diarrhea and abdominal pain. However, with no clearly established gastrointestinal mechanism for fructose malabsorption, patient analysis by the proxy of a breath hydrogen test (BHT) is controversial. The major transporter for fructose in intestinal epithelial cells is thought to be the facilitative transporter GLUT5. Consistent with a facilitative transport system, we show here by analysis of past studies on healthy adults that there is a significant relationship between fructose malabsorption and fructose dose (r = 0.86, P fructose malabsorption with age have been observed in human infants, and this may parallel the developmental regulation of GLUT5 expression. Moreover, a GLUT5 knockout mouse has displayed the hallmarks associated with profound fructose malabsorption. Fructose malabsorption appears to be partially modulated by the amount of glucose ingested. Although solvent drag and passive diffusion have been proposed to explain the effect of glucose on fructose malabsorption, this could possibly be a result of the facilitative transporter GLUT2. GLUT5 and GLUT2 mRNA have been shown to be rapidly upregulated by the presence of fructose and GLUT2 mRNA is also upregulated by glucose, but in humans the distribution and role of GLUT2 in the brush border membrane are yet to be definitively decided. Understanding the relative roles of these transporters in humans will be crucial for establishing a mechanistic basis for fructose malabsorption in gastrointestinal patients.

  11. Actions of vasoactive intestinal peptide and secretin on chief cells prepared from guinea pig stomach

    International Nuclear Information System (INIS)

    Sutliff, V.E.; Raufman, J.P.; Jensen, R.T.; Gardner, J.D.

    1986-01-01

    Vasoactive intestinal peptide and secretin increased cellular cAMP and pepsinogen secretion in dispersed chief cells from guinea pig gastric mucosa. With each peptide there was a close correlation between the dose-response curve for changes in cellular cAMP and that for changes in pepsinogen secretion. Vasoactive intestinal peptide- (10-28) and secretin- (5-27) had no agonist activity and antagonized the actions of vasoactive intestinal peptide and secretin on cellular cAMP and pepsinogen secretion. Studies of binding of 125 I-vasoactive intestinal peptide and of 125 -secretin indicated that gastric chief cells possess four classes of binding sites for vasoactive intestinal peptide and secretin and that occupation of two of these classes of binding sites correlates with the abilities of vasoactive intestinal peptide and secretin to increase cellular cAMP and pepsinogen secretion. What function, in any, is mediated by occupation by the other two classes of binding sites remains to be determined

  12. Diabetic intestinal growth adaptation and glucagon-like peptide 2 in the rat

    DEFF Research Database (Denmark)

    Thulesen, J; Hartmann, B; Nielsen, C

    1999-01-01

    Dietary fibre influence growth and function of the upper gastrointestinal tract. This study investigates the importance of dietary fibre in intestinal growth in experimental diabetes, and correlates intestinal growth with plasma levels of the intestinotrophic factor, glucagon-like peptide 2 (GLP-2)....

  13. Intestinal cholesterol transport: Measuring cholesterol absorption and its reverse

    NARCIS (Netherlands)

    Jakulj, L.

    2013-01-01

    Intestinal cholesterol transport might serve as an attractive future target for cardiovascular disease reduction, provided that underlying molecular mechanisms are more extensively elucidated, combined with improved techniques to measure changes in cholesterol fluxes and their possible

  14. Primary structure and conformational analysis of peptide methionine-tyrosine, a peptide related to neuropeptide Y and peptide YY isolated from lamprey intestine

    DEFF Research Database (Denmark)

    Conlon, J M; Bjørnholm, B; Jørgensen, Flemming Steen

    1991-01-01

    A peptide belonging to the pancreatic-polypeptide-fold family of regulatory peptides has been isolated from the intestine of an Agnathan, the sea lamprey (Petromyzon marinus). The primary structure of the peptide (termed peptide methionine-tyrosine) was established as Met-Pro-Pro-Lys-Pro-Asp-Asn-......A peptide belonging to the pancreatic-polypeptide-fold family of regulatory peptides has been isolated from the intestine of an Agnathan, the sea lamprey (Petromyzon marinus). The primary structure of the peptide (termed peptide methionine-tyrosine) was established as Met......%) or with pig pancreatic polypeptide (42%). Molecular modelling and dynamic simulation, based upon sequence similarity with turkey pancreatic polypeptide, indicates that the conformations of the polyproline-helix-like region (residues 1-8) and the alpha-helical region (residues 15-30) in turkey pancreatic...... polypeptide are conserved in peptide methionine-tyrosine, and that non-bonded interactions between these domains have preserved the overall polypeptide fold in the molecule. The substitution of the otherwise totally conserved Gly9 residue by serine in lamprey peptide methionine-tyrosine, however, results...

  15. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line

    DEFF Research Database (Denmark)

    Nielsen, C U; Amstrup, J; Steffansen, B

    2001-01-01

    The human intestinal cell line Caco-2 was used as a model system to study the effects of epidermal growth factor (EGF) on peptide transport. EGF decreased apical-to-basolateral fluxes of [(14)C]glycylsarcosine ([(14)C]Gly-Sar) up to 50.2 +/- 3.6% (n = 6) of control values. Kinetic analysis......) in cells treated with EGF. Western blotting indicated a decrease in hPepT1 protein in cell lysates. We conclude that EGF treatment decreases Gly-Sar transport in Caco-2 cells by decreasing the number of peptide transporter molecules in the apical membrane....

  16. Paracellular calcium transport across renal and intestinal epithelia

    DEFF Research Database (Denmark)

    Alexander, R Todd; Rievaj, Juraj; Dimke, Henrik

    2014-01-01

    constituents creating the paracellular shunt across intestinal and renal epithelium, the transport pathway responsible for the majority of transepithelial Ca(2+) flux. More specifically, passive paracellular Ca(2+) absorption occurs across the majority of the intestine in addition to the renal proximal tubule...... absorption, renal tubular reabsorption, and exchange with bone. Many studies have focused on the highly regulated active transcellular transport pathways for Ca(2+) from the duodenum of the intestine and the distal nephron of the kidney. However, comparatively little work has examined the molecular...... and thick ascending limb of Henle's loop. Importantly, recent studies demonstrated that Ca(2+) transport through the paracellular shunt is significantly regulated. Therefore, we have summarized the evidence for different modes of paracellular Ca(2+) flux across renal and intestinal epithelia and highlighted...

  17. Synthesis and secretion of glucagon-like peptide-1 by fetal rat intestinal cells in culture.

    Science.gov (United States)

    Jackson Huang, T H; Brubaker, P L

    1995-07-01

    Secretion of the intestinal proglucagon-derived peptides (PGDPs) including the incretin glucagon-like peptide-1 (GLP-1) is regulated, at least in part, by the duodenal hormone glucose-dependent insulinotropic peptide (GIP) through a protein kinase (PK) A-dependent pathway. It has been demonstrated that the activation of PKA increases the synthesis of some intestinal PGDPs, particularly the glucagon-like immunoreactive (GLI) peptides glicentin and oxyntomodulin. However, the effects of GIP on GLI and GLP-1 synthesis are not known. Fetal rat intestinal cells in culture were therefore treated for up to 24 h with 5MM: dbcAMP or 10(-6) M: GIP and the changes in glicentin, oxyntomodulin, GLP-1(x-37) and GLP-1(x-36NH2) secretion and synthesis were examined by RIA and HPLC. Both dbcAMP and GIP increased the acute (2 h; to 224±21 and 256±20% of controls, respectively,P<0.001) and chronic (24 h; to 230±22 and 130±6% of controls, respectively,P<0.001) secretion of intestinal PGDPs. In contrast, the total culture content of PGDPs was increased only after 24 h of incubation (to 156±15 and 125±7% of controls for dbcAMP and GIP, respectively,P<0.01). HPLC analysis confirmed that the intestinal cultures produced the GLI peptides glicentin and oxyntomodulin, as well as the biologically active forms of GLP-1, GLP-7(7-37) and GLP-1(7-36NH2). The relative proportion of these peptides was not altered by treatment with dbcAMP or GIP. Thus, in addition to its effects on GLP-1 release from the rat intestine, GIP appears to be an important regulator of the synthesis of this insulinotropic peptide.

  18. Endocrine regulation of ion transport in the avian lower intestine

    DEFF Research Database (Denmark)

    Laverty, Gary; Elbrønd, Vibeke Sødring; Árnason, Sighvatur S.

    2006-01-01

    The lower intestine (colon and coprodeum) of the domestic fowl maintains a very active, transporting epithelium, with a microvillus brush border, columnar epithelial cells, and a variety of transport systems. The colon of normal or high salt-acclimated hens expresses sodium-linked glucose and amino...

  19. Taste and move: glucose and peptide transporters in the gastrointestinal tract.

    Science.gov (United States)

    Daniel, Hannelore; Zietek, Tamara

    2015-12-01

    What is the topic of this review? Nutrient absorption in the gastrointestinal tract requires membrane proteins embedded in the apical membrane of epithelial cells that allow bulk quantities of nutrients, such as monosaccharides and amino acids, to be moved into epithelial cells. Very recently, a new function of the transporters as nutrient sensors mediating peptide hormone release from enteroendocrine cells has been discovered. What advances does it highlight? The review covers recent advances in membrane transporter functions for the absorption and sensing of dietary peptides and sugars and their putative interplay. Nutrient transporters are integral membrane proteins responsible for uptake into enterocytes and release of nutrients into the circulation. Absorption of food breakdown products, such as fatty acids, monosaccharides or amino acids, requires high-capacity transporters. In the case of glucose, amino acids and peptides, the transporters are electrogenic in nature, coupling substrate flux to ion movement. While glucose absorption is mediated by the Na(+)-dependent SGLT1 protein, uptake of short-chain peptides is mediated by the H(+)-coupled PEPT1 protein. Interestingly, both transporters were recently shown to fulfil an additional role as intestinal 'sensors' in enteroendocrine cells, mediating the release of gastrointestinal peptide hormones into the circulation. Sensing of D-glucose and of di- and tripeptides is particularly relevant for the secretion of the incretins glucose-dependent insulinotrophic polypeptide and glucagon-like peptide 1 that promote insulin output from β-cells and mediate β-cell protection. In addition to these sensing pathways, a variety of G-protein-coupled receptors are involved in sensing of intestinal contents. D-Glucose is sensed not only by SGLT1 but also by the sweet taste receptor T1R2/3 expressed in enteroendocrine cells. Activation of T1R2/3 increases SGLT1 levels and intestinal glucose absorption. Although T1R2

  20. Designing of peptides with desired half-life in intestine-like environment

    KAUST Repository

    Sharma, Arun

    2014-08-20

    Background: In past, a number of peptides have been reported to possess highly diverse properties ranging from cell penetrating, tumor homing, anticancer, anti-hypertensive, antiviral to antimicrobials. Owing to their excellent specificity, low-toxicity, rich chemical diversity and availability from natural sources, FDA has successfully approved a number of peptide-based drugs and several are in various stages of drug development. Though peptides are proven good drug candidates, their usage is still hindered mainly because of their high susceptibility towards proteases degradation. We have developed an in silico method to predict the half-life of peptides in intestine-like environment and to design better peptides having optimized physicochemical properties and half-life.Results: In this study, we have used 10mer (HL10) and 16mer (HL16) peptides dataset to develop prediction models for peptide half-life in intestine-like environment. First, SVM based models were developed on HL10 dataset which achieved maximum correlation R/R2 of 0.57/0.32, 0.68/0.46, and 0.69/0.47 using amino acid, dipeptide and tripeptide composition, respectively. Secondly, models developed on HL16 dataset showed maximum R/R2 of 0.91/0.82, 0.90/0.39, and 0.90/0.31 using amino acid, dipeptide and tripeptide composition, respectively. Furthermore, models that were developed on selected features, achieved a correlation (R) of 0.70 and 0.98 on HL10 and HL16 dataset, respectively. Preliminary analysis suggests the role of charged residue and amino acid size in peptide half-life/stability. Based on above models, we have developed a web server named HLP (Half Life Prediction), for predicting and designing peptides with desired half-life. The web server provides three facilities; i) half-life prediction, ii) physicochemical properties calculation and iii) designing mutant peptides.Conclusion: In summary, this study describes a web server \\'HLP\\' that has been developed for assisting scientific

  1. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2015-01-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hy...... on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers....

  2. Interaction of Food Additives with Intestinal Efflux Transporters.

    Science.gov (United States)

    Sjöstedt, Noora; Deng, Feng; Rauvala, Oskari; Tepponen, Tuomas; Kidron, Heidi

    2017-11-06

    Breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2) and P-glycoprotein (P-gp) are ABC transporters that are expressed in the intestine, where they are involved in the efflux of many drugs from enterocytes back into the intestinal lumen. The inhibition of BCRP, MRP2, and P-gp can result in enhanced absorption and exposure of substrate drugs. Food additives are widely used by the food industry to improve the stability, flavor, and consistency of food products. Although they are considered safe for consumption, their interactions with intestinal transporters are poorly characterized. Therefore, in this study, selected food additives, including preservatives, colorants, and sweeteners, were studied in vitro for their inhibitory effects on intestinal ABC transporters. Among the studied compounds, several colorants were able to inhibit BCRP and MRP2, whereas P-gp was fairly insensitive to inhibition. Additionally, one sweetener was identified as a potent inhibitor of BCRP. Dose-response studies revealed that the IC 50 values of the inhibitors were lower than the estimated intestinal concentrations after the consumption of beverages containing food colorants. This suggests that there is potential for previously unrecognized transporter-mediated food additive-drug interactions.

  3. Opioid peptides inhibit intestinal transit in the rat by a central mechanism.

    Science.gov (United States)

    Galligan, J J; Burks, T F

    1982-11-05

    Opiates and opioid peptides can alter gastrointestinal motility and delay transit of intraluminal contents. These experiments were designed to characterize the effects of beta-endorphin and [D-Ala2,Met5]enkephalinamide (DALA) on small intestinal transit in the rat. Rats were implanted with a polyethylene cannula in the right lateral cerebral ventricle and a silastic cannula in the proximal duodenum. Drugs were administered via the cerebral cannula or intraperitoneally (i.p.) Interstitial transit was assessed by instilling radiochromium into the duodenum and calculating the geometric center of the distribution of marker in the small intestine. beta-Endorphin and DALA produced a dose-related decrease in intestinal transit when the peptides were given intracerebroventricularly (i.c.v.) however, neither peptide was effective when i.p. [D-Ala2,Leu5]enkephalinamide and dynorphin-(1-13) did not alter intestinal transit. The inhibitory effects of beta-endorphin and DALA were antagonized by pretreatment with naloxone or naltrexone. A quaternary amine containing opiate antagonist. N,N-diallylnormorphinium given i.p. did not alter the response to either peptide but was effective in blocking the antitransit effects of i.p. loperamide, a peripherally acting opioid agonist. In addition, DALA reduced the body weight loss produced by castor oil-induced diarrhea while beta-endorphin had no effect. These results indicate that opioid peptides can alter intestinal motility by an action within the central nervous system. While DALA and beta-endorphin produce quantitatively the same effects on small intestinal motility, qualitatively they may differ in their mechanisms of action.

  4. Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats

    Science.gov (United States)

    de Heuvel, Elaine; Wallace, Laurie E.; Hartmann, Bolette; Holst, Jens J.; Brindle, Mary E.; Chelikani, Prasanth K.; Sigalet, David L.

    2017-01-01

    Objective To determine the effects of exogenous glucagon-like peptide-2 (GLP-2), with or without massive distal bowel resection, on adaptation of jejunal mucosa, enteric neurons, gut hormones and tissue reserves in rats. Background GLP-2 is a gut hormone known to be trophic for small bowel mucosa, and to mimic intestinal adaptation in short bowel syndrome (SBS). However, the effects of exogenous GLP-2 and SBS on enteric neurons are unclear. Methods Sprague Dawley rats were randomized to four treatments: Transected Bowel (TB) (n = 8), TB + GLP-2 (2.5 nmol/kg/h, n = 8), SBS (n = 5), or SBS + GLP-2 (2.5 nmol/kg/h, n = 9). SBS groups underwent a 60% jejunoileal resection with cecectomy and jejunocolic anastomosis. All rats were maintained on parenteral nutrition for 7 d. Parameters measured included gut morphometry, qPCR for hexose transporter (SGLT-1, GLUT-2, GLUT-5) and GLP-2 receptor mRNA, whole mount immunohistochemistry for neurons (HuC/D, VIP, nNOS), plasma glucose, gut hormones, and body composition. Results Resection increased the proportion of nNOS immunopositive myenteric neurons, intestinal muscularis propria thickness and crypt cell proliferation, which were not recapitulated by GLP-2 therapy. Exogenous GLP-2 increased jejunal mucosal surface area without affecting enteric VIP or nNOS neuronal immunopositivity, attenuated resection-induced reductions in jejunal hexose transporter abundance (SGLT-1, GLUT-2), increased plasma amylin and decreased peptide YY concentrations. Exogenous GLP-2 attenuated resection-induced increases in blood glucose and body fat loss. Conclusions Exogenous GLP-2 stimulates jejunal adaptation independent of enteric neuronal VIP or nNOS changes, and has divergent effects on plasma amylin and peptide YY concentrations. The novel ability of exogenous GLP-2 to modulate resection-induced changes in peripheral glucose and lipid reserves may be important in understanding the whole-body response following intestinal resection, and is worthy

  5. Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats.

    Directory of Open Access Journals (Sweden)

    Sarah W Lai

    Full Text Available To determine the effects of exogenous glucagon-like peptide-2 (GLP-2, with or without massive distal bowel resection, on adaptation of jejunal mucosa, enteric neurons, gut hormones and tissue reserves in rats.GLP-2 is a gut hormone known to be trophic for small bowel mucosa, and to mimic intestinal adaptation in short bowel syndrome (SBS. However, the effects of exogenous GLP-2 and SBS on enteric neurons are unclear.Sprague Dawley rats were randomized to four treatments: Transected Bowel (TB (n = 8, TB + GLP-2 (2.5 nmol/kg/h, n = 8, SBS (n = 5, or SBS + GLP-2 (2.5 nmol/kg/h, n = 9. SBS groups underwent a 60% jejunoileal resection with cecectomy and jejunocolic anastomosis. All rats were maintained on parenteral nutrition for 7 d. Parameters measured included gut morphometry, qPCR for hexose transporter (SGLT-1, GLUT-2, GLUT-5 and GLP-2 receptor mRNA, whole mount immunohistochemistry for neurons (HuC/D, VIP, nNOS, plasma glucose, gut hormones, and body composition.Resection increased the proportion of nNOS immunopositive myenteric neurons, intestinal muscularis propria thickness and crypt cell proliferation, which were not recapitulated by GLP-2 therapy. Exogenous GLP-2 increased jejunal mucosal surface area without affecting enteric VIP or nNOS neuronal immunopositivity, attenuated resection-induced reductions in jejunal hexose transporter abundance (SGLT-1, GLUT-2, increased plasma amylin and decreased peptide YY concentrations. Exogenous GLP-2 attenuated resection-induced increases in blood glucose and body fat loss.Exogenous GLP-2 stimulates jejunal adaptation independent of enteric neuronal VIP or nNOS changes, and has divergent effects on plasma amylin and peptide YY concentrations. The novel ability of exogenous GLP-2 to modulate resection-induced changes in peripheral glucose and lipid reserves may be important in understanding the whole-body response following intestinal resection, and is worthy of further study.

  6. Postnatal development of monosaccharide transport in pig intestine.

    Science.gov (United States)

    Puchal, A A; Buddington, R K

    1992-05-01

    In vitro brush-border transport of three monosaccharides by pig intestine was studied as a function of postnatal age from immediately after birth before suckling to after weaning. Rates of transport normalized to tissue weight or surface area for glucose (Glc), galactose (Gal), and fructose (Fru) were highest at birth, with a steep decline after the onset of suckling, probably caused by any combination of three or more factors: reduced transporter site density, shifts in relative abundances of different monosaccharide transporters, and/or changes in activities of individual transporters. Whereas highest rates of Glc and Fru transport shifted from proximal to midintestine after weaning, Gal transport remained highest in proximal intestine. Postnatal increases in Km values for Gal, but not Glc, indicate there are multiple aldohexose transporters that undergo separate developmental trajectories. The presence of Fru transport in neonatal pigs may reflect a more advanced state of development than neonatal rats and rabbits, or may be an adaptation for early weaning. Changes in Fru-to-Glc and Gal-to-Glc transport ratios before weaning suggest transporter development is partly genetically hard-wired, apparently to prepare pigs for weaning. Curiously, Fru-to-Glc transport ratios were lower than those of rat and rabbit, but closely paralleled those of the carnivorous cat.

  7. Complete sequences of glucagon-like peptide-1 from human and pig small intestine

    DEFF Research Database (Denmark)

    Orskov, C; Bersani, M; Johnsen, A H

    1989-01-01

    intestine of the proglucagon precursor were determined by pairs of basic amino acid residues flanking the two peptides. Earlier studies have shown that synthetic glucagon-like peptide-1 (GLP-1) synthesized according to the proposed structure (proglucagon 71-108 or because residue 108 is Gly, 72-107 amide...... by hydrophobic, gel permeation, and reverse-phase high performance liquid chromatography. By analysis of composition and sequence it was determined that the peptide corresponded to PG 78-107. By mass spectrometry the molecular mass was determined to be 3295, corresponding to PG 78-107 amide. Furthermore, mass...

  8. Intestinal glucose transport and salinity adaptation in a euryhaline teleost

    International Nuclear Information System (INIS)

    Reshkin, S.J.; Ahearn, G.A.

    1987-01-01

    Glucose transport by upper and lower intestinal brush-border membrane vesicles of the African tilapia (Oreochromis mossambicus) was characterized in fish acclimated to either freshwater of full-strength sea water. D-[ 3 H]-glucose uptake by vesicles was stimulated by a transmembrane Na gradient, was electrogenic, and was enhanced by countertransport of either D-glucose or D-galactose. Glucose transport was greater in the upper intestine than in the lower intestine and in sea water animals rather than in fish acclimated to freshwater. Glucose influx (10-s uptake) involved both saturable and nonsaturable transport components. Sea water adaptation increased apparent glucose influx K/sub t/, J/sub max/, apparent diffusional permeability (P), and the apparent Na affinity of the cotransport system in both intestinal segments, but the stoichiometry of Na-glucose transfer (1:1) was unaffected by differential saline conditions or gut region. It is suggested that increased sugar transport in sea water animals is due to the combination of enhanced Na-binding properties and an increase in number or transfer rate of the transport proteins. Freshwater animals compensate for reduced Na affinity of the coupled process by markedly increasing the protein affinity for glucose

  9. Glucagon-like peptide 2 treatment may improve intestinal adaptation during weaning

    DEFF Research Database (Denmark)

    Thymann, Thomas; Le Huërou-Luron, I; Petersen, Y M

    2014-01-01

    Transition from sow's milk to solid feed is associated with intestinal atrophy and diarrhea. We hypothesized that the intestinotrophic hormone glucagon-like peptide 2 (GLP-2) would induce a dose- and health status-dependent effect on gut adaptation. In Exp. 1, weaned pigs (average BW at weaning 4...

  10. Herpes viral proteins manipulating the peptide transporter TAP

    NARCIS (Netherlands)

    Reits, E.; Griekspoor, A.; Neefjes, J.

    2002-01-01

    The peptide transporter associated with antigen processing (TAP) is crucial for class I-restricted antigen presentation because it transfers cytosolic peptides into the endoplasmic reticulum (ER) lumen for class I binding. It is therefore not surprising that TAP is targeted for inactivation by many

  11. Regional variations in Paneth cell antimicrobial peptide expression along the mouse intestinal tract

    Directory of Open Access Journals (Sweden)

    Bevins Charles L

    2008-07-01

    Full Text Available Abstract Background Enteric antimicrobial peptides secreted from Paneth cells, including α-defensins (in mice named cryptdins, are key effector molecules of innate immunity in the small intestine. The importance of Paneth cells α-defensins emerged from studies of enteric bacterial infection in genetically modified mice, as well as from recent studies linking reduced levels of these α-defensins to Crohn's disease localized to the ileum. However, analysis of expression of Paneth cell α-defensins is incomplete. We therefore performed a comprehensive evaluation of the distribution of antimicrobial molecules along the mouse small intestinal tract to identify potential variations in regional expression. Results In conventionally reared mice, the repertoire of Paneth cell antimicrobials differs between duodenum and ileum. In contrast to the uniform expression of most Paneth cell antimicrobials, both cryptdin 4 and cryptdin-related sequences (CRS 4C peptides were expressed at progressively increasing amounts (101- and 104-fold, respectively comparing duodenum and ileum. In tissues other than the small intestine, expression of CRS peptides was noted in thymus and caecum. Most Paneth cell products were also produced in the small intestine of germ-free mice at levels similar to those in controls, however CRS4C and RegIIIγ had reduced levels in the former (3- and 8-fold, respectively. No significant changes in expression levels of Paneth cell antimicrobial peptides was observed after oral challenge with either Salmonella enterica serovar typhimurium or Listeria monocytogenes, supporting current notions on the constitutive nature of this defensive system. Conclusion The repertoire of antimicrobial peptides changes along the small intestinal tract, and a subset of these molecules are up-regulated upon colonization, but not in response to enteric bacterial pathogens. The changes detected upon colonization suggest that Paneth cell antimicrobial peptides

  12. Developments in intestinal cholesterol transport and triglyceride absorption.

    Science.gov (United States)

    Paalvast, Yared; de Boer, Jan Freark; Groen, Albert K

    2017-06-01

    To discuss recent advances in research focused on intestinal lipid handling. An important strategy in reducing atherosclerosis and risk of cardiovascular events is to increase the rate of reverse cholesterol transport, including its final step; cholesterol excretion from the body. The rate of removal is determined by a complex interplay between the factors involved in regulation of intestinal cholesterol absorption. One of these factors is a process known as transintestinal cholesterol excretion. This pathway comprises transport of cholesterol directly from the blood, through the enterocyte, into the intestinal lumen. In humans, this pathway accounts for 35% of cholesterol excretion in the feces. Mechanistic studies in mice revealed that, activation of the bile acid receptor farnesoid X receptor increases cholesterol removal via the transintestinal cholesterol excretion pathway as well as decreases plasma cholesterol and triglyceride providing an interesting target for treatment of dyslipidemia in humans. The physical chemical properties of bile acids are under control of farnesoid X receptor and determine intestinal cholesterol and triglyceride solubilization as well as absorption, providing a direct link between these two important factors in the pathogenesis of cardiovascular disease. Besides bile acids, intestinal phospholipids are important for luminal lipid solubilization. Interestingly, phospholipid remodeling through LPCAT3 was shown to be pivotal for uptake of fatty acids by enterocytes, which may provide a mechanistic handle for therapeutic intervention. The importance of the intestine in control of cholesterol and triglyceride homeostasis is increasingly recognized. Recently, novel factors involved in regulation of cholesterol excretion and intestinal triglyceride and fatty acid uptake have been reported and are discussed in this short review.

  13. Immunoneutralization of endogenous glucagon-like peptide-2 reduces adaptive intestinal growth in diabetic rats

    DEFF Research Database (Denmark)

    Hartmann, Bolette; Thulesen, Jesper; Hare, Kristine Juul

    2002-01-01

    in the proximal part of the small intestine (10.84+/-0.44 mm(2)). Antibody treatment had no effect on body weight, blood glucose concentrations and food intake. Thus, blocking of endogenous GLP-2 in a model of adaptive intestinal growth reduces the growth response, providing strong evidence for a physiological......Supraphysiological doses of glucagon-like peptide-2 (GLP-2) have been shown to induce intestinal growth by increasing villus height and crypt depth and by decreasing apoptosis, but a physiological effect of GLP-2 has not yet been demonstrated. Earlier, we found elevated levels of endogenous GLP-2...... in untreated streptozotocin diabetic rats associated with marked intestinal growth. In the present study, we investigated the role of endogenous GLP-2 for this adaptive response. We included four groups of six rats: (1) diabetic rats treated with saline, (2) diabetic rats treated with non-specific antibodies...

  14. Transport characteristics of a novel peptide transporter 1 substrate, antihypotensive drug midodrine, and its amino acid derivatives.

    Science.gov (United States)

    Tsuda, Masahiro; Terada, Tomohiro; Irie, Megumi; Katsura, Toshiya; Niida, Ayumu; Tomita, Kenji; Fujii, Nobutaka; Inui, Ken-ichi

    2006-07-01

    Midodrine is an oral drug for orthostatic hypotension. This drug is almost completely absorbed after oral administration and converted into its active form, 1-(2',5'-dimethoxyphenyl)-2-aminoethanol) (DMAE), by the cleavage of a glycine residue. The intestinal H+-coupled peptide transporter 1 (PEPT1) transports various peptide-like drugs and has been used as a target molecule for improving the intestinal absorption of poorly absorbed drugs through amino acid modifications. Because midodrine meets these requirements, we examined whether midodrine can be a substrate for PEPT1. The uptake of midodrine, but not DMAE, was markedly increased in PEPT1-expressing oocytes compared with water-injected oocytes. Midodrine uptake by Caco-2 cells was saturable and was inhibited by various PEPT1 substrates. Midodrine absorption from the rat intestine was very rapid and was significantly inhibited by the high-affinity PEPT1 substrate cyclacillin, assessed by the alteration of the area under the blood concentration-time curve for 30 min and the maximal concentration. Some amino acid derivatives of DMAE were transported by PEPT1, and their transport was dependent on the amino acids modified. In contrast to neutral substrates, cationic midodrine was taken up extensively at alkaline pH, and this pH profile was reproduced by a 14-state model of PEPT1, which we recently reported. These findings indicate that PEPT1 can transport midodrine and contributes to the high bioavailability of this drug and that Gly modification of DMAE is desirable for a prodrug of DMAE.

  15. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function.

    Science.gov (United States)

    Xiao, H; Tan, B E; Wu, M M; Yin, Y L; Li, T J; Yuan, D X; Li, L

    2013-10-01

    Deoxynivalenol (DON) affects animal and human health and targets the gastrointestinal tract. The objective of this study was to evaluate the ability of composite antimicrobial peptides (CAP) to repair intestinal injury in piglets challenged with DON. A total of 28 piglets (Duroc × Landrace × Large Yorkshire) weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (7 pigs/treatment): negative control, basal diet (NC), basal diet + 0.4% composite antimicrobial peptide (CAP), basal diet + 4 mg/kg DON (DON), and basal diet + 4 mg/kg DON + 0.4% CAP (DON + CAP). After an adaptation period of 7 d, blood samples were collected on d 15 and 30 after the initiation of treatment for determinations of the concentrations of D-lactate and diamine oxidase. At the end of the study, all piglets were slaughtered to obtain small intestines for the determination of intestinal morphology, epithelial cell proliferation, and protein expression in the mammalian target of rapamycin (mTOR) signaling pathway. The results showed that DON increased serum concentrations of D-lactate and diamine oxidase, and these values in the CAP and DON + CAP treatments were less than those in the NC and DON treatments, respectively (P morphology and promoted intestinal epithelial cell proliferation and protein synthesis, indicating that CAP may repair the intestinal injury induced by DON.

  16. Relationship between Gastrointestinal Peptides, Intestinal Wall Compliance, and Vascular Resistance

    Science.gov (United States)

    1983-01-20

    Multiple forms of gastrin exist. Gastrin, in the heptadecapeptide form (G-17), is principally found in the antral mu- cosal G-cells of the stomach (92,146...approach. Chey et al, (39) reported that nat- ural or synthetic secretin (1 U/kg) produced an inhibition of spontaneous motor activity of the stomach and...8 (0.5-6,5 U/kg/min) stimu- lated canine intestinal peristalsis (219,220), Local infusion of CCK-8 (minimal effective dose of 0.2 ug) into the

  17. Vasoactive intestinal peptide and nitric oxide promote survival of adult rat myenteric neurons in culture

    DEFF Research Database (Denmark)

    Sandgren, Katarina; Lin, Zhong; Svenningsen, Åsa Fex

    2003-01-01

    Several motility disorders originate in the enteric nervous system (ENS). Our knowledge of factors governing survival of the ENS is poor. Changes in the expression of vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS) in enteric neurons occur after neuronal injury and in intestinal...... adaptation. The aim of this study was to evaluate whether VIP and nitric oxide (NO) influence survival of cultured, dissociated myenteric neurons. Neuronal survival was evaluated after 0, 4, and 8 days in culture. Influence of VIP and NO on neuronal survival was examined after culturing in the presence...

  18. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion

    DEFF Research Database (Denmark)

    Csati, A; Tajti, J; Kuris, A

    2012-01-01

    for the demonstration of vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), nitric oxide synthase (NOS), glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), VIP and PACAP common receptors (VPAC1, VPAC2), and PACAP receptor (PAC1). In addition, double labeling...

  19. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    Science.gov (United States)

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  20. Protein transport across the small intestine in food allergy.

    Science.gov (United States)

    Reitsma, Marit; Westerhout, Joost; Wichers, Harry J; Wortelboer, Heleen M; Verhoeckx, Kitty C M

    2014-01-01

    In view of the imminent deficiency of protein sources for human consumption in the near future, new protein sources need to be identified. However, safety issues such as the risk of allergenicity are often a bottleneck, due to the absence of predictive, validated and accepted methods for risk assessment. The current strategy to assess the allergenic potential of proteins focuses mainly on homology, stability and cross-reactivity, although other factors such as intestinal transport might be of added value too. In this review, we present an overview of the knowledge of protein transport across the intestinal wall and the methods currently being used to measure this. A literature study reveals that protein transport in sensitised persons occurs para-cellularly with the involvement of mast cells, and trans-cellularly via enterocytes, while in non-sensitised persons micro-fold cells and enterocytes are considered most important. However, there is a lack of comparable systematic studies on transport of allergenic proteins. Knowledge of the multiple protein transport pathways and which model system can be useful to study these processes may be of added value in the risk assessment of food allergenicity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nutrient-intake-level-dependent regulation of intestinal development in newborn intrauterine growth-restricted piglets via glucagon-like peptide-2.

    Science.gov (United States)

    Liu, J; Liu, Z; Gao, L; Chen, L; Zhang, H

    2016-10-01

    The objective of the present study was to investigate the intestinal development of newborn intrauterine growth-restricted (IUGR) piglets subjected to normal nutrient intake (NNI) or restricted nutrient intake (RNI). Newborn normal birth weight (NBW) and IUGR piglets were allotted to NNI or RNI levels for 4 weeks from day 8 postnatal. IUGR piglets receiving NNI had similar growth performance compared with that of NBW piglets. Small intestine length and villous height were greater in IUGR piglets fed the NNI than that of piglets fed the RNI. Lactase activity was increased in piglets fed the NNI compared with piglets fed the RNI. Absorptive function, represented by active glucose transport by the Ussing chamber method and messenger RNA (mRNA) expressions of two main intestinal glucose transporters, Na+-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), were greater in IUGR piglets fed the NNI compared with piglets fed the RNI regimen. The apoptotic process, characterized by caspase-3 activity (a sign of activated apoptotic cells) and mRNA expressions of p53 (pro-apoptotic), bcl-2-like protein 4 (Bax) (pro-apoptotic) and B-cell lymphoma-2 (Bcl-2) (anti-apoptotic), were improved in IUGR piglets fed the NNI regimen. To test the hypothesis that improvements in intestinal development of IUGR piglets fed NNI might be mediated through circulating glucagon-like peptide-2 (GLP-2), GLP-2 was injected subcutaneously to IUGR piglets fed the RNI from day 8 to day 15 postnatal. Although the intestinal development of IUGR piglets fed the RNI regimen was suppressed compared with those fed the NNI regimen, an exogenous injection of GLP-2 was able to bring intestinal development to similar levels as NNI-fed IUGR piglets. Collectively, our results demonstrate that IUGR neonates that have NNI levels could improve intestinal function via the regulation of GLP-2.

  2. Naturally occurring somatostatin and vasoactive intestinal peptide inhibitors. Isolation of alkaloids from two marine sponges.

    Science.gov (United States)

    Vassas, A; Bourdy, G; Paillard, J J; Lavayre, J; Païs, M; Quirion, J C; Debitus, C

    1996-02-01

    The vasoactive intestinal peptide (VIP) and somatostatin (somatotropin release inhibiting factor, SRIF) are important neurotransmitters in a number of basic physiological events. Their disturbances have been reported in many diseases such as cystic fibrosis, impotent man (VIP), Alzheimer's disease, and some tumours (SRIF). Xestospongine B (1), sceptrine (2), and ageliferine (3), three alkaloids isolated from Xestospongia sp. and Agelas novaecaledoniae are reported as somatostatin and VIP inhibitors. The natural products 1, 2 and 3 exhibited a high affinity for somatostatin (IC50 = 12 microM, 0.27 microM, and 2.2 microM, respectively), 2 and 3 showed an affinity for VIP (19.8 microM and 19.2 microM, respectively). Due to the interaction between non-peptidic compounds and somatostatin/VIP receptors, these three alkaloids could be promising agents in the research on natural non-peptidic compounds for therapeutical interventions.

  3. Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats

    DEFF Research Database (Denmark)

    Lai, Sarah W; de Heuvel, Elaine; Wallace, Laurie E

    2017-01-01

    .5 nmol/kg/h, n = 9). SBS groups underwent a 60% jejunoileal resection with cecectomy and jejunocolic anastomosis. All rats were maintained on parenteral nutrition for 7 d. Parameters measured included gut morphometry, qPCR for hexose transporter (SGLT-1, GLUT-2, GLUT-5) and GLP-2 receptor mRNA, whole......OBJECTIVE: To determine the effects of exogenous glucagon-like peptide-2 (GLP-2), with or without massive distal bowel resection, on adaptation of jejunal mucosa, enteric neurons, gut hormones and tissue reserves in rats. BACKGROUND: GLP-2 is a gut hormone known to be trophic for small bowel mucosa...... mount immunohistochemistry for neurons (HuC/D, VIP, nNOS), plasma glucose, gut hormones, and body composition. RESULTS: Resection increased the proportion of nNOS immunopositive myenteric neurons, intestinal muscularis propria thickness and crypt cell proliferation, which were not recapitulated by GLP-2...

  4. Enhanced Intestinal Permeability of Bufalin by a Novel Bufalin-Peptide-Dendrimer Inclusion through Caco-2 Cell Monolayer.

    Science.gov (United States)

    Chan, Chi-On; Jing, Jing; Xiao, Wei; Tan, Zhexu; Lv, Qiuyue; Yang, Jingyu; Chen, Sibao

    2017-11-29

    Bufalin (BFL) has excellent physiological activities such as defending tumors, improving cardiac function, and so on. However, due to its poor water-solubility and bioavailability, the clinical application of BFL remains limited. In order to improve bioavailability of BFL, in our previous research, a novel peptide-dendrimer (PD) was synthesized and applied to encapsulate BFL. In the present study, we investigate the absorption property and mechanism of BFL in free form and BFL-peptide-dendrimer inclusion (BPDI) delivery system by using the Caco-2 cell monolayer model in vitro. The apparent permeability coefficient ( P app ) values of BFL in free or BPDI form were over 1.0 × 10 -6 cm/s. Meanwhile, their almost equal bi-directional transport and linear transport percentage with time and concentration course indicated that BFL in both forms was absorbed mainly through passive diffusion. The most important result is that the P app values of BFL increased about three-fold more BPDI than those of its free form, which indicated the intestinal permeability of BFL could be improved while BFL was encapsulated in BPDI form. Therefore, PD encapsulation may be a potential delivery system to increase the bioavailability of BFL.

  5. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line

    DEFF Research Database (Denmark)

    Nielsen, C U; Amstrup, J; Steffansen, B

    2001-01-01

    The human intestinal cell line Caco-2 was used as a model system to study the effects of epidermal growth factor (EGF) on peptide transport. EGF decreased apical-to-basolateral fluxes of [(14)C]glycylsarcosine ([(14)C]Gly-Sar) up to 50.2 +/- 3.6% (n = 6) of control values. Kinetic analysis......(max) decreased from 2.61 +/- 0.4 to 1.06 +/- 0.1 nmol x cm(-2) x min(-1) (n = 3, P T1 mRNA (using glucose-6-phosphate dehydrogenase mRNA as control......) in cells treated with EGF. Western blotting indicated a decrease in hPepT1 protein in cell lysates. We conclude that EGF treatment decreases Gly-Sar transport in Caco-2 cells by decreasing the number of peptide transporter molecules in the apical membrane....

  6. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats.

    Science.gov (United States)

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-14

    To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14(th) day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. In the rat model, jaundice was obvious, and the rats' activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P jaundice group than in the GLP-2 group (P jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.

  7. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia)*

    Science.gov (United States)

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-01-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b0,+AT, EAAT3, y+LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b0,+AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y+LAT2 had positive correlations with body weight (0.71intestinal weight (0.80intestinal weight (−0.84

  8. Effect of Cordyceps sinensis mycelium on serum vasoactive intestinal peptide and substance P in mice with intestinal dysbacteriosis

    Directory of Open Access Journals (Sweden)

    Kai-zhong DONG

    2015-01-01

    Full Text Available Objective To observe the effect of Cordyceps sinensis mycelium on serum vasoactive intestinal peptide (VIP and substance P (SP in mice with dysbacteriosis induced by antibiotics. Methods Forty-eight healthy SPF BALB/c mice were randomly divided into the normal control group (normal drink, the dysbacteriosis model group (induced by oral administration of 0.5 g/L ceftriaxone sodium, the natural recovery group (oral sterile water to replace antibiotic after reproduction of dysbacteriosis, and Cordyceps sinensis mycelium treatment group (treated by intragastric administration of Cordyceps sinensis mycelium. The feces were collected without contamination, and the change in intestinal bacterial number was observed with the plate dilution method. The volatile fatty acid was detected by chromatography. The serum VIP and SP contents were assayed with enzyme linked immunosorbent assay (ELISA. Results Compared with the normal control group, the numbers of probiotics, volatile fatty acids and serum VIP significantly decreased in the model group, while the serum SP markedly increased (P<0.01. Compared with the natural recovery group, the bacteria number, the quantities of volatile fatty acids and serum VIP significantly increased after the Cordyceps sinensis mycelium treatment, while the serum SP significantly decreased (P<0.01, P<0.05. Conclusion Cordyceps sinensis mycelium may effectively adjust the proportion of the probiotics in the mice with dysbacteriosis, and the mechanism is apparently related to alteration in the VIP and SP. DOI: 10.11855/j.issn.0577-7402.2014.11.06

  9. Carrier-mediated transport of peptides by the kidney

    International Nuclear Information System (INIS)

    Skopicki, H.A.

    1988-01-01

    Small peptide transport was characterized to determine if: (1) Multiple carriers are present in the luminal membrane of renal proximal tubular cells; (2) Carrier-mediated peptide transport is limited by size; and (3) Gentamicin inhibits carrier-mediated reabsorption of peptides. Uptake of glycyl-[ 3 H]proline (Gly-Pro) into renal brush border membrane vesicles demonstrated a dual affinity carrier system. Whether multiple carriers are present was further investigated by characterizing the uptake of [ 3 H]pyroglutamyl-histidine. To determine if carrier-mediated transport of peptides is limited by size of the molecule, uptake of the hydrolytically resistant tripeptide, [ 3 H]pryroglutamyl-histidyl-tryptophan (pGlu-His-Trp), and tetrapeptide, [ 3 H]pyroglutamyl-histidyl-tryptophyl-serine (pGlu-His-Trp-Ser) were assessed. These data indicate: multiple carriers exist on the luminal membrane of renal proximal tubular cells for the transport of dipeptides, and tripeptide pGlu-His-Trp and the tetrapeptide pGlu-His-Trp-Ser are not taken up by a carrier-mediated mechanism, suggesting that the carrier may be limited by the size of the substrate

  10. Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance

    DEFF Research Database (Denmark)

    Ottesen, B; Fahrenkrug, J

    1995-01-01

    in the control of erection. Vasoactive intestinal polypeptide has been suggested as a causative factor in some diseases of the genital organs (e.g., it may play a pathophysiologic role in male impotence and the peptide is currently used in the treatment of this condition). Vasoactive intestinal polypeptide may...... be important for control of the low resistance in the fetomaternal vascular bed and is therefore a putative factor involved in the development of preeclampsia. The therapeutic potential of vasoactive intestinal polypeptide and future agonists and antagonists will be revealed by ongoing and forthcoming studies....

  11. Ontogenetic development of nutrient transporters in rat intestine.

    Science.gov (United States)

    Toloza, E M; Diamond, J

    1992-11-01

    We measured intestinal brush-border uptakes of three sugars and three amino acids, plus intestinal morphometric parameters, in rats from the day of birth until adulthood. Rates of body weight gain had pronounced peaks in the suckling phase and again during weaning, separated by a dip at the onset of weaning. These two peaks coincided with peaks or plateaus in intestinal growth and in glucose (Glc) and proline (Pro) uptake capacities, which may provide the basis for high rates of body growth. Pro uptake declined relative to Glc uptake upon weaning, reflecting decreasing protein needs for growth and decreasing protein intake relative to carbohydrate intake. Fructose (Frc) and lysine uptake increased steeply on weaning, whereas galactose uptake declined relative to that of Glc. Rats prevented from normal weaning by being maintained on dry milk were generally similar to normal rats weaned onto chow. Notably, their Frc uptake still rose steeply on weaning despite low dietary Frc levels, suggesting hard-wired regulation of Frc transporter development. Our in vitro uptakes are similar to modern in vivo values in the same strain of rats. Nutrient uptake capacities exceed normal dietary intakes by only a modest safety margin.

  12. Lactobacillus rhamnosus GG supernatant upregulates serotonin transporter expression in intestinal epithelial cells and mice intestinal tissues.

    Science.gov (United States)

    Wang, Y M; Ge, X Z; Wang, W Q; Wang, T; Cao, H L; Wang, B L; Wang, B M

    2015-09-01

    The role that probiotics play in relieving irritable bowel syndrome (IBS) has been demonstrated; however, the mechanism by which IBS is affected remains unclear. In this study, serotonin transporter (SERT) mRNA and serotonin transporter protein (SERT-P) levels in HT-29, Caco-2 cells, and mice intestinal tissues were examined after treatment with Lactobacillus rhamnosus GG supernatant (LGG-s). HT-29 and Caco-2 cells were treated with different concentrations of LGG-s for 12 and 24 h and C57BL/6 mice received supplements of different concentrations for 4 weeks. SERT mRNA and SERT-P levels were detected by real-time PCR and Western blotting. SERT mRNA and SERT-P levels in HT-29 and Caco-2 cells were higher than those in the control 24 h after treatment. Undiluted LGG-s upregulated SERT mRNA levels by 9.4-fold in the first week, which dropped in the second week. The double-diluted LGG-s upregulated SERT mRNA by 2.07-fold in the first week; levels dropped to 1.75-fold within the second week and under base expression levels by the third week, while they again climbed to 1.56-fold in the fourth week. The triple-diluted LGG-s could not upregulate SERT mRNA expression until the end of the fourth week. The SERT-P levels in the double-diluted LGG-s group were higher than that in the control but fluctuated with time. SERT-P levels in the triple-diluted LGG-s were higher than that in the control in the last 2 weeks and increased with time. LGG-s can upregulate SERT mRNA and SERT-P levels in intestinal epithelial cells and mice intestinal tissues. © 2015 John Wiley & Sons Ltd.

  13. Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence.

    Science.gov (United States)

    Guo, Yuxing; Gan, Junai; Zhu, Qian; Zeng, Xiaoqun; Sun, Yangying; Wu, Zhen; Pan, Daodong

    2018-02-01

    To exert an antihypertensive effect after oral administration, angiotensin I-converting enzyme (ACE)-inhibitory peptides must remain active after intestinal transport. The purpose of this article is to elucidate the transport permeability and route of ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro (RLSFNP) across the intestinal epithelium using Caco-2 cell monolayers. Intact RLSFNP and RLSFNP breakdown fragments F, FNP, SFNP and RLSF were found in RLSFNP transport solution across Caco-2 cell monolayers using ultra-performance liquid chromatography-tandem mass spectrometry. RLSFNP fragments FNP, SFNP and RLSF also contributed to ACE inhibitory effects. Protease inhibitors (bacitracin and leupeptin) and absorption enhancers (sodium glycocholate hydrate, sodium deoxycholate and Na 2 EDTA) improved the transport flux of RLSFNP. A transport inhibitor experiment showed that intact RLSFNP may be transported via the paracellular route. Intact RLSFNP can be transported across the Caco-2 cell monolayers via the paracellular route. Extensive hydrolysis was the chief reason for the low permeability of RLSFNP. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Intestinal permeability and glucagon-like peptide-2 in children with autism

    DEFF Research Database (Denmark)

    Robertson, Marli A; Sigalet, David L; Holst, Jens Juul

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response...... to feeding. Results were compared with sibling controls and children without developmental disabilities. We enrolled 14 children with autism, 7 developmentally normal siblings of these children and 8 healthy, developmentally normal, unrelated children. Our study did not detect differences in these measures...... of gastrointestinal function in a group of children with autism....

  15. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  16. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis

    DEFF Research Database (Denmark)

    Sharma, Neha; Aduri, Nanda G; Iqbal, Anna

    2016-01-01

    Peptide transport in living organisms is facilitated by either primary transport, hydrolysis of ATP, or secondary transport, cotransport of protons. In this study, we focused on investigating the ligand specificity of the Neisseria meningitidis proton-coupled oligopeptide transporter (Nm...

  17. Vasoactive Intestinal Peptide Nanomedicine for the Management of Inflammatory Bowel Disease.

    Science.gov (United States)

    Jayawardena, Dulari; Anbazhagan, Arivarasu N; Guzman, Grace; Dudeja, Pradeep K; Onyuksel, Hayat

    2017-11-06

    Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the intestine, with increasing incidence worldwide. At present, the management of IBD is an unmet medical need due to the ineffectiveness of currently available drugs in treating all patients, and there is strong demand for novel therapeutics. In this regard, vasoactive intestinal peptide, a potent anti-inflammatory endogenous hormone, has shown promise in managing multiple immune disorders in animal models. However, when administered in the free form, VIP undergoes rapid degradation in vivo, and with continuous infusion, it causes severe dose limiting side effects. To overcome these barriers, we have developed a superior mode to deliver VIP in its native form, using sterically stabilized micelles (VIP-SSM). Our previous studies demonstrated that, VIP, when administered in SSM, prevented joint damage and inflammation in a mouse model of rheumatoid arthritis at a significantly lower dose than the free peptide, completely abrogating the serious side effect of hypotension associated with VIP. In the current study, we demonstrate the therapeutic benefit of VIP-SSM over free peptide in reversing severe colitis associated with IBD. First, we conducted preliminary studies with dextran sulfate sodium (DSS) induced colitis in mice, to determine the effectiveness of VIP administered on alternate days in reducing disease severity. Thereafter, a single intra peritoneal injection of VIP-SSM or the free peptide was used to determine its therapeutic effect on the reversal of colitis and associated diarrhea. The results demonstrated that when administered on alternate days, both VIP-SSM and VIP were capable of alleviating DSS colitis in mice. However, when administered as a single dose, in a therapeutic setting, VIP-SSM showed superior benefits compared to the free peptide in ameliorating colitis phenotype. Namely, the loss of solid fecal pellets and increased fluid accumulation in colon resulting from DSS insult

  18. Non-specific activation of human eosinophil functional responses by vasoactive intestinal peptide

    Directory of Open Access Journals (Sweden)

    Amr El-Shazly

    2000-01-01

    Full Text Available Eosinophils and neuropeptides are thought to play effector roles in allergic diseases, such as rhinitis; however, little is known about the biological effects of neuromediators, especially vasoactive intestinal peptide (VIP, on eosinophil functional responses. In the present study, it is shown that VIP induces eosinophil chemotaxis and eosinophil-derived neurotoxin (EDN release in potency comparable with that induced by platelet activator factor, and in a novel synergistic manner with recombinant human interleukin-5. Contrary to chemotaxis, EDN release was sensitive to staurosporine, the protein kinase C inhibitor, as well as intracellular calcium chelation. However, eosinophil treatment with inhibitors of tyrosine kinases (herbimycin A and phosphatases (pervanadate resulted in a dose-dependent potentiation and blockage of VIP-induced eosinophil chemotaxis, respectively. Treatment of eosinophils with VIP receptor antagonist did not modify VIP-induced chemotaxis or EDN release. Furthermore, exploration of vasoactive intestinal peptide receptor I expression was lacking in human eosinophils, but not lymphocytes. These results demonstrate two different mechanisms in triggering eosinophil activation of functional responses by VIP, a calcium-dependent degranulation and a calcium-independent chemotaxis, and elaborate on a novel cytokine–neuropeptide interaction in eosinophilic inflammation.

  19. Role of quercetin in modulating chloride transport in the intestine

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2016-11-01

    Full Text Available Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR and calcium-activated chloride channels (CaCCs are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid quercetin as a modulator of CaCC chloride channel activity. Fluorescence quenching assay showed that quercetin activated Clˉ transport in a dose-dependent manner, with EC50 ~37 µM. Short-circuit current analysis confirmed that quercetin activated CaCC-mediated Clˉ currents in HT-29 cells that can be abolished by CaCCinh-A01. Ex-vivo studies indicated that application of quercetin to mouse ileum and colon on serosal side resulted in activation of CFTR and CaCC-mediated Clˉ currents. Notably, we found that quercetin exhibited inhibitory effect against ANO1 chloride channel activity in ANO1-expressing FRT cells and decreased mouse intestinal motility. Quercetin-stimulated short-circuit currents in mouse ileum was multi-component, which included elevation of Ca2+ concentration through L-type calcium channel and activation of basolateral NKCC, Na+/K+-ATPase and K+ channels. In vivo studies further revealed that quercetin promoted fluid secretion in mouse ileum. The modulatory effect of quercetin on CaCC chloirde channels may therefore represent a potential therapeutic strategy for treating CaCC-related diseases like constipation, secretory diarrhea and hypertension. The inverse effects of quercetin on CaCCs provided evidence that ANO1 and intestinal epithelial CaCCs are different calcium-activated chloride channels.

  20. Genetic and biochemical analysis of peptide transport in Escherichia coli

    International Nuclear Information System (INIS)

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U- 14 C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using λ placMu51-generated lac operon fusions. Synthesis of β-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium

  1. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules.

    Science.gov (United States)

    Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko

    2017-09-01

    The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating...... peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) may be released from parasympathetic fibres and activate sensory nerve fibres during migraine attacks. Triptans are effective and well tolerated in acute migraine management but the exact mechanism of action is still debated. Triptans might...

  3. Effect of dietary lead on intestinal nutrient transporters mRNA expression in broiler chickens.

    Science.gov (United States)

    Ebrahimi, Roohollah; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Soleimani Farjam, Abdoreza; Shokryazdan, Parisa; Idrus, Zulkifli

    2015-01-01

    Lead- (Pb-) induced oxidative stress is known to suppress growth performance and feed efficiency in broiler chickens. In an attempt to describe the specific underlying mechanisms of such phenomenon we carried out the current study. Ninety-six one-day-old broiler chicks were randomly assigned to 2 dietary treatment groups of 6 pen replicates, namely, (i) basal diet containing no lead supplement (control) and (ii) basal diet containing 200 mg lead acetate/kg of diet. Following 3 weeks of experimental period, jejunum samples were collected to examine the changes in gene expression of several nutrient transporters, antioxidant enzymes, and heat shock protein 70 (Hsp70) using quantitative real-time PCR. The results showed that addition of lead significantly decreased feed intake, body weight gain, and feed efficiency. Moreover, with the exception of GLUT5, the expression of all sugar, peptide, and amino acid transporters was significantly downregulated in the birds under Pb induced oxidative stress. Exposure to Pb also upregulated the antioxidant enzymes gene expression together with the downregulation of glutathione S-transferase and Hsp70. In conclusion, it appears that Pb-induced oxidative stress adversely suppresses feed efficiency and growth performance in chicken and the possible underlying mechanism for such phenomenon is downregulation of major nutrient transporter genes in small intestine.

  4. Regulatory signals for intestinal amino acid transporters and peptidases

    International Nuclear Information System (INIS)

    Ferraris, R.P.; Kwan, W.W.; Diamond, J.

    1988-01-01

    Dietary protein ultimately regulates many processes involved in protein digestion, but it is often unclear whether proteins themselves, peptides, or amino acids (AAs) are the proximate regulatory signal. Hence the authors compared several processes involved in protein digestion in mice adapted to one of three rations, identical except for containing 54% of either casein, a partial hydrolysate of casein, or a free AA mixture simulating a complete hydrolysate of casein. The authors measured brush-border uptakes of seven AAs that variously serve as substrates for four AA transporters, and brush-border and cytosolic activities of four peptidases. The three rations yielded essentially the same AA uptake rates. Peptidase activities tended to be lower on the AA ration than on the protein ration. In other studies, all three rations yielded the same rates of brush-border peptide uptake; protein is only modestly more effective than AAs at inducing synthesis of pancreatic proteases; and, depending on the animal species, protein is either much less or much more effective than AAs at stimulating release of cholecystokinin and hence of pancreatic enzymes. Thus the regulators of each process involved in protein digestion are not necessarily that process's substrate

  5. A safety and pharmacokinetic dosing study of glucagon-like peptide 2 in infants with intestinal failure

    DEFF Research Database (Denmark)

    Sigalet, David L; Brindle, Mary E; Boctor, Dana

    2017-01-01

    BACKGROUND & AIMS: Glucagon-like peptide 2 (GLP-2) analogues are approved for adults with intestinal failure (IF), but no studies have included infants. This study examined the pharmacokinetics (PK), safety, and nutritional effects of GLP-2 in infants with IF. METHODS: With parental consent (Health...

  6. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung

    OpenAIRE

    Groneberg, D; Eynott, P; Doring, F; Thai, D; Oates, T; Barnes, P; Chung, K; Daniel, H; Fischer, A

    2002-01-01

    Background: Aerosol administration of peptide based drugs has an important role in the treatment of various pulmonary and systemic diseases. The characterisation of pulmonary peptide transport pathways can lead to new strategies in aerosol drug treatment.

  7. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility

    Directory of Open Access Journals (Sweden)

    A. Nassif

    1995-01-01

    Full Text Available We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10−8 M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E2 and thromboxane B2. Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation.

  8. Design, Recombinant Fusion Expression and Biological Evaluation of Vasoactive Intestinal Peptide Analogue as Novel Antimicrobial Agent

    Directory of Open Access Journals (Sweden)

    Chunlan Xu

    2017-11-01

    Full Text Available Antimicrobial peptides represent an emerging category of therapeutic agents with remarkable structural and functional diversity. Modified vasoactive intestinal peptide (VIP (VIP analogue 8 with amino acid sequence “FTANYTRLRRQLAVRRYLAAILGRR” without haemolytic activity and cytotoxicity displayed enhanced antimicrobial activities against Staphylococcus aureus (S. aureus ATCC 25923 and Escherichia coli (E. coli ATCC 25922 than parent VIP even in the presence of 180 mM NaCl or 50 mM MgCl2, or in the range of pH 4–10. VIP analogue 8 was expressed as fusion protein thioredoxin (Trx-VIP8 in E. coli BL21(DE at a yield of 45.67 mg/L. The minimum inhibitory concentration (MIC of the recombinant VIP analogue 8 against S. aureus ATCC 25923 and E. coli ATCC 25922 were 2 μM. These findings suggest that VIP analogue 8 is a promising candidate for application as a new and safe antimicrobial agent.

  9. Interaction of Drug or Food with Drug Transporters in Intestine and Liver.

    Science.gov (United States)

    Nakanishi, Takeo; Tamai, Ikumi

    2015-01-01

    Oral bioavailability (F) is determined as fraction of the drug dose absorbed through the gastrointestinal membranes (Fa), the unmetabolized fraction of the absorbed dose that passes through the gut into the portal blood (Fg), and the hepatic first pass availability (Fh), namely F is expressed as the product of Fa, Fg and Fh (F = Fa.Fg.Fh). Current evidence suggests that transporter proteins play a role in intestinal absorption and hepatobiliary clearance of drugs. Among those transporters, this review will focus on PEPT1 and OATP2B1 as influx transporter and p-glycoprotein (P-gp) and BCRP as efflux transporter in intestinal epithelial cells, and on OATP1B1 and 1B3 as influx transporter and MRP2 as efflux transporter in hepatocytes, respectively, because drug-drug (DDI) and -food (DFI) interactions on these transporter are considered to affect bioavailability of their substrate drugs. DDI and DFI may reduce systemic exposure to drug by blocking influx transporters in intestine, but increase it by modulating influx and efflux transporters in liver and efflux transporters in intestines. Namely, drug disposition and efficacy are likely affected by DDI and DFI, resulting in treatment failures or increase in adverse effect. Therefore, it is of significantly importance to understand precise mechanism of DDI and DFI. This review will present information about transporter-based DDI and DFI in the processes of intestinal absorption and hepatic clearance of drugs, and discuss about their clinical implication.

  10. The transport mechanism of cadmium by the small intestine of rats

    International Nuclear Information System (INIS)

    Taguchi, Tetsuya; Suzuki, Shosuke

    1979-01-01

    The mechanism of cadmium absorption was studied in vitro using the sacs of small intestines of male Sprague-Dawley rats. Relation between the concentration of cadmium in the mucosal fluid and the rate of transport of 109 Cd to the serosal fluid showed that the higher the concentration of cadmium, the greater the transport of 109 Cd. Wall uptake of 109 Cd was limited, and could be saturated at relatively low concentration. 109 Cd transport was not proportional to the cadmium concentration on the mucosal side, nor to the concentration of cadmium taken up by the intestinal walls. At the initial cadmium concentration of 50 μg/ml, there was no significant effect on the retention of 109 Cd in the intestinal walls, inspite of extremely large increase in the amount of 109 Cd transport into the serosal fluid. Cadmium could be transported across the intestinal walls against a gradient when the initial cadmium concentration on the mucosal side was raised to 50 μg/ml, which showed that the passage of 109 Cd across the intestinal walls could not be the result of uptake by the walls from the mucosal fluid, followed by simple diffusion into the serosal fluid. Cadmium transport through and retention within the intestinal walls was reduced by preliminary cadmium treatment, and it suggests that it induced some change in the permeability of the intestinal walls that facilitated the transmural passage of 109 Cd. (Kaihara, S.)

  11. Nutrient availability, the microbiome, and intestinal transport during pregnancy.

    Science.gov (United States)

    Astbury, Stuart; Mostyn, Alison; Symonds, Michael E; Bell, Rhonda C

    2015-11-01

    Adequate adaptation of the gastrointestinal tract is important during pregnancy to ensure that the increased metabolic demands by the developing fetus are met. These include changes in surface area mediated by villus hypertrophy and enhanced functional capacity of individual nutrient receptors, including those transporting glucose, fructose, leucine, and calcium. These processes are regulated either by the enhanced nutrient demand or are facilitated by changes in the secretion of pregnancy hormones. Our review also covers recent research into the microbiome, and how pregnancy could lead to microbial adaptations, which are beneficial to the mother, yet are also similar to those seen in the metabolic syndrome. The potential role of diet in modulating the microbiome during pregnancy, as well as the potential for the intestinal microbiota to induce pregnancy complications, are examined. Gaps in the current literature are highlighted, including those where only historical evidence is available, and we suggest areas that should be a priority for further research. In summary, although a significant degree of adaptation has been described, there are both well-established processes and more recent discoveries, such as changes within the maternal microbiome, that pose new questions as to how the gastrointestinal tract effectively adapts to pregnancy, especially in conjunction with maternal obesity.

  12. Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na+/K+-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

    Directory of Open Access Journals (Sweden)

    Stefanie Klinger

    2018-03-01

    Full Text Available Background: Beneficial effects of Resveratrol (RSV have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min in Ussing chambers (functional studies and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs. Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1, AMP-activated protein kinase (AMPK, protein kinase A substrates (PKA-S and liver kinase B1 (LKB1 increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1 and (phosphorylated Na+/H+-exchanger 3 (NHE3 did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.

  13. Growth of embryo and gene expression of nutrient transporters in the small intestine of the domestic pigeon (Columba livia).

    Science.gov (United States)

    Chen, Ming-xia; Li, Xiang-guang; Yang, Jun-xian; Gao, Chun-qi; Wang, Bin; Wang, Xiu-qi; Yan, Hui-chao

    2015-06-01

    The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b(0,+)AT, EAAT3, y(+)LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b(0,+)AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y(+)LAT2 had positive correlations with body weight (0.71pigeons.

  14. Rotavirus NSP4114-135 peptide has no direct, specific effect on chloride transport in rabbit brush-border membrane

    Directory of Open Access Journals (Sweden)

    Vasseur Monique

    2006-11-01

    Full Text Available Abstract The direct effect of the rotavirus NSP4114-135 and Norovirus NV464-483 peptides on 36Cl uptake was studied by using villus cell brush border membrane (BBM isolated from young rabbits. Both peptides inhibited the Cl-/H+ symport activity about equally and partially. The interaction involved one peptide-binding site per carrier unit. Whereas in vitro NSP4114-135 caused nonspecific inhibition of the Cl-/H+ symporter, the situation in vivo is different. Because rotavirus infection in young rabbits accelerated both Cl- influx and Cl- efflux rates across villi BBM without stimulating Cl- transport in crypt BBM, we conclude that the NSP4114-135 peptide, which causes diarrhea in young rodents, did not have any direct, specific effect on either intestinal absorption or secretion of chloride. The lack of direct effect of NSP4 on chloride transport strengthens the hypothesis that NSP4 would trigger signal transduction pathways to enhance net chloride secretion at the onset of rotavirus diarrhea.

  15. Intestinal transport of gentamicin with a novel, glycosteroid drug transport agent

    Science.gov (United States)

    Axelrod, H. R.; Kim, J. S.; Longley, C. B.; Lipka, E.; Amidon, G. L.; Kakarla, R.; Hui, Y. W.; Weber, S. J.; Choe, S.; Sofia, M. J.

    1998-01-01

    PURPOSE: The objective was to investigate the ability of a glycosteroid (TC002) to increase the oral bioavailability of gentamicin. METHODS: Admixtures of gentamicin and TC002 were administered to the rat ileum by injection and to dogs by ileal or jejunal externalized ports, or PO. Bioavailability of gentamicin was determined by HPLC. 3H-TC002 was injected via externalized cannulas into rat ileum or jejunum, or PO and its distribution and elimination was determined. The metabolism of TC002 in rats was evaluated by solid phase extraction and HPLC analysis of plasma, urine and feces following oral or intestinal administration. RESULTS: The bioavailability of gentamicin was substantially increased in the presence of TC002 in both rats and dogs. The level of absorption was dependent on the concentration of TC002 and site of administration. Greatest absorption occurred following ileal orjejunal administration. TC002 was significantly more efficacious than sodium taurocholate, but similar in cytotoxicity. TC002 remained primarily in the GI tract following oral or intestinal administration and cleared rapidly from the body. It was only partly metabolized in the GI tract, but was rapidly and completely converted to its metabolite in plasma and urine. CONCLUSIONS: TC002 shows promise as a new drug transport agent for promoting intestinal absorption of polar molecules such as gentamicin.

  16. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine

    DEFF Research Database (Denmark)

    Pedersen, Jens; B. Pedersen, Nis; Brix, Sophie W.

    2015-01-01

    Glucagon-like peptide 2 (GLP-2) is a potent intestinotrophic growth factor with therapeutic potential in the treatment of intestinal deficiencies. It has recently been approved for the treatment of short bowel syndrome. The effects of GLP-2 are mediated by specific binding of the hormone to the GLP......-2 receptor (GLP-2R) which was cloned in 1999. However, consensus about the exact receptor localization in the intestine has never been established. By physical, chemical and enzymatic tissue fragmentation, we were able to divide rat jejunum into different compartments consisting of: (1) epithelium...

  17. Investigation of the substrate specificity of the proton coupled peptide transporter PepTSo from Shewanella oneidensis

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Aduri, Nanda Gowtham; Hald, Helle

    2015-01-01

    The mammalian proton coupled transporter (POT) hPepT1 has been studied intensively due to its role in nutrient and drug absorption in the small intestine. In the absence of a crystal structure of hPepT1, the available structures of bacterial POTs, among which PepTSo from Shewanella oneidensis has...... a strikingly high sequence identity, can be used to rationalize its mechanism and substrate preference. However, very little is known about the substrate specificity of PepTSo. To elaborate on this, the natural peptide specificity of PepTSo was investigated. Di and tri-peptides were found to be substrates...... for PepTSo in contrast to mono- and tetrapeptides as was indicated by previous competition studies. Interestingly, a negatively charged side chain was better accommodated on the dipeptide N- than the C-terminus position. Inversely, a positive charged side chain appeared to be tolerated better...

  18. Safety and Dosing Study of Glucagon-Like Peptide 2 in Children With Intestinal Failure.

    Science.gov (United States)

    Sigalet, David L; Brindle, Mary; Boctor, Dana; Casey, Linda; Dicken, Bryan; Butterworth, Sonia; Lam, Viona; Karnik, Vikram; de Heuvel, Elaine; Hartmann, Bolette; Holst, Jens

    2017-07-01

    A glucagon-like peptide 2 (GLP-2) analogue is approved for adults with intestinal failure, but no studies of GLP-2 have included children. This study examined the pharmacokinetics, safety, and nutritional effects of GLP-2 in children with intestinal failure. Native human GLP-2(1-33) was synthesized following good manufacturing practices. In an open-label trial, with parental consent, 7 parenteral nutrition-dependent pediatric patients were treated with subcutaneous GLP-2 (20 µg/kg/d) for 3 days (phase 1) and, if tolerated, continued for 42 days (phase 2). Nutritional treatment was directed by the primary caregivers. Patients were followed to 1 year. Seven patients were enrolled (age: 4.0 ± 0.8 years; bowel length, mean ± SEM: 24% ± 4% of predicted). All were parenteral nutrition dependent since birth, receiving 44% ± 5% of calories by parenteral nutrition. GLP-2 treatment had no effect on vital signs (blood pressure, heart rate, and temperature) and caused no significant adverse events. Peak GLP-2 levels were 380 pM (day 3) and 295 pM (day 42), with no change in half-life or endogenous GLP-2 levels. Nutritional indices showed a numeric improvement in z scores and citrulline levels; the z score was maintained while citrulline levels returned to baseline once GLP-2 was discontinued. GLP-2 was well tolerated in children, with a pharmacokinetic profile similar to that of adults. There were no changes in endogenous GLP-2 release or metabolism. These results suggest that GLP-2 ligands may be safely used in pediatric patients; larger trials are suggested to investigate nutritional effects.

  19. Evaluation of the intestinal toxicity and transport of xenobiotics utilizing precision-cut slices.

    Science.gov (United States)

    Niu, Xiaoyu; de Graaf, Inge A M; Groothuis, Geny M M

    2013-01-01

    1.The precision-cut intestinal slice (PCIS) technology is a relatively new addition to the battery of in vitro assays for evaluation of xenobiotic toxicity, metabolism, and transport. 2.The intestine is an important target for drug-induced toxicity due to its high exposure after oral administration. Therefore, the prediction of drug-induced intestinal side effects remains a significant safety issue in pharmaceutical development. Although animal experiments have been proven useful, species differences and the requirement for reduction of animal use warrant the development of in vitro methods which can apply human tissue. 3.The enterocytes lining the villi express high activities of enzymes and transporters involved in drug disposition. They vary highly in activities: along the length of the intestine and along the villi, gradients of expression levels of the enzymes and proteins exist, which necessitates an in vitro model that can reflect the different regions of the intestine. 4.In this chapter, the application of PCIS in studies on transport and toxicity of xenobiotics is reviewed. PCIS can be prepared from each region of the intestine and from various species in a similar manner, and the results published so far indicate that they represent a promising model to evaluate intestinal toxicity and transport.

  20. Bilateral tactile hypersensitivity and neuroimmune responses after spared nerve injury in mice lacking vasoactive intestinal peptide.

    Science.gov (United States)

    Gallo, Alessandro; Leerink, Marjolein; Michot, Benoît; Ahmed, Eman; Forget, Patrice; Mouraux, André; Hermans, Emmanuel; Deumens, Ronald

    2017-07-01

    Vasoactive intestinal peptide (VIP) is one of the neuropeptides showing the strongest up-regulation in the nociceptive pathway after peripheral nerve injury and has been proposed to support neuropathic pain. Nevertheless, the story may be more complicated considering the known suppressive effects of the peptide on the immune reactivity of microglial cells, which have been heavily implicated in the onset and maintenance of pain after nerve injury. We here used mice deficient in VIP and the model of spared nerve injury, characterized by persistent tactile hypersensitivity. While tactile hypersensitivity developed similarly to wild type mice for the ipsilateral hindpaw, only transgenic mice showed a mirror-image tactile hypersensitivity in the contralateral hindpaw. This exacerbated neuropathic pain phenotype appeared to be mediated through a local mechanism acting at the level of the lumbar spinal cord as a distant nerve lesion in the front limb did not lead to hindpaw hypersensitivity in VIP-deficient mice. Innocuous tactile hindpaw stimulation was found to increase a neuronal activation marker in the bilateral superficial laminae of the lumbar dorsal horn of VIP-deficient, but not wild type mice, after SNI. A deeper study into the immune responsiveness to the nerve lesion also proved that VIP-deficient mice had a stronger early pro-inflammatory cytokine response and a more pronounced microglial reactivity compared to wild type controls. The latter was also observed at four weeks after spared nerve injury, a time at which bilateral tactile hypersensitivity persisted in VIP-deficient mice. These data suggest an action of VIP in neuropathic states that is more complicated than previously assumed. Future research is now needed for a deeper understanding of the relative contribution of receptors and fiber populations involved in the VIP-neuropathic pain link. Copyright © 2017. Published by Elsevier Inc.

  1. Unusual chemical properties of N-terminal histidine residues of glucagon and vasoactive intestinal peptide

    International Nuclear Information System (INIS)

    Hefford, M.A.; Evans, R.M.; Oda, G.; Kaplan, H.

    1985-01-01

    An N-terminal histidine residue of a protein or peptide has two functional groups, viz., an alpha-amino group and an imidazole group. A new procedure, based on the competitive labeling approach described by Duggleby and Kaplan has been developed by which the chemical reactivity of each functional group in such a residue can be determined as a function of pH. Only very small amounts of material are required, which makes it possible to determine the chemical properties in dilute solution or in proteins and polypeptides that can be obtained in only minute quantities. With this approach, the reactivity of the alpha-amino group of histidylglycine toward 1-fluoro-2,4-dinitrobenzene gave an apparent pK /sub a/ value of 7.64 +/- 0.07 at 37 degrees C, in good agreement with a value of 7.69 +/- 0.02 obtained by acid-base titration. However, the reactivity of the imidazole function gave an apparent pK /sub a/ value of 7.16 +/- 0.07 as compared to the pK /sub a/ value of 5.85 +/- 0.01 obtained by acid-base titration. Similarly, in glucagon and vasoactive intestinal peptide (VIP), apparent pKa values of 7.60 +/- 0.04 and 7.88 +/- 0.18, respectively, were obtained for the alpha-amino of their N-terminal histidine, and pKa values of 7.43 +/- 0.09 and 7.59 +/- 0.18 were obtained for the imidazole function

  2. Effect of vasoactive intestinal peptide, carbachol and other agonists on the membrane voltage of pancreatic duct cells

    DEFF Research Database (Denmark)

    Pahl, C; Novak, I

    1993-01-01

    and -70 mV. Vasoactive intestinal peptide (VIP) and carbachol (CCH) reversibly depolarized Vbl when applied to the bath. VIP (9 x 10(-9) mol/l) depolarized Vbl from -72 +/- 3 mV to -53 +/- 3 mV (n = 20) and CCH (10(-5) mol/l) from -62 +/- 3 to -35 +/- 4 mV (n = 10). Furthermore, a decrease of the Cl...

  3. Effects of vasoactive intestinal peptide on vascular conductance are unaffected by anesthesia

    International Nuclear Information System (INIS)

    Bouder, T.G.; Huffman, L.J.; Hedge, G.A.

    1988-01-01

    In rats anesthetized with ketamine and pentobarbital (KET/PB), vasoactive intestinal peptide (VIP) increases vascular conductance (VC) in the salivary gland, pancreas, and thyroid gland, whereas no changes in VC are observed in a number of other organs. Because anesthesia may alter the responsiveness of physiological systems, we compared the effects of VIP on organ VC in conscious or anesthetized rats. Chronically catheterized rats were studied in the conscious state or 30 min after induction of anesthesia with KET/PB, isoflurane, or Inactin. Blood flows were measured by the reference sample version of the radioactive microsphere (MS) technique using two MS injections ( 141 Ce-MS/ 85 Sr-MS). Mean arterial blood pressure was monitored and used in the calculation of VC. Organ VCs were similar under basal conditions in conscious and anesthetized rats. VIP infusion caused systemic hypotension and increased VCs in the salivary gland, pancreas, and thyroid gland, and these responses were largely unaffected by anesthesia. These results indicate that the anesthetics used do not alter basal VC or the responsiveness of the vasculature to exogenous VIP

  4. [Expression of vasoactive intestinal peptide in peripheral blood of children with hand, foot and mouth disease].

    Science.gov (United States)

    Ren, Jin-Song; Sun, Hao-Miao; Zhang, Lei; Lin, Jing-De; Wen, Cheng; Fang, Dai-Hua

    2016-11-01

    To investigate the expression of vasoactive intestinal peptide (VIP) in peripheral blood of children with hand, foot and mouth disease and its significance. According to the condition of the disease, 86 children with hand, foot and mouth disease were classified into phase 1 group (19 children) and phase 2 group (67 children). ELISA was used to measure the concentrations of plasma VIP, interferon-γ (IFN-γ), and interleukin-4 (IL-4) in peripheral blood. Flow cytometry was used to measure CD3 + , CD4 + , and CD8 + T lymphocyte subsets. RT-PCR was used for qualitative detection of enterovirus 71 (EV71) RNA in stool. Compared with the phase 1 group, the phase 2 group had a significantly higher positive rate of EV71-RNA (Phand, foot and mouth disease, the concentration of VIP in peripheral blood was positively correlated with the proportion of CD4 + T lymphocyte subset and CD4 + /CD8 + ratio (r=0.533 and 0.532 respectively; Phand, foot and mouth disease.

  5. Electroacupuncture Inhibits Inflammation Reaction by Upregulating Vasoactive Intestinal Peptide in Rats with Adjuvant-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Tian-Feng He

    2011-01-01

    Full Text Available Acupuncture is emerging as an alternative therapy for rheumatoid arthritis (RA. However, the molecular mechanism underlying this beneficial effect of acupuncture has not been fully understood. Here, we demonstrated that electroacupuncture at acupoints Zusanli (ST36, Xuanzhong (GB39; and Shenshu (BL23 markedly decreased the paw swelling and the histologic scores of inflammation in the synovial tissue, and reduced the body weight loss in an adjuvant-induced arthritis rat model. However, the electrical stimulation at nonacupoint did not produce any beneficial effects against the experimental arthritis. Most interestingly, the electroacupuncture treatment resulted in an enhanced immunostaining for vasoactive intestinal peptide (VIP, a potent anti-inflammatory neuropeptide, in the synovial tissue. Moreover, the VIP-immunostaining intensity was significantly negatively correlated with the scores of inflammation in the synovial tissue (r=−0.483, P=.0026. In conclusion, these findings suggest that electroacupuncture may offer therapeutic benefits for the treatment of RA, at least partially through the induction of VIP expression.

  6. Gastric mucosal smooth muscles may explain oscillations in glandular pressure: role of vasoactive intestinal peptide.

    Science.gov (United States)

    Synnerstad, I; Ekblad, E; Sundler, F; Holm, L

    1998-02-01

    Oscillating (3-7 cycles/min) high pressures in gastric glands during acid secretion suggest the existence of rhythmically contracting mucosal muscles. The aim of this study was to study vasoactive intestinal peptide (VIP), an inhibitory neurotransmitter in the gastrointestinal tract, in relation to mucosal muscles, glandular pressure, and blood flow. Rat, dog, and human mucosae were examined immunocytochemically for smooth muscle actin and VIP. Glandular pressure was measured using microelectrodes, red blood cell velocity (V[RBC]) was measured using a cross-correlation technique, and blood flow was measured using laser Doppler flowmetry in exposed gastric mucosa of thiobutabarbital sodium-anesthetized rats. Actin immunostaining showed muscle strands arising from muscularis mucosae, extending toward the gastric pits. VIP-immunoreactive nerve fibers were found in close relation to these muscles. VIP, administered intra-arterially close to the stomach (2 microg/kg bolus, followed by 10 microg x kg[-1] x h[-1]), significantly decreased glandular pressure from 18.2 +/- 1.6 to 8.9 +/- 1.6 mm Hg and almost eliminated the pressure oscillations. VIP infusion also abolished the oscillations in V(RBC) and significantly increased blood flow by approximately 35%. Contracting mucosal muscles may be responsible for oscillations in glandular pressure and possibly also in V(RBC). VIP probably relaxes these muscles.

  7. Vasoactive intestinal peptide and somatostatin in the plasma and sigmoid mucosa in irritable bowel syndrome

    International Nuclear Information System (INIS)

    Zhang Ru; Wang Fuxian

    2004-01-01

    To investigate the possible role and clinical significance of vasoactive intestinal peptide (VIP) and somatostatin(SS) in the irritable bowel syndrome (IBS), the VIP and SS in the plasma and sigmoid mucosa were measured by radioimmunoassay in the control group and the IBS group. The VIP concentration in the plasma and sigmoid mucosa of the IBS patients with constipation was significantly higher than that of the control group (P<0.01), while that of the IBS patients with diarrhea was significantly lower than that of the control group (P<0.05). The SS concentration in two sites was significantly elevated in IBS patients of both types and was significantly higher in IBS with constipation than in IBS with diarrhea (P<0.05). Conclusion: The VIP and SS in IBS are abnormal, which might play a role in the pathogenesis of IBS. The plasma and mucosa concenration of VIP and SS in two kinds of IBS patients are significantly different, which indicates that there might be different pathophysiological basis involved in the pathogenesis of the two kinds of IBS patients. (authors)

  8. Synergistic effect of supplemental enteral nutrients and exogenous glucagon-like peptide 2 on intestinal adaptation in a rat model of short bowel syndrome

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Nelson, David W; Holst, Jens Juul

    2006-01-01

    BACKGROUND: Short bowel syndrome (SBS) can lead to intestinal failure and require total or supplemental parenteral nutrition (TPN or PN, respectively). Glucagon-like peptide 2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that stimulates intestinal adaptation. OBJECTIVE: Our...... of GLP-2 (SEN x GLP-2 interaction, P cellularity and digestive capacity in parenterally fed rats with SBS...

  9. Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice.

    Science.gov (United States)

    Drechsler, Navina; Courty, Pierre-Emmanuel; Brulé, Daphnée; Kunze, Reinhard

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) colonize up to 90% of all land plants and facilitate the acquisition of mineral nutrients by their hosts. Inorganic orthophosphate (P i ) and nitrogen (N) are the major nutrients transferred from the fungi to plants. While plant P i transporters involved in nutrient transfer at the plant-fungal interface have been well studied, the plant N transporters participating in this process are largely unknown except for some ammonium transporters (AMT) specifically assigned to arbuscule-colonized cortical cells. In plants, many nitrate transporter 1/peptide transporter family (NPF) members are involved in the translocation of nitrogenous compounds including nitrate, amino acids, peptides and plant hormones. Whether NPF members respond to AMF colonization, however, is not yet known. Here, we investigated the transcriptional regulation of 82 rice (Oryza sativa) NPF genes in response to colonization by the AMF Rhizophagus irregularis in roots of plants grown under five different nutrition regimes. Expression of the four OsNPF genes NPF2.2/PTR2, NPF1.3, NPF6.4 and NPF4.12 was strongly induced in mycorrhizal roots and depended on the composition of the fertilizer solution, nominating them as interesting candidates for nutrient signaling and exchange processes at the plant-fungal interface.

  10. Responses of mRNA expression of PepT1 in small intestine to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... absorbed completely by intestines (Ganapathy et al.,. 1994). However, absorption of small peptides in intes- tines depend on peptides transporters that are membrane proteins responsible for selective translocation of small peptides across the cell membrane. Peptides trans- porters are present in tissues of ...

  11. Peptides actively transported across the tympanic membrane: Functional and structural properties.

    Directory of Open Access Journals (Sweden)

    Arwa Kurabi

    Full Text Available Otitis media (OM is the most common infectious disease of children under six, causing more antibiotic prescriptions and surgical procedures than any other pediatric condition. By screening a bacteriophage (phage library genetically engineered to express random peptides on their surfaces, we discovered unique peptides that actively transport phage particles across the intact tympanic membrane (TM and into the middle ear (ME. Herein our goals were to characterize the physiochemical peptide features that may underlie trans-TM phage transport; assess morphological and functional effects of phage peptides on the ME and inner ear (IE; and determine whether peptide-bearing phage transmigrate from the ME into the IE. Incubation of five peptide-bearing phage on the TM for over 4hrs resulted in demonstrably superior transport of one peptide, in level and in exponential increase over time. This suggests a preferred peptide motif for TM active transport. Functional and structural comparisons revealed unique features of this peptide: These include a central lysine residue, isoelectric point of 0.0 at physiological pH and a hydrophobic C-terminus. When the optimal peptide was applied to the TM independent of phage, similar transport was observed, indicating that integration into phage is not required. When 109 particles of the four different trans-TM phage were applied directly into the ME, no morphological effects were detected in the ME or IE when compared to saline or wild-type (WT phage controls. Comparable, reversible hearing loss was observed for saline controls, WT phage and trans-TM peptide phage, suggesting a mild conductive hearing loss due to ME fluid. Perilymph titers after ME incubation established that few copies of trans-TM peptide phage crossed into the IE. The results suggest that, within the parameters tested, trans-TM peptides are safe and could be used as potential agents for noninvasive delivery of drugs, particles and gene therapy

  12. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Science.gov (United States)

    Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi

    2012-01-01

    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008

  13. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Olesen, Jesper H; Bedal, Konstanze

    2011-01-01

    Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an in......Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along...... with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41......%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally...

  14. Roux-en-Y gastric bypass alters small intestine glutamine transport in the obese Zucker rat

    OpenAIRE

    Wolff, Brynn S.; Meirelles, Katia; Meng, Qinghe; Pan, Ming; Cooney, Robert N.

    2009-01-01

    The metabolic effects of Roux-en-Y gastric bypass (RYGB) are caused by postsurgical changes in gastrointestinal anatomy affecting gut function. Glutamine is a critical gut nutrient implicated in regulating glucose metabolism as a substrate for intestinal gluconeogenesis. The present study examines the effects of obesity and RYGB on intestinal glutamine transport and metabolism. First, lean and obese Zucker rats (ZRs) were compared. Then the effects of RYGB and sham surgery with pair feeding (...

  15. Serosal zinc attenuate serotonin and vasoactive intestinal peptide induced secretion in piglet small intestinal epithelium in vitro

    DEFF Research Database (Denmark)

    Carlson, Dorthe; Sehested, Jakob; Feng, Z

    2008-01-01

    This study addressed the mechanisms by which dietary zinc affects diarrhoea and aimed to study possible interactions between zinc status and the presence of zinc in vitro on secretagogue-induced secretion from piglet intestinal epithelium in Ussing chambers....

  16. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K.

    Science.gov (United States)

    Yamanashi, Yoshihide; Takada, Tappei; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-04-03

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies.

  17. Effect of vasoactive intestinal peptide on the wound healing of alkali-burned corneas

    Directory of Open Access Journals (Sweden)

    Nese Tuncel

    2016-02-01

    Full Text Available AIM: To study the effect of vasoactive intestinal peptide (VIP on wound healing in experimental alkali burns of the cornea. METHODS: Twenty-seven albino rabbits, weighing 3.2±0.75 kg were used. Alkali burns were induced on corneas by applying 10 mm Whatman paper No:50 soaked in 1 mol/L NaOH. They have further classified into 5 groups as follows: 1 control group given no treatment (n=5; 2 VIP given subconjunctivally (n=6; 3 VIP injected into anterior chamber (n=6; 4 NaCl 0.9% given subconjunctivally (n=5; 5 NaCl 0.9% given into the anterior chamber (n=5. All treatment protocols except control group were followed by topical eye drops composed of VIP at two hourly intervals for one week from 8 a.m. to 6 p.m. RESULTS: VIP treated groups of rabbits with alkali burns were found to have better wound healing findings histo-pathologically when compared to those of control group who have received no treatment on day 30. No differences were observed between groups in respect to degree of polymorphonuclear leukocytes (PMNL infiltration and degree of loss of amorphous substrate on day 15. However, PMNL infiltration and degree of loss of amorphous substrate were lower in Groups 2 and 3 when compared to that of control group on day 30 (P(0.05. CONCLUSION: We have shown that VIP has positive effects on alkali induced corneal burns. VIP may inhibit PMNL migration to cornea through an immunomodulatory effect. Inhibition of PMNL migration might reduce the release of collagenases and this might prevent the extracellular amorphous substance loss.

  18. Substance P and vasoactive intestinal peptide in rat small-bowel isografts.

    Science.gov (United States)

    Tomita, Ryouichi; Fujisaki, Shigeru; Park, Eichi; Ikeda, Taro; Koshinaga, Tugumichi

    2005-01-01

    It is established that substance P (SP) is released by stimulation of nonadrenergic noncholinergic (NANC) excitatory nerves and vasoactive intestinal peptide (VIP) by stimulation of NANC inhibitory nerves. To evaluate the function of peptidergic nerves such as SP and VIP in small-bowel isografts, we examined the enteric nerve responses to SP and VIP in the isografted rat jejunum, using the normal rat jejunum as a control. Orthotopic entire small bowel transplantation (SBT) with portocaval drainage was performed from Lewis rats to Lewis rats. Grafted tissue specimens were obtained 130 days after SBT (n = 9). As controls, normal segments of the jejunum were obtained from untransplanted Lewis rats (n = 22). A mechanograph was used to evaluate in vitro jejunal responses to electrical field stimulation of the enteric nervous system before and after treatments with various autonomic nerve blockers and neuropeptides (SP and VIP). SP concentration-dependently mediated the contraction reaction of NANC excitatory nerve in the isografted jejunum and to a lesser extent in the normal jejunum. In addition, there were significant diferences in the percentages showing contraction at 1 x 10(-8) and 1 x 10(-6)g/mL SP between the normal and isografted jejunal muscle strips (P P < .01). Contraction reactions of SP were observed in both the normal and isografted jejunum but were increased in the isografted jejunum. Relaxation reactions of VIP were also observed in both the normal and isografted jejunum but were decreased in the isografted jejunum. The increase of the effects of SP via NANC excitatory nerves and the decrease of the effects of VIP in mediating NANC inhibitory nerves may be largely related to the peristaltic abnormalities seen in the isografted LEW rat jejunum.

  19. Glucagon-Like Peptide 2 Stimulates Postresection Intestinal Adaptation in Preterm Pigs by Affecting Proteins Related to Protein, Carbohydrate, and Sulphur Metabolism

    DEFF Research Database (Denmark)

    Jiang, Pingping; Vegge, Andreas; Thymann, Thomas

    2017-01-01

    BACKGROUND: Exogenous glucagon-like peptide 2 (GLP-2) stimulates intestinal adaptation after resection in animal models of pediatric short bowel syndrome (SBS). It is unknown whether the molecular mechanisms of such GLP-2 effects are similar to those of postresection spontaneous adaptation. Using...... affected by the spontaneous intestinal adaptation following resection alone. Whether more long-term GLP-2 treatment may affect the intestinal proteome following intestinal resection remains unknown.......BACKGROUND: Exogenous glucagon-like peptide 2 (GLP-2) stimulates intestinal adaptation after resection in animal models of pediatric short bowel syndrome (SBS). It is unknown whether the molecular mechanisms of such GLP-2 effects are similar to those of postresection spontaneous adaptation. Using...

  20. Glucocorticoid metabolism and Na+ transport in chicken intestine

    Czech Academy of Sciences Publication Activity Database

    Mazancová, Karla; Kučka, Marek; Mikšík, Ivan; Pácha, Jiří

    2005-01-01

    Roč. 303, č. 2 (2005), s. 113-122 ISSN 1548-8969 R&D Projects: GA AV ČR(CZ) IAA6011201 Grant - others:GA UK(CZ) 216/2004 Institutional research plan: CEZ:AV0Z5011922 Keywords : 11beta-hydroxysteroid dehydrogenase * chicken * intestine Subject RIV: ED - Physiology Impact factor: 1.111, year: 2005

  1. The effects of critical illness on intestinal glucose sensing, transporters, and absorption.

    Science.gov (United States)

    Deane, Adam M; Rayner, Chris K; Keeshan, Alex; Cvijanovic, Nada; Marino, Zelia; Nguyen, Nam Q; Chia, Bridgette; Summers, Matthew J; Sim, Jennifer A; van Beek, Theresia; Chapman, Marianne J; Horowitz, Michael; Young, Richard L

    2014-01-01

    Providing effective enteral nutrition is important during critical illness. In health, glucose is absorbed from the small intestine via sodium-dependent glucose transporter-1 and glucose transporter-2, which may both be regulated by intestinal sweet taste receptors. We evaluated the effect of critical illness on glucose absorption and expression of intestinal sodium-dependent glucose transporter-1, glucose transporter-2, and sweet taste receptors in humans and mice. Prospective observational study in humans and mice. ICU and university-affiliated research laboratory. Human subjects were 12 critically ill patients and 12 healthy controls. In the laboratory 16-week-old mice were studied. Human subjects underwent endoscopy. Glucose (30 g) and 3-O-methylglucose (3 g), used to estimate glucose absorption, were infused intraduodenally over 30 minutes. Duodenal mucosa was biopsied before and after infusion. Mice were randomized to cecal ligation and puncture to model critical illness (n = 16) or sham laparotomy (control) (n = 8). At day 5, mice received glucose (100 mg) and 3-O-methylglucose (10 mg) infused intraduodenally prior to mucosal tissue collection. Quantitative polymerase chain reaction was performed to measure absolute (human) and relative levels of sodium-dependent glucose transporter-1, glucose transporter-2, and taste receptor type 1 member 2 (T1R2) transcripts. Blood samples were assayed for 3-O-methylglucose to estimate glucose absorption. Glucose absorption was three-fold lower in critically ill humans than in controls (p = 0.002) and reduced by a similar proportion in cecal ligation and puncture mice (p = 0.004). In critically ill patients, duodenal levels of sodium-dependent glucose transporter-1, glucose transporter-2, and T1R2 transcript were reduced 49% (p absorption, associated with reduced intestinal expression of glucose transporters (sodium-dependent glucose transporter-1 and glucose transporter-2) and sweet taste receptor transcripts

  2. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation.

    Directory of Open Access Journals (Sweden)

    Eva Latorre

    Full Text Available TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.

  3. Chemical, immunological and biological properties of peptides like vasoactive-intestinal-peptide and peptide-histidine-isoleucinamide extracted from the venom of two lizards (Heloderma horridum and Heloderma suspectum).

    Science.gov (United States)

    Vandermeers, A; Gourlet, P; Vandermeers-Piret, M C; Cauvin, A; De Neef, P; Rathe, J; Svoboda, M; Robberecht, P; Christophe, J

    1987-04-15

    Having previously isolated helodermin, the major peptide like vasoactive-intestinal-peptide and peptide-histidine-isoleucinamide, from the venom of the lizard Heloderma suspectum, we decided on a systematic exploration of all (VIP-PHI)-like peptides present in the venom of another lizard of the Helodermatidae family: Heloderma horridum. Six (VIP-PHI)-like peptides (PHH1 to 6) were purified to homogeneity from the venom of the lizard H. horridum with PHH3 and PHH4 representing two minor forms. All peptides cross-reacted in radioimmunoassays for helodermin and PHI but not for VIP. They yielded four fragments (T1 to T4) after trypsin digestion. T1, T2 and T3 showed the same retention time by reverse-phase HPLC and the same amino acid composition; the differences were confined to T4, the C-terminal sequence. PHH5 and PHH6 were found to be identical to synthetic helospectins I and II respectively. PHH1 and PHH3 probably resulted from a secondary modification of PHH5, while PHH2 and PHH4 derived from PHH6. Thus, the VIP-like peptides, previously called helospectins, are in fact typical of H. horridum venom. We confirmed that helodermin is the major (VIP-PHI)-like peptide of the venom of H. suspectum and observed its absence in H. horridum venom. Also, we found that positions 8 and 9 of helodermin are occupied by two Glu residues instead of two Gln as previously published. Helospectin-like material was also present in H. suspectum venom but in very small amount. In both venoms all VIP-like peptides were equally potent and efficient when tested for (a) their ability to occupy VIP as well as secretin receptors in rat pancreatic membranes and VIP receptors in rat liver membranes, and (b) the ensuing activation of adenylate cyclase in both membrane preparations.

  4. Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release

    International Nuclear Information System (INIS)

    Schwartz, Ann; Ort, Tatiana; Kajekar, Radhika; Hornby, Pamela J; Wade, Paul R

    2010-01-01

    The release of small intestinal hormones by constituents of ingested food, such as fatty acids, is integral to post-prandial responses that reduce food intake. Recent evidence suggests that small intestinal electrical stimulation reduces food intake, although the mechanism of action is debated. To test the hypothesis that intestinal stimulation directly alters hormone release locally we used isolated rat distal ileum and measured glucagon-like peptide-1 (GLP-1) released in the presence or absence of linoleic acid (LA) and electrical field stimulation (EFS). Intact segments were oriented longitudinally between bipolar stimulating electrodes in organ bath chambers containing modified Krebs–Ringers bicarbonate (KRB) buffer including protease inhibitors. Incubation in LA (3 mg ml −1 ) for 45 min increased GLP-1 concentration (21.9 ± 2.6 pM versus KRB buffer alone 3.6 ± 0.1 pM). Eleven electrical stimulation conditions were tested. In the presence of LA none of the stimulation conditions inhibited LA-evoked GLP-1 release, whereas two high frequency short pulse widths (14 V, 20 Hz, 5 ms and 14 V, 40 Hz, 5 ms) and one low frequency long pulse width (14 V, 0.4 Hz, 300 ms) EFS conditions enhanced LA-evoked GLP-1 release by >250%. These results are consistent with a local effect of intestinal electrical stimulation to enhance GLP-1 release in response to luminal nutrients in the intestines. Enhancing hormone release could improve the efficacy of intestinal electrical stimulation and provide a potential treatment for obesity and metabolic conditions

  5. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility

    International Nuclear Information System (INIS)

    Aw, Tak Yee

    2005-01-01

    The intestine is a primary site of nutrient absorption and a critical defense barrier against dietary-derived mutagens, carcinogens, and oxidants. Accumulation of oxidants like peroxidized lipids in the gut lumen can contribute to impairment of mucosal metabolic pathways, enterocyte dysfunction independent of cell injury, and development of gut pathologies, such as inflammation and cancer. Despite this recognition, we know little of the pathways of intestinal transport, metabolism, and luminal disposition of dietary peroxides in vivo or of the underlying mechanisms of lipid peroxide-induced genesis of intestinal disease processes. This chapter summarizes our current understanding of the determinants of intestinal absorption and metabolism of peroxidized lipids. I will review experimental evidence from our laboratory and others (Table 1) supporting the pivotal role that glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) play in mucosal transport and metabolism of lipid hydroperoxides and how reductant availability can be compromised under chronic stress such as hypoxia, and the influence of GSH on oxidative susceptibility, and redox contribution to genesis of gut disorders. The discussion is pertinent to understanding dietary lipid peroxides and GSH redox balance in intestinal physiology and pathophysiology and the significance of luminal GSH in preserving the integrity of the intestinal epithelium

  6. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    Science.gov (United States)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.

    Science.gov (United States)

    Uekawa, Atsushi; Yamanaka, Hitoki; Lieben, Liesbet; Kimira, Yoshifumi; Uehara, Mariko; Yamamoto, Yoko; Kato, Shigeaki; Ito, Kosei; Carmeliet, Geert; Masuyama, Ritsuko

    2018-01-05

    Extracellular low phosphate strongly enhances intestinal calcium absorption independently of active vitamin D [1,25(OH) 2 D 3 ] signaling, but the underlying mechanisms remain poorly characterized. To elucidate the phosphate-dependent regulation of calcium transport, we investigated part of the enteral environment that is involved in 1,25(OH) 2 D 3 -independent calcium absorption, which responds to dietary phosphate levels in mice that lack intestinal vitamin D receptor ( Vdr) activity. Impaired calcium absorption in intestinal Vdr-null mice was improved by dietary phosphate restriction. Accordingly, calcium transport in cultured intestinal epithelial cells was increased when the apical side was exposed to low phosphate levels (0.5 mM) compared with normal or high phosphate levels (1.0 or 5.0 mM, respectively). Mechanistically, low phosphate increased ATP in the apical side medium and allowed calcium entry into epithelial cells via the P2X7 purinoreceptor, which results in increased calcium transport. We found that luminal ATP was regulated by the release and degradation of ATP at the epithelium, and phosphate restriction increased ATP release from epithelial cells via connexin-43 hemichannels. Furthermore, ATP degradation by ectonucleotide pyrophosphatase-1 was reduced, which was caused by the reduction of the MAPK cascade. These findings indicate that luminal ATP metabolism regulates transcellular calcium transport in the intestine by an 1,25(OH) 2 D 3 -independent mechanism in response to dietary phosphate levels.-Uekawa, A., Yamanaka, H., Lieben, L., Kimira, Y., Uehara, M., Yamamoto, Y., Kato, S., Ito, K., Carmeliet, G., Masuyama, R. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.

  8. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia

    Directory of Open Access Journals (Sweden)

    Mani Venkatesh

    2013-01-01

    Full Text Available Abstract Background Intestinal derived endotoxin and the subsequent endotoxemia can be considered major predisposing factors for diseases such as atherosclerosis, sepsis, obesity and diabetes. Dietary fat has been shown to increase postprandial endotoxemia. Therefore, the aim of this study was to assess the effects of different dietary oils on intestinal endotoxin transport and postprandial endotoxemia using swine as a model. We hypothesized that oils rich in saturated fatty acids (SFA would augment, while oils rich in n-3 polyunsaturated fatty acids (PUFA would attenuate intestinal endotoxin transport and circulating concentrations. Methods Postprandial endotoxemia was measured in twenty four pigs following a porridge meal made with either water (Control, fish oil (FO, vegetable oil (VO or coconut oil (CO. Blood was collected at 0, 1, 2, 3 and 5 hours postprandial and measured for endotoxin. Furthermore, ex vivo ileum endotoxin transport was assessed using modified Ussing chambers and intestines were treated with either no oil or 12.5% (v/v VO, FO, cod liver oil (CLO, CO or olive oil (OO. Ex vivo mucosal to serosal endotoxin transport permeability (Papp was then measured by the addition of fluorescent labeled-lipopolysaccharide. Results Postprandial serum endotoxin concentrations were increased after a meal rich in saturated fatty acids and decreased with higher n-3 PUFA intake. Compared to the no oil control, fish oil and CLO which are rich in n-3 fatty acids reduced ex vivo endotoxin Papp by 50% (P  Conclusion Overall, these results indicate that saturated and n-3 PUFA differentially regulate intestinal epithelial endotoxin transport. This may be associated with fatty acid regulation of intestinal membrane lipid raft mediated permeability.

  9. Vitamin E Prevents Cold Wrap Restraint Stress-Induced Intestinal Fluid Transport Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Scott Burdick

    1994-01-01

    Full Text Available Psychological stress may alter gastrointestinal absorptive function by increasing the quantity of intestinal free radicals or by lowering endogenous intestinal free radical scavenging capacity. Vitamin E has been shown to be a potent endogenous antioxidant and free radical scavenger under both physiological and pathological conditions. The purpose of this study was to determine whether cold wrap restraint stress altered in vivo intestinal fluid absorption in rats, and whether vitamin E administration prior to the induction of cold wrap restraint stress could prevent such changes in intestinal secretion. Jejunal, ileal and colonic fluid and electrolyte transport rates were measured in vivo using an isolated loop technique. Cold wrap restraint stress reduced in vivo fluid absorption in the ileum and colon, but not in the jejunum. Administration of vitamin E prior to the cold wrap restraint stress procedure completely prevented this alteration of ileal and colonic fluid absorption.

  10. [Space-time organization of systems of membrane hydrolysis and transport in rat small intestine].

    Science.gov (United States)

    Loginov, G I

    1977-05-01

    Glucose transport by the concentration gradient with the incubation for 90 min in 0.2% glucose and soluble starch solutions was studied in Wistar rats in 5 segments of the small intestine by the "sac turned inside out" method. Serous fluid was completely replaced by a new portion of Ringer's solution every 15 or 30 min. Substrate load synchronized the enterocyte population and stabilized the transport systems. The changes of glucose absorption during the period of about an hour proved to differ in the 5 segments against the background of continuous and interrupted substrate load. These differences were due to the properties of the transported systems autocontrol and the reactivity level of the given enterocyte population. Areas with different reactivity were found to alternate along the intestine. Between the 8th and 16th hour (rats were sacrificed every 2 hours) starch glucose transport fell sharply in the proximal, and, to a lesser extent, in the middle segments. On the contrary, absorption between the 8th and the 12th hour was considerably intensified in the distal segments. The changes of the strach glucose transport during the period of about an hour along the intestine differed. The data obtained are discussed with consideration to the possible role of the undulating processes in the individual enterocyte population and in the small intestine as an integral system.

  11. Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD.

    Science.gov (United States)

    Bountra, Kiran; Hagelueken, Gregor; Choudhury, Hassanul G; Corradi, Valentina; El Omari, Kamel; Wagner, Armin; Mathavan, Indran; Zirah, Séverine; Yuan Wahlgren, Weixiao; Tieleman, D Peter; Schiemann, Olav; Rebuffat, Sylvie; Beis, Konstantinos

    2017-10-16

    Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self-immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward-occluded and a new nucleotide-bound state, high-energy outward-occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross-linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi-drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic-level build-up. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Effect of pomegranate juice pre-treatment on the transport of carbamazepine across rat intestine

    Directory of Open Access Journals (Sweden)

    D Adukondalu

    2010-12-01

    Full Text Available "n  "nBackground and the purpose of the study: Many drug substances along with a variety of naturally occurring dietary or herbal components interact with the CYP enzyme system.The present study was aimed to investigate the effect of pomegranate juice pre-treatment on the transport of carbamazepine across the rat intestine "nMethods: The transport of carbamazepine across different parts of rat intestine was studied by everted and non-everted sac methods. The control and pomegranate juice (10 ml Kg-1 for 7 days pre-treated rats were sacrificed and isolated the intestine. The sacs of intestine were prepared, treated with carbamazepine solution and then placed in dulbeccos buffer. Samples were collected periodically and the drug content was estimated using HPLC. Results and conclusion: The results show that there was a significant (p<0.05 difference in the transport of carbamazepine from the intestinal sacs of pretreated with pomegranate juice and control. It seems that pomegranatejuice might have induced CYP3A4enzymes and hence drug is extensively metabolized.

  13. Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A

    Science.gov (United States)

    Rauhavirta, T; Qiao, S-W; Jiang, Z; Myrsky, E; Loponen, J; Korponay-Szabó, I R; Salovaara, H; Garcia-Horsman, J A; Venäläinen, J; Männistö, P T; Collighan, R; Mongeot, A; Griffin, M; Mäki, M; Kaukinen, K; Lindfors, K

    2011-01-01

    In coeliac disease, the intake of dietary gluten induces small-bowel mucosal damage and the production of immunoglobulin (Ig)A class autoantibodies against transglutaminase 2 (TG2). We examined the effect of coeliac patient IgA on the apical-to-basal passage of gluten-derived gliadin peptides p31–43 and p57–68 in intestinal epithelial cells. We demonstrate that coeliac IgA enhances the passage of gliadin peptides, which could be abolished by inhibition of TG2 enzymatic activity. Moreover, we also found that both the apical and the basal cell culture media containing the immunogenic gliadin peptides were able to induce the proliferation of deamidation-dependent coeliac patient-derived T cells even in the absence of exogenous TG2. Our results suggest that coeliac patient IgA could play a role in the transepithelial passage of gliadin peptides, a process during which they might be deamidated. PMID:21235541

  14. Ontogenesis of Peptide Transport and Morphological Changes in the Ovine Gastrointestinal Tract

    OpenAIRE

    Poole, Catherine Ann

    2001-01-01

    Nutrient absorption is important in all stages of life. As the diet of an animal changes from birth on, morphological and biochemical adaptation can be anticipated in order to accommodate changing demands. The main focus of the present study was to examine the relationship between age and diet on the potential for peptide transport via PepT1 in the gastrointestinal tract of lambs and to relate changes of peptide transport capability to morphological changes. A 2x4 factorial arrangement of ...

  15. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    Science.gov (United States)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  16. Chemical form of selenium affects its uptake and transport in the human intestinal cell model, Caco-2

    Science.gov (United States)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources of...

  17. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine.

    Directory of Open Access Journals (Sweden)

    Kai Qiu

    Full Text Available Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24, nitrogen balance (n = 6, and the expression of small intestinal AA and peptide transporters (n = 6 were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1 was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption.

  18. Antioxidative, DPP-IV and ACE inhibiting peptides from fish protein hydrolysed with intestinal proteases

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Stagsted, Jan; Nielsen, Henrik Hauch

    and pancreatin + mucosa hydrolysates. No DH was obtained for tissues hydrolysed with only intestinal mucosa extract. Preliminary results showed antioxidant activity and intestinal DPP-IV and ACE inhibiting activity in 10 kDa fraction from both belly flap and skin hydrolysates but with a higher antioxidative...... of secondary marine products. The approach in this study is to hydrolyse skin and belly flap tissue from Salmon with the use of mammalian digestive proteases from pancreas and intestinal mucosa and test hydrolysates for antioxidative capacity, intestinal DPP-IV and angiotensin converting enzyme (ACE......) inhibiting properties. 10kDa dialysis bags containing 10ml water were added to homogenized fish tissues, which were subsequently hydrolysed for 24 hours at 37˚C and pH 8 with intestinal mucosa extract and/or pancreatin solution from pig. Dialysis bags were then removed and content were analyzed for free...

  19. Perinatal upregulation of intestinal transport of carnitine (C) in newborn pigs

    International Nuclear Information System (INIS)

    Li, B.U.K.; Murray, R.D.; Heitlinger, L.A.; McClung, H.J.; Hughes, A.M.; O'Dorisio, T.M.; Sloan, H.R.

    1990-01-01

    Since C facilitates the perinatal transition from carbohydrate to lipid-derived energy, the authors examined the contribution of intestinal transport of dietary C to this process by determining [C]'s in sow's milk, pig jejunum and liver, and C flux across the jejunum (J m-s ) as a function of postnatal age. The authors measured portal venous glucagon [G] and insulin [l] as potential regulatory signals and attempted to alter intestinal transport of C by infusing G. Pigs at days 1-7 (NB-newborn), 14-16 (SU-suckling) and 33-35 (WN-weanling) were studied. [C]'s in sow milk, piglet jejunum, and liver were determined. Fluxes were measured in an Ussing chamber and in an in situ recirculating jejunal perfusion. The effect of an IV infusion of G on [ 3 H]C absorption was evaluated in a single animal; an adjacent jejunal segment received saline. Sow's milk and liver [C]'s, and jejunal C transport were highest following birth and declined towards weaning. Plasma [G] and the G:I ratio demonstrated a parallel temporal pattern. The G-stimulated jejunal segment removed 53% of the C and the non-stimulated control segment, 8%. It was concluded that during the perinatal metabolic transition, enhanced intestinal nutrient assimilation promotes the transfer of dietary C to the liver where it could facilitate fatty acid oxidation. This pattern of upregulated intestinal transport immediately after birth may be mediated by pancreatic G and I secretion

  20. Glucose Transport into Everted Sacs of the Small Intestine of Mice

    Science.gov (United States)

    Hamilton, Kirk L.; Butt, A. Grant

    2013-01-01

    The Na[superscript +]-glucose cotransporter is a key transport protein that is responsible for absorbing Na[superscript +] and glucose from the luminal contents of the small intestine and reabsorption by the proximal straight tubule of the nephron. Robert K. Crane originally described the cellular model of absorption of Na[superscript +] and…

  1. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Science.gov (United States)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  2. Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients

    NARCIS (Netherlands)

    Brand, W.; Schutte, M.E.; Williamson, G.; Zanden, J.J. van; Cnubben, N.H.P.; Groten, J.P.; Bladeren, P.J. van; Rietjens, I.M.C.M.

    2006-01-01

    The transcellular transport of ingested food ingredients across the intestinal epithelial barrier is an important factor determining bioavailability upon oral intake. This transcellular transport of many chemicals, food ingredients, drugs or toxic compounds over the intestinal epithelium can be

  3. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  4. Tissue levels and post-prandial secretion of the intestinal growth factor, glucagon-like peptide-2, in controls and inflammatory bowel disease

    DEFF Research Database (Denmark)

    Schmidt, Peter T; Ljung, Tryggve; Hartmann, Bolette

    2005-01-01

    BACKGROUND AND AIM: Glucagon-like peptide-2 (GLP-2) and peptide YY (PYY) are produced in endocrine L-cells of the intestine and secreted in response to food intake. GLP-2 has a trophic effect on the intestinal epithelium, whereas PYY has pro-absorptive effects. It can be speculated that...... the fasting plasma levels nor the meal responses of GLP-2 and PYY differed between controls and IBD patients. CONCLUSION: The similar responses of GLP-2 and PYY in patients and controls do not support the suggestion that L-cell secretion is altered in IBD. The decreased tissue PYY concentrations may...

  5. Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua

    Directory of Open Access Journals (Sweden)

    Marian Yong-An Hu

    2016-06-01

    Full Text Available CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for four weeks to three CO2 levels (550, 1,200 and 2,200 μatm covering present and near-future natural variability, at optimum (10°C and summer maximum temperature (18°C, respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA, Na+/H+-exchanger 3 (NHE3, Na+/HCO3- cotransporter (NBC1, pendrin-like Cl-/HCO3- exchanger (SLC26a6, V-type H+-ATPase subunit a (VHA and Cl- channel 3 (CLC3 in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3- secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3- levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  6. Phenolics from Whole Grain Oat Products as Modifiers of Starch Digestion and Intestinal Glucose Transport.

    Science.gov (United States)

    Li, Min; Koecher, Katie; Hansen, Laura; Ferruzzi, Mario G

    2017-08-16

    Four oat varieties and three product forms (porridge, cereal, and snack bar) were assessed to determine the impact of oat phenolics on starch digestibility and intestinal glucose transport. α-Amylase activity was enhanced by 20 GAE μM (gallic acid equivalent) of phenolics extracted from oat (96.7-118%, p transport of d-glucose-1,2,3,4,5,6,6-d 7 by Caco-2 monolayers over 60 min. Oat foods were then subjected to a coupled in vitro digestion/Caco-2 intestinal cell model to determine relevance to whole food systems. Digestive release of glucose was similar among products; however, glucose transport was significantly reduced from digesta of GMI 423 porridge and puffed cereal by 34% ± 12% and 20% ± 10% (p < 0.05) at 60 min. Results suggest phenolics might be a factor modulating glycemic response of oat products.

  7. Renal and intestinal hexose transport in familial glucose-galactose malabsorption

    Science.gov (United States)

    Elsas, Louis J.; Hillman, Richard E.; Patterson, Joseph H.; Rosenberg, Leon E.

    1970-01-01

    Glucose transport by jejunal mucosa in vitro and kidney in vivo was investigated in a 3 yr old patient with congenital glucose-galactose malabsorption, her family, and 16 normal volunteers. Glucose transport by normal human jejunal mucosa was concentrative, saturable, sodium and energy dependent, and exhibited competitive inhibition. Biopsy specimens from six normal controls and an asymptomatic 5 yr old brother of the proband accumulated glucose to concentrations 16 times that in the incubation medium. The proband's mucosa was unable to concentrate glucose throughout a 60 min incubation period. Both of her parents and a half sister demonstrated impaired glucose transport. Their values fell between normal and those of the proband. Influx of glucose was impaired but efflux of glucose from the mucosa of these three heterozygotes was identical with that in three normal controls. A kinetic analysis indicated a reduced capacity (Vmax), but a normal affinity (Km) for glucose transport by their intestinal mucosa. All subjects accumulated fructose similarly. Renal glucose transport was investigated using renal glucose titration techniques. A partial defect in renal glucose reabsorption was found in the proband. Her brother's titration curve was similar to that of seven normal volunteers. We conclude that familial glucose-galactose malabsorption is inherited as an autosomal recessive trait, that heterozygotes for this disorder are detectable and demonstrate a reduced capacity for glucose transport, and that absent intestinal glucose transport is accompanied by partial impairment of renal glucose transport. Images PMID:5415683

  8. Intestinal Transport Characteristics and Metabolism of C-Glucosyl Dihydrochalcone, Aspalathin

    Directory of Open Access Journals (Sweden)

    Sandra Bowles

    2017-03-01

    Full Text Available Insight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer tested at 1–150 µM had an apparent rate of permeability (Papp typical of poorly absorbed compounds (1.73 × 10−6 cm/s. Major glucose transporters, sodium glucose linked transporter 1 (SGLT1 and glucose transporter 2 (GLUT2, and efflux protein (P-glycoprotein, PgP (1.84 × 10−6 cm/s; efflux ratio: 1.1 were excluded as primary transporters, since the Papp of aspalathin was not affected by the presence of specific inhibitors. The Papp of aspalathin was also not affected by constituents of aspalathin-enriched rooibos extracts, but was affected by high glucose concentration (20.5 mM, which decreased the Papp value to 2.9 × 10−7 cm/s. Aspalathin metabolites (sulphated, glucuronidated and methylated were found in mouse urine, but not in blood, following an oral dose of 50 mg/kg body weight of the pure compound. Sulphates were the predominant metabolites. These findings suggest that aspalathin is absorbed and metabolised in mice to mostly sulphate conjugates detected in urine. Mechanistically, we showed that aspalathin is not actively transported by the glucose transporters, but presumably passes the monolayer paracellularly.

  9. Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir.

    Science.gov (United States)

    Gourdon, Betty; Chemin, Caroline; Moreau, Amélie; Arnauld, Thomas; Baumy, Philippe; Cisternino, Salvatore; Péan, Jean-Manuel; Declèves, Xavier

    2017-08-30

    Targeting intestinal di- and tri-peptide transporter PepT1 with prodrugs is a successful strategy to improve oral drug bioavailability, as demonstrated with valacyclovir, a prodrug of acyclovir. The aim of this new drug delivery strategy is to over-concentrate a poorly absorbed drug on the intestinal membrane surface by targeting PepT1 with functionalized polymer nanoparticles. In the present study, poly(lactic acid)-poly(ethylene glycol)-ligand (PLA-PEG-ligand) nanoparticles were obtained by nanoprecipitation. A factorial experimental design allowed us to identify size-influent parameters and to obtain optimized ≈30nm nanoparticles. Valine, Glycylsarcosine, Valine-Glycine, and Tyrosine-Valine were chemically linked to PLA-PEG. In Caco-2 cell monolayer model, competition between functionalized nanoparticles and [ 3 H]Glycylsarcosine, a strong substrate of PepT1, reduced [ 3 H]Glycylsarcosine transport from 22 to 46%. Acyclovir was encapsulated with a drug load of ≈10% in valine-functionalized nanoparticles, resulting in a 2.7-fold increase in permeability as compared to the free drug. An in vivo pharmacokinetic study in mice compared oral absorption of acyclovir after administration of 25mg/kg of valacyclovir, free or encapsulated acyclovir in functionalized nanoparticles. Acyclovir encapsulation did not statistically modify AUC or C max , but increased t 1/2 and MRT 1.3-fold as compared to free acyclovir. This new strategy is promising for poorly absorbed drugs by oral administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Intestinal phosphate absorption is mediated by multiple transport systems in rats.

    Science.gov (United States)

    Candeal, Eduardo; Caldas, Yupanqui A; Guillén, Natalia; Levi, Moshe; Sorribas, Víctor

    2017-04-01

    Apical inorganic phosphate (P i ) transport in the small intestine seems to be mainly mediated by the sodium/P i cotransporter NaPi2b. To verify this role, we have studied the combined effects of pH, phosphonoformate, and P i deprivation on intestinal P i transport. Rats were fed, ad libitum, three fodders containing 1.2, 0.6, or 0.1% P i for 1, 5, or 10 days. P i deprivation (0.1%) increased both sodium-activated and sodium-independent P i transport in brush-border membrane vesicles from the duodenum and jejunum for all three times. Alkaline pH inhibited P i transport, despite the increasing concentration of [Formula: see text] (NaPi2b substrate), whereas acidity increased transport when the concentration of the PiT1/PiT2 substrate, [Formula: see text], was at its highest. The effect of P i deprivation was maximal at acid pH, but both basal and upregulated transport were inhibited (70%) with phosphonoformate, an inhibitor of NaPi2b. PiT2 and NaPi2b protein abundance increased after 24 h of P i deprivation in the duodenum, jejunum, and ileum, whereas PiT1 required 5-10 days in the duodenum and jejunum. Therefore, whereas transporter expressions are partially correlated with P i transport adaptation, the pH effect precludes NaPi2b, and phosphonoformic acid precludes PiT1 and PiT2 as the main transporters. Transport and transporter expression were also inconsistent when feeding was limited to 4 h daily, because the 1.2% P i diet paradoxically increased P i transport in the duodenum and jejunum, but NaPi2b and PiT1 expressions only increased with the 0.1% diet. These findings suggest the presence of a major transporter that carries [Formula: see text] and is inhibited by phosphonoformate. NEW & NOTEWORTHY The combined effects of dietary inorganic phosphate (P i ) content, pH, and phosphonoformate inhibition suggest that the resulting apical P i transport in the small intestine cannot be fully explained by the presence of NaPi2b, PiT1, or PiT2. We provide evidence of

  11. Carrier-mediated system for transport of biotin in rat intestine in vitro

    International Nuclear Information System (INIS)

    Said, H.M.; Redha, R.

    1987-01-01

    Transport of biotin was examined in rat intestine using the everted sac technique. Transport of 0.1 μM biotin was linear with time for at least 30 min of incubation and occurred at a rate 3.7 pmol g initial tissue wet wt -1 min -1 . Transport of biotin was higher in the jejunum than the ileum and was minimum in the colon (85 +/- 6, 36 +/- 6, and 2.8 +/- 0.6 pmol x g initial tissue wet wt -1 x 25 min -1 , respectively). In the jejunum, transport of biotin was saturable at low concentrations but linear at higher concentrations. The transport of low concentrations of biotin was 1) inhibited by structural analogues (desthiobiotin, biotin methyl ester, diaminobiotin, and biocytin), 2) Na + dependent, 3) energy dependent, 4) temperature dependent, and 5) proceeded against a concentration gradient in the serosal compartment. No metabolic alteration occurs to the biotin molecule during transport. This study demonstrates that biotin transport in rat intestine occurs by a carrier-mediated process at low concentrations and by simple diffusion at high concentrations. Furthermore, the carrier-mediated process is Na + , energy, and temperature dependent

  12. Stereospecific transport of Tyr-MIF-1 across the blood-brain barrier by peptide transport system-1

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W.A.; Kastin, A.J.; Michals, E.A.; Barrera, C.M. (Veterans Affairs Medical Center, New Orleans, LA (USA))

    1990-10-01

    Previous studies have suggested that peptide transport system-1 (PTS-1), the saturable system that transports Tyr-MIF-1, the enkephalins, and related peptides out of the central nervous system (CNS), exhibits stereospecificity. In the present studies, we showed that {sup 125}I-L-Tyr-MIF-1, but not {sup 131}I-D-Tyr-MIF-1, was cleared from the CNS more rapidly than could be accounted for by nonspecific mechanisms. Such clearance was inhibited by a 1.0 nmol dose of L-Tyr-MIF-1, but not by D-Tyr-MIF-1. Neither L- nor D-Tyr-MIF-1 altered the much lower clearance of I-D-Tyr-MIF-1 from the brain. Radioactivity recovered from the vascular space after the injection of {sup 125}I-Tyr-MIF-1 into the lateral ventricle of the brain eluted by HPLC primarily as intact peptide, demonstrating that most of the Tyr-MIF-1 was not degraded during transport. By contrast, the nonsaturable unidirectional influx of Tyr-MIF-1 into the CNS did not distinguish between the isomers. These studies confirm and extend the observations that Tyr-MIF-1 is transported out of the CNS by a saturable, stereospecific transport system as an intact peptide while the influx into the CNS is by a nonsaturable mechanism that does not distinguish between the isomers.

  13. The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine.

    Science.gov (United States)

    Kisser, Beatrice; Mangelsen, Eva; Wingolf, Caroline; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Tannergren, Christer; Oswald, Stefan; Keiser, Markus

    2017-06-22

    The Ussing chamber is an old but still powerful technique originally designed to study the vectorial transport of ions through frog skin. This technique is also used to investigate the transport of chemical agents through the intestinal barrier as well as drug metabolism in enterocytes, both of which are key determinants for the bioavailability of orally administered drugs. More contemporary model systems, such as Caco-2 cell monolayers or stably transfected cells, are more limited in their use compared to the Ussing chamber because of differences in expression rates of transporter proteins and/or metabolizing enzymes. While there are limitations to the Ussing chamber assay, the use of human intestinal tissue remains the best laboratory test for characterizing the transport and metabolism of compounds following oral administration. Detailed in this unit is a step-by-step protocol for preparing human intestinal tissue, for designing Ussing chamber experiments, and for analyzing and interpreting the findings. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    Science.gov (United States)

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  15. Transport phenomena of microbial flora in the small intestine with peristalsis.

    Science.gov (United States)

    Ishikawa, T; Sato, T; Mohit, G; Imai, Y; Yamaguchi, T

    2011-06-21

    The gastrointestinal tract of humans is colonized by indigenous prokaryotic and eukaryotic microbial cells that form a complex ecological system called microbial flora. Although the microbial flora has diverse functions, its homeostasis inside the gastrointestinal tract is still largely unknown. Therefore, creating a model for investigating microbial flora in the gastrointestinal tract is important. In this study, we developed a novel numerical model to explore the transport phenomena of microbial flora in the small intestine. By simultaneously solving the flow field generated by peristalsis, the concentrations of oxygen and nutrient, and the densities of moderate anaerobes and aerobes, the effects of fluid mechanics on the transport phenomena of microbial flora are discussed. The results clearly illustrated that fluid mechanics have considerable influence not only on the bacterial population, but also on the concentration distributions of oxygen and nutrient. Especially, the flow field enhances the radial variation of the concentration fields. We also show scaling arguments for bacterial growth and oxygen consumption, which capture the main features of the results. Additionally, we investigated the transport phenomena of microbial flora in a long tube with 40 constrictions. The results showed a high growth rate of aerobes in the upstream side and a high growth rate of anaerobes in the downstream side, which qualitatively agrees with experimental observations of human intestines. These new findings provide the fundamental basis for a better understanding of the transport phenomena of microbial flora in the intestine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Functional implications and ubiquitin-dependent degradation of the peptide transporter Ptr2 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawai, Ken; Moriya, Atsuto; Uemura, Satoshi; Abe, Fumiyoshi

    2014-11-01

    The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes.

    Science.gov (United States)

    Schulze, W; Frommer, W B; Ward, J M

    1999-03-01

    Insect capture and digestion contribute substantially to the nitrogen budget of carnivorous plants. In Nepenthes, insect-derived nitrogenous compounds are imported from the pitcher fluid and transported throughout the plant via the vascular tissue to support growth. Import and distribution of nutrients may require transmembrane nitrogen transporters. Representatives of three classes of genes encoding transporters for the nitrogenous compounds ammonium, amino acids and peptides were identified in Nepenthes pitchers. The expression at the cellular level of an ammonium transporter gene, three amino acid transporter genes, and one peptide transporter gene were investigated in the insect trapping organs of Nepenthes. Expression of the ammonium transporter gene NaAMT1 was detected in the head cells of digestive glands in the lower part of the pitcher where NaAMT1 may function in ammonium uptake from the pitcher fluid. One amino acid transporter gene, NaAAP1, was expressed in bundle sheath cells surrounding the vascular tissue. To understand the locations where transmembrane transport could be required within the pitcher, symplasmic and apoplasmic continuity was probed using fluorescent dyes. Symplasmic connections were not found between cortical cells and vascular bundles. Therefore, the amino acid transporter encoded by NaAAP1 may be involved in transport of amino acids into the vascular tissue. In contrast, expression of the peptide transporter gene NaNTR1 was detected in phloem cells of the vascular tissue within pitchers. NaNTR1 may function in the export of nitrogen from the pitcher by loading peptides into the phloem.

  18. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    DEFF Research Database (Denmark)

    Vegge, Andreas; Thymann, Thomas; Lund, Pernille

    2013-01-01

    intestinal resection in preterm pigs. Preterm pigs were fed enterally for 48 h before undergoing resection of 50% of the small intestine and establishment of a jejunostomy. Following resection, pigs were maintained on total parenteral nutrition (TPN) without (SBS, n = 8) or with GLP-2 treatment (3.5 μg...... increased the relative absorption of wet weight (46 vs. 22%), energy (79 vs. 64%), and all macronutrients (all parameters P ... and protein contents and increased total protein synthesis rate in SBS+GLP-2 vs. SBS pigs (+100%, P absorption of fluid and macronutrients. GLP-2 treatment may...

  19. Guanylin peptides: cyclic GMP signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Forte L.R.

    1999-01-01

    Full Text Available Guanylate cyclases (GC serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin, two disulfides (guanylin and uroguanylin and three disulfides (E. coli stable toxin, ST. The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.

  20. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    Science.gov (United States)

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  1. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation

    DEFF Research Database (Denmark)

    Bøgh, Marie; García-Díaz, María; Müllertz, Anette

    2015-01-01

    The mucus lining of the gastrointestinal tract epithelium is recognized as a barrier to efficient oral drug delivery. Recently, a new in vitro model for assessment of drug permeation across intestinal mucosa was established by applying a biosimilar mucus matrix to the surface of Caco-2 cell...

  2. Modulation of intestinal glucose transport in response to reduced nitrogen supply in young goats.

    Science.gov (United States)

    Muscher-Banse, A S; Piechotta, M; Schröder, B; Breves, G

    2012-12-01

    The reduction of dietary protein is a common approach in ruminants to decrease the excretion of N because ruminants are able to recycle N efficiently by the rumino-hepatic circulation. In nonruminant species an impact on other metabolic pathways such as glucose metabolism was observed when dietary protein intake was reduced. However, an impact of dietary N reduction in goats on glucose metabolism especially on intestinal glucose absorption is questionable because ruminants have very efficient endogenous recycling mechanisms. Therefore, the aim of the present study was to characterize the intestinal absorption of glucose in growing goats kept on different N supply under isoenergetic conditions. The different CP concentrations (20, 16, 10, 9, and 7% CP) of the experimental diets were adjusted by adding urea to the rations. Intestinal flux rates of glucose were determined by Ussing chamber experiments. For a more mechanistic approach, the Na(+)-dependent uptake of glucose into intestinal brush-border membrane vesicles (BBMV) and the expression patterns of the Na(+)-dependent glucose transporter SGLT1 and the glucose transporter 2 (GLUT2) were determined. Reduced N intake resulted in a decrease of plasma glucose (P < 0.001) and insulin (P = 0.004) concentrations whereas the intestinal flux rates of glucose were elevated (P < 0.001), which were inhibited by phlorizin. However, the uptake of glucose into intestinal BBMV was not changed whereas the expression of SGLT1 on mRNA (P < 0.05) and protein abundance (P = 0.03) was decreased in response to a reduced N intake. The mRNA expression of GLUT2 was not affected. From these data, it can be concluded that the intestinal absorption of glucose was modulated by changes in dietary N intake. It is suggested that intracellular metabolism or basolateral transport systems or both might be activated during this feeding regimen because the apical located SGLT1 might not be involved. Therefore, an impact of dietary N reduction on

  3. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    Science.gov (United States)

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In vivo and in vitro evaluations of intestinal gabapentin absorption: effect of dose and inhibitors on carrier-mediated transport.

    Science.gov (United States)

    Larsen, Malte Selch; Frølund, Sidsel; Nøhr, Martha Kampp; Nielsen, Carsten Uhd; Garmer, Mats; Kreilgaard, Mads; Holm, René

    2015-03-01

    Gabapentin exhibits saturable absorption kinetics, however, it remains unclear which transporters that are involved in the intestinal transport of gabapentin. Thus, the aim of the current study was to explore the mechanistic influence of transporters on the intestinal absorption of gabapentin by both in vivo and in vitro investigations Pharmacokinetic parameters were determined following a range of intravenous (5-100 mg/kg) and oral doses (10-200 mg/kg) in rats. Transepithelial transport (50 μM-50 mM) and apical uptake of gabapentin (0.01-50 mM) were investigated in Caco-2 cells. The effect of co-application of the LAT-inhibitor, BCH, and the b(0,+)-substrate, L-lysine, on intestinal transport of gabapentin was evaluated in vivo and in vitro. Gabapentin showed dose-dependent oral absorption kinetics and dose-independent disposition kinetics. Co-application of BCH inhibited intestinal absorption in vivo and apical uptake in vitro, whereas no effect was observed following co-application of L-lysine. The present study shows for the first time that BCH was capable of inhibiting intestinal absorption of gabapentin in vivo. Furthermore, in Caco-2 cell experiments BCH inhibited apical uptake of gabapentin. These findings may imply that a BCH-sensitive transport-system was involved in the apical and possibly the basolateral transport of gabapentin across the intestinal wall.

  5. In vitro investigation of intestinal transport mechanism of silicon, supplied as orthosilicic acid-vanillin complex.

    Science.gov (United States)

    Sergent, Thérèse; Croizet, Karine; Schneider, Yves-Jacques

    2017-02-01

    Silicon (Si) is one of the most abundant trace elements in the body. Although pharmacokinetics data described its absorption from the diet and its body excretion, the mechanisms involved in the uptake and transport of Si across the gut wall have not been established. Caco-2 cells were used as a well-accepted in vitro model of the human intestinal epithelium to investigate the transport, across the intestinal barrier in both the absorption and excretion directions, of Si supplied as orthosilicic acid stabilized by vanillin complex (OSA-VC). The transport of this species was found proportional to the initial concentration and to the duration of incubation, with absorption and excretion mean rates similar to those of Lucifer yellow, a marker of paracellular diffusion, and increasing in the presence of EGTA, a chelator of divalents cations including calcium. A cellular accumulation of Si, polarized from the apical side of cells, was furthermore detected. These results provide evidence that Si, ingested as a food supplement containing OSA-VC, crosses the intestinal mucosa by passive diffusion via the paracellular pathway through the intercellular tight junctions and accumulates intracellularly, probably by an uptake mechanism of facilitated diffusion. This study can help to further understand the kinetic of absorption of Si. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. F-18 Labeled Vasoactive Intestinal Peptide Analogue in the PET Imaging of Colon Carcinoma in Nude Mice

    Directory of Open Access Journals (Sweden)

    Dengfeng Cheng

    2013-01-01

    Full Text Available As large amount of vasoactive intestinal peptide (VIP receptors are expressed in various tumors and VIP-related diseases, radiolabeled VIP provides a potential PET imaging agent for VIP receptor. However, structural modification of VIP is required before being radiolabeled and used for VIP receptor imaging due to its poor in vivo stability. As a VIP analogue, [R8, 15, 21, L17]-VIP exhibited improved stability and receptor specificity in preliminary studies. In this study, F-18 labeled [R8,15,21, L17]-VIP was produced with the radiochemical yield being as high as 33.6%±3% (decay-for-corrected, n=5 achieved within 100 min, a specific activity of 255 GBq/μmol, and a radiochemical purity as high as 99% as characterized by radioactive HPLC, TLC, and SDS-Page radioautography. A biodistribution study in normal mice also demonstrated fast elimination of F-18 labeled [R8,15,21, L17]-VIP in the blood, liver, and gastrointestinal tracts. A further micro-PET imaging study in C26 colon carcinoma bearing mice confirmed the high tumor specificity, with the tumor/muscle radioactivity uptake ratio being as high as 3.03 at 60 min following injection, and no apparent radioactivity concentration in the intestinal tracts. In addition, blocking experiment and Western Blot test further confirmed its potential in PET imaging of VIP receptor-positive tumor.

  7. Mechanisms of calcium transport in small intestine. Overall review of the contract, September 1, 1972--March 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    DeLuca, H.F.

    1976-01-01

    Progress is reported in the following areas of research: role of high molecular weight protein in calcium transport in vitamin D deficient chicks; subcellular localization of 1,25-(OH)/sub 2/D/sub 3/; receptor proteins for 1,25-(OH)/sub 2/D/sub 3/; effects of high calcium diet, strontium diet, EHDP, and parathyroidectomy on intestinal calcium transport in chicks; effects of analogs of 1,25-(OH)/sub 2/D/sub 3/ on intestinal calcium transport; discrimination by chicks against vitamin D/sub 2/ compounds by metabolism; effects of extract of Solanum malacoxylan on intestinal calcium absorption in nephrectomized rats; and role of vitamin D in phosphate transport reactions in the intestine. (HLW)

  8. Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium

    DEFF Research Database (Denmark)

    Xia, Dengning; He, Yuan; Li, Qiuxia

    2018-01-01

    Pure drug nanoparticles (NPs) represent a promising formulation for improved drug solubility and controlled dissolution velocity. However, limited absorption by the intestinal epithelium remains challenge to their clinical application, and little is known about how these NPs within the cells...... are transported. To improve cellular uptake and transport of pure nanodrug in cells, here, a lipid covered saquinavir (SQV) pure drug NP (Lipo@nanodrug) was designed by modifying a pure SQV NP (nanodrug) with a phospholipid bilayer. We studied their endocytosis, intracellular trafficking mechanism using Caco-2....... The findings provide a new platform for oral delivery of poorly water-soluble drugs....

  9. Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme

    Science.gov (United States)

    Bai, J. P.; Hu, M.; Subramanian, P.; Mosberg, H. I.; Amidon, G. L.

    1992-01-01

    The feasibility of targeting prolidase as a peptide prodrug-converting enzyme has been examined. The enzymatic hydrolysis by prolidase of substrates for the peptide transporter L-alpha-methyldopa-pro and several dipeptide analogues without an N-terminal alpha-amino group (phenylpropionylproline, phenylacetylproline, N-benzoylproline, and N-acetylproline) was investigated. The Michaelis-Menten parameters Km and Vmax for L-alpha-methyldopa-pro are 0.09 +/- 0.02 mM and 3.98 +/- 0.25 mumol/min/mg protein, respectively. However, no hydrolysis of the dipeptide analogues without an N-terminal alpha-amino group is observed, suggesting that an N-terminal alpha-amino group is required for prolidase activity. These results demonstrate that prolidase may serve as a prodrug-converting enzyme for the dipeptide-type prodrugs, utilizing the peptide carrier for transport of prodrugs into the mucosal cells and prolidase, a cytosolic enzyme, to release the drug. However, a free alpha-amino group appears to be necessary for prolidase hydrolysis.

  10. Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia: An autoradiographic and immunohistochemical study

    International Nuclear Information System (INIS)

    Hof, P.R.; Dietl, M.M.; Charnay, Y.; Martin, J.L.; Bouras, C.; Palacios, J.M.; Magistretti, P.J.

    1991-01-01

    The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves

  11. Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine.

    Science.gov (United States)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkaer

    2002-07-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral flows of water across the epithelium with recirculation of the diffusible ions maintained by a 1Na+-1K+-2Cl- cotransporter in the plasma membrane facing the serosal compartment. With intracellular non-diffusible anions and compliant plasma membranes, the model describes the dependence on membrane permeabilities and pump constants of fluxes of water and electrolytes, volumes and ion concentrations of cell and lateral intercellular space (lis), and membrane potentials and conductances. Simulating physiological bioelectrical features together with cellular and paracellular fluxes of the sodium ion, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions. The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward uphill water flux, or an electroneutral Na+-K+-2Cl- cotransporter.

  12. Interaction of coenzyme Q10 with the intestinal drug transporter P-glycoprotein.

    Science.gov (United States)

    Itagaki, Shirou; Ochiai, Akiko; Kobayashi, Masaki; Sugawara, Mitsuru; Hirano, Takeshi; Iseki, Ken

    2008-08-27

    In clinical trials, patients usually take many kinds of drugs at the same time. Thus, drug-drug interactions can often directly affect the therapeutic safety and efficacy of many drugs. Oral delivery is the most desirable means of drug administration. Changes in the activity of drug transporters may substantially influence the absorption of administered drugs from the intestine. However, there have been a few studies on food-drug interactions involving transporters. It is important to be aware of the potential of food-drug interactions and to act in order to prevent undesirable and harmful clinical consequences. Coenzyme Q10 (CoQ10) is very widely consumed by humans as a food supplement because of its recognition by the public as an important nutrient in supporting human health. Since intestinal efflux transporter P-glycoprotein (P-gp) is one of the major factors in drug-drug interactions, we focused on this transporter. We report here for the first time that CoQ10, which is widely used as a food supplement, affects the transport activity of P-gp.

  13. Transepithelial transport of putrescine across monolayers of the human intestinal epithelial cell line, Caco-2

    Science.gov (United States)

    Milovic, Vladan; Turchanowa, Lyudmila; Stein, Jürgen; Caspary, Wolfgang F.

    2001-01-01

    AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The transepithelial transport and the cellular accumulation of putrescine was measured using Caco-2 cell monolayers grown on permeable filters. RESULTS: Transepithelial transport of putrescine in physiological concentrations ( > 0.5 mM) from the apical to basolateral side was linear. Intracellular accumulation of putrescine was higher in confluent than in fully differentiated Caco-2 cells, but still negligible (less than 0.5%) of the overall transport across the monolayers in apical to basolateral direction.EGF enhanced putrescine accumulation in Caco-2 cells by four fold, as well as putrescine conversion to spermidine and spermine by enhancing the activity of S adenosylmethionine decarboxylase. However, EGF did not have any significant influence on putrescine flux across the Caco- 2 cell monolayers. Excretion of putrescine from Caco-2 cells into the basolateral medium did not exceed 50 picomoles, while putrescine passive flux from the apical to the basolateral chamber, contributed hundreds of micromoles polyamines to the basolateral chamber. CONCLUSION: Transepithelial transport of putrescine across Caco-2 cell monolayers occurs in passive diffusion, and is not influenced when epithelial cells are stimulated to proliferate by a potent mitogen such as EGF. PMID:11819759

  14. Effects of colchicine on the intestinal transport of endogenous lipid. Ultrastructural, biochemical, and radiochemical studies in fasting rats

    International Nuclear Information System (INIS)

    Pavelka, M.; Gangl, A.

    1983-01-01

    The involvement of microtubules in the transepithelial transport of exogenous lipid in intestinal absorptive cells has been suggested. Using electronmicroscopic, biochemical, and radiochemical methods, researchers have studied the effects of the antimicrotubular agent colchicine on the intestinal mucosa and on the intestinal transport of endogenous lipid of rats in the fasting state. After colchicine treatment, the concentration of triglycerides in intestinal mucosa of rats fasted for 24 h doubled, and electron microscopic studies showed a striking accumulation of lipid particles in absorptive epithelial cells of the tips of jejunal villi. These findings suggest that colchicine interferes with the intestinal transepithelial transport of endogenous lipoproteins. Additional studies, using an intraduodenal pulse injection of [ 14 C]linoleic acid, showed that colchicine does not affect the uptake of fatty acids by intestinal mucosa. However, it had divergent effects on fatty acid esterification, enhancing their incorporation into triglycerides relative to phospholipids, and caused a significant accumulation of endogenous diglycerides, triglycerides, and cholesterol esters within the absorptive intestinal epithelium. Detailed ultrastructural and morphometric studies revealed a decrease of visible microtubules, and a displacement of the smooth and rough endoplasmic reticulum and Golgi apparatus. Furthermore, it is shown that after colchicine treatment, microvilli appear at the lateral plasma membrane of intestinal absorptive cells, a change not previously reported to our knowledge. Thus, our study shows that colchicine causes significant changes in enterocyte ultrastructure and colchicine perturbs the reesterification of absorbed endogenous fatty acids and their secretion in the form of triglyceride-rich lipoproteins from the enterocyte

  15. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism.

    Science.gov (United States)

    Rubino, Julian G; Zimmer, Alex M; Wood, Chris M

    2015-05-01

    In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Synergistic effect of supplemental enteral nutrients and exogenous glucagon-like peptide 2 on intestinal adaptation in a rat model of short bowel syndrome

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Nelson, David W; Holst, Jens Juul

    2006-01-01

    BACKGROUND: Short bowel syndrome (SBS) can lead to intestinal failure and require total or supplemental parenteral nutrition (TPN or PN, respectively). Glucagon-like peptide 2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that stimulates intestinal adaptation. OBJECTIVE: Our...... objective was to determine whether supplemental enteral nutrients (SEN) modulate the intestinotrophic response to a low dose of GLP-2 coinfused with PN in a rat model of SBS (60% jejunoileal resection plus cecectomy). DESIGN: Rats were randomly assigned to 8 treatments by using a 2 x 2 x 2 factorial design...

  17. Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkaer

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral...... permeabilities and pump constants of fluxes of water and electrolytes, volumes and ion concentrations of cell and lateral intercellular space (lis), and membrane potentials and conductances. Simulating physiological bioelectrical features together with cellular and paracellular fluxes of the sodium ion......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions...

  18. Genetic Susceptibility to Refractive Error: Association of Vasoactive Intestinal Peptide Receptor 2 (VIPR2) with High Myopia in Chinese

    Science.gov (United States)

    Yiu, Wai Chi; Yap, Maurice K. H.; Fung, Wai Yan; Ng, Po Wah; Yip, Shea Ping

    2013-01-01

    Myopia is the most common ocular disease worldwide. We investigated the association of high myopia with the common single nucleotide polymorphisms (SNPs) of five candidate genes – early growth response 1 (EGR1), v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS), jun oncogene (JUN), vasoactive intestinal peptide (VIP), and vasoactive intestinal peptide receptor 2 (VIPR2). We recruited 1200 unrelated Chinese subjects with 600 cases (spherical equivalent ≤−8.00 diopters) and 600 controls (spherical equivalent within ±1.00 diopter). A discovery sample set was formed from 300 cases and 300 controls, and a replication sample set from the remaining samples. Tag SNPs were genotyped for the discovery sample set, and the most significant haplotypes and their constituent SNPs were followed up with the replication sample set. The allele and haplotype frequencies in cases and controls were compared by logistic regression adjusted for sex and age to give Pa values, and multiple comparisons were corrected by permutation test to give Paemp values. Odd ratios (OR) were calculated accordingly. In the discovery phase, EGR1, JUN and VIP did not show any significant association while FOS and VIPR2 demonstrated significant haplotype association with high myopia. In the replication phase, the haplotype association for VIPR2 was successfully replicated, but not FOS. In analysis combining both sample sets, the most significant association signals of VIPR2 were the single marker rs2071625 (Pa = 0.0008, Paemp = 0.0046 and OR = 0.75) and the 4-SNP haplotype window rs2071623-rs2071625-rs2730220-rs885863 (omnibus test, Pa = 9.10e-10 and Paemp = 0.0001) with one protective haplotype (GGGG: Paemp = 0.0002 and OR = 0.52) and one high-risk haplotype (GAGA: Paemp = 0.0027 and OR = 4.68). This 4-SNP haplotype window was the most significant in all sample sets examined. This is the first study to suggest a role of VIPR2 in the genetic susceptibility

  19. Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen.

    Directory of Open Access Journals (Sweden)

    Brandon Sit

    2015-08-01

    Full Text Available Efficient acquisition of extracellular nutrients is essential for bacterial pathogenesis, however the identities and mechanisms for transport of many of these substrates remain unclear. Here, we investigate the predicted iron-binding transporter AfuABC and its role in bacterial pathogenesis in vivo. By crystallographic, biophysical and in vivo approaches, we show that AfuABC is in fact a cyclic hexose/heptose-phosphate transporter with high selectivity and specificity for a set of ubiquitous metabolites (glucose-6-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate. AfuABC is conserved across a wide range of bacterial genera, including the enteric pathogens EHEC O157:H7 and its murine-specific relative Citrobacter rodentium, where it lies adjacent to genes implicated in sugar sensing and acquisition. C. rodentium ΔafuA was significantly impaired in an in vivo murine competitive assay as well as its ability to transmit infection from an afflicted to a naïve murine host. Sugar-phosphates were present in normal and infected intestinal mucus and stool samples, indicating that these metabolites are available within the intestinal lumen for enteric bacteria to import during infection. Our study shows that AfuABC-dependent uptake of sugar-phosphates plays a critical role during enteric bacterial infection and uncovers previously unrecognized roles for these metabolites as important contributors to successful pathogenesis.

  20. Cytotoxicity, Intestinal Transport, and Bioavailability of Dispersible Iron and Zinc Supplements

    Directory of Open Access Journals (Sweden)

    Jae-Min Oh

    2017-04-01

    Full Text Available Iron or zinc deficiency is one of the most important nutritional disorders which causes health problem. However, food fortification with minerals often induces unacceptable organoleptic changes during preparation process and storage, has low bioavailability and solubility, and is expensive. Nanotechnology surface modification to obtain novel characteristics can be a useful tool to overcome these problems. In this study, the efficacy and potential toxicity of dispersible Fe or Zn supplement coated in dextrin and glycerides (SunActive FeTM and SunActive ZnTM were evaluated in terms of cytotoxicity, intestinal transport, and bioavailability, as compared with each counterpart without coating, ferric pyrophosphate (FePP and zinc oxide (ZnO nanoparticles (NPs, respectively. The results demonstrate that the cytotoxicity of FePP was not significantly affected by surface modification (SunActive FeTM, while SunActive ZnTM was more cytotoxic than ZnO-NPs. Cellular uptake and intestinal transport efficiency of SunActive FeTM were significantly higher than those of its counterpart material, which was in good agreement with enhanced oral absorption efficacy after a single-dose oral administration to rats. These results seem to be related to dissolution, particle dispersibility, and coating stability of materials depending on suspending media. Both SunActiveTM products and their counterpart materials were determined to be primarily transported by microfold (M cells through the intestinal epithelium. It was, therefore, concluded that surface modification of food fortification will be a useful strategy to enhance oral absorption efficiency at safe levels.

  1. Tween 20 increases intestinal transport of doxorubicin in vitro but not in vivo

    DEFF Research Database (Denmark)

    Al-Saraf, Amal; Holm, René; Nielsen, Carsten Uhd

    2016-01-01

    co-administered with P-gp inhibitors (non-ionic surfactants) in vitro and in vivo . The aim of the present study was thus to investigate if different non-ionic surfactants would have a similar effect on the in vitro and in vivo absorption of doxorubicin. This was investigated in vitro in Caco-2 cells.......2 ± 0.03 (n=3-7). In vivo, co-administration of doxorubicin and 0-25% tween 20 did not yield detectable doxorubicin plasma concentrations, probably due to extensive intestinal metabolism. In conclusion, the present study demonstrated that non-ionic surfactants increased the transport of doxorubicin...

  2. Carrier-mediated ¿-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-01-01

    and the anticancer prodrug d-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least...

  3. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids.

    Science.gov (United States)

    Cao, Wei; Kayama, Hisako; Chen, Mei Lan; Delmas, Amber; Sun, Amy; Kim, Sang Yong; Rangarajan, Erumbi S; McKevitt, Kelly; Beck, Amanda P; Jackson, Cody B; Crynen, Gogce; Oikonomopoulos, Angelos; Lacey, Precious N; Martinez, Gustavo J; Izard, Tina; Lorenz, Robin G; Rodriguez-Palacios, Alex; Cominelli, Fabio; Abreu, Maria T; Hommes, Daniel W; Koralov, Sergei B; Takeda, Kiyoshi; Sundrud, Mark S

    2017-12-19

    CD4 + T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4 + T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1 -/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1 -/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60 on the intestinal barrier function and gut peptides in breast cancer patients: an observational study

    Directory of Open Access Journals (Sweden)

    Russo Francesco

    2013-02-01

    Full Text Available Abstract Background Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2, epidermal growth factor (EGF and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD. Methods Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+ patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21. Results During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27% suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+ patients compared to CTD(− patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+ patients than CTD(− ones, respectively. Finally in CTD(+ patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Conclusions Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2

  5. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study.

    Science.gov (United States)

    Russo, Francesco; Linsalata, Michele; Clemente, Caterina; D'Attoma, Benedetta; Orlando, Antonella; Campanella, Giovanna; Giotta, Francesco; Riezzo, Giuseppe

    2013-02-04

    Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2), epidermal growth factor (EGF) and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD). Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+) patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21). During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27%) suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+) patients compared to CTD(-) patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+) patients than CTD(-) ones, respectively. Finally in CTD(+) patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2, ghrelin and EGF. In CTD(+) patients, a different GI peptide

  6. Intestinal Absorption and First-Pass Metabolism of Polyphenol Compounds in Rat and Their Transport Dynamics in Caco-2 Cells

    Science.gov (United States)

    Zhang, Feng; Huan, Menglei; Cao, Weidong; Li, Kangchu; Yang, Jingyue; Cao, Dayong; Zhou, Siyuan; Mei, Qibing

    2012-01-01

    Background Polyphenols, a group of complex naturally occurring compounds, are widely distributed throughout the plant kingdom and are therefore readily consumed by humans. The relationship between their chemical structure and intestinal absorption, transport, and first-pass metabolism remains unresolved, however. Methods Here, we investigated the intestinal absorption and first-pass metabolism of four polyphenol compounds, apigenin, resveratrol, emodin and chrysophanol, using the in vitro Caco-2 cell monolayer model system and in situ intestinal perfusion and in vivo pharmacokinetic studies in rats, so as to better understand the relationship between the chemical structure and biological fate of the dietary polyphenols. Conclusion After oral administration, emodin and chrysophanol exhibited different absorptive and metabolic behaviours compared to apigenin and resveratrol. The differences in their chemical structures presumably resulted in differing affinities for drug-metabolizing enzymes, such as glucuronidase and sulphatase, and transporters, such as MRP2, SGLT1, and P-glycoprotein, which are found in intestinal epithelial cells. PMID:22253753

  7. Intestinal parasites in public transport buses from the city of Diamantina, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Andrade SS

    2017-06-01

    Full Text Available Sabrina S Andrade,1 Layane M Teodoro,1 Daniel JS Viana,1 Egleise M Canuto-Sales,2 Gustavo H Bahia-de-Oliveira,2 Suedali Villas Bôas,3 Ricardo A Barata1 1Department of Biological Sciences, 2Department of Pharmacy, 3Department of Basic Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil Background: Intestinal parasites’ eggs, larvae, or cysts can be carried in public transport buses, and contribute to the increased incidence of diseases. This study aimed to detect biological forms of intestinal parasites in samples from public buses in the town of Diamantina, Minas Gerais, in order to know the local situation and propose interventions to improve public health. Materials and methods: In November 2014, six samples were obtained in buses of the two stations by using Graham method, in duplicate, by affixing a 6×5 cm clear tape, six times on each collection site of the bus, in an area of ~30 cm2. Then, each tape was positioned longitudinally on a slide microscope, and the identification of the biological forms of the parasites was performed with the aid of a 40× objective optical microscope. Results: A total of 216 slides were analyzed, of which 86 (39.8% were positive for at least one intestinal parasite. Cysts of Entamoeba coli were the most frequently found in this study (52.1%, followed by Endolimax nana cysts (30.7%, Iodamoeba butschlii (6.5%, helminth larvae (4.7%, Giardia lamblia cysts (3.6%, Hymenolepis nana eggs (1.2%, Enterobius vermicularis eggs (0.6%, and Entamoeba histolytica cysts (0.6%. Top right handrails and right stanchions had the highest occurrence of biological forms, with 18.3% and 14.8%, respectively. Conclusion: The results indicated the need for better cleaning of the buses and better personal hygiene by users, since pathogenic and non-pathogenic intestinal parasites were found, suggesting fecal contamination of these sites, representing a risk to public health. Keywords

  8. Glucocorticoids decrease the production of glucagon-like peptide-1 at the transcriptional level in intestinal L-cells.

    Science.gov (United States)

    Sato, Taiki; Hayashi, Hiroto; Hiratsuka, Masahiro; Hirasawa, Noriyasu

    2015-05-05

    Glucocorticoids are widely used as anti-inflammatory or immunosuppressive drugs, but often induce hyperglycemia as a side effect. Glucagon-like peptide-1 (GLP-1) is secreted from intestinal L cells and plays crucial roles in maintaining glucose homeostasis. However, the direct effects of glucocorticoids on the GLP-1 production pathway in L cells remain unclear. We investigated the effects of glucocorticoids on GLP-1 production in vitro and in vivo. In L cell lines, glucocorticoids decreased GLP-1 release and expression of the precursor, proglucagon, at protein and mRNA levels, which were inhibited by mifepristone. The administration of dexamethasone or budesonide to mice significantly decreased the mRNA expression of proglucagon in the ileum and partially decreased glucose-stimulated GLP-1 secretion. Compound A, a dissociated glucocorticoid receptor modulator, did not affect the expression of proglucagon in vitro. These results suggested that glucocorticoids directly reduced GLP-1 production at the transcriptional level in L cells through a glucocorticoid receptor dimerization-dependent mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers.

    Science.gov (United States)

    Russo, Francesco; Linsalata, Michele; Clemente, Caterina; Chiloiro, Marisa; Orlando, Antonella; Marconi, Emanuele; Chimienti, Guglielmina; Riezzo, Giuseppe

    2012-12-01

    Apart from the intestinal environment, inulin induces physiological effects, which includes a reduction in glucose and lipid concentrations and modulation of gastrointestinal motility through the release of different peptides. We hypothesized that inulin-enriched pasta may also improve small intestine permeability in relation to zonulin and glucagon-like peptide 2 (GLP-2) levels in healthy young subjects. Twenty healthy, young male volunteers completed a randomized, double-blind crossover study consisting of a 2-week run-in period and two 5-week study periods (11% inulin-enriched or control pasta), with an 8-week washout period in between. The intestinal barrier function was assessed by lactulose-mannitol excretion in urine. Zonulin values and GLP-2 release were evaluated by enzyme-linked immunosorbent assay. In the inulin group, the urinary lactulose recovery was significantly lower than the other 2 groups. There were no significant differences in urinary mannitol levels between groups. Accordingly, the lactulose-mannitol excretion ratio was significantly decreased in the inulin-enriched pasta group compared with the other 2 groups. The inulin-enriched pasta group had significantly lower zonulin serum values and significantly higher GLP-2 basal values when compared with the baseline and control pasta groups. The dietary use of inulin-enriched pasta preserves intestinal mucosal barrier functioning and modulates circulating levels of zonulin and GLP-2, suggesting that prebiotics could be used in the prevention of gastrointestinal diseases and metabolic disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. H{sup +}/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan); Akagawa, Mitsugu [Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Tsuji-Naito, Kentaro, E-mail: knaito@dhc.co.jp [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan)

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. -- Highlights: •PEPT2 is expressed in keratinocytes, which are more common than other skin cells. •Immunolocalization analysis using human skin revealed epidermal PEPT2 localization. •Keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. •Di- and tripeptide pass actively through the epidermis.

  11. The transepithelial transport mechanism of polybrominated diphenyl ethers in human intestine determined using a Caco-2 cell monolayer.

    Science.gov (United States)

    Yu, Yingxin; Wang, Mengmeng; Zhang, Kaiqiong; Yang, Dan; Zhong, Yufang; An, Jing; Lei, Bingli; Zhang, Xinyu

    2017-04-01

    Oral ingestion plays an important role in human exposure to polybrominated diphenyl ethers (PBDEs). The uptake of PBDEs primarily occurs in the small intestine. The aim of the present study is to investigate the transepithelial transport characteristics and mechanisms of PBDEs in the small intestine using a Caco-2 cell monolayer model. The apparent permeability coefficients of PBDEs indicated that tri- to hepta-BDEs were poorly absorbed compounds. A linear increase in transepithelial transport was observed with various concentrations of PBDEs, which suggested that passive diffusion dominated their transport at the concentration range tested. In addition, the pseudo-first-order kinetics equation can be applied to the transepithelial transport of PBDEs. The rate-determining step in transepithelial transport of PBDEs was trans-cell transport including the trans-pore process. The significantly lower transepithelial transport rates at low temperature for bidirectional transepithelial transport suggested that an energy-dependent transport mechanism was involved. The efflux transporters (P-glycoprotein, multidrug resistance-associated protein, and breast cancer resistance protein) and influx transporters (organic cation transporters) participated in the transepithelial transport of PBDEs. In addition, the transepithelial transport of PBDEs was pH sensitive; however, more information is required to understand the influence of pH. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Characterization of butyrate transport across the luminal membranes of equine large intestine.

    Science.gov (United States)

    Nedjadi, Taoufik; Moran, Andrew W; Al-Rammahi, Miran A; Shirazi-Beechey, Soraya P

    2014-10-01

    The diet of the horse, pasture forage (grass), is fermented by the equine colonic microbiota to short-chain fatty acids, notably acetate, propionate and butyrate. Short-chain fatty acids provide a major source of energy for the horse and contribute to many vital physiological processes. We aimed to determine both the mechanism of butyrate uptake across the luminal membrane of equine colon and the nature of the protein involved. To this end, we isolated equine colonic luminal membrane vesicles. The abundance and activity of cysteine-sensitive alkaline phosphatase and villin, intestinal luminal membrane markers, were significantly enriched in membrane vesicles compared with the original homogenates. In contrast, the abundance of GLUT2 protein and the activity of Na(+)-K(+)-ATPase, known markers of the intestinal basolateral membrane, were hardly detectable. We demonstrated, by immunohistochemistry, that monocarboxylate transporter 1 (MCT1) protein is expressed on the luminal membrane of equine colonocytes. We showed that butyrate transport into luminal membrane vesicles is energized by a pH gradient (out butyrate uptake is time and concentration dependent, with a Michaelis-Menten constant of 5.6 ± 0.45 mm and maximal velocity of 614 ± 55 pmol s(-1) (mg protein)(-1). Butyrate transport is significantly inhibited by p-chloromercuribenzoate, phloretin and α-cyano-4-hydroxycinnamic acid, all potent inhibitors of MCT1. Moreover, acetate and propionate, as well as the monocarboxylates pyruvate and lactate, also inhibit butyrate uptake. Data presented here support the conclusion that transport of butyrate across the equine colonic luminal membrane is predominantly accomplished by MCT1. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  13. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon

    Directory of Open Access Journals (Sweden)

    Michal Segal

    2012-01-01

    Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.

  14. The Noncaloric Sweetener Rebaudioside A Stimulates Glucagon-Like Peptide 1 Release and Increases Enteroendocrine Cell Numbers in 2-Dimensional Mouse Organoids Derived from Different Locations of the Intestine

    NARCIS (Netherlands)

    van der Wielen, Nikkie; Ten Klooster, Jean Paul; Muckenschnabl, Susanne; Pieters, Raymond; Hendriks, Henk Fj; Witkamp, Renger F; Meijerink, Jocelijn

    2016-01-01

    BACKGROUND: Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine is

  15. The noncaloric sweetener rebaudioside a stimulates glucagon-like peptide 1 release and increases enteroendocrine cell numbers in 2-dimensional mouse organoids derived from different locations of the intestine

    NARCIS (Netherlands)

    Wielen, van der Nikkie; Klooster, ten Jean Paul; Muckenschnabl, Susanne; Pieters, Raymond; Hendriks, Henk F.J.; Witkamp, Renger F.; Meijerink, Jocelijn

    2016-01-01

    Background: Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine

  16. Dysregulation of JAK/STAT genes by vasoactive intestinal peptide (VIP) in Salmonella-infected monocytes may inhibit its therapeutic potential in human sepsis.

    Science.gov (United States)

    Ibrahim, Hiba; Askar, Basim; Barrow, Paul; Foster, Neil

    2018-05-01

    Murine/LPS models of Gram negative sepsis indicate that vasoactive intestinal peptide (VIP) has therapeutic potential. We investigated the unknown effect of VIP on JAK/STAT proteins and genes in human monocytes infected with Salmonella Typhimurium 14028. S. Typhimurium 14028 increased expression of both IL-6 receptor (IL-6R) and interferon gamma receptor 1 (IFNγR1) on monocytes but co-culture of infected monocytes with VIP (10 -7  M) only decreased expression of IFNγR1 (P < 0.05). In contrast, S. Typhimurium 14028 infection or co-culture with VIP had no effect on IL-10 receptor expression on the monocyte surface. However, S. Typhimurium 14028 down regulated IFNGR1 gene expression and this was not altered by co-culture with VIP, suggesting that changes in IFNγR1 protein may be due to an effect on cytoplasmic transport. 15 JAK/STAT genes, out of 84 studied, were up-regulated by S. Typhimurium 14028 infection and five were down-regulated. Co-culture with VIP significantly decreased expression of two genes (IFNG and IL-20) and increased expression of three genes (SOCS1, SOCS3 and STAT4) (P < 0.05). S. Typhimurium 14028 also increased expression of PTPN1, which dephosphorylates JAK2 and TYK2. This was unaltered by co-culture with VIP but S. Typhimurium 14028-induced expression of ISG15, associated with susceptibility to Gram negative infection, was further increased by VIP. We conclude that the effect of VIP on JAK/STAT genes may preclude its therapeutic use in human Gram negative sepsis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Specificity of the second binding protein of the peptide ABC-transporter (Dpp) of Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Sanz, Y; Toldra, F; Renault, P; Poolman, B

    2003-01-01

    The genome sequence of Lactococcus lactis IL1403 revealed the presence of a putative peptide-binding protein-dependent ABC-transporter (Dpp). The genes for two peptide-binding proteins (dppA and dppP) precede the membrane components, which include two transmembrane protein genes (dppB and dppC) and

  18. Effects of Immune Stress on Performance Parameters, Intestinal Enzyme Activity and mRNA Expression of Intestinal Transporters in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2012-05-01

    Full Text Available Immune stress is the loss of immune homeostasis caused by external forces. The purpose of this experiment was to investigate the effects of immune stress on the growth performance, small intestinal enzymes and peristalsis rate, and mRNA expression of nutrient transporters in broiler chickens. Four hundred and thirty-two 1-d-old broilers (Cobb500 were randomly assigned to four groups for treatment; each group included nine cages with 12 birds per cage. Group 1 = no vaccine (NV; Group 2 = conventional vaccine (CV; group 3 = lipopolysaccharide (LPS+conventional vaccine (LPS; group 4 = cyclophosphamide (CYP+conventional vaccine (CYP. The results demonstrated that immune stress by LPS and CYP reduced body weight gain (BWG, feed intake (FI, small intestine peristalsis rate and sIgA content in small intestinal digesta (p<0.05. However, the feed conversion ratio (FCR remained unchanged during the feeding period. LPS and CYP increased intestinal enzyme activity, relative expression of SGLT-1, CaBP-D28k and L-FABP mRNAs (p<0.05. LPS and CYP injection had a negative effect on the growth performance of healthy broiler chickens. The present study demonstrated that NV and CV could improve growth performance while enzyme activity in small intestine and relative expression of nutrient transporter mRNA of NV and CV were decreased in the conditions of a controlled rational feeding environment. It is generally recommended that broilers only need to be vaccinated for the diseases to which they might be exposed.

  19. Ghrelin suppresses cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) in the intestine, and attenuates the anorectic effects of CCK, PYY and GLP-1 in goldfish (Carassius auratus).

    Science.gov (United States)

    Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Valenciano, Ana Isabel; Delgado, María Jesús; Unniappan, Suraj

    2017-07-01

    Ghrelin is an important gut-derived hormone with an appetite stimulatory role, while most of the intestinal hormones, including cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), are appetite-inhibitors. Whether these important peptides with opposing roles on food intake interact to regulate energy balance in fish is currently unknown. The aim of this study was to characterize the putative crosstalk between ghrelin and CCK, PYY and GLP-1 in goldfish (Carassius auratus). We first determined the localization of CCK, PYY and GLP-1 in relation to ghrelin and its main receptor GHS-R1a (growth hormone secretagogue 1a) in the goldfish intestine by immunohistochemistry. Colocalization of ghrelin/GHS-R1a and CCK/PYY/GLP-1 was found primarily in the luminal border of the intestinal mucosa. In an intestinal explant culture, a significant decrease in prepro-cck, prepro-pyy and proglucagon transcript levels was observed after 60min of incubation with ghrelin, which was abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6 (except for proglucagon). The protein expression of PYY and GLP-1 was also downregulated by ghrelin. Finally, intraperitoneal co-administration of CCK, PYY or GLP-1 with ghrelin results in no modification of food intake in goldfish. Overall, results of the present study show for the first time in fish that ghrelin exerts repressive effects on enteric anorexigens. It is likely that these interactions mediate the stimulatory effects of ghrelin on feeding and metabolism in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Liver Inflammation Relates to Decreased Canalicular Bile Transporter Expression in Pediatric Onset Intestinal Failure.

    Science.gov (United States)

    Mutanen, Annika; Lohi, Jouko; Heikkilä, Päivi; Jalanko, Hannu; Pakarinen, Mikko P

    2017-02-23

    Although liver disease is a major complication of parenteral nutrition (PN) for intestinal failure (IF), its pathogenesis remains unclear. We investigated potential molecular mechanisms of liver injury in pediatric onset IF. Liver expression of canalicular phospholipid (ABCB4), bile acid (ABCB11), and sterol (ABCG5/8) transporters, their upstream regulators LXR and FXR as well as pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor (TNF) were investigated among patients with IF [age median 3.8 (IQR 1.2 to 11)] in relation to biochemical and histologic liver injury, PN, serum plant sterols, fibroblast growth factor 19, and α-tocopherol. Patients receiving PN currently (n = 18) showed more advanced liver injury than patients after weaning off PN (n = 30). Histologic portal inflammation strongly segregated PN-dependent (44%) from weaned off patients (3%, P = 0.001) and coupled with progression of cholestasis and liver fibrosis. Patients with portal inflammation demonstrated markedly induced liver RNA expression of IL6 and TNF, repression of FXR and its canalicular bile transporter target gene RNA expression, including ABCB4 and ABCB11 as well as decreased protein expression of ABCB11 and ABCB4. Furthermore, upregulation of LXR and ABCG5/8 RNA expression was suppressed in patients with portal inflammation. Current PN, increased serum levels of plant sterols stigmasterol, avenasterol, and sitosterol along with serum citrulline, a marker of enterocyte mass, predicted portal inflammation. In pediatric onset IF, current PN delivery synergistically with intestinal compromise promote liver inflammation, which associates with progression of biochemical and histologic liver injury, while reducing expression of canalicular bile transporters.

  1. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport.

    Science.gov (United States)

    Won, Christina S; Oberlies, Nicholas H; Paine, Mary F

    2012-11-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability.

    Science.gov (United States)

    Cai, Zheng; Huang, Juan; Luo, Hui; Lei, Xiaolu; Yang, Zhaoxiang; Mai, Yang; Liu, Zhongqiu

    2013-07-01

    Gastrodin, a sedative drug, is a highly water-soluble phenolic glucoside with poor liposolubility but exhibits good oral bioavailability. The current study aims to investigate whether glucose transporters (GLTs) are involved in the intestinal absorption of gastrodin. The intestinal absorption kinetics of gastrodin was determined using the rat everted gut sac model, the Caco-2 cell culture model and the perfused rat intestinal model. In vivo pharmacokinetic studies using diabetic rats with high GLT expression were performed. Saturable intestinal absorption of gastrodin was observed in rat everted gut sacs. The apparent permeability (Papp) of gastrodin from the apical (A) to basolateral (B) side in Caco-2 cells was two-fold higher than that from B to A. Glucose or phlorizin, a sodium-dependent GLT (SGLT) inhibitor, reduced the absorption rates of gastrodin from perfused rat intestines. In vivo pharmacokinetic studies showed that the time of maximum plasma gastrodin concentration (Tmax) was prolonged from 28 to 72 min when orally co-administered with four times higher dose of glucose. However, the Tmax of gastrodin in diabetic rats was significantly lowered to 20 min because of the high intestinal SGLT1 level. In conclusion, our findings indicate that SGLT1 can facilitate the intestinal absorption of gastrodin.

  3. Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D.

    Science.gov (United States)

    Anabazhagan, Arivarasu N; Chatterjee, Ishita; Priyamvada, Shubha; Kumar, Anoop; Tyagi, Sangeeta; Saksena, Seema; Alrefai, Waddah A; Dudeja, Pradeep K; Gill, Ravinder K

    2017-03-16

    The intestinal epithelium has important transport and barrier functions that play key roles in normal physiological functions of the body while providing a barrier to foreign particles. Impaired epithelial transport (ion, nutrient, or drugs) has been associated with many diseases and can have consequences that extend beyond the normal physiological functions of the transporters, such as by influencing epithelial integrity and the gut microbiome. Understanding the function and regulation of transport proteins is critical for the development of improved therapeutic interventions. The biggest challenge in the study of epithelial transport is developing a suitable model system that recapitulates important features of the native intestinal epithelial cells. Several in vitro cell culture models, such as Caco-2, T-84, and HT-29-Cl.19A cells are typically used in epithelial transport research. These cell lines represent a reductionist approach to modeling the epithelium and have been used in many mechanistic studies, including their examination of epithelial-microbial interactions. However, cell monolayers do not accurately reflect cell-cell interactions and the in vivo microenvironment. Cells grown in 3D have shown to be promising models for drug permeability studies. We show that Caco-2 cells in 3D can be used to study epithelial transporters. It is also important that studies in Caco-2 cells are complemented with other models to rule out cell specific effects and to take into account the complexity of the native intestine. Several methods have been previously used to assess the functionality of transporters, such as everted sac and uptake in isolated epithelial cells or in isolated plasma membrane vesicles. Taking into consideration the challenges in the field with respect to models and the measurement of transport function, we demonstrate here a protocol to grow Caco-2 cells in 3D and describe the use of an Ussing chamber as an effective approach to measure serotonin

  4. In vitro characterization of cadmium transport along the gastro-intestinal tract of freshwater rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Klinck, Joel S.; Wood, Chris M.

    2011-01-01

    An in vitro gut sac technique was used to examine the mechanism(s) of cadmium (Cd) uptake along the gastro-intestinal tract (GIT) of rainbow trout (Oncorhynchus mykiss). The spatial distribution of Cd between three compartments (mucus-binding, mucosal epithelium, and transport into blood space) was determined using a modified Cortland saline containing 50 μM Cd (as CdCl 2 ) labeled with 109 Cd radiotracer. Taking into account total surface areas, the order of relative importance for total Cd uptake rate was: posterior intestine > anterior intestine > stomach > mid intestine. Cd transport was not inhibited by experimentally reducing fluid transport rates by manipulation of osmotic gradients using mannitol, but was sensitive to internal luminal pressure changes, suggesting a mechanosensitive pathway. Q 10 values (1, 11, and 19 o C) indicated a facilitated transport of Cd in the anterior- and mid-intestine. The effects of 10 mM Ca on the kinetics of Cd uptake suggest the presence of a common uptake pathway for Cd and Ca in the stomach, anterior-, and mid-intestine. Further evidence of a shared route of entry was found using three Ca channel blockers, lanthanum, verapamil, and nifedipine: both voltage-insensitive and voltage-sensitive Ca channels appear to be present in either some, or all portions of the GIT. Elevated Fe (500 μM), Mg (50 mM), and Zn (500 μM) showed varying degrees of inhibition of Cd transport depending on the compartment and segment of the GIT. Overall it appears that there are multiple sites, and mechanisms, of Cd uptake along the GIT of rainbow trout.

  5. In vitro characterization of cadmium transport along the gastro-intestinal tract of freshwater rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Klinck, Joel S., E-mail: klinckjs@mcmaster.ca [Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1 (Canada); Wood, Chris M. [Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1 (Canada)

    2011-03-15

    An in vitro gut sac technique was used to examine the mechanism(s) of cadmium (Cd) uptake along the gastro-intestinal tract (GIT) of rainbow trout (Oncorhynchus mykiss). The spatial distribution of Cd between three compartments (mucus-binding, mucosal epithelium, and transport into blood space) was determined using a modified Cortland saline containing 50 {mu}M Cd (as CdCl{sub 2}) labeled with {sup 109}Cd radiotracer. Taking into account total surface areas, the order of relative importance for total Cd uptake rate was: posterior intestine > anterior intestine > stomach > mid intestine. Cd transport was not inhibited by experimentally reducing fluid transport rates by manipulation of osmotic gradients using mannitol, but was sensitive to internal luminal pressure changes, suggesting a mechanosensitive pathway. Q{sub 10} values (1, 11, and 19 {sup o}C) indicated a facilitated transport of Cd in the anterior- and mid-intestine. The effects of 10 mM Ca on the kinetics of Cd uptake suggest the presence of a common uptake pathway for Cd and Ca in the stomach, anterior-, and mid-intestine. Further evidence of a shared route of entry was found using three Ca channel blockers, lanthanum, verapamil, and nifedipine: both voltage-insensitive and voltage-sensitive Ca channels appear to be present in either some, or all portions of the GIT. Elevated Fe (500 {mu}M), Mg (50 mM), and Zn (500 {mu}M) showed varying degrees of inhibition of Cd transport depending on the compartment and segment of the GIT. Overall it appears that there are multiple sites, and mechanisms, of Cd uptake along the GIT of rainbow trout.

  6. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    Science.gov (United States)

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Vasodilatory effect of the stable vasoactive intestinal peptide analog RO 25-1553 in murine and rat lungs.

    Directory of Open Access Journals (Sweden)

    Jun Yin

    Full Text Available Stable analogs of vasoactive intestinal peptide (VIP have been proposed as novel line of therapy in chronic obstructive pulmonary disease (COPD based on their bronchodilatory and anti-inflammatory effects. We speculated that VIP analogs may provide additional benefits in that they exert vasodilatory properties in the lung, and tested this hypothesis in both ex vivo and in vivo models.In isolated perfused mouse lungs and in an in vivo rat model, pulmonary blood vessels were preconstricted by hypoxia and hemodynamic changes in response to systemic (ex vivo or inhaled (in vivo administration of the cyclic VIP analog RO 25-1553 were determined.In mouse lungs, RO 25-1553 reduced intrinsic vascular resistance at normoxia, and attenuated the increase in pulmonary artery pressure in response to acute hypoxia. Consistently, inhalation of RO 25-1553 (1 mg · mL(-1 for 3 min caused an extensive and sustained (> 60 min inhibition of the pulmonary arterial pressure increase in response to hypoxia in vivo that was comparable to the effects of inhaled sildenafil. This effect was not attributable to systemic cardiovascular effects of RO 25-1553, but to a lung specific reduction in pulmonary vascular resistance, while cardiac output and systemic arterial hemodynamics remained unaffected. No adverse effects of RO 25-1553 inhalation on pulmonary gas exchange, ventilation-perfusion matching, or lung fluid content were detected.Our findings demonstrate that inhaled delivery of the stable VIP analog RO 25-1553 induces a potent and sustained vasodilatory effect in the pulmonary circulation with no detectable adverse effects. Therapeutic inhalation of RO 25-1553 may provide vascular benefits in addition to its reported anti-inflammatory and bronchodilatory effects in COPD, yet caution is warranted given the overall poor results of vasodilator therapies for pulmonary hypertension secondary to COPD in a series of recent clinical trials.

  8. Vasodilatory effect of the stable vasoactive intestinal peptide analog RO 25-1553 in murine and rat lungs.

    Science.gov (United States)

    Yin, Jun; Wang, Liming; Yin, Ning; Tabuchi, Arata; Kuppe, Hermann; Wolff, Gerhard; Kuebler, Wolfgang M

    2013-01-01

    Stable analogs of vasoactive intestinal peptide (VIP) have been proposed as novel line of therapy in chronic obstructive pulmonary disease (COPD) based on their bronchodilatory and anti-inflammatory effects. We speculated that VIP analogs may provide additional benefits in that they exert vasodilatory properties in the lung, and tested this hypothesis in both ex vivo and in vivo models. In isolated perfused mouse lungs and in an in vivo rat model, pulmonary blood vessels were preconstricted by hypoxia and hemodynamic changes in response to systemic (ex vivo) or inhaled (in vivo) administration of the cyclic VIP analog RO 25-1553 were determined. In mouse lungs, RO 25-1553 reduced intrinsic vascular resistance at normoxia, and attenuated the increase in pulmonary artery pressure in response to acute hypoxia. Consistently, inhalation of RO 25-1553 (1 mg · mL(-1) for 3 min) caused an extensive and sustained (> 60 min) inhibition of the pulmonary arterial pressure increase in response to hypoxia in vivo that was comparable to the effects of inhaled sildenafil. This effect was not attributable to systemic cardiovascular effects of RO 25-1553, but to a lung specific reduction in pulmonary vascular resistance, while cardiac output and systemic arterial hemodynamics remained unaffected. No adverse effects of RO 25-1553 inhalation on pulmonary gas exchange, ventilation-perfusion matching, or lung fluid content were detected. Our findings demonstrate that inhaled delivery of the stable VIP analog RO 25-1553 induces a potent and sustained vasodilatory effect in the pulmonary circulation with no detectable adverse effects. Therapeutic inhalation of RO 25-1553 may provide vascular benefits in addition to its reported anti-inflammatory and bronchodilatory effects in COPD, yet caution is warranted given the overall poor results of vasodilator therapies for pulmonary hypertension secondary to COPD in a series of recent clinical trials.

  9. Intracerebroventricular Infusion of Vasoactive Intestinal Peptide (VIP Rescues the Luteinizing Hormone Surge in Middle-Aged Female Rats

    Directory of Open Access Journals (Sweden)

    Yan eSun

    2012-02-01

    Full Text Available Reproductive aging is characterized by delayed and attenuated luteinizing hormone (LH surges apparent in middle-aged rats. The suprachiasmatic nucleus (SCN contains the circadian clock that is responsible for the timing of diverse neuroendocrine rhythms. Electrophysiological studies suggest vasoactive intestinal peptide (VIP originating from the SCN excites gonadotropin-releasing hormone (GnRH neurons and affects daily patterns of GnRH-LH release. Age-related LH surge dysfunction correlates with reduced VIP mRNA expression in the SCN and fewer GnRH neurons with VIP contacts expressing c-fos, a marker of neuronal activation, on the day of the LH surge. To determine if age-related LH surge dysfunction reflects reduced VIP availability or altered VIP responsiveness under estradiol positive feedback conditions, we assessed the effect of intracerebroventricular (icv VIP infusion on c-fos expression in GnRH neurons and on LH release in ovariohysterectomized, hormone-primed young and middle-aged rats. Icv infusion of VIP between 1300 and 1600 h significantly advanced the time of peak LH release, increased total and peak LH release, and increased the number of GnRH neurons expressing c-fos on the day of the LH surge in middle-aged rats. Surprisingly, icv infusion of VIP in young females significantly reduced the number of GnRH neurons expressing c-fos and delayed and reduced the LH surge. These observations suggest that a critical balance of VIP signaling is required to activate GnRH neurons for an appropriately timed and robust LH surge in young and middle-aged females. Age-related LH surge changes may, in part, result from decreased availability and reduced VIP-mediated neurotransmission under estradiol positive feedback conditions.

  10. Peptide transport through the blood-brain barrier. Final report 1 Jul 87-31 Dec 90

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, W.M.

    1991-01-15

    Most neuropeptides are incapable of entering the brain from blood owing to the presence of unique anatomical structures in the brain capillary wall, which makes up the blood-brain barrier (BBB). Such neuropeptides could be introduced into the bloodstream by intranasal insufflation and, thus, could have powerful medicinal properties (e.g., Beta-endorphin for the treatment of pain, vasopressin analogues for treatment of memory, ACTH analogues for treatment of post-traumatic epilepsy), should these peptides be capable of traversing the BBB. One such strategy for peptide delivery through the BBB is the development of chimeric peptides, which is the basis of the present contract. The production of chimeric peptides involves the covalent coupling of a nontransportable peptide (e.g., Beta-endorphin, vasopressin) to a transportable vector peptide (e.g., insulin, transferrin, cationized albumin, histone). The transportable peptide is capable of penetrating the BBB via receptor-mediated or absorptive-mediated transcytosis. Therefore, the introduction of chimeric peptides allows the nontransportable peptide to traverse the BBB via a physiologic piggy back mechanism.

  11. Long-term dietary L-arginine supplementation increases endothelial nitric oxide synthase and vasoactive intestinal peptide immunoexpression in rat small intestine.

    Science.gov (United States)

    Velickovic, Ksenija; Markelic, Milica; Golic, Igor; Otasevic, Vesna; Stancic, Ana; Jankovic, Aleksandra; Vucetic, Milica; Buzadzic, Biljana; Korac, Bato; Korac, Aleksandra

    2014-04-01

    Nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) are important intestinal neurotransmitters that coexist in the gut enteric nervous system and play an important role in intestinal physiology (e.g., absorption, motility, fluid secretion and smooth muscle relaxation). It is also known that cold exposure alters several aspects of gastrointestinal physiology and induces hyperphagia to meet increased metabolic demands, but there are no data regarding NO and VIP involvement in intestinal response during acclimation to cold. The objective of this study was to determine the influence of long-term L-arginine supplementation on the expression of the three isoforms of nitric oxide synthase (NOS) and VIP in small intestine of rats acclimated to room temperature or cold. Animals (six per group) acclimated to room temperature (22 ± 1 °C) and cold (4 ± 1 °C), respectively, were treated with 2.25% L-arginine, a substrate for NOSs, or with 0.01% N(ω)-nitro-L-arginine methyl ester, an inhibitor of NOSs, for 45 days. The topographical distribution of VIP and NOSs expression in small intestine was studied by immunohistochemistry, and ImageJ software was used for semiquantitative densitometric analysis of their immunoexpression. Long-term dietary L-arginine supplementation increases VIP and NOSs immunoexpression at room temperature while at cold increases the endothelial NOS, inducible NOS and VIP but decrease neuronal NOS in rat small intestine. Our results demonstrate that long-term dietary L-arginine supplementation modulates NOSs and VIP immunoexpression in rat small intestine with respect to ambient temperature, pointing out the eNOS as a predominant NOS isoform with an immunoexpression pattern similar to VIP.

  12. Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes.

    Science.gov (United States)

    Engevik, Amy Christine; Goldenring, James R

    2018-01-02

    Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Venomics reveals novel ion transport peptide-likes (ITPLs) from the parasitoid wasp Tetrastichus brontispae.

    Science.gov (United States)

    Liu, Nai-Yong; Xu, Zhi-Wen; Yan, Wei; Ren, Xue-Min; Zhang, Zhi-Quan; Zhu, Jia-Ying

    2018-01-01

    Despite substantial advances in uncovering constituents of parasitoid venoms due to their potential applications as insecticides and pharmaceuticals, most of these studies are primarily restricted to braconid and ichneumonid wasps. Little information is available regarding virulent factors from venom of Eulophidae. In order to provide insight into the venom components of this family and parasitoid venom evolution, a venom protein repertoire (venomics) of the endoparasitoid wasp, Tetrastichus brontispae was deciphered using a proteomic approach. A large number of diverse venom proteins/peptides were identified, including novel proteins and those proteins commonly found in the venoms of other parasitoids such as serine protease, esterase, dipeptidyl peptidase IV, acid phosphatase, major royal jelly protein, superoxide dismutase, and venom allergen 3/5. Three ion transport peptide-likes (ITPLs) were abundantly detected in T. brontispae venom. Of these, two of them are reported as a novel form for the first time, with the characteristics of lengthened amino acid sequences and additional cysteine residues. These venom ITPLs are obviously apart from other general members within the crustacean hyperglycemic hormone/ion transport peptide (CHH/ITP) family. It implies that they would evolve unique functions essential for parasitism success. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-03-01

    Full Text Available Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide

  15. Exendin-3, a novel peptide from Heloderma horridum venom, interacts with vasoactive intestinal peptide receptors and a newly described receptor on dispersed acini from guinea pig pancreas. Description of exendin-3(9-39) amide, a specific exendin receptor antagonist.

    Science.gov (United States)

    Raufman, J P; Singh, L; Eng, J

    1991-02-15

    Exendin-3 increased cellular cAMP levels and amylase release from dispersed acini from guinea pig pancreas. Low concentrations (0.1-3 nM) caused a 12-fold increase in cAMP, whereas higher concentrations (0.3-3 microM) caused an additional 24-fold increase in cAMP. Maximal cAMP with the highest concentration tested was the same as the maximal response with secretin, vasoactive intestinal peptide (VIP), peptide histidine isoleucine, helodermin, or helospectin-I. In terms of amylase release, exendin-3 had the same efficacy but was the least potent of these peptides. Exendin-3-induced increases in amylase release were inhibited by VIP receptor antagonists and the new peptide (greater than 0.1 microM) competed with radiolabeled VIP for binding sites on dispersed acini. Increasing concentrations of an exendin-3 fragment, exendin-3(9-39) amide, did not increase cAMP or amylase release but inhibited the increase in cAMP observed with 0.1-3 nM exendin-3. The fragment did not alter the effects of other peptides that are known to increase acinar cAMP. We conclude that exendin-3 interacts with at least two receptors on guinea pig pancreatic acini; at high concentrations (greater than 100 nM) the peptide interacts with VIP receptors, thereby causing a large increase in cAMP and stimulating amylase release; at lower concentrations (0.1-3 nM) the peptide interacts with a putative exendin receptor, thereby causing a smaller increase in cAMP of undetermined function. Exendin-3(9-39) amide is a specific exendin receptor antagonist.

  16. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity.

    Directory of Open Access Journals (Sweden)

    Guillaume Dalmasso

    Full Text Available BACKGROUND: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. RESULTS: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1 promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by approximately 2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles. CONCLUSIONS: Collectively, our results demonstrate that butyrate increases PepT1 expression and activity in colonic epithelial cells, which provides a new understanding of PepT1 regulation during chronic inflammation.

  17. Expression of Trans- and Paracellular Calcium and Magnesium Transport Proteins in Renal and Intestinal Epithelia During Lactation

    DEFF Research Database (Denmark)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per

    2017-01-01

    Significant alterations in maternal calcium (Ca2+) and magnesium (Mg2+) balance occur during lactation. Ca2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca2+ transport. Mg2+ is also concentrated in breast milk...

  18. Effects of 1 alpha,25-Dihydroxyvitamin D-3 on Transporters and Enzymes of the Rat Intestine and Kidney In Vivo

    NARCIS (Netherlands)

    Chow, Edwin C. Y.; Sun, Huadong; Khan, Ansar A.; Groothuis, Geny M. M.; Pang, K. Sandy

    1 alpha,25-Dihydroxyvitamin D-3 (1,25(OH)(2)D-3), the natural ligand of the vitamin D receptor (VDR), was found to regulate bile acid related transporters and enzymes directly and indirectly in the rat intestine and liver in vivo. The kidney is another VDR-rich target organ in which VDR regulation

  19. Regulating Ion Transport in Peptide Nanotubes by Tailoring the Nanotube Lumen Chemistry.

    Science.gov (United States)

    Ruiz, Luis; Benjamin, Ari; Sullivan, Matthew; Keten, Sinan

    2015-05-07

    We use atomistic nonequilibrium molecular dynamics simulations to demonstrate how specific ionic flux in peptide nanotubes can be regulated by tailoring the lumen chemistry through single amino acid substitutions. By varying the size and polarity of the functional group inserted into the nanotube interior, we are able to adjust the Na(+) flux by over an order of magnitude. Cl(-) is consistently denied passage. Bulky, nonpolar groups encourage interactions between the Na(+) and the peptide backbone carbonyl groups, disrupting the Na(+) solvation shell and slowing the transport of Na(+). Small groups have the opposite effect and accelerate flow. These results suggest that relative ion flux and selectivity can be precisely regulated in subnanometer pores by molecularly defining the lumen according to biological principles.

  20. Short bowel patients treated for two years with glucagon-like Peptide 2: effects on intestinal morphology and absorption, renal function, bone and body composition, and muscle function

    DEFF Research Database (Denmark)

    Jeppesen, P B; Lund, P; Gottschalck, I B

    2009-01-01

    demonstrated in energy intake or absorption, and GLP-2 did not significantly affect mucosal morphology, body composition, bone mineral density or muscle function. CONCLUSIONS: GLP-2 treatment reduces fecal weight by approximately 1000 g/d and enables SBS patients to maintain their intestinal fluid......BACKGROUND AND AIMS: In a short-term study, Glucagon-like peptide 2 (GLP-2) has been shown to improve intestinal absorption in short bowel syndrome (SBS) patients. This study describes longitudinal changes in relation to GLP-2 treatment for two years. METHODS: GLP-2, 400 micrograms, s.c.,TID, were...... and bone mineral density (by DEXA), biochemical markers of bone turnover (by s-CTX and osteocalcin, PTH and vitamin D), and muscle function (NMR, lungfunction, exercise test) were measured. RESULTS: GLP-2 compliance was >93%. Three of eleven patients did not complete the study. In the remaining 8 patients...

  1. Transporter mRNA expression in a conditionally immortalized rat small intestine epithelial cell line (TR-SIE).

    Science.gov (United States)

    Hosoya, Ken-ichi; Tomi, Masatoshi; Takayama, Megumi; Komokata, Yuko; Nakai, Daisuke; Tokui, Taro; Nishimura, Kenji; Ueda, Masatsugu; Obinata, Masuo; Hori, Satoko; Ohtsuki, Sumio; Amidon, Gordon L; Terasaki, Tetsuya

    2004-08-01

    Small intestine epithelial cell lines (TR-SIE), which are established from the small intestine of transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen gene (tsA58 Tg rat), were used to characterize the mRNA expression of small intestine transporters. TR-SIE cells had a polygonal morphology and expressed cytokeratin protein and villin mRNA. Although the large T-antigen was strongly expressed at 33 degrees C, this was reduced at 37 and 39 degrees C. Concomitantly, the cell growth was arrested at 37 and 39 degrees C compared with that at 33 degrees C, suggesting that TR-SIE cells are conditionally immortalized cell lines. RT-PCR analysis revealed that TR-SIE cells expressed ABCB1 (mdr1a and mdr1b), ABCB4 (mdr2), ABCC2 (mrp2), ABCC6 (mrp6), ABCG1, ABCG2 (bcrp/mxr), Slc21a7 (Oatp3), Slc15a1 (PepT1), and Slc16a1 (Mct1). Conditionally immortalized rat small intestine epithelial cell lines were established from tsA58 Tg rats and expressed the mRNA of intestinal transporters.

  2. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation.

    Science.gov (United States)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per; Skjødt, Karsten; Alexander, R Todd; Dimke, Henrik

    2017-09-01

    Significant alterations in maternal calcium (Ca 2+ ) and magnesium (Mg 2+ ) balance occur during lactation. Ca 2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca 2+ transport. Mg 2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca 2+ and Mg 2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca 2+ , but not Mg 2+ , rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca 2+ and Mg 2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D 28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca 2+ and Mg 2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca 2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca 2+ uptake by the kidney. Copyright © 2017 the American Physiological Society.

  3. Intestinal growth adaptation and glucagon-like peptide 2 in rats with ileal--jejunal transposition or small bowel resection

    DEFF Research Database (Denmark)

    Thulesen, J; Hartmann, B; Kissow, Hannelouise

    2001-01-01

    -jejunal transposition, resection of the proximal or distal half of the small intestine, and appropriate sham-operated controls. After two weeks, ileal-jejunal transposition led to pronounced growth of the transposed segment and also of the remaining intestinal segments. Plasma GLP-2 levels increased twofold, whereas...... GLP-2 levels in the intestinal segments were unchanged. In resected rats with reduced intestinal capacity, adaptive small bowel growth was more pronounced following proximal resection than distal small bowel resection. Circulating GLP-2 levels increased threefold in proximally resected animals...... with increased plasma levels of GLP-2, and GLP-2 seems to act in an endocrine as well as a paracrine manner....

  4. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Eiichi [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Hosokawa, Masaya [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Faculty of Human Sciences, Tezukayama Gakuin University, Osaka (Japan); Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Tsukiyama, Katsushi; Yamada, Yuichiro [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Department of Internal Medicine, Division of Endocrinology, Diabetes and Geriatric Medicine, Akita University School of Medicine, Akita (Japan); Seino, Yutaka [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Kansai Electric Power Hospital, Osaka (Japan); Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); CREST of Japan Science and Technology Cooperation (JST), Kyoto (Japan)

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin

  5. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    International Nuclear Information System (INIS)

    Ogawa, Eiichi; Hosokawa, Masaya; Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito; Tsukiyama, Katsushi; Yamada, Yuichiro; Seino, Yutaka; Inagaki, Nobuya

    2011-01-01

    Research highlights: → Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. → Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. → The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [ 14 C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [ 14 C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather

  6. Enteral nutrients potentiate glucagon-like peptide-2 action and reduce dependence on parenteral nutrition in a rat model of human intestinal failure

    DEFF Research Database (Denmark)

    Brinkman, Adam S; Murali, Sangita G; Hitt, Stacy

    2012-01-01

    Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that shows promise for the treatment of short bowel syndrome (SBS). Our objective was to investigate how combination GLP-2 + enteral nutrients (EN) affects intestinal adaption in a rat model that mimics severe...... human SBS and requires parenteral nutrition (PN). Male Sprague-Dawley rats were assigned to one of five groups and maintained with PN for 18 days: total parenteral nutrition (TPN) alone, TPN + GLP-2 (100 μg·kg(-1)·day(-1)), PN + EN + GLP-2(7 days), PN + EN + GLP-2(18 days), and a nonsurgical oral...

  7. Hydrodynamic Impacts on Dissolution, Transport and Absorption from Thousands of Drug Particles Moving within the Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, James G.

    2017-11-01

    Following tablet disintegration, clouds of drug particles 5-200 μm in diameter pass through the intestines where drug molecules are absorbed into the blood. Release rate depends on particle size, drug solubility, local drug concentration and the hydrodynamic environment driven by patterned gut contractions. To analyze the dynamics underlying drug release and absorption, we use a 3D lattice Boltzmann model of the velocity and concentration fields driven by peristaltic contractions in vivo, combined with a mathematical model of dissolution-rate from each drug particle transported through the grid. The model is empirically extended for hydrodynamic enhancements to release rate by local convection and shear-rate, and incorporates heterogeneity in bulk concentration. Drug dosage and solubility are systematically varied along with peristaltic wave speed and volume. We predict large hydrodynamic enhancements (35-65%) from local shear-rate with minimal enhancement from convection. With high permeability boundary conditions, a quasi-equilibrium balance between release and absorption is established with volume and wave-speed dependent transport time scale, after an initial transient and before a final period of dissolution/absorption. Supported by FDA.

  8. Intestinal Transportations of Main Chemical Compositions of Polygoni Multiflori Radix in Caco-2 Cell Model

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2014-01-01

    Full Text Available Context. Polygoni Multiflori Radix (PMR is originated from the root of Polygonum multiflorum Thunb. and used in oriental countries for centuries. However, little researches pay close attention to the absorption of its major constituents. Objective. Transepithelial transport of TSG, RL, PL, and four anthraquinones is carried out. Materials and Methods. Caco-2 cell monolayer, which represented a well-established model for the study of intestinal transport of nutrients and xenobiotics, was used in this paper. Results. The apparent permeability coefficients (Papp in the Caco-2 cell monolayers were TSG (2.372 × 10−9 < EG (2.391 × 10−9 < EN (2.483 × 10−9 < PL (4.917 × 10−9 < RN (1.707 × 10−8 < RL (1.778 × 10−8 < AE (1.952 × 10−8. Thus, RN, RL, and AE were considered partly absorbed, while other constituents were hardly absorbed. Discussion and Conclusion. Glycosides showed poor permeabilities than aglycones. In the meantime, TSG and EN gave out poor recovery rates in this assay, which indicated that TSG and EN may accumulate or metabolise in the Caco-2 cells. In silico prediction indicated that Gibbs energy (r=0.751, p<0.05 and heat of form (r=0.701, p<0.05 were strongly positively correlated with Papp.

  9. Computational Studies of Drug Release, Transport and Absorption in the Human Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, J. G.; Vijayakumar, G.; Jayaraman, B.; Wang, Y.

    2016-11-01

    Following disintegration of a drug tablet, a cloud of particles 10-200 μm in diameter enters the small intestine where drug molecules are absorbed into the blood. Drug release rate depends on particle size, solubility and hydrodynamic enhancements driven by gut motility. To quantify the interrelationships among dissolution, transport and wall permeability, we apply lattice Boltzmann method to simulate the drug concentration field in the 3D gut released from polydisperse distributions of drug particles in the "fasting" vs. "fed" motility states. Generalized boundary conditions allow for both solubility and gut wall permeability to be systematically varied. We apply a local 'quasi-steady state' approximation for drug dissolution using a mathematical model generalized for hydrodynamic enhancements and heterogeneity in drug release rate. We observe fundamental differences resulting from the interplay among release, transport and absorption in relationship to particle size distribution, luminal volume, motility, solubility and permeability. For example, whereas smaller volume encourages higher bulk concentrations and reduced release rate, it also encourages higher absorption rate, making it difficult to generalize predictions. Supported by FDA.

  10. Intestinal Transportations of Main Chemical Compositions of Polygoni Multiflori Radix in Caco-2 Cell Model

    Science.gov (United States)

    Li, Na; Lin, Pei; Li, Yunfei; Mao, Xiaojian; Bao, Getuzhaori; Zhao, Ronghua

    2014-01-01

    Context. Polygoni Multiflori Radix (PMR) is originated from the root of Polygonum multiflorum Thunb. and used in oriental countries for centuries. However, little researches pay close attention to the absorption of its major constituents. Objective. Transepithelial transport of TSG, RL, PL, and four anthraquinones is carried out. Materials and Methods. Caco-2 cell monolayer, which represented a well-established model for the study of intestinal transport of nutrients and xenobiotics, was used in this paper. Results. The apparent permeability coefficients (P app) in the Caco-2 cell monolayers were TSG (2.372 × 10−9) < EG (2.391 × 10−9) < EN (2.483 × 10−9) < PL (4.917 × 10−9) < RN (1.707 × 10−8) < RL (1.778 × 10−8) < AE (1.952 × 10−8). Thus, RN, RL, and AE were considered partly absorbed, while other constituents were hardly absorbed. Discussion and Conclusion. Glycosides showed poor permeabilities than aglycones. In the meantime, TSG and EN gave out poor recovery rates in this assay, which indicated that TSG and EN may accumulate or metabolise in the Caco-2 cells. In silico prediction indicated that Gibbs energy (r = 0.751, p < 0.05) and heat of form (r = 0.701, p < 0.05) were strongly positively correlated with P app. PMID:24693324

  11. The effect of active immunization against vasoactive intestinal peptide (VIP) and inhibin on reproductive performance of aging White Leghorn roosters.

    Science.gov (United States)

    Avital-Cohen, N; Heiblum, R; Argov, N; Rosenstrauch, A; Chaiseha, Y; Mobarkey, N; Rozenboim, I

    2012-01-01

    Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters

  12. Vasoactive intestinal peptide induces CD14+HLA-DR‑/low myeloid-derived suppressor cells in gastric cancer.

    Science.gov (United States)

    Li, Gang; Wu, Ke; Tao, Kaixiong; Lu, Xiaoming; Ma, Jianhua; Mao, Zhengqiang; Li, Hang; Shi, Liang; Li, Jing; Niu, Yanfeng; Xiang, Fan; Wang, Guobin

    2015-07-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells, which have been revealed to inhibit T-cell responses in tumor-bearing mice. In addition, a number of immune suppressive mechanisms have linked MDSCs and the development of human cancer. However, the role of MDSCs in human gastric cancer tissue remains to be elucidated as specific markers are lacking. Therefore, the aim of the present study was to investigate the frequency and immune suppressive function of MDSCs denoted in the present study as cluster of differentiation 14 (CD14)+human leukocyte antigen (HLA)-DR-/low in gastric cancer patients. In the present study, MDSCs were directly isolated and characterized from the tumor and adjacent normal tissue of gastric cancer patients. Functional analysis of the CD14+HLA-DR-/low MDSCs co-cultured with allogeneic CD4+ T cells were performed and compared with controls. In addition, the interferon-γ (IFN-γ) and interleukin (IL)-2 production was compared in order to investigate the capacity of vasoactive intestinal peptide (VIP) to induce CD14+HLA-DR(-/low) MDSC-mediated CD4+ T-cell dysfunction and whether IL-10 secretion is involved in this mechanism. As a result, the quantity of CD14+HLA-DR(-/low) cells in tumor tissue from gastric cancer patients was significantly higher than that in the adjacent normal tissue. In addition, CD14+HLA-DR-/low MDSCs isolated from tumor tissue were observed to inhibit the CD4+ T-cells' immune responses in comparison with those from the adjacent normal tissue. Furthermore, VIP was able to induce the differentiation of CD14+ mononuclear cells isolated from healthy donor peripheral blood mononuclear cells into activated MDSC cells. Of note, the immunosuppressive effect of VIP-induced CD14+HLA-DR(-/low) MDSCs on CD4+ T cells was mediated by IL-10 secretion, which was demonstrated in the subsequent decrease of IFN-γ and IL-2 production. In conclusion, CD14+HLA-DR(-/low) cells were significantly increased in gastric

  13. Effects of borneol on the intestinal transport and absorption of two P-glycoprotein substrates in rats.

    Science.gov (United States)

    He, Huijuan; Shen, Qi; Li, Jian

    2011-07-01

    As the most prevalent route of delivery, oral administration has the challenge of potentially low bioavailability in part because P-glycoprotein (P-gp) in the intestinal tract affects absorption. Therefore, absorption enhancers or P-gp inhibitors are strategies to solve this problem. The aim of the present study was to investigate the effects of borneol on transportation of colchicine and rhodamine123, two P-gp substrates, in rats. In vitro transportation was assessed with a diffusion chamber system with isolated rat intestines. Different concentrations of borneol (10, 40 and 80 μg/mL) were prepared in solutions with two P-gp substrates compared with blank solutions. The in vivo effects on colchicine were assessed by a pharmacokinetic study. Borneol enhanced the absorptive transport of two P-gp substrates, which was relevant to the concentration. A pharmacokinetic study showed that in the presence of borneol, a significant increase in C(max) and AUC(0→8) of colchicine occurred when compared to colchicine alone. The study showed that borneol affected two P-gp substrates in the intestine, possibly by inhibiting the effects of P-gp and enhancing intestinal absorption of drugs. Therefore, borneol could be developed as a P-gp inhibitor and absorptive enhancer.

  14. Absence of intestinal microbiota increases ß-cyclodextrin stimulated reverse cholesterol transport.

    Science.gov (United States)

    Mistry, Rima H; Verkade, Henkjan J; Tietge, Uwe J F

    2017-05-01

    Non-digestible oligosaccharides are used as prebiotics for perceived health benefits, among these modulating lipid metabolism. However, the mechanisms of action are incompletely understood. The present study characterized the impact of dietary ß-cyclodextrin (ßCD, 10%, w/w), a cyclic oligosaccharide, on sterol metabolism and reverse cholesterol transport (RCT) in conventional and also germ-free mice to establish dependency on metabolism by intestinal bacteria. In conventional ßCD-fed C57BL/6J wild-type mice plasma cholesterol decreased significantly (-40%, p < 0.05), largely within HDL, while fecal neutral sterol excretion increased (3-fold, p < 0.01) and fecal bile acid excretion was unchanged. Hepatic cholesterol levels and biliary cholesterol secretion were unaltered. Changes in cholesterol metabolism translated into increased macrophage-to-feces RCT in ßCD-administered mice (1.5-fold, p < 0.05). In germ-free C57BL/6J mice ßCD similarly lowered plasma cholesterol (-40%, p < 0.05). However, ßCD increased fecal neutral sterol excretion (7.5-fold, p < 0.01), bile acid excretion (2-fold, p < 0.05) and RCT (2.5-fold, p < 0.01) even more substantially in germ-free mice compared with the effect in conventional mice. In summary, this study demonstrates that ßCD lowers plasma cholesterol levels and increases fecal cholesterol excretion from a RCT-relevant pool. Intestinal bacteria decrease the impact of ßCD on RCT. These data suggest that dietary ßCD might have cardiovascular health benefits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The intestinotrophic peptide, glp-2, counteracts intestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, gefitinib

    DEFF Research Database (Denmark)

    Hare, Kristine Juul; Hartmann, Bolette; Kissow, Hannelouise

    2007-01-01

    of the segments of the gastrointestinal tract were determined, and histologic sections were analyzed by morphometric methods. RESULTS: A significant atrophy of the small-intestinal wall was observed after treatment with gefitinib because both intestinal weight and morphometrically estimated villus height...

  16. Neural regulation of intestinal nutrient absorption.

    Science.gov (United States)

    Mourad, Fadi H; Saadé, Nayef E

    2011-10-01

    The nervous system and the gastrointestinal (GI) tract share several common features including reciprocal interconnections and several neurotransmitters and peptides known as gut peptides, neuropeptides or hormones. The processes of digestion, secretion of digestive enzymes and then absorption are regulated by the neuro-endocrine system. Luminal glucose enhances its own absorption through a neuronal reflex that involves capsaicin sensitive primary afferent (CSPA) fibres. Absorbed glucose stimulates insulin release that activates hepatoenteric neural pathways leading to an increase in the expression of glucose transporters. Adrenergic innervation increases glucose absorption through α1 and β receptors and decreases absorption through activation of α2 receptors. The vagus nerve plays an important role in the regulation of diurnal variation in transporter expression and in anticipation to food intake. Vagal CSPAs exert tonic inhibitory effects on amino acid absorption. It also plays an important role in the mediation of the inhibitory effect of intestinal amino acids on their own absorption at the level of proximal or distal segment. However, chronic extrinsic denervation leads to a decrease in intestinal amino acid absorption. Conversely, adrenergic agonists as well as activation of CSPA fibres enhance peptides uptake through the peptide transporter PEPT1. Finally, intestinal innervation plays a minimal role in the absorption of fat digestion products. Intestinal absorption of nutrients is a basic vital mechanism that depends essentially on the function of intestinal mucosa. However, intrinsic and extrinsic neural mechanisms that rely on several redundant loops are involved in immediate and long-term control of the outcome of intestinal function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Vasoactive intestinal peptide test

    Science.gov (United States)

    ... release of hormones from the pancreas, gut, and hypothalamus, and increasing the amount of water and electrolytes ... the A.D.A.M. Editorial team. Pancreatic Cancer Read more NIH MedlinePlus Magazine Read more Health ...

  18. Altered expression of intestinal duodenal cytochrome b and divalent metal transporter 1 might be associated with cardio-renal anemia syndrome.

    Science.gov (United States)

    Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Okuno, Keisuke; Yasumura, Seiki; Okuhara, Yoshitaka; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Asakura, Masanori; Ishihara, Masaharu; Tsujino, Takeshi; Masuyama, Tohru

    2017-11-01

    The interaction among heart failure (HF), chronic kidney disease (CKD), and anemia is called cardio-renal anemia syndrome. The mechanism of anemia in cardio-renal anemia syndrome is complex and remains completely unknown. We have previously reported that impaired intestinal iron transporters may contribute to the mechanism of anemia in HF using in vivo HF model rats. In this study, we assessed intestinal iron transporters in CKD model rats to investigate the association of intestinal iron transporters in the mechanism of cardio-renal anemia syndrome. CKD was induced by 5/6 nephrectomy in Sprague-Dawley rats. Sham-operated rats served as a control. After 24-week surgery, CKD rats exhibited normocytic normochromic anemia and normal serum erythropoietin levels despite of anemia. Serum iron levels were decreased in CKD rats compared with the controls. Of interest, intestinal expression of critical iron importers, such as duodenal cytochrome b (Dcyt-b) and divalent metal transporter 1 (DMT-1), was decreased in CKD rats compared with the controls. On the other hand, intestinal expression of ferroportin, an intestinal iron exporter, was not different in the control and CKD groups. Moreover, hepatic expression of hepcidin, a regulator of iron homeostasis, did not differ between the control and CKD groups. These results suggest that impaired intestinal expression of Dcyt-b and DMT-1 might be associated with the reduction of an iron uptake in CKD. Taken together, impaired these intestinal iron transporters may become a novel therapeutic target for cardio-renal anemia syndrome.

  19. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models.

    Science.gov (United States)

    Gleeson, John P; Brayden, David J; Ryan, Sinéad M

    2017-06-01

    Ile-Pro-Pro (IPP) and Leu-Lys-Pro (LKP) are food-derived antihypertensive peptides which inhibit angiotensin-converting enzyme (ACE) and may have potential to attenuate hypertension. There is debate over their mechanism of uptake across small intestinal epithelia, but paracellular and PepT1 carrier-mediated uptake are thought to be important routes. The aim of this study was to determine their routes of intestinal permeability using in vitro, ex vivo and in vivo intestinal models. The presence of an apical side pH of 6.5 (mimicking the intestinal acidic microclimate) and of Gly-Sar (a high affinity competitive inhibitor and substrate for PepT1) were tested on the transepithelial apical to basolateral (A to B) transport of [ 3 H]-IPP and [ 3 H]-LKP across filter-grown Caco-2 monolayers in vitro and rat jejunal mucosae ex vivo. A buffer pH of 6.5 on the apical side enabled Gly-Sar to reduce the apparent permeability (P app ) of [ 3 H]-IPP and [ 3 H]-LKP, but this inhibition was not evident at an apical buffer pH of 7.4. Gly-Sar reduced the P app across isolated jejunal mucosae and the area under the curve (AUC) in intra-jejunal instillations when the apical/luminal buffer pH was either 7.4 or 6.5. However, the jejunal surface acidic pH was maintained in rat jejunal tissue even when the apical side buffer pH was 7.4 due to the presence of the microclimate which is not present in monolayers. PepT1 expression was confirmed by immunofluorescence on monolayers and brush border of rat jejunal tissue. This data suggest that IPP and LKP are highly permeable and cross small intestinal epithelia in part by the PepT1 transporter, with an additional contribution from the paracellular route. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 cells

    NARCIS (Netherlands)

    Vaessen, S.F.C.; Lipzig, M.M.H. van; Pieters, R.H.H.; Krul, C.A.M.; Wortelboer, H.M.; Steeg, E. van de

    2017-01-01

    Intestinal transporter proteins and metabolizing enzymes play a crucial role in the oral absorption of a wide variety of drugs. The aim of the current study was to characterize better available intestinal in vitro models by comparing expression levels of these proteins and enzymes between porcine

  1. Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 cells

    NARCIS (Netherlands)

    Vaessen, Stefan F C; van Lipzig, Marola M H; Pieters, Raymond H H; Krul, Cyrille A M; Wortelboer, Heleen M; van de Steeg, Evita

    2017-01-01

    Intestinal transporter proteins and metabolizing enzymes play a crucial role in the oral absorption of a wide variety of drugs. The aim of the current study was to better characterize available intestinal in vitro models by comparing expression levels of these proteins and enzymes between porcine

  2. Evaluation of a possible direct effect by casein phosphopeptides on paracellular and vitamin D controlled transcellular calcium transport mechanisms in intestinal human HT-29 and Caco2 cell lines.

    Science.gov (United States)

    Colombini, Alessandra; Perego, Silvia; Ardoino, Ilaria; Marasco, Emiliano; Lombardi, Giovanni; Fiorilli, Amelia; Biganzoli, Elia; Tettamanti, Guido; Ferraretto, Anita

    2013-08-01

    Intestinal cells are continuously exposed to food whose components are able to modulate some of their physiological functions. Among the bioactive food derivatives are casein phosphopeptides (CPPs), coming from the in vitro or in vivo casein digestion, which display the ability to form aggregates with calcium ions and to increase the uptake of the minerals in differentiated intestinal human HT-29 and Caco2 cells. Since extracellular calcium is a known inactivator of the TRPV6 channel, which is also involved in the colon cancer progression, the present study aims to determine a possible modulation by CPPs of the molecular structures responsible for paracellular and/or transcellular calcium absorption in these two cell lines. The paracellular calcium transport was determined by TEER measurements in Caco2 cells and by Lucifer Yellow flow in HT-29 cells. The possible modulation of transcellular calcium absorption machinery by CPPs was investigated by determining the mRNA expression for both the TRPV6 calcium channel and the VDR receptor in 1,25(OH)₂D₃ pre-treated undifferentiated/differentiated cells. The results obtained point out that: (i) CPPs do not affect paracellular calcium absorption; (ii) 1,25(OH)₂D₃ increases the TRPV6 mRNA expression in both types of cells. In the case of HT-29 cells this is the first determination of the presence of the TRPV6 channel; (iii) CPPs per se are not able to affect the VDR and TRPV6 mRNA expression; (iv) CPP administration does not affect the TRPV6 mRNA expression in 1,25(OH)₂D₃ pre-treated HT-29 cells and Caco2 cells. Unlike peptides coming from the digestion of cheese whey protein digest, the digestion of milk casein produces peptides with no effects on TRPV6 calcium channel expression, though the same peptides are able to determine a calcium uptake by the intestinal cells.

  3. Somatostatin, substance P and calcitonin gene-related peptide-positive intramural nerve structures of the human large intestine affected by carcinoma.

    Directory of Open Access Journals (Sweden)

    Jerzy Kaleczyc

    2010-11-01

    Full Text Available The aim of this study was to investigate the arrangement and chemical coding of enteric nerve structures in the human large intestine affected by cancer. Tissue samples comprising all layers of the intestinal wall were collected during surgery form both morphologically unchanged and pathologically altered segments of the intestine (n=15, and fixed by immersion in buffered paraformaldehyde solution. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5 and their chemical coding using antibodies against somatostatin (SOM, substance P (SP and calcitonin gene-related peptide (CGRP. The microscopic observations revealed distinct morphological differences in the enteric nerve system structure between the region adjacent to the cancer invaded area and the intact part of the intestine. In general, infiltration of the cancer tissue resulted in the gradual (depending on the grade of invasion first decomposition and reduction to final partial or complete destruction and absence of the neuronal elements. A comparative analysis of immunohistochemically labeled sections (from the unchanged and pathologically altered areas revealed a statistically significant decrease in the number of CGRP-positive neurons and nerve fibres in both submucous and myenteric plexuses in the transitional zone between morphologically unchanged and cancer-invaded areas. In this zone, a decrease was also observed in the density of SP-positive nerve fibres in all intramural plexuses. Conversely, the investigations demonstrated statistically insignificant differences in number of SP- and SOM-positive neurons and a similar density of SOM-positive nerve fibres in the plexuses of the intact and pathologically changed areas. The differentiation between the potential adaptive changes in ENS or destruction of its elements by cancer invasion should be

  4. A Macrocyclic Peptide that Serves as a Cocrystallization Ligand and Inhibits the Function of a MATE Family Transporter

    Directory of Open Access Journals (Sweden)

    Hiroaki Suga

    2013-08-01

    Full Text Available The random non-standard peptide integrated discovery (RaPID system has proven to be a powerful approach to discover de novo natural product-like macrocyclic peptides that inhibit protein functions. We have recently reported three macrocyclic peptides that bind to Pyrococcus furiosus multidrug and toxic compound extrusion (PfMATE transporter and inhibit the transport function. Moreover, these macrocyclic peptides were successfully employed as cocrystallization ligands of selenomethionine-labeled PfMATE. In this report, we disclose the details of the RaPID selection strategy that led to the identification of these three macrocyclic peptides as well as a fourth macrocyclic peptide, MaD8, which is exclusively discussed in this article. MaD8 was found to bind within the cleft of PfMATE’s extracellular side and blocked the path of organic small molecules being extruded. The results of an ethidium bromide efflux assay confirmed the efflux inhibitory activity of MaD8, whose behavior was similar to that of previously reported MaD5.

  5. 123I labelled vasoactive intestinal peptide: Optimization of the radioiodination method, in vivo and in vitro assays

    International Nuclear Information System (INIS)

    Pozzi, O.R.; Sajaroff, E.O.; Edreira, M.; Gomez, S.I.; Manzini, A.

    2002-01-01

    In the framework of the CRP, our country has worked on the optimization of synthesis, quality control, in vitro and in vivo evaluation of 123 I radiopharmaceuticals based on peptides. We have worked on selective labelling procedures using prosthetic groups with the goal to create a strong carbon-halogen bond, which will be resistant to in vivo dehalogenation and other catabolic processes. The method utilizes the labelling agent, reactive with ε-amino lysine groups, N-succinimidyl 3-iodobenzoate. This conjugation agent was radiolabelled by using an organometallic intermediate to facilitate the reaction. The organometallic N-succinimidyl 3-(tri-nbutylstannyl) benzoate (ATE) was made in a three-step synthesis pathway. The yields for the reactions of this synthetic pathway were: 56.4% for the first reaction, 67% for the second, and 58% for the ATE (469 mg, 0.92 mmol). Because of only 0.1 μmol of ATE is needed for the labelling of peptides, from one batch of organic synthesis we obtained ATE to make more than 9000 labelling. The N-succinimidyl 3-(tri-n-butylstannyl) benzoate (ATE) was radiolabelled in 55-85% radiochemical yield to obtain the N-succinimidyl 3-iodobenzoate ( [ 131 I]SIB ). Parameters like reactive concentration and isolation method of the labelling agent were studied. The labelling agent [ 131 I]SIB was subsequently conjugated to a human IgG and a peptide. A chemotactic peptide was used as a model peptide. A potent chemotactic peptide N-formyl-norleucyl-leucyl-phenylalanyl-norleucyltyrosyl- lysine (fNleLFNleYK) was derivatized by reaction with the labelling agent in 59-75% of radiochemical yield. This derivatized peptide bound specifically to human polymorphonuclear leukocytes in vitro and exhibited biological activity in a superoxide production assay. Binding affinity IC 50 : 36 nM, in the displacing of [ 3 H]fMLF binding, and IC 50 : 68 nM, in the displacing of the fNleLFNleYK-[ 131 I]SIB conjugate, for the derivatized peptide were obtained. Because

  6. Development of small intestinal enzyme activities and their relationship with some gut regulatory peptides in grazing sheep.

    Science.gov (United States)

    Wang, C L; Lang, X; Wu, P J; Casper, D P; Li, F D

    2017-08-01

    Growth depends on an animal's capacity to digest and assimilate ingested nutrients, and insufficient supply and impairment will constrain lamb growth. Eight groups of Alpine Finewool lambs were harvested on 0, 3, 7, 14, 21, 28, 42, and 56 d to measure pH and enzymatic activities in the duodenum, proximal jejunum, middle jejunum, distal jejunum, and ileum mucosa or digesta. From the duodenum to the ileum the pH of intestinal mucosa and digesta increased, whereas pH changed very little with age. The trypsin, chymotrypsin, lipase, lactase, and α-amylase activities observed at birth decreased by d 3, followed by a nonuniform enzymatic response in the small intestine. The trypsin activity increased from d 3 to peak, at d 21, followed by a decline. Chymotrypsin activity followed the same general trend but with smaller responses in activities. Trypsin demonstrated greater enzymatic activity than chymotrypsin at the same age. The lipase activity of small intestinal mucosa and digesta changed little with age. The lactase activity was high at birth, decreased by d 3, and then increased, followed by a decrease as lambs approached weaning. α-Amylase activity was similar in the small intestinal mucosa and digesta at birth but increased with age for the duodenum and proximal jejunum. Plasma concentrations of cholecystokinin (CCK), secretin, and gastrin were positively correlated ( 0.05). Small intestinal enzymatic activities exist and may be sufficient to enhance lamb growth via appropriate nutrient supplementation.

  7. Effects of Incubation Temperature and Transportation Stress on Yolk Utilization, Small Intestine Development, and Post-Hatch Performance of High-Yield Broiler Chicks

    OpenAIRE

    Barri, Adriana

    2008-01-01

    Growth and performance parameters of broiler chicks depend on adequate development of the small intestine. Stressors such as elevated or decreased temperatures during incubation and post-hatch transportation may have an effect on the gastrointestinal development of the broiler chick. The objective of the first study was to investigate the effects of elevated embryonic incubation temperature (IT) on post-hatch relative nutrient transporter gene expression, integrity of the intestinal epithel...

  8. Energetic and frictional effects in the transport of ions in a cyclic peptide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yongil; Song, Yeon Ho; Hwang, Hyeon Seok [Dept. of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon (Korea, Republic of); Schatz, George C. [Dept. of Chemistry, Northwestern University, Evanston (United States)

    2017-01-15

    The effects of geometric restraints and frictional parameters on the energetics and dynamics of ion transport through a synthetic ion channel are investigated using molecular dynamics (MD) simulations for several different ions. To do so, potential of mean force profiles and position-dependent diffusion coefficients for Na{sup +}, K{sup +}, Ca{sup 2+}, and Cl{sup −} transport through a simple cyclic peptide nanotube, which is composed of 4× cyclo[−(D-Ala-Glu-D-Ala-Gln){sub 2−}] rings, are calculated via an adaptive biasing force MD simulation method and a Baysian inference/Monte Carlo algorithm. Among the restraints and parameters examined in this work, the radius parameter used in the flat-bottom half-harmonic restraint at the entrance and exit to channel has a great effect on the energetics of ion transport through the variation of entropy in the outside of the channel. The diffusivity profiles for the ions show a strong dependence on the damping coefficient, but the dependence on the coefficient becomes minimal inside the channel, indicating that the most important factor which affects the diffusivity of ions inside the channel is local interactions of ions with the structured channel water molecules through confinement.

  9. Glucagon-like peptide 2 dose-dependently activates intestinal cell survival and proliferation in neonatal piglets

    DEFF Research Database (Denmark)

    Burrin, Douglas G; Stoll, Barbara; Guan, Xinfu

    2005-01-01

    saline or GLP-2 at three rates (2.5, 5.0, and 10.0 nmol.kg(-1).d(-1)) for 7 d. Plasma GLP-2 concentrations ranged from 177 +/- 27 to 692 +/- 85 pM in the low- and high-infusion groups, respectively. GLP-2 infusion dose-dependently increased small intestinal weight, DNA and protein content, and villus...... of caspase-3 and -6 and active caspase-3 abundance decreased, yet procaspase-3 abundance increased markedly with increasing infusion rate and plasma concentration of GLP-2. The GLP-2-dose-dependent suppression of intestinal apoptosis and caspase-3 activity was associated with increased protein kinase B...... is concentration dependent at physiological GLP-2 concentrations; however, induction of cell proliferation and protein synthesis is a pharmacological response. Moreover, we show that GLP-2 stimulates intestinal cell survival and proliferation in association with induction of protein kinase B and glycogen...

  10. Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, and peptide YY concentrations

    DEFF Research Database (Denmark)

    Ellrichmann, Mark; Kapelle, Mario; Ritter, Peter R

    2008-01-01

    whether Orlistat alters the secretion of glucagon-like peptide-1-(7-36)-amide (GLP-1), cholecystokinin (CCK), peptide YY (PYY), and ghrelin as well as postprandial appetite sensations. METHODS: Twenty-five healthy human volunteers were examined with a solid-liquid test meal after the oral administration...... the postprandial secretion of GLP-1, PYY and CCK. These changes in gastrointestinal hormone concentrations may raise appetite sensations and increase food consumption and should therefore be considered as potential side effects when applying lipase inhibitors for the treatment of morbid obesity....... of Orlistat or placebo. Gastric emptying, gallbladder volume and the plasma levels of CCK, PYY, GLP-1, and ghrelin were determined and appetite sensations were measured using visual analogue scales. RESULTS: Gastric emptying was accelerated by Orlistat administration (P whereas gallbladder emptying...

  11. Effect of maternal diabetes on postnatal development of brush border enzymes and transport functions in rat intestine.

    Science.gov (United States)

    Sharma, Ruchi; Kaur, Jyotdeep; Mahmood, Akhtar

    2009-07-01

    The effect of alloxan-induced maternal diabetes has been studied on the postnatal development of brush border enzymes in rat intestine. Diabetes was induced by injecting alloxan in rat mothers on day 3 of gestation. There was no change in gestational period (22 days) in control and diabetic groups; however, the litter size was reduced (P border enzymes revealed elevated levels of lactase (76%), sucrase (46%), maltase (25%), trehalase (38%), alkaline phosphatase (57%), and leucine aminopeptidase (56%) up to 21 days of postnatal age in diabetic group compared with controls. However, in 30- to 45-day-old animals, the enzyme levels were either reduced in diabetic group or there was no change compared with controls. Western blot analysis corroborated the enzyme analysis data in purified brush borders. Also, 45 days after birth, the intestinal uptake of D-glucose and glycine was significantly high (30%-61%) in pups from diabetic dams compared with controls. These findings indicate that alloxan-induced maternal diabetes influences the postnatal development of intestine and the expression of various brush border enzymes and transport functions in rat intestine. This could affect the growth and development of the offspring during the postnatal period.

  12. Modulation of cytochrome P450 metabolism and transport across intestinal epithelial barrier by ginger biophenolics.

    Directory of Open Access Journals (Sweden)

    Rao Mukkavilli

    Full Text Available Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural "milieu" confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G, 8-gingerol (8 G, 10-gingerol (10 G and 6-shogaol (6S, through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE's inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp. Intriguingly, however, 10 G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens.

  13. Involvement of organic anion transporting polypeptide 1a5 (Oatp1a5) in intestinal absorption of endothelin receptor antagonist in rats

    DEFF Research Database (Denmark)

    Tani, Takeshe; Gram, Luise Kvisgaard; Arakawa, Hiroshi

    2008-01-01

    PURPOSE: To assess the contribution of organic anion transporting polypeptide 1a5 (Oatp1a5/Oatp3) in the intestinal absorption of an orally active endothelin receptor antagonist, (+)-(5S,6R,7R)-2-butyl-7-[2-((2S)-2-carboxypropyl)-4-methoxyphenyl]-5-(3,4-methylene-dioxyphenyl)cyclopenteno[1,2-b...... and taurocholic acid. CONCLUSIONS: These results consistently suggested that Oatp1a5 is contributing to the intestinal absorption of compound-A at least in part, and the transporter-mediated absorption seems to be maximized at the acidic microenvironment of epithelial cells in the small intestine in rats....

  14. Lipid Absorption Defects in Intestine-specific Microsomal Triglyceride Transfer Protein and ATP-binding Cassette Transporter A1-deficient Mice*

    Science.gov (United States)

    Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood

    2013-01-01

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513

  15. Transport of the Glucosamine-Derived Browning Product Fructosazine (Polyhydroxyalkylpyrazine) Across the Human Intestinal Caco-2 Cell Monolayer: Role of the Hexose Transporters.

    Science.gov (United States)

    Bhattacherjee, Abhishek; Hrynets, Yuliya; Betti, Mirko

    2017-06-14

    The transport mechanism of fructosazine, a glucosamine self-condensation product, was investigated using a Caco-2 cell model. Fructosazine transport was assessed by measuring the bidirectional permeability coefficient across Caco-2 cells. The mechanism of transport was evaluated using phlorizin, an inhibitor of sodium-dependent glucose cotransporters (SGLT) 1 and 2, phloretin and quercetin, inhibitors of glucose transporters (GLUT) 1 and 2, transcytosis inhibitor wortmannin, and gap junction disruptor cytochalasin D. The role of hexose transporters was further studied using downregulated or overexpressed cell lines. The apparent permeability (P a,b ) of fructosazine was 1.30 ± 0.02 × 10 -6 cm/s. No significant (p > 0.05) effect was observed in fructosazine transport by adding wortmannin and cytochalasin D. The presence of phlorizin, phloretin, and quercetin decreased fructosazine transport. The downregulated GLUT cells line was unable to transport fructosazine. In human intestinal epithelial Caco-2 cells, GLUT1 or GLUT2 and SGLT are mainly responsible for fructosazine transport.

  16. Evaluation of leader peptides that affect the secretory ability of a multiple bacteriocin transporter, EnkT.

    Science.gov (United States)

    Sushida, Hirotoshi; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2018-02-13

    EnkT is a novel ATP-binding cassette (ABC) transporter responsible for secretion of four bacteriocins, enterocins NKR-5-3A, C, D, and Z (Ent53A, C, D, and Z), produced by Enterococcus faecium NKR-5-3. It is generally recognized that the secretion of a bacteriocin requires a dedicated ABC transporter, although molecular mechanisms of this secretion are yet to be revealed. In order to characterize the unique ability of EnkT to secrete multiple bacteriocins, the role of N-terminal leader peptides of bacteriocin precursors was evaluated using Ent53C precursor as a model. The 18-amino acid leader peptide of Ent53C (Lc) was modified by site-directed mutagenesis to generate various point mutations, truncations, or extensions, and substitutions with other leader peptides. The impact of these Lc mutations on Ent53C secretion was evaluated using a quantitative antimicrobial activity assay. We observed that Ent53C production increased with Ala substitution of the highly conserved C-terminal double glycine residues that are recognized as the cleavage site. In contrast, Ent53C antimicrobial activity decreased, with decrease in the length of the putative α-helix-forming region of Lc. Furthermore, EnkT recognized and transported Ent53C of the transformants possessing heterologous leader peptides of enterocin A, pediocin PA-1, brochocins A and B, and lactococcins Qα and Qβ. These results indicated that EnkT shows significant tolerance towards the sequence and length of leader peptides, to secrete multiple bacteriocins. This further demonstrates the functional diversity of bacteriocin ABC transporters and the importance of leader peptides as their recognition motif. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Concord and Niagara Grape Juice and Their Phenolics Modify Intestinal Glucose Transport in a Coupled in Vitro Digestion/Caco-2 Human Intestinal Model

    Directory of Open Access Journals (Sweden)

    Sydney Moser

    2016-07-01

    Full Text Available While the potential of dietary phenolics to mitigate glycemic response has been proposed, the translation of these effects to phenolic rich foods such as 100% grape juice (GJ remains unclear. Initial in vitro screening of GJ phenolic extracts from American grape varieties (V. labrusca; Niagara and Concord suggested limited inhibitory capacity for amylase and α-glucosidase (6.2%–11.5% inhibition; p < 0.05. Separately, all GJ extracts (10–100 µM total phenolics did reduce intestinal trans-epithelial transport of deuterated glucose (d7-glu and fructose (d7-fru by Caco-2 monolayers in a dose-dependent fashion, with 60 min d7-glu/d7-fru transport reduced 10%–38% by GJ extracts compared to control. To expand on these findings by assessing the ability of 100% GJ to modify starch digestion and glucose transport from a model starch-rich meal, 100% Niagara and Concord GJ samples were combined with a starch rich model meal (1:1 and 1:2 wt:wt and glucose release and transport were assessed in a coupled in vitro digestion/Caco-2 cell model. Digestive release of glucose from the starch model meal was decreased when digested in the presence of GJs (5.9%–15% relative to sugar matched control. Furthermore, transport of d7-glu was reduced 10%–38% by digesta containing bioaccessible phenolics from Concord and Niagara GJ compared to control. These data suggest that phenolics present in 100% GJ may alter absorption of monosaccharides naturally present in 100% GJ and may potentially alter glycemic response if consumed with a starch rich meal.

  18. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    DEFF Research Database (Denmark)

    Gräs, S; Ovesen, P; Andersen, A N

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicular...... fluid and cells were obtained from patients undergoing in-vitro fertilization for tubal infertility. The concentrations of VIP and PHM in pre-ovulatory human follicular fluid were measured radioimmunochemically. Granulosa/lutein cells isolated from follicular fluid were cultured under serum....... We conclude that VIP and PHM are present in human preovulatory follicular fluid and that VIP stimulates DNA synthesis and oestradiol secretion in cultured human granulosa/lutein cells. This indicates that VIP and perhaps PHM participate in the local nervous regulation of human ovarian function....

  19. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    DEFF Research Database (Denmark)

    Ipharraguerre, Ignacio R; Tedó, Gemma; Menoyo, David

    2013-01-01

    intestinal adaptation in weanling pigs. During the first 6 d after weaning, piglets were intragastrically infused once daily with either deionized water (control), chenodeoxycholic acid (CDC; 60 mg/kg body weight), or β-sitoesterol (BSE; 100 mg/kg body weight). Infusing CDC increased plasma GLP-2 (P

  20. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport?

    Science.gov (United States)

    Madsen, Steffen S; Bujak, Joanna; Tipsmark, Christian K

    2014-09-01

    We investigated the salinity-dependent expression dynamics of seven aquaporin paralogs (aqp1a, aqp3a, aqp7, aqp8ab, aqp10a, aqp10b and aqp11a) in several tissues of euryhaline Japanese medaka (Oryzias latipes). All paralogs except aqp7 and aqp10a had a broad tissue distribution, and several were affected by salinity in both osmoregulatory and non-osmoregulatory tissues. In the intestine, aqp1a, aqp7, aqp8ab and aqp10a decreased upon seawater (SW) acclimation in both long-term acclimated fish and during 1-3 days of the transition period. In the gill, aqp3a was lower and aqp10a higher in SW than in freshwater (FW). In the kidney no aqps were affected by salinity. In the skin, aqp1a and aqp3a were lower in SW than in FW. In the liver, aqp8ab and aqp10a were lower in SW than in FW. Furthermore, six Na(+),K(+)-ATPase α-subunit isoform transcripts were analysed in the intestine but none showed a consistent response to salinity, suggesting that water transport is not regulated at this level. In contrast, mRNA of the Na(+),K(+),2Cl(-)-cotransporter type-2 strongly increased in the intestine in SW compared with FW fish. Using custom-made antibodies, Aqp1a, Aqp8ab and Aqp10a were localized in the apical region of enterocytes of FW fish. Apical staining intensity strongly decreased, vanished or moved to subapical regions, when fish were acclimated to SW, supporting the lower mRNA expression in SW. Western blots confirmed the decrease in Aqp1a and Aqp10a in SW. The strong decrease in aquaporin expression in the intestine of SW fish is surprising, and challenges the paradigm for transepithelial intestinal water absorption in SW fishes. © 2014. Published by The Company of Biologists Ltd.

  1. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  2. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion.

    Directory of Open Access Journals (Sweden)

    Nicolás M Kouyoumdzian

    Full Text Available The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP on organic cation transporters (OCTs expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T, ANP, dopamine (DA, D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects.

  3. Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets

    Science.gov (United States)

    Liu, Hongbin; Hou, Chengli; Wang, Gang; Jia, Hongmin; Yu, Haitao; Zeng, Xiangfang; Thacker, Philip A.; Zhang, Guolong; Qiao, Shiyan

    2017-01-01

    Modulation of the synthesis of endogenous host defense peptides (HDPs) by probiotics represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections in human and animals. However, the extent of HDP modulation by probiotics is species dependent and strain specific. In the present study, The porcine small intestinal epithelial cell line (IPEC-J2) cells and neonatal piglets were used as in-vitro and in-vivo models to test whether Lactobacillus reuteri I5007 could modulate intestinal HDP expression. Gene expressions of HDPs, toll-like receptors, and fatty acid receptors were determined, as well as colonic short chain fatty acid concentrations and microbiota. Exposure to 108 colony forming units (CFU)/mL of L. reuteri I5007 for 6 h significantly increased the expression of porcine β-Defensin2 (PBD2), pBD3, pBD114, pBD129, and protegrins (PG) 1-5 in IPEC-J2 cells. Similarly, L. reuteri I5007 administration significantly increased the expression of jejunal pBD2 as well as colonic pBD2, pBD3, pBD114, and pBD129 in neonatal piglets (p reuteri I5007 in the piglets did not affect the colonic microbiota structure. Our findings suggested that L. reuteri I5007 could modulate intestinal HDP expression and improve the gut health of neonatal piglets, probably through the increase in colonic butyric acid concentration and the up-regulation of the downstream molecules of butyric acid, PPAR-γ and GPR41, but not through modifying gut microbiota structure. PMID:28561758

  4. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease.

    Science.gov (United States)

    Manko, Anna; Motta, Jean-Paul; Cotton, James A; Feener, Troy; Oyeyemi, Ayodele; Vallance, Bruce A; Wallace, John L; Buret, Andre G

    2017-01-01

    Our understanding of polymicrobial gastrointestinal infections and their effects on host biology remains incompletely understood. Giardia duodenalis is an ubiquitous intestinal protozoan parasite infecting animals and humans. Concomitant infections with Giardia and other gastrointestinal pathogens commonly occur. In countries with poor sanitation, Giardia infection has been associated with decreased incidence of diarrheal disease and fever, and reduced serum inflammatory markers release, via mechanisms that remain obscure. This study analyzed Giardia spp. co-infections with attaching and effacing (A/E) pathogens, and assessed whether and how the presence of Giardia modulates host responses to A/E enteropathogens, and alters intestinal disease outcome. In mice infected with the A/E pathogen Citrobacter rodentium, co-infection with Giardia muris significantly attenuated weight loss, macro- and microscopic signs of colitis, bacterial colonization and translocation, while concurrently enhancing the production and secretion of antimicrobial peptides (AMPs) mouse β-defensin 3 and trefoil factor 3 (TFF3). Co-infection of human intestinal epithelial cells (Caco-2) monolayers with G. duodenalis trophozoites and enteropathogenic Escherichia coli (EPEC) enhanced the production of the AMPs human β-defensin 2 (HBD-2) and TFF3; this effect was inhibited with treatment of G. duodenalis with cysteine protease inhibitors. Collectively, these results suggest that Giardia infections are capable of reducing enteropathogen-induced colitis while increasing production of host AMPs. Additional studies also demonstrated that Giardia was able to directly inhibit the growth of pathogenic bacteria. These results reveal novel mechanisms whereby Giardia may protect against gastrointestinal disease induced by a co-infecting A/E enteropathogen. Our findings shed new light on how microbial-microbial interactions in the gut may protect a host during concomitant infections.

  5. Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets.

    Science.gov (United States)

    Liu, Hongbin; Hou, Chengli; Wang, Gang; Jia, Hongmin; Yu, Haitao; Zeng, Xiangfang; Thacker, Philip A; Zhang, Guolong; Qiao, Shiyan

    2017-05-31

    Modulation of the synthesis of endogenous host defense peptides (HDPs) by probiotics represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections in human and animals. However, the extent of HDP modulation by probiotics is species dependent and strain specific. In the present study, The porcine small intestinal epithelial cell line (IPEC-J2) cells and neonatal piglets were used as in-vitro and in-vivo models to test whether Lactobacillus reuteri I5007 could modulate intestinal HDP expression. Gene expressions of HDPs, toll-like receptors, and fatty acid receptors were determined, as well as colonic short chain fatty acid concentrations and microbiota. Exposure to 10⁸ colony forming units (CFU)/mL of L. reuteri I5007 for 6 h significantly increased the expression of porcine β-Defensin2 (PBD2), pBD3, pBD114, pBD129, and protegrins (PG) 1-5 in IPEC-J2 cells. Similarly, L. reuteri I5007 administration significantly increased the expression of jejunal pBD2 as well as colonic pBD2, pBD3, pBD114, and pBD129 in neonatal piglets ( p L. reuteri I5007 in the piglets did not affect the colonic microbiota structure. Our findings suggested that L. reuteri I5007 could modulate intestinal HDP expression and improve the gut health of neonatal piglets, probably through the increase in colonic butyric acid concentration and the up-regulation of the downstream molecules of butyric acid, PPAR-γ and GPR41, but not through modifying gut microbiota structure.

  6. Maternal Methyl Donor Supplementation during Gestation Counteracts the Bisphenol A-Induced Impairment of Intestinal Morphology, Disaccharidase Activity, and Nutrient Transporters Gene Expression in Newborn and Weaning Pigs

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2017-04-01

    Full Text Available This study was conducted to explore whether exposure to bisphenol A (BPA during pregnancy could change intestinal digestion and absorption function in offspring using pigs as a model, and whether methyl donor (MET could counteract the BPA-induced impacts. Fifty Landrace × Yorkshire sows were divided into four dietary groups throughout gestation: control diet (CON; control diet supplemented with BPA (50 mg/kg; control diet supplemented with MET (3 g/kg betaine, 400 mg/kg choline, 150 μg/kg vitamin B12, and 15 mg/kg folic acid; and control diet with BPA and MET supplementation (BPA + MET. Intestine samples were collected from pigs’ offspring at birth and weaning. Maternal BPA exposure during pregnancy significantly reduced the ratio of jejunum villus height to crypt depth, decreased the jejunum sucrase activity, down-regulated the mRNA expression of jejunum peptide transporter 1 (Pept1 and DNA methyl transferase 3a (DNMT3a, and decreased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05. Maternal MET supplementation significantly raised the ratio of villus height to crypt depth in jejunum and ileum, improved the jejunum lactase activity, up-regulated the mRNA expression of jejunum Pept1, lactase (LCT, DNMT1, DNMT3a, and methylenetetrahydrofolate reductase (MTHFR, and increased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05. However, the ratio of jejunum villus height to crypt depth was higher in BPA + MET treatment compared with CON and BPA treatment (p < 0.05. Meanwhile, there was no difference in the jejunum sucrase activity, the mRNA expression of jejunum Pept1 and DNMT3a, and the DNA methylation level of jejunum Pept1 between CON and BPA + MET treatment. These results indicated that maternal exposure to BPA during gestation might suppress offspring’s intestinal digestion and absorption function, whereas supplementation of MET could counteract these damages, which might be associated with DNA methylation.

  7. Beta-endorphin chimeric peptides: Transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain

    International Nuclear Information System (INIS)

    Pardridge, W.M.; Triguero, D.; Buciak, J.L.

    1990-01-01

    Water soluble peptides are normally not transported through the blood-brain barrier (BBB). Chimeric peptides may be transportable through the BBB and are formed by the covalent coupling of a nontransportable peptide to a transportable peptide vector, e.g. cationized albumin, using disulfide-based coupling reagents such as N-succinimidyl 3-[2-pyridyldithio(propionate)] (SPDP). The transcytosis of peptide into brain parenchyma, as opposed to vascular sequestration of blood-borne peptide, was quantified using an internal carotid artery perfusion/capillary depletion method. It is shown that [125I]beta-endorphin is not transported through the BBB, but is rapidly cleaved to free [125I] tyrosine via capillary peptidase. Therefore, chimeric peptide was prepared using [125I] [D-Ala2]beta-endorphin (DABE), owing to the resistance of this analogue to peptidase degradation. The [125I] DABE-cationized albumin chimeric peptide is shown to enter brain parenchyma at a rate comparable to that reported previously for unconjugated cationized albumin. When the [125I] DABE-cationized albumin chimeric peptide was incubated with rat brain homogenate at 37 C, the free [125I] DABE was liberated from the cationized albumin conjugate prior to its subsequent degradation into free [125I] tyrosine. Approximately 50% of the chimeric peptide was cleaved within 60 sec of incubation at 37 C. These studies demonstrate that (1) [125I]beta-endorphin is not transported through the BBB in its unconjugated form, (2) a [125I] DABE-cationized albumin chimeric peptide is transported through the BBB into brain parenchyma at a rate comparable to the unconjugated cationized albumin, and (3) brain contains the necessary disulfide reductases for rapid cleavage of the chimeric peptide into free beta-endorphin and this cleavage occurs before degradation of the [125I] DABE into [125I] tyrosine

  8. Beta-endorphin chimeric peptides: Transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain

    Energy Technology Data Exchange (ETDEWEB)

    Pardridge, W.M.; Triguero, D.; Buciak, J.L. (UCLA School of Medicine (USA))

    1990-02-01

    Water soluble peptides are normally not transported through the blood-brain barrier (BBB). Chimeric peptides may be transportable through the BBB and are formed by the covalent coupling of a nontransportable peptide to a transportable peptide vector, e.g. cationized albumin, using disulfide-based coupling reagents such as N-succinimidyl 3-(2-pyridyldithio(propionate)) (SPDP). The transcytosis of peptide into brain parenchyma, as opposed to vascular sequestration of blood-borne peptide, was quantified using an internal carotid artery perfusion/capillary depletion method. It is shown that (125I)beta-endorphin is not transported through the BBB, but is rapidly cleaved to free (125I) tyrosine via capillary peptidase. Therefore, chimeric peptide was prepared using (125I) (D-Ala2)beta-endorphin (DABE), owing to the resistance of this analogue to peptidase degradation. The (125I) DABE-cationized albumin chimeric peptide is shown to enter brain parenchyma at a rate comparable to that reported previously for unconjugated cationized albumin. When the (125I) DABE-cationized albumin chimeric peptide was incubated with rat brain homogenate at 37 C, the free (125I) DABE was liberated from the cationized albumin conjugate prior to its subsequent degradation into free (125I) tyrosine. Approximately 50% of the chimeric peptide was cleaved within 60 sec of incubation at 37 C. These studies demonstrate that (1) (125I)beta-endorphin is not transported through the BBB in its unconjugated form, (2) a (125I) DABE-cationized albumin chimeric peptide is transported through the BBB into brain parenchyma at a rate comparable to the unconjugated cationized albumin, and (3) brain contains the necessary disulfide reductases for rapid cleavage of the chimeric peptide into free beta-endorphin and this cleavage occurs before degradation of the (125I) DABE into (125I) tyrosine.

  9. Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting

    Directory of Open Access Journals (Sweden)

    van der Meijde Jolanda

    2007-08-01

    Full Text Available Abstract Background Fasting has dramatic effects on small intestinal transport function. However, little is known on expression of intestinal transport and phase I/II metabolism genes during fasting and the role the fatty acid-activated transcription factor PPARα may play herein. We therefore investigated the effects of fasting on expression of these genes using Affymetrix GeneChip MOE430A arrays and quantitative RT-PCR. Results After 24 hours of fasting, expression levels of 33 of the 253 analyzed transporter and phase I/II metabolism genes were changed. Upregulated genes were involved in transport of energy-yielding molecules in processes such as glycogenolysis (G6pt1 and mitochondrial and peroxisomal oxidation of fatty acids (Cact, Mrs3/4, Fatp2, Cyp4a10, Cyp4b1. Other induced genes were responsible for the inactivation of the neurotransmitter serotonin (Sert, Sult1d1, Dtd, Papst2, formation of eicosanoids (Cyp2j6, Cyp4a10, Cyp4b1, or for secretion of cholesterol (Abca1 and Abcg8. Cyp3a11, typically known because of its drug metabolizing capacity, was also increased. Fasting had no pronounced effect on expression of phase II metabolic enzymes, except for glutathione S-transferases which were down-regulated. Time course studies revealed that some genes were acutely regulated, whereas expression of other genes was only affected after prolonged fasting. Finally, we identified 8 genes that were PPARα-dependently upregulated upon fasting. Conclusion We have characterized the response to fasting on expression of transporters and phase I/II metabolic enzymes in murine small intestine. Differentially expressed genes are involved in a variety of processes, which functionally can be summarized as a increased oxidation of fat and xenobiotics, b increased cholesterol secretion, c increased susceptibility to electrophilic stressors, and d reduced intestinal motility. This knowledge increases our understanding of gut physiology, and may be of relevance

  10. Adaptation in Caco-2 Human Intestinal Cell Differentiation and Phenolic Transport with Chronic Exposure to Blackberry (Rubus sp.) Extract.

    Science.gov (United States)

    Redan, Benjamin W; Albaugh, George P; Charron, Craig S; Novotny, Janet A; Ferruzzi, Mario G

    2017-04-05

    As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure to phenolics may impact their absorption and metabolism. To explore alterations occurring from chronic dietary exposure to phenolics, Caco-2 cell monolayers were differentiated on Transwell inserts with 0-10 μM blackberry (Rubus sp.) total phenolics extracts rich in anthocyanins, flavonols, and phenolic acids. Following differentiation, apical to basolateral transport of phenolics was assessed from an acute treatment of 100 μM blackberry phenolics from 0 to 4 h. Additionally, differences in gene expression of transport and phase II metabolizing systems including ABC transporters, organic anion transporters (OATs), and uridine 5'-diphospho (UDP) glucuronosyltransferases (UGTs) were probed. After 4 h, 1 μM pretreated monolayers showed a significant (P transport including less epicatechin (42.1 ± 0.53), kaempferol glucoside (23.5 ± 0.29), and dicaffeoylquinic acid (31.9 ± 0.20) compared to control. Finally, significant (P transport proteins were observed with treatment. Therefore, adaptation to blackberry extract exposure may impact intestinal transport and metabolism of phenolics.

  11. Expression profiling and functional analyses of BghPTR2, a peptide transporter from Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Droce, Aida; Holm, Kirsten B; Olsson, Stefan; Frandsen, Rasmus J N; Sondergaard, Teis Esben; Sørensen, Jens Laurids; Giese, Henriette

    2015-07-01

    The obligate ascomycete parasitic fungus Blumeria graminis f. sp. hordei (Bgh) has a unique lifestyle as it is completely dependent on living barley leaves as substrate for growth. Genes involved in inorganic nitrogen utilization are notably lacking, and the fungus relies on uptake of host-derived peptides and amino acids. The PTR2 transporter family takes up di- and tri- peptides in a proton coupled process and filamentous fungi typically have two or more di/tri peptide transporters. Here we show that Bgh appear to have one PTR2 that can restore dipeptide uptake in a Saccharomyces cerevisiae PTR2 deletion strain. The Bgh PTR2 gene is expressed in conidia and germinating conidia. During Bgh infection of barley the expression level of the BghPTR2 gene is high in the appressorial germ tube, low in the haustoria and high again during conidiation and secondary infection in the compatible and intermediate resistant interactions. BghPTR2 appears to be important for the initial establishment of fungal infection but not for uptake of di-tri-peptides at the haustorial interface. Based on the expression profile we suggest that BghPTR2 is active in internal transport of nutrient reserves and/or uptake of break down products from the plant surface during the early infection stages. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Acute Effects of Sugars and Artificial Sweeteners on Small Intestinal Sugar Transport: A Study Using CaCo-2 Cells As an In Vitro Model of the Human Enterocyte.

    Science.gov (United States)

    O'Brien, Patrick; Corpe, Christopher Peter

    2016-01-01

    The gastrointestinal tract is responsible for the assimilation of nutrients and plays a key role in the regulation of nutrient metabolism and energy balance. The molecular mechanisms by which intestinal sugar transport are regulated are controversial. Based on rodent studies, two models currently exist that involve activation of the sweet-taste receptor, T1R2/3: an indirect model, whereby luminal carbohydrates activate T1R2/3 expressed on enteroendocrine cells, resulting in the release of gut peptides which in turn regulate enterocyte sugar transport capacity; and a direct model, whereby T1R2/3 expressed on the enterocyte regulates enterocyte function. To study the direct model of intestinal sugar transport using CaCo-2 cells, a well-established in vitro model of the human enterocyte. Uptake of 10mM 14C D-Glucose and D-Fructose into confluent CaCo-2/TC7 cells was assessed following 3hr preincubation with sugars and artificial sweeteners in the presence and absence of the sweet taste receptor inhibitor, lactisole. Expression of the intestinal sugar transporters and sweet-taste receptors were also determined by RT-PCR. In response to short term changes in extracellular glucose and glucose/fructose concentrations (2.5mM to 75mM) carrier-mediated sugar uptake mediated by SGLT1 and/or the facilitative hexose transporters (GLUT1,2,3 and 5) was increased. Lactisole and artificial sweeteners had no effect on sugar transport regulated by glucose alone; however, lactisole increased glucose transport in cells exposed to glucose/fructose. RT-PCR revealed Tas1r3 and SGLT3 gene expression in CaCo-2/TC7 cells, but not Tas1r2. In the short term, enterocyte sugar transport activities respond directly to extracellular glucose levels, but not fructose or artificial sweeteners. We found no evidence of a functional heterodimeric sweet taste receptor, T1R2/3 in CaCo-2 cells. However, when glucose/fructose is administered together there is an inhibitory effect on glucose transport

  13. Acute Effects of Sugars and Artificial Sweeteners on Small Intestinal Sugar Transport: A Study Using CaCo-2 Cells As an In Vitro Model of the Human Enterocyte.

    Directory of Open Access Journals (Sweden)

    Patrick O'Brien

    Full Text Available The gastrointestinal tract is responsible for the assimilation of nutrients and plays a key role in the regulation of nutrient metabolism and energy balance. The molecular mechanisms by which intestinal sugar transport are regulated are controversial. Based on rodent studies, two models currently exist that involve activation of the sweet-taste receptor, T1R2/3: an indirect model, whereby luminal carbohydrates activate T1R2/3 expressed on enteroendocrine cells, resulting in the release of gut peptides which in turn regulate enterocyte sugar transport capacity; and a direct model, whereby T1R2/3 expressed on the enterocyte regulates enterocyte function.To study the direct model of intestinal sugar transport using CaCo-2 cells, a well-established in vitro model of the human enterocyte.Uptake of 10mM 14C D-Glucose and D-Fructose into confluent CaCo-2/TC7 cells was assessed following 3hr preincubation with sugars and artificial sweeteners in the presence and absence of the sweet taste receptor inhibitor, lactisole. Expression of the intestinal sugar transporters and sweet-taste receptors were also determined by RT-PCR.In response to short term changes in extracellular glucose and glucose/fructose concentrations (2.5mM to 75mM carrier-mediated sugar uptake mediated by SGLT1 and/or the facilitative hexose transporters (GLUT1,2,3 and 5 was increased. Lactisole and artificial sweeteners had no effect on sugar transport regulated by glucose alone; however, lactisole increased glucose transport in cells exposed to glucose/fructose. RT-PCR revealed Tas1r3 and SGLT3 gene expression in CaCo-2/TC7 cells, but not Tas1r2.In the short term, enterocyte sugar transport activities respond directly to extracellular glucose levels, but not fructose or artificial sweeteners. We found no evidence of a functional heterodimeric sweet taste receptor, T1R2/3 in CaCo-2 cells. However, when glucose/fructose is administered together there is an inhibitory effect on glucose

  14. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots.

    Science.gov (United States)

    Narayanan, Karthikeyan; Yen, Swee Kuan; Dou, Qingqing; Padmanabhan, Parasuraman; Sudhaharan, Thankiah; Ahmed, Sohail; Ying, Jackie Y; Selvan, Subramanian Tamil

    2013-01-01

    Protein transport is an important phenomenon in biological systems. Proteins are transported via several mechanisms to reach their destined compartment of cell for its complete function. One such mechanism is the microtubule mediated protein transport. Up to now, there are no reports on synthetic systems mimicking the biological protein transport mechanism. Here we report a highly efficient method of mimicking the microtubule mediated protein transport using newly designed biotinylated peptides encompassing a microtubule-associated sequence (MTAS) and a nuclear localization signaling (NLS) sequence, and their final conjugation with streptavidin-coated CdSe/ZnS quantum dots (QDs). Our results demonstrate that these novel bio-conjugated QDs enhance the endosomal escape and promote targeted delivery into the nucleus of human mesenchymal stem cells via microtubules. Mimicking the cellular transport mechanism in stem cells is highly desirable for diagnostics, targeting and therapeutic applications, opening up new avenues in the area of drug delivery.

  15. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    -moieties for benzyl alcohol have been shown to maintain affinity for hPepT1. The primary aim of the present study was to investigate if modifications of the benzyl alcohol model drug influence the corresponding D-Glu-Ala and D-Asp-Ala model prodrugs' affinity for hPepT1 in Caco-2 cells. A second aim...... was to investigate the transepithelial transport and hydrolysis parameters for D-Asp(BnO)-Ala and D-Glu(BnO)-Ala across Caco-2 cell monolayers. In the present study, all investigated D-Asp-Ala and D-Glu-Ala model prodrugs retained various degrees of affinity for hPepT1 in Caco-2 cells. These affinities are used....... Transepithelial transport studies performed using Caco-2 cells of D-Asp(BnO)-Ala and D-Glu(BnO)-Ala showed that the K(m) for transepithelial transport was not significantly different for the two compounds. The maximal transport rate of the carrier-mediated flux component does not differ between the two model...

  16. Anti-allergic effects of a nonameric peptide isolated from the intestine gastrointestinal digests of abalone (Haliotis discus hannai) in activated HMC-1 human mast cells.

    Science.gov (United States)

    Ko, Seok-Chun; Lee, Dae-Sung; Park, Won Sun; Yoo, Jong Su; Yim, Mi-Jin; Qian, Zhong-Ji; Lee, Chang-Min; Oh, Junghwan; Jung, Won-Kyo; Choi, Il-Whan

    2016-01-01

    The aim of the present study was to examine whether the intestine gastrointestinal (GI) digests of abalone [Haliotis discus hannai (H. discus hannai)] modulate inflammatory responses and to elucidate the mechanisms involved. The GI digests of the abalone intestines were fractionated into fractions I (>10 kDa), II (5-10 kDa) and Ⅲ (<5 kDa). Of the abalone intestine GI digests (AIGIDs), fraction Ⅲ inhibited the passive cutaneous anaphylaxis (PCA) reaction in mice. Subsequently, a bioactive peptide [abalone intestine GI digest peptide (AIGIDP)] isolated from fraction Ⅲ was determined to be 1175.2 Da, and the amino acid sequence was found to be PFNQGTFAS. We noted that the purified nonameric peptide (AIGIDP) attenuated the phorbol‑12‑myristate 13-acetate plus calcium ionophore A23187 (PMACI)-induced histamine release and the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in human mast cells (HMC-1 cells). In addition, we also noted that AIGIDP inhibited the PMACI‑induced activation of nuclear factor‑κB (NF-κB) by suppressing IκBα phosphorylation and that it suppressed the production of cytokines by decreasing the phosphorylation of JNK. The findings of our study indicate that AIGIDP exerts a modulatory, anti-allergic effect on mast cell-mediated inflammatory diseases.

  17. Effects of Soybean Small Peptides on Rumen Fermentation and on Intestinal and Total Tract Digestion of Luxi Yellow Cattle

    OpenAIRE

    Wang, W. J.; Yang, W. R.; Wang, Y.; Song, E. L.; Liu, X. M.; Wan, F. C.

    2013-01-01

    Four Luxi beef cattle (400±10 kg) fitted with ruminal, duodenal and ileal cannulas were used in a 4×4 Latin square to assess the effects of soybean small peptide (SSP) infusion on rumen fermentation, diet digestion and flow of nutrient in the gastrointestinal tract. The ruminal infusion of SSP was 0 (control), 100, 200 and 300 g/d. Ruminal SSP infusion linearly (p

  18. A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK.

    Science.gov (United States)

    Oppegård, Camilla; Kjos, Morten; Veening, Jan-Willem; Nissen-Meyer, Jon; Kristensen, Tom

    2016-08-01

    Lactobacillus plantarum produces a number of antimicrobial peptides (bacteriocins) that mostly target closely related bacteria. Although bacteriocins are important for the ecology of these bacteria, very little is known about how the peptides target sensitive cells. In this work, a putative membrane protein receptor of the two-peptide bacteriocin plantaricin JK was identified by comparing Illumina sequence reads from plantaricin JK-resistant mutants to a crude assembly of the sensitive wild-type Weissella viridescens genome using the polymorphism discovery tool VAAL. Ten resistant mutants harbored altogether seven independent mutations in a gene encoding an APC superfamily protein with 12 transmembrane helices. The APC superfamily transporter thus is likely to serve as a target for plantaricin JK on sensitive cells. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Lack of Effects of a Single High-Fat Meal Enriched with Vegetable n-3 or a Combination of Vegetable and Marine n-3 Fatty Acids on Intestinal Peptide Release and Adipokines in Healthy Female Subjects.

    Science.gov (United States)

    Narverud, Ingunn; Myhrstad, Mari C W; Herzig, Karl-Heinz; Karhu, Toni; Dahl, Tuva B; Halvorsen, Bente; Ulven, Stine M; Holven, Kirsten B

    2016-01-01

    Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids (FAs) from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. The test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analyzed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin, which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  20. Lack of effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids on intestinal peptide release and adipokines in healthy female subjects

    Directory of Open Access Journals (Sweden)

    Ingunn Naverud

    2016-08-01

    Full Text Available Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3 fatty acids from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil and a combination of linseed and cod liver oil. The test days were separated by two weeks. Fasting and postprandial blood samples at three and six hours after intake were analysed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 fatty acids from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  1. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  2. Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells

    Science.gov (United States)

    Song, Qinxin; Li, Danhui; Zhou, Yongzhi; Yang, Jie; Yang, Wanqi; Zhou, Guohua; Wen, Jingyuan

    2014-01-01

    The aim of this study was to evaluate (+)-catechin and (−)-epigallocatechin gallate (EGCG) cellular uptake and transport across human intestinal Caco-2 cell monolayer in both the absence and presence of niosomal carrier in variable conditions. The effect of free drugs and drug-loaded niosomes on the growth of Caco-2 cells was studied. The effects of time, temperature, and concentration on drug cellular uptake in the absence or presence of its niosomal delivery systems were investigated. The intestinal epithelial membrane transport of the drug-loaded niosomes was examined using the monolayer of the human Caco-2 cells. The kinetics of transport, and the effect of temperature, adenosine triphosphate inhibitor, permeability glycoprotein inhibitor, multidrug resistance-associated protein 2 inhibitor, and the absorption enhancer on transport mechanism were investigated. It was found that the uptake of catechin, EGCG, and their niosomes by Caco-2 cells was 1.22±0.16, 0.90±0.14, 3.25±0.37, and 1.92±0.22 μg/mg protein, respectively (n=3). The apparent permeability coefficient values of catechin, EGCG, and their niosomes were 1.68±0.16, 0.88±0.09, 2.39±0.31, and 1.42±0.24 cm/second (n=3) at 37°C, respectively. The transport was temperature- and energy-dependent. The inhibitors of permeability glycoprotein and multidrug resistance-associated protein 2 and the absorption enhancer significantly enhanced the uptake amount. Compared with the free drugs, niosomal formulation significantly enhanced drug absorption. Additionally, drug-loaded niosomes exhibited stronger stability and lower toxicity. These findings showed that the oral absorption of tea flavonoids could be improved by using the novel drug delivery systems. PMID:24855353

  3. Modulating effect of polyethylene glycol on the intestinal transport and absorption of prednisolone, methylprednisolone and quinidine in rats by in-vitro and in-situ absorption studies.

    Science.gov (United States)

    Shen, Qi; Li, Wenji; Lin, Yulian; Katsumi, Hidemasa; Okada, Naoki; Sakane, Toshiyasu; Fujita, Takuya; Yamamoto, Akira

    2008-12-01

    The effects of polyethylene glycol 20000 (PEG 20000) on the intestinal absorption of prednisolone, methylprednisolone and quinidine, three P-glycoprotein (P-gp) substrates, across the isolated rat intestinal membranes were examined by an in-vitro diffusion chamber system. The serosal-to-mucosal (secretory) transport of these P-gp substrates was greater than their mucosal-to-serosal (absorptive) transport, indicating that their net movement across the intestinal membranes was preferentially in the secretory direction. The polarized secretory transport of these drugs was remarkably diminished and their efflux ratios decreased in the presence of PEG 20000. In addition, PEG 20000 did not affect the transport of Lucifer yellow, a non-P-gp substrate. The intestinal membrane toxicity of PEG 20000 was evaluated by measuring the release of alkaline phosphatase (ALP) and protein from the intestinal membranes. The release of ALP and protein was enhanced in the presence of 20 mM sodium deoxycholate (NaDC), a positive control, while these biological parameters did not change in the presence of 0.1-5% (w/v) PEG 20000. These findings indicated that the intestinal membrane damage caused by PEG 20000 was not a main reason for the enhanced absorptive transport of these P-gp substrates in the presence of PEG 20000. Furthermore, the transepithelial electrical resistance (TEER) of rat jejunal membranes in the presence or absence of PEG 20000 was measured by a diffusion chamber method. PEG 20000 (0.1-5.0 % w/v) did not change the TEER values of the rat jejunal membranes, indicating that the increase in the absorptive transport of these P-gp substrates might not be due to the increased transport of these P-gp substrates via a paracellular pathway caused by PEG 20000. Finally, the effect of PEG 20000 on the intestinal absorption of quinidine was examined by an in-situ closed-loop method. The intestinal absorption of quinidine was significantly enhanced in the presence of 0.1-1.0% (w

  4. Mechanisms of Intestinal Serotonin Transporter (SERT Upregulation by TGF-β1 Induced Non-Smad Pathways.

    Directory of Open Access Journals (Sweden)

    Saad Nazir

    Full Text Available TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT, is not known. Current studies were designed to examine acute effects of TGF-β1 on SERT. Model human intestinal Caco-2 cells grown as monolayer's or as cysts in 3D culture and ex vivo mouse model were utilized. Treatment of Caco-2 cells with TGF-β1 (10 ng/ml, 60 min stimulated SERT activity (~2 fold, P<0.005. This stimulation of SERT function was dependent upon activation of TGF-β1 receptor (TGFRI as SB-431542, a specific TGF-βRI inhibitor blocked the SERT stimulation. SERT activation in response to TGF-β1 was attenuated by inhibition of PI3K and occurred via enhanced recruitment of SERT-GFP to apical surface in a PI3K dependent manner. The exocytosis inhibitor brefeldin A (2.5 μM attenuated the TGF-β1-mediated increase in SERT function. TGF-β1 increased the association of SERT with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE syntaxin 3 (STX3 and promoted exocytosis of SERT. Caco-2 cells grown as cysts in 3D culture recapitulated the effects of TGF-β1 showing increased luminal staining of SERT. Ussing chamber studies revealed increase in 3H-5-HT uptake in mouse ileum treated ex vivo with TGF-β1 (10 ng/ml, 1h. These data demonstrate a novel mechanism rapidly regulating intestinal SERT via PI3K and STX3. Since decreased SERT is implicated in various gastro-intestinal disorders e.g IBD, IBS and diarrhea, understanding mechanisms stimulating SERT function by TGF-β1 offers a novel therapeutic strategy to treat GI disorders.

  5. Intestinal Farnesoid X Receptor Activation by Pharmacologic Inhibition of the Organic Solute Transporter α-β

    Directory of Open Access Journals (Sweden)

    Sandra M.W. van de Wiel

    2018-01-01

    Conclusions: This study identifies clofazimine as an inhibitor of OSTα-OSTβ in vitro and in vivo, validates OSTα-OSTβ as a drug target to enhance intestinal bile acid signaling, and confirmed the applicability of the Förster Resonance Energy Transfer–bile acid sensor to screen for inhibitors of bile acid efflux pathways.

  6. Biosynthesis of intestinal microvillar proteins. Low temperature arrests both processing and intracellular transport

    DEFF Research Database (Denmark)

    Danielsen, E M; Hansen, Gert Helge; Cowell, G M

    1989-01-01

    The effect of culture at 20 degrees C on biosynthesis of microvillar enzymes was studied in pig small intestinal mucosal explants. At this temperature, aminopeptidase N (EC 3.4.11.2) and sucrase-isomaltase (EC 3.2.1.48-10) both accumulated intracellularly, predominantly in their transient, high m...

  7. Biosynthesis of intestinal microvillar proteins. Low temperature arrests both processing and intracellular transport

    DEFF Research Database (Denmark)

    Danielsen, E M; Hansen, Gert Helge; Cowell, G M

    1989-01-01

    The effect of culture at 20 degrees C on biosynthesis of microvillar enzymes was studied in pig small intestinal mucosal explants. At this temperature, aminopeptidase N (EC 3.4.11.2) and sucrase-isomaltase (EC 3.2.1.48-10) both accumulated intracellularly, predominantly in their transient, high...

  8. Identification of New Anti-inflammatory Peptides from Zein Hydrolysate after Simulated Gastrointestinal Digestion and Transport in Caco-2 Cells.

    Science.gov (United States)

    Liang, Qiufang; Chalamaiah, Meram; Ren, Xiaofeng; Ma, Haile; Wu, Jianping

    2018-02-07

    Chronic inflammation is an underlying contributor to various chronic diseases. The objectives of this study were to investigate the anti-inflammatory activity of zein hydrolysate after simulated gastrointestinal digestion and Caco-2 cell absorption and to identify novel anti-inflammatory peptides after transport across Caco-2 cells. Three zein hydrolysates were prepared and further digested using gastrointestinal proteases; their transports were studied in Caco-2 cells. Anti-inflammatory activity was studied in endothelial EA.hy926 cells. Three zein hydrolysates and their digests significantly decreased the expression of tumor necrosis factor-α (TNF-α) induced pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) by 37.3-66.0%. Eleven novel peptides with 5-9 amino acid residues were sequenced; three peptides showed strong anti-inflammatory activity by inhibiting the VCAM-1 by 54-38.9% and intercellular cell adhesion molecule-1 (ICAM-1) by 36.5-28.6% at 0.2 mM. A new approach to identify novel anti-inflammatory peptides that could survive gastrointestinal digestion and absorption was developed.

  9. Mechanisms of calcium transport in small intestine. Overall review of the contract, September 1, 1972--March 1, 1975

    International Nuclear Information System (INIS)

    DeLuca, H.F.

    1975-01-01

    During the past three years considerable advance has been registered in our understanding of the mechanism of intestinal calcium transport, which is activated in response to 1,25-(OH) 2 D 3 , the active form of the vitamin in the system. In brush borders isolated from vitamin D-deficient chicks, a 200,000 molecular weight protein has been found by disc gel electrophoresis which is not present in chicks given vitamin D. This protein does not bind calcium and does not possess calcium dependent adenosine triphosphatase activity. Following the administration of 1,25-(OH) 2 D 3 to the deficient chicks this protein disappears from the disc gel profiles and a protein of molecular weight 220,000 appears in the gel profiles. This protein has been isolated and shown to possess calcium adenosine triphosphatase activity, alkaline phosphatase activity and it binds calcium. Work is progressing on the purification of these proteins with the ultimate aim of discerning what role they have in intestinal calcium transport. (U.S.)

  10. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of amino...... acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27mM (log......Km is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting...

  11. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-10-01

    The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from

  12. Prevalence of intestinal parasites among workers involved in collection, transportation and recycling of wastes in the Pars Special Economic Energy Zone, Bushehr

    Directory of Open Access Journals (Sweden)

    MoradAli Fouladvand

    2014-01-01

    Full Text Available Abstract Background Intestinal parasitic infections are of one most important problems in developing countries and job is one of the most important factors determining the rate of intestinal parasitic infections. Persons who deal with waste elimination and recycling, due to close contact with infectious sources are more likely to be infected than others. Because of industrialization, population density and immigrants residing in Assaluyeh region , and due to the lack of history of a study for intestinal parasitic infection, the prevalence rate of intestinal parasitic infections among workers in the collection, transportation and recycling of wastes in the Pars Special Economic Energy Zone was evaluated. Material and methods: In a descriptive cross-sectional study, demographic questionaire was completed for each person, Stool samples were taken and sample containers were transferred to parasitology research laboratory of university. Samples were examined for intestinal parasites by preparing direct smear (wet mount and formalin-ether sedimentation technique. Data were collected by questionnaire and analyzed using SPSS 15.0 software and Chi square test. Results: The results showed that 37.3% of samples were infected at least with one intestinal parasite, 10.7% of samples were infected with more than one parasite. Giardia lamblia (6% and Entamoeba coli (13/4%, showed the highest infection rate among all parasite species. Prevalence rate of intestinal parasites in worker from Nakhl-e- Taghi municipality was higher than other region of the study area. Conclusion : Job type and duration of contact with infectious source play important roles in determining rate of intestinal parasitic infection. Workers involved in collection, transportation and recycling of wastes are more at risk of intestinal parasitic infections than others. Therfore, providing personal protective equipments and health education in this group can play an important role in community

  13. Mechanisms of calcium transport in small intestine. Progress report, March 16, 1974--March 1, 1975

    International Nuclear Information System (INIS)

    DeLuca, H.F.

    1975-01-01

    The macromolecular components of rat intestinal mucosal cytosol have been examined for their ability to bind radioactive 1,25-(OH) 2 D 3 and radioactive 25-OH-D 3 . In a variety of media the binding of these metabolites is found only to a 6S macromolecular component. No evidence for the existence of a 3.5S component which has been reported in the chick can be found in this species. The 6S component prefers 25-OH-D 3 to 1,25-(OH) 2 D 3 and furthermore saturation experiments in vivo have shown that the 6S component does not bind 1,25-(OH) 2 D 3 in vivo but instead binds the 25-OH-D 3 . This allowed the conclusion that the 6S macromolecular component does not play a role in the 1,25-(OH) 2 D 3 's function in stimulating intestinal calcium absorption. (U.S.)

  14. High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation

    Science.gov (United States)

    Azzam, Edouard I.; Ferraris, Ronaldo P.; Howell, Roger W.

    2015-01-01

    We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays. PMID:26484399

  15. Specific efficacy of peptide receptor radionuclide therapy with {sup 177}Lu-octreotate in advanced neuroendocrine tumours of the small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Sabet, Amir; Dautzenberg, Kristina; Haslerud, Torjan; Aouf, Anas; Sabet, Amin; Biersack, Hans-Juergen [University Hospital, Department of Nuclear Medicine, Bonn (Germany); Simon, Birgit [University Hospital, Department of Radiology, Bonn (Germany); Mayer, Karin [University Hospital, Department of Internal Medicine and Oncology, Bonn (Germany); Ezziddin, Samer [University Hospital, Department of Nuclear Medicine, Bonn (Germany); Saarland University, Department of Nuclear Medicine, Homburg (Germany)

    2015-07-15

    Increasing evidence supports the value of peptide receptor radionuclide therapy (PRRT) in patients with metastatic neuroendocrine tumours (NET), but there are limited data on its specific efficacy in NET of small intestinal (midgut) origin. This study aims to define the benefit of PRRT with {sup 177}Lu-octreotate for this circumscribed entity derived by a uniformly treated patient cohort. A total of 61 consecutive patients with unresectable, advanced small intestinal NET G1-2 stage IV treated with {sup 177}Lu-octreotate (4 intended cycles at 3-month intervals, mean activity per cycle 7.9 GBq) were analysed. Sufficient tumour uptake on baseline receptor imaging and either documented tumour progression (n = 46) or uncontrolled symptoms (n = 15) were prerequisites for treatment. Response was evaluated according to modified Southwest Oncology Group (SWOG) criteria and additionally with Response Criteria in Solid Tumors (RECIST) 1.1. Assessment of survival was performed using Kaplan-Meier curves and Cox proportional hazards model for uni- and multivariate analyses. Toxicity was assessed according to standardized follow-up laboratory work-up including blood counts, liver and renal function, supplemented with serial {sup 99m}Tc-diethylenetriaminepentaacetic acid (DTPA) clearance measurements. The median follow-up period was 62 months. Reversible haematotoxicity (≥ grade 3) occurred in five patients (8.2 %). No significant nephrotoxicity (≥ grade 3) was observed. Treatment response according to modified SWOG criteria consisted of partial response in 8 (13.1 %), minor response in 19 (31.1 %), stable disease in 29 (47.5 %) and progressive disease in 5 (8.2 %) patients. The disease control rate was 91.8 %. Median progression-free survival (PFS) and overall survival (OS) was 33 [95 % confidence interval (CI) 25-41] and 61 months (95 % CI NA), respectively. Objective response was associated with longer survival (p = 0.005). Independent predictors of shorter PFS were

  16. Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets

    Directory of Open Access Journals (Sweden)

    Hongbin Liu

    2017-05-01

    Full Text Available Modulation of the synthesis of endogenous host defense peptides (HDPs by probiotics represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections in human and animals. However, the extent of HDP modulation by probiotics is species dependent and strain specific. In the present study, The porcine small intestinal epithelial cell line (IPEC-J2 cells and neonatal piglets were used as in-vitro and in-vivo models to test whether Lactobacillus reuteri I5007 could modulate intestinal HDP expression. Gene expressions of HDPs, toll-like receptors, and fatty acid receptors were determined, as well as colonic short chain fatty acid concentrations and microbiota. Exposure to 108 colony forming units (CFU/mL of L. reuteri I5007 for 6 h significantly increased the expression of porcine β-Defensin2 (PBD2, pBD3, pBD114, pBD129, and protegrins (PG 1-5 in IPEC-J2 cells. Similarly, L. reuteri I5007 administration significantly increased the expression of jejunal pBD2 as well as colonic pBD2, pBD3, pBD114, and pBD129 in neonatal piglets (p < 0.05. This was probably associated with the increase in colonic butyric acid concentration and up-regulating expression of Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ and G Protein-Coupled Receptor 41 (GPR41 (p < 0.05, but not with stimulation of Pattern-Recognition Receptors. Additionally, supplementation with L. reuteri I5007 in the piglets did not affect the colonic microbiota structure. Our findings suggested that L. reuteri I5007 could modulate intestinal HDP expression and improve the gut health of neonatal piglets, probably through the increase in colonic butyric acid concentration and the up-regulation of the downstream molecules of butyric acid, PPAR-γ and GPR41, but not through modifying gut microbiota structure.

  17. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics.

    Science.gov (United States)

    Cao, Feng; Gao, Yahan; Wang, Meng; Fang, Lei; Ping, Qineng

    2013-04-01

    In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.

  18. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...

  19. Factors Affecting the Bioaccessibility and Intestinal Transport of Difenoconazole, Hexaconazole, and Spirodiclofen in Human Caco-2 Cells Following in Vitro Digestion.

    Science.gov (United States)

    Shi, Yan-Hong; Xiao, Jin-Jing; Feng, Rong-Peng; Liu, Yu-Ying; Liao, Min; Wu, Xiang-Wei; Hua, Ri-Mao; Cao, Hai-Qun

    2017-10-18

    This study examined how gastrointestinal conditions affect pesticide bioaccessibility and intestinal transepithelial transport of pesticides (difenoconazole, hexaconazole, and spirodiclofen) in humans. We used an in vitro model combining human gastric and intestinal digestion, followed with Caco-2 cell model for human intestinal absorption. Bioaccessibility of three tested pesticides ranged from 25.2 to 76.3% and 10.6 to 79.63% in the gastric and intestinal phases, respectively. A marked trend similar to the normal distribution was observed between bioaccessibility and pH, with highest values observed at pH 2.12 in gastric juice. No significant differences were observed with increasing digestion time; however, a significant negative correlation was observed with the solid-liquid (S/L) ratio, following a logarithmic equation. R 2 ranged from 0.9198 to 0.9848 and 0.9526 to 0.9951 in the simulated gastric and intestinal juices, respectively, suggesting that the S/L ratio is also a major factor affecting bioaccessibility. Moreover, significant dose- and time-response effects were subsequently observed for intestinal membrane permeability of difenoconazole, but not for hexaconazole or spirodiclofen. This is the first study to demonstrate the uptake of pesticides by human intestinal cells, aiding quantification of the likely effects on human health and highlighting the importance of considering bioaccessibility in studies of dietary exposure to pesticide residues.

  20. Understanding the structure, dynamics, and mass transport properties of self assembling peptide hydrogels for injectable, drug delivery applications

    Science.gov (United States)

    Branco, Monica Cristina

    hydrogels as a function of peptide sequence and concentration. Changes in nanoscale dynamics and structure inherently lead to substantial differences in bulk properties, such as the elastic modulus and network mesh size. Learning how the material properties of the gels influence the transport rate of therapeutics through the hydrogel is essential to the development of delivery vehicles. The remainder of the thesis focuses on correlating the mesh sizes of MAX1 and MAX8 gels to the diffusion and mass transport properties of model dextran and protein probes. Here, work is centered on how peptide charge and concentration, as well as probe structure, in particular hydrodynamic diameter and charge, dictate the temporal release of model probes from the peptide hydrogels. Experiments include self diffusion studies and bulk release experiments with model dextrans and proteins from gels before and after syringe delivery. Overall, this thesis will demonstrate the importance of understanding material properties from the nanoscale up to the macroscale for application based design. With this approach, better and specific development of self-assembling peptide materials can be achieved, allowing for the rational engineering of peptide sequences to form hydrogels appropriate for specific drug delivery applications.

  1. Inhibition of growth and reduction in tumorigenicity of UCI-107 ovarian cancer by antagonists of growth hormone-releasing hormone and vasoactive intestinal peptide.

    Science.gov (United States)

    Chatzistamou, I; Schally, A V; Varga, J L; Groot, K; Armatis, P; Bajo, A M

    2001-11-01

    To evaluate the tumor inhibitory activities of antagonists of growth hormone-releasing hormone (GH-RH) and vasoactive intestinal peptide (VIP) in UCI-107 human ovarian cancer model, and to investigate the role of the insulin-like growth factor (IGF) system in the response. In the present study we investigated the effects of GH-RH antagonist JV-1-36 and VIP antagonist JV-1-52, on the growth and tumorigenicity of UCI-107 ovarian cell carcinoma xenografted into nude mice. Studies on the effects of hGH-RH(1-29)NH2, IGF-I, IGF-II, JV-1-36, and JV-1-52 on the proliferation of UCI-107 cells cultured in vitro were also performed. After 22 days of therapy with JV-1-36 or JV-1-52 at the dose of 20 microg/day, the final volume of UCI-107 tumors was significantly (PUCI-107 cells in nude mice. All ten mice injected with cells treated with medium alone developed tumors within 23 days after cell inoculation, while only eight of ten and four of ten mice injected with cells exposed to JV-1-36 or JV-1-52, respectively, had tumors. In vitro exposure of UCI-107 cells to 5-35 ng/ml IGF-II produced a significant suppression in the rate of cell proliferation (P UCI-107 ovarian cell carcinoma by mechanisms that appear to involve direct effects on the cancer cells.

  2. Peripheral nerve reconstruction with epsilon-caprolactone conduits seeded with vasoactive intestinal peptide gene-transfected mesenchymal stem cells in a rat model

    Science.gov (United States)

    Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.

    2014-08-01

    Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.

  3. Vasoactive Intestinal Peptide Knockout (VIP KO mouse model of sulfite-sensitive asthma: up-regulation of novel lung carbonyl reductase

    Directory of Open Access Journals (Sweden)

    Szema Anthony M

    2011-11-01

    Full Text Available Abstract Background We earlier reported spontaneous features of asthma in Vasoactive Intestinal Peptide knockout mice (VIP KO: 1 peribronchiolar airway inflammation, with accumulation of lymphocytes and eosinophils, 2 pro-inflammatory cytokine production of IL-5, IL-6, with IFN-γ, and 3 airway hyper-responsiveness to inhaled methacholine. In human asthma, a phenotype with sulfite sensitivity leads to airway inflammation and hyper-responsiveness to inhaled sulfites, and is associated with upregulation of anti-oxidant protein lung carbonyl reductase. For the present experiments, we examined the role of VIP in modulating anti-oxidant genes and their proteins, including lung carbonyl reductase. Results Four male VIP KO mice and four wild-type age- and gender matched mice had lungs examined for whole genome microarray and a proteomics approach using mass spectrometry. The proteomics analysis revealed that a novel variant of anti-oxidant protein lung carbonyl reductase (car3 was uniquely and markedly elevated in the VIP KO mice. RT-PCR indicated that carbonic anhydrase 3, which is an anti-oxidant protein, was elevated in the VIP KO mice. Conclusions These data support the concept that VIP influences the endogenous oxidant/antioxidant balance. One potential implication is that VIP and its analogues may be used to treat inflammatory diseases, including asthma.

  4. Vasoactive Intestinal Peptide Knockout (VIP KO) mouse model of sulfite-sensitive asthma: up-regulation of novel lung carbonyl reductase.

    Science.gov (United States)

    Szema, Anthony M; Hamidi, Sayyed A; Koller, Antonius; Martin, Dwight W

    2011-11-21

    We earlier reported spontaneous features of asthma in Vasoactive Intestinal Peptide knockout mice (VIP KO): 1) peribronchiolar airway inflammation, with accumulation of lymphocytes and eosinophils, 2) pro-inflammatory cytokine production of IL-5, IL-6, with IFN-γ, and 3) airway hyper-responsiveness to inhaled methacholine. In human asthma, a phenotype with sulfite sensitivity leads to airway inflammation and hyper-responsiveness to inhaled sulfites, and is associated with upregulation of anti-oxidant protein lung carbonyl reductase. For the present experiments, we examined the role of VIP in modulating anti-oxidant genes and their proteins, including lung carbonyl reductase. Four male VIP KO mice and four wild-type age- and gender matched mice had lungs examined for whole genome microarray and a proteomics approach using mass spectrometry. The proteomics analysis revealed that a novel variant of anti-oxidant protein lung carbonyl reductase (car3) was uniquely and markedly elevated in the VIP KO mice. RT-PCR indicated that carbonic anhydrase 3, which is an anti-oxidant protein, was elevated in the VIP KO mice. These data support the concept that VIP influences the endogenous oxidant/antioxidant balance. One potential implication is that VIP and its analogues may be used to treat inflammatory diseases, including asthma.

  5. Phytotherapeutics: The Emerging Role of Intestinal and Hepatocellular Transporters in Drug Interactions with Botanical Supplements.

    Science.gov (United States)

    Murtaza, Ghulam; Ullah, Naveed; Mukhtar, Farah; Nawazish, Shamyla; Muneer, Saiqa

    2017-10-21

    In herbalism, botanical supplements are commonly believed to be safe remedies, however, botanical supplements and dietary ingredients interact with transport and metabolic processes, affecting drug disposition. Although a large number of studies have described that botanical supplements interfere with drug metabolism, the mode of their interaction with drug transport processes is not well described. Such interactions may result in serious undesired effects and changed drug efficacy, therefore, some studies on interaction between botanical supplement ingredients and drug transporters such as P-gp and OATPs are described here, suggesting that the interaction between botanical supplements and the drug transporters is clinically significant.

  6. Development of Yam Dioscorin-Loaded Nanoparticles for Paracellular Transport Across Human Intestinal Caco-2 Cell Monolayers.

    Science.gov (United States)

    Hsieh, Hung-Ling; Lee, Chia-Hung; Lin, Kuo-Chih

    2018-02-07

    Dioscorins, the major storage proteins of yam tubers, exert immunomodulatory activities. To improve oral bioavailability of dioscorins in the intestine, recombinant dioscorin (rDioscorin) was coated with N,N,N-trimethyl chitosan (TMC) and tripolyphosphate (TPP), resulting in the formation of TMC-rDio-TPP nanoparticles (NPs). The loading capacity and entrapment efficiency of rDioscorin in the NPs were 26 ± 0.7% and 61 ± 1.4%, respectively. The NPs demonstrated a substantial release profile in the pH environment of the jejunum. The rDioscorin released from the NPs stimulated proliferation and phagocytosis of the macrophage RAW264.7 and activated the gene expression of IL-1β and IL-6. Incubation of the NPs in the Caco-2 cell monolayer led to a 5.2-fold increase of P app compared with rDioscorin alone, suggesting that rDioscorin, with the assistance of TMC, can be promptly transported across the intestinal epithelia. These results demonstrate that the TMC-rDio-TPP NPs can be utilized for elucidating the immunopharmacological effects of dioscorins through oral delivery.

  7. Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells.

    Science.gov (United States)

    Yang, Cheng; Zhang, Hua; Liu, Ronghua; Zhu, Honghui; Zhang, Lianfu; Tsao, Rong

    2017-11-29

    The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H 2 O 2 . We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.

  8. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1995-01-01

    A number of transmembrane digestive enzymes of the porcine small intestinal brush border membrane were found to be partially Triton X-100-insoluble at 0 degree C and colocalized in gradient centrifugation experiments with the GPI-anchored alkaline phosphatase in low-density, detergent-insoluble c......A number of transmembrane digestive enzymes of the porcine small intestinal brush border membrane were found to be partially Triton X-100-insoluble at 0 degree C and colocalized in gradient centrifugation experiments with the GPI-anchored alkaline phosphatase in low-density, detergent......-insoluble complexes commonly known as glycolipid "rafts". Thus, aminopeptidase N (EC 3.4.11.2), aminopeptidase A (EC 3.4.11.7), dipeptidyl peptidase IV (EC 3.4.14.5), and sucrase-isomaltase (EC 3.2.1.48-10) were 34-48% detergent-insoluble. Maltase-glucoamylase (EC 3.2.1.20) was markedly less detergent-insoluble (20......%), and lactase-phlorizin hydrolase (EC 3.2.1.23-62) was essentially fully soluble in detergent. In radioactively labeled, mucosal explants, the newly synthesized brush border enzymes began to associate with detergent-insoluble complexes while still in their transient, high mannose-glycosylated form...

  9. Anti-Inflammatory Effects of the Nicotinergic Peptides SLURP-1 and SLURP-2 on Human Intestinal Epithelial Cells and Immunocytes

    Directory of Open Access Journals (Sweden)

    Alex I. Chernyavsky

    2014-01-01

    Full Text Available A search for novel and more efficient therapeutic modalities of inflammatory bowel disease (IBD is one of the most important tasks of contemporary medicine. The anti-inflammatory action of nicotine in IBD might be therapeutic, but its toxicity due to off-target and nonreceptor effects limited its use and prompted a search for nontoxic nicotinergic drugs. We tested the hypothesis that SLURP-1 and -2—the physiological nicotinergic substances produced by the human intestinal epithelial cells (IEC and immunocytes—can mimic the anti-inflammatory effects of nicotine. We used human CCL-241 enterocytes, CCL-248 colonocytes, CCRF-CEM T-cells, and U937 macrophages. SLURP-1 diminished the TLR9-dependent secretion of IL-8 by CCL-241, and IFNγ-induced upregulation of ICAM-1 in both IEC types. rSLURP-2 inhibited IL-1β-induced secretion of IL-6 and TLR4- and TLR9-dependent induction of CXCL10 and IL-8, respectively, in CCL-241. rSLURP-1 decreased production of TNFα by T-cells, downregulated IL-1β and IL-6 secretion by macrophages, and moderately upregulated IL-10 production by both types of immunocytes. SLURP-2 downregulated TNFα and IFNγR in T-cells and reduced IL-6 production by macrophages. Combining both SLURPs amplified their anti-inflammatory effects. Learning the pharmacology of SLURP-1 and -2 actions on enterocytes, colonocytes, T cells, and macrophages may help develop novel effective treatments of IBD.

  10. L-carnitine, a diet component and organic cation transporter OCTN ligand, displays immunosuppressive properties and abrogates intestinal inflammation.

    Science.gov (United States)

    Fortin, G; Yurchenko, K; Collette, C; Rubio, M; Villani, A-C; Bitton, A; Sarfati, M; Franchimont, D

    2009-04-01

    Allele variants in the L-carnitine (LCAR) transporters OCTN1 (SLC22A4, 1672 C --> T) and OCTN2 (SLC22A5, -207 G --> C) have been implicated in susceptibility to Crohn's disease (CD). LCAR is consumed in the diet and transported actively from the intestinal lumen via the organic cation transporter OCTN2. While recognized mainly for its role in fatty acid metabolism, several lines of evidence suggest that LCAR may also display immunosuppressive properties. This study sought to investigate the immunomodulatory capacity of LCAR on antigen-presenting cell (APC) and CD4+ T cell function by examining cytokine production and the expression of activation markers in LCAR-supplemented and deficient cell culture systems. The therapeutic efficacy of its systemic administration was then evaluated during the establishment of colonic inflammation in vivo. LCAR treatment significantly inhibited both APC and CD4+ T cell function, as assessed by the expression of classical activation markers, proliferation and cytokine production. Carnitine deficiency resulted in the hyperactivation of CD4+ T cells and enhanced cytokine production. In vivo, protection from trinitrobenzene sulphonic acid colitis was observed in LCAR-treated mice and was attributed to the abrogation of both innate [interleukin (IL)-1beta and IL-6 production] and adaptive (T cell proliferation in draining lymph nodes) immune responses. LCAR therapy may therefore represent a novel alternative therapeutic strategy and highlights the role of diet in CD.

  11. The Role of Turmerones on Curcumin Transportation and P-Glycoprotein Activities in Intestinal Caco-2 Cells

    Science.gov (United States)

    Yue, Grace G.L.; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K.M.; Hon, Po-Ming; Lee, Mavis Y.H.; Kennelly, Edward J.; Deng, Gary; Yeung, Simon K.; Cassileth, Barrie R.; Fung, Kwok-Pui; Leung, Ping-Chung

    2012-01-01

    Abstract The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases. PMID:22181075

  12. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    to the harsh and selective gastrointestinal system, and development has lacked far behind injection therapy. Peptide acylation is a powerful tool to alter the pharmacokinetics, biophysical properties and chemical stability of injectable peptide drugs, primarily used to prolong blood circulation....... This work aims to characterize acylated analogues of two therapeutic peptides by systematically increasing acyl chain length in order to elucidate its influence on membrane interaction and intestinal cell translocation in vitro. The studied peptides are the 33 amino acid Glucagon-like peptide-2 (GLP-2...... peptides can increase in vitro intestinal permeability, modestly for GLP-2 and drastically for sCT, and might benefit oral delivery. GLP-2 results provide a well-founded predictive power for future peptide analogues, whereas sCT results hold great promise for future analogues, albeit with a larger...

  13. Effects of Soybean Small Peptides on Rumen Fermentation and on Intestinal and Total Tract Digestion of Luxi Yellow Cattle

    Directory of Open Access Journals (Sweden)

    W. J. Wang

    2013-01-01

    Full Text Available Four Luxi beef cattle (400±10 kg fitted with ruminal, duodenal and ileal cannulas were used in a 4×4 Latin square to assess the effects of soybean small peptide (SSP infusion on rumen fermentation, diet digestion and flow of nutrient in the gastrointestinal tract. The ruminal infusion of SSP was 0 (control, 100, 200 and 300 g/d. Ruminal SSP infusion linearly (p<0.01 and quadratically (p<0.01 increased microbial protein synthesis and rumen ammonia-N concentration. Concentrations of total volatile fatty acid were linearly increased (p = 0.029 by infusion SSP. Rumen samples were obtained for analysis of microbial ecology by real-time PCR. Populations of rumen Butyrivibrio fibrisolvens, Streptococcus bovis, Ciliate protozoa, Ruminococcus flavefaciens, and Prevotella ruminicola were expressed as a proportion of total Rumen bacterial 16S ribosomal deoxyribonucleic acid (rDNA. Butyrivibrio fibrisolvens populations which related to total bacterial 16S rDNA were increased (p<0.05, while Streptococcus bovis populations were linearly (p = 0.049 and quadratically (p = 0.020 decreased by infusion of SSP. Apparent rumen digestibility of DM and NDF were (Q, p<0.05; L, p<0.05 increased with infusion SSP. Total tract digestion of DM, OM and NDF were linearly (p<0.01 and quadratically (p<0.01 increased by infusing SSP. The flow of total amino acids (AA, essential amino acids (EAA and individual amino acids were linearly (p<0.01 and quadratically (p<0.01 increased with infusion SSP. The digestibility of Lysine was quadratically (p = 0.033 increased and apparent degradability of Arginine was linearly (p = 0.032 and quadratically (p = 0.042 increased with infusion SSP. The results indicated that infusion SSP could improve nutrient digestion, ruminal fermentation and AA availability.

  14. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    Science.gov (United States)

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  15. Identifying sugarcane expressed sequences associated with nutrient transporters and peptide metal chelators

    Directory of Open Access Journals (Sweden)

    Antonio Figueira

    2001-12-01

    Full Text Available Plant nutrient uptake is an active process, requiring energy to accumulate essential elements at higher levels in plant tissues than in the soil solution, while the presence of toxic metals or excess of nutrients requires mechanisms to modulate the accumulation of ions. Genes encoding ion transporters isolated from plants and yeast were used to identify sugarcane putative homologues in the sugarcane expressed sequence tag (SUCEST database. Five cluster consensi with sequence homology to plant high-affinity phosphate transporter genes were identified. One cluster consensus allowed the prediction of a full-length protein containing 541 amino acids, with 81% amino acid identity to the Nicotiana tabacum NtPT1 gene, consisting of 12 membrane-spanning domains divided by a large hydrophilic charged region. Putative homologues to Arabidopsis thaliana micronutrient transporter genes were also detected in some of the SUCEST libraries. Iron uptake in grasses involves the release of the phytosiderophore mugeneic acid (MA which chelate Fe3+ which is then absorbed by a specific transporter. Sugarcane expressed sequence tag (EST homologous to genes coding for three enzymes of the mugeneic acid biosynthetic pathway [nicotianamine synthase; nicotianamine transferase; and putative mugeneic acid synthetase (ids3] and a putative Fe3+-phytosiderophore transporter were detected. Seven sugarcane sequence clusters were identified with strong homology to members of the ZIP gene family (ZIP1, ZIP3, ZIP4, IRT1 and ZNT1, while four clusters homologous to ZIP2 and three to ZAT were found. Homologues to members of another gene family, Nramp, which code for broad-specificity transition metal transporters were also detected with constitutive expression. Partial transcripts homologous to genes encoding gamma-glutamylcysteine synthetase, glutathione synthetase, and phytochelatin synthase (responsible for biosynthesis of the metal chelator phytochelatin and all four types of the

  16. Slc15a1 is involved in the transport of synthetic F5-peptide into the seminiferous epithelium in adult rat testes.

    Science.gov (United States)

    Su, Linlin; Zhang, Yufei; Cheng, Yan C; Lee, Will M; Ye, Keping; Hu, Dahai

    2015-11-05

    Spermiation and BTB restructuring, two critical cellular events that occur across seminiferous epithelium in mammalian testis during spermatogenesis, are tightly coordinated by biologically active peptides released from laminin chains. Our earlier study reported that F5-peptide, synthesized based on a stretch of 50 amino acids within laminin-γ3 domain IV, could reversibly induce the impairment of spermatogenesis, disruption of BTB integrity, and germ cell loss, and thus is a promising male contraceptive. However, how F5-peptide when administered intratesticularly enters seminiferous tubules and exerts effects beyond BTB is currently unknown. Here we demonstrated that Slc15a1, a peptide transporter also known as Pept1, was predominantly present in peritubular myoid cells, interstitial Leydig cells, vascular endothelial cells and germ cells, while absent in Sertoli cells or BTB site. The steady-state protein level of Slc15a1 in adult rat testis was not affected by F5-peptide treatment. Knockdown of Slc15a1 by in vivo RNAi in rat testis was shown to prevent F5-peptide induced disruptive effects on spermatogenesis. This study suggests that Slc15a1 is involved in the transport of synthetic F5-peptide into seminiferous epithelium, and thus Slc15a1 is a novel target in testis that could be genetically modified to improve the bioavailability of F5-peptide as a prospective male contraceptive.

  17. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Zhang, Ting; Yu, Zhipeng; Liu, Jingbo

    2018-04-01

    The objective of this paper was to investigate the transepithelial transport of two novel corn gluten-derived antioxidant peptides, YFCLT and GLLLPH, using Caco-2 cell monolayers. Results showed that both of YFCLT and GLLLPH could transport in intact form across Caco-2 cell monolayers with apparent permeability coefficient (P app ) values of (1.10±0.16)×10 -7 cm/s and (1.98±0.23)×10 -7 cm/s, respectively. However, it was found that the two peptides were susceptible and easily hydrolyzed by brush border membrane peptidases. In the presence of diprotin A, an inhibitor of dipeptidyl peptidase IV (DPPIV), the hydrolysis of YFCLT and GLLLPH decreased and their permeabilities increased significantly compared to control group (P0.05), suggesting that the transport of YFCLT and GLLLPH across Caco-2 cell monolayers was not mediated by PepT1. However, it was found that cytochalasin d, a tight junctions (TJs) disruptor, increased the permeability significantly (PCaco-2 cell monolayers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport

    Directory of Open Access Journals (Sweden)

    Nadine Ruderisch

    2017-10-01

    Full Text Available Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ antibodies and secretase inhibitors. However, the blood-brain barrier (BBB limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aβ levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aβ. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.

  19. The effect of wellsolve, a novel solubilizing agent, on the intestinal barrier function and intestinal absorption of griseofulvin in rats.

    Science.gov (United States)

    Hamid, Khuriah Abdul; Lin, Yulian; Gao, Yang; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2009-11-01

    The effect of Wellsolve, a new solubilizing agent, on the function of intestinal membrane barrier and transporters including P-glycoprotein (P-gp) and peptide transporter (PEPT1) was examined by an in vitro diffusion chamber and an in situ closed loop method. The model drugs used in this study were 5(6)-carboxyfluorescein (CF), rhodamine123 (a P-glycoprotein substrate), cephalexin (a typical substrate for PEPT1) and griseofulvin (a BCS Class II drug). Intestinal absorption of CF was not affected by the addition of 1-10% (v/v) Wellsolve, while 20% (v/v) Wellsolve significantly enhanced its intestinal absorption by the in situ absorption study. Therefore, this finding suggested that high concentration of Wellsolve might alter the intestinal barrier function. The mucosal to serosal (absorptive) and serosal to mucosal (secretory) transport of rhodamine123 was significantly inhibited in the presence of 5.0-20% (v/v) of Wellsolve, suggesting that Wellsolve might not affect the function of P-gp in the intestine. The intestinal transport of cephalexin was not affected in the presence of Wellsolve, suggesting that this solubilizing agent might not change the function of PEPT1 in the intestine. In the toxicity studies, we found that 1-10% (v/v) Wellsolve did not change the release of lactate hydrogenase (LDH) and protein from the intestinal membranes. Furthermore, intestinal absorption of griseofulvin in the presence of 10% (v/v) Wellsolve significantly increased as compared with the control. In summary, Wellsolve at lower concentrations might be a potent and safe solubilizing agent for improving the solubility and absorption of poorly water-soluble drugs including griseofulvin.

  20. Effect of aerobic exercise on plasma vasoactive intestinal peptide, blood pressure and heart rate of elderly healthy persons and coronary artery patients

    Directory of Open Access Journals (Sweden)

    Maryam Amirazodi

    2013-06-01

    Full Text Available Background: Vasoactive intestinal peptide (VIP plays an important role in modulating coronary blood flow and heart rate. The purpose of the present study was to investigate the effect of eight weeks of low intensity aerobic exercise on plasma levels of VIP hormone, blood pressure and heart rate in healthy elderly men and women, and patients with coronary artery disease (CAD.Methods: In this study, 15 healthy women and 15 healthy men and 15 female and 15 male with CAD disease were randomly chosen as the experimental and control groups. Subjects did aerobic exercises tree days/week, for eight weeks, with the heart rate of 10010 beats per minute. Blood samples were taken from each subject in three stages, (before, immediately after and 24 hours after the 8 weeks of exercising.Results: The results showed that there was a significant difference among plasma VIP levels in the four groups. Moreover, a significant difference was observed between the systolic blood pressure in the four groups (P=0.01 and the systolic blood pressure in male patients and healthy women (P=0.03 while there was no meaningful difference the systolic blood pressure in the two other groups. There was also a significant difference in the heart rate of the three rounds of sampling in the three of groups (P=0.002 but no significant difference was observed in healthy men.Conclusion: According to the above results, it seems that the duration and intensity of each workout should be considered to reach the VIP stimulation threshold. It may bring about considerable changes in VIP levels.

  1. Tachykinin-Related Peptides Share a G Protein-Coupled Receptor with Ion Transport Peptide-Like in the Silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Recently, we identified an orphan Bombyx mori neuropeptide G protein-coupled receptor (BNGR-A24 as an ion transport peptide-like (ITPL receptor. BNGR-A24 belongs to the same clade as BNGR-A32 and -A33, which were recently identified as natalisin receptors. Since these three BNGRs share high similarities with known receptors for tachykinin-related peptides (TRPs, we examined whether these BNGRs can function as physiological receptors for five endogenous B. mori TRPs (TK-1-5. In a heterologous expression system, BNGR-A24 acted as a receptor for all five TRPs. In contrast, BNGR-A32 responded only to TK-5, and BNGR-A33 did not respond to any of the TRPs. These findings are consistent with recent studies on the ligand preferences for B. mori natalisins. Furthermore, we evaluated whether the binding of ITPL and TRPs to BNGR-A24 is competitive by using a Ca2+ imaging assay. Concomitant addition of a TRP receptor antagonist, spantide I, reduced the responses of BNGR-A24 not only to TK-4 but also to ITPL. The results of a binding assay using fluorescent-labeled BNGR-A24 and ligands demonstrated that the binding of ITPL to BNGR-A24 was inhibited by TK-4 as well as by spantide I, and vice versa. In addition, the ITPL-induced increase in cGMP levels of BNGR-A24-expressing BmN cells was suppressed by the addition of excess TK-4 or spantide I. The intracellular levels of cAMP and cGMP, as second messenger candidates of the TRP signaling, were not altered by the five TRPs, suggesting that these peptides act via different signaling pathways from cAMP and cGMP signaling at least in BmN cells. Taken together, the present findings suggest that ITPL and TRPs are endogenous orthosteric ligands of BNGR-A24 that may activate discrete signaling pathways. This receptor, which shares orthosteric ligands, may constitute an important model for studying ligand-biased signaling.

  2. Tachykinin-Related Peptides Share a G Protein-Coupled Receptor with Ion Transport Peptide-Like in the Silkworm Bombyx mori.

    Science.gov (United States)

    Nagai-Okatani, Chiaki; Nagasawa, Hiromichi; Nagata, Shinji

    2016-01-01

    Recently, we identified an orphan Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A24 as an ion transport peptide-like (ITPL) receptor. BNGR-A24 belongs to the same clade as BNGR-A32 and -A33, which were recently identified as natalisin receptors. Since these three BNGRs share high similarities with known receptors for tachykinin-related peptides (TRPs), we examined whether these BNGRs can function as physiological receptors for five endogenous B. mori TRPs (TK-1-5). In a heterologous expression system, BNGR-A24 acted as a receptor for all five TRPs. In contrast, BNGR-A32 responded only to TK-5, and BNGR-A33 did not respond to any of the TRPs. These findings are consistent with recent studies on the ligand preferences for B. mori natalisins. Furthermore, we evaluated whether the binding of ITPL and TRPs to BNGR-A24 is competitive by using a Ca2+ imaging assay. Concomitant addition of a TRP receptor antagonist, spantide I, reduced the responses of BNGR-A24 not only to TK-4 but also to ITPL. The results of a binding assay using fluorescent-labeled BNGR-A24 and ligands demonstrated that the binding of ITPL to BNGR-A24 was inhibited by TK-4 as well as by spantide I, and vice versa. In addition, the ITPL-induced increase in cGMP levels of BNGR-A24-expressing BmN cells was suppressed by the addition of excess TK-4 or spantide I. The intracellular levels of cAMP and cGMP, as second messenger candidates of the TRP signaling, were not altered by the five TRPs, suggesting that these peptides act via different signaling pathways from cAMP and cGMP signaling at least in BmN cells. Taken together, the present findings suggest that ITPL and TRPs are endogenous orthosteric ligands of BNGR-A24 that may activate discrete signaling pathways. This receptor, which shares orthosteric ligands, may constitute an important model for studying ligand-biased signaling.

  3. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute...... concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped...

  4. L-Theanine Administration Modulates the Absorption of Dietary Nutrients and Expression of Transporters and Receptors in the Intestinal Mucosa of Rats

    Directory of Open Access Journals (Sweden)

    Qiongxian Yan

    2017-01-01

    Full Text Available L-theanine has various advantageous functions for human health; whether or not it could mediate the nutrients absorption is unknown yet. The effects of L-theanine on intestinal nutrients absorption were investigated using rats ingesting L-theanine solution (0, 50, 200, and 400 mg/kg body weight per day for two weeks. The decline of insulin secretion and glucose concentration in the serum was observed by L-theanine. Urea and high-density lipoprotein were also reduced by 50 mg/kg L-theanine. Jejunal and ileac basic amino acids transporters SLC7a1 and SLC7a9, neutral SLC1a5 and SLC16a10, and acidic SLC1a1 expression were upregulated. The expression of intestinal SGLT3 and GLUT5 responsible for carbohydrates uptake and GPR120 and FABP2 associated with fatty acids transport were inhibited. These results indicated that L-theanine could inhibit the glucose uptake by downregulating the related gene expression in the small intestine of rats. Intestinal gene expression of transporters responding to amino acids absorption was stimulated by L-theanine administration.

  5. The ontogeny of nutrient transporter and digestive enzyme gene expression in domestic pigeon (Columba livia) intestine and yolk sac membrane during pre- and posthatch development.

    Science.gov (United States)

    Dong, X Y; Wang, Y M; Yuan, C; Zou, X T

    2012-08-01

    To better understand the digestive capacity in domestic pigeons (Columba livia), this study was conducted to evaluate nutrient transporters and digestive enzymes gene expression in small intestine and yolk sac membrane (YSM) during pre- and posthatch development. We investigated the oligopeptide transporter Pept1, sodium glucose transporter SGLT1, glucose transporter GLUT2, aminopeptidase-N (APN), and sucrase-isomaltase (SI). Intestine was collected at embryo d 12, 14, and 16, day of hatch, and d 1, 3, 5, 8, and 14 posthatch. The YSM was collected at embryo d 12, 14, 16, and day of hatch. The cDNA fragments for Pept1, SGLT1, GLUT2, APN, and SI were isolated and cloned using reverse-transcription PCR. The sequences data showed that these genes were highly identical to the gene of chicken. The mRNA expression of each gene was assayed using real-time PCR. Expression of intestinal nutrient transporters increased linearly (Ppigeons and establish a foundation for future research on the nutrients requirements for young pigeons.

  6. The Hypocholesterolemic Effects of Eryngium carlinae F. Delaroche Are Mediated by the Involvement of the Intestinal Transporters ABCG5 and ABCG8

    Directory of Open Access Journals (Sweden)

    Ibrahim Guillermo Castro-Torres

    2017-01-01

    Full Text Available Hypercholesterolemia is a metabolic disorder characterized by a high concentration of cholesterol in the blood. Eryngium carlinae is a medicinal plant used to treat lipid diseases. The goal of this work was to evaluate, in a model of hypercholesterolemia in mice, the hypocholesterolemic effect of a hydroalcoholic extract of E. carlinae and its main metabolite, D-mannitol. Biochemical analyses of serum lipids and hepatic enzymes were performed by photocolorimetry. We performed histopathological studies of the liver and the expression of the intestinal cholesterol transporters Abcg5 and Abcg8 was determined by standard western blot method. Our results showed that hydroalcoholic extract at doses of 100 mg/kg and D-mannitol at doses of 10 mg/kg reduced the concentration of both total cholesterol and non-HDL cholesterol, without altering the concentration of HDL cholesterol and without damage to hepatocytes. Treatment with the extract increased Abcg8 intestinal transporter expression, while D-mannitol decreased the expression of the two Abcg5/Abcg8 transporters, compared with the hypercholesterolemic group. Considering that Abcg5/Abcg8 transporters perform cholesterol efflux, our results demonstrate that the lipid-lowering effect of the hydroalcoholic extract may be associated with the increase of Abcg8 expression, but the hypocholesterolemic effect of D-mannitol is independent of overexpression of these intestinal transporters and probably they have another mechanism of action.

  7. [Direct stimulatory action of blood serum, vitamin D3, and its hydroxy-analogs on calcium transport in the small intestine of chicks in vitro].

    Science.gov (United States)

    Bauman, V K; Andrushaite, R E; Berzin', N I; Valinietse, M Iu; Val'dman, A R

    1980-12-01

    A study was made of the effect of blood serum, vitamin D3 and its hydroxy-analogs (25-hydroxyvitamin D4. 1 alpha-hydroxyvitamin D3) on Ca2+ transport across the wall of the noninverted small sac of D-avitaminosis chicken during incubation in vitro. It was shown that blood serum from chickens fed vitamin D3 in different doses (50--20 000 IU) and at varying time (1--72 h) before sacrifice produced a marked stimulating action on the cation transport 10 min after administration into the intestinal cavity as compared with the effect produced by the serum from D-avitaminosis chickens. Administration into the intestine of vitamin D3 or its hydroxy-analogs in physiological doses (6.25--25.0 ng) also significantly stimulated Ca+ transport over 10 min of incubation.

  8. Self-assembly of pi-conjugated peptides in aqueous environments leading to energy-transporting bioelectronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tavor, John [Johns Hopkins Univ., Baltimore, MD (United States)

    2016-12-06

    The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are to construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.

  9. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate...

  10. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  11. Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: Comparison of active and passive transport with the human colon carcinoma Caco-2 cell line

    NARCIS (Netherlands)

    Versantvoort, C.H.M.; Ondrewater, R.C.A.; Duizer, E.; Sandt, J.J.M. van de; Gilde, A.J.; Groten, J.P.

    2002-01-01

    Purpose: previous studies have shown that the rat small intestinal cell line IEC-18 provides a size-selective barrier for paracellularly transported hydrophilic macromolecules. In order to determine the utility of IEC-18 cells as an in vitro model to screen the passive paracellular and transcellular

  12. The mechanism of gentisic acid-induced relaxation of the guinea pig isolated trachea: the role of potassium channels and vasoactive intestinal peptide receptors.

    Science.gov (United States)

    Cunha, J F; Campestrini, F D; Calixto, J B; Scremin, A; Paulino, N

    2001-03-01

    We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC(50) values of 18 microM and E(max) of 100% (N = 10) or 20 microM and E(max) of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 +/- 7.0, 43 +/- 3.9 and 78 +/- 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 microM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 microM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 +/- 12%. Glibenclamide (1 or 3 microM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K(+) channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 microM), a selective blocker of the large-conductance Ca(2+)-activated K(+) channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N(G)-nitroarginine (100 microM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 microM, while methylene blue (10 or 30 microM) or ODQ (1 microM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-(P)-Cl-Phe(6),Leu(17

  13. Prodrugs of purine and pyrimidine analogues for the intestinal di/tri-peptide transporter PepT1

    DEFF Research Database (Denmark)

    Thomsen, Anne Engelbrecht; Friedrichsen, Gerda Marie; Sørensen, Arne Hagsten

    2003-01-01

    , novel L-Glu-Sar and D-Glu-Ala ester prodrugs of acyclovir and 1-(2-hydroxyethyl)-linked thymine were synthesized and their affinities for hPepT1 in Caco-2 cells were determined. Furthermore, the degradation of the prodrugs was investigated in various aqueous and biological media and compared...

  14. A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle.

    Science.gov (United States)

    Matschulla, Tony; Berry, Richard; Gerke, Carolin; Döring, Marius; Busch, Julia; Paijo, Jennifer; Kalinke, Ulrich; Momburg, Frank; Hengel, Hartmut; Halenius, Anne

    2017-06-07

    The transporter associated with antigen processing (TAP) translocates antigenic peptides into the endoplasmic reticulum (ER) lumen for loading onto MHC class I molecules. This is a key step in the control of viral infections through CD8+ T-cells. The herpes simplex virus type-1 encodes an 88 amino acid long species-specific TAP inhibitor, ICP47, that functions as a high affinity competitor for the peptide binding site on TAP. It has previously been suggested that the inhibitory function of ICP47 resides within the N-terminal region (residues 1-35). Here we show that mutation of the highly conserved 50 PLL 52 motif within the central region of ICP47 attenuates its inhibitory capacity. Taking advantage of the human cytomegalovirus-encoded TAP inhibitor US6 as a luminal sensor for conformational changes of TAP, we demonstrated that the 50 PLL 52 motif is essential for freezing of the TAP conformation. Moreover, hierarchical functional interaction sites on TAP dependent on 50 PLL 52 could be defined using a comprehensive set of human-rat TAP chimeras. This data broadens our understanding of the molecular mechanism underpinning TAP inhibition by ICP47, to include the 50 PLL 52 sequence as a stabilizer that tethers the TAP-ICP47 complex in an inward-facing conformation.

  15. [Absorption and transport of isoflavonoid compounds from Tongmai formula across human intestinal epithelial (Caco-2) cells in vitro].

    Science.gov (United States)

    Wang, Fu-Rong; Yang, Xiu-Wei

    2017-08-01

    Tongmai formula (TMF) is a drug combination of three components including Puerariae Lobatae Radix [roots of Pueraria lobata], Salviae Miltiorrhizae Radix (roots of Salvia miltiorrhiza) and Chuanxiong Rhizoma (rhizomes of Ligusticum chuanxiong) in a weight ratio of 1∶1∶1. The absorption and transport of isoflavonoid compounds from Tongmai formula across human intestinal epithelial (Caco-2) cells in vitro were studied in this paper. The assay isoflavonoid compounds include daidzein, formononetin, 5-hydroxylononin, ononin, daidzin, 3'-methoxypuerarin, genistin, puerarin, formononetin-8-C-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside, formononetin-7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside, lanceolarin, kakkanin, daidzein-7,4'-di-O-β-D-glucopyranoside, mirificin, 3'-hydroxypuerarin, 3'-methoxydaidzin, formononetin-8-C-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside, genistein-8-C-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside, genistein-7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (ambocin), 3'-hydroxymirificin, 6″-O-β-D-xylosylpuerarin, biochanin A-8-C-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside, 3'-methoxydaidzein-7,4'-di-O-β-D-glucopyranoside, daidzein-7-O-β-D-glucopyranosyl-(1→4)-O-β-D-glucopyranoside, and daidzein-7-O-α-D-glucopyranosyl-(1→4)-O-β-D-glucopyranoside. By using human Caco-2 monolayer as an intestinal epithelial cell model in vitro, the permeability of above-mentioned 25 isoflavonoids in TMF were studied from the apical (AP) side to basolateral (BL) side or from the BL side to AP side. The assay compounds were determined by reversed phased high-performance liquid chromatography (HPLC) coupled with UV detector. Transport parameters and apparent permeability coefficients (Papp) were then calculated and and compared with those of propranolol and atenolol, which are the transcellular transport marker and as a control substance for high and poor permeability, respectively. The Papp values of daidzein and

  16. Characterization of Caco-2 cells stably expressing the protein-based zinc probe eCalwy-5 as a model system for investigating intestinal zinc transport.

    Science.gov (United States)

    Maares, Maria; Keil, Claudia; Thomsen, Susanne; Günzel, Dorothee; Wiesner, Burkhard; Haase, Hajo

    2018-01-29

    Intestinal zinc resorption, in particular its regulation and mechanisms, are not yet fully understood. Suitable intestinal cell models are needed to investigate zinc uptake kinetics and the role of labile zinc in enterocytes in vitro. Therefore, a Caco-2 cell clone was produced, stably expressing the genetically encoded zinc biosensor eCalwy-5. The aim of the present study was to reassure the presence of characteristic enterocyte-specific properties in the Caco-2-eCalwy clone. Comparison of Caco-2-WT and Caco-2-eCalwy cells revealed only slight differences regarding subcellular localization of the tight junction protein occludin and alkaline phosphatase activity, which did not affect basic integrity of the intestinal barrier or the characteristic brush border membrane morphology. Furthermore, introduction of the additional zinc-binding protein in Caco-2 cells did not alter mRNA expression of the major intestinal zinc transporters (zip4, zip5, znt-1 and znt-5), but increased metallothionein 1a-expression and cellular resistance to higher zinc concentrations. Moreover, this study examines the effect of sensor expression level on its saturation with zinc. Fluorescence cell imaging indicated considerable intercellular heterogeneity in biosensor-expression. However, FRET-measurements confirmed that these differences in expression levels have no effect on fractional zinc-saturation of the probe. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Experimental evidence for in vitro fluid transport in the presence of a traditional medicinal fruit extract across rat everted intestinal sacs.

    Science.gov (United States)

    Mahomoodally, Mohamad Fawzi; Gurib-Fakim, Ameenah; Subratty, Anwar Hussein

    2005-02-01

    The present study was designed to investigate the effects of aqueous fruit extract of Momordica charantia (MC), a traditional medicinal plant, on the transport of fluid in vitro. Everted intestinal sacs from rats were mounted in an organ bath containing Krebs solution. We compared the effect of MC extract on water transport with increasing inorganic phosphate concentration with or without D-glucose in the buffer. In the control experiments, fluid uptake was enhanced significantly (P side inhibits the uptake of fluid significantly (P 0.05) when incubated with 3.0 mg/mL MC fruit extract. It is hypothesized that an increase in inorganic phosphate enhances oxidative phosphorylation thereby increasing the fluid uptake across everted intestinal sacs of rat. These findings seem to indicate that the MC-induced reduction on intestinal fluid absorption capacity could be mainly the result of an interference with the carrier-mediated coupled entrance of glucose and Na(+) across the brush-border membrane.

  18. Lupin protein isolate versus casein modifies cholesterol excretion and mRNA expression of intestinal sterol transporters in a pig model.

    Science.gov (United States)

    Radtke, Juliane; Geissler, Stefanie; Schutkowski, Alexandra; Brandsch, Corinna; Kluge, Holger; Duranti, Marcello M; Keller, Sylvia; Jahreis, Gerhard; Hirche, Frank; Stangl, Gabriele I

    2014-02-03

    Lupin proteins exert hypocholesterolemic effects in man and animals, although the underlying mechanism remains uncertain. Herein we investigated whether lupin proteins compared to casein modulate sterol excretion and mRNA expression of intestinal sterol transporters by use of pigs as an animal model with similar lipid metabolism as humans, and cellular cholesterol-uptake by Caco-2 cells. Two groups of pigs were fed cholesterol-containing diets with either 230 g/kg of lupin protein isolate from L. angustifolius or 230 g/kg casein, for 4 weeks. Faeces were collected quantitatively over a 5 d period for analysis of neutral sterols and bile acids by gas chromatographically methods. The mRNA abundances of intestinal lipid transporters were analysed by real-time RT-PCR. Cholesterol-uptake studies were performed with Caco-2 cells that were incubated with lupin conglutin γ, phytate, ezetimibe or albumin in the presence of labelled [4-14C]-cholesterol. Pigs fed the lupin protein isolate revealed lower cholesterol concentrations in total plasma, LDL and HDL than pigs fed casein (P isolate compared to pigs that received casein (+57.1%; P isolate than in those who received casein (P isolate is attributable to an increased faecal output of cholesterol and a reduced intestinal uptake of cholesterol. The findings indicate phytate as a possible biofunctional ingredient of lupin protein isolate.

  19. The mechanism of gentisic acid-induced relaxation of the guinea pig isolated trachea: the role of potassium channels and vasoactive intestinal peptide receptors

    Directory of Open Access Journals (Sweden)

    J.F. Cunha

    2001-03-01

    Full Text Available We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10 or 20 µM and Emax of 92% (N = 10, respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP. The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6% in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively. Tetraethylammonium (100 µM, a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM, a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM, at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM, a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM, a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM or ODQ (1 µM, the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM, a VIP receptor antagonist

  20. The influences of GnRH, oxytocin and vasoactive intestinal peptide on LH and PRL secretion by porcine pituitary cells in vitro.

    Science.gov (United States)

    Bogacka, I; Siawrys, G; Okrasa, S; Kaminski, T; Przala, J

    2002-09-01

    The aim of the present study was to evaluate the possible direct effects of GnRH, oxytocin (OT) and vasoactive intestinal peptide (VIP) on the release of LH and PRL by dispersed porcine anterior pituitary cells. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) one month before slaughter. Gilts randomly assigned to one of the four groups were treated: in Group 1 (n = 8) with 1 ml/100 kg b.w. corn oil (placebo); in Group 2 (n = 8) and Group 3 (n = 8) with estradiol benzoate (EB) at the dose 2.5 mg/100 kg b.w., respectively, 30-36 h and 60-66 h before slaughter; and in Group 4 (n = 9) with progesterone (P4) at the dose 120 mg/ 100 kg b.w. for five consecutive days before slaughter. In gilts of Group 2 and Group 3 treatments with EB have induced the negative and positive feedback in LH secretion, respectively. Isolated anterior pituitary cells (10(6)/well) were cultured in McCoy's 5a medium with horse serum and fetal calf serum for 3 days at 37 degrees C under the atmosphere of 95% air and 5% CO2. Subsequently, the culture plates were rinsed with fresh McCoy's 5A medium and the cells were incubated for 3.5 h at 37 degrees C in the same medium containing one of the following agents: GnRH (100 ng/ml), OT (10-1000 nM) or VIP (1-100 nM). The addition of GnRH to cultured pituitary cells resulted in marked increases in LH release (p gilts representing the positive feedback phase (Group 3). In contrast, OT and VIP were without any effect on LH release in Group 1 (placebo) and Group 2 (the negative feedback). Pituitary cells obtained from OVX gilts primed with P4 produced significantly higher amounts (p gilts of all experimental groups. Oxytocin also failed to alter PRL secretion in Group 1 and Group 2. However, pituitary cells from animals primed with EB 60-66 h before slaughter and P4 produced markedly increased amounts of PRL in the presence of OT. Neuropeptide VIP stimulated PRL release from pituitary cells of OVX gilts primed with EB

  1. The Organic Anion-Transporting Peptide 2B1 Is Localized in the Basolateral Membrane of the Human Jejunum and Caco-2 Monolayers.

    Science.gov (United States)

    Keiser, Markus; Kaltheuner, Lars; Wildberg, Charlotte; Müller, Janett; Grube, Markus; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Oswald, Stefan

    2017-09-01

    The organic anion-transporting polypeptide (OATP) 2B1 which is ubiquitously expressed in the human body is assumed to play an important role in the cellular uptake of many drugs. Although the expression and function of this solute carrier transporter is well characterized in the human liver and other tissues, little is known about its localization and functional relevance in the intestine. Thus, it was the aim of this study to investigate its localization and function in the human jejunum and in the frequently used intestinal Caco-2 cell line. The basolateral membrane of jejunal tissue from 6 individuals showed a significant enrichment of OATP2B1 (17-fold) and the known basolateral proteins ABCC3 and Na/K-ATPase compared to the apical membrane as derived from targeted proteomics analysis. On the contrary, apical localization could be confirmed for ABCB1, ABCC2, and PEPT1. Basolateral localization of OATP2B1 could also be verified in Caco-2 cells. Bidirectional transport studies with established OATP2B1 substrates (sulfasalazine and pravastatin) across freshly exercised human jejunum and Caco-2 cell monolayers demonstrated a markedly higher transport from the basal to the apical compartment than in the opposite direction. Our data provide evidence for a basolateral localization of OATP2B1 which may improve our understanding of intestinal drug absorption. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Methionine and glucose transport by isolated intestinal brush border membrane vesicles from pigs and lambs fed an Aspergillus product

    OpenAIRE

    Jang, Insurk

    1993-01-01

    This study was designed to determine whether feeding an Aspergillus product would influence growth or feed utilization and intestinal mucosal cell function as indicated by uptake of methionine and glucose by isolated intestinal brush border membrane vesicles (BBMV). In Experiment 1, 24 weanling pigs were paired by sex, BW, and litter and were allotted, within pairs, to either an 18% CP corn-soy diet (control) or the same diet supplemented (.15%) with an Aspergillus product. There were no diff...

  3. Expression of serotonin, chromogranin-A, serotonin receptor-2B, tryptophan hydroxylase-1, and serotonin reuptake transporter in the intestine of dogs with chronic enteropathy.

    Science.gov (United States)

    Bailey, Candice; Ruaux, Craig; Stang, Bernadette V; Valentine, Beth A

    2016-05-01

    Serotonin regulates many intestinal motor and sensory functions. Altered serotonergic metabolism has been described in human gastrointestinal diseases. The objective of our study was to compare expression of several components of the serotonergic system [serotonin (5-HT), serotonin reuptake transporter protein (SERT), tryptophan hydroxylase-1 (TPH-1), 5-HT receptor2B (5-HT2B)] and the enterochromaffin cell marker chromogranin-A (CgA) in the intestinal mucosa between dogs with chronic enteropathy and healthy controls. Serotonin and CgA expression were determined by immunohistochemistry using banked and prospectively obtained, paraffin-embedded canine gastrointestinal biopsies (n = 11), and compared to a control group of canine small intestinal sections (n = 10). Expression of SERT, TPH-1, and 5-HT2B were determined via real-time reverse transcription (qRT)-PCR using prospectively collected endoscopic duodenal biopsies (n = 10) and compared to an additional control group of control duodenal biopsies (n = 8, control group 2) showing no evidence of intestinal inflammation. Dogs with chronic enteropathies showed strong staining for both 5-HT and CgA. Mean positive cells per high power field (HPF) were significantly increased for both compounds in dogs with chronic enteropathies (p < 0.001 for 5-HT; p < 0.05 for CgA). The number of 5-HT-positive and CgA-positive cells/HPF showed significant correlation in the entire group of dogs, including both diseased and healthy individuals (Pearson r(2) = 0.2433, p = 0.016). No significant differences were observed for SERT, TPH-1, or 5-HT2B expression; however, dogs with chronic enteropathy showed greater variability in expression of TPH-1 and 5-HT2B We conclude that components of the neuroendocrine system show altered expression in the intestinal mucosa of dogs with chronic enteropathy. These changes may contribute to nociception and clinical signs in these patients. © 2016 The Author(s).

  4. Synthesis and Characterization of Valyloxy Methoxy Luciferin for the Detection of Valacyclovirase and Peptide Transporter

    Science.gov (United States)

    Amidon, Gordon L.; Lee, Kyung-Dall

    2014-01-01

    An amino acid ester derivative of luciferin (valoluc) was synthesized to mimic the transport and activation of valacyclovir. This molecule was characterized in vitro for specificity and enzymatic constants, and then assayed in two different, physiologically-relevant conditions. It was demonstrated that valoluc activation is sensitive to the same cellular factors as valacyclovir and thus has the potential to elucidate the dynamics of amino acid ester prodrug therapies in a functional, high-throughput manner. PMID:25240255

  5. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...... membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption...

  6. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption......A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...

  7. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  8. Perturbation of intestinal microvillar enzyme biosynthesis by amino acid analogs. Evidence that dimerization is required for the transport of aminopeptidase N out of the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Danielsen, E M

    1990-01-01

    The amino acid analogs canavanine, 3-hydroxynorvaline, thialysine, 6-fluorotryptophan, m-fluorotyrosine, and 2-fluorophenylalanine were incorporated into proteins, synthesized in pig intestinal mucosal explants, and their effect on molecular processing and intracellular transport of microvillar...... export of a secretory protein, apolipoprotein A-1, was largely unaffected. For the microvillar enzymes, all six analogs caused an accumulation of the transient, high mannose-glycosylated form, indicating an analog-sensitive stage prior to the Golgi-associated processing. For aminopeptidase N, this arrest...

  9. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.

    Science.gov (United States)

    García-Villalba, Rocío; Vissenaekens, Hanne; Pitart, Judit; Romo-Vaquero, María; Espín, Juan C; Grootaert, Charlotte; Selma, María V; Raes, Katleen; Smagghe, Guy; Possemiers, Sam; Van Camp, John; Tomas-Barberan, Francisco A

    2017-07-12

    A TWIN-SHIME system was used to compare the metabolism of pomegranate polyphenols by the gut microbiota from two individuals with different urolithin metabotypes. Gut microbiota, ellagitannin metabolism, short-chain fatty acids (SCFA), transport of metabolites, and phase II metabolism using Caco-2 cells were explored. The simulation reproduced the in vivo metabolic profiles for each metabotype. The study shows for the first time that microbial composition, metabolism of ellagitannins, and SCFA differ between metabotypes and along the large intestine. The assay also showed that pomegranate phenolics preserved intestinal cell integrity. Pomegranate polyphenols enhanced urolithin and propionate production, as well as Akkermansia and Gordonibacter prevalence with the highest effect in the descending colon. The system provides an insight into the mechanisms of pomegranate polyphenol gut microbiota metabolism and absorption through intestinal cells. The results obtained by the combined SHIME/Caco-2 cell system are consistent with previous human and animal studies and show that although urolithin metabolites are present along the gastrointestinal tract due to enterohepatic circulation, they are predominantly produced in the distal colon region.

  10. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    DEFF Research Database (Denmark)

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker

    2013-01-01

    and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies...

  11. Cellular transport of microcystin-LR in rainbow trout (Oncorhynchus mykiss) across the intestinal wall: possible involvement of multidrug resistance-associated proteins.

    Science.gov (United States)

    Bieczynski, Flavia; De Anna, Julieta S; Pirez, Macarena; Brena, Beatríz M; Villanueva, Silvina S M; Luquet, Carlos M

    2014-09-01

    We studied Abcc mediated-transport in middle and posterior intestine of the rainbow trout, Oncorhynchus mykiss. Luminal and serosal transport were evaluated in everted and non-everted intestinal sacs, respectively, incubated with 1-chloro-2,4-dinitrobenzene (CDNB; 200 μM). CDNB enters the cells and is conjugated with glutathione via glutathione S-transferase (GST) to form 2,4-dinitrophenyl-S-glutathione (DNP-SG), a known Abcc substrate. DNP-SG concentration in the bath was recorded every 10 min, in order to calculate the mass-specific transport rate. For evaluating the possible involvement of Abcc proteins in microcystin-LR (MCLR) transport, 1.135 μM MCLR was added to the bath or inside the sacs, in everted or non-everted preparations, respectively. Both luminal and serosal DNP-SG efflux were significantly inhibited by MCLR. A concentration-response curve obtained using strips from middle intestine yielded an IC50 value of 1.33 μM MCLR. The Abcc inhibitor, MK571 produced concentration-dependent inhibition of DNP-SG similar to that produced by MCLR. Since competition of MCLR and CDNB as GST substrates could bias the DNP-SG transport results, we evaluated the effects of MCLR on calcein efflux, which does not depend on GST activity. We applied the non-fluorescent, cell-permeant compound calcein-AM (0.25 μM) to middle intestinal strips and recorded the efflux of its hydrolysis product, the fluorescent Abcc substrate calcein. 2.27 μM MCLR and 3 μM MK571 inhibited calcein efflux (17.39 and 20.2%, respectively). Finally, MCLR interaction with Abcc transporters was evaluated by measuring its toxic intracellular effects. Middle intestinal segments were incubated in saline solution with 1.135 μM MCLR (MC1), 2.27 μM MCLR (MC2), 3 μM MK571 (MK) or 1.135 μM MCLR+3 μM MK571 (MC1/MK). After 1h, GSH concentration, protein phosphatase 1 and 2A (PP1, PP2A) and GST activities were measured in each segment. MC1did not produce significant effect while MC1/MK and MC2

  12. Up-Regulation of Intestinal Phosphate Transporter NaPi-IIb (SLC34A2 by the Kinases SPAK and OSR1

    Directory of Open Access Journals (Sweden)

    Myriam Fezai

    2015-10-01

    Full Text Available Background/Aims: SPAK (SPS1-related proline/alanine-rich kinase and OSR1 (oxidative stress-responsive kinase 1, kinases controlled by WNK (with-no-K[Lys] kinase, are powerful regulators of cellular ion transport and blood pressure. Observations in gene-targeted mice disclosed an impact of SPAK/OSR1 on phosphate metabolism. The present study thus tested whether SPAK and/or OSR1 contributes to the regulation of the intestinal Na+-coupled phosphate co-transporter NaPi-IIb (SLC34A2. Methods: cRNA encoding NaPi-IIb was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type SPAK, constitutively active T233ESPAK, WNK insensitive T233ASPAK, catalytically inactive D212ASPAK, wild-type OSR1, constitutively active T185EOSR1, WNK insensitive T185AOSR1 or catalytically inactive D164AOSR1. The phosphate (1 mM-induced inward current (IPi was taken as measure of phosphate transport. Results: IPi was observed in NaPi-IIb expressing oocytes but not in water injected oocytes, and was significantly increased by co-expression of SPAK, T233ESPAK, OSR1, T185EOSR1 or SPAK+OSR1, but not by co-expression of T233ASPAK, D212ASPAK, T185AOSR1, or D164AOSR1. SPAK and OSR1 both increased the maximal transport rate of the carrier. Conclusions: SPAK and OSR1 are powerful stimulators of the intestinal Na+-coupled phosphate co-transporter NaPi-IIb.

  13. Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carriers coexpressed in the small intestine.

    Science.gov (United States)

    Anderson, Catriona M H; Jevons, Mark; Thangaraju, Muthusamy; Edwards, Noel; Conlon, Nichola J; Woods, Steven; Ganapathy, Vadivel; Thwaites, David T

    2010-01-01

    5-Aminolevulinic acid (ALA) is a prodrug used in photodynamic therapy, fluorescent diagnosis, and fluorescent-guided resection because it leads to accumulation of the photosensitizer protoporphyrin IX (PpIX) in tumor tissues. ALA has good oral bioavailability, but high oral doses are required to obtain selective PpIX accumulation in colonic tumors because accumulation is also observed in normal gut mucosa. Structural similarities between ALA and GABA led us to test the hypothesis that the H(+)-coupled amino acid transporter PAT1 (SLC36A1) will contribute to luminal ALA uptake. Radiolabel uptake and electrophysiological measurements identified PAT1-mediated H(+)-coupled ALA symport after heterologous expression in Xenopus oocytes. The selectivity of the nontransported inhibitors 5-hydroxytryptophan and 4-aminomethylbenzoic acid for, respectively, PAT1 and the H(+)-coupled di/tripeptide transporter PepT1 (SLC15A1) were examined. 5-Hydroxytryptophan selectively inhibited PAT1-mediated amino acid uptake across the brush-border membrane of the human intestinal (Caco-2) epithelium whereas 4-aminomethylbenzoic acid selectively inhibited PepT1-mediated dipeptide uptake. The inhibitory effects of 5-hydroxytryptophan and 4-aminomethylbenzoic acid were additive, demonstrating that both PAT1 and PepT1 contribute to intestinal transport of ALA. This is the first demonstration of overlap in substrate specificity between these distinct transporters for amino acids and dipeptides. PAT1 and PepT1 expression was monitored by reverse transcriptase-polymerase chain reaction using paired samples of normal and cancer tissue from human colon. mRNA for both transporters was detected. PepT1 mRNA was increased 2.3-fold in cancer tissues. Thus, increased PepT1 expression in colonic cancer could contribute to the increased PpIX accumulation observed. Selective inhibition of PAT1 could enhance PpIX loading in tumor tissue relative to that in normal tissue.

  14. Intra-amniotic administration (Gallus gallus) of cicer arietinum and lens culinaris prebiotics extracts and duck egg white peptides affects calcium status and intestinal functionality

    Science.gov (United States)

    Calcium (Ca) is one of the most abundant inorganic elements in the human body and has many important physiological roles. Prebiotics and bioactive peptides are two important substances used to promote calcium uptake. However, the difference in mechanisms of the calcium uptake from these two suppleme...

  15. Evidence of independent action of neurohypophyseal peptides on osmotic water flow and active sodium transport in the same target organ: studies on RANA esculenta skin and bladder (1961)

    International Nuclear Information System (INIS)

    Bourguet, J.; Maetz, J.

    1961-01-01

    Neurohypophyseal peptides produce on the skin and bladder of certain amphibia simultaneous increases of the passive osmotic permeability to water and active transport of sodium. The present work shows that oxytocin and two of its analogues arginine-8-oxytocin (arginine vasotocin) and lysine-8-oxytocin (lysine vasotocin) may produce the same increase of water permeability, while stimulating in quite different ways the sodium transport. This is the case for both skin and bladder. In other words, there is no correlation between natriferic and hydro-osmotic activities. The results are interpreted as evidence that neurohypophyseal hormones act on not one, as previously assumed, but two targets, inside the same epithelial cell. (author) [fr

  16. Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding.

    Directory of Open Access Journals (Sweden)

    Julia Steinhoff-Wagner

    Full Text Available Oral glucose supply is important for neonatal calves to stabilize postnatal plasma glucose concentration. The objective of this study was to investigate ontogenic development of small intestinal growth, lactase activity, and glucose transporter in calves (n = 7 per group that were born either preterm (PT; delivered by section 9 d before term or at term (T; spontaneous vaginal delivery or spontaneously born and fed colostrum for 4 days (TC. Tissue samples from duodenum and proximal, mid, and distal jejunum were taken to measure villus size and crypt depth, protein concentration of mucosa and brush border membrane vesicles (BBMV, total DNA and RNA concentration of mucosa, mRNA expression and activity of lactase, and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1 and facilitative glucose transporter 2 (GLUT2 in mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and immunochemical localization of GLUT2 in the enterocytes were determined. Villus height in distal jejunum was lower in TC than in T. Crypt depth in all segments was largest and the villus height/crypt depth ratio in jejunum was smallest in TC calves. Concentration of RNA was highest in duodenal mucosa of TC calves, but neither lactase mRNA and activity nor SGLT1 and GLUT2 mRNA and protein expression differed among groups. Localization of GLUT2 in the apical membrane was greater, whereas in the basolateral membrane was lower in TC than in T and PT calves. Our study indicates maturation processes after birth for mucosal growth and trafficking of GLUT2 from the basolateral to the apical membrane. Minor differences of mucosal growth, lactase activity, and intestinal glucose transporters were seen between PT and T calves, pointing at the importance of postnatal maturation and feeding for mucosal growth and GLUT2 trafficking.

  17. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice.

    Science.gov (United States)

    Slijepcevic, Davor; Roscam Abbing, Reinout L P; Katafuchi, Takeshi; Blank, Antje; Donkers, Joanne M; van Hoppe, Stéphanie; de Waart, Dirk R; Tolenaars, Dagmar; van der Meer, Jonathan H M; Wildenberg, Manon; Beuers, Ulrich; Oude Elferink, Ronald P J; Schinkel, Alfred H; van de Graaf, Stan F J

    2017-11-01

    The Na + -taurocholate cotransporting polypeptide (NTCP/SLC10A1) is believed to be pivotal for hepatic uptake of conjugated bile acids. However, plasma bile acid levels are normal in a subset of NTCP knockout mice and in mice treated with myrcludex B, a specific NTCP inhibitor. Here, we elucidated which transport proteins mediate the hepatic uptake of conjugated bile acids and demonstrated intestinal sensing of elevated bile acid levels in plasma in mice. Mice or healthy volunteers were treated with myrcludex B. Hepatic bile acid uptake kinetics were determined in wild-type (WT), organic anion transporting polypeptide (OATP) knockout mice (lacking Slco1a/1b isoforms), and human OATP1B1-transgenic mice. Effects of fibroblast growth factor 19 (FGF19) on hepatic transporter mRNA levels were assessed in rat hepatoma cells and in mice by peptide injection or adeno-associated virus-mediated overexpression. NTCP inhibition using myrcludex B had only moderate effects on bile acid kinetics in WT mice, but completely inhibited active transport of conjugated bile acid species in OATP knockout mice. Cholesterol 7α-hydroxylase Cyp7a1 expression was strongly down-regulated upon prolonged inhibition of hepatic uptake of conjugated bile acids. Fgf15 (mouse counterpart of FGF19) expression was induced in hypercholanemic OATP and NTCP knockout mice, as well as in myrcludex B-treated cholestatic mice, whereas plasma FGF19 was not induced in humans treated with myrcludex B. Fgf15/FGF19 expression was induced in polarized human enterocyte-models and mouse organoids by basolateral incubation with a high concentration (1 mM) of conjugated bile acids. NTCP and OATPs contribute to hepatic uptake of conjugated bile acids in mice, whereas the predominant uptake in humans is NTCP mediated. Enterocytes sense highly elevated levels of (conjugated) bile acids in the systemic circulation to induce FGF15/19, which modulates hepatic bile acid synthesis and uptake. (Hepatology 2017;66:1631-1643).

  18. A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK

    NARCIS (Netherlands)

    Oppegård, Camilla; Kjos, Morten; Veening, Jan-Willem; Nissen-Meyer, Jon; Kristensen, Tom

    2016-01-01

    Lactobacillus plantarum produces a number of antimicrobial peptides (bacteriocins) that mostly target closely related bacteria. Although bacteriocins are important for the ecology of these bacteria, very little is known about how the peptides target sensitive cells. In this work, a putative membrane

  19. The effects of dietary sulfur amino acids on growth performance, intestinal morphology, enzyme activity, and nutrient transporters in weaning piglets.

    Science.gov (United States)

    Zong, Enyan; Huang, Pengfei; Zhang, Wei; Li, Jianzhong; Li, Yali; Ding, Xueqing; Xiong, Xia; Yin, Yulong; Yang, Huansheng

    2018-04-03

    Early weaning results in intestinal dysfunction in piglets, while sulfur amino acids (SAA) are involved in improving intestinal functions. We tested a hypothesis that dietary supplementation with SAA can improve intestinal functions of weaning piglets and analyzed the effects of different dietary SAA levels on intestinal functions. A total of 80 piglets (Duroc × Landrace × Yorkshire) were weaned at 21 d of age and randomly assigned to one of the five diets that contained 0.53%, 0.63%, 0.74%, 0.85%, or 0.96% SAA, which corresponded to 70%, 85%, 100%, 115%, or 130% of the SAA:Lys ratio recommended by the National Research Council (2012). The 14 d feeding experiment involved 16 pens per diet and one piglet per pen. Eight randomly selected piglets from each treatment were euthanized for tissue sampling on day 7 and 14 post weaning. Supplementation with SAA led to a rise over time in G:F (linear, P = 0.001; quadratic, P = 0.001). Between day 0 and 14 of treatment, the jejunal crypt depth decreased (linear, P = 0.018; quadratic, P = 0.015), while that of the duodenal villus (linear, P = 0.049) and ileal villus width (linear, P = 0.029; quadratic, P = 0.034) increased. The activities of jejunal alkaline phosphatase (ALP) were quadratically increased (P = 0.040) from day 0 to 14 due to dietary SAA. Dietary SAA also elevated the activities of jejunal lactase (linear, P = 0.003; quadratic, P = 0.004), jejunal sucrase (linear, P = 0.032; quadratic, P = 0.027), and jejunal contents of glutathione (GSH) from day 0 to 7, as well as the activity of jejunal maltase (linear, P = 0.014; quadratic, P = 0.001) between day 0 and 14. During the first wk, dietary SAA linearly increased the amounts of intestinal-type fatty acid-binding protein (I-FABP) (P = 0.048) and SGLT-1 (P = 0.021) and linearly decreased the amount of GLUT2 (P = 0.029) proteins in the jejunum. The abundance of jejunal I-FABP (P = 0.044) and PEPT1 (P = 0.049) protein linearly increased from day 0 to 14 in response

  20. Gintonin absorption in intestinal model systems

    Directory of Open Access Journals (Sweden)

    Byung-Hwan Lee

    2018-01-01

    Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

  1. [Intestinal failure: from adaptation to transplantation].

    Science.gov (United States)

    Messing, B; Corcos, O; Amiot, A; Joly, F

    2009-01-01

    Optimised Home Parenteral Nutrition is still, after 35 years of progress, the of benign but chronic Intestinal Failure. A better recognition of chronic Intestinal Failure, in its multiple facets, is warranted for a better approach of associated treatment to Home Parenteral Nutrition, i.e., intestinal trophic factors (growth hormone, Glucagon Like Peptide-2), rehabilitative surgery (reestablishment of colonic continuity, reverse jejunal segment in severe short gut type II) and/or reconstructive surgery (intestinal transplantation for end stage intestinal failure patients). Boundaries of permanent, judged irreversible, intestinal failure will be certainly modified in the following years by combining the various and effective therapies which optimise management by ameliorating absorption of the remnant short gut. The work done on short bowel syndrome in the past 20 years should be done in the next years for chronic-intestinal - pseudo-obstruction patients presenting with intestinal failure on a large European scale because chronic-intestinal - pseudo-obstruction is a group of heterogeneous but rare intestinal diseases. Intestinal transplantation is now a mature therapy with formal indication especially in case of Home Parenteral Nutrition failure (mainly Home Parenteral Nutrition-associated severe liver disease) where combined Liver-intestine transplantation is indicated before end-stage liver failure occurs. For high-risk patients, "preemptive" indication for intestinal transplantation alone will be discussed before home parenteral nutrition complications occur. No doubt that, for improving overall outcome in intestinal failure patients, reference centres should have in expert hands the whole spectrum of medicosurgical therapies for intestinal failure.

  2. Labeling of vasoactive intestinal peptide (VIP) and VIP 10-28 fragment with radioiodine by direct method. Comparative study of the kinetics biodistribution and affinity for neuroendocrine tumor cells

    International Nuclear Information System (INIS)

    Colturato, Maria Tereza

    2005-01-01

    In the progress of the Nuclear Medicine, many protein based radiopharmaceuticals have been developed in the last years using antibodies and, more recently, biologically active natural peptides or similar synthetic peptides. In the search for agents with specificity for the target tissue in tumors detection, it was verified that small sequences of amino acids may interact with selective sites, with homogenous distribution, fast accumulation in tissues and fast blood clearance when compared to the antibodies. Among the peptides used in the diagnosis of tumors, Vasoactive Intestinal Peptide (VIP) has been studied. VIP labeled with iodine-123 is applied in the images of intestinal adenocarcinoma and endocrine tumors. The molecule of VIP contains two tyrosine residues, in the positions 10 and 22 that are, theoretically, equally susceptible to radioiodination for direct method. The objective of this work was to produce VIP labeled with radioiodine (iodine-123), in order to introduce to the brazilian medical class this radiopharmaceutical of interest for the diagnosis and recurrence of tumors that express specific receptors. In an unpublished way, the work studied the labeling and the kinetic distribution of the VIP fragment (VIP 10-28) and verified its potential as radiopharmaceutical applied in the identification of tumors that express VIP receptors. After the choice of the appropriated technique for labeling VIP and VIP 10-28 with radioiodine, using Ceremonial T as oxidant agent and sodium metabisulfite as reducing agent, the quality control procedures were accomplished (electrophoresis and high performance liquid chromatography, HPLC) for radiochemical purity determination as well as the separation of the radiochemical species obtained. Labeling and quality control procedures applied were efficient and accurate. [ 131 I]VIP and [ 131 l]VIP 10-28 were obtained with high radiochemical purity (> 95%). The purification studies to remove free radioiodine in the labeling

  3. Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model.

    Science.gov (United States)

    Wang, Bo; Li, Bo

    2017-03-01

    The transepithelial transport routes of casein-derived peptides with different molecular weights (MWs) were investigated using a Caco-2 cell monolayer. The peptidase hydrolysis during transport was also studied. The results indicate that the paracellular route was the main pathway for F1 (1600-1300Da) and F2 (1000-500Da), and the bioavailabilities were 10.66% and 9.54%, respectively. Peptidase hydrolysis results reveal that brush-border peptidases (BBPs) as well as some other peptidases were responsible for peptide degradation in the paracellular route. The maximum hydrolysis rate of the former was 6.91 and 5.59μM Gly/min for the latter. However, PepT1 was involved in the transport of F3 (peptidases involved in the PepT1 transport and the maximum hydrolysis rate was 11.4μM Gly/min. Furthermore, we found that the amino acid sequence of di- and tripeptides might affect their bioavailabilities significantly. Copyright © 2016. Published by Elsevier Ltd.

  4. THE EVALUATION OF PEPTIDE/HISTIDINE TRANSPORTER 1 (PHT1) FUNCTION: UPTAKE KINETICS UTILIZING A COS-7 STABLY TRANSFECTED CELL LINE.

    Science.gov (United States)

    Lindley, David J; Carl, Stephen M; Mowery, Stephanie A; Knipp, Gregory T

    2011-10-01

    There have been relatively few studies focused on the proton-dependent oligopeptide transporter (POT) superfamily member, Peptide/Histidine Transporter 1 (PHT1), with respect to its contribution to the ADME of peptides and peptide-based drugs. These studies were conducted to determine hPHT1-mediated, H + -dependent uptake kinetics of histidine, carnosine, Gly-Sar and valacyclovir in stably transfected hPHT1-COS-7 cells comparative to kinetics determined in an empty vector (Mock) stably transfected cell line. The results suggest that Gly-Sar appears to be a substrate for PHT1 based on efflux from the stably transfected hPHT1 COS-7 cells. Histidine and Gly-Sar concentration- and time-dependent studies suggest mixed-uptake kinetics. These studies suggest that stably transfected hPHT1-COS-7 cells exhibit different uptake kinetics than those observed in our previous studies and illustrate the requirement for experiments to delineate the physiological role of hPHT1.

  5. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport?

    DEFF Research Database (Denmark)

    Madsen, Steffen; Bujak, Joanna; Tipsmark, Christian

    2014-01-01

    in freshwater (FW). In the kidney no aqps were affected by salinity. In the skin, aqp1a and aqp3a were lower in SW than in FW. In the liver, aqp8ab and aqp10a were lower in SW than in FW. Furthermore, six Na+,K+-ATPase α-subunit isoform transcripts were analysed in the intestine but none showed a consistent......We investigated the salinity-dependent expression dynamics of seven aquaporin paralogs (aqp1a, aqp3a, aqp7, aqp8ab, aqp10a, aqp10b and aqp11a) in several tissues of euryhaline Japanese medaka (Oryzias latipes). All paralogs except aqp7 and aqp10a had a broad tissue distribution, and several were...... affected by salinity in both osmoregulatory and non-osmoregulatory tissues. In the intestine, aqp1a, aqp7, aqp8ab and aqp10a decreased upon seawater (SW) acclimation in both long-term acclimated fish and during 1–3 days of the transition period. In the gill, aqp3a was lower and aqp10a higher in SW than...

  6. Fructans of chicory: intestinal transport and fermentation of different chain lengths and relation to fructose and sorbitol malabsorption.

    Science.gov (United States)

    Rumessen, J J; Gudmand-Høyer, E

    1998-08-01

    Fructans (fructooligosaccharides and inulin) are of increasing interest to clinical nutritionists as functional food additives. The chemically closely related food carbohydrates fructose and sorbitol are implicated in functional bowel disease. Intestinal handling of these carbohydrates is incompletely understood. Intestinal absorption, transit, and fermentation (breath hydrogen and methane, venous acetate, blood glucose, and urine fructans) after ingestion of 10-30 g short- and long-chain fructans from chicory were studied by single-blind, crossover randomization in 10 healthy adults. Responses were compared with responses after ingestion of lactulose, fructose, and sorbitol. Breath hydrogen and venous acetate production increased in proportion to increasing fructan dose and were similar to responses to lactulose. The transit times of long-chain fructans were longer than those of short-chain fructans (75 compared with 30 min, Pmalabsorption than were breath-hydrogen curves (Pmalabsorption of 50 g fructose, resulting in significantly more symptoms than 20 g fructose (Pmalabsorption or abdominal distress. Abdominal symptoms after fructans increased with increasing dose and decreasing chain length. The overall gastrointestinal effects of short-chain fructans seem similar to those of lactulose. Fructans with different chain lengths may have different physiologic properties and further studies of fructans in disease states are warranted.

  7. Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine

    Science.gov (United States)

    Fothergill, Linda J.; Callaghan, Brid; Rivera, Leni R.; Lieu, TinaMarie; Poole, Daniel P.; Cho, Hyun-Jung; Bravo, David M.; Furness, John B.

    2016-01-01

    TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1−/− duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption. PMID:27735854

  8. Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine.

    Science.gov (United States)

    Fothergill, Linda J; Callaghan, Brid; Rivera, Leni R; Lieu, TinaMarie; Poole, Daniel P; Cho, Hyun-Jung; Bravo, David M; Furness, John B

    2016-10-10

    TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1 , and in Trpa1 -deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1 -/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.

  9. Intestinal Obstruction

    Science.gov (United States)

    ... the obstruction along the intestines. Treatment Suction via nasogastric tube Fluids given by vein Surgery for strangulation Sometimes ... nose and placed in the stomach (called a nasogastric tube) or into the intestine. Suction is applied to ...

  10. Effect of egg weight on composition, embryonic growth, and expression of amino acid transporter genes in yolk sac membranes and small intestines of the domestic pigeon (Columba livia).

    Science.gov (United States)

    Chen, M X; Li, X G; Yan, H C; Wang, X Q; Gao, C Q

    2016-06-01

    The objective of this study was to investigate the effect of egg weight on the composition of the egg, the growth of the embryo, and the expression of amino acid transporter genes in the yolk sac membranes and small intestines of the domestic pigeon (Columba livia). A total of 240 fertilized eggs were collected and divided into two groups based on the weight of the eggs, light (LE) and heavy (HE). The composition of 20 eggs from each group was measured, and the remaining eggs were weighed and placed in an incubator. On embryonic days (E) 9, 11, 13, and 15 and day of hatch (DOH), 15 embryos/hatchlings from each group were measured for embryonic growth, and samples were collected. The HE had heavier yolk and albumen weights than the LE (P pigeon embryos. © 2016 Poultry Science Association Inc.

  11. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens

    2013-01-01

    Systemic therapy upon oral delivery of biologics, such as peptide and protein drugs is limited due to their large molecular size, their low enzymatic stability and their inability to cross the intestinal epithelium. Ways to overcome the epithelial barrier include the use of peptide-based excipients...... throughout the gastrointestinal (GI) tract, chemical stability is an inherent challenge when employing amino acid-based excipients for oral delivery, and multiple approaches have been investigated to improve this. The exact mechanisms of transepithelial translocation are discussed, and it is believed...... for oral delivery of peptide and protein drugs highlighting recent studies and the most promising compounds from these classes of peptide excipients....

  12. Effect of duration of exposure to RaCl2 and a radium apatite from freshwater mussels on intestinal transport and bone deposition of radium

    International Nuclear Information System (INIS)

    Domel, R.U.; Beal, A.M.

    1997-01-01

    Natural leaching of uranium ore bodies can result in 226 Ra pollution of adjacent waterways and consequent incorporation of radium into the food chain. Mining has the potential to augment this effect. In the Magela flood plain, Northern Territory, the freshwater mussel (Velesunio angasi) concentrates radium in its tissues as a phosphate compound. The availability of mussel radium for uptake and tissue incorporation was assessed relative to radium chloride using rats. The results were compared for jejunal transport (in situ in vivo, ligated segment using anaesthetised animals) and feed trial experiments. In addition, the influence of age and duration of dosage (hours in the case of the jejunal transport and weeks in the feed trial studies) were investigated. Mussel radium transport across the jejunum of adults and juveniles (<0.3%) was very small when compared to radium chloride (50% injected dose). The amount of mussel radium available for intestinal uptake in the feed trials was also low (<0.5%) but significant when compared to the uptake of radium chloride (< 1.5%). Incorporation of mussel radium into bone was less than that of radium chloride (p=0.0001) for both adults and juveniles. Extrapolation of the data from the animal model to humans suggests that eating these mussels carries with it only a low risk of exceeding the Annual Limit of Intake (ALI) set for members of the public, even in juveniles

  13. Effect of duration of exposure to RaCl{sub 2} and a radium apatite from freshwater mussels on intestinal transport and bone deposition of radium

    Energy Technology Data Exchange (ETDEWEB)

    Domel, R.U. [Australian Nuclear Science and Technology Organsiation, Lucas Heights, NSW (Australia). Environment Division; Beal, A.M. [University of New South Wales, NSW (Australia). Biological Science

    1997-10-01

    Natural leaching of uranium ore bodies can result in {sup 226}Ra pollution of adjacent waterways and consequent incorporation of radium into the food chain. Mining has the potential to augment this effect. In the Magela flood plain, Northern Territory, the freshwater mussel (Velesunio angasi) concentrates radium in its tissues as a phosphate compound. The availability of mussel radium for uptake and tissue incorporation was assessed relative to radium chloride using rats. The results were compared for jejunal transport (in situ in vivo, ligated segment using anaesthetised animals) and feed trial experiments. In addition, the influence of age and duration of dosage (hours in the case of the jejunal transport and weeks in the feed trial studies) were investigated. Mussel radium transport across the jejunum of adults and juveniles (<0.3%) was very small when compared to radium chloride (50% injected dose). The amount of mussel radium available for intestinal uptake in the feed trials was also low (<0.5%) but significant when compared to the uptake of radium chloride (< 1.5%). Incorporation of mussel radium into bone was less than that of radium chloride (p=0.0001) for both adults and juveniles. Extrapolation of the data from the animal model to humans suggests that eating these mussels carries with it only a low risk of exceeding the Annual Limit of Intake (ALI) set for members of the public, even in juveniles 18 refs., 5 figs.

  14. Growth curves and age-related changes in carcass characteristics, organs, serum parameters, and intestinal transporter gene expression in domestic pigeon (Columba livia).

    Science.gov (United States)

    Gao, C Q; Yang, J X; Chen, M X; Yan, H C; Wang, X Q

    2016-04-01

    Two experiments were conducted to fit growth curves, and determine age-related changes in carcass characteristics, organs, serum biochemical parameters, and gene expression of intestinal nutrient transporters in domestic pigeon (Columba livia). In experiment 1, body weight (BW) of 30 pigeons was respectively determined at 1, 3, 7, 14, 21, 28, and 35 days old to fit growth curves and to describe the growth of pigeons. In experiment 2, eighty-four 1-day-old squabs were grouped by weight into 7 groups. On d 1, 3, 7, 14, 21, 28, and 35, twelve birds from each group were randomly selected for slaughter and post-slaughter analysis. The results showed that BW of pigeons increased rapidly from d 1 to d 28 (a 25.7-fold increase), and then had little change until d 35. The Logistic, Gompertz, and Von Bertalanffy functions can all be well fitted with the growth curve of domestic pigeons (R2>0.90) and the Gompertz model showed the highest R2value among the models (R2=0.9997). The equation of Gompertz model was Y=507.72×e-(3.76exp(-0.17t))(Y=BW of pigeon (g); t=time (day)). In addition, breast meat yield (%) increased with age throughout the experiment, whereas the leg meat yield (%) reached to the peak on d 14. Serum total protein, albumin, globulin, and glucose concentration were increased with age, whereas serum uric acid concentration was decreased (Ppigeon were increased with age. The results of correlation analysis showed the gene expressions of B0AT1, PepT1, and NHE2 had positive correlations with BW (0.73pigeon. And the various physiological and functional properties of organs, serum profiles, and gene expression of nutrient transporters in small intestine might cause the differences in their development patterns. © 2016 Poultry Science Association Inc.

  15. Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine

    Directory of Open Access Journals (Sweden)

    Linda J. Fothergill

    2016-10-01

    Full Text Available TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC > cinnamaldehyde > linalool (0.1 to 300 μM. The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM, and were greatly diminished in Trpa1−/− duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.

  16. Cinnamon polyphenols regulate multiple metabolic pathways involved in intestinal lipid metabolism of primary small intestinal enterocytes

    Science.gov (United States)

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways including those that regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport and me...

  17. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    Science.gov (United States)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  18. Vasoactive intestinal peptide-induced neurite remodeling in human neuroblastoma SH-SY5Y cells implicates the Cdc42 GTPase and is independent of Ras-ERK pathway

    International Nuclear Information System (INIS)

    Alleaume, Celine; Eychene, Alain; Harnois, Thomas; Bourmeyster, Nicolas; Constantin, Bruno; Caigneaux, Evelyne; Muller, Jean-Marc; Philippe, Michel

    2004-01-01

    Vasoactive intestinal peptide (VIP) is known to regulate proliferation or differentiation in normal and tumoral cells. SH-SY5Y is a differentiated cell subclone derived from the SK-N-SH human neuroblastoma cell line and possess all the components for an autocrine action of VIP. In the present study, we investigated the morphological changes and intracellular signaling pathways occurring upon VIP treatment of SH-SY5Y cells. VIP induced an early remodeling of cell projections: a branched neurite network spread out and prominent varicosities developed along neurites. Although activated by VIP, the Ras/ERK pathway was not required for the remodeling process. In contrast, pull-down experiments revealed a strong Cdc42 activation by VIP while expression of a dominant-negative Cdc42 prevented the VIP-induced neurite changes, suggesting an important role for this small GTPase in the process. These data provide the first evidence for a regulation of the activity of Rho family GTPases by VIP and bring new insights in the signaling pathways implicated in neurite remodeling process induced by VIP in neuroblastoma cells

  19. Vasoactive Intestinal Peptide Protects Salivary Glands against Structural Injury and Secretory Dysfunction via IL-17A and AQP5 Regulation in a Model of Sjögren Syndrome.

    Science.gov (United States)

    Li, Chengyin; Zhu, Fenglin; Wu, Bin; Wang, Yue

    2018-04-04

    Sjögren syndrome (SS) is an autoimmune disease involving exocrine glands. Currently, drugs that can improve both abnormal immunity and exocrine gland function are needed. The study aimed to investigate the effect and mechanism of vasoactive intestinal peptide (VIP) on the immune response and exocrine gland function in SS. We investigated the effects of VIP on the immune response and secretory function of submandibular glands using NOD mice, and analyzed the expression of IL-17A and AQP5 (aquaporin 5). The submandibular gland cells from healthy 8-day-old Sprague-Dawley rats were used to observe the influence of VIP on AQP5 expression. Our study shows that treatment with VIP in an SS mouse model could not only reduce the immune injury to exocrine glands but also improve the secretory function of these glands. Furthermore, VIP was shown to improve the abnormal immune status by downregulating IL-17A expression in the exocrine glands. It also enhanced the secretory function of exocrine glands by upregulating AQP5 expression. Using a model of SS, we found that VIP could not only modulate the immune response but also affect exocrine gland function, and that these therapeutic effects were associated with IL-17A and AQP5 regulation. © 2018 S. Karger AG, Basel.

  20. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats

    DEFF Research Database (Denmark)

    Holm, René; Porter, Christopher J H; Müllertz, Anette

    2002-01-01

    triglycerides; sunflower oil, and two structured triglycerides containing different proportion and position of medium-(M) and long-chain (L) fatty acids on the glycerol backbone. The two structured triglycerides were abbreviated MLM and LML to reflect the structural position on the glycerol. The concentration...... animals, and this was most pronounced for the animals dosed with the structured triglycerides. CONCLUSIONS: Using MLM as vehicle increases the portal absorption of halofantrine and results in similar lymphatic transport levels when compared to sunflower oil. Total absorption when assessed as absorption...... in the blood plus lymphatic transport for halofantrine after administration in the MLM triglyceride was higher than after administration in sunflower oil....

  1. Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc1l1 expression

    Directory of Open Access Journals (Sweden)

    Takuya Kikuchi

    2016-11-01

    Conclusion: Intestinal CREBH regulates dietary cholesterol flow from the small intestine by controlling the expression of multiple intestinal transporters. We propose that intestinal CREBH could be a therapeutic target for hypercholesterolemia.

  2. Kinetics and conductivity parameters of uptake and transport of polychlorinated biphenyls in the Caco-2 intestinal cell line model

    NARCIS (Netherlands)

    Dulfer, W.J.; Govers, H.A.J.; Groten, J.P.

    1998-01-01

    Most of the accumulation of polychlorinated biphenyls (PCBs) over the food chain can be attributed to contaminant uptake from food. The effect of fatty acid absorption on net uptake and transport fluxes of a selection of 14 PCBs over the organismal gut epithelium has been determined in monolayers of

  3. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9.

    Science.gov (United States)

    DeBosch, Brian J; Kluth, Oliver; Fujiwara, Hideji; Schürmann, Annette; Moley, Kelle

    2014-08-07

    Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricaemia contributes to the development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. In addition, how uric acid is cleared from the circulation is incompletely understood. Here we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricaemia, hyperuricosuria, spontaneous hypertension, dyslipidaemia and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolaemia. These data provide evidence that hyperuricaemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.

  4. Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nanoparticle Plasmonic Spectroscopy

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2013-01-01

    Nanomaterials possess unusually high surface area-to-volume ratios, and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameters) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs+ζ), negatively (Ag-CALNNS NPs−2ζ), and more negatively charged NPs (Ag-CALNNE NPs−4ζ), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral and negative charges on the surface of the NPs at pH 4–10. We have studied their charge-dependent transport into early-developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs+ζ (positively charged) are the most biocompatible while the Ag-CALNNE NPs–4ζ (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs

  5. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  6. Lack of effect of beta-cyclodextrin and its water-soluble derivatives on in vitro drug transport across rat intestinal epithelium.

    Science.gov (United States)

    Zheng, Ying; Zuo, Zhong; Chow, Albert H L

    2006-02-17

    The present study aimed to investigate whether beta-cyclodetxrin (beta-CD) and its water-soluble derivatives, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and sulfobutyl ether beta-cyclodextrin (SBE-beta-CD), exert any effects on the permeation of two drug transport markers (propranolol and lucifer yellow) across rat intestinal epithelium. Rat ileum was stripped of its serosa and mounted inside an Ussing Chamber. Apparent permeability coefficients (P(app)) of the markers from the mucosal to serosal side of the tissue were determined at 37 degrees C in the presence and absence of the beta-cyclodextrins on the mucosal side. Potential difference (PD) was constantly monitored during each experiment to ensure maintenance of the viability and integrity of the tissue. Pre-incubation with 1% beta-CD, 1% HP-beta-CD or 1.48% SBE-beta-CD on the mucosal side for 30 min did not significantly alter the PD and the propranolol permeability (p>0.05). Co-incubation with 1% beta-CD or 1% HP-beta-CD exerted no significant effect on the P(app) of both propranolol and lucifer yellow (p>0.05), but co-incubation with 1.48% SBE-beta-CD lowered the P(app) of propranolol from (1.71+/-0.44)x10(-5) to (0.19+/-0.04)x10(-5)cm/s, which may be ascribed to the molecular complexation of propranolol with SBE-beta-CD. All three beta-cyclodextrins exert no apparent impact on both (passive) transcellar and paracellular drug transports.

  7. The proton-coupled amino acid transporter hPAT1 is the main transporter involved in vigabatrin uptake in intestinal Caco-2 cells

    DEFF Research Database (Denmark)

    Nøhr, Martha Kampp; Hansen, Steen Honore'; Brodin, Birger

    2012-01-01

    transporter hPAT1. The aim of the project was to identify if transporters are involved in cellular uptake of vigabatrin in Caco-2 cells. Methods: The uptake rate of vigabatrin was measured in Caco-2 cells at pH 6.0 or 7.4 for 15 min after application of 0.1 – 25.0 mM vigabatrin. The inhibitory effect...... of selected amino acids and -derivatives on the apical vigabatrin uptake in Caco-2 cells was investigated. Vigabatrin samples were analyzed using liquid chromatography (LC) coupled to a mass selective detector (MSD). Results: The uptake rate of vigabatrin in Caco-2 cells was pH-dependent. The uptake...... of vigabatrin was saturable at pH 6.0 with a Michaelis constant, Km of 12.7 ± 3.7 mM and a maximal flux, Jmax of 3.7 ± 0.5 nmol•min-1•cm-2. The presences of hPAT1 ligands significantly inhibited the uptake of vigabatrin in Caco-2 cells at pH 6.0, whereas hPAT1 non-ligands did not. Discussion: The saturability...

  8. Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides

    DEFF Research Database (Denmark)

    Frølund, Sidsel; Langthaler, Louise; Kall, Morten A

    2012-01-01

    -Sar as substrates of the amino acid transporter PAT1. The aim of the present study is to investigate if other Gly-containing dipeptides interact with PAT1, and whether they can inhibit PAT1 mediated drug absorption, in vitro and in vivo. The in vitro methods included two-electrode voltage clamp measurements on h...... of different dipeptides. The in vivo part consisted of a pharmacokinetic study in rats following oral administration of gaboxadol and preadministration of 200 mg/kg dipeptide. The results showed that in hPAT1 expressing oocytes Gly-Tyr, Gly-Pro, and Gly-Phe inhibited currents induced by drug substances......, the present study identifies selected dipeptides as inhibitors of PAT1 mediated drug absorption in various in vitro models....

  9. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes

    DEFF Research Database (Denmark)

    Walker, Brian A; Hunt, Lawrence G; Sowa, Anna K

    2011-01-01

    is expressed at a high level, which can result in strong MHC associations with resistance to particular infectious pathogens. However, the basis for having a single dominantly expressed class I molecule has been unclear. Here we report TAP1 and TAP2 sequences from 16 chicken lines, and show that both genes......In most mammals, the MHC class I molecules are polymorphic and determine the specificity of peptide presentation, whereas the transporter associated with antigen presentation (TAP) heterodimers are functionally monomorphic. In chickens, there are two classical class I genes but only one...... dominantly expressed class I molecule. These results show that coevolution between class I and TAP genes can explain the presence of a single dominantly expressed class I molecule in common chicken MHC haplotypes. Moreover, such coevolution in the primordial MHC may have been responsible for the appearance...

  10. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  11. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  12. Escherichia coli, an Intestinal Microorganism, as a Biosensor for Quantification of Amino Acid Bioavailability

    Directory of Open Access Journals (Sweden)

    Vesela I. Chalova

    2009-09-01

    Full Text Available In animal diets optimal amino acid quantities and balance among amino acids is of great nutritional importance. Essential amino acid deficiencies have negative impacts on animal physiology, most often expressed in sub-optimal body weight gains. Over supplementation of diets with amino acids is costly and can increase the nitrogen emissions from animals. Although in vivo animal assays for quantification of amino acid bioavailability are well established, Escherichia coli-based bioassays are viable potential alternatives in terms of accuracy, cost, and time input. E. coli inhabits the gastrointestinal tract and although more abundant in colon, a relatively high titer of E. coli can also be isolated from the small intestine, where primary absorption of amino acids and peptides occur. After feed proteins are digested, liberated amino acids and small peptides are assimilated by both the small intestine and E. coli. The similar pattern of uptake is a necessary prerequisite to establish E. coli cells as accurate amino acid biosensors. In fact, amino acid transporters in both intestinal and E. coli cells are stereospecific, delivering only the respective biological L-forms. The presence of free amino- and carboxyl groups is critical for amino acid and dipeptide transport in both biological subjects. Di-, tri- and tetrapeptides can enter enterocytes; likewise only di-, tri- and tetrapeptides support E. coli growth. These similarities in addition to the well known bacterial genetics make E. coli an optimal bioassay microorganism for the assessment of nutritionally available amino acids in feeds.

  13. Intestinal Ischemia

    Science.gov (United States)

    ... weight loss Intestinal ischemia Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  14. Intestinal Coccidia

    OpenAIRE

    MJ Ggaravi

    2007-01-01

    Intestinal Coccidia are a subclass of Apicomplexa phylum. Eucoccidida are facultative heteroxenous, but some of them are monoxenous. They have sexual and asexual life cycle. Some coccidia are human pathogens, for example: Cryptosporidium: Cryptosporidiums has many species that are mammalian intestinal parasites.C. Parvum specie is a human pathogenic protozoa. Cryptosporidum has circle or ellipse shapes and nearly 4-6 mm. It is transmitted in warm seasons. Oocyst is obtained insexual life cycl...

  15. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers.

    Science.gov (United States)

    Xu, Qingbiao; Fan, Hongbing; Yu, Wenlin; Hong, Hui; Wu, Jianping

    2017-08-30

    The objective of this study was to investigate the mechanisms of the transport of antihypertensive tripeptides LKP (Leu-Lys-Pro) and IQW (Ile-Gln-Trp) derived from egg white using a coculture system of Caco-2 and HT29 cell monolayers. The results revealed that LKP and IQW have no cytotoxicity to the cell viability after 2 h incubation, could be transported intact across coculture monolayers (apparent permeability coefficient: (18.11 ± 1.57) × 10 -8 and (13.21 ± 1.12) × 10 -8 cm/s, respectively), and were resistant to peptidase secreted by enterocytes. In addition, the transports were significantly inhibited by dipeptide Gly-Pro (P Caco-2/HT29 coculture monolayers.

  16. Small Intestine Disorders

    Science.gov (United States)

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  17. The intestinal calcistat

    Directory of Open Access Journals (Sweden)

    M K Garg

    2013-01-01

    Full Text Available The main physiological function of vitamin D is maintenance of calcium homeostasis by its effect on calcium absorption, and bone health in association with parathyroid gland. Vitamin D deficiency (VDD is defined as serum 25-hydroxy vitamin D (25OHD levels <20 ng/ml. Do all subjects with VDD have clinical disease according to this definition? We hypothesize that there exist an intestinal calcistat, which controls the calcium absorption independent of PTH levels. It consists of calcium sensing receptor (CaSR on intestinal brush border, which senses calcium in intestinal cells and vitamin D system in intestinal cells. CaSR dampens the generation of active vitamin D metabolite in intestinal cells and decrease active transcellular calcium transport. It also facilitates passive paracellular diffusion of calcium in intestine. This local adaptation adjusts the fractional calcium absorption according the body requirement. Failure of local adaptation due to decreased calcium intake, decreased supply of 25OHD, mutation in CaSR or vitamin D system decreases systemic calcium levels and systemic adaptations comes into the play. Systemic adaptations consist of rise in PTH and increase in active vitamin D metabolites. These adaptations lead to bone resorption and maintenance of calcium homeostasis. Not all subjects with varying levels of VDD manifest with secondary hyperparathyroidism and decreased in bone mineral density. We suggest that rise in PTH is first indicator of VDD along with decrease in BMD depending on duration of VDD. Hence, subjects with any degree of VDD with normal PTH and BMD should not be labeled as vitamin D deficient. These subjects can be called subclinical VDD, and further studies are required to assess beneficial effect of vitamin D supplementation in this subset of population.

  18. Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT).

    Science.gov (United States)

    Gregory Rivera, Magdielis; Hair, Pamela S; Cunnion, Kenji M; Krishna, Neel K

    2018-01-01

    Reactive oxygen species (ROS) are natural byproducts of oxidative respiration that are toxic to organs and tissues. To mitigate ROS damage, organisms have evolved a variety of antioxidant systems to counteract these harmful molecules, however in certain pathological conditions these protective mechanisms can be overwhelmed. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1) mitigates peroxidase activity of the heme bearing proteins myeloperoxidase, hemoglobin, and myoglobin through a reversible process. To determine if this property of PIC1 was antioxidant in nature, we tested PIC1 in a number of well-established antioxidant assays. PIC1 showed dose-dependent antioxidant activity in a total antioxidant (TAC) assay, hydroxyl radical antioxidant capacity (HORAC) assay, oxygen radical antioxidant capacity (ORAC) assay as well as the thiobarbituric acid reactive substances (TBARS) assay to screen for PIC1 antioxidant activity in human plasma. The antioxidant activity of PIC1 in the TAC assay, as well as the HORAC/ORAC assay demonstrated that this peptide acts via the single electron transport (SET) and hydrogen atom transfer (HAT) mechanisms, respectively. Consistent with this mechanism of action, PIC1 did not show activity in a metal chelating activity (MCA) assay. PIC1 contains two vicinal cysteine residues and displayed similar antioxidant activity to the well characterized cysteine-containing tripeptide antioxidant molecule glutathione (GSH). Consistent with the role of the cysteine residues in the antioxidant activity of PIC1, oxidation of these residues significantly abrogated antioxidant activity. These results demonstrate that in addition to its described complement inhibiting activity, PIC1 displays in vitro antioxidant activity.

  19. Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: focus on davunetide (NAP).

    Science.gov (United States)

    Magen, Iddo; Gozes, Illana

    2013-12-01

    This review focuses on the therapeutic effects and mechanisms of action of NAP (davunetide), an eight amino acid snippet derived from activity-dependent neuroprotective protein (ADNP) which was discovered in our laboratory. We have recently described the effects of NAP in neurodegenerative disorders, and we now review the beneficial effects of NAP and other microtubule-stabilizing agents on impairments in axonal transport. Experiments in animal models of microtubule-deficiency including tauopathy (spanning from drosophila to mammals) showed protection of axonal transport by microtubule-stabilizers and NAP, which was coupled to motor and cognitive protection. Clinical trials with NAP (davunetide) are reviewed paving the path to future developments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Evidence that the rabbit proton-peptide co-transporter PepT1 is a multimer when expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Panitsas, Konstantinos-E; Boyd, C A R; Meredith, David

    2006-04-01

    To test whether the rabbit proton-coupled peptide transporter PepT1 is a multimer, we have employed a combination of transport assays, luminometry and site-directed mutagenesis. A functional epitope-tagged PepT1 construct (PepT1-FLAG) was co-expressed in Xenopus laevis oocytes with a non-functional but normally trafficked mutant form of the same transporter (W294F-PepT1). The amount of PepT1-FLAG cRNA injected into the oocytes was kept constant, while the amount of W294F-PepT1 cRNA was increased over the mole fraction range of 0 to 1. The uptake of [(3)H]-D: -Phe-L: -Gln into the oocytes was measured at pH(out) 5.5, and the surface expression of PepT1-FLAG was quantified by luminometry. As the mole fraction of injected W294F-PepT1 increased, the uptake of D: -Phe-L: -Gln decreased. This occurred despite the surface expression of PepT1-FLAG remaining constant, and so we can conclude that PepT1 must be a multimer. Assuming that PepT1 acts as a homomultimer, the best fit for the modelling suggests that PepT1 could be a tetramer, with a minimum requirement of two functional subunits in each protein complex. Western blotting also showed the presence of higher-order complexes of PepT1-FLAG in oocyte membranes. It should be noted that we cannot formally exclude the possibility that PepT1 interacts with unidentified Xenopus protein(s). The finding that PepT1 is a multimer has important implications for the molecular modelling of this protein.

  1. Effects of fasting and refeeding on gene expression of slc15a1a, a gene encoding an oligopeptide transporter (PepT1), in the intestine of Mozambique tilapia.

    Science.gov (United States)

    Orozco, Zenith Gaye A; Soma, Satoshi; Kaneko, Toyoji; Watanabe, Soichi

    2017-01-01

    The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish. Copyright © 2016. Published by Elsevier Inc.

  2. Self-Assembly of Fluorinated Sugar Amino Acid Derived α,γ-Cyclic Peptides into Transmembrane Anion Transport.

    Science.gov (United States)

    Burade, Sachin S; Saha, Tanmoy; Bhuma, Naresh; Kumbhar, Navanath; Kotmale, Amol; Rajamohanan, Pattuparambil R; Gonnade, Rajesh G; Talukdar, Pinaki; Dhavale, Dilip D

    2017-11-03

    Syntheses of fluorinated sugar amino acid derived α,γ-cyclic tetra- and hexapeptides are reported. The IR, NMR, ESI-MS, CD, and molecular modeling studies of cyclic tetra- and hexapeptides showed C 2 and C 3 symmetric flat oval- and triangular-ring shaped β-strand conformations, respectively, which appear to self-assemble into nanotubes. The α,γ-cyclic hexapeptide (EC 50 = 2.14 μM) is found to be a more efficient ion transporter than α,γ-cyclic tetrapeptide (EC 50 = 14.75 μM). The anion selectivity and recognition of α,γ-cyclic hexapeptide with NO 3 - ion is investigated.

  3. Small intestinal MUC2 synthesis in human preterm infants

    NARCIS (Netherlands)

    Schaart, Maaike W.; de Bruijn, Adrianus C. J. M.; Schierbeek, Henk; Tibboel, Dick; Renes, Ingrid B.; van Goudoever, Johannes B.

    2009-01-01

    Mucin 2 (MUC2) is the structural component of the intestinal protective mucus layer, which contains high amounts of threonine in its peptide backbone. MUC2 synthesis rate might be a potential parameter for intestinal barrier function. In this study, we aimed to determine whether systemic threonine

  4. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  5. Imunofluorescência para neuropeptídeos na mucosa nasal humana: avaliação de técnica para peptídeo intestinal vasoativo (VIP Neuropeptide immunofluorescence in human nasal mucosa: assessment of the technique for vasoactive intestinal peptide (VIP

    Directory of Open Access Journals (Sweden)

    Jeferson Cedaro de Mendonça

    2005-04-01

    factors may be variable. Aiming to make this kind of research available, an immunofluorescence approach for vasoactive intestinal peptide (VIP in human nasal mucosa is proposed and evaluated. STUDY DESIGN: Transversal cohort. MATERIAL AND METHOD: Human inferior turbinate samples were obtained at time of nasal surgery from eight patients. The samples were fixed in Zamboni solution (4% phosphate-buffered paraformaldehyde and 0.4% picric acid, snap-frozen and stored at -70ºC. 14 µm sections were then obtained. Immunofluorescence staining for VIP (Peninsula Laboratories was performed and its images documented by conventional photography. The method's specificity, sensitivity and reproducibility of execution were evaluated. Additionally, the reproducibility of interpretation of results was evaluated through the comparison of staining scores (0 to 4 attributed to the images by six observers. RESULTS: The results showed the approach to be very specific and sensible, besides being reproducible in its execution. The interpretation of results may depend on the observer's accuracy in judging immunofluorescence images, but it showed uniformity. CONCLUSION: The proposed method was highly useful for research purposes in neuropeptides in human nasal mucosa.

  6. Atrial natriuretic peptide and cGMP activate sodium transport through PKA-dependent pathway in the urinary bladder of the Japanese tree frog.

    Science.gov (United States)

    Yamada, Toshiki; Matsuda, Kouhei; Uchiyama, Minoru

    2006-03-01

    The effects of atrial natriuretic peptide (ANP) and cGMP on transepithelial ion transport were examined in the urinary bladder of the Japanese tree frog, Hyla japonica, using Ussing chamber voltage-clamp and whole-cell patch-clamp techniques. When the bladders were exposed to 4.4 x 10(-11) to 10(-6) M ANP or 10(-7) to 3 x 10(-4) M 8-Br-cGMP, both the transepithelial potential difference (PD) and the short-circuit current (Isc) were significantly increased in a concentration-response manner. The cGMP-dependent responses were inhibited in a Na+-free bath solution and in the presence of amiloride. The cGMP-dependent increases in Isc were significantly inhibited by specific PKA inhibitors (5 x 10(-7) M KT-5720 and >10(-5) M H-89), but not by a specific PKG inhibitor (5 x 10(-7) M KT-5823). ANP-dependent increases in Isc were also significantly inhibited by KT-5720. In the patch-clamp study, ANP and cGMP significantly increased in inward currents involving Na+ uptake. These results suggest that a cross-talk mechanism exists between cAMP and cGMP signaling pathways, which leads to Na+ transport in the frog urinary bladder. In addition, the cGMP-dependent increases in Isc were partially inhibited by 10(-4) M l-cis-diltiazem, a specific inhibitor of cyclic nucleotide-gated (CNG) channels. These results also suggest a relation between CNG channels and the cGMP-dependent increases in Na+ absorption of the frog urinary bladder.

  7. Pancreatic and intestinal processing of proglucagon in man

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    1987-01-01

    We developed antisera and radioimmunoassays against synthetic replicas of glucagon-like peptide-1 (1-36) and -2, predicted products of the glucagon precursor, and against glucagon-like peptide-1 (7-36) identical to the sequence of glucagon-like peptide-1, but lacking its first six N-terminal amino...... acids. With these tools, we studied the localisation and molecular nature of glucagon-like immunoreactivity in human pancreas, small intestine and plasma. By immunohistochemistry glucagon-like peptide-1, and glucagon-like peptide-2 immunoreactivity coexisted with glucagon in pancreatic islet cells...

  8. Intestinal cholesterol secretion: future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.

    2013-01-01

    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  9. Intestinal cholesterol secretion : future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.

    2013-01-01

    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  10. Modulation of Intestinal Microbiome Prevents Intestinal Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Alessandra Bertacco

    2017-12-01

    Full Text Available Background: Butyrate protects against ischemic injury to the small intestine by reducing inflammation and maintaining the structure of the intestinal barrier, but is expensive, short-lived, and cannot be administered easily due to its odor. Lactate, both economical and more palatable, can be converted into butyrate by the intestinal microbiome. This study aimed to assess in a rat model whether lactate perfusion can also protect against intestinal ischemia.Materials and Methods: Rat intestinal segments were loaded in an in vitro bowel perfusion device, and water absorption or secretion was assessed based on fluorescence of FITC-inulin, a fluorescent marker bound to a biologically inert sugar. Change in FITC concentration was used as a measure of ischemic injury, given the tendency of ischemic cells to retain water. Hematoxylin and eosin-stained sections at light level microscopy were examined to evaluate intestinal epithelium morphology. Comparisons between the data sets were paired Student t-tests or ANOVA with p < 0.05 performed on GraphPad.Results: Lactate administration resulted in a protective effect against intestinal ischemia of similar magnitude to that observed with butyrate. Both exhibited approximately 1.5 times the secretion exhibited by control sections (p = 0.03. Perfusion with lactate and methoxyacetate, a specific inhibitor of lactate-butyrate conversion, abolished this effect (p = 0.09. Antibiotic treatment also eliminated this effect, rendering lactate-perfused sections similar to control sections (p = 0.72. Perfusion with butyrate and methoxyacetate did not eliminate the observed increased secretion, which indicates that ischemic protection was mediated by microbial conversion of lactate to butyrate (p = 0.71.Conclusions: Lactate's protective effect against intestinal ischemia due to microbial conversion to butyrate suggests possible applications in the transplant setting for reducing ischemic injury and ameliorating intestinal

  11. Radiolabelled peptides vs. nanoparticle-peptide complexes for medical applications

    International Nuclear Information System (INIS)

    Ferro F, G.

    2007-01-01

    Full text: The principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been provided and the peptide-receptor radionuclide therapy for malignant tumors is a real treatment option. Targeted entry into cells is an increasingly important area of research. The diagnoses and treatment of disease by novel methods would be enhanced greatly by the efficient transport of materials to living cell nuclei. Membrane-trans locating peptides complexed to nanoparticles are small enough (30 nm) to cross the nuclear membrane and to enter the cell via receptor-mediated endocytosis, emerging as a new type of pharmaceuticals. Pharmacokinetic properties and molecular specificity of iron or gold nanoparticle-peptide complexes that do not induce biological toxicity is a topic of world interest in current and future medical investigations. Some perspectives and achievements on the preparation, pharmacokinetics and dosimetry of radiolabelled peptides versus nanoparticle-peptide complexes for medical applications are presented. (Author)

  12. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  13. Tumor-Penetrating Peptides

    Science.gov (United States)

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  14. Structure of protein emulsion in food impacts intestinal microbiota, caecal luminal content composition and distal intestine characteristics in rats.

    Science.gov (United States)

    Beaumont, Martin; Jaoui, Daphné; Douard, Véronique; Mat, Damien; Koeth, Fanny; Goustard, Bénédicte; Mayeur, Camille; Mondot, Stanislas; Hovaghimian, Anais; Le Feunteun, Steven; Chaumontet, Catherine; Davila, Anne-Marie; Tomé, Daniel; Souchon, Isabelle; Michon, Camille; Fromentin, Gilles; Blachier, François; Leclerc, Marion

    2017-10-01

    Few studies have evaluated in vivo the impact of food structure on digestion, absorption of nutrients and on microbiota composition and metabolism. In this study we evaluated in rat the impact of two structures of protein emulsion in food on gut microbiota, luminal content composition, and intestinal characteristics. Rats received for 3 weeks two diets of identical composition but based on lipid-protein matrices of liquid fine (LFE) or gelled coarse (GCE) emulsion. LFE diet led to higher abundance, when compared to the GCE, of Lactobacillaceae (Lactobacillus reuteri) in the ileum, higher β-diversity of the caecum mucus-associated bacteria. In contrast, the LFE diet led to a decrease in Akkermansia municiphila in the caecum. This coincided with heavier caecum content and higher amount of isovalerate in the LFE group. LFE diet induced an increased expression of (i) amino acid transporters in the ileum (ii) glucagon in the caecum, together with an elevated level of GLP-1 in portal plasma. However, these intestinal effects were not associated with modification of food intake or body weight gain. Overall, the structure of protein emulsion in food affects the expression of amino acid transporters and gut peptides concomitantly with modification of the gut microbiota composition and activity. Our data suggest that these effects of the emulsion structure are the result of a modification of protein digestion properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers.

    Science.gov (United States)

    Fernandez-Alarcon, M F; Trottier, N; Steibel, J P; Lunedo, R; Campos, D M B; Santana, A M; Pizauro, J M; Furlan, R L; Furlan, L R

    2017-08-01

    The objectives of this study were to describe alterations that age and dietary inclusion of direct-fed microbial (DFM) Bacillus subtilis (BS) and a specific essential oil (EO) blend (carvacrol, cinnamaldehyde, cineol, and pepper extract) causes in the activity of digestive enzymes (maltase: MALT; aminopeptidase-N: APN; intestinal alkaline phosphate: IAP) and expression patterns of genes related to transport (oligopeptide transporter gene: SLC15A1; Na+-dependent glucose and galactose transporter gene: SLC5A1; Na+-independent glucose, galactose, and fructose transporter gene: SLC2A2; ATPase, Na+/K+ transporting gene: ATP1A1) and digestion (aminopeptidase-N gene: ANPEP; maltase-glucoamylase gene: MGAM; Sucrase-isomaltase gene: SI) of carbohydrates and proteins in the small intestine of broilers. Also, the objective was to analyze if growth performance of broilers is affected by supplementation (BS and EO blend). Day-old male broiler chicks (n = 1,320) were assigned to 5 treatments. Diets included a basal diet (BD) as a negative control (CON); experimental diets were BD + BS; BD + BS + EO; BD + EO; BD + antibiotic growth promoter (AGP) avilamycin was the positive control. Performance was evaluated between 1 to 42 d. Transcript abundance of transport-related genes and digestion-related genes were assayed by RT-qPCR and determined at d 7, 21, and 42. MALT-, APN-, and IAP-specific activities were determined at d 7, 21, and 42. Broilers fed BS had greater SLC15A1 mRNA abundance compared to CON, while EO and AGP were related to higher activities of IAP and APN. Analysis over time revealed higher abundance of MGAM, SLC2A2, SLC15A1, SLC5A1 and SI mRNA at d 42 when compared to d 7. Activity of IAP decreased after d 7 and activity of MALT increased with age. The current study suggests that age had effect over carbohydrate and protein transport and carbohydrate digestion. The supplementation of BS DFM hade evident effect over protein transport and that the use of EO in the diet

  16. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  17. Bile acids in regulation of intestinal physiology.

    LENUS (Irish Health Repository)

    Keating, Niamh

    2009-10-01

    In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.

  18. "HIV-peplotion vaccine"--a novel approach to protection against AIDS by transepithelial transport of viral peptides to Langerhans cells for long-term antiviral CTL response. (A review).

    Science.gov (United States)

    Becker, Y

    1996-01-01

    Viral vaccines which stimulate the humoral immune response in humans have been successful in preventing most of the known virus diseases except dengue fever, respiratory syncytial virus infections and HIV-1-related AIDS. Burke [1] raised a concern that anti-HIV-1 antibodies may add a risk factor to immunized individuals infected with HIV-1. An approach to develop HIV-1 vaccines capable of stimulating anti-HIV-1 cytotoxic T cells requires an understanding of the importance of epidermal and epithelial Langerhans cells (LC). These cells are professional antigen-presenting cells which express HLA class I and class II molecules. Epithelial LC are present in a specific layer in the skin, genitalia and gut and may be accessible to viral antigens by local application in a vehicle for transepithelial transport of viral proteins/peptides (designated "HIV-1 Peplotion vaccine"). This approach is supported by the reports that HIV-1 gp160 in ISCOM induced MHC class I CTL response [2], mixing of cationic lipids with viral proteins formed complexes which were delivered to cell cytoplasm and the degraded peptides stimulated CTLs by HLA class I mechanism [3] and viral proteins encapsulated in pH-sensitive liposomes administered to LC induced primary antiviral CTLs [4]. Current studies in our laboratory deal with (a) selection of the vehicle for transepidermal transport of peptides and the conditions for selective uptake by epidermal LC [5]; (b) computer analysis of HIV-1 proteins to detect the putative proteolytic cleavage peptides with amino acid motifs which allow association with different known HLA class I haplotype molecules on LCs and synthetic peptide uptake from "without" by LC. The "HIV-1 Peplotion vaccine", when developed, will be useful for continual stimulation of antiviral CTLs in uninfected individuals and HIV-1 carriers by repetitive application to skin, genitalia and gut. The "Peplotion vaccine" will be applied by vaccinees, will be affordable for all human

  19. Intestinal absorption of fluorescently labeled nanoparticles.

    Science.gov (United States)

    Simovic, Spomenka; Song, Yunmei; Nann, Thomas; Desai, Tejal A

    2015-07-01

    Characterization of intestinal absorption of nanoparticles is critical in the design of noninvasive anticancer, protein-based, and gene nanoparticle-based therapeutics. Here we demonstrate a general approach for the characterization of the intestinal absorption of nanoparticles and for understanding the mechanisms active in their processing within healthy intestinal cells. It is generally accepted that the cellular processing represents a major drawback of current nanoparticle-based therapeutic systems. In particular, endolysosomal trafficking causes degradation of therapeutic molecules such as proteins, lipids, acid-sensitive anticancer drugs, and genes. To date, investigations into nanoparticle processing within intestinal cells have studied mass transport through Caco-2 cells or everted rat intestinal sac models. We developed an approach to visualize directly the mechanisms of nanoparticle processing within intestinal tissue. These results clearly identify a mechanism by which healthy intestinal cells process nanoparticles and point to the possible use of this approach in the design of noninvasive nanoparticle-based therapies. Advances in nanomedicine have resulted in the development of new therapies for various diseases. Intestinal route of administration remains the easiest and most natural. The authors here designed experiments to explore and characterize the process of nanoparticle transport across the intestinal tissue. In so doing, further insights were gained for future drug design. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Efficacy, safety and mechanism of HP-β-CD-PEI polymers as absorption enhancers on the intestinal absorption of poorly absorbable drugs in rats.

    Science.gov (United States)

    Zhang, Hailong; Huang, Xiaoyan; Zhang, Yongjing; Gao, Yang

    2017-03-01

    Oral bioavailability of some hydrophilic therapeutic macromolecules was very poor, thus leading to their limited application in clinic. To investigate the efficacy, safety and mechanism of HP-β-CD-PEI polymers on the intestinal absorption of some poorly absorbable drugs in rats. Effects of HP-β-CD-PEI polymers on the intestinal absorptions of drugs were investigated by an in situ closed loop method in rats. The safety of HP-β-CD-PEI polymer was evaluated by measurement of lactate dehydrogenase (LDH) activity and amount of protein released from rat intestinal perfusate. The absorption enhancing mechanisms were explored by the measurement of zeta potential, transepithelial electrical resistance (TEER) and in vitro transport of FD4 (a paracellular marker) across rat intestinal membranes, respectively. HP-β-CD-PEI polymers, especially HP-β-CD-PEI 1800 , demonstrated excellent absorption enhancing effects on drug absorption in a concentration-dependent manner and the enhancing effect was more efficient in the small intestine than that in the large intestine. Five percent (w/v) HP-β-CD-PEI 1800 obviously decreased the TEER, accompanied with increase in the intestinal transport of FD4, indicating that absorption enhancing actions of HP-β-CD-PEI polymers were possibly performed by loosening tight junctions of intestinal epithelium cells, thereby increasing drug permeation via a paracellular pathway. A good liner relationship between absorption enhancing effects of HP-β-CD-PEI polymers and their zeta potentials suggested the contribution of positive charge on the surface of these polymers to their absorption enhancing effects. HP-β-CD-PEI polymers might be potential and safe absorption enhancers for improving oral delivery of poorly absorbable macromolecules including peptides and proteins.

  1. δ-Aminolevulinic Acid Dehydratase Single Nucleotide Polymorphism 2 and Peptide Transporter 2*2 Haplotype May Differentially Mediate Lead Exposure in Male Children

    Science.gov (United States)

    Parisi, Natali; Schaub, Tanner; Gutierrez, Marisela; Ortega, Alma X.

    2011-01-01

    Child low-level lead (Pb) exposure is an unresolved public health problem and an unaddressed child health disparity. Particularly in cases of low-level exposure, source removal can be impossible to accomplish, and the only practical strategy for reducing risk may be primary prevention. Genetic biomarkers of increased neurotoxic risk could help to identify small subgroups of children for early intervention. Previous studies have suggested that, by way of a distinct mechanism, δ-aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and/or peptide transporter 2*2 haplotype (hPEPT2*2) increase Pb blood burden in children. Studies have not yet examined whether sex mediates the effects of genotype on blood Pb burden. Also, previous studies have not included blood iron (Fe) level in their analyses. Blood and cheek cell samples were obtained from 306 minority children, ages 5.1 to 12.9 years. 208Pb and 56Fe levels were determined with inductively coupled plasma–mass spectrometry. General linear model analyses were used to examine differences in Pb blood burden by genotype and sex while controlling for blood Fe level. The sample geometric mean Pb level was 2.75 µg/dl. Pb blood burden was differentially higher in ALAD2 heterozygous boys and hPEPT2*2 homozygous boys. These results suggest that the effect of ALAD2 and hPEPT2*2 on Pb blood burden may be sexually dimorphic. ALAD2 and hPEPT2*2 may be novel biomarkers of health and mental health risks in male children exposed to low levels of Pb. PMID:21327641

  2. OsPTR7 (OsNPF8.1), a Putative Peptide Transporter in Rice, is Involved in Dimethylarsenate Accumulation in Rice Grain.

    Science.gov (United States)

    Tang, Zhong; Chen, Yi; Chen, Fei; Ji, Yuchen; Zhao, Fang-Jie

    2017-05-01

    Rice (Oryza sativa) is a major dietary source of arsenic (As) for the population consuming rice as their staple food. Rice grain contains both inorganic As and methylated As species, especially dimethyarsinate (DMA). DMA is highly mobile in long-distance translocation in plants, but the underlying mechanism remains unknown. In the present study, we showed that OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, was permeable to DMA in Xenopus laevis oocytes. Transient expression of the OsPTR7-green fluorescent protein (GFP) in tobacco protoplasts showed that OsPTR7 was localized in the cell plasma membrane. Quantitative real-time PCR analysis showed that OsPTR7 was more highly expressed in the shoots than in the roots at the seedling stage. At the flowering and grain-filling stage, the OsPTR7 transcript was abundant in the leaves, node I and roots. Knockout or knockdown mutants of OsPTR7 had significantly decreased root to shoot translocation of DMA compared with wild-type plants and accumulated less As in the brown rice. In field-grown plants, DMA accounted for 35% of the total As in the brown rice of wild-type plants but was undetectable in the knockout mutant. Our study demonstrates that OsPTR7 is involved in the long-distance translocation of DMA and contributes to the accumulation of DMA in rice grain. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, Douglas; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  4. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  5. Narrow groove and restricted anchors of MHC class I molecule BF2*0401 plus peptide transporter restriction can explain disease susceptibility of B4 chickens.

    Science.gov (United States)

    Zhang, Jianhua; Chen, Yong; Qi, Jianxun; Gao, Feng; Liu, Yanjie; Liu, Jun; Zhou, Xuyu; Kaufman, Jim; Xia, Chun; Gao, George F

    2012-11-01

    The MHC has genetic associations with many diseases, often due to differences in presentation of antigenic peptides by polymorphic MHC molecules to T lymphocytes of the immune system. In chickens, only a single classical class I molecule in each MHC haplotype is expressed well due to coevolution with the polymorphic TAPs which means that resistance and susceptibility to infectious pathogens are particularly easy to observe. Previously, structures of chicken MHC class I molecule BF2*2101 from B21 haplotype showed an unusually large peptide-binding groove that accommodates a broad spectrum of peptides to present as epitopes to CTLs, explaining the MHC-determined resistance of B21 chickens to Marek's disease. In this study, we report the crystal structure of BF2*0401 from the B4 (also known as B13) haplotype, showing a highly positively charged surface hitherto unobserved in other MHC molecules, as well as a remarkably narrow groove due to the allele-specific residues with bulky side chains. Together, these properties limit the number of epitope peptides that can bind this class I molecule. However, peptide-binding assays show that in vitro, BF2*0401 can bind a wider variety of peptides than are found on the surface of B4 cells. Thus, a combination of the specificities of the polymorphic TAP and the MHC results in a very limited set of BF2*0401 peptides with negatively charged anchors to be presented to T lymphocytes.

  6. Intestinal Colonization Dynamics of Vibrio cholerae

    Science.gov (United States)

    Almagro-Moreno, Salvador; Pruss, Kali; Taylor, Ronald K.

    2015-01-01

    To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms. PMID:25996593

  7. Intestinal transporters for endogenic and pharmaceutical organic anions: The challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug-drug interactions

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Vestergaard, Henrik Tang; Rapin, Nicolas

    2012-01-01

    of the apical sodium-dependent bile acid transporter (ASBT), the breast cancer resistance protein (BCRP), the monocarboxylate transporters (MCT) 1, MCT3-5, the multidrug resistance associated proteins (MRP) 1-6, the organic anion transporting polypetides (OATP) 2B1, 1A2, 3A1 and 4A1, and the organic solute...

  8. Transport of trans-tiliroside (kaempferol-3-β-D-(6"-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine.

    Science.gov (United States)

    Luo, Zijun; Morgan, Michael R A; Day, Andrea J

    2015-01-01

    1. Absorption and metabolism of tiliroside (kaempferol 3-β-D-(6"-p-coumaroyl)-glucopyranoside) and its related compounds kaempferol, kaempferol-3-glucoside and p-coumaric acid were investigated in the small intestinal Caco-2 cell model. Apparent permeation (Papp) was determined as 0.62 × 10(-6) cm/s, 3.1 × 10(-6) cm/s, 0 and 22.8 × 10(-6) cm/s, respectively. 2. Mechanistic study showed that the transportation of tiliroside, kaempferol-3-glucoside and p-coumaric acid in Caco-2 model were transporter(s) involved, while transportation of kaempferol was solely by passive diffusion mechanism. 3. Efflux transporters, multi-drug-resistance-associated protein-2 (MRP2), were shown to play a role in limiting the uptake of tiliroside. Inhibitors of MRP2, (MK571 and rifampicin) and co-incubation with kaempferol (10 μM), increased transfer from the apical to the basolateral side by three to five fold. 4. Metabolites of kaempferol-3-glucoside and p-coumaric acid were not detected in the current Caco-2 model, while tiliroside was metabolised to a limited extent, with two tiliroside mono-glucuronides identified; and kaempferol was metabolised to a higher extent, with three mono-glucuronides and two mono-sulfates identified. 5. In conclusion, tiliroside was metabolised and transported across Caco-2 cell membrane to a limited extent. Transportation could be increased by applying MRP2 inhibitors or co-incubation with kaempferol. It is proposed that tiliroside can be absorbed by human; future pharmacokinetics studies are warranted in order to determine the usefulness of tiliroside as a bioactive agent.

  9. Controlled Release, Intestinal Transport, and Oral Bioavailablity of Paclitaxel Can be Considerably Increased Using Suitably Tailored Pegylated Poly(Anhydride) Nanoparticles.

    Science.gov (United States)

    Calleja, Patricia; Espuelas, Socorro; Vauthier, Christine; Ponchel, Gilles; Irache, Juan M

    2015-09-01

    The aim of the work was to evaluate in vitro and in vivo the effect of the addition of poly(ethylene glycol) (PEG) to paclitaxel (PTX)-cyclodextrin poly(anhydride) nanoparticles. For this, PTX in poly(anhydride) nanoparticles complexed with cyclodextrins (either 2-hydroxypropyl-β-cyclodextrin or β-cyclodextrin) and combined with PEG 2000 were prepared by the solvent displacement method. Intestinal permeability in vitro and in vivo pharmacokinetic studies in C57BL/6J mice were performed. Nanoparticle formulations containing PTX increased its apparent permeability through rat intestine in vitro in the Ussing chambers, enhancing its permeability 10-15 times compared with commercial Taxol®. In addition, in pharmacokinetic studies, drug plasma levels were observed for at least 24 h leading to a relative oral bioavailability between 60% and 80% for PTX complexed with cyclodextrin and loaded in pegylated poly(anhydride) nanoparticles after oral gavage. In all, PTX-cyclodextrin complexes encapsulated in pegylated nanoparticles managed to promote the intestinal uptake of the drug displaying sustained plasma levels after oral administration to laboratory animals with a more prolonged plasma profile compared with the formulation with no PEG at all. Therefore, pegylated poly(anhydride) nanoparticles represent a promising carrier for the oral delivery of PTX. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study

    DEFF Research Database (Denmark)

    Madsen, K B; Askov-Hansen, C; Naimi, R M

    2013-01-01

    The ileocolonic brake is impaired in short bowel syndrome (SBS) patients with distal bowel resections. An attenuated meal-stimulated hormone secretion may cause gastric hypersecretion, rapid gastric and intestinal transit and a poor adaptation. Attempting to restore this ileocolonic brake...

  11. Carrier peptide-mediated transepithelial permeation of biopharmaceuticals

    DEFF Research Database (Denmark)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2015-01-01

    Oral delivery of therapeutic peptides and proteins is hampered by their poor enzymatic stability and large molecular size, thus limiting their permeation across the intestinal epithelium. A promising approach to overcome the latter is by co-administration with carrier-peptides, such as the cell...

  12. Intestinal pseudo-obstruction

    Science.gov (United States)

    Primary intestinal pseudo-obstruction; Acute colonic ileus; Colonic pseudo-obstruction; Idiopathic intestinal pseudo-obstruction; Ogilvie syndrome; Chronic intestinal pseudo-obstruction; Paralytic ileus - pseudo-obstruction

  13. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine.

    Science.gov (United States)

    Yang, Hui-Ting; Zou, Song-Song; Zhai, Li-Juan; Wang, Yao; Zhang, Fu-Miao; An, Li-Guo; Yang, Gui-Wen

    2017-12-01

    Numerous bacteria are harbored in the animal digestive tract and are impacted by several factors. Intestinal microbiota homeostasis is critical for maintaining the health of an organism. However, how pathogen invasion affects the microbiota composition has not been fully clarified. The mechanisms for preventing invasion by pathogenic microorganisms are yet to be elucidated. Zebrafish is a useful model for developmental biology, and studies in this organism have gradually become focused on intestinal immunity. In this study, we analyzed the microbiota of normal cultivated and infected zebrafish intestines, the aquarium water and feed samples. We found that the predominant bacteria in the zebrafish intestine belonged to Gammaproteobacteria (67%) and that feed and environment merely influenced intestinal microbiota composition only partially. Intestinal microbiota changed after a pathogenic bacterial challenge. At the genus level, the abundance of some pathogenic intestinal bacteria increased, and these genera included Halomonas (50%), Pelagibacterium (3.6%), Aeromonas (2.6%), Nesterenkonia (1%), Chryseobacterium (3.4‰), Mesorhizobium (1.4‰), Vibrio (1‰), Mycoplasma (0.7‰) and Methylobacterium (0.6‰) in IAh group. However, the abundance of some beneficial intestinal bacteria decreased, and these genera included Nitratireductor (0.8‰), Enterococcus (0.8‰), Brevundimonas (0.7‰), Lactococcus (0.7‰) and Lactobacillus (0.4‰). Additionally, we investigated the innate immune responses after infection. ROS levels in intestine increased in the early stages after a challenge and recovered subsequently. The mRNA levels of antimicrobial peptide genes lectin, hepcidin and defensin1, were upregulated in the intestine after pathogen infection. These results suggested that the invasion of pathogen could change the intestinal microbiota composition and induce intestinal innate immune responses in zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate

    NARCIS (Netherlands)

    Bargeman, Gerrald; Koops, G.H.; Houwing, J.; Breebaart, I.; van der Horst, H.C.; Wessling, Matthias

    2002-01-01

    The ability to produce functional food ingredients from natural sources becomes increasingly attractive to the food industry. Antimicrobial (bioactive) ingredients, like peptides and proteins, can be isolated from hydrolysates with membrane filtration and/or chromatography. Electro-membrane

  15. Intestinal myiasis

    Directory of Open Access Journals (Sweden)

    U S Udgaonkar

    2012-01-01

    Full Text Available Purpose: Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. Materials and Methods: We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar. This medium is simple and can be easily prepared in the laboratory. Results: Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. Conclusions: S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.

  16. Determination of the active transport of fucoidan derived from Okinawa Mozuku across the human intestinal Caco-2 cells as assessed by size-exclusion chromatography.

    Science.gov (United States)

    Nagamine, Takeaki; Hayakawa, Kou; Nakazato, Kyoumi; Iha, Masahiko

    2015-08-01

    In order to clarify the mechanism of fucoidan transport, we developed the chromatographic determination method. A size-exclusion chromatography (SEC) method for the determination of Okinawa-fucoidan using Develosil 300 Diol-5 (60×8.0mm I.D., 30nm pore-diameter) with the eluent containing 1% non-ionic detergent is developed. Determination range (UV at 210nm) is from 0 to 100ng of fucoidan with the linear calibration line inserting to zero. A transport activity of fucoidan is demonstrated by using Caco-2 cells (model of gut transport system); i.e., the initial transport velocity 12nmol/h/mg of protein (25-fold slower rate as compared to a bacterial l-alanine active-transport activity 300nmol/h/mg of protein) is found to occur. Since this fucoidan transport is inhibited by 10mM sodium azide (respiration inhibitor) and 0.05mM FCCP (uncoupler), this transport by Caco-2 cells is found to be an active one requiring energy-source. On the other hand, colchicine (inhibitor of phagocytosis/pinocytosis) and mannitol (putative competitive-inhibitor of tight-junction transport) cannot inhibit the fucoidan transport at all. We firstly report that the active transport occurs for such a high molecular-weight sulphated-polyfucose of fucoidan in vitro using Caco-2 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Circulating levels of vasoactive peptides in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Strauss, Gitte Irene; Tofteng, Flemming

    2009-01-01

    PURPOSE: The underlying mechanisms for cerebral blood flow (CBF) abnormalities in acute bacterial meningitis (ABM) are largely unknown. Putative mediators include vasoactive peptides, e.g. calcitonin-gene related peptide (CGRP), vasoactive intestinal peptide (VIP), and endothelin-1 (ET-1), all...

  18. Physiologically based pharmacokinetic-pharmacodynamic modeling to predict concentrations and actions of sodium-dependent glucose transporter 2 inhibitor canagliflozin in human intestines and renal tubules.

    Science.gov (United States)

    Mori, Kazumi; Saito, Ryuta; Nakamaru, Yoshinobu; Shimizu, Makiko; Yamazaki, Hiroshi

    2016-11-01

    Canagliflozin is a recently developed sodium-glucose cotransporter (SGLT) 2 inhibitor that promotes renal glucose excretion and is considered to inhibit renal SGLT2 from the luminal side of proximal tubules. Canagliflozin reportedly inhibits SGLT1 weakly and suppresses postprandial plasma glucose, suggesting that it also inhibits intestinal SGLT1. However, it is difficult to measure the drug concentrations of these assumed sites of action directly. The pharmacokinetic-pharmacodynamic (PK/PD) relationships of canagliflozin remain poorly characterized. Therefore, a physiologically based pharmacokinetic (PBPK) model of canagliflozin was developed based on clinical data from healthy volunteers and it was used to simulate luminal concentrations in intestines and renal tubules. In small intestine simulations, the inhibition ratios for SGLT1 were predicted to be 40%-60% after the oral administration of clinical doses (100-300 mg/day). In contrast, inhibition ratios of canagliflozin for renal SGLT2 and SGLT1 were predicted to be approximately 100% and 0.2%-0.4%, respectively. These analyses suggest that canagliflozin only inhibits SGLT2 in the kidney. Using the simulated proximal tubule luminal concentrations of canagliflozin, the urinary glucose excretion rates in canagliflozin-treated diabetic patients were accurately predicted using the renal glucose reabsorption model as a PD model. Because the simulation of canagliflozin pharmacokinetics was successful, this PBPK methodology was further validated by successfully simulating the pharmacokinetics of dapagliflozin, another SGLT2 inhibitor. The present results suggest the utility of this PBPK/PD model for predicting canagliflozin concentrations at target sites and help to elucidate the pharmacological effects of SGLT1/2 inhibition in humans. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Intestinal Failure (Short Bowel Syndrome)

    Science.gov (United States)

    Intestinal Failure (Short Bowel Syndrome) What is intestinal failure? Intestinal failure occurs when a significant portion of the small ... intestine does. Who is at risk for intestinal failure? N Babies (usually premature) who have had surgery ...

  20. Administration of a dipeptidyl peptidase IV inhibitor enhances the intestinal adaptation in a mouse model of short bowel syndrome

    DEFF Research Database (Denmark)

    Okawada, Manabu; Holst, Jens Juul; Teitelbaum, Daniel H

    2011-01-01

    Glucagon-like peptide-2 induces small intestine mucosal epithelial cell proliferation and may have benefit for patients who suffer from short bowel syndrome. However, glucagon-like peptide-2 is inactivated rapidly in vivo by dipeptidyl peptidase IV. Therefore, we hypothesized that selectively...... inhibiting dipeptidyl peptidase IV would prolong the circulating life of glucagon-like peptide-2 and lead to increased intestinal adaptation after development of short bowel syndrome....

  1. In vivo and In vitro Evaluations of Intestinal Gabapentin Absorption

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Frølund, Sidsel; Nøhr, Martha Kampp

    2015-01-01

    PURPOSE: Gabapentin exhibits saturable absorption kinetics, however, it remains unclear which transporters that are involved in the intestinal transport of gabapentin. Thus, the aim of the current study was to explore the mechanistic influence of transporters on the intestinal absorption...... cells. The effect of co-application of the LAT-inhibitor, BCH, and the b(0,+)-substrate, L-lysine, on intestinal transport of gabapentin was evaluated in vivo and in vitro. RESULTS: Gabapentin showed dose-dependent oral absorption kinetics and dose-independent disposition kinetics. Co-application of BCH...... inhibited intestinal absorption in vivo and apical uptake in vitro, whereas no effect was observed following co-application of L-lysine. CONCLUSIONS: The present study shows for the first time that BCH was capable of inhibiting intestinal absorption of gabapentin in vivo. Furthermore, in Caco-2 cell...

  2. Highly variable contents of phenolics in St. John's Wort products affect their transport in the human intestinal Caco-2 cell model: pharmaceutical and biopharmaceutical rationale for product standardization.

    Science.gov (United States)

    Gao, Song; Jiang, Wen; Yin, Taijun; Hu, Ming

    2010-06-09

    The purposes of this study were to determine content uniformity of phenolics in the St. John's wort (SJW) supplements and to demonstrate how variations in the product matrices affect their absorption and efflux. LC and LC-MS/MS methods were used to determine the phenolic contents of 12 different products purchased locally or from the Internet. Three representative extracts were further submitted to Caco-2 cell transport experiment, and transport of rutin, hyperoside, and isoquercitrin was evaluated. The results indicated that the 12 different products displayed 12 different HPLC fingerprints, but all products contained the following major compounds: rutin, hyperoside, isoquercitrin, quercitrin, quercetin, and amentoflavone. The content uniformity of these major compounds was poor across products, with the smallest difference in the amounts of amentoflavone (3.6-fold) and largest difference in that of isoquercitrin (28.8-fold). The Caco-2 experiments indicated transport of rutin in products was vectorial, with the permeabilities varied about 3.6-fold in both directions of transport. The vectorial permeabilities of hyperoside and isoquercitrin were similarly different. Use of efflux transporter inhibitor studies suggested that MRP2 was involved in isoquercitrin's efflux and the product matrix affected the extent of its efflux. In conclusion, different SJW supplements had highly variable contents of phenolics, and the variability in product matrix and phytochemical compositions affected the permeabilities of key phenolics across the Caco-2 monolayers, which may further affect their bioavailabilities. Therefore, standardization will be necessary to ensure safe and efficacious using of supplements such as SJW.

  3. Highly Variable Contents of Phenolics in St John's Wort Products Impact Their Transport in the Human Intestinal Caco-2 Cell Model: Pharmaceutical and Biopharmaceutical Rationale for Product Standardization

    Science.gov (United States)

    Gao, Song; Jiang, Wen; Yin, Taijun; Hu, Ming

    2010-01-01

    The purposes of this study were to determine content uniformity of phenolics in the St John's Wort (SJW) supplements, and to demonstrate how variations in the product matrices affect their absorption and efflux. LC and LC-MS/MS methods were used to determine the phenolic contents of twelve different products purchased locally or from the internet. Three representative extracts were further submitted to Caco-2 cell transport experiment and transport of rutin, hyperoside, and isoquercitrin were evaluated. The results indicated that twelve different products displayed twelve different HPLC fingerprints, but all products contained the following major compounds: rutin, hyperoside, isoquercitrin, quercitrin, quercetin, and amentoflavone. The content uniformity of these major compounds was poor across products, with the smallest difference in the amounts of amentoflavone (2.6 folds) and largest difference in that of isoquercitrin (28.8 folds). The Caco-2 experiments indicated transport of rutin was vectorial, with the permeabilities varied about 2 folds in both direction of transport. The vectorial permeabilities of hyperoside and isoquercitrin were similarly different. Use of efflux transporter inhibitors studies suggested that MRP2 was involved in isoquercitrin's efflux and the product matrix affected the extent of its efflux. In conclusion, different SJW supplements had highly variable contents of phenolics, and the variability in product matrix and phytochemical compositions affected the permeabilities of key phenolics across the Caco-2 monolayers, which may further impact their bioavailabilities. Therefore, standardization will be necessary to ensure safe and efficacious use of supplements such as SJW. PMID:20450158

  4. The mRNA expression of amino acid and sugar transporters, aminopeptidase, as well as the di- and tri-peptide transporter PepT1 in the intestines of Eimeria infected broiler chickens

    Science.gov (United States)

    Coccidiosis in chickens is caused by infection of gut epithelial cells with protozoan parasites of the genus Eimeria. This disease causes losses to the poultry industry since infected birds fail to gain weight as rapidly as non-infected birds and efficiency of feed conversion is compromised. For t...

  5. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  6. Molecular aspects of intestinal calcium absorption.

    Science.gov (United States)

    Diaz de Barboza, Gabriela; Guizzardi, Solange; Tolosa de Talamoni, Nori

    2015-06-21

    Intestinal Ca(2+) absorption is a crucial physiological process for maintaining bone mineralization and Ca(2+) homeostasis. It occurs through the transcellular and paracellular pathways. The first route comprises 3 steps: the entrance of Ca(2+) across the brush border membranes (BBM) of enterocytes through epithelial Ca(2+) channels TRPV6, TRPV5, and Cav1.3; Ca(2+) movement from the BBM to the basolateral membranes by binding proteins with high Ca(2+) affinity (such as CB9k); and Ca(2+) extrusion into the blood. Plasma membrane Ca(2+) ATPase (PMCA1b) and sodium calcium exchanger (NCX1) are mainly involved in the exit of Ca(2+) from enterocytes. A novel molecule, the 4.1R protein, seems to be a partner of PMCA1b, since both molecules co-localize and interact. The paracellular pathway consists of Ca(2+) transport through transmembrane proteins of tight junction structures, such as claudins 2, 12, and 15. There is evidence of crosstalk between the transcellular and paracellular pathways in intestinal Ca(2+) transport. When intestinal oxidative stress is triggered, there is a decrease in the expression of several molecules of both pathways that inhibit intestinal Ca(2+) absorption. Normalization of redox status in the intestine with drugs such as quercetin, ursodeoxycholic acid, or melatonin return intestinal Ca(2+) transport to control values. Calcitriol [1,25(OH)₂D₃] is the major controlling hormone of intestinal Ca(2+) transport. It increases the gene and protein expression of most of the molecules involved in both pathways. PTH, thyroid hormones, estrogens, prolactin, growth hormone, and glucocorticoids apparently also regulate Ca(2+) transport by direct action, indirect mechanism mediated by the increase of renal 1,25(OH)₂D₃ production, or both. Different physiological conditions, such as growth, pregnancy, lactation, and aging, adjust intestinal Ca(2+) absorption according to Ca(2+) demands. Better knowledge of the molecular details of intestinal Ca(2

  7. Intestinal microbiome landscaping

    NARCIS (Netherlands)

    Shetty, Sudarshan A.; Hugenholtz, Floor; Lahti, Leo; Smidt, Hauke; Vos, de Willem M.

    2017-01-01

    High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss

  8. Intestinal transport and tissue biodistributions of radium: a comparison of RaCl2 and a radium apatite from freshwater mussels

    International Nuclear Information System (INIS)

    Domel, R.U.; Beal, A.M.

    1996-01-01

    Full text: Natural leaching of uranium ore bodies can result in 226 Ra pollution of adjacent waterways and consequent incorporation of radium into the food chain. Mining has the potential to augment this effect. In the Magela flood plain, NT, the freshwater mussel (Velesunio angasi) concentrates radium in its tissues as a phosphate compound. The availability of mussel radium for uptake and tissue incorporation was assessed relative to radium chloride using rats in feed trial experiments. In addition, the influence of age, duration of dosage and various stages after parturition were investigated. A significant amount of mussel radium was available for intestinal uptake. Incorporation of mussel radium into bone was less than that of radium chloride (p = 0.0001) for both adults and juveniles. Mussel radium dose to bone was higher in juveniles (less than 0.5%) than adults (p< 0.01) after 8 weeks dosage. At the completion of a one week treatment, mussel radium and radium chloride content of bone was lowest in old adults. Incorporation of mussel radium into bone rose progressively in juveniles but not in adults over 8 weeks administration. In contrast, radium accumulation in soft tissues in all age groups was greater after mussel radium treatment than after radium chloride treatment. The skin was the tissue which accumulated the greater proportion of the soft tissue dose. Negligible amounts of mussel radium were transferred from the dams to the young by the placenta of late gestation and little was transferred in the milk during 3 weeks of lactation. However, in 3 weeks following weaning, bone and soft tissue uptake of mussel radium exceeded that of all other ages and durations of dosage. Extrapolation of the data from the animal model to humans suggests that eating these mussels, carries with it only a low risk of exceeding the Annual Limit of Intake (ALI) set for members of the public, even in juveniles

  9. Nano and bulk ZnO trigger diverse Zn-transport-related gene transcription in distinct regions of the small intestine in mice after oral exposure.

    Science.gov (United States)

    Yang, Pengfei; Hong, Wuding; Zhou, Ping; Chen, Bolu; Xu, Hengyi

    2017-11-25

    The oral ingestion of ZnO nanoparticles (NPs) has attracted considerable attention because of the wide usage in food packaging and additives. The small intestine is the major absorption site for ZnO NPs. Unfortunately, studies on the absorption of ZnO NPs in the GIT were still scarce. This study evaluated the absorption characteristics of ZnO NPs (30 nm) and bulk ZnO (rod morphology with a mean size of 139-846 nm). Results showed that ZnO NPs and bulk ZnO were absorbed and redistributed in various organs of mice at 4 h after exposure. Significantly higher levels of MT1 were observed in the duodenums of bulk ZnO and ZnO NPs groups than those of the control (9.8 and 5660.11 fold increases, respectively). The MT4 levels in the bulk ZnO and ZnO NPs groups also showed 4.07 and 43.21fold increases, respectively. In addition, the transcript levels of ZIPs, ZnTs, and MTs in the jejunum of bulk ZnO group were higher than those of ZnO NPs group. And the transcript levels of ZIPs, ZnTs, and MTs were all lower in the ileum than in the jejunum. The results suggested that ZnO NPs were mainly absorbed in the duodenum in the form of particles and can be absorbed as Zn 2+ in the jejunum and secondly in the ileum. By contrast, bulk ZnO was more easily absorbed as Zn 2+ in the jejunum and secondly in the ileum. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Small Intestine Cancer Treatment

    Science.gov (United States)

    ... all of an organ that contains cancer. The resection may include the small intestine and nearby organs (if the cancer has spread). The doctor may remove the section of the small intestine that contains cancer and perform an anastomosis (joining the cut ends of the intestine together). ...

  11. An Investigation into the Gastrointestinal Stability of Exenatide in the Presence of Pure Enzymes, Everted Intestinal Rings and Intestinal Homogenates.

    Science.gov (United States)

    Sun, Yanan; Wang, Mengshu; Sun, Bingxue; Li, Feng; Liu, Shubo; Zhang, Yong; Zhou, Yan; Chen, Yan; Kong, Wei

    2016-01-01

    The purpose of this study was to investigate the gastrointestinal stability of exenatide to determine the key factor(s) contributing to peptide degradation during the oral delivery process. The effects of pH and various digestive enzymes on the degradation kinetics of exenatide were determined. Moreover, the degradation clearances of peptide were also examined using rat everted intestinal rings and intestinal homogenates from various intestinal locations. Exenatide was comparatively stable within a pH range of 1.2-8. However, obvious degradation was observed in the presence of digestive enzymes. The order of enzymes, in terms of ability to degradate exenatide, was chymotrypsin>aminopeptidase N>carboxypeptidase A>trypsin>pepsin. Chymotrypsin showed the greatest ability to degrade exenatide (half-life t1/2, 5.784×10(-2) h), whereas aminopeptidase N and carboxylpeptidase A gave t1/2 values of 3.53 and 10.16 h, respectively. The degradation of exenatide was found to be peptide concentration- and intestinal site-dependent, with a lower clearance in the upper part of the duodenum and the lower part of the ileum. When using intestinal homogenates as enzyme sources, the order, in terms of peptide degradation ability, was ileum>jejunum>duodenum. However, no significant difference was observed in the remaining peptide concentrations throughout 2 h of incubation, which may be due to the involvement of cytosolic enzymes. These results revealed key factors contributing to peptide degradation, and suggest that the inhibition of chymotrypsin and site-specific delivery of exenatide might be advantageous in overcoming metabolic obstacles during its oral delivery.

  12. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  13. Vitamin D and intestinal calcium absorption.

    Science.gov (United States)

    Christakos, Sylvia; Dhawan, Puneet; Porta, Angela; Mady, Leila J; Seth, Tanya

    2011-12-05

    The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium through the interior of the enterocyte and basolateral extrusion of calcium by the intestinal plasma membrane pump. This article reviews recent studies that have challenged the traditional model of vitamin D mediated transcellular calcium absorption and the crucial role of specific calcium transport proteins in intestinal calcium absorption. There is also increasing evidence that 1,25(OH)(2)D(3) can enhance paracellular calcium diffusion. The influence of estrogen, prolactin, glucocorticoids and aging on intestinal calcium absorption and the role of the distal intestine in vitamin D mediated intestinal calcium absorption are also discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Trust Your Gut: Galvanizing Nutritional Interest in Intestinal Cholesterol Metabolism for Protection Against Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Jiyoung Lee

    2013-01-01

    Full Text Available Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction.

  15. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-11-05

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized (/sup 3/H)albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized (/sup 3/H)albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling (/sup 3/H)beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The (/sup 3/H)beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier.

  16. Neurohormonal regulation of ion transport in the porcine distal jejunum. Actions of somatostatin-14 and its natural and synthetic homologs.

    Science.gov (United States)

    Brown, D R; Overend, M F; Treder, B G

    1990-01-01

    The tetradecapeptide somatostatin-14 (SS-14) has been found to alter electrogenic ion transport in the rat, guinea pig and rabbit intestinal mucosa in vitro. In this study, the actions of SS-14 and related peptides on mucosal ion transport were investigated in the intestinal tract of the pig, a species whose digestive physiology is similar to man. The contraluminal- but not luminal-side administration of SS-14 (1-1000 nmol/l) to sheets of mucosa-submucosa obtained from different regions of the porcine small intestine and colon produced rapid, sustained decreases in short-circuit current (lsc), a measure of active ion transport, that were localized to segments of the distal jejunum. The magnitude of this peptide action was greater in tissues manifesting a serosapositive basal potential difference greater than 0 mV than in those displaying a spontaneous potential difference less than 0 mV. Under basal conditions, SS-14 produced a maximum decrease in distal jejunal lsc which was nearly twice that produced by its synthetic analog SMS 201,995 (octreotide); the two peptides inhibited lsc with similar potencies. SS-14 (10 nmol/l) increased the lumen-to-serosa transepithelial Cl flux and eliminated net residual flux. Mucosal lsc responses to SS-14 were absent in tissues bathed in HCO3-free media. Peptide actions were generally resistant to inhibitors of epithelial anion exchange, Na-proton exchange and NaCl cotransport. The adenylate cyclase activator forskolin (1 mumol/l) and the cyclic AMP analog 8-bromo-cyclic AMP (0.3 mmol/l) evoked net Cl secretion which was associated with rapid and sustained elevations in lsc.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Extra-intestinal calcium handling contributes to normal serum calcium levels when intestinal calcium absorption is suboptimal.

    Science.gov (United States)

    Lieben, Liesbet; Verlinden, Lieve; Masuyama, Ritsuko; Torrekens, Sophie; Moermans, Karen; Schoonjans, Luc; Carmeliet, Peter; Carmeliet, Geert

    2015-12-01

    The active form of vitamin D, 1,25(OH)2D, is a crucial regulator of calcium homeostasis, especially through stimulation of intestinal calcium transport. Lack of intestinal vitamin D receptor (VDR) signaling does however not result in hypocalcemia, because the increased 1,25(OH)2D levels stimulate calcium handling in extra-intestinal tissues. Systemic VDR deficiency, on the other hand, results in hypocalcemia because calcium handling is impaired not only in the intestine, but also in kidney and bone. It remains however unclear whether low intestinal VDR activity, as observed during aging, is sufficient for intestinal calcium transport and for mineral and bone homeostasis. To this end, we generated mice that expressed the Vdr exclusively in the gut, but at reduced levels. We found that ~15% of intestinal VDR expression greatly prevented the Vdr null phenotype in young-adult mice, including the severe hypocalcemia. Serum calcium levels were, however, in the low-normal range, which may be due to the suboptimal intestinal calcium absorption, renal calcium loss, insufficient increase in bone resorption and normal calcium incorporation in the bone matrix. In conclusion, our results indicate that low intestinal VDR levels improve intestinal calcium absorption compared to Vdr null mice, but also show that 1,25(OH)2D-mediated fine-tuning of renal calcium reabsorption and bone mineralization and resorption is required to maintain fully normal serum calcium levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Circadian regulation of epithelial functions in the intestine

    Czech Academy of Sciences Publication Activity Database

    Pácha, Jiří; Sumová, Alena

    2013-01-01

    Roč. 208, č. 1 (2013), s. 11-24 ISSN 1748-1708 R&D Projects: GA ČR(CZ) GAP303/10/0969; GA ČR(CZ) GAP303/11/0668 Institutional support: RVO:67985823 Keywords : circadian rhythms * intestine * colon * proliferation * digestion * intestinal transport Subject RIV: ED - Physiology Impact factor: 4.251, year: 2013

  19. Does liver-intestine significantly degrade circulating endogenous substance P in man?

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Schaffalitzky de Muckadell, O B; Bülow, J B

    1986-01-01

    Elevated concentrations of circulating substance P in patients with liver insufficiency have been ascribed to decreased hepatic degradation. To establish a possible biodegradation of the peptide in liver-intestine and kidneys, the concentration of endogenous immunoreactive substance P was determi......Elevated concentrations of circulating substance P in patients with liver insufficiency have been ascribed to decreased hepatic degradation. To establish a possible biodegradation of the peptide in liver-intestine and kidneys, the concentration of endogenous immunoreactive substance P....... The results indicate that degradation of circulating endogenous substance P in man is not confined to liver-intestine or kidney but may take place in many tissues....

  20. Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice

    DEFF Research Database (Denmark)

    Kissow, Hannelouise; Hartmann, Bolette; Holst, Jens Juul

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are secreted in parallel from the intestinal endocrine cells after nutrient intake. GLP-1 is an incretin hormone and analogues are available for the treatment of type 2 diabetes mellitus (T2DM). GLP-2 is an intestinal growth horm...

  1. Ghrelin upregulates PepT1 activity in the small intestine epithelium of rats with sepsis.

    Science.gov (United States)

    Liu, Jingquan; Shi, Bin; Shi, Kai; Ma, Guoguang; Zhang, Hongze; Lou, Xiaoli; Liu, Hongxiang; Wan, Shengxia; Liang, Dongyu

    2017-02-01

    Sepsis causes nutritional substrate malabsorption; hence, preventing gut barrier problems and improving the nutritional status in sepsis is a compelling issue. We tested whether ghrelin administration affects peptide transporter 1 (PepT1) activity in the intestinal epithelium of rats with sepsis. Sixty male Sprague-Dawley rats were randomly divided into sham-operated, sepsis, and ghrelin-treated groups. The cecum of sham-operated rats was separated after laparotomy without ligation and perforation. Sepsis group rats underwent cecal ligation and puncture (CLP). Mucosal specimens were used for immunohistochemstry, real-time PCR, and western blotting to detect PepT1 distribution, and mRNA and protein expression levels, respectively. TNF-α, IL-1β, and ghrelin levels were estimated in serum and intestinal mucosal tissue by ELISA. High-performance liquid chromatography was used to measure PepT1 uptake by the epithelial cells. Moreover, survival, body weight, and food intake of the rats were recorded during the 7-day treatment period. All rats in the sham-operated group survived, and 80% of rats in the sepsis group died within 7d of CLP. Treatment with ghrelin attenuated the CLP-induced body weight loss, intestine mucosa damage, and the survival rate was better. In addition, ghrelin attenuated increases in TNF-α and IL-1β production. The expressions of PepT1 mRNA and protein were higher in ghrelin-treated group rats than in sepsis rats. Moreover, the uptake function of PepT1 was better in ghrelin-treated group rats. Ghrelin treatment can reduce the inflammatory response and greatly upregulate the physiological function of PepT1 in intestinal epithelial cells of rats with sepsis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Schonewille, Marleen; Boesjes, Marije; Wolters, Henk; Bloks, Vincent W.; Bos, Trijnie; van Dijk, Theo H.; Jurdzinski, Angelika; Boverhof, Renze; Wolters, Justina C.; Kuivenhoven, Jan A.; van Deursen, Jan M.; Oude Elferink, Ronald P. J.; Moschetta, Antonio; Kremoser, Claus; Verkade, Henkjan J.; Kuipers, Folkert; Groen, Albert K.

    2017-01-01

    The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE) contribute. The

  3. Liposome Model Systems to Study the Endosomal Escape of Cell-Penetrating Peptides: Transport across Phospholipid Membranes Induced by a Proton Gradient

    Directory of Open Access Journals (Sweden)

    Fatemeh Madani

    2011-01-01

    Full Text Available Detergent-mediated reconstitution of bacteriorhodopsin (BR into large unilamellar vesicles (LUVs was investigated, and the effects were carefully characterized for every step of the procedure. LUVs were prepared by the extrusion method, and their size and stability were examined by dynamic light scattering. BR was incorporated into the LUVs using the detergent-mediated reconstitution method and octyl glucoside (OG as detergent. The result of measuring pH outside the LUVs suggested that in the presence of light, BR pumps protons from the outside to the inside of the LUVs, creating acidic pH inside the vesicles. LUVs with 20% negatively charged headgroups were used to model endosomes with BR incorporated into the membrane. The fluorescein-labeled cell-penetrating peptide penetratin was entrapped inside these BR-containing LUVs. The light-induced proton pumping activity of BR has allowed us to observe the translocation of fluorescein-labeled penetratin across the vesicle membrane.

  4. Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2002-01-01

    GLP-1 is a peptide hormone from the intestinal mucosa. It is secreted in response to meal ingestion and normally functions in the so-called ileal brake, that is, inhibition of upper gastrointestinal motility and secretion when nutrients are present in the distal small intestine. It also induces...

  5. Synthetic antifreeze peptide

    OpenAIRE

    1991-01-01

    A synthetic antifreeze peptide and a synthetic gene coding for the antifreeze peptide have been produced. The antifreeze peptide has a greater number of repeating amino acid sequences than is present in the native antifreeze peptides from winter flounder upon which the synthetic antifreeze peptide was modeled. Each repeating amino acid sequence has two polar amino acid residues which are spaced a controlled distance apart so that the antifreeze peptide may inhibit ice formation. The synthetic...

  6. Gastric and intestinal surgery.

    Science.gov (United States)

    Fossum, Theresa W; Hedlund, Cheryl S

    2003-09-01

    Gastric surgery is commonly performed to remove foreign bodies and correct gastric dilatation-volvulus and is less commonly performed to treat gastric ulceration or erosion, neoplasia, and benign gastric outflow obstruction. Intestinal surgery, although commonly performed by veterinarians, should never be considered routine. The most common procedures of the small intestinal tract performed in dogs and cats include enterotomy and resection/anastomosis. Surgery of the large intestine is indicated for lesions causing obstruction, perforations, colonic inertia, or chronic inflammation.

  7. Intestinal parasites and tuberculosis

    Directory of Open Access Journals (Sweden)

    Anuar Alonso Cedeño-Burbano

    2017-10-01

    Conclusions: The available evidence was insufficient to affirm that intestinal parasites predispose to developing tuberculous. The studies carried out so far have found statistically insignificant results.

  8. The microbiome and its implications in intestinal transplantation.

    Science.gov (United States)

    Kroemer, Alexander; Elsabbagh, Ahmed M; Matsumoto, Cal S; Zasloff, Michael; Fishbein, Thomas M

    2016-04-01

    This article summarizes the complex interplay between the microbiota and host immune responses, and its impact on intestinal transplantation and allograft rejection. Recent findings highlight the importance of Paneth cells as crucial producers of antimicrobial peptides that control the intestinal host-microbial interface as well as the essential role of NOD2 as a master regulator of antimicrobial host defenses. Moreover, complex interactions between innate and adaptive immune responses have been shown to critically shape host antimicrobial Th17 responses, which may be key for the pathogenesis of inflammatory bowel diseases and intestinal allograft rejection. A growing body of evidence indicates that crosstalk between the microbiome and innate and adaptive host immunity determines alloimmune responses and outcomes in intestinal transplantation. Elaboration of this emerging field might lead to novel mechanistic insight into these complex interactions and allow for new therapeutic approaches.

  9. Bacteria, bile salts, and intestinal monosaccharide malabsorption

    Science.gov (United States)

    Gracey, Michael; Burke, Valerie; Oshin, Ademola; Barker, Judith; Glasgow, Eric F.

    1971-01-01

    Intestinal monosaccharide transport was studied in a series of rats with a self-filling jejunal blind loop using 3mM arbutin (p-hydroxyphenyl-B-glucoside) or 1mM D-fructose as substrate in vitro and 10 mM arbutin or 5mM D-fructose in vivo. These results were compared with changes in the bacterial flora and state of conjugation of intraluminal bile salts in those animals. Observations were also made of the microscopic and ultrastructural appearances of the small-intestinal epithelium. In the small intestine of blind-loop rats intestinal monosaccharide transport is impaired, and in vitro is most marked in the blind loop, less so in the efferent jejunum, and not significantly altered in the afferent jejunum. A similar pattern of disturbed monosaccharide absorption was demonstrated by perfusions in vivo. The degree of the transport defect correlates closely with the luxuriance of the anaerobic flora, which averaged 108 per millilitre in the blind loop, 107 in the efferent jejunum, and 106 in the afferent jejunum. A similar pattern of abnormality of bile salt conjugation occurred. In the blind loop the ratio of free to conjugated bile salts was grossly abnormal; this disturbance was somewhat less marked in the efferent jejunum and considerably less in the intraluminal contents of the afferent jejunum. An irregularly distributed lesion, consisting of swelling and vacuolation of microvilli and intracellular organelles, was demonstrated in the small-intestinal epithelium of blind-loop animals. Impaired absorption of monosaccharides is a further consequence of bacterial contamination of the upper gut. It is suggested that this defect is caused by the presence of high levels of deconjugated bile salts produced by an abnormal anaerobic bacterial flora in the small intestine. ImagesFig. 3Fig. 4 PMID:4329096

  10. Rationally designed transmembrane peptide mimics of the multidrug transporter protein Cdr1 act as antagonists to selectively block drug efflux and chemosensitize azole-resistant clinical isolates of Candida albicans.

    Science.gov (United States)

    Maurya, Indresh Kumar; Thota, Chaitanya Kumar; Verma, Sachin Dev; Sharma, Jyotsna; Rawal, Manpreet Kaur; Ravikumar, Balaguru; Sen, Sobhan; Chauhan, Neeraj; Lynn, Andrew M; Chauhan, Virander Singh; Prasad, Rajendra

    2013-06-07

    Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.

  11. Intestinal barrier integrity and inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Pedersen, Jannie; Jørgensen, Peter

    2017-01-01

    of antimicrobial peptides. Inflammatory bowel disease is associated with life-long morbidity for affected patients, and both the incidence and prevalence is increasing globally, resulting in substantial economic strain for society. Mucosal healing and re-establishment of barrier integrity is associated......, novel treatment strategies to accomplish mucosal healing and to re-establish normal barrier integrity in inflammatory bowel disease are warranted, and luminal stem cell-based approaches might have an intriguing potential. Transplantation of in vitro expanded intestinal epithelial stem cells derived...

  12. Human ATP-binding cassette (ABC transporter family

    Directory of Open Access Journals (Sweden)

    Vasiliou Vasilis

    2009-04-01

    Full Text Available Abstract There exist four fundamentally different classes of membrane-bound transport proteins: ion channels; transporters; aquaporins; and ATP-powered pumps. ATP-binding cassette (ABC transporters are an example of ATP-dependent pumps. ABC transporters are ubiquitous membrane-bound proteins, present in all prokaryotes, as well as plants, fungi, yeast and animals. These pumps can move substrates in (influx or out (efflux of cells. In mammals, ABC transporters are expressed predominantly in the liver, intestine, blood-brain barrier, blood-testis barrier, placenta and kidney. ABC proteins transport a number of endogenous substrates, including inorganic anions, metal ions, peptides, amino acids, sugars and a large number of hydrophobic compounds and metabolites across the plasma membrane, and also across intracellular membranes. The human genome contains 49 ABC genes, arranged in eight subfamilies and named via divergent evolution. That ABC genes are important is underscored by the fact that mutations in at least I I of these genes are already known to cause severe inherited diseases (eg cystic fibrosis and X-linked adrenoleukodystrophy [X-ALD]. ABC transporters also participate in the movement of most drugs and their metabolites across cell surface and cellular organelle membranes; thus, defects in these genes can be important in terms of cancer therapy, pharmacokinetics and innumerable pharmacogenetic disorders.

  13. Requirement for digestible calcium by eleven- to twenty-five-kilogram pigs as determined by growth performance, bone ash concentration, calcium and phosphorus balances, and expression of genes involved in transport of calcium in intestinal and kidney cells.

    Science.gov (United States)

    González-Vega, J C; Liu, Y; McCann, J C; Walk, C L; Loor, J J; Stein, H H

    2016-08-01

    Two experiments were conducted to determine the requirement for standardized total tract digestible (STTD) Ca by 11- to 25-kg pigs based on growth performance, bone ash, or Ca and P retention and to determine the effect of dietary Ca on expression of genes related to Ca transport in the jejunum and kidneys. Six diets were formulated to contain 0.36% STTD P and 0.32, 0.40, 0.48, 0.56, 0.64, or 0.72% STTD Ca by including increasing quantities of calcium carbonate in the diets at the expense of cornstarch. Two additional diets contained 0.72% STTD Ca and 0.33% or 0.40% STTD P to determine if 0.36% STTD P had negative effects on the Ca requirement. The same batch of all diets was used in both experiments. In Exp. 1, 256 pigs (11.39 ± 1.21 kg initial BW) were randomly allotted to the 8 diets with 4 pigs per pen and 8 replicate pens per diet in a randomized complete block design. On the last day of the experiment, 1 pig from each pen was euthanized and the right femur and intestine and kidney samples were collected. Results indicated that ADG and G:F started to decline (linear and quadratic, urine samples were collected using the marker-to-marker approach. Results indicated that the requirement for STTD Ca to maximize Ca and P retention (g/d) was 0.60 and 0.49%, respectively. In conclusion, the STTD Ca requirement by 11- to 25-kg pigs to maximize bone ash was 0.48%; however, ADG and G:F declined if more than 0.54 or 0.50% STTD Ca, respectively, was fed, and the minimum concentration of Ca needed to maximize ADG and G:F could not be determined under the conditions of this experiment. Increasing dietary Ca decreased the mRNA expression of several genes related to transcellular Ca transport in the jejunum and the kidneys.

  14. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... ABSTRACT. Background: Adhesions after abdominal and pelvic surgery are a major cause of intestinal obstruction in the western world and the pathology is steadily gaining prominence in our practice. Objective: To determine the magnitude of adhesive intestinal obstruction; to determine the types.

  15. Multifunctions of dietary polyphenols in the regulation of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Makoto Shimizu

    2017-01-01

    Full Text Available Food for specified health use is a type of functional food approved by the Japanese government, with more than 1250 products in 10 health-claim categories being approved as of April 2016. Polyphenols are currently used as functional ingredients in seven of the 10 categories. Although they have not yet been used for the food-for-specified-health-use category of “gut health promotion,” polyphenols are expected to contribute to the future development of gut-modulating food. Intestinal functions include digestion/absorption, acting as a barrier, recognition of external factors, and signal transduction. Owing to incessant exposure to external stress factors including food substances, bacteria, and environmental chemicals, intestines are always inflammatory to some extent, which may cause damage to and dysfunction of intestinal tissues depending on the situation. We identified food factors that could suppress immoderate inflammation in the intestines. In addition to certain amino acids and peptides, polyphenols such as chlorogenic acid and isoflavones were found to suppress inflammation in intestinal cells. Intestinal inflammation is caused by various factors in diverse mechanisms. Recent studies revealed that activation of pattern recognition receptors, such as Toll-like receptors and nucleotide-binding oligomerization domain proteins, in epithelial cells triggers intestinal inflammation. Intracellular receptors or signaling molecules controlling the intestinal detoxification system are also involved in the regulation of inflammation. Differentiation of regulatory T cells by activating a transcription factor Foxp-3 is known to suppress intestinal inflammation. A variety of phytochemicals including polyphenols modulate these receptors and signaling molecules, and are thus anti-inflammatory. Polyphenols affect epigenetic changes occurring in intestinal tissues by interacting with the enzymes responsible for DNA methylation and histone acetylation

  16. [SYNTHETIC PEPTIDE VACCINES].

    Science.gov (United States)

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  17. Interactions between the intestinal microbiome and helminth parasites.

    Science.gov (United States)

    Zaiss, M M; Harris, N L

    2016-01-01

    Throughout evolution, both helminths and bacteria have inhabited our intestines. As intestinal helminths and bacteria inhabit the same environmental niche, it is likely that these organisms interact with, and impact on, each other. In addition, intestinal helminths are well known to alter intestinal physiology, permeability, mucous secretion and the production of antimicrobial peptides - all of which may impact on bacterial survival and spatial organization. Yet despite rapid advances in our understanding of host-intestinal bacteria interactions, the impact of helminths on this relationship has remained largely unexplored. Moreover, although intestinal helminths are generally accepted to possess potent immuno-modulatory activity, it is unknown whether this capacity requires interactions with intestinal bacteria. We propose that this 'ménage à trois' situation is likely to have exerted a strong selective pressure on the development of our metabolic and immune systems. Whilst such pressures remain in developing countries, the eradication of helminths in industrialized countries has shifted this evolutionary balance, possibly underlying the increased development of chronic inflammatory diseases. Thus, helminth-bacteria interactions may represent a key determinant of healthy homoeostasis. © 2015 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  18. Chlorogenic Acid Maintains Glucose Homeostasis through Modulating the Expression of SGLT-1, GLUT-2, and PLG in Different Intestinal Segments of Sprague-Dawley Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Peng, Bing Jie; Zhu, Qi; Zhong, Ying Li; Xu, Shi Hao; Wang, Zheng

    2015-12-01

    To reveal the effects and related mechanisms of chlorogenic acid (CGA) on intestinal glucose homeostasis. Forty male Sprague-Dawley rats were randomly and equally divided into four groups: normal chow (NC), high-fat diet (HFD), HFD with low-dose CGA (20 mg/kg, HFD-LC), and HFD with high-dose CGA (90 mg/kg, HFD-HC). The oral glucose tolerance test was performed, and fast serum insulin (FSI) was detected using an enzyme-linked immunosorbent assay. The mRNA expression levels of glucose transporters (Sglt-1 and Glut-2) and proglucagon (Plg) in different intestinal segments (the duodenum, jejunum, ileum, and colon) were analyzed using quantitative real-time polymerase chain reaction. SGLT-1 protein and the morphology of epithelial cells in the duodenum and jejunum was localized by using immunofluorescence. At both doses, CGA ameliorated the HFD-induced body weight gain, maintained FSI, and increased postprandial 30-min glucagon-like peptide 1 secretion. High-dose CGA inhibited the HFD-induced elevation in Sglt-1 expression. Both CGA doses normalized the HFD-induced downregulation of Glut-2 and elevated the expression of Plg in all four intestinal segments. An HFD can cause a glucose metabolism disorder in the rat intestine and affect body glucose homeostasis. CGA can modify intestinal glucose metabolism by regulating the expression of intestinal glucose transporters and Plg, thereby controlling the levels of blood glucose and insulin to maintain glucose homeostasis. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  19. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under develo