WorldWideScience

Sample records for intestinal microbial antigens

  1. Neonatal exposure to fecal antigens reduces intestinal inflammation.

    Science.gov (United States)

    Sydora, Beate C; McFarlane, Sarah M; Doyle, Jason S G; Fedorak, Richard N

    2011-04-01

    A role for bacterial antigens in the pathogenesis of inflammatory bowel disease (IBD) has been established in enhanced humoral and cellular immune response to ubiquitous antigens of the enteric flora. However, we have recently shown that bacterial antigens in the absence of live bacteria cannot initiate an intestinal inflammation in IBD-prone interleukin (IL)-10 gene-deficient mice. The objective was to investigate whether neonatal exposure to antigens of their own endogenous flora can tolerize mice to bacterial antigens. IL-10 gene-deficient neonates were injected intraperitoneally within 72 hours of birth with a sterile solution of bacterial lysates prepared from fecal material of either conventionally raised mice (contains bacterial antigens) or axenic mice (lacks bacterial antigens). The onset of intestinal inflammation was monitored as the appearance of occult blood in the stool in weekly hemoccult analysis. Mice were sacrificed between age 15 and 19 weeks and tested for histopathologic injury, intestinal inflammation, and systemic response to bacterial antigens. In mice neonatally exposed to bacterial antigens the onset of intestinal inflammation was delayed and the incidence of histopathologic injury at age 18 weeks was reduced. In addition, mice injected with lysates from conventionally raised mice exhibited decreased release of proinflammatory cytokines (interferon gamma [IFN-γ] and IL-17) in intestinal tissue and demonstrated reduced bacteria-stimulated systemic responses when compared to mice injected with lysates derived from bacteria-free, axenic mice. Neonatal intraperitoneal injection of antigens from the commensal flora causes long-lasting changes in systemic and mucosal immune responses resulting in delayed onset of intestinal inflammation and injury in IBD-prone IL-10 gene-deficient mice. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  2. Antigen detection of entamoeba histolytica intestinal infection: cost ...

    African Journals Online (AJOL)

    Purpose: Laboratory diagnosis of Entamoeba histolytica infection is still being made through compound light microscopy in resource limited countries despite the associated flaws. This study is aimed at applying and determining the usefulness of ELISA antigen detection technique for E. histolytica intestinal infection ...

  3. Antigenic variation in the intestinal parasite Giardia lamblia.

    Science.gov (United States)

    Gargantini, Pablo Rubén; Serradell, Marianela Del Carmen; Ríos, Diego Nicolás; Tenaglia, Albano Heraldo; Luján, Hugo Daniel

    2016-08-01

    Giardia lamblia trophozoites undergo antigenic variation, where one member of the Variant-specific Surface Protein (VSP) family is expressed on the surface of proliferating trophozoites and periodically replaced by another one. Two main questions have challenged researchers since antigenic switching was discovered in Giardia: What are the mechanisms involved? How are they influenced by other cellular processes or by the environment? Two molecular mechanisms have been proposed, both involving small non-coding RNAs. Here we postulate that (a) chromatin remodeling, triggered by environmental factors, also plays an important role in selecting the VSP that will be expressed and (b) the particular VSP structure may not only protect the parasite in the small intestine but also signal the need to exchange the existing VSP for another. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Microbial community mapping in intestinal tract of broiler chicken.

    Science.gov (United States)

    Xiao, Yingping; Xiang, Yun; Zhou, Weidong; Chen, Jinggang; Li, Kaifeng; Yang, Hua

    2017-05-01

    Domestic chickens are valuable sources of protein associated with producing meat and eggs for humans. The gastrointestinal tract (GIT) houses a large microbial community, and these microbiota play an important role in growth and health of chickens, contributing to the enhancement of nutrient absorption and improvement of the birds' immune systems. To improve our understanding of the chicken intestinal microbial composition, microbiota inhabiting 5 different intestinal locations (duodenum, jejunum, ileum, cecum, and colon) of 42-day-old broiler chickens were detected based on 16S rRNA gene sequence analysis. As a result, 1,502,554 sequences were clustered into 796 operational taxonomic units (OTUs) at the 97% sequence similarity value and identified into 15 phyla and 288 genera. Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Cyanobacteria were the major microbial groups and Firmicutes was the dominant phylum in duodenum, jejunum, ileum and colon accounting for > 60% of sequences, while Bacteroidetes was the dominant phylum in cecum (>50% of sequences), but little in the other four gut sections. At the genus level, the major microbial genera across all gut sections were Lactobacillus, Enterococcus, Bacteroides, and Corynebacterium. Lactobacillus was the predominant genus in duodenum, jejunum, and ileum (>35%), but was rarely present in cecum, and Bacteroides was the most dominant group in cecum (about 40%), but rarely present in the other 4 intestinal sections. Differences of microbial composition between the 5 intestinal locations might be a cause and consequence of gut functional differences and may also reflect host selection mediated by innate or adaptive immune responses. All these results could offer some information for the future study on the relationship between intestinal microbiota and broiler chicken growth performance as well as health. © 2016 Poultry Science Association Inc.

  5. A radioimmunoassay for human antibody specific for microbial antigens

    International Nuclear Information System (INIS)

    Tew, J.G.; Burmeister, J.; Greene, E.J.; Pflaumer, S.K.; Goldstein, J.

    1977-01-01

    A simple and sensitive method for detecting and quantitating antibody specific or microbial antigens is described. Bacterial, fungal, parasitic or viral antigens attached to bromoacetyl cellulose or the intact cells themselves were added to a series of two-fold dilutions of human serum. After a short incubation period, which allowed human antibody to attach to the antigens, the complex was thoroughly washed and carbon-14 labeled anti-human light chain antibody was added to each dilution. The resulting complex was washed, collected on a filter pad, placed in a scintillation vial and radioassayed. The relationship between radioactivity bound and -log 2 of the serum dilution was linear. The endpoint for each assay and a confidence interval was calculated by doing inverse prediction from simple linear regression. Results obtained using this assay indicated the presence of antibody in a pool of normal human sera specific for herpes virus and for both cell surface and intracellular antigens of Streptococcus mutans, Naegleria fowleri and Cryptococcus neoformans. In general the dominant response was against the intracellular antigens rather than cell surface antigens

  6. Effect of peristalsis in balance of intestinal microbial ecosystem

    Science.gov (United States)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2017-11-01

    A balance of microbiota density in gastrointestinal tracts is necessary for health of the host. Although peristaltic flow made by intestinal muscles is constantly evacuating the lumen, bacterial density stay balanced. Some of bacteria colonize in the secreted mucus where there is no flow, but the rest resist the peristaltic flow in lumen and maintain their population. Using a coupled two-dimensional model of flow induced by large amplitude peristaltic waves, bacterial motility, reproduction, and diffusion, we address how bacterial growth and motility combined with peristaltic flow affect the balance of the intestinal microbial ecosystem.

  7. In Vivo Microbial Antigen Discovery (InMAD) to identify diagnostic proteins and polysaccharides that are circulating during microbial infections.

    Science.gov (United States)

    Chaves, Sindy J; Schegg, Kathleen; Kozel, Thomas R; Aucoin, David P

    2013-01-01

    Immunoassays employed at the point-of-care (POC) are often useful for diagnosing acute infections. Many of these assays rely on identification of microbial antigens that are secreted or shed during infection. However, determining which microbial antigens are best to target by immunoassay can be the most difficult aspect of developing a new diagnostic product. Here we describe a novel technique termed "In vivo Microbial Antigen Discovery" or "InMAD" for identification of microbial antigens that may be targeted for the diagnosis of infectious diseases.

  8. New diagnostic antigens for early trichinellosis: the excretory-secretory antigens of Trichinella spiralis intestinal infective larvae.

    Science.gov (United States)

    Sun, Ge Ge; Liu, Ruo Dan; Wang, Zhong Quan; Jiang, Peng; Wang, Li; Liu, Xiao Lin; Liu, Chun Yin; Zhang, Xi; Cui, Jing

    2015-12-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae (ML) are the most commonly used diagnostic antigens for trichinellosis, but anti-Trichinella IgG antibodies cannot be detected until 2-3 weeks after infection; there is an obvious window period between Trichinella infection and antibody positivity. Intestinal infective larvae (IIL) are the first invasive stage during Trichinella infection, and their ES antigens are firstly exposed to the immune system and might be the early diagnostic markers of trichinellosis. The aim of this study was to evaluate the early diagnostic values of IIL ES antigens for trichinellosis. The IIL were collected from intestines of infected mice at 6 h postinfection (hpi), and IIL ES antigens were prepared by incubation for 18 h. Anti-Trichinella IgG antibodies in mice infected with 100 ML were detectable by ELISA with IIL ES antigens as soon as 10 days postinfection (dpi), but ELISA with ML ES antigens did not permit detection of infected mice before 12 dpi. When the sera of patients with trichinellosis at 19 dpi were assayed, the sensitivity (100 %) of ELISA with IIL ES antigens was evidently higher than 75 % of ELISA with ML ES antigens (P < 0.05) The specificity (96.86 %) of ELISA with IIL ES antigens was also higher than 89.31 % of ELISA with ML ES antigens (P < 0.05). The IIL ES antigens provided a new source of diagnostic antigens and could be considered as a potential early diagnostic antigen for trichinellosis.

  9. Microbial Sensing by the Intestinal Epithelium in the Pathogenesis of Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Michael Scharl

    2010-01-01

    Full Text Available Recent years have raised evidence that the intestinal microbiota plays a crucial role in the pathogenesis of chronic inflammatory bowels diseases. This evidence comes from several observations. First, animals raised under germ-free conditions do not develop intestinal inflammation in several different model systems. Second, antibiotics are able to modulate the course of experimental colitis. Third, genetic polymorphisms in a variety of genes of the innate immune system have been associated with chronic intestinal inflammatory diseases. Dysfunction of these molecules results in an inappropriate response to bacterial and antigenic stimulation of the innate immune system in the gastrointestinal tract. Variants of pattern recognition receptors such as NOD2 or TLRs by which commensal and pathogenic bacteria can be detected have been shown to be involved in the pathogenesis of IBD. But not only pathways of microbial detection but also intracellular ways of bacterial processing such as autophagosome function are associated with the risk to develop Crohn's disease. Thus, the “environment concept” and the “genetic concept” of inflammatory bowel disease pathophysiology are converging via the intestinal microbiota and the recognition mechanisms for an invasion of members of the microbiota into the mucosa.

  10. Bacterial antigens alone can influence intestinal barrier integrity, but live bacteria are required for initiation of intestinal inflammation and injury.

    Science.gov (United States)

    Sydora, Beate C; Martin, Sarah M; Lupicki, Maryla; Dieleman, Levinus A; Doyle, Jason; Walker, John W; Fedorak, Richard N

    2006-06-01

    Intestinal flora plays a critical role in the initiation and perpetuation of inflammatory bowel disease. This study examined whether live fecal bacteria were necessary for the initiation of this inflammatory response or whether sterile fecal material would provoke a similar response. Three preparations of fecal material were prepared: (1) a slurry of live fecal bacteria, (2) a sterile lysate of bacterial antigens, and (3) a sterile filtrate of fecal water. Each preparation was introduced via gastric gavage into the intestines of axenic interleukin-10 gene-deficient mice genetically predisposed to develop inflammatory bowel disease. Intestinal barrier integrity and degrees of mucosal and systemic inflammations were determined for each preparation group. Intestinal barrier integrity, as determined by mannitol transmural flux, was altered by both live fecal bacterial and sterile lysates of bacterial antigens, although it was not altered by sterile filtrates of fecal water. However, only live fecal bacteria initiated mucosal inflammation and injury and a systemic immune response. Fecal bacterial antigens in the presence of live bacteria and sterile fecal bacterial antigens have different effects on the initiation and perpetuation of intestinal inflammation.

  11. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru, E-mail: atotuka@mail.ecc.u-tokyo.ac.jp

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  12. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.

    Directory of Open Access Journals (Sweden)

    Charlotte F Inman

    Full Text Available Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+ antigen-presenting cell subset, whilst SIRPα(-CD11R1(+ antigen-presenting cells (APCs are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+ antigen-presenting cells as orchestrators of early-life mucosal immune development.

  13. Transport phenomena of microbial flora in the small intestine with peristalsis.

    Science.gov (United States)

    Ishikawa, T; Sato, T; Mohit, G; Imai, Y; Yamaguchi, T

    2011-06-21

    The gastrointestinal tract of humans is colonized by indigenous prokaryotic and eukaryotic microbial cells that form a complex ecological system called microbial flora. Although the microbial flora has diverse functions, its homeostasis inside the gastrointestinal tract is still largely unknown. Therefore, creating a model for investigating microbial flora in the gastrointestinal tract is important. In this study, we developed a novel numerical model to explore the transport phenomena of microbial flora in the small intestine. By simultaneously solving the flow field generated by peristalsis, the concentrations of oxygen and nutrient, and the densities of moderate anaerobes and aerobes, the effects of fluid mechanics on the transport phenomena of microbial flora are discussed. The results clearly illustrated that fluid mechanics have considerable influence not only on the bacterial population, but also on the concentration distributions of oxygen and nutrient. Especially, the flow field enhances the radial variation of the concentration fields. We also show scaling arguments for bacterial growth and oxygen consumption, which capture the main features of the results. Additionally, we investigated the transport phenomena of microbial flora in a long tube with 40 constrictions. The results showed a high growth rate of aerobes in the upstream side and a high growth rate of anaerobes in the downstream side, which qualitatively agrees with experimental observations of human intestines. These new findings provide the fundamental basis for a better understanding of the transport phenomena of microbial flora in the intestine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells

    Science.gov (United States)

    Powell, Jonathan J.; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E.; Skepper, Jeremy N.; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A.; Gomez-Morilla, Inmaculada; Grime, Geoffrey W.; Kirkby, Karen J.; Mabbott, Neil A.; Donaldson, David S.; Williams, Ifor R.; Rios, Daniel; Girardin, Stephen E.; Haas, Carolin T.; Bruggraber, Sylvaine F. A.; Laman, Jon D.; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P. H.; Pele, Laetitia C.

    2015-05-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1’, whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.

  15. Microbial antigenic variation mediated by homologous DNA recombination

    NARCIS (Netherlands)

    C. Vink (Cornelis); L. Rudenko (Larisa); H.S. Seifert (H. Steven)

    2012-01-01

    textabstractPathogenic microorganisms employ numerous molecular strategies in order to delay or circumvent recognition by the immune system of their host. One of the most widely used strategies of immune evasion is antigenic variation, in which immunogenic molecules expressed on the surface of a

  16. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa.

    Directory of Open Access Journals (Sweden)

    Nives Hörmann

    Full Text Available The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs. Here, we report that colonization of germ-free (GF Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2 and protein-kinase B (AKT induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area.

  17. Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach

    NARCIS (Netherlands)

    Amor, Ben K.

    2004-01-01

    This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be

  18. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Science.gov (United States)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  19. Microbial antigens mediate HLA-B27 diseases via TLRs.

    Science.gov (United States)

    Pöllänen, Raimo; Sillat, Tarvo; Pajarinen, Jukka; Levón, Jaakko; Kaivosoja, Emilia; Konttinen, Yrjö T

    2009-01-01

    HLA-B27 positive individuals are predisposed to reactive arthritis developing 1-3 weeks after urogenital and gastrointestinal infections. Also ankylosing spondylitis (AS) associates strongly to HLA-B27, but no specific infection, Klebsiella pneumoniae excluded, has been linked to it. Before the discovery of its HLA-B27 association there were many reports suggesting a link between chronic prostatitis in men or pelvic inflammatory disease in women and AS. They have since been forgotten although HLA-B27 did not help to understand, why this disease has an axial and ascending nature. It is proposed that the urogenital organs form a source of damage (or danger)-associated molecular patterns (DAMPs), either exogenous pathogen-associated molecular patterns (PAMPs) from microbes or endogenous alarmins, such as uric acid, released from necrotic cells or urate deposits. DAMPs are slowly seeded from low-down upwards via the pelvic and spinal lymphatic pathways. They reach Toll-like receptors (TLRs) in their target mesenchymal stem cells, which are stimulated to ectopic enchondral bone formation leading to syndesmophytes and bamboo spine. At the same time inflammatory cytokines induce secondary osteoporosis of the spine. This new paradigm places microbes, HLA-B27 and TLRs in the pathogenic centre stage, but without pinpointing any (one) specific pathogen; instead, shared microbial patterns are indicated.

  20. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp ( Marsupenaeus japonicus)

    Science.gov (United States)

    Liu, Huaide; Liu, Mei; Wang, Baojie; Jiang, Keyong; Jiang, Shan); Sun, Shujuan; Wang, Lei

    2010-07-01

    In this study, the intestinal microbiota of kuruma shrimp ( Marsupenaeus japonicus) was examined by molecular analysis of the 16S rDNA to identify the dominant intestinal bacteria and to investigate the effects of Bacillus spp. on intestinal microbial diversity. Samples of the intestines of kuruma shrimp fed normal feed and Bacillus spp. amended feed. PCR and denaturing gradient gel electrophoresis (DGGE) analyses were then performed on DNA extracted directly from the guts. Population fingerprints of the predominant organisms were generated by DGGE analysis of the universal V3 16S rDNA amplicons, and distinct bands in the gels were sequenced. The results suggested that the gut of kuruma shrimp was dominated by Vibrio sp. and uncultured gamma proteobacterium. Overall, the results of this study suggest that PCR-DGGE is a possible method of studying the intestinal microbial diversity of shrimp.

  1. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class

    DEFF Research Database (Denmark)

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, by disrupting the intricate balance between specific bacterial groups within this ecosystem...... potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (n=12 per group) were dosed by oral gavage with either amoxicillin...

  2. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin.

    Science.gov (United States)

    Nickerson, Kourtney P; Chanin, Rachael; McDonald, Christine

    2015-01-01

    Inflammatory bowel disease (IBD) is a complex, multi-factorial disease thought to arise from an inappropriate immune response to commensal bacteria in a genetically susceptible person that results in chronic, cyclical, intestinal inflammation. Dietary and environmental factors are implicated in the initiation and perpetuation of IBD; however, a singular causative agent has not been identified. As of now, the role of environmental priming or triggers in IBD onset and pathogenesis are not well understood, but these factors appear to synergize with other disease susceptibility factors. In previous work, we determined that the polysaccharide dietary additive, maltodextrin (MDX), impairs cellular anti-bacterial responses and suppresses intestinal anti-microbial defense mechanisms. In this addendum, we review potential mechanisms for dietary deregulation of intestinal homeostasis, postulate how dietary and genetic risk factors may combine to result in disease pathogenesis, and discuss these ideas in the context of recent findings related to dietary interventions for IBD.

  3. Microbial Activities and Intestinal Homeostasis: A Delicate Balance Between Health and DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Christina L. Ohland

    2015-01-01

    Full Text Available The concept that the intestinal microbiota modulates numerous physiologic processes, including immune development and function, nutrition and metabolism, and pathogen exclusion, is relatively well established in the scientific community. The molecular mechanisms driving these various effects and the events leading to the establishment of a “healthy” microbiome are slowly emerging. This review brings into focus important aspects of microbial/host interactions in the intestine and discusses key molecular mechanisms controlling health and disease states. We discuss the evidence of how microbes interact with the host and one another and their impact on intestinal homeostasis. Keywords: Bacterial Communication, Bowel Disease, Host-Microbe Interactions, Inflammatory, Microbiome

  4. Decreased microbial diversity and Lactobacillus group in the intestine of geriatric giant pandas (Ailuropoda melanoleuca).

    Science.gov (United States)

    Peng, Zhirong; Zeng, Dong; Wang, Qiang; Niu, Lili; Ni, Xueqin; Zou, Fuqin; Yang, Mingyue; Sun, Hao; Zhou, Yi; Liu, Qian; Yin, Zhongqiong; Pan, Kangcheng; Jing, Bo

    2016-05-01

    It has been established beyond doubt that giant panda genome lacks lignin-degrading related enzyme, gastrointestinal microbes may play a vital role in digestion of highly fibrous bamboo diet. However, there is not much information available about the intestinal bacteria composition in captive giant pandas with different ages. In this study, we compared the intestinal bacterial community of 12 captive giant pandas from three different age groups (subadults, adults, and geriatrics) through PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR analysis. Results indicated that microbial diversity in the intestine of adults was significantly higher than that of the geriatrics (p 0.05). The predominant bands in DGGE patterns shared by the twelve pandas were related to Firmicutes and Proteobacteria. Additionally, in comparison to healthy individuals, antibiotic-treated animals showed partial microbial dysbiosis. Real-time PCR analyses confirmed a significantly higher abundance of the Lactobacillus in the fecal microbiota of adults (p 0.05). This study revealed that captive giant pandas with different ages showed different intestinal bacteria composition.

  5. Mouse background strain profoundly influences Paneth cell function and intestinal microbial composition.

    Directory of Open Access Journals (Sweden)

    Ajay S Gulati

    Full Text Available Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv. In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota.Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR, acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv á-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals.This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal

  6. Microbial F-type lectin domains with affinity for blood group antigens.

    Science.gov (United States)

    Mahajan, Sonal; Khairnar, Aasawari; Bishnoi, Ritika; Ramya, T N C

    2017-09-23

    F-type lectins are fucose binding lectins with characteristic fucose binding and calcium binding motifs. Although they occur with a selective distribution in viruses, prokaryotes and eukaryotes, most biochemical studies have focused on vertebrate F-type lectins. Recently, using sensitive bioinformatics search techniques on the non-redundant database, we had identified many microbial F-type lectin domains with diverse domain organizations. We report here the biochemical characterization of F-type lectin domains from Cyanobium sp. PCC 7001, Myxococcus hansupus and Leucothrix mucor. We demonstrate that while all these three microbial F-type lectin domains bind to the blood group H antigen epitope on fucosylated glycans, there are fine differences in their glycan binding specificity. Cyanobium sp. PCC 7001 F-type lectin domain binds exclusively to extended H type-2 motif, Myxococcus hansupus F-type lectin domain binds to B, H type-1 and Lewis b motifs, and Leucothrix mucor F-type lectin domain binds to a wide range of fucosylated glycans, including A, B, H and Lewis antigens. We believe that these microbial lectins will be useful additions to the glycobiologist's toolbox for labeling, isolating and visualizing glycans. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Associations of cocaine use and HIV infection with the intestinal microbiota, microbial translocation, and inflammation.

    Science.gov (United States)

    Volpe, Gretchen E; Ward, Honorine; Mwamburi, Mkaya; Dinh, Duy; Bhalchandra, Seema; Wanke, Christine; Kane, Anne V

    2014-03-01

    HIV and illicit drug use have been associated with altered nutrition, immune function, and metabolism. We hypothesized that altered composition and decreased diversity of the intestinal microbiota, along with microbial translocation, contribute to nutritional compromise in HIV-infected drug users. We enrolled 26 men and 6 women, 15 HIV infected and 17 HIV uninfected, in this exploratory, cross-sectional study; 7 HIV-infected and 7 HIV-uninfected participants had used cocaine within the previous month. We examined the independent effects of cocaine use and HIV infection on the composition and diversity of the intestinal microbiota, determined by 16S rRNA gene pyrosequencing. Using dietary records, anthropometrics, and dual x-ray absorptiometry, we examined the additional effects of nutritional indices on the intestinal microbiota. We compared markers of inflammation and microbial translocation between groups. Cocaine users had a higher relative abundance of Bacteroidetes (M ± SD = 57.0% ± 21 vs. 37.1% ± 23, p = .02) than nonusers. HIV-infected individuals had a higher relative abundance of Proteobacteria (Mdn [interquartile range] = 1.56% [0.5, 2.2] vs. 0.36% [0.2, 0.7], p = .03), higher levels of soluble CD14 and tumor necrosis factor-α, and lower levels of anti-endotoxin core antibodies than uninfected subjects. HIV-infected cocaine users had higher interferon-γ levels than all other groups. Food insecurity was higher in HIV-infected cocaine users. We identified differences in the relative abundance of major phyla of the intestinal microbiota, as well as markers of inflammation and microbial translocation, based on cocaine use and HIV infection. Nutritional factors, including alcohol use and lean body mass, may contribute to these differences.

  8. Characterization of shifts of koala (Phascolarctos cinereus intestinal microbial communities associated with antibiotic treatment

    Directory of Open Access Journals (Sweden)

    Katherine E. Dahlhausen

    2018-03-01

    Full Text Available Koalas (Phascolarctos cinereus are arboreal marsupials native to Australia that eat a specialized diet of almost exclusively eucalyptus leaves. Microbes in koala intestines are known to break down otherwise toxic compounds, such as tannins, in eucalyptus leaves. Infections by Chlamydia, obligate intracellular bacterial pathogens, are highly prevalent in koala populations. If animals with Chlamydia infections are received by wildlife hospitals, a range of antibiotics can be used to treat them. However, previous studies suggested that koalas can suffer adverse side effects during antibiotic treatment. This study aimed to use 16S rRNA gene sequences derived from koala feces to characterize the intestinal microbiome of koalas throughout antibiotic treatment and identify specific taxa associated with koala health after treatment. Although differences in the alpha diversity were observed in the intestinal flora between treated and untreated koalas and between koalas treated with different antibiotics, these differences were not statistically significant. The alpha diversity of microbial communities from koalas that lived through antibiotic treatment versus those who did not was significantly greater, however. Beta diversity analysis largely confirmed the latter observation, revealing that the overall communities were different between koalas on antibiotics that died versus those that survived or never received antibiotics. Using both machine learning and OTU (operational taxonomic unit co-occurrence network analyses, we found that OTUs that are very closely related to Lonepinella koalarum, a known tannin degrader found by culture-based methods to be present in koala intestines, was correlated with a koala’s health status. This is the first study to characterize the time course of effects of antibiotics on koala intestinal microbiomes. Our results suggest it may be useful to pursue alternative treatments for Chlamydia infections without the use of

  9. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections.

    Directory of Open Access Journals (Sweden)

    Jacob D Estes

    Full Text Available The chronic phase of HIV infection is marked by pathological activation of the immune system, the extent of which better predicts disease progression than either plasma viral load or CD4(+ T cell count. Recently, translocation of microbial products from the gastrointestinal tract has been proposed as an underlying cause of this immune activation, based on indirect evidence including the detection of microbial products and specific immune responses in the plasma of chronically HIV-infected humans or SIV-infected Asian macaques. We analyzed tissues from SIV-infected rhesus macaques (RMs to provide direct in situ evidence for translocation of microbial constituents from the lumen of the intestine into the lamina propria and to draining and peripheral lymph nodes and liver, accompanied by local immune responses in affected tissues. In chronically SIV-infected RMs this translocation is associated with breakdown of the integrity of the epithelial barrier of the gastrointestinal (GI tract and apparent inability of lamina propria macrophages to effectively phagocytose translocated microbial constituents. By contrast, in the chronic phase of SIV infection in sooty mangabeys, we found no evidence of epithelial barrier breakdown, no increased microbial translocation and no pathological immune activation. Because immune activation is characteristic of the chronic phase of progressive HIV/SIV infections, these findings suggest that increased microbial translocation from the GI tract, in excess of capacity to clear the translocated microbial constituents, helps drive pathological immune activation. Novel therapeutic approaches to inhibit microbial translocation and/or attenuate chronic immune activation in HIV-infected individuals may complement treatments aimed at direct suppression of viral replication.

  10. Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice.

    Science.gov (United States)

    Chen, Yulin; Wu, Jie; Wang, Jiajia; Zhang, Wenjing; Xu, Bohui; Xu, Xiaojun; Zong, Li

    2018-03-15

    The intestinal immune system is an ideal target to induce immune tolerance physiologically. However, the efficiency of oral protein antigen delivery is limited by degradation of the antigen in the gastrointestinal tract and poor uptake by antigen-presenting cells. Gut dendritic cells (DCs) are professional antigen-presenting cells that are prone to inducing antigen-specific immune tolerance. In this study, we delivered the antigen heat shock protein 65-6×P277 (H6P) directly to the gut DCs of NOD mice through oral vaccination with H6P-loaded targeting nanoparticles (NPs), and investigated the ability of this antigen to induce immune tolerance to prevent autoimmune diabetes in NOD mice. A targeting NP delivery system was developed to encapsulate H6P, and the ability of this system to protect and facilitate H6P delivery to gut DCs was assessed. NOD mice were immunised with H6P-loaded targeting NPs orally once a week for 7 weeks and the onset of diabetes was assessed by monitoring blood glucose levels. H6P-loaded targeting NPs protected the encapsulated H6P from degradation in the gastrointestinal tract environment and significantly increased the uptake of H6P by DCs in the gut Peyer's patches (4.1 times higher uptake compared with the control H6P solution group). Oral vaccination with H6P-loaded targeting NPs induced antigen-specific T cell tolerance and prevented diabetes in 100% of NOD mice. Immune deviation (T helper [Th]1 to Th2) and CD4 + CD25 + FOXP3 + regulatory T cells were found to participate in the induction of immune tolerance. In this study, we successfully induced antigen-specific T cell tolerance and prevented the onset of diabetes in NOD mice. To our knowledge, this is the first attempt at delivering antigen to gut DCs using targeting NPs to induce T cell tolerance.

  11. Biological activity of the non-microbial fraction of kefir: antagonism against intestinal pathogens.

    Science.gov (United States)

    Iraporda, Carolina; Abatemarco Júnior, Mário; Neumann, Elisabeth; Nunes, Álvaro Cantini; Nicoli, Jacques R; Abraham, Analía G; Garrote, Graciela L

    2017-08-01

    Kefir is a fermented milk obtained by the activity of kefir grains which are composed of lactic and acetic acid bacteria, and yeasts. Many beneficial health effects have been associated with kefir consumption such as stimulation of the immune system and inhibition of pathogenic microorganisms. The biological activity of kefir may be attributed to the presence of a complex microbiota as well as the microbial metabolites that are released during fermentation. The aim of this work was to characterise the non-microbial fraction of kefir and to study its antagonism against Escherichia coli, Salmonella spp. and Bacillus cereus. During milk fermentation there was a production of organic acids, mainly lactic and acetic acid, with a consequent decrease in pH and lactose content. The non-microbial fraction of kefir added to nutrient broth at concentrations above 75% v/v induced a complete inhibition of pathogenic growth that could be ascribed to the presence of un-dissociated lactic acid. In vitro assays using an intestinal epithelial cell model indicated that pre-incubation of cells with the non-microbial fraction of kefir did not modify the association/invasion of Salmonella whereas pre-incubation of Salmonella with this fraction under conditions that did not affect their viability significantly decreased the pathogen's ability to invade epithelial cells. Lactate exerted a protective effect against Salmonella in a mouse model, demonstrating the relevance of metabolites present in the non-microbial fraction of kefir produced during milk fermentation.

  12. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects.

    Science.gov (United States)

    Metges, C C; El-Khoury, A E; Henneman, L; Petzke, K J; Grant, I; Bedri, S; Pereira, P P; Ajami, A M; Fuller, M F; Young, V R

    1999-10-01

    We have investigated whether there is a net contribution of lysine synthesized de novo by the gastrointestinal microflora to lysine homeostasis in six adults. On two separate occasions an adequate diet was given for a total of 11 days, and a 24-h (12-h fast, 12-h fed) tracer protocol was performed on the last day, in which lysine turnover, oxidation, and splanchnic uptake were measured on the basis of intravenous and oral administration of L-[1-(13)C]lysine and L-[6,6-(2)H(2)]lysine, respectively. [(15)N(2)]urea or (15)NH(4)Cl was ingested daily over the last 6 days to label microbial protein. In addition, seven ileostomates were studied with (15)NH(4)Cl. [(15)N]lysine enrichment in fecal and ileal microbial protein, as precursor for microbial lysine absorption, and in plasma free lysine was measured by gas chromatography-combustion-isotope ratio mass spectrometry. Differences in plasma [(13)C]- and [(2)H(2)]lysine enrichments during the 12-h fed period were observed between the two (15)N tracer studies, although the reason is unclear, and possibly unrelated to the tracer form per se. In the normal adults, after (15)NH(4)Cl and [(15)N(2)]urea intake, respectively, lysine derived from fecal microbial protein accounted for 5 and 9% of the appearance rate of plasma lysine. With ileal microbial lysine enrichment, the contribution of microbial lysine to plasma lysine appearance was 44%. This amounts to a gross microbial lysine contribution to whole body plasma lysine turnover of between 11 and 130 mg. kg(-1). day(-1), depending on the [(15)N]lysine precursor used. However, insofar as microbial amino acid synthesis is accompanied by microbial breakdown of endogenous amino acids or their oxidation by intestinal tissues, this may not reflect a net increase in lysine absorption. Thus we cannot reliably estimate the quantitative contribution of microbial lysine to host lysine homeostasis with the present paradigm. However, the results confirm the significant presence of

  13. Microbial Shifts in the Intestinal Microbiota of Salmonella Infected Chickens in Response to Enrofloxacin

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-09-01

    Full Text Available Fluoroquinolones (FQs are important antibiotics used for treatment of Salmonella infection in poultry in many countries. However, oral administration of fluoroquinolones may affect the composition and abundance of a number of bacterial taxa in the chicken intestine. Using 16S rRNA gene sequencing, the microbial shifts in the gut of Salmonella infected chickens in response to enrofloxacin treatments at different dosages (0, 0.1, 4, and 100 mg/kg b.w. were quantitatively evaluated. The results showed that the shedding levels of Salmonella were significantly reduced in the high dosage group as demonstrated by both the culturing method and 16S rRNA sequencing method. The average values of diversity indices were higher in the control group than in the three medicated groups. Non-metric multidimensional scaling (NMDS analysis results showed that the microbial community of high dosage group was clearly separated from the other three groups. In total, 25 genera were significantly enriched (including 6 abundant genera: Lactococcus, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Acinetobacter and 23 genera were significantly reduced in the medicated groups than in the control group for the treatment period, but these bacterial taxa recovered to normal levels after therapy withdrawal. Additionally, 5 genera were significantly reduced in both treatment and withdrawal periods (e.g., Blautia and Anaerotruncus and 23 genera (e.g., Enterobacter and Clostridium were significantly decreased only in the withdrawal period, indicating that these genera might be the potential targets for the fluoroquinolones antimicrobial effects. Specially, Enterococcus was significantly reduced under high dosage of enrofloxacin treatment, while significantly enriched in the withdrawal period, which was presumably due to the resistance selection. Predicted microbial functions associated with genetic information processing were significantly decreased in the high dosage group

  14. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis.

    Science.gov (United States)

    Jain, Nitya; Walker, W Allan

    2015-01-01

    Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility.

  15. Distinct Patterns of IgG and IgA against Food and Microbial Antigens in Serum and Feces of Patients with Inflammatory Bowel Diseases

    Science.gov (United States)

    Frehn, Lisa; Jansen, Anke; Bennek, Eveline; Mandic, Ana D.; Temizel, Ilknur; Tischendorf, Stefanie; Verdier, Julien; Tacke, Frank; Streetz, Konrad; Trautwein, Christian; Sellge, Gernot

    2014-01-01

    Background Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined. Methods IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn's disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39). Results Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance. Summary In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients. PMID:25215528

  16. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review

    OpenAIRE

    Juana I. Mosele; Alba Macià; Maria-José Motilva

    2015-01-01

    Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced die...

  17. Small intestinal mucin antigen (SIMA); a novel tumour marker in colorectal cancer?

    Science.gov (United States)

    Eskelinen, M; Pasanen, P; Janatuinen, E; Pettersson, N; Linnane, A; Alhava, E

    1995-01-01

    The aim of the present prospective study was to evaluate the clinical value of a new serum tumour marker small intestinal mucin antigen (SIMA) in the diagnosis of colorectal cancer. The serum SIMA values were measured in a prospective series of patients with colorectal cancer (n = 73) and patients with benign gastrointestinal disease (n = 87). SIMA values were determined using two different techniques. The cut-off levels (90 % specificity) determined for each test were 12.0 U/ml for SIMA I (Delphia), 9.8 U/ml for SIMA II (PCA-Delphia), 2.5 ng/ml for CEA, 17 U/ml for CA 50 and 17 U/ml for CA 242. The diagnostic sensitivity of the SIMA I test was 0.27, of the SIMA II test it was 0.19, of the CEA test it was 0.63, of the CA 50 test it was 0.30 and 0.30 for the CA 242 test in detecting colorectal cancer. The correlation coefficients (Pearson's r) in colorectal cancer patients between SIMA I and SIMA II measurements were 0.99, 0.71 between CEA and CA 50, 0.70 between CEA and CA 242 and 0.96 between CA 50 and CA 242 measurements. The correlation coefficients in colorectal cancer patients between other serum markers were non-significant. All marker tests were entered in a multivariate analysis to find the best combination of independent predictors of colorectal cancer. The most important predictor of colorectal cancer was SIMA I. In order to calculate the contributions of tumour marker tests, a diagnostic score (DS) was developed. The sensitivity of the DS in detecting colorectal cancer was 0.33 with a specificity of 0.90 and an efficiency of 0.65. In conclusion, the results indicate that the diagnostic sensitivity of a new tumour marker SIMA is equal to CA50 and CA 242, but inferior to the diagnostic sensitivity of the CEA test. However, multivariate discriminant analysis suggests some diagnostic value for SIMA I test because of its independent discriminant value.

  18. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    Directory of Open Access Journals (Sweden)

    Monica Vera-Lise Tulstrup

    Full Text Available Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group were dosed by oral gavage with either amoxicillin (AMX, cefotaxime (CTX, vancomycin (VAN, metronidazole (MTZ, or water (CON daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in

  19. Soluble arabinoxylan enhances large intestinal microbial health biomarkers in pigs fed a red meat-containing diet.

    Science.gov (United States)

    Williams, Barbara A; Zhang, Dagong; Lisle, Allan T; Mikkelsen, Deirdre; McSweeney, Christopher S; Kang, Seungha; Bryden, Wayne L; Gidley, Michael J

    2016-04-01

    The aim of this study was to investigate how moderately increased dietary red meat combined with a soluble fiber (wheat arabinoxylan [AX]) alters the large intestinal microbiota in terms of fermentative end products and microbial community profiles in pigs. Four groups of 10 pigs were fed Western-type diets containing two amounts of red meat, with or without a solubilized wheat AX-rich fraction for 4 wk. After euthanasia, fermentative end products (short-chain fatty acids, ammonia) of digesta from four sections of large intestine were measured. Di-amino-pimelic acid was a measure of total microbial biomass, and bacterial profiles were determined using a phylogenetic microarray. A factorial model determined effects of AX and meat content. Arabinoxylan was highly fermentable in the cecum, as indicated by increased concentrations of short-chain fatty acids (particularly propionate). Protein fermentation end products were decreased, as indicated by the reduced ammonia and branched-chain ratio although this effect was less prominent distally. Microbial profiles in the distal large intestine differed in the presence of AX (including promotion of Faecalibacterium prausnitzii), consistent with an increase in carbohydrate versus protein fermentation. Increased di-amino-pimelic acid (P < 0.0001) suggested increased microbial biomass for animals fed AX. Solubilized wheat AX has the potential to counteract the effects of dietary red meat by reducing protein fermentation and its resultant toxic end products such as ammonia, as well as leading to a positive shift in fermentation end products and microbial profiles in the large intestine. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Immunoproteomic to Identify Antigens in the Intestinal Mucosa of Crohn's Disease Patients

    Science.gov (United States)

    Gu, Guosheng; Wang, Gefei; Wu, Wenyong; Zhang, Changle; Ren, Jianan

    2013-01-01

    Incidences of Crohn disease (CD) have increased significantly in the last decade. Immunoproteomics are a promising method to identify biomarkers of different diseases. In the present study, we used immunoproteomics to study proteins of intestinal mucosal lesions and neighboring normal intestinal mucosa of 8 CD patients. Reactive proteins were validated by Western blotting. Approximately 50 protein spots localized in the 4 to 7 pI range were detected on two-dimensional electrophoresis gels, and 6 differentially expressed protein spots between 10 and 100 kDa were identified. Reactive proteins were identified as prohibitin, calreticulin, apolipoprotein A-I, intelectin-1, protein disulfide isomerase, and glutathione s-transferase Pi. Western blotting was conducted on the intestinal mucosa of another 4 CD patients to validate the reactive proteins. We found that intestinal mucosal lesions had high levels of prohibitin expression. Glutathione s-transferase expression was detected in 100% of the intestinal mucosa examined. Thus, we report 6 autoantigens of CD, including 3 new and 3 previously reported autoantigens. Intelectin-1, protein disulfide isomerase, and glutathione-s-transferases may be used as biomarkers for CD pathogenesis. PMID:24358121

  1. Intestinal microbial ecology and hematological parameters of broiler fed cassava waste pulp fermented with Acremonium charticola

    Science.gov (United States)

    Sugiharto, Sugiharto; Yudiarti, Turrini; Isroli, Isroli; Widiastuti, Endang; Putra, Fatan Dwi

    2017-01-01

    Aim: The aim of this study was to evaluate the effect of feeding Acremonium charticola-fermented cassava pulp (AC-FCP) on the intestinal microbial ecology and hematological indices of broiler chickens. Materials and Methods: A total of 240 male Lohman day-old-chicks were randomly allotted to one of the four experimental diets including control diet, control diet + antimicrobials (neomycin; 300 mg/kg diet), diet containing AC-FCP (16 g/100 g diet) or diet containing AC-FCP + antimicrobials. At day 28, the birds from each pen were blood sampled, sacrificed and immediately the internal organs were removed and weighed. Digesta were obtained from the ileum and cecum. Results: Birds fed AC-FCP had lower (pButiric acid was higher (p<0.05) in the cecal content of birds fed AC-FCP than in other birds. Propionic acid was also higher in AC-FCP fed birds than in other birds although statistically not significant. The percentages of lymphocytes and heterophils were higher (p<0.05) and tended (p=0.07) to be lower, respectively, in broilers fed control diet than in other birds. The birds provided control diet had lower (p<0.05) heterophils to lymphocytes ratio compared to those receiving AC-FCP or AC-FCP + antimicrobials. Serum total protein and globulin were higher (p<0.01) in birds fed control diet or control diet + antimicrobials compared to AC-FCP or AC-FCP + antimicrobials fed birds. Serum albumin was lower (p<0.01) in AC-FCP birds than that in other birds. There was a tendency (p=0.09) that birds fed AC-FCP diet had lower total serum cholesterol than other birds. Conclusion: Feeding AC-FCP has potential to improve the intestinal health and protect the birds from acute infections. PMID:28435195

  2. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum.

    Directory of Open Access Journals (Sweden)

    Rodrick J Chiodini

    Full Text Available Since Crohn's disease is a transmural disease, we hypothesized that examination of deep submucosal tissues directly involved in the inflammatory disease process may provide unique insights into bacterial populations transgressing intestinal barriers and bacterial populations more representative of the causes and agents of the disease. We performed deep 16s microbiota sequencing on isolated ilea mucosal and submucosal tissues on 20 patients with Crohn's disease and 15 non-inflammatory bowel disease controls with a depth of coverage averaging 81,500 sequences in each of the 70 DNA samples yielding an overall resolution down to 0.0001% of the bacterial population. Of the 4,802,328 total sequences generated, 98.9% or 4,749,183 sequences aligned with the Kingdom Bacteria that clustered into 8545 unique sequences with <3% divergence or operational taxonomic units enabling the identification of 401 genera and 698 tentative bacterial species. There were significant differences in all taxonomic levels between the submucosal microbiota in Crohn's disease compared to controls, including organisms of the Order Desulfovibrionales that were present within the submucosal tissues of most Crohn's disease patients but absent in the control group. A variety of organisms of the Phylum Firmicutes were increased in the subjacent submucosa as compared to the parallel mucosal tissue including Ruminococcus spp., Oscillospira spp., Pseudobutyrivibrio spp., and Tumebacillus spp. In addition, Propionibacterium spp. and Cloacibacterium spp. were increased as well as large increases in Proteobacteria including Parasutterella spp. and Methylobacterium spp. This is the first study to examine the microbial populations within submucosal tissues of patients with Crohn's disease and to compare microbial communities found deep within the submucosal tissues with those present on mucosal surfaces. Our data demonstrate the existence of a distinct submucosal microbiome and ecosystem

  3. Investigations to determine whether viable microorganisms are required during intestinal lactose hydrolysis of fermented milk products by microbial ß-galactosidase using gnotobiotic Göttingen minipigs

    OpenAIRE

    Winchenbach, Andrea

    2010-01-01

    The most common reason worldwide for the indigestibility of milk is the lack of ß-galactosidases in the small intestine, leading to the malabsorbtion of lactose. Fermented dairy products are very often much better tolerated than raw (not fermented) milk, because of the microbial ß-galactosidases they contain. The aim of this thesis was to elucidate the question as to weather lactose hydrolysis in the small intestine requires the presence of living bacteria (with their microbial ß-galac...

  4. Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout ( Oncorhynchus mykiss , Walbaum)

    DEFF Research Database (Denmark)

    Huber, I.; Spanggaard, Bettina; Appel, K.F.

    2004-01-01

    Aims: To identify the dominant culturable and nonculturable microbiota of rainbow trout intestine.Methods and Results: Microbial density of rainbow trout intestine was estimated by direct microscopic counts (4('),6-diamidino-2-phenylindole, DAPI) and by culturing on tryptone soya agar (TSA...... isolates and three sequences of uncultured bacteria were identified. A set of oligonucleotide probes was constructed and used to detect and enumerate the bacterial community structure of the gastrointestinal tract of rainbow trout by fluorescence in situ hybridization (FISH). Members of the gamma subclass...... of rainbow trout. However, in some samples the microflora was dominated by uncultivated, presumed anaerobic, micro-organisms. The bacterial population structure of rainbow trout intestine, as well as total bacterial counts, varied from fish to fish.Significance and Impact of the Study: Good correlation...

  5. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells.

    Directory of Open Access Journals (Sweden)

    Nicolas Rochereau

    2013-09-01

    Full Text Available Intestinal microfold (M cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell-mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1⁺ dendritic cells (DCs via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.

  6. Small intestinal motility disorders in preruminant calves chronically fed a diet based on antigenic soya: characterization and possible mediators.

    Science.gov (United States)

    Lallès, J P; Duvaux-Ponter, C; Sissons, J W; Toullec, R

    1998-01-01

    Intestinal motility disorders and some mediators implicated in these disorders were studied in preruminant calves that had been chronically fed a diet containing an antigenic heated soyabean flour (HSF) for 3 months. The calves in the present study had previously been shown to present strong immune reactions against soyabean proteins, as assessed through plasma antibody titres, direct skin tests and in vitro lymphoproliferation. Four of these calves sensitive to soya were fitted with an abomasal catheter and wire electrodes on the jejunum. Myoelectric activity was recorded over 7 h following test meals containing skim milk powder (SMP), HSF or a non-antigenic hydrolysed soya protein isolate (HSPI). The pattern of myoelectric complexes migrating to the jejunum was regular with SMP (mean durations of phases I, II and III: 26, 38 and 5.28 min, respectively). With HSF, diarrhoea appeared, and the total duration of phase I decreased from 149 to 68 min (P feeding HSPI. When promethazine, a H-1 histamine receptor antagonist, was administered i.v. prior to feeding HSF the number of phases I tended to decrease and diarrhoea virtually disappeared. In contrast, indomethacin, a cyclooxygenase inhibitor, had limited effects on motility patterns and diarrhoea. These disorders were partially reproduced by i.p. administration of platelet-activating factor (PAF) prior to feeding with SMP. These findings suggest that calves chronically fed antigenic soya suffer from immune-mediated motility disorders which are linked to histamine action via H-1 receptors, and possibly with PAF. The role of arachidonic acid catabolites of the cyclooxygenase pathway is probably minor.

  7. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice.

    Directory of Open Access Journals (Sweden)

    Sara C Campbell

    Full Text Available The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet.Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2. The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP analysis and pyrosequencing of 16S rRNA gene amplicons.Lean sedentary (LS mice presented normal histologic villi while obese sedentary (OS mice had similar villi height with more than twice the width of the LS animals. Both lean (LX and obese exercise (OX mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp.These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host.

  8. Contribution of intestinal barrier damage, microbial translocation and HIV-1 infection status to an inflammaging signature.

    Directory of Open Access Journals (Sweden)

    Amanda K Steele

    Full Text Available Systemic inflammation is a characteristic of both HIV-1 infection and aging ("inflammaging". Intestinal epithelial barrier damage (IEBD and microbial translocation (MT contribute to HIV-associated inflammation, but their impact on inflammaging remains unclear.Plasma biomarkers for IEBD (iFABP, MT (LPS, sCD14, T-cell activation (sCD27, and inflammation (hsCRP, IL-6 were measured in 88 HIV-1 uninfected (HIV(neg and 83 treated, HIV-1-infected (HIV(pos adults from 20-100 years old.Age positively correlated with iFABP (r = 0.284, p = 0.008, sCD14 (r = 0.646, p = <0.0001 and LPS (r = 0.421, p = 0.0002 levels in HIV(neg but not HIV(pos subjects. Age also correlated with sCD27, hsCRP, and IL-6 levels regardless of HIV status. Middle-aged HIV(pos subjects had elevated plasma biomarker levels similar to or greater than those of elderly HIV(neg subjects with the exception of sCD14. Clustering analysis described an inflammaging phenotype (IP based on iFABP, sCD14, sCD27, and hsCRP levels in HIV(neg subjects over 60 years of age. The IP in HIV(neg subjects was used to develop a classification model that was applied to HIV(pos subjects to determine whether HIV(pos subjects under 60 years of age were IP+. HIV(pos IP+ subjects were similar in age to IP- subjects but had a greater risk of cardiovascular disease (CVD based on Framingham risk score (p =  0.01.We describe a novel IP that incorporates biomarkers of IEBD, MT, immune activation as well as inflammation. Application of this novel IP in HIV-infected subjects identified a group at higher risk of CVD.

  9. Contribution of intestinal barrier damage, microbial translocation and HIV-1 infection status to an inflammaging signature.

    Science.gov (United States)

    Steele, Amanda K; Lee, Eric J; Vestal, Brian; Hecht, Daniel; Dong, Zachary; Rapaport, Eric; Koeppe, John; Campbell, Thomas B; Wilson, Cara C

    2014-01-01

    Systemic inflammation is a characteristic of both HIV-1 infection and aging ("inflammaging"). Intestinal epithelial barrier damage (IEBD) and microbial translocation (MT) contribute to HIV-associated inflammation, but their impact on inflammaging remains unclear. Plasma biomarkers for IEBD (iFABP), MT (LPS, sCD14), T-cell activation (sCD27), and inflammation (hsCRP, IL-6) were measured in 88 HIV-1 uninfected (HIV(neg)) and 83 treated, HIV-1-infected (HIV(pos)) adults from 20-100 years old. Age positively correlated with iFABP (r = 0.284, p = 0.008), sCD14 (r = 0.646, p = LPS (r = 0.421, p = 0.0002) levels in HIV(neg) but not HIV(pos) subjects. Age also correlated with sCD27, hsCRP, and IL-6 levels regardless of HIV status. Middle-aged HIV(pos) subjects had elevated plasma biomarker levels similar to or greater than those of elderly HIV(neg) subjects with the exception of sCD14. Clustering analysis described an inflammaging phenotype (IP) based on iFABP, sCD14, sCD27, and hsCRP levels in HIV(neg) subjects over 60 years of age. The IP in HIV(neg) subjects was used to develop a classification model that was applied to HIV(pos) subjects to determine whether HIV(pos) subjects under 60 years of age were IP+. HIV(pos) IP+ subjects were similar in age to IP- subjects but had a greater risk of cardiovascular disease (CVD) based on Framingham risk score (p =  0.01). We describe a novel IP that incorporates biomarkers of IEBD, MT, immune activation as well as inflammation. Application of this novel IP in HIV-infected subjects identified a group at higher risk of CVD.

  10. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: Presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit

    Energy Technology Data Exchange (ETDEWEB)

    Marxer, A.; Stieger, B.; Quaroni, A.; Kashgarian, M.; Hauri, H.P. (Univ. of Basel (Switzerland))

    1989-09-01

    The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.

  11. Low dietary protein and high carbohydrate infant formula affects the microbial ecology of the large intestine in neonatal rats.

    Science.gov (United States)

    Fan, Wenguang; Ren, Haiwei; Cao, Yingying; Wang, Yonggang; Huo, Guicheng

    2017-12-01

    The aim of this study was to investigate the effects of a low dietary protein and high carbohydrate infant formula on the large intestine of neonatal rats. A total of 24 neonatal Sprague-Dawley rats (14-days-old) were randomly assigned to the low protein, high carbohydrate infant formula-fed group (I group) and a human breast milk-fed group (H group). After 7 days, we selected 6 rats at random from each group to study. No significantly different microbial colonization patterns were observed in the 2 groups at the phylum level. At the family level, Enterobacteriaceae and Bacteroidaceae were the dominant bacteria in I and H rats. While Bacteroides was the most abundant bacteria at the genus level, no significant difference was observed between the 2 groups. Methanoic acid, acetate, and butyrate increased in concentration in the I group compared with the H group. Protease activities, ammonia, and indole in the large intestine were lower in I rats than H rats. A significant increase in the expression of GADPH and decrease in the expression of aquaporin 8, aminopeptidase A, cathepsin F precursor, and ubiquitin carboxyl-terminal hydrolase FAF-Y were observed in I rats compared with H rats. These results suggest that a low protein diet could modulate the microbial ecology in the large intestine of neonatal rats.

  12. Casein hydrolysate diet controls intestinal T cell activation, free radical production and microbial colonisation in NOD mice.

    Science.gov (United States)

    Emani, R; Asghar, M N; Toivonen, R; Lauren, L; Söderström, M; Toivola, D M; van Tol, E A F; Hänninen, A

    2013-08-01

    Dietary and microbial factors and the gut immune system are important in autoimmune diabetes. We evaluated inflammatory activity in the whole gut in prediabetic NOD mice using ex vivo imaging of reactive oxygen and nitrogen species (RONS), and correlated this with the above-mentioned factors. NOD mice were fed a normal diet or an anti-diabetogenic casein hydrolysate (CH) diet. RONS activity was detected by chemiluminescence imaging of the whole gut. Proinflammatory and T cell cytokines were studied in the gut and islets, and dietary effects on gut microbiota and short-chain fatty acids were determined. Prediabetic NOD mice displayed high RONS activity in the epithelial cells of the distal small intestine, in conjunction with a proinflammatory cytokine profile. RONS production was effectively reduced by the CH diet, which also controlled (1) the expression of proinflammatory cytokines and colonisation-dependent RegIIIγ (also known as Reg3g) in ileum; (2) intestinal T cell activation; and (3) islet cytokines. The CH diet diminished microbial colonisation, increased the Bacteroidetes:Firmicutes ratio, and reduced lactic acid and butyric acid production in the gut. Epithelial RONS production and proinflammatory T cell activation appears in the ileum of NOD mice after weaning to normal laboratory chow, but not after weaning to an anti-diabetogenic CH diet. Our data suggest a link between dietary factors, microbial colonisation and mucosal immune activation in NOD mice.

  13. Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult Swine.

    Directory of Open Access Journals (Sweden)

    Marie-Edith Arnal

    Full Text Available Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes and protective inducible heat shock proteins (HSP. The hypothesis was tested in swine offspring born to control mothers (n = 12 or mothers treated with the antibiotic amoxicillin around parturition (n = 11, and slaughtered serially at 14, 28 and 42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27 and crypt depth, suggesting a milder or delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-term consequences of this treatment on jejunal alkaline phosphatase (reduced and jejunal and ileal dipeptidylpeptidase IV (increased and decreased, respectively of offspring born to antibiotic-treated dams. Significant interactions between early antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal architecture and function transiently

  14. Intestinal Metagenomes and Metabolomes in Healthy Young Males: Inactivity and Hypoxia Generated Negative Physiological Symptoms Precede Microbial Dysbiosis

    Directory of Open Access Journals (Sweden)

    Robert Šket

    2018-03-01

    Full Text Available We explored the metagenomic, metabolomic and trace metal makeup of intestinal microbiota and environment in healthy male participants during the run-in (5 day and the following three 21-day interventions: normoxic bedrest (NBR, hypoxic bedrest (HBR and hypoxic ambulation (HAmb which were carried out within a controlled laboratory environment (circadian rhythm, fluid and dietary intakes, microbial bioburden, oxygen level, exercise. The fraction of inspired O2 (FiO2 and partial pressure of inspired O2 (PiO2 were 0.209 and 133.1 ± 0.3 mmHg for the NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (~4,000 m simulated altitude for HBR and HAmb interventions, respectively. Shotgun metagenomes were analyzed at various taxonomic and functional levels, 1H- and 13C -metabolomes were processed using standard quantitative and human expert approaches, whereas metals were assessed using X-ray fluorescence spectrometry. Inactivity and hypoxia resulted in a significant increase in the genus Bacteroides in HBR, in genes coding for proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence, defense and mucin degradation, such as beta-galactosidase (EC3.2.1.23, α-L-fucosidase (EC3.2.1.51, Sialidase (EC3.2.1.18, and α-N-acetylglucosaminidase (EC3.2.1.50. In contrast, the microbial metabolomes, intestinal element and metal profiles, the diversity of bacterial, archaeal and fungal microbial communities were not significantly affected. The observed progressive decrease in defecation frequency and concomitant increase in the electrical conductivity (EC preceded or took place in absence of significant changes at the taxonomic, functional gene, metabolome and intestinal metal profile levels. The fact that the genus Bacteroides and proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence and mucin degradation were enriched at the end of HBR suggest that both constipation and EC decreased intestinal metal availability

  15. T-lymphocyte responses to intestinally absorbed antigens can contribute to adipose tissue inflammation and glucose intolerance during high fat feeding.

    Directory of Open Access Journals (Sweden)

    Yuehui Wang

    Full Text Available BACKGROUND: Obesity is associated with inflammation of visceral adipose tissues, which increases the risk for insulin resistance. Animal models suggest that T-lymphocyte infiltration is an important early step, although it is unclear why these cells are attracted. We have recently demonstrated that dietary triglycerides, major components of high fat diets, promote intestinal absorption of a protein antigen (ovalbumin, "OVA". The antigen was partly transported on chylomicrons, which are prominently cleared in adipose tissues. We hypothesized that intestinally absorbed gut antigens may cause T-lymphocyte associated inflammation in adipose tissue. METHODOLOGY/PRINCIPAL FINDINGS: Triglyceride absorption promoted intestinal absorption of OVA into adipose tissue, in a chylomicron-dependent manner. Absorption tended to be higher in mesenteric than subcutaneous adipose tissue, and was lowest in gonadal tissue. OVA immunoreactivity was detected in stromal vascular cells, including endothelial cells. In OVA-sensitized mice, OVA feeding caused marked accumulation of CD3+ and osteopontin+ cells in mesenteric adipose tissue. The accumulating T-lymphocytes were mainly CD4+. As expected, high-fat (60% kCal diets promoted mesenteric adipose tissue inflammation compared to low-fat diets (10% Kcal, as reflected by increased expression of osteopontin and interferon-gamma. Immune responses to dietary OVA further increased diet-induced osteopontin and interferon-gamma expression in mesenteric adipose. Inflammatory gene expression in subcutaneous tissue did not respond significantly to OVA or dietary fat content. Lastly, whereas OVA responses did not significantly affect bodyweight or adiposity, they significantly impaired glucose tolerance. CONCLUSIONS/SIGNIFICANCE: Our results suggest that loss or lack of immunological tolerance to intestinally absorbed T-lymphocyte antigens can contribute to mesenteric adipose tissue inflammation and defective glucose metabolism

  16. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation

    NARCIS (Netherlands)

    Hashimoto, T.; Perlot, T.; Rehman, A.; Trichereau, J.; Ishiguro, H.; Paolino, M.; Sigl, V.; Hanada, T.; Hanada, R.; Lipinski, S.; Wild, B.; Camargo, S.M.; Singer, D.; Richter, A.P.; Kuba, K.; Fukamizu, A.; Schreiber, S.; Clevers, H.; Verrey, F.; Rosenstiel, P.; Penninger, J.M.

    2012-01-01

    Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal

  17. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review

    Directory of Open Access Journals (Sweden)

    Juana I. Mosele

    2015-09-01

    Full Text Available Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA, sterols (cholesterol and bile acids, and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health.

  18. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.

    Science.gov (United States)

    Czaja, Albert J

    2016-11-14

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.

  19. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle.

    Science.gov (United States)

    Stecher, Bärbel; Berry, David; Loy, Alexander

    2013-09-01

    The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Do intestinal hyperpermeability and the related food antigens play a role in the progression of IgA nephropathy? I. Study of intestinal permeability

    NARCIS (Netherlands)

    Kovács, T.; Kun, L.; Schmelczer, M.; Wagner, L.; Davin, J. C.; Nagy, J.

    1996-01-01

    Intestinal permeability was investigated by using 51Cr-EDTA as a probe molecule in 29 patients with immunoglobulin A nephropathy (IgA NP) and 20 healthy controls in 1990. Intestinal permeability was significantly higher in the IgA NP patients than in the controls (IgA NP, 3.86 +/- 0.29%; controls,

  1. Diets high in resistent starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Lærke, Helle Nygaard; Theil, Peter Kappel

    2014-01-01

    The effects of a high level of dietary fibre (DF) either as arabinoxylan (AX) or resistant starch (RS) on digestion processes, SCFA concentration and pool size in various intestinal segments and on the microbial composition in the faeces were studied in a model experiment with pigs. A total...... resulted in a 3- to 5-fold higher pool size of butyrate compared with WSD feeding, with the RSD being intermediate (P microbial composition towards butyrogenic...

  2. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions.

    Science.gov (United States)

    Pourabedin, Mohsen; Xu, Zhengxin; Baurhoo, Bushansingh; Chevaux, Eric; Zhao, Xin

    2014-05-01

    There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.

  3. Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Duong, Tri; Hoover, Timothy; Klaenhammer, Todd R

    2008-03-01

    The use of vaccines against infectious microbes has been critical to the advancement of medicine. Vaccine strategies combined with, or without, adjuvants have been established to eradicate various bacterial and viral pathogens. A new generation of vaccines is being developed using specific strains of Gram-positive, lactic acid bacteria and, notably, some probiotic lactobacilli. These bacteria have been safely consumed by humans for centuries in fermented foods. Thus, they can be orally administered, are well tolerated by recipients and could be easily and economically provided to large populations. In this overview, we focus on mucosal immunity and how its cellular component(s), particularly dendritic cells, can be specifically targeted to deliver immunogenic subunits, such as the protective antigen from Bacillus anthracis (the causative agent of anthrax). An antigen-specific immune response can be elicited using specific strains of Lactobacillus acidophilus expressing the protective antigen. A mucosal, dendritic cell-targeted approach increases the bioavailability of an immunogen of interest when delivered orally by L. acidophilus. This provides an efficiently elegant natural strategy and serves a dual function as an immune-stimulating adjuvant in vivo.

  4. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies.

    Science.gov (United States)

    Shetty, Sudarshan A; Hugenholtz, Floor; Lahti, Leo; Smidt, Hauke; de Vos, Willem M

    2017-03-01

    High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss key concepts of the human intestinal microbiome landscape, i.e. the compositional and functional 'core', the presence of community types and the existence of alternative stable states. Genomic investigation of core taxa revealed functional redundancy, which is expected to stabilize the ecosystem, as well as taxa with specialized functions that have the potential to shape the microbiome landscape. The contrast between Prevotella- and Bacteroides-dominated systems has been well described. However, less known is the effect of not so abundant bacteria, for example, Dialister spp. that have been proposed to exhibit distinct bistable dynamics. Studies employing time-series analysis have highlighted the dynamical variation in the microbiome landscape with and without the effect of defined perturbations, such as the use of antibiotics or dietary changes. We incorporate ecosystem-level observations of the human intestinal microbiota and its keystone species to suggest avenues for designing microbiome modulation strategies to improve host health. © FEMS 2017.

  5. Gaining Insight into Microbial Physiology in the Large Intestine: A Special Role for Stable Isotopes

    NARCIS (Netherlands)

    Graaf, A.A. de; Venema, K.

    2008-01-01

    The importance of the human large intestine for nutrition, health, and disease, is becoming increasingly realized. There are numerous indications of a distinct role for the gut in such important issues as immune disorders and obesity-linked diseases. Research on this long-neglected organ, which is

  6. Microbial production of volatile sulphur compounds in the large intestine of pigs fed two different diets

    DEFF Research Database (Denmark)

    Poulsen, Henrik Vestergaard; Jensen, Bent Borg; Finster, Kai

    2012-01-01

    Aims: To investigate the production of volatile sulphur compounds (VSC) in segments of the large intestine of pigs and to assess the impact of diet on this production. Methods and Results: Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with sol...

  7. Plant-expressed Hepatitis B core antigen virus-like particles: Characterization and investigation of their stability in simulated and pig gastro-intestinal fluids.

    Science.gov (United States)

    Berardi, Alberto; Lomonossoff, George P; Evans, David J; Barker, Susan A

    2017-04-30

    Virus-like particles (VLPs) are potential oral vaccine candidates, as their highly compact structure may allow them to withstand the harsh conditions of the gastro-intestinal (GI) environment. Hepatitis B core antigen (HBcAg) is an immunogenic protein that assembles into 30 or 34nm diameter VLPs. Here, the stabilities of both the HBcAg polypeptide itself and the three-dimensional structure of the VLPs upon exposure to in vitro and ex vivo simulated gastric and intestinal fluids were investigated. Plant-expressed HBcAg VLPs were efficiently purified by sucrose density gradient and characterized. The purified VLPs did not show major chemical or physical instability upon exposure to the low pH conditions typically found in the stomach; however, they completely agglomerated upon acidification and subsequent pH neutralization. The HBcAg polypeptide was highly digested upon exposure to pepsin in simulated gastric fluids. HBcAg appeared more stable in both simulated and ex vivo intestinal fluids, where despite a partial digestion of the HBcAg polypeptide, the VLPs maintained their most immunogenic epitopes and their particulate conformation. These results suggest that HBcAg VLPs are likely to be unstable in gastric fluids, yet if the gastric instability could be bypassed, they could maintain their particulate structure and immunogenicity in intestinal fluids. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The application of fluorescence in situ hybridization (FISH technique for studying the microbial communities in intestinal tissues of white shrimp (Penaeus vannamei

    Directory of Open Access Journals (Sweden)

    Supamattaya, K.

    2005-02-01

    Full Text Available Fluorescence in situ hybridization technique is very useful for the evaluation of microbial communities in various environments. It is possible to apply this technique to study the intestinal microflora in white shrimp (Penaeus vannamei. Different fixatives and storage temperature were tested in this technique. It was found that fixation with 10% buffered formalin for 12 hours and changed to 70% ethanol shown positive results when compared to the fixation with Davidson's fixative or RF fixative. The best signaling was obtainedfrom the samples which were stored in -20ºC. By using the DNA probe targeted to the Eubacteria domain (EUB338 probe, 5′-GCT GCC TCC CGT AGG AGT-3′ labeled with fluorescein as a hybridizing probe, it was found that most intestinal microflora were aggregated with the intestinal contents, or dispersed in the lumen. There was not evidence of the attachment of the microflora with the intestinal epithelium in this study.

  9. The Starting Lineup: Key Microbial Players in Intestinal Immunity and Homeostasis

    OpenAIRE

    Nicola Catherine Reading; Nicola Catherine Reading; Dennis L. Kasper; Dennis L. Kasper

    2011-01-01

    The complexity of microbiota inhabiting the intestine is increasingly apparent. Delicate balance of numerous bacterial species can affect development of the immune system, how susceptible a host is to pathogenic organisms, and the auto-inflammatory state of the host. In the last decade, with the increased use of germ-free mice, gnotobiotic mice, and animal models in which a germ-free animal has been colonized with a foreign microbiota such as humanized mice, it has been possible to deline...

  10. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition

    Science.gov (United States)

    Chang, Pamela V.; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-01-01

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein–coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors. PMID:24390544

  11. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    Science.gov (United States)

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  12. Protection against murine intestinal amoebiasis induced by oral immunization with the 29 kDa antigen of Entamoeba histolytica and cholera toxin.

    Science.gov (United States)

    Carrero, J C; Contreras-Rojas, A; Sánchez-Hernández, B; Petrosyan, P; Bobes, R J; Ortiz-Ortiz, L; Laclette, J P

    2010-11-01

    Entamoeba histolytica antigens recognized by salivary IgA from infected patients include the 29 kDa antigen (Eh29), an alkyl hydroperoxide reductase. Here, we investigate the potential of recombinant Eh29 and an Eh29-cholera toxin subunit B (CTxB) fusion protein to confer protection against intestinal amoebiasis after oral immunization. The purified Eh29-CTxB fusion retained the critical ability to bind ganglioside GM(1), as determined by ELISA. Oral immunization of C3H/HeJ mice with Eh29 administered in combination with a subclinical dose of whole cholera toxin, but not as an Eh29-CTxB fusion, induced elevated levels of intestinal IgA and serum IgG anti-Eh29 antibodies that inhibited trophozoites adherence to MDCK cell monolayers. The 80% of immunized mice seen to develop IgA and IgG immune responses showed no evidence of infection in tissue sections harvested following intracecal challenge with virulent E. histolytica trophozoites. These results suggest that Eh29 is capable of inducing protective anti-amoebic immune responses in mice following oral immunization and could be used in the development of oral vaccines against amoebiasis. (c) 2010 Elsevier Inc. All rights reserved.

  13. A defect in epithelial barrier integrity is not required for a systemic response to bacterial antigens or intestinal injury in T cell receptor-alpha gene-deficient mice.

    Science.gov (United States)

    Sydora, Beate C; Tavernini, Michele M; Doyle, Jason; Fedorak, Richard N

    2006-08-01

    Genetically induced disruption of the intestinal epithelial barrier leads to development of intestinal inflammation. In the interleukin-10 gene-deficient inflammatory bowel disease (IBD) mouse model, for instance, a primary defect in intestinal epithelial integrity occurs before the development of enterocolitis. In humans, a causal role for epithelial barrier disruption is still controversial. Although studies with first-degree relatives of IBD patients suggests an underlying role of impaired barrier function, a primary epithelial barrier defect in IBD patients has not been confirmed. The purpose of this article is to examine whether a primary epithelial barrier disruption is a prerequisite for the development of intestinal inflammation or whether intestinal inflammation can develop in the absence of epithelial disruption. We examined the intestinal epithelial integrity of the T cell receptor (TCR)-alpha gene-deficient mouse model of IBD. In vivo colonic permeability, determined by mannitol transmural flux, was assessed in 6-week-, 12-week-, and 25-week-old TCR-alpha gene-deficient and wild-type control mice using a single-pass perfusion technique. Mice were scored for intestinal histological injury and intestinal cytokine levels measured in organ cultures. Systemic responses to bacterial antigens were determined through 48-h spleen cell cultures stimulated with sonicate derived from endogenous bacterial strains. In contrast with previous findings in the interleukin-10 gene-deficient IBD model, TCR-alpha gene-deficient mice did not demonstrate evidence of primary intestinal epithelial barrier disruption at any age, despite developing a moderate to severe colitis within 12 weeks. A rise in intestinal interferon (IFN)-gamma levels preceded the onset of mucosal inflammation and then correlated closely with the degree of intestinal inflammation and injury. Spleen cells from TCR-alpha gene-deficient mice released IFN-gamma in response to stimulation with endogenous

  14. Effect of -based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Xinjian Lei

    2015-02-01

    Full Text Available The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control, and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP, 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30 or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60. Experimental diets were fed in two phases: starter (d 1 to 21 and finisher (d 22 to 42. Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21 and finisher (d 42 phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01 compared with the control group. For the finisher phase and the overall experiment (d 1 to 42 broilers fed diets with the DFM had better body weight gain (BWG and FCR than that of control (p<0.05. Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP, dry matter (DM and gross energy during both starter and finisher phases (p<0.05 compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05. The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control

  15. Correlation between lack of norovirus replication and histo-blood group antigen expression in 3D-intestinal epithelial cultures

    Science.gov (United States)

    Noroviruses (NoV) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. One publication utilizing a 3-dimensional (3D) intestinal model derived from Int407 cells reported NoV replication and extensive cytopathi...

  16. Genetic diversity, anti-microbial resistance, plasmid profile and frequency of the Vi antigen in Salmonella Dublin strains isolated in Brazil.

    Science.gov (United States)

    Vilela, F P; Frazão, M R; Rodrigues, D P; Costa, R G; Casas, M R T; Fernandes, S A; Falcão, J P; Campioni, F

    2018-02-01

    Salmonella Dublin is strongly adapted to cattle causing enteritis and/or systemic disease with high rates of mortality. However, it can be sporadically isolated from humans, usually causing serious disease, especially in patients with underlying chronic diseases. The aim of this study was to molecularly type S. Dublin strains isolated from humans and animals in Brazil to verify the diversity of these strains as well as to ascertain possible differences between strains isolated from humans and animals. Moreover, the presence of the capsular antigen Vi and the plasmid profile was characterized in addition to the anti-microbial resistance against 15 drugs. For this reason, 113 S. Dublin strains isolated between 1983 and 2016 from humans (83) and animals (30) in Brazil were typed by PFGE and MLVA. The presence of the capsular antigen Vi was verified by PCR, and the phenotypic expression of the capsular antigen was determined serologically. Also, a plasmid analysis for each strain was carried out. The strains studied were divided into 35 different PFGE types and 89 MLVA-types with a similarity of ≥80% and ≥17.5%, respectively. The plasmid sizes found ranged from 2 to >150 kb and none of the strains studied presented the capsular antigen Vi. Resistance or intermediate resistance was found in 23 strains (20.3%) that were resistant to ampicillin, ciprofloxacin, chloramphenicol, imipenem, nalidixic acid, piperacillin, streptomycin and/or tetracycline. The majority of the S. Dublin strains studied and isolated over a 33-year period may descend from a common subtype that has been contaminating humans and animals in Brazil and able to cause invasive disease even in the absence of the capsular antigen. The higher diversity of resistance phenotypes in human isolates, as compared with animal strains, may be a reflection of the different anti-microbial treatments used to control S. Dublin infections in humans in Brazil. © 2017 Blackwell Verlag GmbH.

  17. Performance of circulating cathodic antigen (CCA) urine-dipsticks for rapid detection of intestinal schistosomiasis in schoolchildren from shoreline communities of Lake Victoria.

    Science.gov (United States)

    Standley, C J; Lwambo, N J S; Lange, C N; Kariuki, H C; Adriko, M; Stothard, J R

    2010-02-05

    For disease surveillance and mapping within large-scale control programmes, RDTs are becoming popular. For intestinal schistosomiasis, a commercially available urine-dipstick which detects schistosome circulating cathodic antigen (CCA) in host urine is being increasingly applied, however, further validation is needed. In this study, we compared the CCA urine-dipstick test against double thick Kato-Katz faecal smears from 171 schoolchildren examined along the Tanzanian and Kenyan shorelines of Lake Victoria. Diagnostic methods were in broad agreement; the mean prevalence of intestinal schistosomiasis inferred by Kato-Katz examination was 68.6% (95% confidence intervals (CIs) = 60.7-75.7%) and 71.3% (95% CIs = 63.9-78.8%) by CCA urine-dipsticks. There were, however, difficulties in precisely 'calling' the CCA test result, particularly in discrimination of 'trace' reactions as either putative infection positive or putative infection negative, which has important bearing upon estimation of mean infection prevalence; considering 'trace' as infection positive mean prevalence was 94.2% (95% CIs = 89.5-97.2%). A positive association between increasing intensity of the CCA urine-dipstick test band and faecal egg count was observed. Assigning trace reactions as putative infection negative, overall diagnostic sensitivity (SS) of the CCA urine-dipstick was 87.7% (95% CIs = 80.6-93.0%), specificity (SP) was 68.1% (95% CIs = 54.3-80.0%), positive predictive value (PPV) was 86.1% (95% CIs = 78.8-91.7%) and negative predictive value (NPV) was 71.1% (95% CIs = 57.2-82.8%). To assist in objective defining of the CCA urine-dipstick result, we propose the use of a simple colour chart and conclude that the CCA urine-dipstick is a satisfactory alternative, or supplement, to Kato-Katz examination for rapid detection of intestinal schistosomiasis.

  18. Performance of circulating cathodic antigen (CCA urine-dipsticks for rapid detection of intestinal schistosomiasis in schoolchildren from shoreline communities of Lake Victoria

    Directory of Open Access Journals (Sweden)

    Kariuki HC

    2010-02-01

    Full Text Available Abstract For disease surveillance and mapping within large-scale control programmes, RDTs are becoming popular. For intestinal schistosomiasis, a commercially available urine-dipstick which detects schistosome circulating cathodic antigen (CCA in host urine is being increasingly applied, however, further validation is needed. In this study, we compared the CCA urine-dipstick test against double thick Kato-Katz faecal smears from 171 schoolchildren examined along the Tanzanian and Kenyan shorelines of Lake Victoria. Diagnostic methods were in broad agreement; the mean prevalence of intestinal schistosomiasis inferred by Kato-Katz examination was 68.6% (95% confidence intervals (CIs = 60.7-75.7% and 71.3% (95% CIs = 63.9-78.8% by CCA urine-dipsticks. There were, however, difficulties in precisely 'calling' the CCA test result, particularly in discrimination of 'trace' reactions as either putative infection positive or putative infection negative, which has important bearing upon estimation of mean infection prevalence; considering 'trace' as infection positive mean prevalence was 94.2% (95% CIs = 89.5-97.2%. A positive association between increasing intensity of the CCA urine-dipstick test band and faecal egg count was observed. Assigning trace reactions as putative infection negative, overall diagnostic sensitivity (SS of the CCA urine-dipstick was 87.7% (95% CIs = 80.6-93.0%, specificity (SP was 68.1% (95% CIs = 54.3-80.0%, positive predictive value (PPV was 86.1% (95% CIs = 78.8-91.7% and negative predictive value (NPV was 71.1% (95% CIs = 57.2-82.8%. To assist in objective defining of the CCA urine-dipstick result, we propose the use of a simple colour chart and conclude that the CCA urine-dipstick is a satisfactory alternative, or supplement, to Kato-Katz examination for rapid detection of intestinal schistosomiasis.

  19. Gamma delta T cells recognize a microbial encoded B Cell antigen to initiate a rapid antigen-specific Interleukin-17 response

    Science.gov (United States)

    Gamma delta T cells contribute uniquely to host immune defense, but the way in which they do so remains an enigma. Here we show that an algae protein, phycoerythrin (PE) is recognized by gamma delta T cells from mice, bovine and humans and binds directly to specific gamma delta T cell antigen recept...

  20. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.

    Science.gov (United States)

    Kuka, Janis; Liepinsh, Edgars; Makrecka-Kuka, Marina; Liepins, Janis; Cirule, Helena; Gustina, Daina; Loza, Einars; Zharkova-Malkova, Olga; Grinberga, Solveiga; Pugovics, Osvalds; Dambrova, Maija

    2014-11-11

    Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO. Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-carnitine, GBB, choline and TMAO using UPLC-MS/MS. Meldonium effects on TMA production by intestinal bacteria from L-carnitine and choline were tested. Treatment with meldonium significantly decreased intestinal microbiota-dependent production of TMA/TMAO from L-carnitine, but not from choline. 24hours after the administration of meldonium, the urinary excretion of TMAO was 3.6 times lower in the combination group than in the L-carnitine-alone group. In addition, the administration of meldonium together with L-carnitine significantly increased GBB concentration in blood plasma and in isolated rat small intestine perfusate. Meldonium did not influence bacterial growth and bacterial uptake of L-carnitine, but TMA production by the intestinal microbiota bacteria K. pneumoniae was significantly decreased. We have shown for the first time that TMA/TMAO production from quaternary amines could be decreased by targeting bacterial TMA-production. In addition, the production of pro-atherogenic TMAO can be suppressed by shifting the microbial degradation pattern of supplemental/dietary quaternary amines. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens

    Science.gov (United States)

    The present study investigated the effects of B. subtilis-based probiotics on performance, modulation of host inflammatory responses and intestinal barrier integrity of broilers subjected to LPS challenge. Birds at day 0 of age were randomly allocated to one of the 3 dietary treatments - controls, ...

  2. Laxative treatment with polyethylene glycol decreases microbial primary bile salt dehydroxylation and lipid metabolism in the intestine of rats

    NARCIS (Netherlands)

    Wulp, van der N.Y.; Derrien, M.; Stellaard, F.; Wolters, H.; Kleerebezem, M.; Dekker, J.; Rings, E.H.; Groen, A.K.; Verkade, H.J.

    2013-01-01

    Polyethylene glycol (PEG) is a frequently used osmotic laxative that accelerates gastrointestinal transit. It has remained unclear, however, whether PEG affects intestinal functions. We aimed to determine the effect of PEG treatment on intestinal sterol metabolism. Rats were treated with PEG in

  3. Mycobacterial r32-kDa antigen-specific T-cell responses correlate with successful treatment and a heightened anti-microbial response in human leprosy patients.

    Science.gov (United States)

    Neela, Venkata Sanjeev Kumar; Devalraju, Kamakshi Prudhula; Pydi, Satya Sudheer; Sunder, Sharada Ramaseri; Adiraju, Kameswara Rao; Singh, Surya Satyanarayana; Anandaraj, M P J S; Valluri, Vijaya Lakshmi

    2016-09-01

    Immunological characterization of mycobacterial peptides may help not only in the preparation of a vaccine for leprosy but also in developing in vitro T-cell assays that could perhaps be used as an in vitro correlate for treatment outcome. The main goal of this study was to evaluate the use of Mycobacterium bovis recombinant 32-kDa protein (r32-kDa) antigen-stimulated T-cell assay as a surrogate marker for treatment outcome and monitor vitamin D receptor (VDR)-mediated anti-microbial responses during multidrug therapy (MDT) in leprosy. Newly diagnosed tuberculoid and lepromatous leprosy patients were enrolled and followed up during their course of MDT at 6 and 12 months. IFN-γ, IL-10, IL-17 and IL-23 levels in culture supernatants and expression of VDR, TLR2, LL37 and DEFB in r32-kDa-stimulated PBMCs were measured. Controls comprised household contacts (HHCs) and healthy endemic subjects (HCs). Significant differences were observed in the levels of IFN-γ, IL-17, IL-23, VDR and anti-microbial peptides LL37 and DEFB after treatment and when compared with that of HHCs and HCs, respectively. These findings suggest that responses to r32-kDa antigen reflect an improved immunological and anti-microbial response in leprosy patients during therapy, thereby indicating its potential use as an immune correlate in the treatment of leprosy patients. © The Japanese Society for Immunology. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Population abundance of potentially pathogenic organisms in intestinal microbiome of jungle crow (Corvus macrorhynchos) shown with 16S rRNA gene-based microbial community analysis.

    Science.gov (United States)

    Maeda, Isamu; Siddiki, Mohammad Shohel Rana; Nozawa-Takeda, Tsutomu; Tsukahara, Naoki; Tani, Yuri; Naito, Taki; Sugita, Shoei

    2013-01-01

    Jungle Crows (Corvus macrorhynchos) prefer human habitats because of their versatility in feeding accompanied with human food consumption. Therefore, it is important from a public health viewpoint to characterize their intestinal microbiota. However, no studies have been involved in molecular characterization of the microbiota based on huge and reliable number of data acquisition. In this study, 16S rRNA gene-based microbial community analysis coupled with the next-generation DNA sequencing techniques was applied to the taxonomic classification of intestinal microbiome for three jungle crows. Clustering of the reads into 130 operational taxonomic units showed that at least 70% of analyzed sequences for each crow were highly homologous to Eimeria sp., which belongs to the protozoan phylum Apicomplexa. The microbiotas of three crows also contained potentially pathogenic bacteria with significant percentages, such as the genera Campylobacter and Brachyspira. Thus, the profiling of a large number of 16S rRNA gene sequences in crow intestinal microbiomes revealed the high-frequency existence or vestige of potentially pathogenic microorganisms.

  5. Population Abundance of Potentially Pathogenic Organisms in Intestinal Microbiome of Jungle Crow (Corvus macrorhynchos Shown with 16S rRNA Gene-Based Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Isamu Maeda

    2013-01-01

    Full Text Available Jungle Crows (Corvus macrorhynchos prefer human habitats because of their versatility in feeding accompanied with human food consumption. Therefore, it is important from a public health viewpoint to characterize their intestinal microbiota. However, no studies have been involved in molecular characterization of the microbiota based on huge and reliable number of data acquisition. In this study, 16S rRNA gene-based microbial community analysis coupled with the next-generation DNA sequencing techniques was applied to the taxonomic classification of intestinal microbiome for three jungle crows. Clustering of the reads into 130 operational taxonomic units showed that at least 70% of analyzed sequences for each crow were highly homologous to Eimeria sp., which belongs to the protozoan phylum Apicomplexa. The microbiotas of three crows also contained potentially pathogenic bacteria with significant percentages, such as the genera Campylobacter and Brachyspira. Thus, the profiling of a large number of 16S rRNA gene sequences in crow intestinal microbiomes revealed the high-frequency existence or vestige of potentially pathogenic microorganisms.

  6. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing.

    Science.gov (United States)

    Suchodolski, Jan S; Dowd, Scot E; Westermarck, Elias; Steiner, Jörg M; Wolcott, Randy D; Spillmann, Thomas; Harmoinen, Jaana A

    2009-10-02

    Recent studies have shown that the fecal microbiota is generally resilient to short-term antibiotic administration, but some bacterial taxa may remain depressed for several months. Limited information is available about the effect of antimicrobials on small intestinal microbiota, an important contributor to gastrointestinal health. The antibiotic tylosin is often successfully used for the treatment of chronic diarrhea in dogs, but its exact mode of action and its effect on the intestinal microbiota remain unknown. The aim of this study was to evaluate the effect of tylosin on canine jejunal microbiota. Tylosin was administered at 20 to 22 mg/kg q 24 hr for 14 days to five healthy dogs, each with a pre-existing jejunal fistula. Jejunal brush samples were collected through the fistula on days 0, 14, and 28 (14 days after withdrawal of tylosin). Bacterial diversity was characterized using massive parallel 16S rRNA gene pyrosequencing. Pyrosequencing revealed a previously unrecognized species richness in the canine small intestine. Ten bacterial phyla were identified. Microbial populations were phylogenetically more similar during tylosin treatment. However, a remarkable inter-individual response was observed for specific taxa. Fusobacteria, Bacteroidales, and Moraxella tended to decrease. The proportions of Enterococcus-like organisms, Pasteurella spp., and Dietzia spp. increased significantly during tylosin administration (p tylosin increased in their proportions. Tylosin may lead to prolonged effects on the composition and diversity of jejunal microbiota. However, these changes were not associated with any short-term clinical signs of gastrointestinal disease in healthy dogs. Our results illustrate the complexity of the intestinal microbiota and the challenges associated with evaluating the effect of antibiotic administration on the various bacterial groups and their potential interactions.

  7. Intestinal dendritic cells in the regulation of mucosal immunity

    DEFF Research Database (Denmark)

    Bekiaris, Vasileios; Persson, Emma K.; Agace, William Winston

    2014-01-01

    The intestine presents a huge surface area to the outside environment, a property that is of critical importance for its key functions in nutrient digestion, absorption, and waste disposal. As such, the intestine is constantly exposed to dietary and microbial-derived foreign antigens, to which im...... of the role these subsets play in the regulation of intestinal immune homeostasis and inflammation will help to define novel strategies for the treatment of intestinal pathologies and contribute to improved rational design of mucosal vaccines....... immune cells within the mucosa must suitably respond to maintain intestinal integrity, while also providing the ability to mount effective immune responses to potential pathogens. Dendritic cells (DCs) are sentinel immune cells that play a central role in the initiation and differentiation of adaptive...... immune responses. In the intestinal mucosa, DCs are located diffusely throughout the intestinal lamina propria, within gut-associated lymphoid tissues, including Peyer's patches and smaller lymphoid aggregates, as well as in intestinal-draining lymph nodes, including mesenteric lymph nodes...

  8. Ammonia treatment of wheat straw. 2. Efficiency of microbial protein synthesis, rumen microbial protein pool size and turnover, and small intestinal protein digestion in sheep.

    NARCIS (Netherlands)

    Oosting, S.J.; Viets, T.C.; Lammers-Wienhoven, S.C.W.; Bruchem, van J.

    1993-01-01

    Ammonia-treated wheat straw (AWS) was compared with untreated wheat straw (UWS) and untreated wheat straw supplemented with urea (SWS) in an experiment with 6 wether sheep. Microbial protein synthesis increased after ammonia treatment due to the higher intake of rumen degradable organic matter (OM).

  9. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens.

    Science.gov (United States)

    Gadde, Ujvala Deepthi; Oh, Sungtaek; Lee, Youngsub; Davis, Ellen; Zimmerman, Noah; Rehberger, Tom; Lillehoj, Hyun Soon

    2017-10-01

    This study investigated the effects of Bacillus subtilis-based probiotics on the performance, modulation of host inflammatory responses and intestinal barrier gene expression of broilers subjected to LPS challenge. Chickens were randomly allocated to one of the 3 dietary treatment groups - control, antibiotic, or probiotic. At 14days, half of the chickens in each treatment were injected with LPS (1mg/kg body weight), and the other half injected with sterile PBS. Chickens fed probiotics weighed significantly more than controls at 15days of age, irrespective of immune challenge. LPS challenge significantly reduced weight gain at 24h post-injection, and the probiotics did not alleviate the LPS-induced reduction of weight gain. Serum α-1-AGP levels were significantly higher in LPS-injected chickens, and probiotic supplementation significantly reduced their levels. The percentages of CD4+ lymphocytes were significantly increased in probiotic groups in the absence of immunological challenge but were reduced during LPS challenge compared to controls. CD8+ lymphocytes were significantly reduced in probiotic-fed birds. The LPS-induced increase in the expression of cytokines IL8 and TNFSF15 was reduced by probiotic supplementation, and IL17F, iNOS expression was found to be significantly elevated in probiotic-fed birds subjected to LPS challenge. The reduced gene expression of tight junction proteins (JAM2, occludin and ZO1) and MUC2 induced by LPS challenge was reversed by probiotic supplementation. The results indicate that B. subtilis-based probiotics differentially regulate intestinal immune and tight junction protein mRNA expression during states of LPS-mediated immunological challenge. Published by Elsevier Ltd.

  10. Early Changes in Microbial Colonization Selectively Modulate Intestinal Enzymes, but Not Inducible Heat Shock Proteins in Young Adult Swine

    NARCIS (Netherlands)

    Arnal, M.E.; Zhang, J.; Messori, S.; Bosi, P.; Smidt, H.; Lallès, J.P.

    2014-01-01

    Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation.

  11. Molecular signatures for the dynamic process of establishing intestinal host-microbial homeostasis: potential for disease diagnostics?

    NARCIS (Netherlands)

    Aidy, El S.F.; Kleerebezem, M.

    2013-01-01

    Purpose of review: The dynamic interplay of the intestinal microbiota and host has been the focus of many studies because of its impact on the health status in human life. Recent reports on the time-resolved immune and metabolic interactions between the host and microbiota, as well as the molecular

  12. Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora.

    Science.gov (United States)

    Sidira, Marianthi; Galanis, Alex; Ypsilantis, Petros; Karapetsas, Athanasios; Progaki, Zoi; Simopoulos, Constantinos; Kourkoutas, Yiannis

    2010-01-01

    The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota. Copyright © 2010 S. Karger AG, Basel.

  13. Maintenance of intestinal Th17 cells and reduced microbial translocation in SIV-infected rhesus macaques treated with interleukin (IL-21.

    Directory of Open Access Journals (Sweden)

    Suresh Pallikkuth

    Full Text Available In pathogenic HIV and SIV infections of humans and rhesus macaques (RMs, preferential depletion of CD4⁺ Th17 cells correlates with mucosal immune dysfunction and disease progression. Interleukin (IL-21 promotes differentiation of Th17 cells, long-term maintenance of functional CD8⁺ T cells, and differentiation of memory B cells and antibody-secreting plasma cells. We hypothesized that administration of IL-21 will improve mucosal function in the context of pathogenic HIV/SIV infections. To test this hypothesis, we infected 12 RMs with SIV(mac239 and at day 14 post-infection treated six of them with rhesus rIL-21-IgFc. IL-21-treatment was safe and did not increase plasma viral load or systemic immune activation. Compared to untreated animals, IL-21-treated RMs showed (i higher expression of perforin and granzyme B in total and SIV-specific CD8⁺ T cells and (ii higher levels of intestinal Th17 cells. Remarkably, increased levels of Th17 cells were associated with reduced levels of intestinal T cell proliferation, microbial translocation and systemic activation/inflammation in the chronic infection. In conclusion, IL-21-treatment in SIV-infected RMs improved mucosal immune function through enhanced preservation of Th17 cells. Further preclinical studies of IL-21 may be warranted to test its potential use during chronic infection in conjunction with antiretroviral therapy.

  14. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome.

    Science.gov (United States)

    González-Castro, Ana M; Martínez, Cristina; Salvo-Romero, Eloísa; Fortea, Marina; Pardo-Camacho, Cristina; Pérez-Berezo, Teresa; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, María

    2017-01-01

    Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  15. Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Maathuis, A.; Heilig, G.H.J.; Venema, K.; Vos, de W.M.; Smidt, H.

    2010-01-01

    A high-density phylogenetic microarray targeting small subunit rRNA (SSU rRNA) sequences of over 1000 microbial phylotypes of the human gastrointestinal tract, the HITChip, was used to assess the impact of faecal inoculum preparation and operation conditions on an in vitro model of the human large

  16. The intestinal barrier function and its involvement in digestive disease.

    Science.gov (United States)

    Salvo Romero, Eloísa; Alonso Cotoner, Carmen; Pardo Camacho, Cristina; Casado Bedmar, Maite; Vicario, María

    2015-11-01

    The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.

  17. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Wolcott Randy D

    2009-10-01

    Full Text Available Abstract Background Recent studies have shown that the fecal microbiota is generally resilient to short-term antibiotic administration, but some bacterial taxa may remain depressed for several months. Limited information is available about the effect of antimicrobials on small intestinal microbiota, an important contributor to gastrointestinal health. The antibiotic tylosin is often successfully used for the treatment of chronic diarrhea in dogs, but its exact mode of action and its effect on the intestinal microbiota remain unknown. The aim of this study was to evaluate the effect of tylosin on canine jejunal microbiota. Tylosin was administered at 20 to 22 mg/kg q 24 hr for 14 days to five healthy dogs, each with a pre-existing jejunal fistula. Jejunal brush samples were collected through the fistula on days 0, 14, and 28 (14 days after withdrawal of tylosin. Bacterial diversity was characterized using massive parallel 16S rRNA gene pyrosequencing. Results Pyrosequencing revealed a previously unrecognized species richness in the canine small intestine. Ten bacterial phyla were identified. Microbial populations were phylogenetically more similar during tylosin treatment. However, a remarkable inter-individual response was observed for specific taxa. Fusobacteria, Bacteroidales, and Moraxella tended to decrease. The proportions of Enterococcus-like organisms, Pasteurella spp., and Dietzia spp. increased significantly during tylosin administration (p Escherichia coli-like organisms increased by day 28 (p = 0.04. These changes were not accompanied by any obvious clinical effects. On day 28, the phylogenetic composition of the microbiota was similar to day 0 in only 2 of 5 dogs. Bacterial diversity resembled the pre-treatment state in 3 of 5 dogs. Several bacterial taxa such as Spirochaetes, Streptomycetaceae, and Prevotellaceae failed to recover at day 28 (p Conclusion Tylosin may lead to prolonged effects on the composition and diversity of

  18. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis

    DEFF Research Database (Denmark)

    Bergström, Anders; Licht, Tine Rask; Wilcks, Andrea

    2012-01-01

    . In the present study, we developed and validated a high-throughput real-time quantitative PCR-based analysis platform, termed 'GUt Low-Density Array' (GULDA). The platform was designed for simultaneous analysis of the change in the abundance of 31 different microbial 16S rRNA gene targets in fecal samples....... To demonstrate the applicability of GULDA, analysis of fecal samples obtained from six healthy infants at both 9 and 18 months of age was performed and showed a significant increase over time of the relative abundance of bacteria belonging to Clostridial cluster IV (Clostridia leptum group) and Bifidobacterium...

  19. Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by probiotic Enterococcus faecium CRL 183

    Directory of Open Access Journals (Sweden)

    Elizeu A. Rossi

    2011-10-01

    Full Text Available Background: Enterococci are used in a large number of dairy products, such as starter cultures in food supplements and in foods considered functional. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently allenged in humans and animals owing to ethical concerns. A dynamic model of the human intestinal microbial ecosystem (SHIME was designed to better simulate conditions intestinal microbiota.Methods: The SHIME model was used to study the effect of Enterococuus faecium CRL 183 on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 wk using a culture medium. This stabilization period was followed by a 2-wk control period during which the microbiota were monitored. The microbiota were then subjected to a 4-wk treatment period by adding 108 CFU/mL of the Enterococcus faecium CRL 183 to vessel one (the stomach compartment.Results: The addition resulted into an overall increase of bacterial marker populations (Enterobacteriaceae, Lactobacillus spp., Bifidobacterium spp. and Clostridium spp., with a significant increase of the Lactobacillus sp. and Bifidobacterium sp populations. The short-chain fatty acid (SCFA concentration increased during the supplementation period; this was due mainly to a significant increase in the levels of acetic, butyric and propionic acids. Ammonium concentrations increased during the supplementation period.Conclusions: Results showed that the major effect of E. faecium CRL 183 was found in the ascendant and transverse colonFunctional Foods in Health and Disease 2011; 10:389-402

  20. Vaccination of calves with EspA, a key colonisation factor of Escherichia coli O157:H7, induces antigen-specific humoral responses but does not confer protection against intestinal colonisation.

    Science.gov (United States)

    Dziva, Francis; Vlisidou, Isabella; Crepin, Valérie F; Wallis, Timothy S; Frankel, Gad; Stevens, Mark P

    2007-07-20

    Enterohaemorrhagic Escherichia coli (EHEC) infections in humans are frequently associated with direct or indirect contact with ruminant faeces and may result in haemorrhagic colitis and severe renal and neurological sequelae. Broadly cross-protective vaccines for control of EHEC do not yet exist and the molecular mechanisms that influence bacterial persistence in the intestines of ruminants are incompletely understood. We sought to determine the role in colonisation and protective efficacy of EspA, which forms a filamentous extension of the locus of enterocyte effacement-encoded type III secretion system that injects EHEC proteins into enterocytes. A non-polar deletion of espA severely impaired the ability of E. coli O157:H7 to colonise the intestines of calves. Vaccination of calves with highly purified recombinant EspA induced high-titre antigen-specific IgG1 (also reactive to native EspA) and salivary IgA responses, however these responses did not protect calves against intestinal colonisation by E. coli O157:H7 upon experimental infection.

  1. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet.

    Directory of Open Access Journals (Sweden)

    Sonja N Heinritz

    Full Text Available The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host's health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P0.05. Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05, while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available via ProteomeXchange with identifier PXD003447.

  2. Effect of a multispecies probiotic supplement on quantity of irritable bowel syndrome-related intestinal microbial phylotypes

    Directory of Open Access Journals (Sweden)

    Lyra Anna

    2010-09-01

    Full Text Available Abstract Background Probiotics can alleviate the symptoms of irritable bowel syndrome (IBS, possibly by stabilizing the intestinal microbiota. Our aim was to determine whether IBS-associated bacterial alterations were reduced during multispecies probiotic intervention consisting of Lactobacillus rhamnosus GG, L. rhamnosus Lc705, Propionibacterium freudenreichii ssp. shermanii JS and Bifidobacterium breve Bb99. The intervention has previously been shown to successfully alleviate gastrointestinal symptoms of IBS. Methods The faecal microbiotas of 42 IBS subjects participating in a placebo-controlled double-blind multispecies probiotic intervention were analysed using quantitative real-time polymerase chain reaction (qPCR. Eight bacterial targets within the gastrointestinal microbiota with a putative IBS association were measured. Results A phylotype with 94% similarity to Ruminococcus torques remained abundant in the placebo group, but was decreased in the probiotic group during the intervention (P = 0.02 at 6 months. In addition, the clostridial phylotype, Clostridium thermosuccinogenes 85%, was stably elevated during the intervention (P = 0.00 and P = 0.02 at 3 and 6 months, respectively. The bacterial alterations detected were in accordance with previously discovered alleviation of symptoms. Conclusions The probiotic supplement was thus shown to exert specific alterations in the IBS-associated microbiota towards the bacterial 16S rDNA phylotype quantities described previously for subjects free of IBS. These changes may have value as non-invasive biomarkers in probiotic intervention studies.

  3. Interleukin-19: a constituent of the regulome that controls antigen presenting cells in the lungs and airway responses to microbial products.

    Directory of Open Access Journals (Sweden)

    Carol Hoffman

    Full Text Available Interleukin (IL-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+ alveolar macrophages and lung dendritic cells.IL-19-deficient (IL-19-/- mice were studied at baseline (naïve and following intranasal challenge with microbial products, or recombinant cytokines. Naïve IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2 expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of naïve IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13.Because MHCII is the molecular platform that displays peptides to T lymphocytes and Notch2 determines cell fate decisions, our studies suggest that

  4. Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain

    Directory of Open Access Journals (Sweden)

    Fabiola Gutierrez-Orozco

    2015-01-01

    Full Text Available Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG, the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution.

  5. Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain

    Science.gov (United States)

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M.; Galley, Jeffrey D.; Bailey, Michael T.; Clinton, Steven K.; Lesinski, Gregory B.; Failla, Mark L.

    2015-01-01

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution. PMID:25621505

  6. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    Science.gov (United States)

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (Psubtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (Psubtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (PBacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  7. Primary follicular lymphoma of the small intestine: alpha4beta7 expression and immunoglobulin configuration suggest an origin from local antigen-experienced B cells

    NARCIS (Netherlands)

    Bende, Richard J.; Smit, Laura A.; Bossenbroek, Janneke G.; Aarts, Wilhelmina M.; Spaargaren, Marcel; de Leval, Laurence; Boeckxstaens, Guy E. E.; Pals, Steven T.; van Noesel, Carel J. M.

    2003-01-01

    Primary follicular lymphoma of the gastrointestinal tract (GI-FL) is a rare so far poorly studied entity. We analyzed four FL cases located in the small intestine and duodenum to gain insight in their pathogenesis and to find an explanation for their low tendency to disseminate outside the GI tract.

  8. Effect of using different levels of Dill seeds on performance, some blood biochemical and intestinal microbial population in Ross 308 broiler chicks

    Directory of Open Access Journals (Sweden)

    Yaser Rahimian

    2017-07-01

    Full Text Available Background & Aim: Dill “Anethum graveolens” is an annual medical plantin the celery family “Apiaceae”. It is the sole species of the genus “Anethum”.The health advantages of dill seed include its ability to increasedigestive health, as well as providingrelief from insomnia, hiccups, diarrhea, dysentery, menstrual disorders, respiratory disorders, and cancer. This experiment aimed to determine the effects of using different levels of Dill seeds on performance, some blood biochemical parameters and intestinal microbial population in Ross 308 broiler chicks. Experimental: 300 one-day-old male broiler chickswere divided into the four treatments with six replicates and 15 birds each as randomized design. The treatments contained basal diet with no Dill seeds kept as control, and200,400 and 600 gof Dill seedsper each ton of diets respectively. The live bodyweightsgain, feed intake and feed conversion ratio of birdswere calculated weekly. At the end of the experimentfour male birdsform each replicates were slaughtered and dressing percentage were calculated. In addition, some carcass traits and chick’s visceral partwere weighed separately as percentage of carcass and some organs weight. Results: Data indicated that using Dill seeds increased feed intake (FI in treatments compared to control. Also, body weight (BW (g/d and Pre-slaughter weight (g were higher in groups that were fed by dill seeds compared to the control. Additionally, there were significant differences (p<0.05 for feed conversation ratio (FCR among treatments. Recommended applications/industries: In conclusion, increasing levels of Dill seeds improved performance and some blood biochemical parameters of broilers chicks.

  9. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation.

    Science.gov (United States)

    Byrd, Wyatt; Boedeker, Edgar C

    2013-03-15

    Although enterotoxigenic Escherichia coli (ETEC) infections are important causes of infantile and traveler's diarrhea there is no licensed vaccine available for those at-risk. Our goal is to develop a safe, live attenuated ETEC vaccine. We used an attenuated E. coli strain (O157:H7, Δ-intimin, Stx1-neg, Stx2-neg) as a vector (ZCR533) to prepare two vaccine strains, one strain expressing colonization factor antigen I (ZCR533-CFA/I) and one strain expressing CFA/I and a detoxified heat-labile enterotoxin (ZCR533-CFA/I+LThK63) to deliver ETEC antigens to mucosal sites in BALB/c mice. Following intranasal and intragastric immunization with the vaccine strains, serum IgG and IgA antibodies were measured to the CFA/I antigen, however, only serum IgG antibodies were detected to the heat-labile enterotoxin. Intranasal administration of the vaccine strains induced respiratory and intestinal antibody responses to the CFA/I and LT antigens, while intragastric administration induced only intestinal antibody responses with no respiratory antibodies detected to the CFA/I and LT antigens. Mice immunized intranasally with the vaccine strains showed enhanced clearance of wild-type (wt) ETEC bacteria from the lungs. Mice immunized intranasally and intragastrically with the vaccine strains were protected from intestinal colonization following oral challenge with ETEC wt bacteria. Mice immunized intragastrically with the ZCR533-CFA/I+LThK63 vaccine strain had less fluid accumulate in their intestine following challenge with ETEC wt bacteria or with purified LT as compared to the sham mice indicating that the immunized mice were protected from LT-induced intestinal fluid accumulation. Thus, mice intragastrically immunized with the ZCR533-CFA/I+LThK63 vaccine strain were able to effectively neutralize the activity of the LT enterotoxin. However, no difference in intestinal fluid accumulation was detected in the mice immunized intranasally with the vaccine strain as compared to the sham

  10. Quantitative immunohistochemical assessment of IgA, IgM, IgG and antigen-specific immunoglobulin secreting plasma cells in pig small intestinal lamina propria.

    Science.gov (United States)

    Bianco, C; Felice, V; Panarese, S; Marrocco, R; Ostanello, F; Brunetti, B; Muscatello, L V; Leotti, G; Vila, T; Joisel, F; Sarli, G

    2014-08-15

    Intestinal immune response plays an important defensive role for pathogens, particularly for those transmitted by the oro-faecal route or for foecal shedding modulation. This work examined three parts of intestine from twelve gilts experimentally infected with PCV2-spiked semen, six vaccinated (V group) and six unvaccinated (NV group) against PCV2, 29 and 53 days post infection (DPI). An immunohistochemical investigation for IgA-, IgG- and IgM-antibody bearing plasma cells (PCs) was run on intestinal samples coupled with a sandwich immunohistochemical method to reveal anti-PCV2 antibody-secreting PCs. Plasma cell density was compared in the two groups of animals at 29 and 53 DPI. The IgA, IgG and IgM PC density did not differ between groups but displayed an increase from the upper (villus) to the lower part of the crypts while a decreasing trend in PC density was identified from duodenum to ileum. In the NV group, no increase in anti-PCV2 PC density was demonstrable in the two sampling moment: the amounts of lamina propria PCV2-specific antibody-producing PCs remained constant, 10.55 ± 4.24 and 10.06 ± 5.01 at 29 DPI and 53 DPI, respectively. In the V group a significant increase in PCV2-specific antibody-producing PCs was observed over time. The amounts of PCV2-specific antibody-producing PCs increased from 9.37 ± 13.36 at 29 DPI to 18.76 ± 15.83 at 53 DPI. The data on IgA, IgM and IgG PC counts can be considered reference values in a population of adult pigs. The sandwich method can be proposed as a technique able to identify specific antibody-secreting PCs in formalin-fixed paraffin-embedded tissues. A practical application of the sandwich method is the demonstration of a "booster-like" response of the lamina propria in vaccinated compared to unvaccinated animals. After virus challenge, vaccination induced an increase in the number of PCs containing specific anti-PCV2 antibodies at the level of intestinal mucosa. Copyright © 2014 Elsevier B.V. All rights

  11. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology

    Directory of Open Access Journals (Sweden)

    Simona Frosali

    2015-01-01

    Full Text Available The gut is able to maintain tolerance to microbial and food antigens. The intestine minimizes the number of harmful bacteria by shaping the microbiota through a symbiotic relationship. In healthy human intestine, a constant homeostasis is maintained by the perfect regulation of microbial load and the immune response generated against it. Failure of this balance may result in various pathological conditions. Innate immune sensors, such as Toll-like receptors (TLRs, may be considered an interface among intestinal epithelial barrier, microbiota, and immune system. TLRs pathway, activated by pathogens, is involved in the pathogenesis of several infectious and inflammatory diseases. The alteration of the homeostasis between physiologic and pathogenic bacteria of intestinal flora causes a condition called dysbiosis. The breakdown of homeostasis by dysbiosis may increase susceptibility to inflammatory bowel diseases. It is evident that environment, genetics, and host immunity form a highly interactive regulatory triad that controls TLR function. Imbalanced relationships within this triad may promote aberrant TLR signaling, critically contributing to acute and chronic intestinal inflammatory processes, such as in IBD, colitis, and colorectal cancer. The study of interactions between different components of the immune systems and intestinal microbiota will open new horizons in the knowledge of gut inflammation.

  12. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  13. Diversity of human small intestinal Streptococcus and Veillonella populations

    NARCIS (Netherlands)

    Bogert, B. van den; Erkus, O.; Boekhorst, J.; Goffau, M. de; Smid, E.J.; Zoetendal, E.G.; Kleerebezem, M

    2013-01-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed

  14. Diversity of human small intestinal Streptococcus and Veillonella populations

    NARCIS (Netherlands)

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed

  15. Orally-Induced Intestinal CD4+ CD25+ FoxP3+ Treg Controlled Undesired Responses towards Oral Antigens and Effectively Dampened Food Allergic Reactions.

    Directory of Open Access Journals (Sweden)

    Paola Lorena Smaldini

    Full Text Available The induction of peripheral tolerance may constitute a disease-modifying treatment for allergic patients. We studied how oral immunotherapy (OIT with milk proteins controlled allergy in sensitized mice (cholera toxin plus milk proteins upon exposure to the allergen. Symptoms were alleviated, skin test was negativized, serum specific IgE and IgG1 were abrogated, a substantial reduction in the secretion of IL-5 and IL-13 by antigen-stimulated spleen cells was observed, while IL-13 gene expression in jejunum was down-regulated, and IL-10 and TGF-β were increased. In addition, we observed an induction of CD4+CD25+FoxP3+ cells and IL-10- and TGF-β-producing regulatory T cells in the lamina propria. Finally, transfer experiments confirmed the central role of these cells in tolerance induction. We demonstrated that the oral administration of milk proteins pre- or post-sensitization controlled the Th2-immune response through the elicitation of mucosal IL-10- and TGF-β-producing Tregs that inhibited hypersensitivity symptoms and the allergic response.

  16. Effects of Adding Clostridium sp. WJ06 on Intestinal Morphology and Microbial Diversity of Growing Pigs Fed with Natural Deoxynivalenol Contaminated Wheat

    Directory of Open Access Journals (Sweden)

    FuChang Li

    2017-11-01

    Full Text Available Deoxynivalenol (DON is commonly detected in cereals, and is a threat to human and animal health. The effects of microbiological detoxification are now being widely studied. A total of 24 pigs (over four months were randomly divided into three treatments. Treatment A was fed with a basal diet as the control group. Treatment B was fed with naturally DON-contaminated wheat as a negative control group. Treatment C was fed with a contaminated diet that also had Clostridium sp. WJ06, which was used as a detoxicant. Growth performance, relative organ weight, intestinal morphology, and the intestinal flora of bacteria and fungi were examined. The results showed that after consuming a DON-contaminated diet, the growth performance of the pigs decreased significantly (p < 0.05, the relative organ weight of the liver and kidney increased significantly (p < 0.05, and the integrity of the intestinal barrier was also impaired, though the toxic effects of the contaminated diets on growing pigs were relieved after adding Clostridium sp. WJ06. The data from MiSeq sequencing of the 16S ribosomal ribonucleic acid (rRNA gene and internal transcribed spacer 1 (ITS1 gene suggested that the abundance of intestinal flora was significantly different across the three treatments. In conclusion, the application of Clostridium sp. WJ06 can reduce the toxic effects of DON and adjust the intestinal microecosystem of growing pigs.

  17. [Interaction between humans and intestinal bacteria as a determinant for intestinal health : intestinal microbiome and inflammatory bowel diseases].

    Science.gov (United States)

    Haller, Dirk; Hörmannsperger, G

    2015-02-01

    Recent scientific results underline the importance of the intestinal microbiome, the totality of all intestinal microbes and their genes, for the health of the host organism. The intestinal microbiome can therefore be considered as a kind of "external organ". It has been shown that the intestinal microbiota is a complex and dynamic ecosystem that influences host immunity and metabolism beyond the intestine. The composition and functionality of the intestinal microbiota is of major importance for the development and maintenance of intestinal functions. Inflammatory bowel diseases (IBD) are characterized by dysregulated interactions between the host and its microbiota.The present contribution summarizes current knowledge of the composition and development of the intestinal microbiome and gives an overview of the bidirectional interaction between host and microbiota. The contribution informs about insights regarding the role of the intestinal microbiota in IBD and finally discusses the protective potential of microbial therapies in the context of IBD.

  18. Effects of Adding Clostridium sp. WJ06 on Intestinal Morphology and Microbial Diversity of Growing Pigs Fed with Natural Deoxynivalenol Contaminated Wheat.

    Science.gov (United States)

    Li, FuChang; Wang, JinQuan; Huang, LiBo; Chen, HongJu; Wang, ChunYang

    2017-11-27

    Deoxynivalenol (DON) is commonly detected in cereals, and is a threat to human and animal health. The effects of microbiological detoxification are now being widely studied. A total of 24 pigs (over four months) were randomly divided into three treatments. Treatment A was fed with a basal diet as the control group. Treatment B was fed with naturally DON-contaminated wheat as a negative control group. Treatment C was fed with a contaminated diet that also had Clostridium sp. WJ06, which was used as a detoxicant. Growth performance, relative organ weight, intestinal morphology, and the intestinal flora of bacteria and fungi were examined. The results showed that after consuming a DON-contaminated diet, the growth performance of the pigs decreased significantly ( p organ weight of the liver and kidney increased significantly ( p DON and adjust the intestinal microecosystem of growing pigs.

  19. The intestinal flora is required to support antibody responses to systemic immunization in infant and germ free mice.

    Science.gov (United States)

    Lamousé-Smith, Esi S; Tzeng, Alice; Starnbach, Michael N

    2011-01-01

    The presence of a complex and diverse intestinal flora is functionally important for regulating intestinal mucosal immune responses. However, the extent to which a balanced intestinal flora regulates systemic immune responses is still being defined. In order to specifically examine whether the acquisition of a less complex flora influences responses to immunization in the pre-weaning stages of life, we utilize a model in which infant mice acquire an intestinal flora from their mothers that has been altered by broad-spectrum antibiotics. In this model, pregnant dams are treated with a cocktail of antibiotics that alters both the density and microbial diversity of the intestinal flora. After challenge with a subcutaneous immunization, the antibiotic altered flora infant mice have lower antigen specific antibody titers compared to control age-matched mice. In a second model, we examined germ free (GF) mice to analyze how the complete lack of flora influences the ability to mount normal antibody responses following subcutaneous immunization. GF mice do not respond well to immunization and introduction of a normal flora into GF mice restores the capacity of these mice to respond. These results indicate that a gastrointestinal flora reduced in density and complexity at critical time points during development adversely impacts immune responses to systemic antigens.

  20. The intestinal flora is required to support antibody responses to systemic immunization in infant and germ free mice.

    Directory of Open Access Journals (Sweden)

    Esi S Lamousé-Smith

    Full Text Available The presence of a complex and diverse intestinal flora is functionally important for regulating intestinal mucosal immune responses. However, the extent to which a balanced intestinal flora regulates systemic immune responses is still being defined. In order to specifically examine whether the acquisition of a less complex flora influences responses to immunization in the pre-weaning stages of life, we utilize a model in which infant mice acquire an intestinal flora from their mothers that has been altered by broad-spectrum antibiotics. In this model, pregnant dams are treated with a cocktail of antibiotics that alters both the density and microbial diversity of the intestinal flora. After challenge with a subcutaneous immunization, the antibiotic altered flora infant mice have lower antigen specific antibody titers compared to control age-matched mice. In a second model, we examined germ free (GF mice to analyze how the complete lack of flora influences the ability to mount normal antibody responses following subcutaneous immunization. GF mice do not respond well to immunization and introduction of a normal flora into GF mice restores the capacity of these mice to respond. These results indicate that a gastrointestinal flora reduced in density and complexity at critical time points during development adversely impacts immune responses to systemic antigens.

  1. The inhibitory effect of carboxymethylcellulose with high viscosity on lipid absorption in broiler chickens coincides with reduced bile salt concentration and raised microbial numbers in the small intestine

    NARCIS (Netherlands)

    Smits, CHM; Veldman, A; Verkade, HJ; Beynen, AC

    1998-01-01

    Two diets, with or without a nonfermentable carboxymethylcellulose (CMC) with high viscosity, were fed to broiler chickens beginning at 2 wk of age to study whether the anti-nutritive effect of gelling fibers on Lipid digestibility maybe associated with reduced intestinal bile salt concentration.

  2. The effect of direct-fed microbial supplementation, as an alternative to antibiotics, on growth performance, intestinal immune status and epithelial barrier protein expression in broiler chickens

    Science.gov (United States)

    The objective of this study was to investigate the effects of Bacillus subtilis-based probiotic supplementation in broiler chicken diets on growth performance, feed efficiency, intestinal cytokine and tight junction (TJ) protein mRNA expression. Day-old broiler chicks (n = 140) were randomly assigne...

  3. The effects of direct-fed microbial supplementation, as alternative to antibiotics, on growth performance, intestinal immune status and epithelial barrier protein expression in broiler chickens

    Science.gov (United States)

    This study was conducted to investigate the effects of Bacillus subtilis supplementation in broiler chicken diets on growth performance, feed efficiency, intestinal cytokine and tight junction (TJ) protein mRNA expression. Day-old broiler chicks (n = 140) were assigned five dietary treatments: basal...

  4. Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants

    Directory of Open Access Journals (Sweden)

    Tania Fernández-Navarro

    2017-05-01

    Full Text Available Obesity has been related to an increased risk of multiple diseases in which oxidative stress and inflammation play a role. Gut microbiota has emerged as a mediator in this interaction, providing new mechanistic insights at the interface between fat metabolism dysregulation and obesity development. Our aim was to analyze the interrelationship among obesity, diet, oxidative stress, inflammation and the intestinal microbiota in 68 healthy adults (29.4% normal-weight. Diet was assessed through a food frequency questionnaire and converted into nutrients and dietary compounds using food composition tables. The intestinal microbiota was assessed by quantitative PCR, fecal short chain fatty acids by gas chromatography and serum biomarkers by standard protocols. Higher levels of malondialdehyde (MDA, C reactive protein (CRP, serum leptin, glucose, fat percentage and the intestinal Lactobacillus group were found in the obese people. Cluster analysis of body mass index, fat mass, glucose, LDL/HDL ratio, leptin, MDA and CRP classified the subjects into two groups. The levels of the intestinal Bacteroides-Prevotella-Porphyromonas group were lower in the cluster and linked to a higher pro-oxidant and pro-inflammatory status, whose individuals also had lower intake of fruits, dried fruits, and fish. These results could be useful for designing strategies targeted to obesity prevention.

  5. Vitamin D signaling in intestinal innate immunity and homeostasis.

    Science.gov (United States)

    Dimitrov, Vassil; White, John H

    2017-09-15

    The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects

  6. Intestinal Obstruction

    Science.gov (United States)

    ... the obstruction along the intestines. Treatment Suction via nasogastric tube Fluids given by vein Surgery for strangulation Sometimes ... nose and placed in the stomach (called a nasogastric tube) or into the intestine. Suction is applied to ...

  7. The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection.

    Directory of Open Access Journals (Sweden)

    Ruth A Forman

    Full Text Available Mouse angiogenin 4 (Ang4 has previously been described as a Paneth cell-derived antimicrobial peptide important in epithelial host defence in the small intestine. However, a source for Ang4 in the large intestine, which is devoid of Paneth cells, has not been defined.Analysis was performed on Ang4 expression in colonic tissue by qPCR and immunohistochemistry following infection with the large intestine dwelling helminth parasite Trichuris muris. This demonstrated an increase in expression of the peptide following infection of resistant BALB/c mice. Further, histological analysis of colonic tissue revealed the cellular source of this Ang4 to be goblet cells. To elucidate the mechanism of Ang4 expression immunohistochemistry and qPCR for Ang4 was performed on colonic tissue from T. muris infected mouse mutants. Experiments comparing C3H/HeN and C3H/HeJ mice, which have a natural inactivating mutation of TLR4, revealed that Ang4 expression is TLR4 independent. Subsequent experiments with IL-13 and IL-4 receptor alpha deficient mice demonstrated that goblet cell expression of Ang4 is controlled either directly or indirectly by IL-13.The cellular source of mouse Ang4 in the colon following T. muris infection is the goblet cell and expression is under the control of IL-13.

  8. Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets

    Directory of Open Access Journals (Sweden)

    Marini Juan C

    2007-07-01

    Full Text Available Abstract Background To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology. Results Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, B2M, TAP1 and TAPBP demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR and type II (IFNGR interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1, STAT2 and IFN regulatory factor 7 (IRF7 transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (NFκBIA; a.k.a I-kappa-B-alpha, IKBα and toll interacting protein (TOLLIP, both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (GATA1 is consistent with the maintenance of intestinal homeostasis. Conclusion This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to

  9. Immunity to intestinal pathogens: lessons learned from Salmonella

    Science.gov (United States)

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  10. Systemic lupus erythematosus: molecular mimicry between anti-dsDNA CDR3 idiotype, microbial and self peptides as antigens for Th cells

    Directory of Open Access Journals (Sweden)

    Kristin eAas-Hanssen

    2015-07-01

    Full Text Available Systemic lupus erythematosus (SLE is marked by a T helper (Th cell dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A hallmark of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here we describe that H chain CDR3 idiotypes from IgG+ B cells of lupus mice have sequence similarities with both microbial and other self peptides, matched sequences were increased within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses towards histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cell in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs.

  11. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  12. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease.

    Science.gov (United States)

    Lerner, Aaron; Matthias, Torsten

    2015-06-01

    The incidence of autoimmune diseases is increasing along with the expansion of industrial food processing and food additive consumption. The intestinal epithelial barrier, with its intercellular tight junction, controls the equilibrium between tolerance and immunity to non-self-antigens. As a result, particular attention is being placed on the role of tight junction dysfunction in the pathogenesis of AD. Tight junction leakage is enhanced by many luminal components, commonly used industrial food additives being some of them. Glucose, salt, emulsifiers, organic solvents, gluten, microbial transglutaminase, and nanoparticles are extensively and increasingly used by the food industry, claim the manufacturers, to improve the qualities of food. However, all of the aforementioned additives increase intestinal permeability by breaching the integrity of tight junction paracellular transfer. In fact, tight junction dysfunction is common in multiple autoimmune diseases and the central part played by the tight junction in autoimmune diseases pathogenesis is extensively described. It is hypothesized that commonly used industrial food additives abrogate human epithelial barrier function, thus, increasing intestinal permeability through the opened tight junction, resulting in entry of foreign immunogenic antigens and activation of the autoimmune cascade. Future research on food additives exposure-intestinal permeability-autoimmunity interplay will enhance our knowledge of the common mechanisms associated with autoimmune progression. Copyright © 2015. Published by Elsevier B.V.

  13. Effects of Radiation on the Microbiota and Intestinal Inflammatory Disease

    Science.gov (United States)

    2016-09-01

    evaluating the effects of these changes on intestinal susceptibility to inflammatory disease. 15. SUBJECT TERMS Radiation, microbiome , mycobiome...immune cells associated with the intestine and their interactions with the normal microbial contents of the gut. 2. KEYWORDS Radiation, microbiome ... microbiome following TBI. At the end of the experiment, we also harvested the intestines and mesenteric lymph nodes for multiparametric flow cytometry and

  14. Effects of dietary supplementation of red pepper (Schinus terebinthifolius Raddi) essential oil on performance, small intestinal morphology and microbial counts of weanling pigs.

    Science.gov (United States)

    Cairo, Pedro Leon Gomes; Gois, Franz Dias; Sbardella, Maicon; Silveira, Hebert; de Oliveira, Roberto Maciel; Allaman, Ivan Bezerra; Cantarelli, Vinicius Souza; Costa, Leandro Batista

    2018-01-01

    Many strategies, such as the antibiotic growth promoters, have been developed to improve intestinal health and performance of newly weaned piglets. Natural products such as essential oils have been scientifically recognized as growth enhancer feed additives for weanling pigs, replacing the antibiotics. Therefore, it has been hypothesized that Brazilian red pepper could replace performance-enhancing antibiotics also in weanling pig diets. However, one experiment was conducted to determine the effects of dietary Brazilian red pepper essential oil or antimicrobial growth promoter on intestinal health and growth performance of weanling pigs. No effects of treatments were observed on performance and organ weights (P > 0.05). Overall, both additives [red pepper essential oil (RPEO) or antibiotic (ANT)] increased gut Lactobacillus counts compared to negative control, as well as reduced villi density (P < 0.05). Animals fed diets containing 1.5 g kg -1 RPEO presented the lowest incidence of diarrhea (P < 0.05). Our findings suggested that essential oil from Brazilian red pepper or chlorohydroxyquinoline added in weanling pig diets affect gut microbiota and histology without affecting performance and organ weights. In addition, there was an indication that high doses of essential oil could reduce the incidence of diarrhea. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Egg production, faecal pH and microbial population, small intestine morphology, and plasma and yolk cholesterol in laying hens given liquid metabolites produced by Lactobacillus plantarum strains.

    Science.gov (United States)

    Choe, D W; Loh, T C; Foo, H L; Hair-Bejo, M; Awis, Q S

    2012-01-01

    1. Various dosages of metabolite combinations of the Lactobacillus plantarum RI11, RG14 and RG11 strains (COM456) were used to study the egg production, faecal microflora population, faecal pH, small intestine morphology, and plasma and egg yolk cholesterol in laying hens. 2. A total of 500 Lohmann Brown hens were raised from 19 weeks to 31 weeks of age. The birds were randomly divided into 5 groups and fed on various treatment diets: (i) basal diet without supplementation of metabolites (control); (ii) basal diet supplemented with 0·3% COM456 metabolites; (iii) basal diet supplemented with 0·6% COM456 metabolites; (iv) basal diet supplemented with 0·9% COM456 metabolites; and (v) basal diet supplemented with 1·2% COM456 metabolites. 3. The inclusion of 0·6% liquid metabolite combinations, produced from three L. plantarum strains, demonstrated the best effect in improving the hens' egg production, faecal lactic acid bacteria population, and small intestine villus height, and reducing faecal pH and Enterobacteriaceae population, and plasma and yolk cholesterol concentrations. 4. The metabolites from locally isolated L. plantarum are a possible alternative feed additive in poultry production.

  16. Modulation of Intestinal Microbiome Prevents Intestinal Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Alessandra Bertacco

    2017-12-01

    Full Text Available Background: Butyrate protects against ischemic injury to the small intestine by reducing inflammation and maintaining the structure of the intestinal barrier, but is expensive, short-lived, and cannot be administered easily due to its odor. Lactate, both economical and more palatable, can be converted into butyrate by the intestinal microbiome. This study aimed to assess in a rat model whether lactate perfusion can also protect against intestinal ischemia.Materials and Methods: Rat intestinal segments were loaded in an in vitro bowel perfusion device, and water absorption or secretion was assessed based on fluorescence of FITC-inulin, a fluorescent marker bound to a biologically inert sugar. Change in FITC concentration was used as a measure of ischemic injury, given the tendency of ischemic cells to retain water. Hematoxylin and eosin-stained sections at light level microscopy were examined to evaluate intestinal epithelium morphology. Comparisons between the data sets were paired Student t-tests or ANOVA with p < 0.05 performed on GraphPad.Results: Lactate administration resulted in a protective effect against intestinal ischemia of similar magnitude to that observed with butyrate. Both exhibited approximately 1.5 times the secretion exhibited by control sections (p = 0.03. Perfusion with lactate and methoxyacetate, a specific inhibitor of lactate-butyrate conversion, abolished this effect (p = 0.09. Antibiotic treatment also eliminated this effect, rendering lactate-perfused sections similar to control sections (p = 0.72. Perfusion with butyrate and methoxyacetate did not eliminate the observed increased secretion, which indicates that ischemic protection was mediated by microbial conversion of lactate to butyrate (p = 0.71.Conclusions: Lactate's protective effect against intestinal ischemia due to microbial conversion to butyrate suggests possible applications in the transplant setting for reducing ischemic injury and ameliorating intestinal

  17. Development and Function of Secondary and Tertiary Lymphoid Organs in the Small Intestine and the Colon

    Science.gov (United States)

    Buettner, Manuela; Lochner, Matthias

    2016-01-01

    The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer’s patches (PP) in the small intestine and their colonic counterparts that develop in a programed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT). In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP) to large, mature isolated lymphoid follicles (ILF). Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi) cells and the requirement for lymphotoxin beta (LTβ) receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO). While, so far, it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation. PMID

  18. Development and Function of Secondary and Tertiary Lymphoid Organs in the Small Intestine and the Colon.

    Science.gov (United States)

    Buettner, Manuela; Lochner, Matthias

    2016-01-01

    The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer's patches (PP) in the small intestine and their colonic counterparts that develop in a programed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT). In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP) to large, mature isolated lymphoid follicles (ILF). Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi) cells and the requirement for lymphotoxin beta (LTβ) receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO). While, so far, it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation.

  19. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon

    Directory of Open Access Journals (Sweden)

    Manuela Buettner

    2016-09-01

    Full Text Available The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer’s patches (PP in the small intestine and their colonic counterparts that develop in a programmed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT. In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP to large, mature isolated lymphoid follicles (ILF. Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi cells and the requirement for lymphotoxin beta (LTβ receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO. While so far it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation.

  20. In vitro investigations on microbial incorporation of nitrogen from [15N2]urea and [15N2]ammonium chloride by the human intestinal flora

    International Nuclear Information System (INIS)

    Stolpe, H.J.; Heine, W.; Bohnenstengel, C.M.; Gruette, F.K.; Wutzke, K.

    1987-01-01

    6 typical bacteria species of the human intestinal flora (E. coli, Klebsiella pneumoniae, Proteus vulgaris, Streptococcus faecalis, Bacteroides fragilis, Bifidobacterium sp.) were incubated in a liquid medium for 48 h with [ 15 N 2 ]urea and [ 15 N]ammonium chloride. The rates of 15 N incorporation were calculated. They depend reproducibly on the species examined, on the kind of the offered NPN substance and on the amount of NPN substance in the medium. With [ 15 N 2 ]urea the minimal rate of incorporation was 3.8% (E. coli) and the maximal one 95.6% (Bifidobacterium sp.). With [ 15 N]ammonium chloride the corresponding figures were 31.0 (Proteus vulg.) and 98.0% (Bifidobacterium sp.). The findings are discussed with regard to a possible enteral detoxification in uremic patients by bacterial utilization and elimination of urea and ammonia. (author)

  1. Validation of GUt Low Density Array (GULDA), a novel qPCR approach to the study of the intestinal microbial ecosystem

    DEFF Research Database (Denmark)

    Bergström, Anders; Licht, Tine Rask; Bahl, Martin Iain

    Causal relationships between the vast numbers of bacterial species present in the human intestines contain a lot of potential information on the regulation of the gut in the healthy as well as in diseased states. Based on the hypothesis that the human gut microbiota constitutes a dynamic ecosyste...... one standard qPCR program is used for ~40 primer sets, validation is important. We present here strategies involved in verification of GULDA as a valid tool for analysis of the human gut microbiota......., interesting correlations between the presences of the given species should exist at any time. In order to analyze this, we have developed GULDA, a cheap, flexible, reliable and high throughput qPCR-based gut low-density array (GULDA), which simultaneously gives the quantities of approximately 40 different...

  2. Small intestine and microbiota.

    Science.gov (United States)

    Cotter, Paul D

    2011-03-01

    To highlight the recent studies which have enhanced our appreciation of the composition of the microbiota in the human small intestine and its relevance to the health of the host. In the past number of years, the composition of the microorganisms present in our small intestines has been the subject of greater scrutiny than ever before. These investigations have been possible as a consequence of the development and utilization of new molecular tools which have revolutionized the field of microbial ecology and have focused predominantly on the small intestinal microbiota associated with pediatric celiac disease, inflammatory bowel disease, irritable bowel syndrome and pouchitis. The impact of invasive procedures, such as small bowel transplant, ileostomy and ileal pouch anal anastomosis, on the ileal microbiota has also been investigated. The ever greater appreciation of the link between the small intestinal microbiota and the health status of the host has the potential to lead to the development of new strategies to alter this microbiota in a targeted way to prevent or treat specific disorders.

  3. Ischemia-reperfusion and neonatal intestinal injury.

    Science.gov (United States)

    Young, Christopher M; Kingma, Sandra D K; Neu, Josef

    2011-02-01

    We review research relating ischemia/reperfusion to injury in the neonatal intestine. Epidemiologic evidence suggests that the most common form of necrotizing enterocolitis is not triggered by a primary hypoxic-ischemic event. Its late occurrence, lack of preceding ischemic events, and evidence for microbial and inflammatory processes preclude a major role for primary hypoxic ischemia as the sentinel pathogenic event. However, term infants, especially those with congenital heart disease who have development of intestinal necrosis, and those preterm infants with spontaneous intestinal perforations, are more likely to have intestinal ischemia as a primary component of their disease pathogenesis. Copyright © 2011 Mosby, Inc. All rights reserved.

  4. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  5. Short communication: Modulation of the small intestinal microbial community composition over short-term or long-term administration with Lactobacillus plantarum ZDY2013.

    Science.gov (United States)

    Xie, Qiong; Pan, Mingfang; Huang, Renhui; Tian, Ximei; Tao, Xueying; Shah, Nagendra P; Wei, Hua; Wan, Cuixiang

    2016-09-01

    The small intestinal (SI) microbiota has an essential role in the maintenance of human health. However, data about the indigenous bacteria in SI as affected by probiotics are limited. In our study, the short-term and long-term effects of a probiotic candidate, Lactobacillus plantarum ZDY2013, on the SI microbiota of C57BL/6J mice were investigated by the Illumina HiSeq (Novogene Bioinformatics Technology Co., Ltd., Tianjin, China) platform targeting the V4 region of the 16S rDNA. A total of 858,011 sequences in 15 samples were read. The α diversity analysis revealed that oral administration with L. plantarum ZDY2013 for 3 wk led to a significant increase in the richness and diversity of the SI bacterial community. Principal coordinate analysis and unweighted pair-group method with arithmetic means analysis showed a clear alteration in the SI microbiota composition after 3 wk of L. plantarum ZDY2013 treatment, although these changes were not found 6 wk after ceasing L. plantarum ZDY2013 administration. Species annotation showed that the dominant phyla in SI microbiota were Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia. Interestingly, operational taxonomic unit cluster analysis showed that administration with L. plantarum ZDY2013 for 3 wk significantly increased the abundance of Proteobacteria, but decreased that of Bacteroidetes. Linear discriminant analysis coupled with effect size identified 18 bacterial taxa (e.g., Ruminococcus spp. and Clostridium spp.) that overgrew in the SI microbiota of the mice administered with L. plantarum ZDY2013 for 3 wk, and most of them belonged to the phyla Bacteroidetes and Proteobacteria. However, only one bacterial taxon (e.g., Nocardioides spp.) was over-represented in the SI microbiota of mice 6 wk after L. plantarum ZDY2013 administration. Overall, this study shows that oral administration with probiotic results in an important but transient alteration in the microbiota of SI. Copyright © 2016 American Dairy

  6. The intestinal microbiome of fish under starvation.

    Science.gov (United States)

    Xia, Jun Hong; Lin, Grace; Fu, Gui Hong; Wan, Zi Yi; Lee, May; Wang, Le; Liu, Xiao Jun; Yue, Gen Hua

    2014-04-05

    Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host's intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To address this shortcoming, we determined the microbial gene catalogue, and investigated changes in the microbial composition and host-microbe interactions in the intestine of Asian seabass in response to starvation. We found 33 phyla, 66 classes, 130 orders and 278 families in the intestinal microbiome. Proteobacteria (48.8%), Firmicutes (15.3%) and Bacteroidetes (8.2%) were the three most abundant bacteria taxa. Comparative analyses of the microbiome revealed shifts in bacteria communities, with dramatic enrichment of Bacteroidetes, but significant depletion of Betaproteobacteria in starved intestines. In addition, significant differences in clusters of orthologous groups (COG) functional categories and orthologous groups were observed. Genes related to antibiotic activity in the microbiome were significantly enriched in response to starvation, and host genes related to the immune response were generally up-regulated. This study provides the first insights into the fish intestinal microbiome and its changes under starvation. Further detailed study on interactions between intestinal microbiomes and hosts under dynamic conditions will shed new light on how the hosts and microbes respond to the changing environment.

  7. Alpha-ketoglutarate (AKG) lowers body weight and affects intestinal innate immunity through influencing intestinal microbiota.

    Science.gov (United States)

    Chen, Shuai; Bin, Peng; Ren, Wenkai; Gao, Wei; Liu, Gang; Yin, Jie; Duan, Jielin; Li, Yinghui; Yao, Kang; Huang, Ruilin; Tan, Bie; Yin, Yulong

    2017-06-13

    Alpha-ketoglutarate (AKG), a precursor of glutamate and a critical intermediate in the tricarboxylic acid cycle, shows beneficial effects on intestinal function. However, the influence of AKG on the intestinal innate immune system and intestinal microbiota is unknown. This study explores the effect of oral AKG administration in drinking water (10 g/L) on intestinal innate immunity and intestinal microbiota in a mouse model. Mouse water intake, feed intake and body weight were recorded throughout the entire experiment. The ileum was collected for detecting the expression of intestinal proinflammatory cytokines and innate immune factors by Real-time Polymerase Chain Reaction. Additionally, the ileal luminal contents and feces were collected for 16S rDNA sequencing to analyze the microbial composition. The intestinal microbiota in mice was disrupted with an antibiotic cocktail. The results revealed that AKG supplementation lowered body weight, promoted ileal expression of mammalian defensins of the alpha subfamily (such as cryptdins-1, cryptdins-4, and cryptdins-5) while influencing the intestinal microbial composition (i.e., lowering the Firmicutes to Bacteroidetes ratio). In the antibiotic-treated mouse model, AKG supplementation failed to affect mouse body weight and inhibited the expression of cryptdins-1 and cryptdins-5 in the ileum. We concluded that AKG might affect body weight and intestinal innate immunity through influencing intestinal microbiota.

  8. Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers.

    Science.gov (United States)

    Fernandez-Alarcon, M F; Trottier, N; Steibel, J P; Lunedo, R; Campos, D M B; Santana, A M; Pizauro, J M; Furlan, R L; Furlan, L R

    2017-08-01

    The objectives of this study were to describe alterations that age and dietary inclusion of direct-fed microbial (DFM) Bacillus subtilis (BS) and a specific essential oil (EO) blend (carvacrol, cinnamaldehyde, cineol, and pepper extract) causes in the activity of digestive enzymes (maltase: MALT; aminopeptidase-N: APN; intestinal alkaline phosphate: IAP) and expression patterns of genes related to transport (oligopeptide transporter gene: SLC15A1; Na+-dependent glucose and galactose transporter gene: SLC5A1; Na+-independent glucose, galactose, and fructose transporter gene: SLC2A2; ATPase, Na+/K+ transporting gene: ATP1A1) and digestion (aminopeptidase-N gene: ANPEP; maltase-glucoamylase gene: MGAM; Sucrase-isomaltase gene: SI) of carbohydrates and proteins in the small intestine of broilers. Also, the objective was to analyze if growth performance of broilers is affected by supplementation (BS and EO blend). Day-old male broiler chicks (n = 1,320) were assigned to 5 treatments. Diets included a basal diet (BD) as a negative control (CON); experimental diets were BD + BS; BD + BS + EO; BD + EO; BD + antibiotic growth promoter (AGP) avilamycin was the positive control. Performance was evaluated between 1 to 42 d. Transcript abundance of transport-related genes and digestion-related genes were assayed by RT-qPCR and determined at d 7, 21, and 42. MALT-, APN-, and IAP-specific activities were determined at d 7, 21, and 42. Broilers fed BS had greater SLC15A1 mRNA abundance compared to CON, while EO and AGP were related to higher activities of IAP and APN. Analysis over time revealed higher abundance of MGAM, SLC2A2, SLC15A1, SLC5A1 and SI mRNA at d 42 when compared to d 7. Activity of IAP decreased after d 7 and activity of MALT increased with age. The current study suggests that age had effect over carbohydrate and protein transport and carbohydrate digestion. The supplementation of BS DFM hade evident effect over protein transport and that the use of EO in the diet

  9. Intestinal Ischemia

    Science.gov (United States)

    ... weight loss Intestinal ischemia Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  10. Regulation of T-cell Responses in the Inflamed Intestine

    NARCIS (Netherlands)

    M.A. Van Leeuwen (Marieke)

    2015-01-01

    markdownabstract__Abstract__ The intestinal immune system protects the mucosal surfaces from pathogenic microorganisms. On the other hand it maintains tolerance towards dietary antigens and non-pathogenic microorganisms. The immune system continuously tailors these inflammatory and tolerogenic

  11. Intestinal Coccidia

    OpenAIRE

    MJ Ggaravi

    2007-01-01

    Intestinal Coccidia are a subclass of Apicomplexa phylum. Eucoccidida are facultative heteroxenous, but some of them are monoxenous. They have sexual and asexual life cycle. Some coccidia are human pathogens, for example: Cryptosporidium: Cryptosporidiums has many species that are mammalian intestinal parasites.C. Parvum specie is a human pathogenic protozoa. Cryptosporidum has circle or ellipse shapes and nearly 4-6 mm. It is transmitted in warm seasons. Oocyst is obtained insexual life cycl...

  12. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity.

    Science.gov (United States)

    Tang, Lieqi; Cheng, Catherine Y; Sun, Xiangrong; Pedicone, Alexandra J; Mohamadzadeh, Mansour; Cheng, Sam X

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be

  13. Small Intestine Disorders

    Science.gov (United States)

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  14. Immunogenetic control of the intestinal microbiota.

    Science.gov (United States)

    Marietta, Eric; Rishi, Abdul; Taneja, Veena

    2015-07-01

    All vertebrates contain a diverse collection of commensal, symbiotic and pathogenic microorganisms, such as bacteria, viruses and fungi, on their various body surfaces, and the ecological community of these microorganisms is referred to as the microbiota. Mucosal sites, such as the intestine, harbour the majority of microorganisms, and the human intestine contains the largest community of commensal and symbiotic bacteria. This intestinal community of bacteria is diverse, and there is a significant variability among individuals with respect to the composition of the intestinal microbiome. Both genetic and environmental factors can influence the diversity and composition of the intestinal bacteria with the predominant environmental factor being diet. So far, studies have shown that diet-dependent differences in the composition of intestinal bacteria can be classified into three groups, called enterotypes. Other environmental factors that can influence the composition include antibiotics, probiotics, smoking and drugs. Studies of monozygotic and dizygotic twins have proven that genetics plays a role. Recently, MHC II genes have been associated with specific microbial compositions in human infants and transgenic mice that express different HLA alleles. There is a growing list of genes/molecules that are involved with the sensing and monitoring of the intestinal lumen by the intestinal immune system that, when genetically altered, will significantly alter the composition of the intestinal microflora. The focus of this review will be on the genetic factors that influence the composition of the intestinal microflora. © 2015 John Wiley & Sons Ltd.

  15. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  16. Regional specialization within the intestinal immune system

    DEFF Research Database (Denmark)

    Mowat, Allan M.; Agace, William Winston

    2014-01-01

    The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly...... implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout...... the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease...

  17. Can probiotics modulate human disease by impacting intestinal barrier function?

    NARCIS (Netherlands)

    Bron, Peter A.; Kleerebezem, Michiel; Brummer, Robert Jan; Cani, Patrice D.; Mercenier, Annick; MacDonald, Thomas T.; Garcia-Ródenas, Clara L.; Wells, Jerry M.

    2017-01-01

    Intestinal barrier integrity is a prerequisite for homeostasis of mucosal function, which is balanced to maximise absorptive capacity, while maintaining efficient defensive reactions against chemical and microbial challenges. Evidence is mounting that disruption of epithelial barrier integrity is

  18. Regulation of Intestinal Homeostasis by Innate Immune Cells

    OpenAIRE

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-01-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple...

  19. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    Science.gov (United States)

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. File list: ALL.Dig.50.AllAg.Intestinal_adenoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.50.AllAg.Intestinal_adenoma mm9 All antigens Digestive tract Intestinal ade...noma SRX648718,SRX648717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.50.AllAg.Intestinal_adenoma.bed ...

  1. File list: ALL.Dig.10.AllAg.Intestines [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.10.AllAg.Intestines mm9 All antigens Digestive tract Intestines ERX040305,S...40301,SRX1431657,ERX040282,SRX185790,ERX040313,ERX040304,ERX421330,ERX040284 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.10.AllAg.Intestines.bed ...

  2. File list: ALL.Dig.20.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.20.AllAg.Intestinal_crypt mm9 All antigens Digestive tract Intestinal crypt... SRX871676,SRX871672,SRX871675,SRX871671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.20.AllAg.Intestinal_crypt.bed ...

  3. File list: ALL.Dig.20.AllAg.Intestines [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.20.AllAg.Intestines mm9 All antigens Digestive tract Intestines SRX191044,S...185803,ERX040309,ERX040302,ERX040313,ERX040297,ERX040283,ERX040300,ERX040284 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.20.AllAg.Intestines.bed ...

  4. File list: ALL.Dig.05.AllAg.Intestinal_adenoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.05.AllAg.Intestinal_adenoma mm9 All antigens Digestive tract Intestinal ade...noma SRX648718,SRX648717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.05.AllAg.Intestinal_adenoma.bed ...

  5. File list: ALL.Dig.10.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.10.AllAg.Intestine,_Small mm9 All antigens Digestive tract Intestine, Small...4,SRX885798,SRX885799 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.10.AllAg.Intestine,_Small.bed ...

  6. File list: ALL.Dig.10.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.10.AllAg.Intestinal_crypt mm9 All antigens Digestive tract Intestinal crypt... SRX871676,SRX871671,SRX871675,SRX871672 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.10.AllAg.Intestinal_crypt.bed ...

  7. File list: ALL.Dig.05.AllAg.Intestines [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.05.AllAg.Intestines mm9 All antigens Digestive tract Intestines ERX040305,E...40283,ERX040288,ERX040301,ERX040313,SRX1431657,SRX341758,ERX040293,ERX040284 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.05.AllAg.Intestines.bed ...

  8. File list: ALL.Dig.50.AllAg.Intestines [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.50.AllAg.Intestines mm9 All antigens Digestive tract Intestines SRX191044,S...040298,SRX341757,ERX040304,SRX185790,ERX040284,ERX040281,SRX112955,SRX185803 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.50.AllAg.Intestines.bed ...

  9. File list: ALL.Dig.05.AllAg.Intestinal_villus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.05.AllAg.Intestinal_villus mm9 All antigens Digestive tract Intestinal vill...SRX028556,SRX365695,SRX193725,SRX193724 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.05.AllAg.Intestinal_villus.bed ...

  10. File list: ALL.Dig.20.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.20.AllAg.Intestine,_Small mm9 All antigens Digestive tract Intestine, Small...1,SRX885794,SRX885795 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.20.AllAg.Intestine,_Small.bed ...

  11. Dietary inhibitors of histone deacetylases in intestinal immunity anc homeostasis

    NARCIS (Netherlands)

    Schilderink, R.; Verseijden, C.; de Jonge, W. J.

    2013-01-01

    Intestinal epithelial cells (IECs) are integral players in homeostasis of immunity and host defense in the gut and are under influence of the intestinal microbiome. Microbial metabolites and dietary components, including short chain fatty acids (acetate, propionate, and butyrate, SCFAs), have an

  12. Bacterial Colonization and the Development of Intestinal Defences

    Directory of Open Access Journals (Sweden)

    Hai Ning Shi

    2004-01-01

    Full Text Available In humans, intestinal defences develop during gestation and, at full term, have the capacity to respond in an appropriate manner to infectious agents and foreign antigens. Before an active protective response can occur, however, the gut must first be exposed to colonizing bacteria. Colonization with diverse intestinal microbes is necessary for the development of important gut defenses such as the synthesis and secretion of polymeric immunoglobulin A and the generation of a balanced T helper (Th cell response. Insights into normal immune physiological development of the gut have been made by studying the germ-free animal and intestinal defenses. These studies have provided insights into the physiology of immune responses. Two important immunological functions are the secretion of polymeric immunoglobulin A to protect the intestinal surface against harmful stimuli and inhibition of the systemic response to commensal bacteria and food proteins (eg, oral tolerance to prevent chronic inflammation. Neither function exists in the germ-free state, but rapidly develops after conventionalization (colonization of the germ-free animal. In the present review, the importance of bacterial colonization on the appearance of normal mucosal immune function and to the clinical consequences of inadequate colonization to the development of disease will be discussed. For example, excessive Th2 activity can lead to atopy, whereas Th1 predominance is found in conditions such as Helicobacter pylori gastritis and Crohn's disease. With the eradication of infectious diseases in developed countries in the past three decades, the incidence of atopic and autoimmune diseases has increased. This epidemiological observation has been explained by the 'hygiene hypothesis', which suggests that a reduction in microbial burden by public health measures has contributed to an immunological imbalance in the intestine. A family of pattern recognition receptors (Toll-like receptors on gut

  13. Cytokines and intestinal inflammation.

    Science.gov (United States)

    Bamias, Giorgos; Cominelli, Fabio

    2016-11-01

    Cytokines of the intestinal microenvironment largely dictate immunological responses after mucosal insults and the dominance of homeostatic or proinflammatory pathways. This review presents important recent studies on the role of specific cytokines in the pathogenesis of intestinal inflammation. The particular mucosal effects of cytokines depend on their inherent properties but also the cellular origin, type of stimulatory antigens, intermolecular interactions, and the particular immunological milieu. Novel cytokines of the interleukin-1 (IL-1) family, including IL-33 and IL-36, have dominant roles in mucosal immunity, whereas more established ones such as IL-18 are constantly enriched with unique properties. Th17 cells are important mucosal constituents, although their profound plasticity, makes the specific set of cytokines they secrete more important than their mere numbers. Finally, various cytokines, such as tumor necrosis factor-α, IL-6, tumor necrosis factor-like cytokine 1A, and death receptor, 3 demonstrate dichotomous roles with mucosa-protective function in acute injury but proinflammatory effects during chronic inflammation. The role of cytokines in mucosal health and disease is increasingly revealed. Such information not only will advance our understanding of the pathogenesis of gut inflammation, but also set the background for development of reliable diagnostic and prognostic biomarkers and cytokine-specific therapies.

  14. Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease.

    Science.gov (United States)

    Gianfrani, Carmen; Siciliano, Rosa A; Facchiano, Angelo M; Camarca, Alessandra; Mazzeo, Maria F; Costantini, Susan; Salvati, Virginia M; Maurano, Francesco; Mazzarella, Giuseppe; Iaquinto, Gaetano; Bergamo, Paolo; Rossi, Mauro

    2007-09-01

    Celiac disease is characterized by activation of HLA-DQ2/DQ8-restricted intestinal gluten-specific CD4(+) T cells. In particular, gluten becomes a better T-cell antigen following deamidation catalyzed by tissue transglutaminase. To date, the only available therapy is represented by adherence to a gluten-free diet. Here, we examined a new enzyme strategy to preventively abolish gluten activity. Enzyme modifications of the immunodominant alpha-gliadin peptide p56-68 were analyzed by mass spectrometry, and peptide binding to HLA-DQ2 was simulated by modeling studies. Wheat flour was treated with microbial transglutaminase and lysine methyl ester; gliadin was subsequently extracted, digested, and deamidated. Gliadin-specific intestinal T-cell lines (iTCLs) were generated from biopsy specimens from 12 adult patients with celiac disease and challenged in vitro with different antigen preparations. Tissue transglutaminase-mediated transamidation with lysine or lysine methyl ester of p56-68 or gliadin in alkaline conditions inhibited the interferon gamma expression in iTCLs; also, binding to DQ2 was reduced but not abolished, as suggested by in silico analysis. Lysine methyl ester was particularly effective in abrogating the activity of gliadin. Notably, a block in the response was observed when iTCLs were challenged with gliadin extracted from flour pretreated with microbial transglutaminase and lysine methyl ester. Transamidation of wheat flour with a food-grade enzyme and an appropriate amine donor can be used to block the T cell-mediated gliadin activity. Considering the crucial role of adaptive immunity in celiac disease, our findings highlight the potential of the proposed treatment to prevent cereal toxicity.

  15. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  16. Intestinal colonisation, microbiota and future probiotics

    NARCIS (Netherlands)

    Salminen, S.; Benno, Y.; Vos, de W.M.

    2006-01-01

    The human intestine is colonized by a large number of microorganisms, collectively termed microbiota, which support a variety of physiological functions. As the major part of the microbiota has not yet been cultured, molecular methods are required to determine microbial composition and the impact of

  17. Immunoelectron microscopic localization of partially purified antigens in adult Paragonimus iloktsuenensis

    Science.gov (United States)

    Chung, Pyung-Rim

    2001-01-01

    An immunoelectron microscopy employing immunogold labeling method was performed to detect tissue origin of D1 fraction (D1A) among 5 antigenic protein fractions partially purified by DEAE-anion exchange chromatography from water-soluble crude antigen (PIWA) of adult Paragonimus iloktsuenensis. Immune reactions of adult worm tissues with rabbit serum immunoglobulin immunized with crude antigen (PI-Ig) and D1 antigen (D1-Ig), as well as rat serum immunoglobulin infected with P. iloktsuenensis were observed. D1A showed strong antigenicity in the intestinal epithelium of the worms during the early infection period of 2-4 weeks after infection. The vitellaria also showed stronger antigenicity than the other tissue sites in immune reaction of tissues against all immunoglobulins from 4 to 33 weeks after vitelline development. Therefore, it is suggested that D1A was mainly originated from the intestinal epithelial tissues before the development of vitelline gland of the parasites. Immuno-reactivity of two immunoglobulins (PI-Ig, D1-Ig) was significantly different in intestinal epithelial cytoplasmic protrusions (CP) and intestinal epithelial secretory granules (SG). In the experimental group with D1-Ig, gold particles were labeled significantly in CP than in SG when compared to the PI-Ig group. Thus, the major antigenic materials in D1 antigen having a strong antigenicity in the early infection period was considered to be originated from the intestinal epithelial tissue. PMID:11441499

  18. Carcinoma-associated antigens

    International Nuclear Information System (INIS)

    Bartorelli, A.; Accinni, R.

    1981-01-01

    This invention relates to novel antigens associated with breast carcinoma, anti-sera specific to said antigens, 125 I-labeled forms of said antigens and methods of detecting said antigens in serum or plasma. The invention also relates to a diagnostic kit containing standardised antigens or antisera or marked forms thereof for the detection of said antigens in human blood, serum or plasma. (author)

  19. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality

    Directory of Open Access Journals (Sweden)

    Rebecca I. Clark

    2015-09-01

    Full Text Available Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.

  20. Intestinal pseudo-obstruction

    Science.gov (United States)

    Primary intestinal pseudo-obstruction; Acute colonic ileus; Colonic pseudo-obstruction; Idiopathic intestinal pseudo-obstruction; Ogilvie syndrome; Chronic intestinal pseudo-obstruction; Paralytic ileus - pseudo-obstruction

  1. ANTIGENIC PROMOTION

    Science.gov (United States)

    Wu, Chin-Yu; Cinader, Bernard

    1971-01-01

    Rabbits were immunized with p-azobenzene arsonic acid derivatives of human serum albumin (HA-As) or of dissociated keyhole limpet hemocyanin. The IgM response to the hapten was evaluated in terms of the number of hapten-specific plaque-forming cells in the lymph node draining the injection site. In some experiments, antibody was measured by agglutination of tanned and sensitized erythrocytes. The hapten response of animals immunized with HA-As was increased (promoting effect) when the animals were injected with one of several structurally unrelated macromolecules: keyhole limpet hemocyanin (KLH), horse spleen ferritin (HSF), lysozyme (Lys), alum-precipitated human gamma globulin (alum-precipitated HGG). Different macromolecules differed in the magnitude of the promoting effect they induced, e.g., promotion by the associated form of KLH was greater than that by the dissociated form; alum-precipitated HGG was a better promoter than was soluble HGG. The relative magnitude of promotion by different macromolecules (associated vs. dissociated KLH, alum-precipitated vs. soluble HGG) correlated with the relative magnitude of the carrier effect, as judged by the hapten response induced by p-azobenzene arsonic acid conjugated to various proteins. Promotion was detected by agglutination assay of circulating antibody, by plaque assay of cells from the popliteal lymph node draining the site of preinjection, but not by plaque assay of cells from the contralateral lymph node. Promotion was dependent on the dose of the promoting macromolecule and on the dose of the hapten-protein conjugate. It was not observed in animals tolerant to the promoting macromolecule. Inhibition (i.e. antigenic competition), rather than promotion, was observed upon a secondary response to the preinjected macromolecule or when the hapten-protein conjugate was incorporated in Freund's adjuvant. PMID:15776570

  2. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  3. [Acute intestinal infections: current and upcoming vaccines].

    Science.gov (United States)

    Erlich, Paul; Sansonetti, Philippe J

    2013-01-01

    Currently, only a few licensed vaccines against intestinal infections are available. Existing vaccines have shown good efficacy when used by travelers in industrialized countries. However, these vaccines have lower efficacy in endemic areas with high prevalence of enteric pathogens. Current vaccines are too expensive to be efficiently distributed in endemic countries. Immune correlates of protection are not well defined for current licensed vaccines. A better understanding of protection mechanisms at the intestinal mucosal surfaces should allow the development of more efficient vaccines. Gut physiology and microbial composition play an important role in both physical integrity and immunological status of the gastro-intestinal tract. These parameters can partially explain the disparities observed in current vaccines efficiency. Several next-generation vaccines combined or not with adjuvant able to promote a strong mucosal response in the intestine, are under preclinical and clinical investigations. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. Intestinal myiasis

    Directory of Open Access Journals (Sweden)

    U S Udgaonkar

    2012-01-01

    Full Text Available Purpose: Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. Materials and Methods: We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar. This medium is simple and can be easily prepared in the laboratory. Results: Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. Conclusions: S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.

  5. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  6. Intestinal Failure (Short Bowel Syndrome)

    Science.gov (United States)

    Intestinal Failure (Short Bowel Syndrome) What is intestinal failure? Intestinal failure occurs when a significant portion of the small ... intestine does. Who is at risk for intestinal failure? N Babies (usually premature) who have had surgery ...

  7. Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L. Modulates Intestinal and Spleen Immune Responses

    Directory of Open Access Journals (Sweden)

    Thea Magrone

    2016-01-01

    Full Text Available Farmed fish are exposed to a continuous antigenic pressure by microbial and environmental agents, which may lead to a condition of chronic inflammation. In view of the notion that polyphenols, largely contained in fruits and vegetables, are endowed with antioxidant and anti-inflammatory activities, farmed sea bass (Dicentrarchus labrax L. have been administered with red grape polyphenol-enriched feed. Polyphenols were extracted from the seeds of Canosina Nero di Troia Vitis vinifera and mixed with conventional feed at two different concentrations (100 and 200 mg/kg, resp.. Fish samples collected at days 223 and 273, respectively, were evaluated for intestinal and spleen cytokine release as well as for spleen macrophage (MØ and melanomacrophage center (MMC areas and distribution. Data will show that in treated fish decrease of intestinal interleukin- (IL- 1β and IL-6 and increase of splenic interferon- (IFN- γ occur. On the other hand, in the spleen reduction of MØ number seems to parallel increase in MMCs. Collectively, these data suggest that polyphenol-administered sea bass generate lower levels of intestinal proinflammatory cytokines, while producing larger amounts of spleen IFN-γ, as an expression of a robust and protective adaptive immune response. Increase of MMCs corroborates the evidence for a protective spleen response induced by feed enriched with polyphenols.

  8. Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses

    Science.gov (United States)

    Magrone, Thea; Fontana, Sergio; Laforgia, Flavia; Dragone, Teresa; Jirillo, Emilio; Passantino, Letizia

    2016-01-01

    Farmed fish are exposed to a continuous antigenic pressure by microbial and environmental agents, which may lead to a condition of chronic inflammation. In view of the notion that polyphenols, largely contained in fruits and vegetables, are endowed with antioxidant and anti-inflammatory activities, farmed sea bass (Dicentrarchus labrax L.) have been administered with red grape polyphenol-enriched feed. Polyphenols were extracted from the seeds of Canosina Nero di Troia Vitis vinifera and mixed with conventional feed at two different concentrations (100 and 200 mg/kg, resp.). Fish samples collected at days 223 and 273, respectively, were evaluated for intestinal and spleen cytokine release as well as for spleen macrophage (MØ) and melanomacrophage center (MMC) areas and distribution. Data will show that in treated fish decrease of intestinal interleukin- (IL-) 1β and IL-6 and increase of splenic interferon- (IFN-) γ occur. On the other hand, in the spleen reduction of MØ number seems to parallel increase in MMCs. Collectively, these data suggest that polyphenol-administered sea bass generate lower levels of intestinal proinflammatory cytokines, while producing larger amounts of spleen IFN-γ, as an expression of a robust and protective adaptive immune response. Increase of MMCs corroborates the evidence for a protective spleen response induced by feed enriched with polyphenols. PMID:26779301

  9. Oral vaccination of animals with antigens encapsulated in alginate microspheres.

    Science.gov (United States)

    Bowersock, T L; HogenEsch, H; Suckow, M; Guimond, P; Martin, S; Borie, D; Torregrosa, S; Park, H; Park, K

    1999-03-26

    Most infectious diseases begin at a mucosal surface. Prevention of infection must therefore consider ways to enhance local immunity to prevent the attachment and invasion of microbes. Despite this understanding, most vaccines depend on parenterally administered vaccines that induce a circulating immune response that often does not cross to mucosal sites. Administration of vaccines to mucosal sites induces local immunity. To be effective requires that antigen be administered often. This is not always practical depending on the site where protection is needed, nor comfortable to the patient. Not all mucosal sites have inductive lymphoid tissue present as well. Oral administration is easy to do, is well accepted by humans and animals and targets the largest inductive lymphoid tissue in the body in the intestine. Oral administration of antigen requires protection of antigen from the enzymes and pH of the stomach. Polymeric delivery systems are under investigation to deliver vaccines to the intestine while protecting them from adverse conditions that could adversely affect the antigens. They also can enhance delivery of antigen specifically to the inductive lymphoid tissue. Sodium alginate is a readily available, inexpensive polymer that can be used to encapsulate a wide variety of antigens under mild conditions. Orally administered alginate microspheres containing antigen have successfully induced immunity in mice to enteric (rotavirus) pathogens and in the respiratory tract in cattle with a model antigen (ovalbumin). This delivery system offers a safe, effective means of orally vaccinating large numbers of animals (and perhaps humans) to a variety of infectious agents.

  10. Gut-liver axis at the frontier of host-microbial interactions.

    Science.gov (United States)

    Brandl, Katharina; Kumar, Vipin; Eckmann, Lars

    2017-05-01

    Liver and intestine are tightly linked through the venous system of the portal circulation. Consequently, the liver is the primary recipient of gut-derived products, most prominently dietary nutrients and microbial components. It functions as a secondary "firewall" and protects the body from intestinal pathogens and other microbial products that have crossed the primary barrier of the intestinal tract. Disruption of the intestinal barrier enhances microbial exposure of the liver, which can have detrimental or beneficial effects in the organ depending on the specific circumstances. Conversely, the liver also exerts influence over intestinal microbial communities via secretion of bile acids and IgA antibodies. This mini-review highlights key findings and concepts in the area of host-microbial interactions as pertinent to the bilateral communication between liver and gut and highlights the concept of the gut-liver axis. Copyright © 2017 the American Physiological Society.

  11. Studying microbial functionality within the gut ecosystem by systems biology

    NARCIS (Netherlands)

    Hornung, Bastian; Martins dos Santos, Vitor A.P.; Smidt, Hauke; Schaap, Peter J.

    2018-01-01

    Humans are not autonomous entities. We are all living in a complex environment, interacting not only with our peers, but as true holobionts; we are also very much in interaction with our coexisting microbial ecosystems living on and especially within us, in the intestine. Intestinal microorganisms,

  12. Intestinal tissue transglutaminase in coeliac disease of children and adults: ultrastructural localization and variation in expression.

    Science.gov (United States)

    Skovbjerg, H; Hansen, G H; Niels-Christiansen, L L; Anthonsen, D; Ascher, H; Midhagen, G; Hallert, C; Norén, O; Sjöström, H

    2004-12-01

    Tissue transglutaminase is the main antigen for the anti-endomysial antibodies used for diagnosis of coeliac disease and can with some specificity in vitro deamidate gliadins generating potent epitopes. The intestinal levels and the ultrastructural localization of tissue transglutaminase in normal and affected persons were investigated to provide further information on its role in this disease. Intestinal biopsies were taken from normal and coeliac children and adults. The level of transglutaminase was analysed by means of a quantitative enzymatic assay and its ultrastructural localization by immunogold electronmicroscopy using a monoclonal antibody against tissue transglutaminase. In relation to normal individuals, the enzymatic activity of tissue transglutaminase in adult coeliac patients was increased. The enzyme was found in the enterocytes and in increased amount just beneath the enterocytes, where cytosolic and nuclear labelling of distinct elongated cells was seen in addition to extracellular labelling close to collagen fibrils. In children, the enzymatic activity and the immunogold labelling could not be shown to be related to disease. In all cases the enzyme activity was EDTA-sensitive. The increased amount of tissue transglutaminase activity in coeliac adults was shown to be due to the appearance of the enzyme in enterocytes and increased expression in the lamina propria. No evidence was found to support the idea of a changed localization or changed amounts as primary elements in coeliac disease pathogenesis, nor for the involvement of non-calcium dependent microbial transglutaminases.

  13. Intestinal Colonization by Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    1980-09-01

    lactogenic imunity as described 2-7 above, live ETEC can induce active intestinal immunity. Human volunteers challenged orally with ETEC were immune to...assay (Elisa) for detection of the antigen in calf faeces and for titration of-specific’ antibody. Proc. 2nd Int Symp Neonatal Diarrhea, Vet Infect Dis...production of corpro-antibody in human volunteers. J Immunol 91:724-729, 1963. 27. Moreau MC, Ducluzeau R, Guy-Grand D: Increase in the population of

  14. [Malaria and intestinal protozoa].

    Science.gov (United States)

    Rojo-Marcos, Gerardo; Cuadros-González, Juan

    2016-03-01

    Malaria is life threatening and requires urgent diagnosis and treatment. Incidence and mortality are being reduced in endemic areas. Clinical features are unspecific so in imported cases it is vital the history of staying in a malarious area. The first line treatments for Plasmodium falciparum are artemisinin combination therapies, chloroquine in most non-falciparum and intravenous artesunate if any severity criteria. Human infections with intestinal protozoa are distributed worldwide with a high global morbid-mortality. They cause diarrhea and sometimes invasive disease, although most are asymptomatic. In our environment populations at higher risk are children, including adopted abroad, immune-suppressed, travelers, immigrants, people in contact with animals or who engage in oral-anal sex. Diagnostic microscopic examination has low sensitivity improving with antigen detection or molecular methods. Antiparasitic resistances are emerging lately. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. Interactions between the intestinal microbiome and liver diseases.

    Science.gov (United States)

    Schnabl, Bernd; Brenner, David A

    2014-05-01

    The human intestine harbors a diverse community of microbes that promote metabolism and digestion in their symbiotic relationship with the host. Disturbance of its homeostasis can result in disease. We review factors that disrupt intestinal homeostasis and contribute to nonalcoholic fatty liver disease, steatohepatitis, alcoholic liver disease, and cirrhosis. Liver disease has long been associated with qualitative and quantitative (overgrowth) dysbiotic changes in the intestinal microbiota. Extrinsic factors, such as the Western diet and alcohol, contribute to these changes. Dysbiosis results in intestinal inflammation, a breakdown of the intestinal barrier, and translocation of microbial products in animal models. However, the contribution of the intestinal microbiome to liver disease goes beyond simple translocation of bacterial products that promote hepatic injury and inflammation. Microbial metabolites produced in a dysbiotic intestinal environment and host factors are equally important in the pathogenesis of liver disease. We review how the combination of liver insult and disruptions in intestinal homeostasis contribute to liver disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. SPLEEN-CELLS FROM ANTIGEN-MINIMIZED MICE ARE SUPERIOR TO SPLEEN-CELLS FROM GERM-FREE AND CONVENTIONAL MICE IN THE STIMULATION OF PRIMARY IN-VITRO PROLIFERATIVE RESPONSES TO NOMINAL ANTIGENS

    NARCIS (Netherlands)

    HOOPER, DC; MOLOWITZ, EH; BOS, NA; PLOPLIS, VA; CEBRA, JJ

    T lymphocytes from mice reared under conditions of differential exposure to food, environmental and microbial antigens were compared for phenotypic shifts that may be associated with prior exposure to antigens as well as functional variations in the ability to respond to antigens ne novo. While the

  17. The persistence ofhepatitis B antigen in the bloodtneal of the ...

    African Journals Online (AJOL)

    Abstract The persistence of the hepatitis B virus surface antigen (HBsAg) was used as an index of the sur- vival tim.e ofthis virus within the gastro-intestinal tract of the potential southern African medicinal leech, Asiaticobdella buntonensis. HBsAg was tested for in blood/faecal material at five intervals over 15 weeks. Samples ...

  18. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape

    DEFF Research Database (Denmark)

    Agace, William Winston; McCoy, Kathy D.

    2017-01-01

    The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface...... and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we...... review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life....

  19. [Enterobacterial antigen in human peripheral blood lymphocytes].

    Science.gov (United States)

    Faure-Fontenla, M A; García-Tamayo, F

    1989-11-01

    The following study has as prior history the research reports which have shown the existence of an antigenic tissue deposit in gram-negative enterobacteria. The antigens of the enterobacteria have also been found in the lymphocytic membranes and cytoplasm. Since intestinal lymphoid tissue cells can recirculate by means of the thoracic duct to the peripheral venous system, it was proposed that the circulating lymphocytes in healthy people could also contain small amounts of a common enterobacterial antigen. The study was carried out in 15 human venous blood samples, of which the lymphocytic population was separated to later be used in the preparation of 15 alcohol soluble extracts. This material was used for inhibiting the immuno-hemolysis assay in three occasions in order to show the presence of antigens shared by different enterobacterias, using as reference a fraction separated from the LPS of Escherichia coli 08. The results showed that the human lymphocytes also had antigenic determinants common to gram-negative bacteria.

  20. Potential Role of Probiotics in Mechanism of Intestinal Immunity

    Directory of Open Access Journals (Sweden)

    Imran Rashid Rajput and Wei Fen Li*

    2012-06-01

    Full Text Available Probiotics are nonpathogenic bacteria exert a constructive influence on health or physiology of the host. Effect of probiotics in the intestinal defense against variety of diseases is well known. The probiotics are involved in the mechanism of intestinal defense, support as antagonist against pathogens, improve intestinal epithelial layer and boost the innate as well as adaptive immunity. However these responses are also exerted by intestinal components. The intestinal components as well as probiotics play a reciprocal role to enhance the immune response of the individual. The possibilities of mechanism of action include the stimulation of epithelial cells, activation of dendritic cells via toll-like receptors (TLRs, conversely produce cytokines. These observations reviewed together advocate that specific immunomodulatory properties of probiotic bacteria should be focusing on mechanism of action via antigen presenting cells (APC.

  1. Eating Disorders and the Intestinal Microbiota: Mechanisms of Energy Homeostasis and Behavioral Influence.

    Science.gov (United States)

    Glenny, Elaine M; Bulik-Sullivan, Emily C; Tang, Quyen; Bulik, Cynthia M; Carroll, Ian M

    2017-08-01

    We reviewed and evaluated recently published scientific studies that explored the role of the intestinal microbiota in eating disorders. Studies have demonstrated that the intestinal microbiota is a contributing factor to both host energy homeostasis and behavior-two traits commonly disrupted in patients with eating disorders. To date, intestinal microbiota research in eating disorders has focused solely on anorexia nervosa (AN). Initial studies have reported an atypical intestinal microbial composition in patients with AN compared to healthy controls. However, the impact of these AN-associated microbial communities on host metabolism and behavior remains unknown. The intriguing pattern of findings in patients with AN encourages further investigation of the intestinal microbiota in eating disorders. Elucidating the specific role(s) of these microbial communities may yield novel ideas for augmenting current clinical therapies to promote weight gain, decrease gastrointestinal distress, and even reduce psychological symptomatology.

  2. Presence of Anti-Microbial Antibodies in Liver Cirrhosis – A Tell-Tale Sign of Compromised Immunity?

    Science.gov (United States)

    Papp, Maria; Norman, Gary L.; Vitalis, Zsuzsanna; Tornai, Istvan; Altorjay, Istvan; Foldi, Ildiko; Udvardy, Miklos; Shums, Zakera; Dinya, Tamas; Orosz, Peter; Lombay, Bela; Par, Gabriella; Par, Alajos; Veres, Gabor; Csak, Timea; Osztovits, Janos; Szalay, Ferenc; Lakatos, Peter Laszlo

    2010-01-01

    Background Bacterial translocation plays important role in the complications of liver cirrhosis. Antibody formation against various microbial antigens is common in Crohn's disease and considered to be caused by sustained exposure to gut microflora constituents. We hypothesized that anti-microbial antibodies are present in patients with liver cirrhosis and may be associated with the development of bacterial infections. Methodology/Principal Findings Sera of 676 patients with various chronic liver diseases (autoimmune diseases:266, viral hepatitis C:124, and liver cirrhosis of different etiology:286) and 100 controls were assayed for antibodies to Saccharomyces cerevisiae(ASCA) and to antigens derived from two intestinal bacterial isolates (one gram positive, one gram negative, neither is Escherichia coli). In patients with liver cirrhosis, we also prospectively recorded the development of severe episodes of bacterial infection. ASCA and anti-OMP Plus™ antibodies were present in 38.5% and 62.6% of patients with cirrhosis and in 16% and 20% of controls, respectively (pAnti-microbial antibody titers (p = 0.003), as well as multiple seroreactivity (p = 0.036), was associated with infectious events. In logistic regression analysis, the presence of ascites (OR:1.62, 95%CI:1.16–2.25), co-morbidities (OR:2.22, 95%CI:1.27–3.86), and ASCA positivity (OR:1.59, 95%CI:1.07–2.36) were independent risk factors for severe infections. A shorter time period until the first infection was associated with the presence of ASCA (p = 0.03) and multiple seropositivity (p = 0.037) by Kaplan-Meier analysis, and with Child-Pugh stage (p = 0.018, OR:1.85) and co-morbidities (panti-microbial antibodies. PMID:20886039

  3. Intestinal microbiome landscaping

    NARCIS (Netherlands)

    Shetty, Sudarshan A.; Hugenholtz, Floor; Lahti, Leo; Smidt, Hauke; Vos, de Willem M.

    2017-01-01

    High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss

  4. PNEUMOCOCCAL CAPSULAR ANTIGEN-DETECTION AND PNEUMOCOCCAL SEROLOGY IN PATIENTS WITH COMMUNITY ACQUIRED PNEUMONIA

    NARCIS (Netherlands)

    BOERSMA, WG; LOWENBERG, A; HOLLOWAY, Y; KUTTSCHRUTTER, H; SNIJDER, JAM; KOETER, GH

    1991-01-01

    Background Methods to determine the microbial cause of community acquired pneumonia include detection of pneumococcal antigen and measurement of pneumococcal capsular antibody response. Their usefulness compared with conventional microbiological techniques was investigated in patients with

  5. Microbial pesticides

    Science.gov (United States)

    Michael L. McManus

    1991-01-01

    Interest in the use of microbial pesticides has intensified because of public concern about the safety of chemical pesticides and their impact in the environment. Characteristics of the five groups of entomopathogens that have potential as microbial pesticides are briefly discussed and an update is provided on research and development activities underway to enhance the...

  6. Phylogenetic Evidence for Lateral Gene Transfer in the Intestine of Marine Iguanas

    OpenAIRE

    Nelson, David M.; Cann, Isaac K. O.; Altermann, Eric; Mackie, Roderick I.

    2010-01-01

    BACKGROUND: Lateral gene transfer (LGT) appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The ...

  7. Communication between B-Cells and Microbiota for the Maintenance of Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Yuying Liu

    2013-10-01

    Full Text Available The human intestine is populated with an extremely dense and diverse bacterial community. Commensal bacteria act as an important antigenic stimulus producing the maturation of gut-associated lymphoid tissue (GALT. The production of immunoglobulin (Ig A by B-cells in the GALT is one of the immune responses following intestinal colonization of bacteria. The switch of B-cells from IgM to IgA-producing cells in the Peyer’s patches and neighboring lamina propria proceeds by T-cell-dependent and T-cell-independent mechanisms. Several grams of secretory IgA (SIgA are released into the intestine each day. SIgA serves as a first-line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. SIgA has a capacity to directly quench bacterial virulence factors, influence the composition of the intestinal microbiota, and promote the transportation of antigens across the intestinal epithelium to GALT and down-regulate proinflammatory responses associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the reciprocal interactions between intestinal B cells and bacteria, specifically, the formation of IgA in the gut, the role of intestinal IgA in the regulation of bacterial communities and the maintenance of intestinal homeostasis, and the effects of probiotics on IgA levels in the gastrointestinal tract.

  8. Biotransformation of metal(loid)s by intestinal microorganisms

    OpenAIRE

    Diaz-Bone, Roland A; Van de Wiele, Tom

    2010-01-01

    Many metals and metalloids undergo complex biotransformation processes by microorganisms in the environment, namely, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po. Though the human intestine harbors a highly diverse and metabolically active microbial community, the knowledge on metal(loid) biotransformation by gut microbiota is limited. Microbial metal(loid) metabolism in the gut is highly relevant when assessing health risks from oral exposure, as both the bioavailability and the to...

  9. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat

    NARCIS (Netherlands)

    Visser, J. T. J.; Lammers, K.; Hoogendijk, A.; Boer, M. W.; Brugman, S.; Beijer-Liefers, S.; Zandvoort, A.; Harmsen, H.; Welling, G.; Stellaard, F.; Bos, N. A.; Fasano, A.; Rozing, J.

    2010-01-01

    Aims/hypothesis Impaired intestinal barrier function is observed in type I diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading

  10. Small Intestine Cancer Treatment

    Science.gov (United States)

    ... all of an organ that contains cancer. The resection may include the small intestine and nearby organs (if the cancer has spread). The doctor may remove the section of the small intestine that contains cancer and perform an anastomosis (joining the cut ends of the intestine together). ...

  11. Debug your bugs-how NLRs shape intestinal host-microbe interactions

    Directory of Open Access Journals (Sweden)

    Philip eRosenstiel

    2013-12-01

    Full Text Available The host’s ability to discriminate friend and foe and to establish a precise homeostasis with its associated microbiota is crucial for its survival and fitness. Among the mediators of intestinal host-microbe interactions, NOD-like receptor (NLR proteins take center stage. They are present in the epithelial lining and innate immune cells that constantly monitor microbial activities at the intestinal barrier. Dysfunctional NLRs predispose to intestinal inflammation as well as sensitization to extra-intestinal immune-mediated diseases and are linked to the alteration of microbial communities. Here, we review advances in our understanding of their reciprocal relationship in the regulation of intestinal homeostasis and implications for intestinal health.

  12. Immunoelectrophoretic studies on pig intestinal brush border proteins

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Sjöström, H; Norén, O

    1977-01-01

    Brush borders were prepared from pig intestinal mucosa and the membrane proteins solubilized with either Triton X-100 or papain. Proteins, thus released, were used as antigens to raise antisera in rabbits. The immunoglobulin G fractions were isolated and shown by the double layer immunofluorescence...

  13. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer.

    Science.gov (United States)

    Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei

    2018-02-21

    Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.

  14. Intestinal immune maturation is accompanied by temporal changes in the composition of the microbiota

    NARCIS (Netherlands)

    Hartog, den C.G.; Vries Reilingh, de G.; Wehrmaker, A.M.; Savelkoul, H.F.J.; Parmentier, H.K.; Lammers, A.

    2016-01-01

    In animals establishment of the intestinal microbial ecosystem is influenced by mucosal immune functions. As mucosal immune functions dynamically change during development of juvenile layer chicken, this study focused on dynamics in the ileal microbiota composition in relation to intestinal immune

  15. Role of the intestinal microbiome in health and disease: from correlation to causation

    NARCIS (Netherlands)

    Vos, de W.M.; Vos, E.A.

    2012-01-01

    Recorded observations indicating an association between intestinal microbes and health are long-standing in terms of specific diseases, but emerging high-throughput technologies that characterize microbial communities in the intestinal tract are suggesting new roles for the supposedly normal

  16. Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity.

    Science.gov (United States)

    Metzger, Rebecca N; Krug, Anne B; Eisenächer, Katharina

    2018-03-23

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  17. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    Directory of Open Access Journals (Sweden)

    Rebecca N. Metzger

    2018-03-01

    Full Text Available Pattern recognition receptors (PRRs sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  18. Transcriptional modulation of intestinal innate defense/inflammation genes by preterm infant microbiota in a humanized gnotobiotic mouse model.

    Science.gov (United States)

    Lu, Lei; Yu, Yueyue; Guo, Yuee; Wang, Yunwei; Chang, Eugene B; Claud, Erika C

    2015-01-01

    It is known that postnatal functional maturation of the small intestine is facilitated by microbial colonization of the gut. Preterm infants exhibit defects in gut maturation, weak innate immunity against intestinal infection and increased susceptibility to inflammatory disorders, all of which may be related to the inappropriate microbial colonization of their immature intestines. The earliest microbes to colonize the preterm infant gut encounter a naïve, immature intestine. Thus this earliest microbiota potentially has the greatest opportunity to fundamentally influence intestinal development and immune function. The aim of this study was to characterize the effect of early microbial colonization on global gene expression in the distal small intestine during postnatal gut development. Gnotobiotic mouse models with experimental colonization by early (prior to two weeks of life) intestinal microbiota from preterm human infants were utilized. Microarray analysis was used to assess global gene expression in the intestinal epithelium. Multiple intestinal genes involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication, and immune function are developmental- and intestinal microbiota- regulated. Using a humanized gnotobiotic mouse model, we demonstrate that certain early preterm infant microbiota from prior to 2 weeks of life specifically induce increased NF-κB activation and a phenotype of increased inflammation whereas other preterm microbiota specifically induce decreased NF-κB activation. These fundamental differences correlate with altered clinical outcomes and suggest the existence of optimal early microbial communities to improve health outcomes.

  19. AntigenMap 3D: an online antigenic cartography resource.

    Science.gov (United States)

    Barnett, J Lamar; Yang, Jialiang; Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2012-05-01

    Antigenic cartography is a useful technique to visualize and minimize errors in immunological data by projecting antigens to 2D or 3D cartography. However, a 2D cartography may not be sufficient to capture the antigenic relationship from high-dimensional immunological data. AntigenMap 3D presents an online, interactive, and robust 3D antigenic cartography construction and visualization resource. AntigenMap 3D can be applied to identify antigenic variants and vaccine strain candidates for pathogens with rapid antigenic variations, such as influenza A virus. http://sysbio.cvm.msstate.edu/AntigenMap3D

  20. Antigens of Streptococcus sanguis

    Science.gov (United States)

    Rosan, Burton

    1973-01-01

    An antigenic analysis of the alpha-hemolytic streptococci isolated from dental plaque was performed by use of antisera against a strain of Streptococcus sanguis (M-5) which was isolated from dental plaque. Immunoelectrophoretic and Ouchterlony tests of Rantz and Randall extracts of 45 strains gave positive reactions with the M-5 antisera. These strains represented 60% of the strains tested. The number of antigens which could be identified in these extracts varied from one to five and were designated a to e. The a antigen was found in 36 of the strains tested, including reference strains of S. sanguis and the group H streptococci. The strains reacting with the M-5 antisera were divided into two majors types: type I consisted of 23 strains in which the a antigen was found alone or with one or more of the c, d, and e antigens; type II consisted of 13 strains in which both the a and b antigens were found with or without one or more of the c, d, and e antigens. The remaining strains contained, either singly or in combination, the b, c, d, and e antigens but not the a antigen. Biochemical tests of representatives of each serotype and reference strains indicated that strains reacting with M-5 antisera were S. sanguis. These findings suggest that S. sanguis strains share common physiological and serological properties. Images PMID:4633291

  1. Daily Changes in Composition and Diversity of the Intestinal Microbiota in Patients with Anorexia Nervosa: A Series of Three Cases.

    Science.gov (United States)

    Kleiman, Susan C; Glenny, Elaine M; Bulik-Sullivan, Emily C; Huh, Eun Young; Tsilimigras, Matthew C B; Fodor, Anthony A; Bulik, Cynthia M; Carroll, Ian M

    2017-09-01

    Anorexia nervosa, a severe psychiatric illness, is associated with an intestinal microbial dysbiosis. Individual microbial signatures dominate in healthy samples, even over time and under controlled conditions, but whether microbial markers of the disorder overcome inter-individual variation during the acute stage of illness or renourishment is unknown. We characterized daily changes in the intestinal microbiota in three acutely ill patients with anorexia nervosa over the entire course of hospital-based renourishment and found significant, patient-specific changes in microbial composition and diversity. This preliminary case series suggests that even in a state of pathology, individual microbial signatures persist in accounting for the majority of intestinal microbial variation. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  2. Intestinal candidiasis and antibiotic usage in children: case study of ...

    African Journals Online (AJOL)

    Background: Overgrowth of candida results from factors that disrupt the intestinal microbial balance, such as the use of antibiotics. Unregulated antibiotic use and rampant practice of self-medication in Nigeria, is a cause for concern. Methods: A total of 314 stool specimens were collected from children <1 to 12 years of age ...

  3. Ecophysiology of novel intestinal butyrate-producing bacteria

    NARCIS (Netherlands)

    Bui, Thi Phuong Nam

    2016-01-01

    The human intestinal tract harbours a trillion on microbial cells, predominantly anaerobes. The activity and physiology of these anaerobes is strongly associated with health and disease. This association has been investigated for a long time.However, this has not been fully understood. One of the

  4. Host and environmental factors affecting the intestinal microbiota in chickens

    NARCIS (Netherlands)

    Kers, Jannigje G.; Velkers, Francisca C.; Fischer, Egil A.J.; Hermes, Gerben D.A.; Stegeman, J.A.; Smidt, Hauke

    2018-01-01

    The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial

  5. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri

    DEFF Research Database (Denmark)

    Korbut, Rozalia; Mehrdana, Foojan; Kania, Per Walter

    2016-01-01

    was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however...

  6. Eosinofil Sel Penyaji Antigen

    Directory of Open Access Journals (Sweden)

    Safari Wahyu Jatmiko

    2015-04-01

    Full Text Available Sel eosinofil merupakan jenis sel lekosit yang terlibat dalam berbagai patogenesis penyakit. Sel eosinofil pada awalnya dikenal sebagai sel efektor  dari sistem imunitas alamiah. Akan tetapi, kemampuan sel eosinofil dalam memfagositosis patogen menimbulkan dugaan bahwa sel eosinofil ikut berperan sebagai sel penyaji antigen. Hal ini dianalogikan dengan sel makrofag dan sel dendritik yang bisa memfagositosis dan menyajikan antigen sebagai hasil dari degradasi patogen yang difagositosis. Untuk menjawab permasalahan ini, penulis melakukan penelusuran artikel tentang eosinofil sebagai sel penyaji antigen melalui US National Library of Medicine National Institute of Healthdengan kata kunci eoshinophil dan antigen presenting cell. Hasil penelusuran adalah ditemukannya 10 artikel yang relevan dengan topik. Hasil dari sintesis kesepuluh jurnal tersebut adalah sel eosinofil mampu berperan sebagai sel penyaji antigen yang profesional (professionalantigenpresentng cell

  7. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  8. Immune and genetic gardening of the intestinal microbiome.

    Science.gov (United States)

    Jacobs, Jonathan P; Braun, Jonathan

    2014-11-17

    The mucosal immune system - consisting of adaptive and innate immune cells as well as the epithelium - is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to non-pathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota.

    Science.gov (United States)

    Cox, Laura M; Cho, Ilseung; Young, Scott A; Anderson, W H Kerr; Waters, Bartholomew J; Hung, Shao-Ching; Gao, Zhan; Mahana, Douglas; Bihan, Monika; Alekseyenko, Alexander V; Methé, Barbara A; Blaser, Martin J

    2013-02-01

    Diet influences host metabolism and intestinal microbiota; however, detailed understanding of this tripartite interaction is limited. To determine whether the nonfermentable fiber hydroxypropyl methylcellulose (HPMC) could alter the intestinal microbiota and whether such changes correlated with metabolic improvements, C57B/L6 mice were normalized to a high-fat diet (HFD), then either maintained on HFD (control), or switched to HFD supplemented with 10% HPMC, or a low-fat diet (LFD). Compared to control treatment, both LFD and HPMC reduced weight gain (11.8 and 5.7 g, respectively), plasma cholesterol (23.1 and 19.6%), and liver triglycerides (73.1 and 44.6%), and, as revealed by 454-pyrosequencing of the microbial 16S rRNA gene, decreased microbial α-diversity and differentially altered intestinal microbiota. Both LFD and HPMC increased intestinal Erysipelotrichaceae (7.3- and 12.4-fold) and decreased Lachnospiraceae (2.0- and 2.7-fold), while only HPMC increased Peptostreptococcaceae (3.4-fold) and decreased Ruminococcaceae (2.7-fold). Specific microorganisms were directly linked with weight change and metabolic parameters in HPMC and HFD mice, but not in LFD mice, indicating that the intestinal microbiota may play differing roles during the two dietary modulations. This work indicates that HPMC is a potential prebiotic fiber that influences intestinal microbiota and improves host metabolism.

  10. Gastric and intestinal surgery.

    Science.gov (United States)

    Fossum, Theresa W; Hedlund, Cheryl S

    2003-09-01

    Gastric surgery is commonly performed to remove foreign bodies and correct gastric dilatation-volvulus and is less commonly performed to treat gastric ulceration or erosion, neoplasia, and benign gastric outflow obstruction. Intestinal surgery, although commonly performed by veterinarians, should never be considered routine. The most common procedures of the small intestinal tract performed in dogs and cats include enterotomy and resection/anastomosis. Surgery of the large intestine is indicated for lesions causing obstruction, perforations, colonic inertia, or chronic inflammation.

  11. Diet and the intestinal microbiome: associations, functions, and implications for health and disease.

    Science.gov (United States)

    Albenberg, Lindsey G; Wu, Gary D

    2014-05-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breastfed vs formula-fed infants or differences in microbial richness in people who consume an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome and may contribute to health or the pathogenesis of disorders such as coronary vascular disease and inflammatory bowel disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Intestinal parasites and tuberculosis

    Directory of Open Access Journals (Sweden)

    Anuar Alonso Cedeño-Burbano

    2017-10-01

    Conclusions: The available evidence was insufficient to affirm that intestinal parasites predispose to developing tuberculous. The studies carried out so far have found statistically insignificant results.

  13. Carcinoembryonic antigen (CEA)

    International Nuclear Information System (INIS)

    Ephraim, K.H.; Cox, P.H.; Hamer, C.J.A. v.d.; Berends, W.; Delhez, H.

    1977-01-01

    The carcinoembryonic antigen (CEA) is a complex of antigen determinants and also the carrier of these determinants. Chemically it is a glycoprotein. Its occurrence in blood serum or urine is correlated with malignant disease. Several radioimmunoassays (RIA) have been developed, one by Hoffmann-Laroche and one by the Rotterdam Radiotherapeutic Institute. Both methods and the Hoffmann assay kit are tested. Specifications are given for isolation of the antigen, preparation of the antiserum, and the execution of the RIA. Biochemical and clinical aspects are discussed

  14. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Jonna Jalanka-Tuovinen

    individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut.

  15. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice

    NARCIS (Netherlands)

    Aidy, El S.; Baarlen, van P.; Derrien, M.; Lindenbergh-Kortleve, D.J.; Hooiveld, G.J.; Levenez, F.; Dore, J.; Dekker, J.; Samsom, J.N.; Nieuwenhuis, E.E.S.; Kleerebezem, M.

    2012-01-01

    During colonization of germfree mice with the total fecal microbial community of their conventionally born and raised siblings (conventionalization), the intestinal mucosal immune system initiates and maintains a balanced immune response. However, the genetic regulation of these balanced,

  16. Pig models on intestinal development and therapeutics.

    Science.gov (United States)

    Yin, Lanmei; Yang, Huansheng; Li, Jianzhong; Li, Yali; Ding, Xueqing; Wu, Guoyao; Yin, Yulong

    2017-12-01

    The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.

  17. The microbiome and its implications in intestinal transplantation.

    Science.gov (United States)

    Kroemer, Alexander; Elsabbagh, Ahmed M; Matsumoto, Cal S; Zasloff, Michael; Fishbein, Thomas M

    2016-04-01

    This article summarizes the complex interplay between the microbiota and host immune responses, and its impact on intestinal transplantation and allograft rejection. Recent findings highlight the importance of Paneth cells as crucial producers of antimicrobial peptides that control the intestinal host-microbial interface as well as the essential role of NOD2 as a master regulator of antimicrobial host defenses. Moreover, complex interactions between innate and adaptive immune responses have been shown to critically shape host antimicrobial Th17 responses, which may be key for the pathogenesis of inflammatory bowel diseases and intestinal allograft rejection. A growing body of evidence indicates that crosstalk between the microbiome and innate and adaptive host immunity determines alloimmune responses and outcomes in intestinal transplantation. Elaboration of this emerging field might lead to novel mechanistic insight into these complex interactions and allow for new therapeutic approaches.

  18. Amniotic fluid and development of the immature intestine

    DEFF Research Database (Denmark)

    Østergaard, Mette Viberg

    in demand. Amniotic Fluid (AF) is the natural source of fetal EN throughout gestation in ammals. Fetal AF swallowing stimulates somatic and gastrointestinal growth during fetal development, and modulates the development of the intestinal mucosa. In addition, AF protects the fetus against infections...... gastrointestinal structure and function in preterm pigs”. Accordingly, the aim was to test the effects of enteral administration of AF as MEN during PN, as a supplement to a suboptimal enteral diet, or both in a preterm pig model of NEC. To evaluate the effects of AF, NEC sensitivity, intestinal digestive...... function and innate immunity of the small intestine, and to establish an experimental model to investigate the inflammatory responses of the small intestine to microbial-associated molecular patterns (MAMPs) ex vivo. The expression of certain host defense genes was affected by gestational age...

  19. An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer

    Science.gov (United States)

    2010-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses to the intestinal microbiota, and by chronic intestinal inflammation. Several recent studies demonstrate the importance of innate microbial recognition by immune and nonimmune cells in the gut. Paradoxically, either diminished or exacerbated innate immune signaling may trigger the breakdown of intestinal homeostasis, leading to IBD and colitis-associated cancer (CAC). This dichotomy may reflect divergent functional roles for immune sensing in intestinal epithelial cells and leukocytes, which may vary with distinct disease mechanisms. PMID:20679404

  20. Aberrant intestinal microbiota in individuals with prediabetes

    DEFF Research Database (Denmark)

    Allin, Kristine H.; Tremaroli, Valentina; Caesar, Robert

    2018-01-01

    Aims/hypothesis: Individuals with type 2 diabetes have aberrant intestinal microbiota. However, recent studies suggest that metformin alters the composition and functional potential of gut microbiota, thereby interfering with the diabetes-related microbial signatures. We tested whether specific gut...... microbiota profiles are associated with prediabetes (defined as fasting plasma glucose of 6.1–7.0 mmol/l or HbA1c of 42–48 mmol/mol [6.0–6.5%]) and a range of clinical biomarkers of poor metabolic health. Methods: In the present case–control study, we analysed the gut microbiota of 134 Danish adults...... impaired glucose regulation in recipient mice. Conclusions/interpretation: Collectively, our data show that individuals with prediabetes have aberrant intestinal microbiota characterised by a decreased abundance of the genus Clostridium and the mucin-degrading bacterium A. muciniphila. Our findings...

  1. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... ABSTRACT. Background: Adhesions after abdominal and pelvic surgery are a major cause of intestinal obstruction in the western world and the pathology is steadily gaining prominence in our practice. Objective: To determine the magnitude of adhesive intestinal obstruction; to determine the types.

  2. Intestinal Barrier and Behavior.

    Science.gov (United States)

    Julio-Pieper, M; Bravo, J A

    2016-01-01

    The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses. © 2016 Elsevier Inc. All rights reserved.

  3. Mixing and pumping functions of the intestine of zebrafish larvae.

    Science.gov (United States)

    Yang, Jinyou; Shimogonya, Yuji; Ishikawa, Takuji

    2017-04-21

    Due to its transparency, the intestine of zebrafish larvae has been widely used in studies of gastrointestinal diseases and the microbial flora of the gut. However, transport phenomena in the intestine of zebrafish larvae have not been fully clarified. In this study, therefore, transport caused by peristaltic motion in the intestine of zebrafish larvae was investigated by numerical simulation. An anatomically realistic three-dimensional geometric model of the intestine at various times after feeding was constructed based on the experimental data of Field et al. (2009). The flow of digested chyme was analyzed using the governing equations of fluid mechanics, together with peristaltic motion and long-term contraction of the intestinal wall. The results showed that retrograde peristaltic motion was the main contributor to the mixing function. The dispersion caused by peristalsis over 30min was in the order of 10 -12 m 2 /s, which is greater than the Brownian diffusion of a sphere of 0.4µm diameter. In contrast, anterograde peristaltic motion contributed mainly to the pumping function. The pressure decrease due to peristalsis was in the order of millipascals, which may reduce the activation and maintenance heat of intestinal muscle. These findings enhance our understanding of the mixing and pumping functions of the intestine of zebrafish larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Effect of strain-producer and cultivation medium on cross antigenic activity of Streptococcus pneumoniae water soluble antigens].

    Science.gov (United States)

    Kurbatova, E A; Vorob'ev, D S; Egorova, N B; Elkina, S I; Kalina, N G; Tokarskaia, M M; Baturo, A P; Romanenko, É E; Markova, M E; Grishchenko, N V; Ovechko, N N; Volokh, Iu V; Zlygostev, S A; Mikhaĭlova, N A

    2013-01-01

    Production of water soluble protein-containing antigens from various strains of S. pneumoniae during cultivation in complete and semi-synthetic culture media as well as selection of strains with cross antigenic activity. S. pneumoniae 3, 6A, 6B, 14, 10A, 18A, 19A, 19F, 23F serotype strains were cultivated in brain-heart broth and semi-synthetic medium with addition of aminopeptide for 24 hours at 37 degrees C for the production of water soluble antigens. The antigens were obtained by a method of triple water extraction from acetone dried microbial cells. Chemical composition of preparations, electrophoresis mobility of protein-containing components of preparations and cross antigenic activity in gel immune diffusion reaction by using rabbit hyperimmune sera were studied. In studies of 10 pneumococcus strains from various serotypes a method of microbial cell inactivation by acetone was selected that allows to produce preparations with high protein content (25.5 - 53.1%). Electrophoretic separation of the preparations revealed difference in the preparations obtained from various pneumococcus strains in the layout of major protein lines in the 8 - 95 kDa range. The most virulent and immunogenic S. pneumoniae strain that during cultivation in semi-synthetic medium was characterized by intraspecies cross antigenic activity and in gel immune diffusion reacted with all the studied sera against 3, 14, 18C, 23F serotype strains was selected. The study resulted in the selection of a technologically simple method of production of pneumococcus antigens with high protein content and showed that only 1 of the studied preparations produced from a virulent strain with poorly expressed S. pneumoniae capsule during cultivation in semi-synthetic medium has the highest cross antigenic activity.

  5. T lymphocytes control microbial composition by regulating the abundance of Vibrio in the zebrafish gut

    NARCIS (Netherlands)

    Brugman, S.; Schneeberger, K.; Witte, M.; Klein, M.R.

    2014-01-01

    Dysbiosis of the intestinal microbial community is considered a risk factor for development of chronic intestinal inflammation as well as other diseases such as diabetes, obesity and even cancer. Study of the innate and adaptive immune pathways controlling bacterial colonization has however proven

  6. T lymphocytes control microbial composition by regulating the abundance of Vibrio in the zebrafish gut

    NARCIS (Netherlands)

    Brugman, Sylvia; Schneeberger, Kerstin; Witte, Merlijn; Klein, Mark R.; van den Bogert, Bartholomeus; Boekhorst, Jos; Timmerman, Harro M.; Boes, Marianne L.; Kleerebezem, Michiel; Nieuwenhuis, Edward E S

    2015-01-01

    Dysbiosis of the intestinal microbial community is considered a risk factor for development of chronic intestinal inflammation as well as other diseases such as diabetes, obesity and even cancer. Study of the innate and adaptive immune pathways controlling bacterial colonization has however proven

  7. Mycotoxins and the intestine

    Directory of Open Access Journals (Sweden)

    Leon Broom

    2015-12-01

    Full Text Available Fungal biochemical pathways can yield various compounds that are not considered to be necessary for their growth and are thus referred to as secondary metabolites. These compounds have been found to have wide ranging biological effects and include potent poisons (mycotoxins. Mycotoxins invariably contaminate crops and (thus animal feeds. The intestine is the key link between ingested mycotoxins and their detrimental effects on the animal. Effects on the intestine, or intestinal environment, and immune system have been reported with various mycotoxins. These effects are almost certainly occurring across species. Most, if not all, of the reported effects of mycotoxins are negative in terms of intestinal health, for example, decreased intestinal cell viability, reductions in short chain fatty acid (SCFA concentrations and elimination of beneficial bacteria, increased expression of genes involved in promoting inflammation and counteracting oxidative stress. This challenge to intestinal health will predispose the animal to intestinal (and systemic infections and impair efficient digestion and absorption of nutrients, with the associated effect on animal productivity.

  8. Pelacakan Secara Imunohistokimiawi Antigen Virus pada Ayam yang Diinfeksi dengan Virus Penyakit Tetelo (IMMUNOHISTOCHEMICAL DETECTION OF VIRAL ANTIGEN IN TISSUE OF CHICKENS EXPERIMENTALLY INFECTED WITH NEWCASTLE DISEASE VIRUS

    Directory of Open Access Journals (Sweden)

    Anak Agung Ayu Mirah Adi

    2013-07-01

    Full Text Available In order to study the distribution of Newcastle disease virus (NDV following infection, chickenswere experimentally infected with visceretropic velogenic NDV isolate. Monoclonal antibodies (mAbsagainst the NDV LaSota vaccine strain were then produced to detect viral antigen in the infectedorgans. The mAbs were firstly tested for their specificity by enzyme linked immunosorbent assay(ELISA using NDV and normal allantoic fluids as antigens. Eight mAbs specific against NDVwere isolated and two mAbs were used for immunodetection of NDV antigen in chicken’s tissues.By immunohistochemistry labeled streptavidin-biotin (LSAB staining NDV–antigen was detectedin paraffin embedded tissues of NDV-infected chickens. NDV antigen was not detected in noninfected chickens. In the infected chickens, high intensity of NDV antigen was detected in thelymphoid tissues, lung and intestine. The NDV antigen with a lesser intensity was detected in thebrain, trachea, liver and myocardium. This study shows that although viscerotropic velogenicNDV isolate can infect almost all organs, the main target of infection are lung, intestine andlymphoids tissues

  9. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...... membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption...

  10. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption......A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...

  11. Microbial regulation of GLP-1 and L-cell biology

    DEFF Research Database (Denmark)

    Greiner, Thomas U; Bäckhed, Gert Fredrik

    2016-01-01

    BACKGROUND: The gut microbiota is associated with several of metabolic diseases, including obesity and type 2 diabetes and affects host physiology through distinct mechanisms. The microbiota produces a vast array of metabolites that signal to host cells in the intestine as well as in more distal...... interacts with L-cells in the small and large intestine and the resulting effects on the host. MAJOR CONCLUSIONS: Microbial metabolites can be sensed differently by specific subpopulations of enteroendocrine cells. Furthermore, hormones such as GLP-1 can have different functions when originating from...... the small intestine or colon. This article is part of a special issue on microbiota....

  12. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial.

    Directory of Open Access Journals (Sweden)

    Eugenia Bruzzese

    Full Text Available Intestinal inflammation is a hallmark of cystic fibrosis (CF. Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG administration in children with CF with and without antibiotic treatment.The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE, real-time polymerase chain reaction (RT-PCR, and fluorescence in situ hybridization (FISH. Intestinal inflammation was assessed by measuring fecal calprotectin (CLP and rectal nitric oxide (rNO production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG.Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2-9 years. Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2 (-, respectively; P<0.01. Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation.CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF. Administration of probiotics restored gut microbiota, supporting

  13. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial.

    Science.gov (United States)

    Bruzzese, Eugenia; Callegari, Maria Luisa; Raia, Valeria; Viscovo, Sara; Scotto, Riccardo; Ferrari, Susanna; Morelli, Lorenzo; Buccigrossi, Vittoria; Lo Vecchio, Andrea; Ruberto, Eliana; Guarino, Alfredo

    2014-01-01

    Intestinal inflammation is a hallmark of cystic fibrosis (CF). Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG) administration in children with CF with and without antibiotic treatment. The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE), real-time polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH). Intestinal inflammation was assessed by measuring fecal calprotectin (CLP) and rectal nitric oxide (rNO) production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2-9 years). Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2 (-), respectively; P<0.01). Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF. Administration of probiotics restored gut microbiota, supporting the

  14. Mechanisms of adaptation in the intestinal parasite Giardia lamblia.

    Science.gov (United States)

    Lujan, Hugo D

    2011-01-01

    Giardia lamblia, a parasite of humans, is a major source of waterborne diarrhoeal disease. Giardia is also an excellent system to study basic biochemical processes because it is a single-celled eukaryote with a small genome and its entire life cycle can be replicated in vitro. Giardia trophozoites undergo fundamental changes to survive outside the intestine of their host by differentiating into infective cysts. Encystation entails the synthesis, processing, transport, secretion and extracellular assembly of cyst wall components. To survive within the intestine, Giardia undergoes antigenic variation, a process by which the parasite continuously switches its major surface molecules, allowing the parasite to evade the host's immune response and produce chronic and recurrent infections. The objective of the present chapter is to provide a better understanding of the molecular mechanisms involved in adaptation and differentiation in Giardia, with a particular focus on the process of encystation and antigenic variation of this interesting micro-organism.

  15. Microbial-immune cross-talk and regulation of the immune system.

    Science.gov (United States)

    Cahenzli, Julia; Balmer, Maria L; McCoy, Kathy D

    2013-01-01

    We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  16. Intestinal barrier function and the brain-gut axis.

    Science.gov (United States)

    Alonso, Carmen; Vicario, María; Pigrau, Marc; Lobo, Beatriz; Santos, Javier

    2014-01-01

    The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.

  17. Recognition of microbial glycolipids by Natural Killer T cells

    Directory of Open Access Journals (Sweden)

    Dirk Michael Zajonc

    2015-08-01

    Full Text Available T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the Major Histocompatibility (MHC family (MHC I and II, lipids, glycolipids and lipopeptides can be presented by the non-classical MHC member CD1. The best studied subset of lipid-reactive T cells are Type I Natural killer T (iNKT cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi the causative agents of Lyme disease and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR, leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18 and TCR stimulation. Many microbes carry TLR antigens and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here we will review the molecular basis of iNKT cell

  18. A monkey antigen crossreacting with carcinoembryonic antigen, CEA.

    Science.gov (United States)

    Engvall, E.; Vuento, M.; Ruoslahti, E.

    1976-01-01

    Normal monkey tissues were found to contain an antigen which crossreacts immunologically with the carcinoembryonic antigen (CEA) of the human digestive tract. The monkey antigen reacted with complete or partial identity to the normal crossreacting antigen (NCA) in humans when tested in immunodiffusion against anti-CEA or anti-NCA. Extracts of monkey tissues inhibited in radioimmunoassays measuring human NCA. It is possible that monkey foetuses and colonic tumours contain CEA. Images Fig. 1 PMID:823952

  19. Antigen smuggling in tuberculosis.

    Science.gov (United States)

    Hudrisier, Denis; Neyrolles, Olivier

    2014-06-11

    The importance of CD4 T lymphocytes in immunity to M. tuberculosis is well established; however, how dendritic cells activate T cells in vivo remains obscure. In this issue of Cell Host & Microbe, Srivastava and Ernst (2014) report a mechanism of antigen transfer for efficient activation of antimycobacterial T cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 58, č. 6 (2001), s. 425-430 ISSN 0001-2815. [Conference on Human leucocyte differentiation antigens /7./. Harrogate, 20.06.2000-25.06.2000] Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules, HLDA Subject RIV: EC - Immunology Impact factor: 2.864, year: 2001

  1. CD antigens 2002

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2002-01-01

    Roč. 99, č. 10 (2002), s. 3877-3880 ISSN 0006-4971. [Conference on Human leucocyte differentiation antigens /7./. Harrogate, 20.06.2000-25.06.2000] Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules, HLDA Subject RIV: EC - Immunology Impact factor: 9.631, year: 2002

  2. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2002-01-01

    Roč. 168, č. 5 (2002), s. 2083-2086 ISSN 0022-1767. [Conference on Human leucocyte differentiation antigens /7./. Harrogate, 20.06.2000-25.06.2000] Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules, HLDA Subject RIV: EC - Immunology Impact factor: 7.014, year: 2002

  3. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 103, č. 4 (2001), s. 401-406 ISSN 0019-2805 R&D Projects: GA ČR GA310/99/0349 Institutional research plan: CEZ:AV0Z5052915 Keywords : antigen * CD * leukocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.656, year: 2001

  4. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 19, č. 6 (2001), s. 556-562 ISSN 1066-5099 R&D Projects: GA AV ČR IAA7052904 Institutional research plan: CEZ:AV0Z5052915 Keywords : CD * leukocyte antigens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.689, year: 2001

  5. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 31, č. 10 (2001), s. 2841-2847 ISSN 0014-2980 R&D Projects: GA AV ČR IAA7052904 Keywords : CD * leukocyte antigens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.990, year: 2001

  6. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 211, č. 2 (2001), s. 81-85 ISSN 0008-8749 R&D Projects: GA ČR GA310/99/0349 Institutional research plan: CEZ:AV0Z5052915 Keywords : antigen * CD * leukocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.604, year: 2001

  7. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2002-01-01

    Roč. 15, č. 1 (2002), s. 71-76 ISSN 0893-3952. [Conference on Human leucocyte differentiation antigens /7./. Harrogate, 20.06.2000-25.06.2000] Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules, HLDA Subject RIV: EC - Immunology Impact factor: 3.821, year: 2002

  8. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 70, č. 5 (2001), s. 685-690 ISSN 0741-5400 R&D Projects: GA AV ČR IAA7052904 Institutional research plan: CEZ:AV0Z5052915 Keywords : CD * leukocyte antigens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.516, year: 2001

  9. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 13, č. 9 (2001), s. 1095-1098 ISSN 0953-8178 R&D Projects: GA ČR GA310/99/0349 Institutional research plan: CEZ:AV0Z5052915 Keywords : antigen * CD * leukocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.611, year: 2001

  10. β-endorphin antigen

    International Nuclear Information System (INIS)

    1981-01-01

    This invention relates to the production of antigens comprising β-endorphin, βsub(h)-endorphin, or βsub(c)-endorphin, in covalent conjugation with human gammaglobulin as immunogenic carrier material, and an antibody having the property of specifically binding β-endorphin or fragments thereof, containing the (6-15) residue sequence. (U.K.)

  11. Microbial effects

    International Nuclear Information System (INIS)

    Sharpe, V.J.

    1985-10-01

    The long term safety and integrity of radioactive waste disposal sites proposed for use by Ontario Hydro may be affected by the release of radioactive gases. Microbes mediate the primary pathways of waste degradation and hence an assessment of their potential to produce gaseous end products from the breakdown of low level waste was performed. Due to a number of unknown variables, assumptions were made regarding environmental and waste conditions that controlled microbial activity; however, it was concluded that 14 C and 3 H would be produced, albeit over a long time scale of about 1500 years for 14 C in the worst case situation

  12. The enteric nervous system promotes intestinal health by constraining microbiota composition.

    Directory of Open Access Journals (Sweden)

    Annah S Rolig

    2017-02-01

    Full Text Available Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS, a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.

  13. The enteric nervous system promotes intestinal health by constraining microbiota composition

    Science.gov (United States)

    Mittge, Erika K.; Ganz, Julia; Troll, Josh V.; Melancon, Ellie; Wiles, Travis J.; Alligood, Kristin; Stephens, W. Zac; Eisen, Judith S.; Guillemin, Karen

    2017-01-01

    Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS), a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health. PMID:28207737

  14. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Andrea C. Lei-Leston

    2017-09-01

    Full Text Available Pattern recognition receptors (PRR, such as NOD-like receptors (NLRs, sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.

  15. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  16. Microbial Ecosystems, Protection of

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Nelson, K.E.

    2014-01-01

    Synonyms Conservation of microbial diversity and ecosystem functions provided by microbes; Preservation of microbial diversity and ecosystem functions provided by microbes Definition The use, management, and conservation of ecosystems in order to preserve microbial diversity and functioning.

  17. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    OpenAIRE

    Lewis, Zachery T; Sidamonidze, Ketevan; Tsaturyan, Vardan; Tsereteli, David; Khachidze, Nika; Pepoyan, Astghik; Zhgenti, Ekaterine; Tevzadze, Liana; Manvelyan, Anahit; Balayan, Marine; Imnadze, Paata; Torok, Tamas; Lemay, Danielle G.; Mills, David A.

    2017-01-01

    © 2017 The Author(s). Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant's g...

  18. Oral Vaccine Development by Molecular Display Methods Using Microbial Cells.

    Science.gov (United States)

    Shibasaki, Seiji; Ueda, Mitsuyoshi

    2016-01-01

    Oral vaccines are easier to administer than injectable vaccines. To induce an adequate immune response using vaccines, antigenic proteins are usually combined with adjuvant materials. This chapter presents methodologies for the design of oral vaccines using molecular display technology. In molecular display technology, antigenic proteins are displayed on a microbial cell surface with adjuvant ability. This technology would provide a quite convenient process to produce oral vaccines when the DNA sequence of an efficient antigenic protein is available. As an example, oral vaccines against candidiasis were introduced using two different molecular display systems with Saccharomyces cerevisiae and Lactobacillus casei.

  19. Activation-Induced TIM-4 Expression Identifies Differential Responsiveness of Intestinal CD103+ CD11b+ Dendritic Cells to a Mucosal Adjuvant.

    Directory of Open Access Journals (Sweden)

    Kerry L Hilligan

    Full Text Available Macrophage and dendritic cell (DC populations residing in the intestinal lamina propria (LP are highly heterogeneous and have disparate yet collaborative roles in the promotion of adaptive immune responses towards intestinal antigen. Under steady-state conditions, macrophages are efficient at acquiring antigen but are non-migratory. In comparison, intestinal DC are inefficient at antigen uptake but migrate to the mesenteric lymph nodes (mLN where they present antigen to T cells. Whether such distinction in the roles of DC and macrophages in the uptake and transport of antigen is maintained under immunostimulatory conditions is less clear. Here we show that the scavenger and phosphatidylserine receptor T cell Immunoglobulin and Mucin (TIM-4 is expressed by the majority of LP macrophages at steady-state, whereas DC are TIM-4 negative. Oral treatment with the mucosal adjuvant cholera toxin (CT induces expression of TIM-4 on a proportion of CD103+ CD11b+ DC in the LP. TIM-4+ DC selectively express high levels of co-stimulatory molecules after CT treatment and are detected in the mLN a short time after appearing in the LP. Importantly, intestinal macrophages and DC expressing TIM-4 are more efficient than their TIM-4 negative counterparts at taking up apoptotic cells and soluble antigen ex vivo. Taken together, our results show that CT induces phenotypic changes to migratory intestinal DC that may impact their ability to take up local antigens and in turn promote the priming of mucosal immunity.

  20. Diagnosis of intestinal and extra intestinal amoebiasis

    International Nuclear Information System (INIS)

    Lopez, Myriam Consuelo; Quiroz, Damian Arnoldo; Pinilla, Analida Elizabeth

    2007-01-01

    The objective is to carry out a review of the national and international literature as of the XXth century in order to update the advances for the diagnosis of complex odd Entamoeba histolytic / Entamoeba dispar and that of intestinal and extra intestinal amoebiasis that may be of use to the scientific community. As well as to unify the diagnostic criteria of this parasitosis known as a public health problem, and as a consequence of that, optimize the quality of population care. Data source: there was a systematic search for the scientific literature Publisher in Spanish and English since 1960 until today, this selection started on the first semester of 2006 until 2007, in the development of the line on intestinal and extra-intestinal amoebiasis of the Medical School of the National University of Colombia. A retrospective search process was carried out, systematically reviewing the most relevant articles as well as the products of this research line. In deciding how to make this article, there was a continuous search in different data bases such as Medline, SciELO and other bases in the library of the National University of Colombia, as well as other classical books related to the subject. For that purpose the terms amoebiasis, odd Entamoeba histolytic, Entamoeba, diagnosis, epidemiology, dysentery, amoebic liver abscess, were used. Studies selection: titles and abstracts were reviewed to select the original publications and the most representative ones related to this article's subject. Data extraction: the articles were classified according to the subject, the chronology and the authors according to the scientific contribution to solve the problem. Synthesis of the data: in the fi rst instance, a chronological critical analysis was carried out to order and synthesize the progress made in the diagnosis until confirmation of the experts' agreements in the field of amoebiasis was obtained throughout the world. Conclusion: this article summarizes what has taken place

  1. DNA extraction protocols may influence biodiversity detected in the intestinal microbiome: a case study from wild Prussian carp, Carassius gibelio.

    Science.gov (United States)

    Kashinskaya, Elena N; Andree, Karl B; Simonov, Evgeniy P; Solovyev, Mikhail M

    2017-02-01

    In this investigation, we examined the influence of different DNA extraction protocols on results obtained for intestinal microbiota of Prussian carp. We showed that significant differences were observed in numbers of reads, OTUs, Shannon index and taxonomic composition between two different DNA extraction protocols for intestine of Prussian carp (Carassius gibelio), and differences were also evident between microbial communities in the intestinal mucosa and intestinal content. Statistical analyses of 25 published articles also revealed a significant relationship between methods of DNA extraction and bacterial diversity in fish intestine of freshwater species. Microbial diversity, community structure, proportions of read numbers derived from each OTU and the total number of OTU's obtained by different DNA extraction protocols could lead to a bias in results obtained in some cases, and therefore researchers should be conservative in conclusions about community structures. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Enteric Helminths Promote Salmonella Coinfection by Altering the Intestinal Metabolome.

    Science.gov (United States)

    Reynolds, Lisa A; Redpath, Stephen A; Yurist-Doutsch, Sophie; Gill, Navkiran; Brown, Eric M; van der Heijden, Joris; Brosschot, Tara P; Han, Jun; Marshall, Natalie C; Woodward, Sarah E; Valdez, Yanet; Borchers, Christoph H; Perona-Wright, Georgia; Finlay, B Brett

    2017-04-15

    Intestinal helminth infections occur predominantly in regions where exposure to enteric bacterial pathogens is also common. Helminth infections inhibit host immunity against microbial pathogens, which has largely been attributed to the induction of regulatory or type 2 (Th2) immune responses. Here we demonstrate an additional 3-way interaction in which helminth infection alters the metabolic environment of the host intestine to enhance bacterial pathogenicity. We show that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells. Instead, helminth infection altered the metabolic profile of the intestine, which directly enhanced bacterial expression of Salmonella pathogenicity island 1 (SPI-1) genes and increased intracellular invasion. These data reveal a novel mechanism by which a helminth-modified metabolome promotes susceptibility to bacterial coinfection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics

    Directory of Open Access Journals (Sweden)

    Sander eDe Kivit

    2014-02-01

    Full Text Available The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g. inflammatory bowel disease, irritable bowel syndrome (IBS, allergic gastroenteritis (e.g. eosinophilic gastroenteritis and allergic IBS and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLR play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation.

  4. Intestinal anisakidosis (anisakiosis).

    Science.gov (United States)

    Takei, Hidehiro; Powell, Suzanne Z

    2007-10-01

    A case of intestinal anisakidosis in a 42-year-old man in Japan is presented. His chief complaint was an acute onset of severe abdominal pain. Approximately 12 hours before the onset of this symptom, he had eaten sliced raw mackerel ("sashimi"). Upper endoscopy was unremarkable. At exploratory laparotomy, an edematous, diffusely thickened segment of jejunum was observed, which was resected. The postoperative course was uneventful. The segment of small intestine showed a granular indurated area on the mucosal surface, and microscopically, a helminthic larva penetrating the intestinal wall, which was surrounded by a cuff of numerous neutrophils and eosinophils, as well as diffuse acute serositis. A cross section of the larva revealed the internal structures, pathognomonic of Anisakis simplex. Although anisakidosis is rare in the United States, with the increasing popularity of Japanese cuisine, the incidence is expected to increase, and pathologists should be familiar with this disease.

  5. Intestinal failure: a review

    Science.gov (United States)

    Allan, Philip; Lal, Simon

    2018-01-01

    Intestinal failure (IF) is the inability of the gut to absorb necessary water, macronutrients (carbohydrate, protein, and fat), micronutrients, and electrolytes sufficient to sustain life and requiring intravenous supplementation or replacement. Acute IF (types 1 and 2) is the initial phase of the illness and may last for weeks to a few months, and chronic IF (type 3) from months to years. The challenge of caring for patients with IF is not merely the management of the underlying condition leading to IF or the correct provision of appropriate nutrition or both but also the prevention of complications, whether thromboembolic phenomenon (for example, venous occlusion), central venous catheter-related bloodstream infection, IF-associated liver disease, or metabolic bone disease. This review looks at recent questions regarding chronic IF (type 3), its diagnosis and management, the role of the multidisciplinary team, and novel therapies, including hormonal treatment for short bowel syndrome but also surgical options for intestinal lengthening and intestinal transplant. PMID:29399329

  6. Small intestine diverticuli

    International Nuclear Information System (INIS)

    Pomakov, P.; Risov, A.

    1991-01-01

    The routine method of contrast matter passage applied to 850 patients with different gastrointestinal diseases proved inefficient to detect any small-intestinal diverticuli. The following modiffications of the method have been tested in order to improve the diagnostic possibilities of the X-ray: study at short intervals, assisted passage, enteroclysm, pharmacodynamic impact, retrograde filling of the ileum by irrigoscopy. Twelve diverticuli of the small-intestinal loops were identified: 5 Meckel's diverticuli, 2 solitary of which one of the therminal ileum, 2 double diverticuli and 1 multiple diverticulosis of the jejunum. The results show that the short interval X-ray examination of the small intestines is the method of choice for identifying local changes in them. The solitary diverticuli are not casuistic scarcity, its occurrence is about 0.5% at purposeful X-ray investigation. The assisted passage method is proposed as a method of choice for detection of the Meckel's diverticulum. 5 figs., 3 tabs. 18 refs

  7. Chronic intestinal pseudoobstruction syndrome

    International Nuclear Information System (INIS)

    Yeon, Kyung Mo; Seo, Jeong Kee; Lee, Yong Seok

    1992-01-01

    Chronic intestinal pseudoobstruction syndrome is a rare clinical condition in which impaired intestinal peristalsis causes recurrent symptoms of bowel obstruction in the absence of a mechanical occlusion. This syndrome may involve variable segments of small or large bowel, and may be associated with urinary bladder retention. This study included 6 children(3 boys and 3 girls) of chronic intestinal obstruction. Four were symptomatic at birth and two were of the ages of one month and one year. All had abdominal distension and deflection difficulty. Five had urinary bladder distension. Despite parenteral nutrition and surgical intervention(ileostomy or colostomy), bowel obstruction persisted and four patients expired from sepses within one year. All had gaseous distension of small and large bowel on abdominal films. In small bowel series, consistent findings were variable degree of dilatation, decreased peristalsis(prolonged transit time) and microcolon or microrectum. This disease entity must be differentiated from congenital megacolon, ileal atresia and megacystis syndrome

  8. Small Intestinal Infections.

    Science.gov (United States)

    Munot, Khushboo; Kotler, Donald P

    2016-06-01

    Small intestinal infections are extremely common worldwide. They may be bacterial, viral, or parasitic in etiology. Most are foodborne or waterborne, with specific etiologies differing by region and with diverse pathophysiologies. Very young, very old, and immune-deficient individuals are the most vulnerable to morbidity or mortality from small intestinal infections. There have been significant advances in diagnostic sophistication with the development and early application of molecular diagnostic assays, though these tests have not become mainstream. The lack of rapid diagnoses combined with the self-limited nature of small intestinal infections has hampered the development of specific and effective treatments other than oral rehydration. Antibiotics are not indicated in the absence of an etiologic diagnosis, and not at all in the case of some infections.

  9. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1.

    Directory of Open Access Journals (Sweden)

    Kimberley D Seed

    2012-09-01

    Full Text Available The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.

  10. Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1

    Science.gov (United States)

    Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2012-01-01

    The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317

  11. The intestinal calcistat

    Directory of Open Access Journals (Sweden)

    M K Garg

    2013-01-01

    Full Text Available The main physiological function of vitamin D is maintenance of calcium homeostasis by its effect on calcium absorption, and bone health in association with parathyroid gland. Vitamin D deficiency (VDD is defined as serum 25-hydroxy vitamin D (25OHD levels <20 ng/ml. Do all subjects with VDD have clinical disease according to this definition? We hypothesize that there exist an intestinal calcistat, which controls the calcium absorption independent of PTH levels. It consists of calcium sensing receptor (CaSR on intestinal brush border, which senses calcium in intestinal cells and vitamin D system in intestinal cells. CaSR dampens the generation of active vitamin D metabolite in intestinal cells and decrease active transcellular calcium transport. It also facilitates passive paracellular diffusion of calcium in intestine. This local adaptation adjusts the fractional calcium absorption according the body requirement. Failure of local adaptation due to decreased calcium intake, decreased supply of 25OHD, mutation in CaSR or vitamin D system decreases systemic calcium levels and systemic adaptations comes into the play. Systemic adaptations consist of rise in PTH and increase in active vitamin D metabolites. These adaptations lead to bone resorption and maintenance of calcium homeostasis. Not all subjects with varying levels of VDD manifest with secondary hyperparathyroidism and decreased in bone mineral density. We suggest that rise in PTH is first indicator of VDD along with decrease in BMD depending on duration of VDD. Hence, subjects with any degree of VDD with normal PTH and BMD should not be labeled as vitamin D deficient. These subjects can be called subclinical VDD, and further studies are required to assess beneficial effect of vitamin D supplementation in this subset of population.

  12. Human platelet antigens - 2013.

    Science.gov (United States)

    Curtis, B R; McFarland, J G

    2014-02-01

    To date, 33 human platelet alloantigens (HPAs) have been identified on six functionally important platelet glycoprotein (GP) complexes and have been implicated in alloimmune platelet disorders including foetal and neonatal alloimmune thrombocytopenia (FNAIT), posttransfusion purpura (PTP) and multitransfusion platelet refractoriness (MPR). The greatest number of recognized HPA (20 of 33) resides on the GPIIb/IIIa complex, which serves as the receptor for ligands important in mediating haemostasis and inflammation. These include HPA-1a, the most commonly implicated HPA in FNAIT and PTP in Caucasian populations. Other platelet GP complexes, GPIb/V/IX, GPIa/IIa and CD109, express the remaining 13 HPAs. Of the recognized HPAs, 12 occur as six serologically and genetically defined biallelic 'systems' where the -a form designates the higher frequency allele and the -b form, the lower. Twenty-one other HPAs are low-frequency or rare antigens for which postulated higher frequency -a alleles have not yet been identified as antibody specificities. In addition to the HPA markers, platelets also express ABO and human leucocyte antigen (HLA) antigens; antibodies directed at the former are occasionally important in FNAIT, and to the latter, in MPR. © 2013 International Society of Blood Transfusion.

  13. Intestinal microbiota and ulcerative colitis.

    Science.gov (United States)

    Ohkusa, Toshifumi; Koido, Shigeo

    2015-11-01

    There is a close relationship between the human host and the intestinal microbiota, which is an assortment of microorganisms, protecting the intestine against colonization by exogenous pathogens. Moreover, the intestinal microbiota play a critical role in providing nutrition and the modulation of host immune homeostasis. Recent reports indicate that some strains of intestinal bacteria are responsible for intestinal ulceration and chronic inflammation in inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD). Understanding the interaction of the intestinal microbiota with pathogens and the human host might provide new strategies treating patients with IBD. This review focuses on the important role that the intestinal microbiota plays in maintaining innate immunity in the pathogenesis and etiology of UC and discusses new antibiotic therapies targeting the intestinal microbiota. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Small intestine aspirate and culture

    Science.gov (United States)

    ... ency/article/003731.htm Small intestine aspirate and culture To use the sharing features on this page, please enable JavaScript. Small intestine aspirate and culture is a lab test to check for infection ...

  15. Experimental study on induction of intestinal metaplasia in the gastric mucosa

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu

    1979-01-01

    Attempts were made to learn about an optimal condition for the induction of intestinal metaplasia in the gastric mucosa. The gastric region of 5-week-old female A/HeJ mice or Wistar rats were irradiated with a total of 3,000 rad x-ray. In addition, the effect of immunization by allogenic stomach antigen on the intestinalization was studied in rats irradiated with 500 rads of x-ray daily for 6 times. Disaccharidase and alkaline phosphatase activities appeared but morphological intestinal metaplasia was not observed in A/HeJ mice irradiated with 500 rads x 6 of x-ray. The appearance of marker enzymes of small intestine preceeded that of crypts having a few goblet cell among normal gastric cells in rats irradiated with 500 rads of x-ray. In groups of rats injected with allogenic stomach antigen plus x-irradiation the process of intestinalization was accelerated. The similar results were obtained in rats irradiated with 1,000 rad of x-ray 3 times There was several glands with intestinal metaplasia in the intact pyloric mucosa, but not in the ulcerative mucosa. On the other hand, intestinal metaplasia developed more later in fundic mucosa which was usually atrophy due to the loss of parietal cell mass. There was an intimate association among the parietal cell loss in the fundic gland, a rise in pH value and the development of intestinal metaplasia. In above groups with a smaller divided dose no case of gastric adenocarcinoma was detected during observation period up to 52nd or 80th week. Although a larger divided dose (1,500 rads x 2) was effective in inducing gastric adenocarcinoma (57.1%) but less effective in inducing intestinalization of any kind. No evidence of direct association between intestinalization and cancerization in the glandular stomach was demonstrated in the present study. (author)

  16. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens.

    Science.gov (United States)

    Awad, Wageha A; Hess, Claudia; Hess, Michael

    2017-02-10

    Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird's health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction's molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as "leaky gut". A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can

  17. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis

    OpenAIRE

    Scher, Jose U; Sczesnak, Andrew; Longman, Randy S; Segata, Nicola; Ubeda, Carles; Bielski, Craig; Rostron, Tim; Cerundolo, Vincenzo; Pamer, Eric G; Abramson, Steven B; Huttenhower, Curtis; Littman, Dan R

    2013-01-01

    eLife digest We share our bodies with a diverse set of microorganisms, known collectively as the human microbiome. Indeed, estimates suggest that our bodies contain 10 times as many microbial cells as human cells. Our stomach and intestines alone are home to many hundreds and possibly thousands of microbial species that break down indigestible compounds and help to prevent the growth of harmful bacteria. The immune system must therefore learn to tolerate these microorganisms, while retaining ...

  18. Prevalence of intestinal parasites in breeding cattery cats in Japan.

    Science.gov (United States)

    Ito, Yoichi; Itoh, Naoyuki; Kimura, Yuya; Kanai, Kazutaka

    2016-10-01

    To address the lack of up-to-date published data, the present study assessed the prevalence of intestinal parasites in breeding catteries in Japan. Fresh faecal samples were randomly collected from 342 cats (aged 1 month to 12 years) in seven breeding catteries in Japan, located in prefectures of Nagano (n = 2), Saitama (n = 1), Aichi (n = 2), Gifu (n = 1) and Miyagi (n = 1), on a single occasion. The samples were tested for the presence of Giardia species copro-antigen using a commercially available enzyme-linked immunosorbent assay kit. Other intestinal parasites were identified microscopically using the formalin-ethyl acetate sedimentation technique. The total prevalence of intestinal parasites was 20.8%; only two genera of protozoa (Giardia species: 18.7% and Cystoisospora species: 5.0%) were detected. Coinfections of both protozoans were recorded in 2.9% of cats. In contrast, no helminths were detected. The presence of total infection, Giardia species, Cystoisospora species and multiple infections in cats intestinal parasites. Giardia species infection was present in samples from all breeding catteries, except for one facility. Cystoisospora species and coinfections were shown in four and two breeding catteries, respectively. The prevalence of intestinal parasites was markedly variable among the breeding catteries. The present study demonstrates the significance of Giardia species and Cystoisospora species infections in breeding cattery cats. Additionally, it is suggested that environmental contamination is the most important factor influencing the prevalence of protozoal infections in breeding catteries. © The Author(s) 2015.

  19. Stages of Small Intestine Cancer

    Science.gov (United States)

    ... all of an organ that contains cancer. The resection may include the small intestine and nearby organs (if the cancer has spread). The doctor may remove the section of the small intestine that contains cancer and perform an anastomosis (joining the cut ends of the intestine together). ...

  20. Spinal cord injury, immunodepression, and antigenic challenge.

    Science.gov (United States)

    Held, Katherine S; Lane, Thomas E

    2014-10-01

    The inability to effectively control microbial infection is a leading cause of morbidity and mortality in individuals affected by spinal cord injury (SCI). Available evidence from clinical studies as well as animal models of SCI demonstrate that increased susceptibility to infection is derived from disruption of central nervous system (CNS) communication with the host immune system that ultimately leads to immunodepression. Understanding the molecular and cellular mechanisms governing muted cellular and humoral responses that occur post-injury resulting in impaired host defense following infection is critical for improving the overall quality of life of individuals with SCI. This review focuses on studies performed using preclinical animal models of SCI to evaluate how injury impacts T and B lymphocyte responses following either viral infection or antigenic challenge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Intestinal inflammatory myofibroblastic tumour

    African Journals Online (AJOL)

    abdominal X-ray of patients 1, 3 and 4 demonstrated dilated small bowel loops with fluid levels in keeping with intestinal ... myxoid/vascular pattern characterised by a variable admixture of capillary-calibre blood vessels, .... in the present study had a past history of abdominal trauma or surgery. Ancillary histopathological ...

  2. Intestinal obstruction repair

    Science.gov (United States)

    ... Ileostomy and your diet Ileostomy - caring for your stoma Ileostomy - changing your pouch Ileostomy - discharge Ileostomy - what to ask your doctor Intestinal or bowel obstruction - discharge Low-fiber diet Surgical wound care - open Types of ileostomy When you have nausea ...

  3. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... obstruction. Brit. I. Surg. 1998; 85: 1071-1074. The acute abdomen: Intestinal obstruction. In: Primary surgery, Vol. 1. Edited by Maurice King et al. Oxford. Med. PubL, Oxford. 1990; 142-169. Fluids and electrolyte management. In: Essentials of pediatric surgery. Edited by Marc Rowe et al. Mosby,. St. Louis ...

  4. Intestinal Complications of IBD

    Science.gov (United States)

    ... localized pocket of pus caused by infection from bacteria. More common in Crohn’s than in colitis, an abscess may form in the intestinal wall—sometimes causing it to bulge out. Visible abscesses, such as those around the anus, look like boils and treatment often involves lancing. Symptoms of ...

  5. Intestinal failure in childhood

    African Journals Online (AJOL)

    Short bowel syndrome (SBS) was one of the first recognised conditions of protracted IF. With the increasing and successful use of long-term PN during the last three decades, several other causes of IF have emerged. Long-term PN and home-PN are the mainstay of therapy, independent of the nature of “Intestinal failure” ...

  6. HIC1 links retinoic acid signalling to group 3 innate lymphoid cell-dependent regulation of intestinal immunity and homeostasis

    Science.gov (United States)

    Antignano, Frann; Korinek, Vladimir; Underhill, T. Michael

    2018-01-01

    The intestinal immune system must be able to respond to a wide variety of infectious organisms while maintaining tolerance to non-pathogenic microbes and food antigens. The Vitamin A metabolite all-trans-retinoic acid (atRA) has been implicated in the regulation of this balance, partially by regulating innate lymphoid cell (ILC) responses in the intestine. However, the molecular mechanisms of atRA-dependent intestinal immunity and homeostasis remain elusive. Here we define a role for the transcriptional repressor Hypermethylated in cancer 1 (HIC1, ZBTB29) in the regulation of ILC responses in the intestine. Intestinal ILCs express HIC1 in a vitamin A-dependent manner. In the absence of HIC1, group 3 ILCs (ILC3s) that produce IL-22 are lost, resulting in increased susceptibility to infection with the bacterial pathogen Citrobacter rodentium. Thus, atRA-dependent expression of HIC1 in ILC3s regulates intestinal homeostasis and protective immunity. PMID:29470558

  7. Glycan complexity dictates microbial resource allocation in the large intestine

    Science.gov (United States)

    The structure of the human gut microbiota, which impacts on the health of the host, is controlled by complex dietary carbohydrates and members of the Bacteroidetes phylum are the major contributors to the degradation of complex dietary carbohydrates. The extent to which complex dietary carbohydrates...

  8. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.

    Science.gov (United States)

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.

  9. The human intestinal microbiome: a new frontier of human biology.

    Science.gov (United States)

    Hattori, Masahira; Taylor, Todd D

    2009-02-01

    To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health.

  10. Cancer testis antigen and immunotherapy

    Directory of Open Access Journals (Sweden)

    Krishnadas DK

    2013-04-01

    Full Text Available Deepa Kolaseri Krishnadas, Fanqi Bai, Kenneth G Lucas Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA Abstract: The identification of cancer testis (CT antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1, melanoma antigen family A, 3 (MAGE-A3, and New York esophageal squamous cell carcinoma-1 (NY-ESO-1 in various malignancies, and presents our current understanding of CT antigen based immunotherapy. Keywords: cancer testis antigens, immunotherapy, vaccine

  11. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens

    Science.gov (United States)

    Kers, Jannigje G.; Velkers, Francisca C.; Fischer, Egil A. J.; Hermes, Gerben D. A.; Stegeman, J. A.; Smidt, Hauke

    2018-01-01

    The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial drug trials, to determine corresponding effects on the composition of intestinal microbiota. However, considerable variation of intestinal microbiota composition has been observed both within and across studies. Such variation may in part be attributed to technical factors, such as sampling procedures, sample storage, DNA extraction, the choice of PCR primers and corresponding region to be sequenced, and the sequencing platforms used. Furthermore, part of this variation in microbiota composition may also be explained by different host characteristics and environmental factors. To facilitate the improvement of design, reproducibility and interpretation of poultry microbiota studies, we have reviewed the literature on confounding factors influencing the observed intestinal microbiota in chickens. First, it has been identified that host-related factors, such as age, sex, and breed, have a large effect on intestinal microbiota. The diversity of chicken intestinal microbiota tends to increase most during the first weeks of life, and corresponding colonization patterns seem to differ between layer- and meat-type chickens. Second, it has been found that environmental factors, such as biosecurity level, housing, litter, feed access and climate also have an effect on the composition of the intestinal microbiota. As microbiota studies have to deal with many of these unknown or hidden host and environmental variables, the choice of study designs can have a great impact on study outcomes and interpretation of the data. Providing details on a broad range of host and environmental factors in articles and sequence data repositories is highly recommended. This creates opportunities to

  12. The role of CD103+ Dendritic cells in the intestinal mucosal immune system.

    Directory of Open Access Journals (Sweden)

    Darren Thomas Ruane

    2011-07-01

    Full Text Available While dendritic cells (DC are central to the induction and regulation of adaptive immunity, these cells are very heterogenous and specific subsets can be characterized based on the expression of cell surface markers and functional properties. Intestinal CD103+ DCs are the subject of particular interest due to their role in regulating mucosal immunity. Since the epithelial surfaces are constantly exposed to a high antigenic load, tight regulation of innate and adaptive intestinal immune responses is vital as intestinal inflammation can have detrimental consequences for the host. Strategically positioned within the lamina propria, CD103+ DCs play an important role in maintaining intestinal immune homeostasis. These cells are required for the induction of tolerogenic immune responses and imprinting gut homing phenotypic changes on antigen-specific T cells. Recent insights into their development and regulatory properties have revealed additional immunoregulatory roles and further highlighted their importance for intestinal immunity. In this review we discuss the nature of the intestinal CD103+ DC population and the emerging roles of these cells in the regulation of mucosal immunity.

  13. Small intestinal transplantation.

    LENUS (Irish Health Repository)

    Quigley, E M

    2012-02-03

    The past few years have witnessed a considerable shift in the clinical status of intestinal transplantation. A great deal of experience has been gained at the most active centers, and results comparable with those reported at a similar stage in the development of other solid-organ graft programs are now being achieved by these highly proficient transplant teams. Rejection and its inevitable associate, sepsis, remain ubiquitous, and new immunosuppressant regimes are urgently needed; some may already be on the near horizon. The recent success of isolated intestinal grafts, together with the mortality and morbidity attendant upon the development of advanced liver disease related to total parenteral nutrition, has prompted the bold proposal that patients at risk for this complication should be identified and should receive isolated small bowel grafts before the onset of end-stage hepatic failure. The very fact that such a suggestion has begun to emerge reflects real progress in this challenging field.

  14. Microbial Observatory (ISS-MO): Microbial diversity

    Data.gov (United States)

    National Aeronautics and Space Administration — The environmental microbiome study was designed to decipher microbial diversity of the International Space Station surfaces in terms of spatial and temporal...

  15. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine

    Directory of Open Access Journals (Sweden)

    Rehman Ateequr

    2012-03-01

    Full Text Available Abstract Background Antibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia and the intestinal microbiota were analyzed. Results Compared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli. Conclusions Administration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable

  16. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  17. The value of surveillance cultures in neutropenic patients receiving selective intestinal decontamination

    NARCIS (Netherlands)

    de Jong, P. J.; de Jong, M. D.; Kuijper, E. J.; van der Lelie, H.

    1993-01-01

    230 neutropenic episodes in 84 patients with acute myeloid leukemia receiving selective intestinal decontamination were studied to evaluate the ability of surveillance cultures to monitor the efficacy of microbial suppression, to identify causative organisms in case of fever, and to predict

  18. Discovering naturally processed antigenic determinants that confer protective T cell immunity

    DEFF Research Database (Denmark)

    Gilchuk, Pavlo; Spencer, Charles T; Conant, Stephanie B

    2013-01-01

    CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infectio...

  19. Effect of Gamma radiation on microbial population of natural casings

    International Nuclear Information System (INIS)

    Trigo, M.J.; Fraqueza, M.J.

    1998-01-01

    The high microbial load of fresh and dry natural casings increases the risk of meat product contamination with pathogenic microorganims, agents of foodborn diseases. The aim of this work is to evaluate the killing effect of gamma radiation on the resident microbial population of pork and beef casings, to improve their hygiene and safety. Portions of fresh pork (small intestine and colon) and dry beef casings were irradiated in a Cobalt 60 source with absorbed doses of 1, 2, 5 and 10 kGy. The D 10 values of total aerobic microorganisms in the pork casings were 1.65 kGy for colon and 1.54 kGy for small intestine. The D 10 value found in beef dry casings (small intestine) was 10.17 kGy. Radurization with 5 kGy was able to reduce, at least, 6 logs the coliform bacteria in pork casings. The killing effect over faecal Streptococci was 4 logs for pork fresh casings and 2 logs for beef dry casings. Gamma radiation with 5 kGy proved to be a convenient method to reduce substantially the microbial population of pork fresh casings. Otherwise, the microbial population of beef dry casings still resisted to 10 kGy

  20. Intestinal microbiota, probiotics and human gastrointestinal cancers.

    Science.gov (United States)

    Orlando, Antonella; Russo, Francesco

    2013-06-01

    Cancers of the gastrointestinal tract account for 25 % of all cancers and for 9 % of all causes of cancer death in the world, so gastrointestinal cancers represent a major health problem. In the past decades, an emerging role has been attributed to the interactions between the gastrointestinal content and the onset of neoplasia. Thus, exogenous microbial administration of peculiar bacterial strains (probiotics) has been suggested as having a profound influence on multiple processes associated with a change in cancer risk. Probiotics are mono or mixed cultures of live microorganisms that might beneficially affect the host by improving the characteristics of indigenous microflora. Although the effects of probiotic administration has been intensively investigated in vitro, in animal models, in healthy volunteers, and in some human gastrointestinal diseases, very little is still known about the possible cross-interactions among probiotic administration, changes of intestinal flora, and the neoplastic transformation of gastrointestinal mucosa. Theoretically, probiotics are able to reduce cancer risk by a number of mechanisms: (a) binding and degradation of potential carcinogens; (b) quantitative, qualitative and metabolic alterations of the intestinal microflora; (c) production of anti-tumorigenic or anti-mutagenic compounds; (d) competitive action towards pathogenic bacteria; (e) enhancement of the host's immune response; (f) direct effects on cell proliferation. This review will attempt to highlight the literature on the most widely recognized effects of probiotics against neoplastic transformation of gastrointestinal mucosa and in particular on their effects on cell proliferation.

  1. Antigen antibody interactions

    CERN Document Server

    DeLisi, Charles

    1976-01-01

    1. 1 Organization of the Immune System One of the most important survival mechanisms of vertebrates is their ability to recognize and respond to the onslaught of pathogenic microbes to which they are conti- ously exposed. The collection of host cells and molecules involved in this recognition­ 12 response function constitutes its immune system. In man, it comprises about 10 cells 20 (lymphocytes) and 10 molecules (immunoglobulins). Its ontogenic development is c- strained by the requirement that it be capable of responding to an almost limitless variety of molecular configurations on foreign substances, while simultaneously remaining inert to those on self components. It has thus evolved to discriminate, with exquisite precision, between molecular patterns. The foreign substances which induce a response, called antigens, are typically large molecules such as proteins and polysaccharides. The portions of these with which immunoglobulins interact are called epitopes or determinants. A typical protein epitope m...

  2. Small intestinal cytochromes P450.

    Science.gov (United States)

    Kaminsky, L S; Fasco, M J

    1991-01-01

    Small intestinal cytochromes P450 (P450) provide the principal, initial source of biotransformation of ingested xenobiotics. The consequences of such biotransformation are detoxification by facilitating excretion, or toxification by bioactivation. P450s occur at highest concentrations in the duodenum, near the pylorus, and at decreasing concentrations distally--being lowest in the ileum. Highest concentrations occur from midvillus to villous tip, with little or none occurring in the crypts of Lieberkuehn. Microsomal P4503A, 2C8-10, and 2D6 forms have been identified in human small intestine, and P450s 2B1, possibly 2B2, 2A1, and 3A1/2 were located in endoplasmic reticulum of rodent small intestine, while P4502B4 has been purified to electrophoretic homogeneity from rabbit intestine. Some evidence indicates a differential distribution of P450 forms along the length of the small intestine and even along the villus. Rat intestinal P450s are inducible by xenobiotics--with phenobarbital (PB) inducing P4502B1, 3-methylcholanthrene (3-MC) inducing P4501A1, and dexamethasone inducing two forms of P4503A. Induction is most effectively achieved by oral administration of the agents, and is rapid--aryl hydrocarbon hydroxylase (AHH) was increased within 1 h of administration of, for example, 3-MC. AHH, 7-ethoxycoumarin O-deethylase (ECOD), and 7-ethoxyresorufin O-deethylase (EROD) have been used most frequently as substrates to characterize intestinal P450s. Dietary factors affect intestinal P450s markedly--iron restriction rapidly decreased intestinal P450 to beneath detectable values; selenium deficiency acted similarly but was less effective; Brussels sprouts increased intestinal AHH activity 9.8-fold, ECOD activity 3.2-fold, and P450 1.9-fold; fried meat and dietary fat significantly increased intestinal EROD activity; a vitamin A-deficient diet increased, and a vitamin A-rich diet decreased intestinal P450 activities; and excess cholesterol in the diet increased intestinal

  3. Cancer antigen 125 and prognosis

    DEFF Research Database (Denmark)

    Høgdall, Estrid Vilma Solyom

    2008-01-01

    cancer antigen 125 determination may be implemented into clinical practice, cut-off levels must be evaluated and internationally defined. Studies examining serum cancer antigen 125 levels after surgery but before, during, or after treatment confirmed that changes in serum levels are of prognostic value...

  4. Radioimmunoassays of hidden viral antigens

    International Nuclear Information System (INIS)

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-01-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure

  5. Effects of Bacillus subtilis-based direct-fed microbials on growth performance, immune characteristics and resistance against experimental coccidiosis in broiler chickens

    Science.gov (United States)

    The present experiment was conducted to study the effects of dietary Bacillus-based direct-fed microbials (DFMs) on cytokine expression patterns, intestinal intraepithelial lymphocyte (IEL) subpopulation, splenocyte proliferation, macrophage functions and resistance against experimental coccidiosis ...

  6. Engineering chemical interactions in microbial communities.

    Science.gov (United States)

    Kenny, Douglas J; Balskus, Emily P

    2018-03-05

    Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.

  7. Composition, diversity, and origin of the bacterial community in grass carp intestine.

    Directory of Open Access Journals (Sweden)

    Shangong Wu

    Full Text Available Gut microbiota has become an integral component of the host, and received increasing attention. However, for many domestic animals, information on the microbiota is insufficient and more effort should be exerted to manage the gastrointestinal bacterial community. Understanding the factors that influence the composition of microbial community in the host alimentary canal is essential to manage or improve the microbial community composition. In the present study, 16S rRNA gene sequence-based comparisons of the bacterial communities in the grass carp (Ctenopharyngodon idellus intestinal contents and fish culture-associated environments are performed. The results show that the fish intestinal microbiota harbors many cellulose-decomposing bacteria, including sequences related to Anoxybacillus, Leuconostoc, Clostridium, Actinomyces, and Citrobacter. The most abundant bacterial operational taxonomic units (OTUs in the grass carp intestinal content are those related to feed digestion. In addition, the potential pathogens and probiotics are important members of the intestinal microbiota. Further analyses show that grass carp intestine holds a core microbiota composed of Proteobacteria, Firmicutes, and Actinobacteria. The comparison analyses reveal that the bacterial community in the intestinal contents is most similar to those from the culture water and sediment. However, feed also plays significant influence on the composition of gut microbiota.

  8. Lipo sarcoma in small intestine

    International Nuclear Information System (INIS)

    Rodriguez Iglesias, J.; Pineyro Gutierrez, A.; Taroco Medeiros, L.; Fein Kolodny, C.; Navarrete Pedocchi, H.

    1987-01-01

    A case is presented by primitive liposarcoma in small intestine , an extensive bibliographical review foreigner and national in this case. It detach the exceptional of the intestinal topography of the liposarcomas; and making stress in the relative value of the computerized tomography and ultrasonography in the diagnose of the small intestine tumors . As well as in the sarcomas of another topography, chemo and radiotherapy associated to the exeresis surgery, it can be of benefit [es

  9. Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.

    Energy Technology Data Exchange (ETDEWEB)

    Valuckaite, V.; Zaborina, O.; Long, J.; Hauer-Jensen, M.; Wang, J.; Holbrook, C.; Zaborin, A.; Drabik, K.; Katdare, M.; Mauceri, H.; Weichselbaum, R.; Firestone, M. A.; Lee, K. Y.; Chang, E. B.; Matthews, J.; Alverdy, J. C.; Materials Science Division; Univ. of Chicago; Univ. of Arkansas

    2009-12-01

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgically placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.

  10. Microfluidics and microbial engineering.

    Science.gov (United States)

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-07

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  11. Systemic and intestinal levels of factor XIII-A

    DEFF Research Database (Denmark)

    Søndergaard, Christoffer; Kvist, Peter Helding; Seidelin, Jakob Benedict

    2016-01-01

    , indicating a reduction of the M2 phenotype with consequent loss of FXIII-A. No induction of iNOS positive macrophages was observed. Stimulation of naïve monocytes with physiological concentrations of pro-inflammatory mediators negatively affected the expression of FXIII-A. Measurements in plasma confirmed...... the loss of both FXIII antigen and activity during active disease. CONCLUSIONS: Intestinal inflammation in UC induces loss of M2 macrophages with subsequent loss of FXIII-A synthesis. The loss of cellular FXIII-A may impact migration and phagocytosis, and hence limit pathogen eradication in UC.......BACKGROUND: Subunit A of coagulation factor XIII (FXIII-A) is important for clot stability and acts in the subsequent wound healing process. Loss of plasma FXIII-A has been reported after surgery, sepsis, and inflammatory conditions. In the intestinal mucosa, FXIII-A is expressed by macrophages...

  12. Caecal metastasis from breast cancer presenting as intestinal obstruction

    Directory of Open Access Journals (Sweden)

    Siddiqui Muhammad S

    2008-05-01

    Full Text Available Abstract Background Gastrointestinal metastsasis from the breast cancer are rare. We report a patient who presented with intestinal obstruction due to solitary caecal metastasis from infiltrating ductal carcinoma of breast. We also review the available literature briefly. Case presentation A 72 year old lady with past history of breast cancer presented with intestinal obstruction due to a caecal mass. She underwent an emergency right hemicolectomy. The histological examination of the right hemicolectomy specimen revealed an adenocarcinoma in caecum staining positive for Cytokeratin 7 and Carcinoembryonic antigen and negative for Cytokeratin 20, CDX2 and Estrogen receptor. Eight out of 11 mesenteric nodes showed tumour deposits. A histological diagnosis of metastatic breast carcinoma was given. Conclusion To the best of our knowledge, this is the first case report of solitary metastasis to caecum from infiltrating ductal carcinoma of breast. Awareness of this possibility will aid in appropriate management of such patients.

  13. Genetic Factors in Animal Models of Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    R Balfour Sartor

    1995-01-01

    Full Text Available The critical importance of host genetic susceptibility in determining chronicity, aggressiveness and complications of intestinal inflammation is clearly demonstrated by studies of inbred rodents, transgenic rats and spontaneous mutants. Inbred Lewis rats challenged by purified bacterial cell wall polymers, indomethacin or small bowel bacterial overgrowth develop chronic granulomatous intestinal inflammation with fibrosis and extraintestinal manifestations, whereas Fischer (major histocompatibility complex identical to Lewis and Buffalo rats identically stimulated demonstrate only self-limited enterocolitis with no chronic inflammation, fibrosis, granulomas or extraintestinal inflammation. Similar differential patterns of intestinal inflammation are apparent in inbred mouse strains challenged with trinitrobenzene-sulphonic acid, Citrobacter freundii or backcrossed with T cell receptor deficient (knockout mice. The dominant role of genetic background in induction of intestinal inflammation is further documented by spontaneous colitis which develops in spontaneously mutant mice, cotton-top tamarins, human leukocyte antigen-B27/ β2 microglobulin transgenic rats and mice with targeted deletions of certain immunoregulatory cytokine and T lymphocyte genes. Identification of the immunological mechanisms of host genetic susceptibility and the genetic basis of spontaneous colitis should provide new insights into the pathogenesis of human inflammatory bowel disease.

  14. Homing of immune cells: role in homeostasis and intestinal inflammation.

    Science.gov (United States)

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  15. Regulation of intestinal permeability: The role of proteases.

    Science.gov (United States)

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-03-28

    The gastrointestinal barrier is - with approximately 400 m 2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.

  16. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    Science.gov (United States)

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P immersion, which was significantly higher than the levels of uptake measured in the other tissues (P immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P immersion, notably 50‰ salinity significantly enhanced antigen uptake and the expression of selected genes associated with antigen presentation, providing evidence for an enhanced immune activation of the fish's immune response by the hyperosmotic immersion treatment prior to vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Interactions between Cryptosporidium parvum and the Intestinal Ecosystem

    KAUST Repository

    Douvropoulou, Olga

    2017-04-01

    Cryptosporidium parvum is an apicomplexan protozoan parasite commonly causing diarrhea, particularly in infants in developing countries. The research challenges faced in the development of therapies against Cryptosporidium slow down the process of drug discovery. However, advancement of knowledge towards the interactions of the intestinal ecosystem and the parasite could provide alternative approaches to tackle the disease. Under this perspective, the primary focus of this work was to study interactions between Cryptosporidium parvum and the intestinal ecosystem in a mouse model. Mice were treated with antibiotics with different activity spectra and the resulted perturbation of the native gut microbiota was identified by microbiome studies. In particular, 16S amplicon sequencing and Whole Genome Sequencing (WGS) were used to determine the bacterial composition and the genetic repertoire of the fecal microbial communities in the mouse gut. Following alteration of the microbial communities of mice by application of antibiotic treatment, Cryptosporidium parasites were propagated in mice with perturbed microbiota and the severity of the infection was quantified. This approach enabled the prediction of the functional capacity of the microbial communities in the mouse gut and led to the identification of bacterial taxa that positively or negatively correlate in abundance with Cryptosporidium proliferation.

  18. Nutritional modulation of intestinal drug-metabolizing cytochrome P450 by butyrate of different origin in chicken.

    Science.gov (United States)

    Kulcsár, Anna; Mátis, Gábor; Molnár, Andor; Petrilla, Janka; Wágner, László; Fébel, Hedvig; Husvéth, Ferenc; Dublecz, Károly; Neogrády, Zsuzsanna

    2017-08-01

    Intestinal cytochrome P450 (CYP) enzymes play key role in the first pass metabolism of orally ingested xenobiotics, providing a primary metabolic barrier, being of special importance in maintaining animal health and production. This study was aimed to investigate how intestinal drug-metabolizing CYPs can be modulated by nutritional factors in broiler chicken. We investigated the effects of the natural growth promoter (n-)butyrate of different origin (feed supplementation of protected or non-protected forms and/or inducing caecal microbial production by supporting higher level of dietary non-starch polysaccharides [NSP]) on the activity of duodenal CYPs. To observe the connection between intestinal CYP activity and butyrate concentration, the distribution of differently originated butyrate was also assessed by measuring its concentration in various intestinal segments and different vessels of portal and systemic circulation. Butyrate of different origin showed varying distribution properties as being absorbed from different parts of the gastrointestinal tract. Intestinal CYP1A and CYP2H2 activities were increased by dietary butyrate supplementation and by the increased caecal microbial butyrate production, while CYP3A37 activity was minimally influenced by microbial butyrate only. The present study proved that both dietary and microbial butyrate could alter the activity of CYPs in the duodenal epithelium. Our findings suggest that intestinal CYPs could be induced not only by the intestinal luminal butyrate, but also from basolateral side, by the already absorbed butyrate. Such action of butyrate can be of special importance from food safety and pharmacotherapeutic point of view as it may modify the metabolism and intestinal kinetics of simultaneously applied xenobiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hereditary intestinal polyposis syndromes.

    Science.gov (United States)

    Dean, P A

    1996-01-01

    Colorectal cancer is one of the most common cancers in the world, with overall mortality exceeding 40% even with treatment. Effective efforts for screening and prevention are most likely to succeed in patient groups identified as high risk for colorectal cancer, most notably the hereditary intestinal polyposis syndromes. In these syndromes, benign polyps develop throughout the intestinal tract prior to the development of colorectal cancer, marking the patient and associated family for precancer diagnosis followed by either close surveillance or preventive treatment. This review article was undertaken to discuss the most recent developments in the knowledge of hereditary intestinal polyposis syndromes, emphasizing the clinical approach to diagnosis and treatment relative to preventing the development of cancer. The most common of the hereditary polyposis syndromes is familial adenomatous polyposis (FAP), which is characterized by the development of hundreds to thousands of adenomatous polyps in the colon followed at an early age by colorectal cancer. Colorectal cancer can be prevented in this autosomal dominant condition by prophylactic colectomy, though a risk for other tumors, including periampullary cancers, remains throughout life. Variant of FAP associated with fewer and smaller polyps (hereditary flat adenoma syndrome), or even CNS tumors (Turcot's syndrome) also carry this high risk of colorectal cancer. Hereditary hamartomatous polyposis syndromes such as juvenile polyposis and Peutz-Jeghers syndrome (also autosomal dominant) are characterized by less frequent polyps. Though these are generally benign polyps, they are also associated with a significant risk of colorectal and other cancers. Other polyposis syndromes, including neurofibromatosis and Cowden's disease, do not carry this increased risk of colorectal cancer, and therefore affect different treatment strategies. Analysis of genetic factors responsible for these and other hereditary syndromes with

  20. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract

    Science.gov (United States)

    Li, Dongyao; Chen, Haiqin; Mao, Bingyong; Yang, Qin; Zhao, Jianxin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei

    2017-04-01

    As a long-standing biomedical model, rats have been frequently used in studies exploring the correlations between gastrointestinal (GI) bacterial biota and diseases. In the present study, luminal and mucosal samples taken along the longitudinal axis of the rat digestive tract were subjected to 16S rRNA gene sequencing-based analysis to determine the baseline microbial composition. Results showed that the community diversity increased from the upper to lower GI segments and that the stratification of microbial communities as well as shift of microbial metabolites were driven by biogeographic location. A greater proportion of lactate-producing bacteria (such as Lactobacillus, Turicibacter and Streptococcus) were found in the stomach and small intestine, while anaerobic Lachnospiraceae and Ruminococcaceae, fermenting carbohydrates and plant aromatic compounds, constituted the bulk of the large-intestinal core microbiota where topologically distinct co-occurrence networks were constructed for the adjacent luminal and mucosal compartments. When comparing the GI microbiota from different hosts, we found that the rat microbial biogeography might represent a new reference, distinct from other murine animals. Our study provides the first comprehensive characterization of the rat GI microbiota landscape for the research community, laying the foundation for better understanding and predicting the disease-related alterations in microbial communities.

  1. Enhancing oral vaccine potency by targeting intestinal M cells.

    Directory of Open Access Journals (Sweden)

    Ali Azizi

    2010-11-01

    Full Text Available The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.

  2. Intestinal parasites : associations with intestinal and systemic inflammation

    NARCIS (Netherlands)

    Zavala, Gerardo A; García, Olga P; Camacho, Mariela; Ronquillo, Dolores; Campos-Ponce, Maiza; Doak, Colleen; Polman, Katja; Rosado, Jorge L

    2018-01-01

    AIMS: Evaluate associations between intestinal parasitic infection with intestinal and systemic inflammatory markers in school-aged children with high rates of obesity. METHODS AND RESULTS: Plasma concentrations of CRP, leptin, TNF-α, IL-6 and IL-10 were measured as systemic inflammation markers and

  3. Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes

    Science.gov (United States)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2009-01-01

    The designed benchtop technique is primed to detect bacteria and viruses from antigenic surface marker proteins in solutions, initially water. This inclusive bio-immunoassay uniquely combines nanofiltration and near infrared (NIR) dyes conjugated to antibodies to isolate and distinguish microbial antigens, using laser excitation and spectrometric analysis. The project goals include detecting microorganisms aboard the International Space Station, space shuttle, Crew Exploration Vehicle (CEV), and human habitats on future Moon and Mars missions, ensuring astronaut safety. The technique is intended to improve and advance water contamination testing both commercially and environmentally as well. Lastly, this streamlined technique poses to greatly simplify and expedite testing of pathogens in complex matrices, such as blood, in hospital and laboratory clinics.

  4. COLONOSCOPY AND CARCINOEMBRYONIC ANTIGEN VARIATIONS

    Directory of Open Access Journals (Sweden)

    Rita G SOUSA

    2014-03-01

    Full Text Available Context Colonoscopy is essential for synchronous and metachronous cancer detection. Carcinoembryonic antigen is a colorectal cancer tumor marker, important as a follow-up tool in patients with previous colorectal cancer. False-positive carcinoembryonic antigen elevation results in multiples exams and in patient anxiety. In literature, there is reference to transient carcinoembryonic antigen increase with colonoscopy. Objective To evaluate the influence of bowel preparation and colonoscopy in carcinoembryonic antigen blood levels. Methods We prospectively studied subjects that underwent routine colonoscopy in our institution. Blood samples were collected (1 before bowel cleaning, (2 before colonoscopy and (3 immediately after colonoscopy. Blood carcinoembryonic antigen levels were determined by “Sandwich” immunoassay. The statistical methods used were the paired t-test and ANOVA. Results Thirty-seven patients (22M/15F were included; age range 28-84 (mean 56 years. Mean carcinoembryonic antigen values were 1.9, 2 and 1.8 for (1, (2 and (3, respectively. An increase in value (2 compared with (1 was observed in 20/37 patients (P = 0.018, mainly in younger patients and in patients requiring more endoluminal interventions. In 29/37 patients, the CEA value decreased from (2 to (3 (P = 1.3x10-7. Conclusions A trend for carcinoembryonic antigen increase after bowel cleaning was observed, especially in younger patients and in patients with more endoluminal interventions, but without clinical meaning.

  5. Colonoscopy and carcinoembryonic antigen variations.

    Science.gov (United States)

    Sousa, Rita G; Nunes, Ana; Meira, Tânia; Carreira, Olga; Pires, Ana M; Freitas, João

    2014-01-01

    Colonoscopy is essential for synchronous and metachronous cancer detection. Carcinoembryonic antigen is a colorectal cancer tumor marker, important as a follow-up tool in patients with previous colorectal cancer. False-positive carcinoembryonic antigen elevation results in multiples exams and in patient anxiety. In literature, there is reference to transient carcinoembryonic antigen increase with colonoscopy. To evaluate the influence of bowel preparation and colonoscopy in carcinoembryonic antigen blood levels. We prospectively studied subjects that underwent routine colonoscopy in our institution. Blood samples were collected (1) before bowel cleaning, (2) before colonoscopy and (3) immediately after colonoscopy. Blood carcinoembryonic antigen levels were determined by "Sandwich" immunoassay. The statistical methods used were the paired t-test and ANOVA. Thirty-seven patients (22M/15F) were included; age range 28-84 (mean 56 years). Mean carcinoembryonic antigen values were 1.9, 2 and 1.8 for (1), (2) and (3), respectively. An increase in value (2) compared with (1) was observed in 20/37 patients (P = 0.018), mainly in younger patients and in patients requiring more endoluminal interventions. In 29/37 patients, the CEA value decreased from (2) to (3) (P = 1.3x10-7). A trend for carcinoembryonic antigen increase after bowel cleaning was observed, especially in younger patients and in patients with more endoluminal interventions, but without clinical meaning.

  6. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  7. Innate immune signalling at the intestinal epithelium in homeostasis and disease

    Science.gov (United States)

    Pott, Johanna; Hornef, Mathias

    2012-01-01

    The intestinal epithelium—which constitutes the interface between the enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. PMID:22801555

  8. The tripeptide feG ameliorates systemic inflammatory responses to rat intestinal anaphylaxis

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2002-08-01

    Full Text Available Abstract Background Food allergies are generally associated with gastrointestinal upset, but in many patients systemic reactions occur. However, the systemic effects of food allergies are poorly understood in experimental animals, which also offer the opportunity to explore the actions of anti-allergic drugs. The tripeptide D-phenylalanine-D-glutamate-Glycine (feG, which potentially alleviates the symptoms of systemic anaphylactic reactions, was tested to determine if it also reduced systemic inflammatory responses provoked by a gastric allergic reaction. Results Optimal inhibition of intestinal anaphylaxis was obtained when 100 μg/kg of feG was given 20 min before the rats were challenged with antigen. The increase in total circulating neutrophils and accumulation of neutrophils in the heart, developing 3 h and 24 h, respectively, after antigen challenge were reduced by both feG and dexamethasone. Both anti-inflammatory agents reduced the increase in vascular permeability induced by antigen in the intestine and the peripheral skin (pinna, albeit with different time courses. Dexamethasone prevented increases in vascular permeability when given 12 h before antigen challenge, whereas feG was effective when given 20 min before ingestion of antigen. The tripeptide prevented the anaphylaxis induced up regulation of specific antibody binding of a cell adhesion molecule related to neutrophil activation, namely CD49d (α4 integrin. Conclusions Aside from showing that intestinal anaphylaxis produces significant systemic inflammatory responses in non-intestinal tissues, our results indicate that the tripeptide feG is a potent inhibitor of extra-gastrointestinal allergic reactions preventing both acute (30 min and chronic (3 h or greater inflammatory responses.

  9. Unraveling the relationship between microbial translocation and systemic immune activation in HIV infection

    Science.gov (United States)

    Shan, Liang; Siliciano, Robert F.

    2014-01-01

    Chronic immune activation is a key factor in HIV-1 disease progression. The translocation of microbial products from the intestinal lumen into the systemic circulation occurs during HIV-1 infection and is associated closely with immune activation; however, it has not been determined conclusively whether microbial translocation drives immune activation or occurs as a consequence of HIV-1 infection. In an important study in this issue of the JCI, Kristoff and colleagues describe the role of microbial translocation in producing immune activation in an animal model of HIV-1 infection, SIV infection of pigtailed macaques. Blocking translocation of intestinal bacterial LPS into the circulation dramatically reduced T cell activation and proliferation, production of proinflammatory cytokines, and plasma SIV RNA levels. This study directly demonstrates that microbial translocation promotes the systemic immune activation associated with HIV-1/SIV infection. PMID:24837427

  10. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  11. Effects of specific carbohydrates on the intestinal microbiota

    DEFF Research Database (Denmark)

    Hemmingsen, Lene; Holck, Jesper; Meyer, Anne S.

    The current screening study aimed at testing a set of well-characterized carbohydrates derived from pectic oligosaccharides (POS) from sugar beet for their specific effect on intestinal microbiotas derived from healthy people and from patients suffering from the inflammatory bowel disease...... designated Ulcerative Colitis (UC). Two such oligosaccharides having different degrees of polymerization, in the following designated S1 and S2, respectively, were tested. Small scale anaerobic fermentation studies were performed to test the effect of S1 and S2 on the composition of the intestinal...... microbiotas. Changes in the microbial composition were addressed by Denaturing Gradient Gel Electrophoresis, DGGE, using Fructo- Oligosaccharides (FOS, a goldenstandard prebiotic) and glucose as reference substrates. Comparison between the DGGE profiles obtained by fermentations of S1, S2 and FOS showed...

  12. Hippo signalling directs intestinal fate

    DEFF Research Database (Denmark)

    le Bouteiller, Marie Catherine M; Jensen, Kim Bak

    2015-01-01

    Hippo signalling has been associated with many important tissue functions including the regulation of organ size. In the intestinal epithelium differing functions have been proposed for the effectors of Hippo signalling, YAP and TAZ1. These are now shown to have a dual role in the intestinal epit...

  13. MDCT in blunt intestinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Stefania [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy)]. E-mail: stefromano@libero.it; Scaglione, Mariano [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Tortora, Giovanni [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Martino, Antonio [Trauma Center, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Di Pietto, Francesco [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Romano, Luigia [Department of Diagnostic Imaging, ' A.Cardarelli' Hospital, 80131 Naples (Italy); Grassi, Roberto [Department ' Magrassi-Lanzara' , Section of Radiology, Second University of Naples, 80138 Naples (Italy)

    2006-09-15

    Injuries to the small and large intestine from blunt trauma represent a defined clinical entity, often not easy to correctly diagnose in emergency but extremely important for the therapeutic assessment of patients. This article summarizes the MDCT spectrum of findings in intestinal blunt lesions, from functional disorders to hemorrhage and perforation.

  14. MDCT in blunt intestinal trauma

    International Nuclear Information System (INIS)

    Romano, Stefania; Scaglione, Mariano; Tortora, Giovanni; Martino, Antonio; Di Pietto, Francesco; Romano, Luigia; Grassi, Roberto

    2006-01-01

    Injuries to the small and large intestine from blunt trauma represent a defined clinical entity, often not easy to correctly diagnose in emergency but extremely important for the therapeutic assessment of patients. This article summarizes the MDCT spectrum of findings in intestinal blunt lesions, from functional disorders to hemorrhage and perforation

  15. Intravenous injection of endogenous microbial components abrogates DSS-induced colitis.

    Science.gov (United States)

    Sydora, Beate C; Albert, Eric J; Foshaug, Rae R; Doyle, Jason S G; Churchill, Thomas A; Fedorak, Richard N

    2012-02-01

    The etiology of inflammatory bowel diseases (IBD) is largely unknown, but appears to be perpetuated by uncontrolled responses to antigenic components of the endogenous flora. Tolerance to antigenic stimulation can be achieved by exposure to a given antigen in high amounts (high dose tolerance). Colitis induced by feeding of Dextran Sodium Sulfate (DSS) is an often-used animal model mimicking clinical and histological features of human IBD. We investigated whether treatment with high doses of endogenous bacterial components can affect the response to these antigenic components and thus impact the course of the inflammatory response induced by DSS. 129/SvEv mice were injected intravenously in the tail vein with lysates prepared from fecal material of conventionally-raised mice. Control mice received a solution of bacterial antigen-free lysates prepared from fecal material of germ-free mice. Seven days later, colitis was induced in these mice by introducing DSS (3.5%) in the drinking water for 5 days. Onset and course of the inflammatory response was monitored by assessment of weight loss. Mice were sacrificed at day 7 post colitis induction and tested for histopathologic injury, intestinal cytokine release, and systemic response to bacterial antigens. Intravenous injection with fecal lysates reduced intestinal and antigen-stimulated systemic pro-inflammatory cytokine release and prevented DSS-induced weight loss and intestinal injury. Pretreatment with high amount of endogenous bacterial components has a profound tolerogenic effect on the systemic and mucosal immune responses resulting in reduced intestinal inflammation and abrogates colitis-induced weight loss.

  16. An Ecological Network of Polysaccharide Utilization Among Human Intestinal Symbionts

    Science.gov (United States)

    Rakoff-Nahoum, Seth; Coyne, Michael J.; Comstock, Laurie E.

    2013-01-01

    Summary Background: The human intestine is colonized with trillions of microorganisms important to health and disease. There has been an intensive effort to catalog the species and genetic content of this microbial ecosystem. However, little is known of the ecological interactions between these microbes, a prerequisite to understanding the dynamics and stability of this host-associated microbial community. Here we perform a systematic investigation of public goods-based syntrophic interactions among the abundant human gut bacteria, the Bacteroidales. Results: We find evidence for a rich interaction network based on the breakdown and use of polysaccharides. Species that utilize a particular polysaccharide (producers) liberate polysaccharide breakdown products (PBP) that are consumed by other species unable to grow on the polysaccharide alone (recipients). Cross-species gene addition experiments demonstrate that recipients can grow on a polysaccharide if the producer-derived glycoside hydrolase, responsible for PBP generation, is provided. These producer-derived glycoside hydrolases are public goods transported extracellularly in outer membrane vesicles allowing for the creation of PBP and concomitant recipient growth spatially distant from the producer. Recipients can exploit these ecological interactions and conditionally outgrow producers. Finally, we show that these public good-based interactions occur among Bacteroidales species co-resident within a natural human intestinal community. Conclusions: This study examines public-goods based syntrophic interactions between bacterial members of the critically important gut microbial ecosystem. This polysaccharide-based network likely represents foundational relationships creating organized ecological units within the intestinal microbiota, knowledge of which can be applied to impact human health. PMID:24332541

  17. Antigenic relationships among four herpesviruses.

    Science.gov (United States)

    Blue, W T; Plummer, G

    1973-06-01

    Common viral antigens were detected, by fluorescent-antibody studies, in cells infected with herpes simplex virus 1, squirrel monkey herpesvirus 1, bovine rhinotracheitis, and equine abortion viruses. The two primate viruses showed slight cross-neutralization.

  18. HLA-B27 antigen

    Science.gov (United States)

    Human leukocyte antigen B27; Ankylosing spondylitis-HLA; Psoriatic arthritis-HLA; Reactive arthritis-HLA ... Erythrocyte sedimentation rate ( ESR ) Rheumatoid factor X-rays HLA testing is also used to match donated tissue ...

  19. Don’t forget the exogenous microbial transglutaminases: it is immunogenic and potentially pathogenic

    OpenAIRE

    Aaron Lerner; Torsten Matthias

    2016-01-01

    The exogenous microbial transglutaminase that imitates extensively the functions of the endogenous transglutaminases, is a universal protein cross-linker and translational modifier of peptides. The intestinal microbiome, dysbiome, pathobiome, probiotics and industrial processed food are at the origin of the luminal microbial transglutaminase daily cargo. It is hypothesized that those exogenous enzymes, are potential drivers of neurodegenerative and neuroinflammatory diseases via the gut lumin...

  20. Epicutaneous sensitization with protein antigen

    Directory of Open Access Journals (Sweden)

    I-Lin Liu

    2012-12-01

    Full Text Available In the past few decades there has been a progressive understanding that epicutaneous sensitization with protein antigen is an important sensitization route in patients with atopic dermatitis. A murine protein-patch model has been established, and an abundance of data has been obtained from experiments using this model. This review discusses the characteristics of epicutaneous sensitization with protein antigen, the induced immune responses, the underlying mechanisms, and the therapeutic potential.

  1. Rorγt+ innate lymphoid cells in intestinal homeostasis and immunity.

    Science.gov (United States)

    Aparicio-Domingo, Patricia; Cupedo, Tom

    2011-01-01

    Innate lymphoid cells (ILC) combine innate and adaptive immune functions and are part of the first line of defense against mucosal infections. ILC are set apart from adaptive lymphocytes by their independence on RAG genes and the resulting absence of specific antigen receptors. In this review, we will discuss the biology and function of intestinal ILC that express the nuclear hormone receptor Rorγt (encoded by the Rorc gene) and highlight their role in intestinal homeostasis and immunity. Copyright © 2011 S. Karger AG, Basel.

  2. Intestinal paragonimiasis with colonic ulcer and hematochezia in an elderly Taiwanese woman.

    Science.gov (United States)

    Liu, Chung-Te; Chen, Yen-Cheng; Chen, Tso-Hsiao; Barghouth, Ursula; Fan, Chia-Kwung

    2012-12-01

    A 94-year-old female with end-stage renal disease presents with fever, fatigue, and hematochezia. She had previously resided in Hunan Province, China, and Myanmar, and she immigrated to Taiwan 30 years ago. Colonoscopy revealed a colonic ulcer. Biopsy of the colonic ulcer showed ulceration of the colonic mucosa, and many Paragonimus westermani-like eggs were noted. Serum IgG antibody levels showed strong reactivity with P. westermani excretory-secretory antigens by ELISA. Intestinal paragonimiasis was thus diagnosed according to the morphology of the eggs and serologic finding. After treatment with praziquantel, hematochezia resolved. The present case illustrates the extreme manifestations encountered in severe intestinal paragonimiasis.

  3. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-01-01

    (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional...... interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise....... permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional...

  4. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Adam C. N. Wong

    2016-03-01

    Full Text Available All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host–microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection.

  5. The brain-gut axis dysfunctions and hypersensitivity to food antigens in the etiopathogenesis of schizophrenia.

    Science.gov (United States)

    Karakuła-Juchnowicz, Hanna; Dzikowski, Michał; Pelczarska, Agnieszka; Dzikowska, Izabela; Juchnowicz, Dariusz

    2016-01-01

    Despite over 100-year history of research on schizophrenia, its etiology is still not fully understood, which might be due to the significant heterogeneity in terms of both its course, as well as the etiopathogenesis. One of the best-proven mediating mechanisms in the development of schizophrenia is the immuno-inflammatory response, the sources of which are believed to be the dysfunctions of brain-gut axis and pathological processes occurring in the intestines. This paper is a review of the literature on this subject which presents factors both involved in the functioning of brain-gut axis and important for the development of schizophrenia, i.e. 1. intestinal microbiome (intestinal microbiota), 2. permeable intestine (leaky gut syndrome), 3. hypersensitivity to food antigens, including gluten and casein of cow's milk. Research results seem to be very promising and indicate the possibility of improved clinical outcomes in some patients with schizophrenia by modifying diet, use of probiotics, and the implementation of antibiotic therapy of specific treatment groups. However, further research is needed on links between the intestinal microbiome and intestinal function as factors mediating the activation of the immune system and the development and further course of schizophrenia.

  6. CDX2 homeoprotein is involved in the regulation of ST6GalNAc-I gene in intestinal metaplasia

    DEFF Research Database (Denmark)

    Pinto, Rita; Barros, Rita; Pereira-Castro, Isabel

    2015-01-01

    De novo expression of Sialyl-Tn (STn) antigen is one of the most common features of intestinal metaplasia (IM) and gastric carcinomas, and its biosynthesis has been mostly attributed to ST6GalNAc-I activity. However, the regulation of this glycosyltransferase expression is not elucidated. In IM l...

  7. Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs.

    Science.gov (United States)

    McCormack, Ursula M; Curião, Tânia; Buzoianu, Stefan G; Prieto, Maria L; Ryan, Tomas; Varley, Patrick; Crispie, Fiona; Magowan, Elizabeth; Metzler-Zebeli, Barbara U; Berry, Donagh; O'Sullivan, Orla; Cotter, Paul D; Gardiner, Gillian E; Lawlor, Peadar G

    2017-08-01

    Feed efficiency (FE) is critical in pig production for both economic and environmental reasons. As the intestinal microbiota plays an important role in energy harvest, it is likely to influence FE. Therefore, our aim was to characterize the intestinal microbiota of pigs ranked as low, medium, and high residual feed intake ([RFI] a metric for FE), where genetic, nutritional, and management effects were minimized, to explore a possible link between the intestinal microbiota and FE. Eighty-one pigs were ranked according to RFI between weaning and day 126 postweaning, and 32 were selected as the extremes in RFI (12 low, 10 medium, and 10 high). Intestinal microbiota diversity, composition, and predicted functionality were assessed by 16S rRNA gene sequencing. Although no differences in microbial diversity were found, some RFI-associated compositional differences were revealed, principally among members of Firmicutes , predominantly in feces at slaughter (albeit mainly for low-abundance taxa). In particular, microbes associated with a leaner and healthier host (e.g., Christensenellaceae , Oscillibacter , and Cellulosilyticum ) were enriched in low RFI (more feed-efficient) pigs. Differences were also observed in the ileum of low RFI pigs; most notably, Nocardiaceae ( Rhodococcus ) were less abundant. Predictive functional analysis suggested improved metabolic capabilities in these animals, especially within the ileal microbiota. Higher ileal isobutyric acid concentrations were also found in low RFI pigs. Overall, the differences observed within the intestinal microbiota of low RFI pigs compared with that of their high RFI counterparts, albeit relatively subtle, suggest a possible link between the intestinal microbiota and FE in pigs. IMPORTANCE This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may partly explain improved feed efficiency (FE) in low residual feed intake (RFI) pigs. One of the main findings is

  8. Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs

    Science.gov (United States)

    McCormack, Ursula M.; Buzoianu, Stefan G.; Prieto, Maria L.; Ryan, Tomas; Varley, Patrick; Crispie, Fiona; Magowan, Elizabeth; Metzler-Zebeli, Barbara U.; Berry, Donagh; O'Sullivan, Orla; Cotter, Paul D.; Lawlor, Peadar G.

    2017-01-01

    ABSTRACT Feed efficiency (FE) is critical in pig production for both economic and environmental reasons. As the intestinal microbiota plays an important role in energy harvest, it is likely to influence FE. Therefore, our aim was to characterize the intestinal microbiota of pigs ranked as low, medium, and high residual feed intake ([RFI] a metric for FE), where genetic, nutritional, and management effects were minimized, to explore a possible link between the intestinal microbiota and FE. Eighty-one pigs were ranked according to RFI between weaning and day 126 postweaning, and 32 were selected as the extremes in RFI (12 low, 10 medium, and 10 high). Intestinal microbiota diversity, composition, and predicted functionality were assessed by 16S rRNA gene sequencing. Although no differences in microbial diversity were found, some RFI-associated compositional differences were revealed, principally among members of Firmicutes, predominantly in feces at slaughter (albeit mainly for low-abundance taxa). In particular, microbes associated with a leaner and healthier host (e.g., Christensenellaceae, Oscillibacter, and Cellulosilyticum) were enriched in low RFI (more feed-efficient) pigs. Differences were also observed in the ileum of low RFI pigs; most notably, Nocardiaceae (Rhodococcus) were less abundant. Predictive functional analysis suggested improved metabolic capabilities in these animals, especially within the ileal microbiota. Higher ileal isobutyric acid concentrations were also found in low RFI pigs. Overall, the differences observed within the intestinal microbiota of low RFI pigs compared with that of their high RFI counterparts, albeit relatively subtle, suggest a possible link between the intestinal microbiota and FE in pigs. IMPORTANCE This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may partly explain improved feed efficiency (FE) in low residual feed intake (RFI) pigs. One of the main findings is

  9. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  10. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  11. Microbial electrosynthetic cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Harold D.; Marshall, Christopher W.; Labelle, Edward V.

    2018-01-30

    Methods are provided for microbial electrosynthesis of H.sub.2 and organic compounds such as methane and acetate. Method of producing mature electrosynthetic microbial populations by continuous culture is also provided. Microbial populations produced in accordance with the embodiments as shown to efficiently synthesize H.sub.2, methane and acetate in the presence of CO.sub.2 and a voltage potential. The production of biodegradable and renewable plastics from electricity and carbon dioxide is also disclosed.

  12. What causes the spatial heterogeneity of bacterial flora in the intestine of zebrafish larvae?

    Science.gov (United States)

    Yang, Jinyou; Shimogonya, Yuji; Ishikawa, Takuji

    2018-06-07

    Microbial flora in the intestine has been thoroughly investigated, as it plays an important role in the health of the host. Jemielita et al. (2014) showed experimentally that Aeromonas bacteria in the intestine of zebrafish larvae have a heterogeneous spatial distribution. Although bacterial aggregation is important biologically and clinically, there is no mathematical model describing the phenomenon and its mechanism remains largely unknown. In this study, we developed a computational model to describe the heterogeneous distribution of bacteria in the intestine of zebrafish larvae. The results showed that biological taxis could cause the bacterial aggregation. Intestinal peristalsis had the effect of reducing bacterial aggregation through mixing function. Using a scaling argument, we showed that the taxis velocity of bacteria must be larger than the sum of the diffusive velocity and background bulk flow velocity to induce bacterial aggregation. Our model and findings will be useful to further the scientific understanding of intestinal microbial flora. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Olivia I. Coleman

    2018-01-01

    Full Text Available The gastrointestinal (GI tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD and colorectal cancer (CRC. Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.

  14. Modulation of human dendritic cell activity by Giardia and helminth antigens

    DEFF Research Database (Denmark)

    Summan, Anneka; Nejsum, Peter; Williams, Andrew R

    2018-01-01

    Giardia duodenalis is a common intestinal protozoan parasite known to modulate host immune responses, including dendritic cell (DC) function. Co-infections of intestinal pathogens are common, and thus DCs may be concurrently exposed to antigens from multiple parasites. Here, we investigated...... and tumour necrosis factor (TNF)-α secretion. G. duodenalis and T. suis products also consistently up-regulated IL-10 production. Despite a similar modulation of cytokine secretion, additive effects between Giardia and helminth products were not observed, indicating a dominant effect of a single parasite...... by modulating cytokine secretion and/or inducing apoptosis, which may be a parasite driven mechanism to dampen host immunity and establish chronic infections. The differential mechanisms of DC modulation by intestinal parasites warrant further attention. This article is protected by copyright. All rights...

  15. Successful capture of Toxocara canis larva antigens from human serum samples.

    Science.gov (United States)

    Rodríguez-Caballero, Aarón; Martínez-Gordillo, Mario Noé; Medina-Flores, Yolanda; Medina-Escutia, María Edith; Meza-Lucas, Antonio; Correa, Dolores; Caballero-Salazar, Silvia; Ponce-Macotela, Martha

    2015-05-08

    Toxocara canis is a nematode that parasitizes dogs, while humans are paratenic hosts. When humans are infected the migrating larvae damage the liver, lungs and even the nervous system. Larva migrans diagnosis is based on immunological techniques; however, the commercial immunodiagnostic kits detect anti-T. canis antibodies which may cross-react with other parasites, mainly nematodes with extra-intestinal migration. Moreover, antibodies do not necessarily reflect an active infection; so detection and quantification of circulating antigens may provide appropriate and timely information for treatment, which prevents irreversible damage. Here we report the standardization of a monoclonal antibody based antigen capture ELISA to diagnose human toxocariasis without cross-reaction. We developed anti-T. canis polyclonal antibodies in rabbits and a monoclonal antibody in mouse which did not cross-react with 15 antigens from several parasites. The sandwich ELISA standardization was performed using sera from mice experimentally infected. We tested the method using 29 positive and 58 negative human sera previously typified with a commercial kit, which detects antibodies. Only 5.0 μg/mL and 10 μg/mL polyclonal antibodies and monoclonal antibody, respectively, were needed in the sandwich ELISA standardization, detecting since 440 pg/mL larva antigens. Nine out of 29 antibody-positive sera were also positive for antigens and no false positive were found. Taking the antibody kit as the reference standard, the sensibility and specificity of the antigen test were 31% and 100%, respectively. With these tools we established a detection threshold as low as 440 pg/mL antigen. Monoclonal antibody is specific, and did not cross-react with antigens from other parasites. Detection of circulating antigens helps provide appropriate and timely treatment and prevents irreversible damage.

  16. Western blotting using Strongyloides ratti antigen for the detection of IgG antibodies as confirmatory test in human strongyloidiasis

    Directory of Open Access Journals (Sweden)

    Luciana Pereira Silva

    2003-07-01

    Full Text Available The present study was conducted to evaluate the frequency of antigenic components recognized by serum IgG antibodies in Western blotting (WB using a Strongyloides ratti larval extract for the diagnosis of human strongyloidiasis. In addition, the WB results were compared to the enzyme-linked immunosorbent assay (ELISA and the indirect immunofluorescence antibody test (IFAT results. Serum samples of 180 individuals were analyzed (80 with strongyloidiasis, 60 with other intestinal parasitoses, and 40 healthy individuals. S. ratti was obtained from fecal culture of experimentally infected Rattus rattus. For IFAT, S. ratti larvae were used as antigen and S. ratti larval antigenic extracts were employed in WB and ELISA. Eleven S. ratti antigenic components were predominantly recognized by IgG antibodies in sera of patients with strongyloidiasis. There was a positive concordance for the three tests in 87.5% of the cases of strongyloidiasis. The negative concordance in the three tests was 94% and 97.5%, in patients with other intestinal parasitoses and healthy individuals, respectively. In cases of positive ELISA and negative IFAT results, diagnosis could be confirmed by WB. ELISA, IFAT, and WB using S. ratti antigens showed a high rate of sensitivity and specificity. In conclusion, WB using S. ratti larval extract was able to recognize 11 immunodominant antigenic components, showing to be a useful tool to define the diagnosis in cases of equivocal serology.

  17. Megacystis microcolon intestinal hypoperistalsis syndrome

    Science.gov (United States)

    Hiradfar, Mehran; Shojaeian, Reza; Dehghanian, Paria; Hajian, Sara

    2013-01-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a multisystemic disorder in which impaired intestinal motor activity causes recurrent symptoms of intestinal obstruction in the absence of mechanical occlusion, associated with bladder distention without distal obstruction of the urinary tract. MMIHS and prune belly syndrome may overlap in most of the clinical features and discrimination of these two entities is important because the prognosis, management and consulting with parents are completely different. MMIHS outcome is very poor and in this article we present two neonates with MMIHS that both died in a few days. PMID:23729700

  18. INFANTS’ INTESTINAL COLICS. MODERN DATA

    Directory of Open Access Journals (Sweden)

    N.I. Ursova

    2011-01-01

    Full Text Available The article analyzes modern data on infants’ intestinal colics. Peculiarities of nutrition, intestinal microbiocenose in healthy infants, methods of colcs’ correction are discussed. Author describes the principles of probiotics choice based on their clinical effectiveness in infants. Milk formula «Nan Comfort» can be useful in prophylaxis and treatment of functional disorders of gastrointestinal tract in children.Key words: infants, gastrointestinal tract, anatomy, physiology, intestinal colics, nutrition, probiotics.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2011; 10 (2: 125–131

  19. Intestinal immunity in hypopituitary dwarf mice: effects of age.

    Science.gov (United States)

    Wang, Xin; Darcy, Justin; Cai, Chuan; Jin, Junfei; Bartke, Andrzej; Cao, Deliang

    2018-03-02

    Hypopituitary dwarf mice demonstrate advantages of longevity, but little is known of their colon development and intestinal immunity. Herein we found that Ames dwarf mice have shorter colon and colonic crypts, but larger ratio of mesenteric lymph nodes (MLNs) over body weight than age-matched wild type (WT) mice. In the colonic lamina propria (cLP) of juvenile Ames mice, more inflammatory neutrophils (Ā: 0.15% vs. 0.03% in WT mice) and monocytes (Ā: 7.97% vs. 5.15%) infiltrated, and antigen presenting cells CD11c+ dendritic cells (Ā: 1.39% vs. 0.87%), CD11b+ macrophages (Ā: 3.22% vs. 0.81%) and gamma delta T (γδ T) cells (Ā: 5.56% vs. 1.35%) were increased. In adult Ames dwarf mice, adaptive immune cells, such as IL-17 producing CD4+ T helper (Th17) cells (Ā: 8.3% vs. 4.7%) were augmented. In the MLNs of Ames dwarf mice, the antigen presenting and adaptive immune cells also altered when compared to WT mice, such as a decrease of T-regulatory (Treg) cells in juvenile Ames mice (Ā: 7.7% vs.10.5%), but an increase of Th17 cells (Ā: 0.627% vs.0.093%). Taken together, these data suggest that somatotropic signaling deficiency influences colon development and intestinal immunity.

  20. Causality of small and large intestinal microbiota in weight regulation and insulin resistance.

    Science.gov (United States)

    Scheithauer, Torsten P M; Dallinga-Thie, Geesje M; de Vos, Willem M; Nieuwdorp, Max; van Raalte, Daniël H

    2016-09-01

    The twin pandemics of obesity and Type 2 diabetes (T2D) are a global challenge for health care systems. Changes in the environment, behavior, diet, and lifestyle during the last decades are considered the major causes. A Western diet, which is rich in saturated fat and simple sugars, may lead to changes in gut microbial composition and physiology, which have recently been linked to the development of metabolic diseases. We will discuss evidence that demonstrates the influence of the small and large intestinal microbiota on weight regulation and the development of insulin resistance, based on literature search. Altered large intestinal microbial composition may promote obesity by increasing energy harvest through specialized gut microbes. In both large and small intestine, microbial alterations may increase gut permeability that facilitates the translocation of whole bacteria or endotoxic bacterial components into metabolic active tissues. Moreover, changed microbial communities may affect the production of satiety-inducing signals. Finally, bacterial metabolic products, such as short chain fatty acids (SCFAs) and their relative ratios, may be causal in disturbed immune and metabolic signaling, notably in the small intestine where the surface is large. The function of these organs (adipose tissue, brain, liver, muscle, pancreas) may be disturbed by the induction of low-grade inflammation, contributing to insulin resistance. Interventions aimed to restoring gut microbial homeostasis, such as ingestion of specific fibers or therapeutic microbes, are promising strategies to reduce insulin resistance and the related metabolic abnormalities in obesity, metabolic syndrome, and type 2 diabetes. This article is part of a special issue on microbiota.

  1. Dendritic cells from oral cavity induce Foxp3(+ regulatory T cells upon antigen stimulation.

    Directory of Open Access Journals (Sweden)

    Sayuri Yamazaki

    Full Text Available Evidence is accumulating that dendritic cells (DCs from the intestines have the capacity to induce Foxp3(+CD4(+ regulatory T cells (T-regs and regulate immunity versus tolerance in the intestines. However, the contribution of DCs to controlling immunity versus tolerance in the oral cavity has not been addressed. Here, we report that DCs from the oral cavity induce Foxp3(+ T-regs as well as DCs from intestine. We found that oral-cavity-draining cervical lymph nodes contained higher frequencies of Foxp3(+ T-regs and ROR-γt(+ CD4(+T cells than other lymph nodes. The high frequency of Foxp3(+ T-regs in the oral-cavity-draining cervical lymph nodes was not dependent on the Toll like receptor (TLR adaptor molecules, Myd88 and TICAM-1 (TRIF. In contrast, the high frequency of ROR-γt(+ CD4(+T cells relies on Myd88 and TICAM-1. In vitro data showed that CD11c(+ DCs from oral-cavity-draining cervical lymph nodes have the capacity to induce Foxp3(+ T-regs in the presence of antigen. These data suggest that, as well as in the intestinal environment, antigen-presenting DCs may play a vital role in maintaining tolerance by inducing Foxp3(+ T-regs in the oral cavity.

  2. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    International Nuclear Information System (INIS)

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-01-01

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber

  3. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gang [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Xu, Zhenjiang [Biofrontiers Institute, University of Colorado, Boulder, CO (United States); Tian, Xiangli, E-mail: xianglitian@ouc.edu.cn [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Dong, Shuanglin [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Peng, Mo [School of Animal Science and Technology, Jiangxi Agricultural University (China)

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber.

  4. Human sensitization to Ganoderma antigen.

    Science.gov (United States)

    Tarlo, S M; Bell, B; Srinivasan, J; Dolovich, J; Hargreave, F E

    1979-07-01

    Continuous air sampling with a Hirst volumetric spore trap over 3 yr has identified basidiospores of Ganoderma applanatum, a bracket fungus, as the most numerous fungal spores in two southern Ontario locations. The particle size is small and the calculated total spore mass approximates that of the spores of Cladosporium and Alternaria. Extracts of Ganoderma applanatum bracket fungus and spores in w/v, 1:10 concentration were prepared after collection of samples of the fungus from local woods. Skin prick tests with the extracts were performed in 294 consecutive children and adults attending two chest/allergy clinics. Of these patients, 182 (61.9%) reacted to 1 or more of the common inhalant allergen extracts and 24 (8.2%) reacted to Ganoderma antigen. There was no consistent relationship between reactivity to Ganoderma antigen and any of the common inhaled allergens. IgE-dependent sensitization to Ganoderma was confirmed by the radioallergosorbent test (RAST). Rabbit antisera to Ganoderma antigen preparations did not appear to cross-react with preparations of the various clinically important allergens. The findings indicate that Ganoderma antigen is commonly encountered, can induce human sensitization, and has unique antigenicity among common allergens of clinical importance.

  5. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation.

    Science.gov (United States)

    Koboziev, Iurii; Karlsson, Fridrik; Grisham, Matthew B

    2010-10-01

    The etiologies of the inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) have not been fully elucidated. However, there is very good evidence implicating T cell and T cell trafficking to the gut and its associated lymphoid tissue as important components in disease pathogenesis. The objective of this review is to provide an overview of the mechanisms involved in naive and effector T cell trafficking to the gut-associated lymphoid tissue (GALT; Peyer's patches, isolated lymphoid follicles), mesenteric lymph nodes and intestine in response to commensal enteric antigens under physiological conditions as well as during the induction of chronic gut inflammation. In addition, recent data suggests that the GALT may not be required for enteric antigen-driven intestinal inflammation in certain mouse models of IBD. These new data suggest a possible paradigm shift in our understanding of how and where naive T cells become activated to yield disease-producing effector cells. © 2010 New York Academy of Sciences.

  6. Human leukocyte antigen class II genes and Helicobacter pylori infection: does genotype overwhelm environmental exposure?

    Science.gov (United States)

    Russo, Antonio; Maconi, Giovanni; Lombardo, Claudia; Settesoldi, Daniela; Ferrari, Daniela; Ravagnani, Fernando; Andreola, Salvatore; Pizzetti, Paolo; Spinelli, Pasquale; Bertario, Lucio

    2003-09-01

    We investigated associations between human leukocyte antigen class II genes, environmental exposures, and Helicobacter pylori infection. Sixty-eight subjects with histologically confirmed H. pylori and intestinal metaplasia (cases) and 70 healthy subjects without H. pylori (controls) matched for age, sex, and year of birth were included in this study. All patients answered a detailed questionnaire designed to collect sociodemographic characteristics, smoking, alcohol drinking, and dietary habits. Human leukocyte antigen class II genes were typed with genomic DNA. The cytotoxins CagA and VacA were investigated with serology. Odds ratios and corresponding 95% confidence intervals were estimated from multivariate conditional logistic regression. Multiple correspondence analysis was used to represent the interrelationships of a multiple contingency table. Human leukocyte antigen DRB1, DQA1, and DQB1 genotypes were not significantly associated with H. pylori infection and intestinal metaplasia. No significant association with blood group or Lewis antigen system was found. However, multiple correspondence analysis clearly associated H. pylori with environmental exposure: the control group largely consumed olive oil, fresh fruits, and vegetables and histories of never or formerly smoking and the case group (those positive for H. pylori and metaplasia) largely consumed eggs, meat and butter and had histories of smoking cigarettes. These findings suggested that H. pylori infection is not influenced by a genetic compound and confirmed the relevance of environmental exposure.

  7. Disorders of the Small Intestine

    Science.gov (United States)

    ... that move down the intestine in a peristaltic fashion (Phase III). Phase III represents a continuation of ... Activities, Legislative & Regulatory Research Leadership Contact us News Industry Treatment News Medical News Legislative & Regulatory News Press ...

  8. Defence Mechanisms during Intestinal Infection

    Directory of Open Access Journals (Sweden)

    André Buret

    1991-01-01

    Full Text Available This review examines and compares host defence mechanisms during intestinal infection with three types of organisms: a virus, a bacterium and a nematode parasite (ie, transmissible gastroenteritis virus [TGEV], Helicobacter jejuni and Trichinella spiralis. Diarrhea is commonly associated with all of these infections. It appears that T spiralis initiates the most elaborate defence system of the three organisms, involving full range humoral and cellular immunity, as well as mucus hypersecretion, epithelial alterations, altered gut motility and parasite impairment (morphological and physiological. In contrast, intestinal defence against H jejuni and TGEV involves fewer components. The latter seems to initiate the most rudimentary host response. Despite such differences, these mechanisms exhibit many similarities, thus further illustrating the relatively limited repertoire of defence systems that the intestine can mount. The mediators translating the insult of any intestinal pathogen into a common response deserve further investigation.

  9. INTESTINAL INTUSSUSCEPTION DUE TO CONCURRENT ...

    African Journals Online (AJOL)

    Administrator

    Hymenolepis nana and Dentostomella ... worms (H. nana and D. translucida) were observed in the lumen of the intestine with severe cellular infiltration .... helminthosis and Balantidosis in Red monkey (Erythrocebus patas) in Ibadan Nigeria Nigerian ...

  10. Microbial communities in pre-columbian coprolites.

    Directory of Open Access Journals (Sweden)

    Tasha M Santiago-Rodriguez

    Full Text Available The study of coprolites from earlier cultures represents a great opportunity to study an "unaltered" composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures.

  11. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence......, from faecal samples of 124 European individuals. The gene set, ,150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes....... The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal...

  12. Postnatal development of intestinal immune system in piglets: implications for the process of weaning

    OpenAIRE

    Stokes , Christopher; Bailey , Michael; Haverson , Karin; Harris , Cecilla; Jones , Philip; Inman , Charlotte; Pié , Sandrine; Oswald , Isabelle; Williams , Barbara; Akkermans , Antoon; Sowa , Eveline; Rothkötter , Hermann-Josef; Miller , Bevis

    2004-01-01

    International audience; European-wide directives are in place to establish a sustainable production of pigs without using production enhancers and chemotherapeutics. Thus, an economically-viable pig production is now only possible when the physiological mechanisms of defense against pathogens and tolerance against nutrients and commensal bacteria in the intestinal immune system are taken into account. During the postnatal period the piglet is facing first the time large amounts of new antigen...

  13. Effect of polydextrose on intestinal microbes and immune functions in pigs.

    Science.gov (United States)

    Fava, Francesca; Mäkivuokko, Harri; Siljander-Rasi, Hilkka; Putaala, Heli; Tiihonen, Kirsti; Stowell, Julian; Tuohy, Kieran; Gibson, Glenn; Rautonen, Nina

    2007-07-01

    Dietary fibre has been proposed to decrease risk for colon cancer by altering the composition of intestinal microbes or their activity. In the present study, the changes in intestinal microbiota and its activity, and immunological characteristics, such as cyclo-oxygenase (COX)-2 gene expression in mucosa, in pigs fed with a high-energy-density diet, with and without supplementation of a soluble fibre (polydextrose; PDX) (30 g/d) were assessed in different intestinal compartments. PDX was gradually fermented throughout the intestine, and was still present in the distal colon. Irrespective of the diet throughout the intestine, of the four microbial groups determined by fluorescent in situ hybridisation, lactobacilli were found to be dominating, followed by clostridia and Bacteroides. Bifidobacteria represented a minority of the total intestinal microbiota. The numbers of bacteria increased approximately ten-fold from the distal small intestine to the distal colon. Concomitantly, also concentrations of SCFA and biogenic amines increased in the large intestine. In contrast, concentrations of luminal IgA decreased distally but the expression of mucosal COX-2 had a tendency to increase in the mucosa towards the distal colon. Addition of PDX to the diet significantly changed the fermentation endproducts, especially in the distal colon, whereas effects on bacterial composition were rather minor. There was a reduction in concentrations of SCFA and tryptamine, and an increase in concentrations of spermidine in the colon upon PDX supplementation. Furthermore, PDX tended to decrease the expression of mucosal COX-2, therefore possibly reducing the risk of developing colon cancer-promoting conditions in the distal intestine.

  14. Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflammation.

    Science.gov (United States)

    Andersen, Kirstin; Kesper, Marie Sophie; Marschner, Julian A; Konrad, Lukas; Ryu, Mi; Kumar Vr, Santhosh; Kulkarni, Onkar P; Mulay, Shrikant R; Romoli, Simone; Demleitner, Jana; Schiller, Patrick; Dietrich, Alexander; Müller, Susanna; Gross, Oliver; Ruscheweyh, Hans-Joachim; Huson, Daniel H; Stecher, Bärbel; Anders, Hans-Joachim

    2017-01-01

    CKD associates with systemic inflammation, but the underlying cause is unknown. Here, we investigated the involvement of intestinal microbiota. We report that collagen type 4 α3-deficient mice with Alport syndrome-related progressive CKD displayed systemic inflammation, including increased plasma levels of pentraxin-2 and activated antigen-presenting cells, CD4 and CD8 T cells, and Th17- or IFNγ-producing T cells in the spleen as well as regulatory T cell suppression. CKD-related systemic inflammation in these mice associated with intestinal dysbiosis of proteobacterial blooms, translocation of living bacteria across the intestinal barrier into the liver, and increased serum levels of bacterial endotoxin. Uremia did not affect secretory IgA release into the ileum lumen or mucosal leukocyte subsets. To test for causation between dysbiosis and systemic inflammation in CKD, we eradicated facultative anaerobic microbiota with antibiotics. This eradication prevented bacterial translocation, significantly reduced serum endotoxin levels, and fully reversed all markers of systemic inflammation to the level of nonuremic controls. Therefore, we conclude that uremia associates with intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation, which trigger the state of persistent systemic inflammation in CKD. Uremic dysbiosis and intestinal barrier dysfunction may be novel therapeutic targets for intervention to suppress CKD-related systemic inflammation and its consequences. Copyright © 2016 by the American Society of Nephrology.

  15. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini

    Directory of Open Access Journals (Sweden)

    Hideya Takahashi

    2014-04-01

    Full Text Available Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen. Results: Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  16. Naturally occurring glycoalkaloids in potatoes aggravate intestinal inflammation in two mouse models of inflammatory bowel disease.

    Science.gov (United States)

    Iablokov, Vadim; Sydora, Beate C; Foshaug, Rae; Meddings, Jon; Driedger, Darcy; Churchill, Tom; Fedorak, Richard N

    2010-11-01

    Inflammatory bowel disease (IBD) may be initiated following disruption of the intestinal epithelial barrier. This disruption, in turn, permits luminal antigens unfettered access to the mucosal immune system and leads to an uncontrolled inflammatory response. Glycoalkaloids, which are found in potatoes, disrupt cholesterol-containing membranes such as those of the intestinal epithelium. Glycoalkaloid ingestion through potatoes may play a role in the initiation and/or perpetuation of IBD. To determine if commercial and high glycoalkaloids containing fried potato skins aggravate intestinal inflammation using two different animal models of IBD. Fried potato skins from commercial potatoes containing low/medium glycoalkaloid levels and high glycoalkaloids potatoes were fed for 20 days to interleukin 10 gene-deficient mice and dextran sodium sulfate-induced colitic mice. Intestinal permeability, mucosal cytokine and myeloperoxidase levels and body weight were determined to assess intestinal injury. Deep frying potato skins markedly increased glycoalkaloid content. Interleukin 10 gene-deficient mice fed fried commercial potato skins with medium glycoalkaloid content exhibited significantly elevated levels of ileal IFN-γ relative to controls. Mice in the dextran sodium sulfate colitis model that were fed the same strain of potatoes demonstrated significantly elevated levels of pro-inflammatory cytokines IFN-γ, TNF-α, and IL-17 in the colon in addition to an enhanced colonic permeability. Inflammatory response was intensified when the mice were fed potatoes with higher glycoalkaloid contents. Our results demonstrate that consumption of potato skins containing glycoalkaloids can significantly aggravate intestinal inflammation in predisposed individuals.

  17. Parenteral Nutrition and Intestinal Failure.

    Science.gov (United States)

    Bielawska, Barbara; Allard, Johane P

    2017-05-06

    Severe short bowel syndrome (SBS) is a major cause of chronic (Type 3) intestinal failure (IF) where structural and functional changes contribute to malabsorption and risk of micronutrient deficiencies. Chronic IF may be reversible, depending on anatomy and intestinal adaptation, but most patients require long-term nutritional support, generally in the form of parenteral nutrition (PN). SBS management begins with dietary changes and pharmacologic therapies taking into account individual anatomy and physiology, but these are rarely sufficient to avoid PN. New hormonal therapies targeting intestinal adaptation hold promise. Surgical options for SBS including intestinal transplant are available, but have significant limitations. Home PN (HPN) is therefore the mainstay of treatment for severe SBS. HPN involves chronic administration of macronutrients, micronutrients, fluid, and electrolytes via central venous access in the patient's home. HPN requires careful clinical and biochemical monitoring. Main complications of HPN are related to venous access (infection, thrombosis) and metabolic complications including intestinal failure associated liver disease (IFALD). Although HPN significantly impacts quality of life, outcomes are generally good and survival is mostly determined by the underlying disease. As chronic intestinal failure is a rare disease, registries are a promising strategy for studying HPN patients to improve outcomes.

  18. Characterisation of Sarcoptes scabiei antigens.

    Science.gov (United States)

    Hejduk, Gloria; Hofstätter, Katja; Löwenstein, Michael; Peschke, Roman; Miller, Ingrid; Joachim, Anja

    2011-02-01

    In pig herds, the status of Sarcoptes scabiei infections is routinely monitored by serodiagnosis. Crude antigen for ELISA is usually prepared from S. scabiei var. canis or other variations and may lead to variations in the outcome of different tests, making assay standardisation difficult. This study was performed to investigate the antigen profiles of S. scabiei, including differences between hydrophilic and more hydrophobic protein fractions, by Western blotting with sera from pigs with defined infection status. Potential cross-reactivity among S. scabiei (var. canis, suis and bovis), Dermatophagoides farinae and Tyrophagus putrescentiae was also analysed. Hydrophobic S. scabiei antigens were detectable in the range of 40-50 kDa, whilst the hydrophilic fraction showed no specific antigenicity. In the hydrophobic fractions of D. farinae and T. putrescentiae, two major protein fractions in a similar size range could be identified, but no cross-reactivity with Sarcoptes-positive sera was detectable. However, examination of the hydrophilic fractions revealed cross-reactivity between Sarcoptes-positive sera and both the house dust mite and the storage mite in the range of 115 and 28/38 kDa. Specific bands in the same range (42 and 48 kDa) could be detected in blots from hydrophobic fractions of all three tested variations of S. scabiei (var. canis, bovis and suis). These results show that there are considerable differences in mange antibody reactivity, including reactions with proteins from free-living mites, which may interfere with tests based on hydrophilic antigens. Further refinement of antigen and the use of specific hydrophobic proteins could improve ELISA performance and standardisation.

  19. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  20. Phototrophic Microbial Mats

    NARCIS (Netherlands)

    Stal, L.J.; Bolhuis, H.; Cretoiu, M.S.

    2017-01-01

    Microbial mats are structured, small-scale microbial ecosystems, andsimilar as biofilms cover a substratum like a tissue. A general characteristic of amicrobial mat is the steep physicochemical gradients that are the result of the metabolicactivities of the mat microorganisms. Virtually every

  1. Effect of stress on Salmonella, coliforms and lactobacilli in different portions of the intestinal tract of swine

    Science.gov (United States)

    Farm animals are exposed to a variety of stressors during their lives. However, very little is known about the effect of stress on intestinal microbial populations. Therefore, two experiments were conducted to investigate the effect of common stressors (feed withdrawal, transportation, and lairage) ...

  2. Haemorrhage and intestinal lymphoma

    Directory of Open Access Journals (Sweden)

    Attilia M. Pizzini

    2013-04-01

    Full Text Available Background: The prevalence of coeliac disease is around 1% in general population but this is often unrecognised. The classical presentation of adult coeliac disease is characterized by diarrhoea and malabsorption syndrome, but atypical presentations are probably more common and are characterized by iron deficiency anaemia, weight loss, fatigue, infertility, arthralgia, peripheral neuropathy and osteoporosis. Unusual are the coagulation disorders (prevalence 20% and these are due to vitamin K malabsorption (prolonged prothrombin time. Clinical case: A 64-year-old man was admitted to our Department for an extensive spontaneous haematoma of the right leg. He had a history of a small bowel resection for T-cell lymphoma, with a negative follow-up and he didn’t report any personal or familiar history of bleeding. Laboratory tests showed markedly prolonged prothrombin (PT and partial-thromboplastin time (PTT, corrected by mixing studies, and whereas platelet count and liver tests was normal. A single dose (10 mg of intravenous vitamin K normalized the PT. Several days before the patient had been exposed to a superwarfarin pesticide, but diagnostic tests for brodifacoum, bromadiolone or difenacoum were negative. Diagnosis of multiple vitamin K-dependent coagulationfactor deficiencies (II, VII, IX, X due to intestinal malabsorption was made and coeliac disease was detected. Therefore the previous lymphoma diagnosis might be closely related to coeliac disease. Conclusions: A gluten free diet improves quality of life and restores normal nutritional and biochemical status and protects against these complications.

  3. Adult intestinal failure

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J., E-mail: Jdavidson@doctors.org.u [Salford Royal Hospital, Salford (United Kingdom); Plumb, A.; Burnett, H. [Salford Royal Hospital, Salford (United Kingdom)

    2010-05-15

    Intestinal failure (IF) is the inability of the alimentary tract to digest and absorb sufficient nutrition to maintain normal fluid balance, growth, and health. It commonly arises from disease affecting the mesenteric root. Although severe IF is usually managed in specialized units, it lies at the end of a spectrum with degrees of nutritional compromise being widely encountered, but commonly under-recognized. Furthermore, in the majority of cases, the initial enteric insult occurs in non-specialist IF centres. The aim of this article is to review the common causes of IF, general principles of its management, some commoner complications, and the role of radiology in the approach to a patient with severe IF. The radiologist has a crucial role in helping provide access for feeding solutions (both enteral and parenteral) and controlling sepsis (via drainage of collections) in an initial restorative phase of treatment, whilst simultaneously mapping bowel anatomy and quality, and searching for disease complications to assist the clinicians in planning a later, restorative phase of therapy.

  4. In-vitro anti-microbial and brine-shrimp lethality potential of the ...

    African Journals Online (AJOL)

    ethno-medicinal therapies ranging form oral, skin, gastro-intestinal to respiratory problems. The effects of this plant on the sensitivity of microorganisms need verification and its potential for cytotoxicity needs to be investigated. Thus, the anti-microbial and brine–shrimp lethality studies on the leaves and stem were carried ...

  5. Microbial phytase and liquid feeding increase phytate degradation in the gastrointestinal tract of growing pigs

    DEFF Research Database (Denmark)

    Blaabjerg, Karoline; Poulsen, Hanne Damgaard

    2010-01-01

    The quantitative degradation of inositol phosphates (InsP6 to InsP2) in the stomach and small intestine as influenced by microbial phytase and fermented liquid feeding was compared by combining the results from two experiments. Six pigs (49 kg) were fitted with gastric cannulas ( Exp. 1 ) and 3...

  6. [Intestinal failure: from adaptation to transplantation].

    Science.gov (United States)

    Messing, B; Corcos, O; Amiot, A; Joly, F

    2009-01-01

    Optimised Home Parenteral Nutrition is still, after 35 years of progress, the of benign but chronic Intestinal Failure. A better recognition of chronic Intestinal Failure, in its multiple facets, is warranted for a better approach of associated treatment to Home Parenteral Nutrition, i.e., intestinal trophic factors (growth hormone, Glucagon Like Peptide-2), rehabilitative surgery (reestablishment of colonic continuity, reverse jejunal segment in severe short gut type II) and/or reconstructive surgery (intestinal transplantation for end stage intestinal failure patients). Boundaries of permanent, judged irreversible, intestinal failure will be certainly modified in the following years by combining the various and effective therapies which optimise management by ameliorating absorption of the remnant short gut. The work done on short bowel syndrome in the past 20 years should be done in the next years for chronic-intestinal - pseudo-obstruction patients presenting with intestinal failure on a large European scale because chronic-intestinal - pseudo-obstruction is a group of heterogeneous but rare intestinal diseases. Intestinal transplantation is now a mature therapy with formal indication especially in case of Home Parenteral Nutrition failure (mainly Home Parenteral Nutrition-associated severe liver disease) where combined Liver-intestine transplantation is indicated before end-stage liver failure occurs. For high-risk patients, "preemptive" indication for intestinal transplantation alone will be discussed before home parenteral nutrition complications occur. No doubt that, for improving overall outcome in intestinal failure patients, reference centres should have in expert hands the whole spectrum of medicosurgical therapies for intestinal failure.

  7. [Farmer's lung antigens in Germany].

    Science.gov (United States)

    Sennekamp, J; Joest, M; Sander, I; Engelhart, S; Raulf-Heimsoth, M

    2012-05-01

    Recent studies suggest that besides the long-known farmer's lung antigen sources Saccharopolyspora rectivirgula (Micropolyspora faeni), Thermoactinomyces vulgaris, and Aspergillus fumigatus, additionally the mold Absidia (Lichtheimia) corymbifera as well as the bacteria Erwinia herbicola (Pantoea agglomerans) and Streptomyces albus may cause farmer's lung in Germany. In this study the sera of 64 farmers with a suspicion of farmer's lung were examined for the following further antigens: Wallemia sebi, Cladosporium herbarum, Aspergillus versicolor, and Eurotium amstelodami. Our results indicate that these molds are not frequent causes of farmer's lung in Germany. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  9. Common occurrence of antibacterial agents in human intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Fatima eDrissi

    2015-05-01

    Full Text Available Laboratory experiments have revealed many active mechanisms by which bacteria can inhibit the growth of other organisms. Bacteriocins are a diverse group of natural ribosomally-synthesized antimicrobial peptides produced by a wide range of bacteria and which seem to play an important role in mediating competition within bacterial communities. In this study, we have identified and established the structural classification of putative bacteriocins encoded by 317 microbial genomes in the human intestine. On the basis of homologies to available bacteriocin sequences, mainly from lactic acid bacteria, we report the widespread occurrence of bacteriocins across the gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in Proteobacteria, 34 in Bacteroidetes and 25 in Actinobacteria. Bacteriocins from gut bacteria displayed wide differences among phyla with regard to class distribution, net positive charge, hydrophobicity and secondary structure, but the α-helix was the most abundant structure. The peptide structures and physiochemical properties of bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent intestinal host defence against the proliferation of harmful bacteria. Meanwhile, the potentially harmful bacteria, including the Proteobacteria, displayed highly effective bacteriocins, probably supporting the virulent character of diseases. These findings highlight the eventual role played by bacteriocins in gut microbial competition and their potential place in antibiotic therapy.

  10. Meta'omic analytic techniques for studying the intestinal microbiome.

    Science.gov (United States)

    Morgan, Xochitl C; Huttenhower, Curtis

    2014-05-01

    Nucleotide sequencing has become increasingly common and affordable, and is now a vital tool for studies of the human microbiome. Comprehensive microbial community surveys such as MetaHit and the Human Microbiome Project have described the composition and molecular functional profile of the healthy (normal) intestinal microbiome. This knowledge will increase our ability to analyze host and microbial DNA (genome) and RNA (transcriptome) sequences. Bioinformatic and statistical tools then can be used to identify dysbioses that might cause disease, and potential treatments. Analyses that identify perturbations in specific molecules can leverage thousands of culture-based isolate genomes to contextualize culture-independent sequences, or may integrate sequence data with whole-community functional assays such as metaproteomic or metabolomic analyses. We review the state of available systems-level models for studies of the intestinal microbiome, along with analytic techniques and tools that can be used to determine its functional capabilities in healthy and unhealthy individuals. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Immunological aspects of interaction between rotavirus and the intestine in infancy.

    Science.gov (United States)

    Uhnoo, I; Dharakul, T; Riepenhoff-Talty, M; Ogra, P L

    1988-04-01

    Rotaviruses are important pathogens causing severe diarrhoea in human infants and young animals. Available information on the pathogenic mechanisms of and the immune response to rotaviruses is reviewed here. Studies in our laboratory using the suckling mouse model have focused on elucidating the nature of interaction between the virus and the gut, and on the importance of T and B cell mediated immunity in protection and recovery from the disease. Our data suggest that the age dependence of mouse rotavirus (MRV) infection is related to the presence of virus-specific receptors on the enterocytes. The uptake of rotavirus antigens appears to be limited to the epithelium associated with Peyer's patches. The antigen is transported to local and regional lymph nodes. Recent studies have indicated that rotavirus infection also increases the uptake of other macromolecules in the intestine. Rotavirus-specific mucosal IgA response seems to be related to the location and magnitude of MRV antigen in the lymph follicles in different segments of the small intestine. Studies in mice with different types of immunodeficiency suggest that a specific immune response is required for complete resolution of virus infection. Several parameters of immunity to rotavirus infection have been examined and, similar to other reports, local immunity in the intestine appears to have the most important role in protection. It also has been observed that nutritional factors may be important in modifying disease. However, there are still many questions to be answered concerning the role of immunity in mediating the pathogenesis of rotavirus infection.

  12. House dust mites as potential carriers for IgE sensitization to bacterial antigens.

    Science.gov (United States)

    Dzoro, S; Mittermann, I; Resch-Marat, Y; Vrtala, S; Nehr, M; Hirschl, A M; Wikberg, G; Lundeberg, L; Johansson, C; Scheynius, A; Valenta, R

    2018-01-01

    IgE reactivity to antigens from Gram-positive and Gram-negative bacteria is common in patients suffering from respiratory and skin manifestations of allergy, but the routes and mechanisms of sensitization are not fully understood. The analysis of the genome, transcriptome and microbiome of house dust mites (HDM) has shown that Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) species are abundant bacteria within the HDM microbiome. Therefore, our aim was to investigate whether HDM are carriers of bacterial antigens leading to IgE sensitization in patients suffering from atopic dermatitis. Plasma samples from patients with AD (n = 179) were analysed for IgE reactivity to a comprehensive panel of microarrayed HDM allergen molecules and to S. aureus and E. coli by IgE immunoblotting. Antibodies specific for S. aureus and E. coli antigens were tested for reactivity to nitrocellulose-blotted extract from purified HDM bodies, and the IgE-reactive antigens were detected by IgE immunoblot inhibition experiments. IgE antibodies directed to bacterial antigens in HDM were quantified by IgE ImmunoCAP™ inhibition experiments. IgE reactivity to bacterial antigens was significantly more frequent in patients with AD sensitized to HDM than in AD patients without HDM sensitization. S. aureus and E. coli antigens were detected in immune-blotted HDM extract, and the presence of IgE-reactive antigens in HDM was demonstrated by qualitative and quantitative IgE inhibition experiments. House dust mites (HDM) may serve as carriers of bacteria responsible for the induction of IgE sensitization to microbial antigens. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  13. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei at different culture stages

    Directory of Open Access Journals (Sweden)

    Shenzheng Zeng

    2017-11-01

    Full Text Available Intestinal microbiota is an integral component of the host and plays important roles in host health. The pacific white shrimp is one of the most profitable aquaculture species commercialized in the world market with the largest production in shrimp consumption. Many studies revealed that the intestinal microbiota shifted significantly during host development in other aquaculture animals. In the present study, 22 shrimp samples were collected every 15 days from larval stage (15 day post-hatching, dph to adult stage (75 dph to investigate the intestinal microbiota at different culture stages by targeting the V4 region of 16S rRNA gene, and the microbial function prediction was conducted by PICRUSt. The operational taxonomic unit (OTU was assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from 585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobacteria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera were Candidatus_Xiphinematobacter, Propionigenium, Synechococcus, Shewanella and Cetobacterium. Fifty-nine OTUs were detected in all samples, which were considered as the major microbes in intestine of shrimp. The intestinal microbiota was enriched with functional potentials that were related to transporters, ABC transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism and ribosome. All the results showed that the intestinal microbial composition, diversity and functions varied significantly at different culture stages, which indicated that shrimp intestinal microbiota depended on culture stages. These findings provided new evidence on intestinal microorganism microecology and greatly enhanced our understanding of stage

  14. Beneficial microbial signals from alternative feed ingredients: a way to improve sustainability of broiler production?

    Science.gov (United States)

    Van Immerseel, Filip; Eeckhaut, Venessa; Moore, Robert J; Choct, Mingan; Ducatelle, Richard

    2017-09-01

    More sustainable broiler meat production can be facilitated by the increased use of cheap by-products and local crops as feed ingredients, while not affecting animal performance and intestinal health, or even improving intestinal health, so that antibiotic usage is further reduced. To achieve this, knowledge of the relationship between the taxonomic and functional microbiota composition and intestinal health is required. In addition, the relationship between the novel feed sources, the substrates present in these feed sources, and the breakdown by enzymes and microbial networks can be crucial, because this can form the basis for development of tailored feed-type specific solutions for optimal digestion and animal performance. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Physiological, Pathological, and Therapeutic Implications of Zonulin-Mediated Intestinal Barrier Modulation

    Science.gov (United States)

    Fasano, Alessio

    2008-01-01

    The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields. PMID:18832585

  16. Effect of diet on the intestinal microbiota and its activity.

    Science.gov (United States)

    Zoetendal, Erwin G; de Vos, Willem M

    2014-03-01

    To summarize and discuss recent findings concerning diet-microbiota-health relations. Mouse and other model animal studies have provided detailed insight into host-microbiota interactions, but cannot be extrapolated easily to humans that have different dietary habits, intestinal architecture, and microbiota composition. In spite of the fact that all humans have a personalized microbiome, the discovery of the high-level clusters, such as enterotypes, offer great potential for stratifying individuals in intervention studies based on their intestinal microbiota. A highly diverse microbiota seems to be key to adult human health. Long-term dietary patterns have been found to be associated with specific microbiota compositions and in some cases enterotypes. Fecal transplantations indicate that homeostasis can be restored and indicate that diet-microbiota-induced disorders can be improved by therapeutic modification of the microbiota. The specificity of complex carbohydrate conversion is the driving ecological force in the colon, while competition for sugars with the host is the driver for the small intestinal ecosystem. At both locations, the microbial fermentation of dietary components occurs in trophic chains and insight into these multispecies conversions is essential to understand the impact of diet on health. There are clear associations between the microbiota, our diet and our health. However, as microbiota correlations with human health and diet are generally based on baseline comparisons between populations, there is a need for dedicated dietary intervention studies in humans to differentiate between correlation and causality.

  17. Galacto-oligosaccharides and Colorectal Cancer: Feeding our Intestinal Probiome.

    Science.gov (United States)

    Bruno-Barcena, Jose M; Azcarate-Peril, M Andrea

    2015-01-01

    Prebiotics are ingredients selectively fermented by the intestinal microbiota that promote changes in the microbial community structure and/or their metabolism, conferring health benefits to the host. Studies show that β (1-4) galacto-oligosaccharides [β (1-4) GOS], lactulose and fructo-oligosaccharides increase intestinal concentration of lactate and short chain fatty acids, and stool frequency and weight, and they decrease fecal concentration of secondary bile acids, fecal pH, and nitroreductase and β-glucuronidase activities suggesting a clear role in colorectal cancer (CRC) prevention. This review summarizes research on prebiotics bioassimilation, specifically β (1-4) GOS, and their potential role in CRC. We also evaluate research that show that the impact of prebiotics on host physiology can be direct or through modulation of the gut intestinal microbiome, specifically the probiome (autochtonous beneficial bacteria), we present studies on a potential role in CRC progression to finally describe the current state of β (1-4) GOS generation for industrial production.

  18. Small Intestinal Bacterial Overgrowth: A Case-Based Review

    Directory of Open Access Journals (Sweden)

    Kristen H. Reynolds

    2015-11-01

    Full Text Available Small intestinal bacterial overgrowth (SIBO is a condition of increased microbial load in the small intestine. The microbes feed on dietary carbohydrates and starches via fermentation, leading to gas production, inflammation and damage to the lining of the small intestine. Clinical presentation is varied, including abdominal pain, bloating, malabsorption and systemic symptoms. SIBO is associated with many challenging and chronic conditions such as fibromyalgia, chronic fatigue and chronic pain syndromes, and has been shown to be a causative factor in two out of three cases of irritable bowel syndrome. Symptoms improve with antimicrobial treatment, but recurrence is common. Many providers may not be aware of SIBO. This narrative review highlights a clinical case and the most recent literature regarding SIBO, including history, clinical presentation, prevalence, pathophysiology, diagnostic workup, treatment and prevention. Integrative medicine approaches, including diet, supplements and manual therapies, are also reviewed. SIBO can be a challenging condition and requires an integrative, patient-centered approach. Further studies are needed to guide clinicians in the workup and treatment of SIBO.

  19. Diversity of human small intestinal Streptococcus and Veillonella populations.

    Science.gov (United States)

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

    2013-08-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Intestinal immune maturation is accompanied by temporal changes in the composition of the microbiota.

    Science.gov (United States)

    Den Hartog, G; De Vries-Reilingh, G; Wehrmaker, A M; Savelkoul, H F J; Parmentier, H K; Lammers, A

    2016-11-30

    In animals establishment of the intestinal microbial ecosystem is influenced by mucosal immune functions. As mucosal immune functions dynamically change during development of juvenile layer chicken, this study focused on dynamics in the ileal microbiota composition in relation to intestinal immune development. In addition, the levels of immunoglobulin (Ig) in serum and amount of bacteria coated with IgA, a hallmark of intestinal immune maturation, were analysed. The composition of the intestinal microbiota transiently changed at the age of 14-42 days compared to the microbiota composition before and after this period. This temporal deviation in microbiota composition was associated to a temporal increase in transcriptional activity of pro-inflammatory cytokine genes. Furthermore, before week two limited amounts of faecal bacteria were bound by IgM and from week two increasing amounts of bacteria were bound by IgA, reaching a maximal level of 70% of IgA-coated bacteria at 6 weeks of age. These data could indicate that prior to achievement of intestinal homeostasis at 6-10 weeks post hatch, activation of inflammatory pathways cause a temporal disturbance of the microbiota composition. This period of imbalance may be essential for adequate immune development and establishment of intestinal homeostasis.

  1. Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system

    Directory of Open Access Journals (Sweden)

    Marchès Olivier

    2011-05-01

    Full Text Available Abstract The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli.

  2. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism

    DEFF Research Database (Denmark)

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich

    2016-01-01

    , is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host......The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids....... Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also...

  3. The Effects of GH Transgenic Goats on the Microflora of the Intestine, Feces and Surrounding Soil.

    Directory of Open Access Journals (Sweden)

    Zekun Bao

    Full Text Available The development of genetically engineered animals has brought with it increasing concerns about biosafety issues. We therefore evaluated the risks of growth hormone from transgenic goats, including the probability of horizontal gene transfer and the impact on the microbial community of the goats' gastrointestinal tracts, feces and the surrounding soil. The results showed that neither the GH nor the neoR gene could be detected in the samples. Moreover, there was no significant change in the microbial community of the gastrointestinal tracts, feces and soil, as tested with PCR-denaturing gradient gel electrophoresis and 16S rDNA sequencing. Finally, phylogenetic analysis showed that the intestinal content, feces and soil samples all contained the same dominant group of bacteria. These results demonstrated that expression of goat growth hormone in the mammary of GH transgenic goat does not influence the microflora of the intestine, feces and surrounding soil.

  4. Maintenance of Distal Intestinal Structure in the Face of Prolonged Fasting: A Comparative Examination of Species From Five Vertebrate Classes.

    Science.gov (United States)

    McCue, Marshall D; Passement, Celeste A; Meyerholz, David K

    2017-12-01

    It was recently shown that fasting alters the composition of microbial communities residing in the distal intestinal tract of animals representing five classes of vertebrates [i.e., fishes (tilapia), amphibians (toads), reptiles (leopard geckos), birds (quail), and mammals (mice)]. In this study, we tested the hypothesis that the extent of tissue reorganization in the fasted distal intestine was correlated with the observed changes in enteric microbial diversity. Segments of intestine adjacent to those used for the microbiota study were examined histologically to quantify cross-sectional and mucosal surface areas and thicknesses of mucosa, submucosa, and tunica muscularis. We found no fasting-induced differences in the morphology of distal intestines of the mice (3 days), quail (7 days), or geckos (28 days). The toads, which exhibited a general increase in phylogenetic diversity of their enteric microbiota with fasting, also exhibited reduced mucosal circumference at 14 and 21 days of fasting. Tilapia showed increased phylogenetic diversity of their enteric microbiota, and showed a thickened tunica muscularis at 21 days of fasting; but this morphological change was not related to microbial diversity or absorptive surface area, and thus, is unlikely to functionally match the changes in their microbiome. Given that fasting caused significant increases and reductions in the enteric microbial diversity of mice and quail, respectively, but no detectable changes in distal intestine morphology, we conclude that reorganization is not the primary factor shaping changes in microbial diversity within the fasted colon, and the observed modest structural changes are more related to the fasted state. Anat Rec, 300:2208-2219, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Selection of protective antigens in Lawsonia intracellularis by reverse vaccinology

    DEFF Research Database (Denmark)

    Vadekær, Dorte Fink; Lundegaard, Claus; Riber, Ulla

    in Denmark. Experimental challenge studies previously performed at DTU-Vet show that a primary infection results in complete protection against reinfection due to induction of immunological memory. We aim to develop a subunit vaccine that mimics the induction of the immune response and hence causes...... membrane proteins, and these were analyzed and given a score for presence of B and T cell epitopes. Using another in silico technology platform, which identifies novel B cell antigens eliciting a highly protective immune response, we obtained a second list of potential vaccine candidates. Six proteins were......Lawsonia intracellularis is a bacterial pathogen that infects intestinal epithelial cells in pigs. This causes proliferative enteropathy, which is characterized by diarrhea and reduced growth, and L. intracellularis infection is one of the main reasons for antibiotic treatment of production pigs...

  6. HLA antigens and antigliadin antibodies in coeliac disease.

    Science.gov (United States)

    Bonamico, M; Morellini, M; Mariani, P; Triglione, P; Trabace, S; Lulli, P; Cappellacci, S; Ballati, G

    1991-01-01

    Thirty-six coeliac children on gluten-containing diet were studied for AGA IgA and IgG levels. Patients were typed for HLA-A, -B, -C, -DR, -DQ antigens and data were analysed for any correlation between HLA-DR phenotype and AGA levels. AGA IgA and/or IgG were present in all these children. Subjects negative for DR3 or DR7 showed lower AGA levels than those DR3 + and/or DR7 positive. The data suggest that these patients could escape diagnosis if screening for those requiring intestinal biopsy is based only on AGA assay. The observation that coeliac children negative for DR3 and DR7 showed lower AGA levels is consistent with clinical and genetic heterogeneity of coeliac disease.

  7. Modulating the Gut Micro-Environment in the Treatment of Intestinal Parasites.

    Science.gov (United States)

    Vitetta, Luis; Saltzman, Emma Tali; Nikov, Tessa; Ibrahim, Isabelle; Hall, Sean

    2016-11-16

    The interactions of micro-organisms cohabitating with Homo sapiens spans millennia, with microbial communities living in a symbiotic relationship with the host. Interacting to regulate and maintain physiological functions and immunological tolerance, the microbial community is able to exert an influence on host health. An example of micro-organisms contributing to an intestinal disease state is exhibited by a biodiverse range of protozoan and bacterial species that damage the intestinal epithelia and are therefore implicated in the symptoms of diarrhea. As a contentious exemplar, Blastocystis hominis is a ubiquitous enteric protist that can adversely affect the intestines. The symptoms experienced are a consequence of the responses of the innate immune system triggered by the disruption of the intestinal barrier. The infiltration of the intestinal epithelial barrier involves a host of immune receptors, including toll like receptors and IgM/IgG/IgA antibodies as well as CD8+ T cells, macrophages, and neutrophils. Whilst the mechanisms of interactions between the intestinal microbiome and protozoan parasites remain incompletely understood, it is acknowledged that the intestinal microbiota is a key factor in the pathophysiology of parasitic infections. Modulating the intestinal environment through the administration of probiotics has been postulated as a possible therapeutic agent to control the proliferation of intestinal microbes through their capacity to induce competition for occupation of a common biotype. The ultimate goal of this mechanism is to prevent infections of the like of giardiasis and eliminate its symptoms. The differing types of probiotics (i.e., bacteria and yeast) modulate immunity by stimulating the host immune system. Early animal studies support the potential benefits of probiotic administration to prevent intestinal infections, with human clinical studies showing probiotics can reduce the number of parasites and the severity of symptoms. The

  8. Concepts and applications for influenza antigenic cartography

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza antigenic cartography projects influenza antigens into a two or three dimensional map based on immunological datasets, such as hemagglutination inhibition and microneutralization assays. A robust antigenic cartography can facilitate influenza vaccine strain selection since the antigenic map can simplify data interpretation through intuitive antigenic map. However, antigenic cartography construction is not trivial due to the challenging features embedded in the immunological data, such as data incompleteness, high noises, and low reactors. To overcome these challenges, we developed a computational method, temporal Matrix Completion-Multidimensional Scaling (MC-MDS), by adapting the low rank MC concept from the movie recommendation system in Netflix and the MDS method from geographic cartography construction. The application on H3N2 and 2009 pandemic H1N1 influenza A viruses demonstrates that temporal MC-MDS is effective and efficient in constructing influenza antigenic cartography. The web sever is available at http://sysbio.cvm.msstate.edu/AntigenMap. PMID:21761589

  9. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    Science.gov (United States)

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Pharmacological and therapeutic effects of short-chain fatty acids in gastrointestinal and extra-intestinal disorders: evaluation of metabolic, hormonal and inflammatory parameters

    OpenAIRE

    Pirozzi, Claudio

    2016-01-01

    The short chain fatty acid (SCFA) butyrate, a main end product of microbial fermentation of dietary fibers in human intestine, plays an important role in the maintenance of intestinal homeostasis and overall health status. The effects exerted by butyrate are multiple and involve several distinct mechanisms of action including epigenetic modifications owing to its inhibitory effects on histone deacetylases, inhibition of NF-κB signaling, or direct agonism on the free fatty acid receptors. ...

  11. Nutrient tasting and signaling mechanisms in the gut V. Mechanisms of immunologic sensation of intestinal contents.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    Immune perception of intestinal contents reflects a functional dualism with systemic hyporesponsiveness to dietary antigens and resident microflora (oral tolerance) and active immune responses to mucosal pathogens. This facilitates optimal absorption of dietary nutrients while conserving immunologic resources for episodic pathogenic challenge. Discrimination between dangerous and harmless antigens within the enteric lumen requires continual sampling of the microenvironment by multiple potential pathways, innate and adaptive recognition mechanisms, bidirectional lymphoepithelial signaling, and rigorous control of effector responses. Errors in these processes disrupt mucosal homeostasis and are associated with food hypersensitivity and mucosal inflammation. Mechanisms of mucosal immune perception and handling of dietary proteins and other antigens have several practical and theoretical implications including vaccine design, therapy of systemic autoimmunity, and alteration of enteric flora with probiotics.

  12. Intestinal circulation during inhalation anesthesia

    International Nuclear Information System (INIS)

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-01-01

    This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of 86 Rb and 9-microns spheres labeled with 141 Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO 2 ) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines

  13. Modeling intestinal disorders using zebrafish.

    Science.gov (United States)

    Zhao, X; Pack, M

    2017-01-01

    Although the zebrafish was initially developed as a model system to study embryonic development, it has gained increasing attention as an advantageous system to investigate human diseases, including intestinal disorders. Zebrafish embryos develop rapidly, and their digestive system is fully functional and visible by 5days post fertilization. There is a large degree of homology between the intestine of zebrafish and higher vertebrate organisms in terms of its cellular composition and function as both a digestive and immune organ. Furthermore, molecular pathways regulating injury and immune responses are highly conserved. In this chapter, we provide an overview of studies addressing developmental and physiological processes relevant to human intestinal disease. These studies include those related to congenital disorders, host-microbiota interactions, inflammatory diseases, motility disorders, and intestinal cancer. We also highlight the utility of zebrafish to functionally validate candidate genes identified through mutational analyses and genome-wide association studies, and discuss methodologies to investigate the intestinal biology that are unique to zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Isotopic identification of intestinal strangulation

    International Nuclear Information System (INIS)

    Anderson, M.C.; Selby, J.B.

    1982-01-01

    A small series of eleven dogs prepared with a strangulating segment of jejunum demonstrated that a radionuclide, 99 mTc-labelled albumin, concentrates in the lumen and bowel wall of the affected intestinal segment. Modern scanning equipment accurately localized the strangulating loop. This technique has the potential of identifying patients with intestinal obstruction, in whom strangulation is a factor, prior to the development of impaired arterial inflow and frank gangrene. These findings confirmed earlier obstructions that were reported when nuclear scanning instrumentation was less sophisticated. Identification of patients at risk for intestinal strangulation requires a high index of suspicion. Excruciating cramping abdominal pain out of proportion to physical findings, roentgenogram evidence, and laboratory studies should alert the physician to the possibility of intestinal ischemia and closed loop obstruction. Radionuclide scanning in such cases may be of assistance in defining or excluding the diagnosis of a strangulating mechanism. The test is simple, relatively economical, and represents a low risk procedure to patients. It would have no place when the classic physical and laboratory findings of intestinal infarction are present

  15. Isotopic identification of intestinal strangulation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.C.; Selby, J.B.

    1982-12-01

    A small series of eleven dogs prepared with a strangulating segment of jejunum demonstrated that a radionuclide, /sup 99/mTc-labelled albumin, concentrates in the lumen and bowel wall of the affected intestinal segment. Modern scanning equipment accurately localized the strangulating loop. This technique has the potential of identifying patients with intestinal obstruction, in whom strangulation is a factor, prior to the development of impaired arterial inflow and frank gangrene. These findings confirmed earlier obstructions that were reported when nuclear scanning instrumentation was less sophisticated. Identification of patients at risk for intestinal strangulation requires a high index of suspicion. Excruciating cramping abdominal pain out of proportion to physical findings, roentgenogram evidence, and laboratory studies should alert the physician to the possibility of intestinal ischemia and closed loop obstruction. Radionuclide scanning in such cases may be of assistance in defining or excluding the diagnosis of a strangulating mechanism. The test is simple, relatively economical, and represents a low risk procedure to patients. It would have no place when the classic physical and laboratory findings of intestinal infarction are present.

  16. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis.

    Science.gov (United States)

    Magrone, Thea; Jirillo, Emilio

    2013-01-01

    Gut immune system is daily exposed to a plethora of antigens contained in the environment as well as in food. Both secondary lymphoid tissue, such as Peyer's patches, and lymphoid follicles (tertiary lymphoid tissue) are able to respond to antigenic stimuli releasing cytokines or producing antibodies (secretory IgA). Intestinal epithelial cells are in close cooperation with intraepithelial lymphocytes and possess Toll-like receptors on their surface and Nod-like receptors (NLRs) which sense pathogens or pathogen-associated molecular patterns. Intestinal microbiota, mainly composed of Bacteroidetes and Firmicutes, generates tolerogenic response acting on gut dendritic cells and inhibiting the T helper (h)-17 cell anti-inflammatory pathway. This is the case of Bacteroides fragilis which leads to the production of interleukin-10, an anti-inflammatory cytokine, from both T regulatory cells and lamina propria macrophages. Conversely, segmented filamentous bacteria rather induce Th17 cells, thus promoting intestinal inflammation. Intestinal microbiota and its toxic components have been shown to act on both Nod1 and Nod2 receptors and their defective signaling accounts for the development of inflammatory bowel disease (IBD). In IBD a loss of normal tolerance to intestinal microbiota seems to be the main trigger of mucosal damage. In addition, intestinal microbiota thanks to its regulatory function of gut immune response can prevent or retard neoplastic growth. In fact, chronic exposure to environmental microorganisms seems to be associated with low frequency of cancer risk. Major nutraceuticals or functional foods employed in the modulation of intestinal microbiota are represented by prebiotics, probiotics, polyunsaturated fatty acids, amino acids and polyphenols. The cellular and molecular effects performed by these natural products in terms of modulation of the intestinal microbiota and mostly attenuation of the inflammatory pathway are described.

  17. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response

    OpenAIRE

    Yang, Chin-An; Liang, Chao; Lin, Chia-Li; Hsiao, Chiung-Tzu; Peng, Ching-Tien; Lin, Hung-Chih; Chang, Jan-Gowth

    2017-01-01

    Background Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined. Methodology/Findings In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 ...

  18. Diversity of Nitrogen Fixation Genes in the Symbiotic Intestinal Microflora of the Termite Reticulitermes speratus

    OpenAIRE

    Ohkuma, M.; Noda, S.; Usami, R.; Horikoshi, K.; Kudo, T.

    1996-01-01

    The diversity of nitrogen-fixing organisms in the symbiotic intestinal microflora of a lower termite, Reticulitermes speratus, was investigated without culturing the resident microorganisms. Fragments of the nifH gene, which encodes the dinitrogenase reductase, were directly amplified from the DNA of the mixed microbial population in the termite gut and were clonally isolated. The phylogenetic analysis of the nifH product amino acid sequences showed that there was a remarkable diversity of ni...

  19. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.

    OpenAIRE

    Bercik Premysl; Denou Emmanuel; Collins Josh; Jackson Wendy; Lu Jun; Jury Jennifer; Deng Yikang; Blennerhassett Patricia; Macri Joseph; McCoy Kathy D; Verdu Elena F; Collins Stephen M

    2011-01-01

    BACKGROUND 38; AIMS Alterations in the microbial composition of the gastrointestinal tract (dysbiosis) are believed to contribute to inflammatory and functional bowel disorders and psychiatric comorbidities. We examined whether the intestinal microbiota affects behavior and brain biochemistry in mice. METHODS Specific pathogen free (SPF) BALB/c mice with or without subdiaphragmatic vagotomy or chemical sympathectomy or germ free BALB/c mice received a mixture of nonabsorbable antimicrobials (...

  20. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate...

  1. Raised serum IgA to common cell envelope antigens supports enterobacterial inductive contribution to pathogenesis of secondary ankylosing spondylitis.

    Science.gov (United States)

    van Bohemen, C G; Weterings, E; Nabbe, A J; Mulder, C J; Goei The, H S; Zanen, H C

    1987-04-01

    Ankylosing spondylitis (AS) is closely associated with the histocompatibility antigen HLA-B27. Pathogenesis of AS is thought to involve interactions between B27 and certain enterobacterial antigens. However, enterobacterial involvement is uncertain and contested by some. The present paper demonstrates raised serum IgA to a common enterobacterial heat modifiable major outer membrane protein (h-momp; Mr 35,000) in active AS (N = 25; IgA = 1485 +/- 20) compared with controls, who were hospital patients without known arthropathies or gastro-intestinal disease (N = 12; IgA = 548 +/- 59). Serum IgG and IgM did not differ statistically. Raised serum IgA to h-momp might indicate enterobacterial antigenic stimulation from the gastro-intestinal tract and thus support an inductive contribution of enterobacterial antigens to the pathogenesis of secondary AS. It does not necessarily imply direct involvement in the pathogenesis of primary AS. H-momp appears to be a convenient tool for serological studies of AS and at present is likely to be more suitable than other bacterial antigens.

  2. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    Science.gov (United States)

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  3. [DNA microarrays and their application in detecting and identifying intestinal pathogens].

    Science.gov (United States)

    Jin, Da-Zhi; Wen, Si-Yuan; Wang, Sheng-Qi

    2006-06-01

    DNA microarrays offer many advantages of high throughout, automation, rapid detection, and so on. Therefore, this technology had been used in many fields such as molecular epidemiology of bacteria, microbial gene identification, disease mechanism, gene mutation, gene expression identification, DNA sequencing and medicine screening etc. The assays for identifying pathogens using DNA microarrays reported aboard recently are introduced. The application of DNA microarrays in detecting and identifying intestinal pathogens mainly includes three aspects: the identification of toxin and characteristic genes of pathogens, the identification of bacterial DNA or RNA directly, the simultaneous detection of a large number of intestinal pathogens with the target - gene of ribosomal RNA. Because of its high efficiency, DNA microarrays is superior to other biological method. Obviously DNA microarrays technology may be useful in identifying intestinal pathogens and have a wide prospect.

  4. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  5. Screening Donors for Rare Antigen Constellations.

    Science.gov (United States)

    Wagner, Franz F

    2009-01-01

    SCREENING BLOOD DONORS FOR RARE ANTIGEN CONSTELLATIONS HAS BEEN IMPLEMENTED USING SIMPLE PCR METHODS: PCR with enzyme digestion has been used to type donor cohorts for Dombrock antigens, and PCR with sequence-specific priming to identify donors negative for antigens of high frequency. The advantages and disadvantages of the methods as well as their current state is discussed.

  6. Forum on Microbial Threats

    Science.gov (United States)

    2012-01-01

    communities adapt and respond to environmental stimuli; and potential applications for improving human, animal, plant, and ecosystem health... homeostasis ”, barrier integrity, and colonization re- sistance to pathogens. Research on these interactions will help to characterize microbial contributions

  7. Evolution of microbial pathogens

    National Research Council Canada - National Science Library

    DiRita, Victor J; Seifert, H. Steven

    2006-01-01

    ... A. Hogan vvi ■ CONTENTS 8. Evolution of Pathogens in Soil Rachel Muir and Man-Wah Tan / 131 9. Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of ...

  8. Methodological issues in the study of intestinal microbiota in irritable bowel syndrome.

    Science.gov (United States)

    Taverniti, Valentina; Guglielmetti, Simone

    2014-07-21

    Irritable bowel syndrome (IBS) is an intestinal functional disorder with the highest prevalence in the industrialized world. The intestinal microbiota (IM) plays a role in the pathogenesis of IBS and is not merely a consequence of this disorder. Previous research efforts have not revealed unequivocal microbiological signatures of IBS, and the experimental results are contradictory. The experimental methodologies adopted to investigate the complex intestinal ecosystem drastically impact the quality and significance of the results. Therefore, to consider the methodological aspects of the research on IM in IBS, we reviewed 29 relevant original research articles identified through a PubMed search using three combinations of keywords: "irritable bowel syndrome + microflora", "irritable bowel syndrome + microbiota" and "irritable bowel syndrome + microbiome". For each study, we reviewed the quality and significance of the scientific evidence obtained with respect to the experimental method adopted. The data obtained from each study were compared with all considered publications to identify potential inconsistencies and explain contradictory results. The analytical revision of the studies referenced in the present review has contributed to the identification of microbial groups whose relative abundance significantly alters IBS, suggesting that these microbial groups could be IM signatures for this syndrome. The identification of microbial biomarkers in the IM can be advantageous for the development of new diagnostic tools and novel therapeutic strategies for the treatment of different subtypes of IBS.

  9. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae

    Science.gov (United States)

    Campagna, Shawn R.; Blanchard, Eugene E.; Ronis, Martin J. J.

    2017-01-01

    Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these

  10. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  11. Unusual microbial xylanases from insect guts.

    Science.gov (United States)

    Brennan, YaLi; Callen, Walter N; Christoffersen, Leif; Dupree, Paul; Goubet, Florence; Healey, Shaun; Hernández, Myrian; Keller, Martin; Li, Ke; Palackal, Nisha; Sittenfeld, Ana; Tamayo, Giselle; Wells, Steve; Hazlewood, Geoffrey P; Mathur, Eric J; Short, Jay M; Robertson, Dan E; Steer, Brian A

    2004-06-01

    Recombinant DNA technologies enable the direct isolation and expression of novel genes from biotopes containing complex consortia of uncultured microorganisms. In this study, genomic libraries were constructed from microbial DNA isolated from insect intestinal tracts from the orders Isoptera (termites) and Lepidoptera (moths). Using a targeted functional assay, these environmental DNA libraries were screened for genes that encode proteins with xylanase activity. Several novel xylanase enzymes with unusual primary sequences and novel domains of unknown function were discovered. Phylogenetic analysis demonstrated remarkable distance between the sequences of these enzymes and other known xylanases. Biochemical analysis confirmed that these enzymes are true xylanases, which catalyze the hydrolysis of a variety of substituted beta-1,4-linked xylose oligomeric and polymeric substrates and produce unique hydrolysis products. From detailed polyacrylamide carbohydrate electrophoresis analysis of substrate cleavage patterns, the xylan polymer binding sites of these enzymes are proposed.

  12. Phylogenetic evidence for lateral gene transfer in the intestine of marine iguanas.

    Directory of Open Access Journals (Sweden)

    David M Nelson

    Full Text Available BACKGROUND: Lateral gene transfer (LGT appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT. CONCLUSION: Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas.

  13. Phylogenetic evidence for lateral gene transfer in the intestine of marine iguanas.

    Science.gov (United States)

    Nelson, David M; Cann, Isaac K O; Altermann, Eric; Mackie, Roderick I

    2010-05-24

    Lateral gene transfer (LGT) appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT. Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas.

  14. Phylogenetic Evidence for Lateral Gene Transfer in the Intestine of Marine Iguanas

    Science.gov (United States)

    Nelson, David M.; Cann, Isaac K. O.; Altermann, Eric; Mackie, Roderick I.

    2010-01-01

    Background Lateral gene transfer (LGT) appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. Methodology/Principal Findings We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT. Conclusion Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas. PMID:20520734

  15. Ocean microbial metagenomics

    Science.gov (United States)

    Kerkhof, Lee J.; Goodman, Robert M.

    2009-09-01

    Technology for accessing the genomic DNA of microorganisms, directly from environmental samples without prior cultivation, has opened new vistas to understanding microbial diversity and functions. Especially as applied to soils and the oceans, environments on Earth where microbial diversity is vast, metagenomics and its emergent approaches have the power to transform rapidly our understanding of environmental microbiology. Here we explore select recent applications of the metagenomic suite to ocean microbiology.

  16. Microbiome Heterogeneity Characterizing Intestinal Tissue and Inflammatory Bowel Disease Phenotype.

    Science.gov (United States)

    Tyler, Andrea D; Kirsch, Richard; Milgrom, Raquel; Stempak, Joanne M; Kabakchiev, Boyko; Silverberg, Mark S

    2016-04-01

    Inflammatory bowel disease has been associated with differential abundance of numerous organisms when compared to healthy controls (HCs); however, few studies have investigated variability in the microbiome across intestinal locations and how this variability might be related to disease location and phenotype. In this study, we have analyzed the microbiome of a large cohort of individuals recruited at Mount Sinai Hospital in Toronto, Canada. Biopsies were taken from subjects with Crohn's disease, ulcerative colitis, and HC, and also individuals having undergone ileal pouch-anal anastomosis for treatment of ulcerative colitis or familial adenomatous polyposis. Microbial 16S rRNA was sequenced using the Illumina MiSeq platform. We observed a great deal of variability in the microbiome characterizing different sampling locations. Samples from pouch and afferent limb were comparable in microbial composition. When comparing sigmoid and terminal ileum samples, more differences were observed. The greatest number of differentially abundant microbes was observed when comparing either pouch or afferent limb samples to sigmoid or terminal ileum. Despite these differences, we were able to observe modest microbial variability between inflammatory bowel disease phenotypes and HCs, even when controlling for sampling location and additional experimental factors. Most detected associations were observed between HCs and Crohn's disease, with decreases in specific genera in the families Ruminococcaceae and Lachnospiraceae characterizing tissue samples from individuals with Crohn's disease. This study highlights important considerations when analyzing the composition of the microbiome and also provides useful insight into differences in the microbiome characterizing these seemingly related phenotypes.

  17. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2015-07-01

    Full Text Available Fecal microbiota transplantation (FMT is a promising therapy, despite some reports of adverse side effects. Bacterial consortia transplantation (BCT for targeted restoration of the intestinal ecosystem is considered a relatively safe and simple procedure. However, no systematic research has assessed the effects of FMT and BCT on immune responses of intestinal mucosal barrier in patients. We conducted complementary studies in animal models on the effects of FMT and BCT, and provide recommendations for improving the clinical outcomes of these treatments. To establish the dysbiosis model, male BALB/c mice were treated with ceftriaxone intra-gastrically for 7 days. After that, FMT and BCT were performed on ceftriaxone-treated mice for 3 consecutive days to rebuild the intestinal ecosystem. Post-FMT and post-BCT changes of the intestinal microbial community and mucosal barrier functions were investigated and compared. Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability. These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines. After FMT and BCT, the intestinal microbiota recovered quickly, this was associated with better reconstruction of mucosal barriers and re-establishment of immune networks compared with spontaneous recovery (SR. Although based on a short-term study, our results suggest that FMT and BCT promote the re-establishment of intestinal microbial communities in mice with antibiotic-induced dysbiosis, and contribute to the temporal and spatial interactions between microbiota and mucosal barriers. The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins.

  18. The several elements of intestinal innate immune system at the beginning of the life of broiler chicks.

    Science.gov (United States)

    Eren, U; Kum, S; Nazligul, A; Gules, O; Aka, E; Zorlu, S; Yildiz, M

    2016-07-01

    Functional capacity of digestive system and intestinal adaptive immunity are immature at hatching of broiler chicks. Therefore, intestinal innate immunity after hatching is vital to young chicks. The purpose of this study was to investigate expression and tissue distributions of several elements of the innate immune system (i.e., TLR2, TLR4, CD83, and MHC class II expressing cells) in the intestine of one-day-old chicks. For this purpose, ileum and cecum were examined the under different conditions, which included the control and 1, 3, 6, 12, or 24 h after injection of lipopolysaccharide (LPS) and phosphate buffered saline. The findings indicated that regardless of the antigenic stimulation, Toll-like receptor (TLR) 2 and TLR4 expressing cells were present in the intestinal tissues of one-day-old chicks. We noticed that the intestinal segments have different TLR expression levels after LPS stimulation. Dendritic cells were identified, and they left the intestinal tissue after LPS treatment. MHC class II molecules were diffusely present in both the ileum and cecum. This study demonstrates that the intestinal tissue of one-day-old chicks has remarkable defensive material, including histological properties and several elements of the innate immune system. Microsc. Res. Tech. 79:604-614, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Analysis of the protective immune response following intramuscular vaccination of calves against the intestinal parasite Cooperia oncophora.

    Science.gov (United States)

    Van Meulder, F; Ratman, D; Van Coppernolle, S; Borloo, J; Li, R W; Chiers, K; Van den Broeck, W; De Bosscher, K; Claerebout, E; Geldhof, P

    2015-08-01

    Recently we reported the successful vaccination of calves against Cooperia oncophora with a double domain activation-associated secreted protein, purified from the excretory-secretory material of adult stage parasites. In an attempt to elucidate the immune mechanisms involved in protection, the humoral and cell-mediated immune responses following vaccination and infection were compared with non-vaccinated control animals. Antigen-specific IgG1, IgG2 and IgA levels were significantly increased in sera of vaccinated animals post vaccination, whereas no effect was observed for IgM. Antigen-specific intestinal IgG1 levels were significantly increased in the vaccinated animals, whereas no differences were observed for antigen-specific IgA, IgM and IgG2 levels. Upon re-stimulation in vitro with the vaccine antigen, a significant proliferation of both αβ- and γδ-T cells, and B cells, collected from mesenteric lymph nodes, was only observed in vaccinated animals. RNA-seq analysis of intestinal tissue yielded a list of 67 genes that were differentially expressed in vaccinated animals following challenge infection, amongst which were several cell adhesion molecules, lectins and glycosyl transferases. A correlation analysis between all immunological and parasitological parameters indicated that intestinal anti-double domain activation-associated secreted protein IgG1 levels correlated negatively with cumulative faecal egg counts and positively with the proportion of L4s and L5s. The proportion of immature stages was also positively correlated with the proliferation of αβ T cells. Worm length was negatively correlated with the transcript levels of several lectins and cell adhesion molecules. Overall, the results indicate that intramuscular administration of the vaccine resulted in an immune memory response particularly characterised by increased antigen-specific IgG1 levels in the intestinal mucosa. Copyright © 2015 Australian Society for Parasitology Inc. Published by

  20. CHARACTERIZATION OF THE CARBOHYDRATE COMPONENTS OF Taenia solium ONCOSPHERE PROTEINS AND THEIR ROLE IN THE ANTIGENICITY

    Science.gov (United States)

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H.; Gilman, Robert H.

    2015-01-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that post-translational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells. PMID:23982308

  1. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism

    Science.gov (United States)

    Gao, Jing; Xu, Kang; Liu, Hongnan; Liu, Gang; Bai, Miaomiao; Peng, Can; Li, Tiejun; Yin, Yulong

    2018-01-01

    The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system–intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp–microbiome–immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation

  2. Galanin and vasoactive intestinal polypeptide

    DEFF Research Database (Denmark)

    Harling, H; Messell, T; Poulsen, Steen Seier

    1991-01-01

    By immunohistochemistry and double staining technique, almost complete coexistence of galanin-like immunoreactivity (GAL-LI) and vasoactive intestinal polypeptide-like immunoreactivity (VIP-LI) was demonstrated in submucosal ganglionic cells and mucosal nerve fibers of the porcine ileum. The rele......By immunohistochemistry and double staining technique, almost complete coexistence of galanin-like immunoreactivity (GAL-LI) and vasoactive intestinal polypeptide-like immunoreactivity (VIP-LI) was demonstrated in submucosal ganglionic cells and mucosal nerve fibers of the porcine ileum...

  3. Microbial bioinformatics 2020.

    Science.gov (United States)

    Pallen, Mark J

    2016-09-01

    Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Maria C. Opazo

    2018-03-01

    Full Text Available The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.

  5. Gintonin absorption in intestinal model systems

    Directory of Open Access Journals (Sweden)

    Byung-Hwan Lee

    2018-01-01

    Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

  6. Microbiota, intestinal immunity, and mouse bustle

    OpenAIRE

    Kruglov, A.; Nedospasov, S.

    2014-01-01

    The composition of the intestinal microbiota is regulated by the immune system. This paper discusses the role of cytokines and innate immunity lymphoid cells in the intestinal immune regulation by means of IgA.

  7. Identification of an Antigen from Normal Human Tissue That Crossreacts with the Carcinoembryonic Antigen

    Science.gov (United States)

    Kleist, S. Von; Chavanel, G.; Burtin, P.

    1972-01-01

    A glycoprotein present in normal human tissue is characterized that is neither organ- nor tumor-specific (nonspecific crossreacting antigen) and that crossreacts (by the Ouchterlony double-diffusion technique) with the carcinoembryonic antigen. This immunological relationship indicates common determinants on the molecules of both antigens. We demonstrate that the nonspecific crossreacting antigen is not a fragment of the carcinoembryonic antigen molecule. Images PMID:4115954

  8. Transporter mRNA expression in a conditionally immortalized rat small intestine epithelial cell line (TR-SIE).

    Science.gov (United States)

    Hosoya, Ken-ichi; Tomi, Masatoshi; Takayama, Megumi; Komokata, Yuko; Nakai, Daisuke; Tokui, Taro; Nishimura, Kenji; Ueda, Masatsugu; Obinata, Masuo; Hori, Satoko; Ohtsuki, Sumio; Amidon, Gordon L; Terasaki, Tetsuya

    2004-08-01

    Small intestine epithelial cell lines (TR-SIE), which are established from the small intestine of transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen gene (tsA58 Tg rat), were used to characterize the mRNA expression of small intestine transporters. TR-SIE cells had a polygonal morphology and expressed cytokeratin protein and villin mRNA. Although the large T-antigen was strongly expressed at 33 degrees C, this was reduced at 37 and 39 degrees C. Concomitantly, the cell growth was arrested at 37 and 39 degrees C compared with that at 33 degrees C, suggesting that TR-SIE cells are conditionally immortalized cell lines. RT-PCR analysis revealed that TR-SIE cells expressed ABCB1 (mdr1a and mdr1b), ABCB4 (mdr2), ABCC2 (mrp2), ABCC6 (mrp6), ABCG1, ABCG2 (bcrp/mxr), Slc21a7 (Oatp3), Slc15a1 (PepT1), and Slc16a1 (Mct1). Conditionally immortalized rat small intestine epithelial cell lines were established from tsA58 Tg rats and expressed the mRNA of intestinal transporters.

  9. Treatment Option Overview (Small Intestine Cancer)

    Science.gov (United States)

    ... all of an organ that contains cancer. The resection may include the small intestine and nearby organs (if the cancer has spread). The doctor may remove the section of the small intestine that contains cancer and perform an anastomosis (joining the cut ends of the intestine together). ...

  10. General Information about Small Intestine Cancer

    Science.gov (United States)

    ... all of an organ that contains cancer. The resection may include the small intestine and nearby organs (if the cancer has spread). The doctor may remove the section of the small intestine that contains cancer and perform an anastomosis (joining the cut ends of the intestine together). ...

  11. Abdominal tuberculosis presenting as intestinal obstruction- Case ...

    African Journals Online (AJOL)

    One of the complications of abdominal tuberculosis is intestinal obstruction, which can be acute, chronic or acute on chronic. Other complications include intestinal haemorrhage, perforation of the intestine (rare), faecal fistula, cold abscess formation, mal-absorption syndrome and dissemination of the tuberculosis to other ...

  12. Exercise and the gastro-intestinal tract

    African Journals Online (AJOL)

    on perfonnance and me value of cardiovascular training in improving performance in aerobic sports is well recognised. The role of me gastro-intestinal tracr, bom as a limiting and sustaining facror in aerobic exercises, is less well appreciared. Gastro-intestinal symptoms. The spectrum of gastro-intestinal effecrs of exercise ...

  13. Childhood intestinal obstruction in Northwestern Nigeria

    African Journals Online (AJOL)

    of childhood intestinal obstruction in this study agrees with those reportedis'gi m3 from other parts of the coun- try. Mortality from childhood intestinal obstruction is still high in our environment. References. 1. Otu AA. Tropical surgical abdominal emergencies: acute intestinal obstruction. Postgrad. Doctor (Afr) 1992; 14: 51. 2.

  14. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... The gastrointestinal tract serves as a potent barrier that prevents luminal bacteria from entering the host. This barrier function is maintained by a well-balanced intestinal flora, an unaltered perme- ability of the intestinal mucosa, and a normal functioning immune system. Furthermore, the intestinal mucosa, in.

  15. Childhood intestinal obstruction in Northwestern Nigeria | Uba ...

    African Journals Online (AJOL)

    Background: Intestinal obstruction is a common cause of childhood surgical emergency in the tropics. The aim of this paper was to assess the pattern and the outcome of mangement of intestinal obstruction in Nigerian children. Study design: The clinical reccords of all the cases of childhood intestinal obstructions managed ...

  16. The TNO gastro-intestinal model (TIM)

    NARCIS (Netherlands)

    Minekus, M.

    2015-01-01

    The TNO Gastro–Intestinal Model (TIM) is a multi–compartmental model, designed to realistically simulate conditions in the lumen of the gastro–intestinal tract. TIM is successfully used to study the gastro–intestinal behavior of a wide variety of feed, food and pharmaceutical products. Experiments

  17. Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings.

    Science.gov (United States)

    Lyons, P P; Turnbull, J F; Dawson, K A; Crumlish, M

    2017-02-01

    This study focused on comparing the phylogenetic composition and functional potential of the intestinal microbiome of rainbow trout sourced from both farm and aquarium settings. Samples of distal intestinal contents were collected from fish and subjected to high throughput 16S rRNA sequencing, to accurately determine the composition of the intestinal microbiome. The predominant phyla identified from both groups were Tenericutes, Firmicutes, Proteobacteria, Spirochaetae and Bacteroidetes. A novel metagenomic tool, PICRUSt, was used to determine the functional potential of the bacterial communities present in the rainbow trout intestine. Pathways concerning membrane transport activity were dominant in the intestinal microbiome of all fish samples. Furthermore, this analysis revealed that gene pathways relating to metabolism, and in particular amino acid and carbohydrate metabolism, were upregulated in the rainbow trout intestinal microbiome. The results suggest that the structure of the intestinal microbiome in farmed rainbow trout may be similar regardless of where the fish are located and hence could be shaped by host factors. Differences were, however, noted in the microbial community membership within the intestine of both fish populations, suggesting that more sporadic taxa could be unique to each environment and may have the ability to colonize the rainbow trout gastrointestinal tract. Finally, the functional analysis provides evidence that the microbiome of rainbow trout contains genes that could contribute to the metabolism of dietary ingredients and therefore may actively influence the digestive process in these fish. To better understand and exploit the intestinal microbiome and its impact on fish health, it is vital to determine its structure, diversity and potential functional capacity. This study improves our knowledge of these areas and suggests that the intestinal microbiome of rainbow trout may play an important role in the digestive physiology of

  18. Entomoftoromicose intestinal: relato de caso

    Directory of Open Access Journals (Sweden)

    Fábia Aparecida Carvalho

    1997-02-01

    Full Text Available Os autores relatam um caso de entomoftoromicose intestinal causada por Entomophthorales, em indivíduo de 19 anos, agricultor e sem doença associada. O paciente foi submetido a ressecção intestinal e o diagnóstico foi feito após análise da peça cirúrgica. Após revisão da literatura, são discutidos a evolução clínica, as características clinicopatológicas, as dificuldades no diagnóstico e o tratamento dessa entidade rara.A case of intestinal entomophthoramycosis caused by Entomophthorales in a man with 19 years-old, farmer and without associated disease. The patient was submitted to a intestinal ressection and diagnosis was carried through after analisys of the surgical specimen. After a review of the literature, the clinical evolution, clinico-pathologic features, difficulties in diagnosis and treatment are discussed.

  19. Diversity of insect intestinal microflora

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Štrosová, Lenka; Fliegerová, Kateřina; Kott, T.; Kopečný, Jan

    2008-01-01

    Roč. 53, č. 3 (2008), s. 229-233 ISSN 0015-5632 R&D Projects: GA ČR GA303/06/0974 Institutional research plan: CEZ:AV0Z50450515 Keywords : insect intestinal microflora Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  20. Circadian disorganization alters intestinal microbiota.

    Science.gov (United States)

    Voigt, Robin M; Forsyth, Christopher B; Green, Stefan J; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H; Turek, Fred W; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

  1. Milk products and intestinal health

    NARCIS (Netherlands)

    Van der Meer, R; Bovee-Oudenhoven, IMJ; Sesink, ALA; Kleibeuker, JH

    Milk products may improve intestinal health by means of the cytoprotective effects of their high calcium phosphate (CaPi) content. We hypothesized that this cytoprotection may increase host defenses against bacterial infections as well as decrease colon cancer risk. This paper summarizes our studies

  2. [Chronic intestinal pseudo-obstruction].

    Science.gov (United States)

    Joly, Francisca; Amiot, Aurélien; Coffin, Benoît; Lavergne-Slove, Anne; Messing, Bernard; Bouhnik, Yoram

    2006-01-01

    Chronic intestinal pseudo-obstruction (CIPO) is a disease characterized by episodes resembling mechanical obstruction in the absence of organic, systemic, or metabolic disorders. Pseudo-obstruction is an uncommon condition and can result from primary (40%) or secondary (60%) causes. The most common symptoms are nausea, vomiting, abdominal distension, abdominal pain and constipation or diarrhea. These symptoms are usually present many years before CIPO diagnosis. They can lead to severe electrolyte disorders and malnutrition. Principles for management of patients with CIPO are: to establish a correct clinical diagnosis in excluding mechanical obstruction; to perform a symptomatic and physiologic assessment of the gastrointestinal tract involved; to look for extra-intestinal manifestations, especially for myopathy and neuropathy; to discuss in some cases a surgery for full-thickness intestinal biopsies, and/or a neuromuscular biopsy in case of mitochondrial cytopathy suspicion. The management is primarily focused on symptom control and nutritional support to prevent weight loss and malnutrition. Treatment of CIPO includes prokinetic agents which may help to reduce gastrointestinal symptoms Courses of antibiotics may be needed in patients with symptoms suggestive of bacterial overgrowth. When necessary, enteral nutrition is preferred. In carefully selected patients, feeding jejunostomy with or without decompression gastrostomy may be tried. Long term parenteral nutrition should be reserved for patients who can not tolerate enteral nutrition. Intestinal transplantation can be discussed in selected patients.

  3. INTESTINAL PERMEABILITY IN PEDIATRIC GASTROENTEROLOGY

    NARCIS (Netherlands)

    VANELBURG, RM; UIL, JJ; DEMONCHY, JGR; HEYMANS, HSA

    1992-01-01

    The role of the physiologic barrier function of the small bowel and its possible role in health and disease has attracted much attention over the past decade. The intestinal mucosal barrier for luminal macromolecules and microorganism is the result of non-immunologic and immunologic defense

  4. Microcontainers for Intestinal Drug Delivery

    DEFF Research Database (Denmark)

    Tentor, Fabio; Mazzoni, Chiara; Keller, Stephan Sylvest

    Among all the drug administration routes, the oral one is the most preferred by the patients being less invasive, faster and easier. Oral drug delivery systems designed to target the intestine are produced by powder technology and capsule formulations. Those systems including micro- and nano...

  5. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  6. A Perspective on Brain-Gut Communication: The American Gastroenterology Association and American Psychosomatic Society Joint Symposium on Brain-Gut Interactions and the Intestinal Microenvironment.

    Science.gov (United States)

    Aroniadis, Olga C; Drossman, Douglas A; Simrén, Magnus

    2017-10-01

    Alterations in brain-gut communication and the intestinal microenvironment have been implicated in a variety of medical and neuropsychiatric diseases. Three central areas require basic and clinical research: (1) how the intestinal microenvironment interacts with the host immune system, central nervous system, and enteric nervous system; (2) the role of the intestinal microenvironment in the pathogenesis of medical and neuropsychiatric disease; and (3) the effects of diet, prebiotics, probiotics, and fecal microbiota transplantation on the intestinal microenvironment and the treatment of disease. This review article is based on a symposium convened by the American Gastroenterology Association and the American Psychosomatic Society to foster interest in the role of the intestinal microenvironment in brain-gut communication and pathogenesis of neuropsychiatric and biopsychosocial disorders. The aims were to define the state of the art of the current scientific knowledge base and to identify guidelines and future directions for new research in this area. This review provides a characterization of the intestinal microbial composition and function. We also provide evidence for the interactions between the intestinal microbiome, the host, and the environment. The role of the intestinal microbiome in medical and neuropsychiatric diseases is reviewed as well as the treatment effects of manipulation of the intestinal microbiome. Based on this review, opportunities and challenges for conducting research in the field are described, leading to potential avenues for future research.

  7. Natural polyreactive IgA antibodies coat the intestinal microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Bunker, Jeffrey J.; Erickson, Steven A.; Flynn, Theodore M.; Henry, Carole; Koval, Jason C.; Meisel, Marlies; Jabri, Bana; Antonopoulos, Dionysios A.; Wilson, Patrick C.; Bendelac, Albert

    2017-09-28

    Large quantities of immunoglobulin A (IgA) are constitutively secreted by intestinal plasma cells to coat and contain the commensal microbiota, yet the specificity of these antibodies remains elusive. Here we profiled the reactivities of single murine IgA plasma cells by cloning and characterizing large numbers of monoclonal antibodies. IgAs were not specific to individual bacterial taxa but rather polyreactive, with broad reactivity to a diverse, but defined, subset of microbiota. These antibodies arose at low frequencies among naïve B cells and were selected into the IgA repertoire upon recirculation in Peyer’s patches. This selection process occurred independent of microbiota or dietary antigens. Furthermore, although some IgAs acquired somatic mutations, these did not substantially influence their reactivity. These findings reveal an endogenous mechanism driving homeostatic production of polyreactive IgAs with innate specificity to microbiota.

  8. Crohn’s disease and extra intestinal granulomatous lesions.

    Science.gov (United States)

    Tomasello, G; Scaglione, M; Mazzola, M; Gerges Geaga, A; Jurjus, A; Gagliardo, C; Sinagra, E; Damiani, P; Carini, F; Leone, A

    2018-01-01

    Crohn’s disease (CD) is an inflammatory bowel disease with a multifactorial etiology. Clinical features include mucosal erosion, diarrhea, weight loss and other complications such as formation of granuloma. In CD, granuloma is a non-neoplastic epithelioid lesion, formed by a compact aggregate of histiocytes with the absence of a central necrosis, however, the correlation among CD and the formation of granulomas is unknown. Many cases of granulomas in the extracellular site, related to CD, have been reported in the literature. These granulomas, at times, represented the only visible manifestation of the pathology. Extra intestinal granulomas have been found on ovaries, lungs, male genitalia, female genitalia, orofacial regions and skin. From the data in the literature it could be hypothesized that there is a cross-reaction of the immune system with similar antigenic epitopes belonging to different sites. This hypothesis, if checked, can place CD not only among inflammatory bowel disease but also among inflammatory diseases with systemic involvement.

  9. Neuron-macrophage crosstalk in the intestine: a ‘microglia’ perspective

    Directory of Open Access Journals (Sweden)

    Simon eVerheijden

    2015-10-01

    Full Text Available Intestinal macrophages are strategically located in different layers of the intestine, including the mucosa, submucosa and muscularis externa, where they perform complex tasks to maintain intestinal homeostasis. As the gastrointestinal tract is continuously challenged by foreign antigens, macrophage activation should be tightly controlled to prevent chronic inflammation and tissue damage. Unraveling the precise cellular and molecular mechanisms underlying the tissue-specific control of macrophage activation is crucial to get more insight into intestinal immune regulation. Two recent reports provide unanticipated evidence that the enteric nervous system acts as a critical regulator of macrophage function in the myenteric plexus. Both studies clearly illustrate that enteric neurons reciprocally interact with intestinal macrophages and are actively involved in shaping their phenotype. This concept has striking parallels with the central nervous system (CNS, where neuronal signals maintain microglia, the resident macrophages of the CNS, in a quiescent, anti-inflammatory state. This inevitably evokes the perception that the ENS and CNS share mechanisms of neuroimmune interaction. In line, intestinal macrophages, both in the muscularis externa and (submucosa, express high levels of CX3CR1, a feature that was once believed to be unique for microglia. CX3CR1 is the sole receptor of fractalkine (CX3CL1, a factor mainly produced by neurons in the CNS to facilitate neuron-microglia communication. The striking parallels between resident macrophages of the brain and intestine might provide a promising new line of thought to get more insight into cellular and molecular mechanisms controlling macrophage activation in the gut.

  10. Intestinal epithelium in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet

    2014-01-01

    homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course......The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs) that are crucial in maintaining intestinal...

  11. IRF8-dependent DCs Play a Key Role in the Regulation of CD8 T Cell Responses to Epithelial-derived Antigen in the Steady State but not in Inflammation

    DEFF Research Database (Denmark)

    Joeris, Thorsten; Gomez-Casado, Cristina; Holmkvist, Petra

    8+ T cell priming and differentiation in the steady state and inflammatory setting, we utilized IFABP-tOva mice, in which Ovalbumin (Ova) is expressed as an epithelial-derived antigen in the small intestine. In this model Ova-specific CD8+ T cells were found to differentiate into two distinct...... for the development of FoxP3+ CD8+ T cells in the steady state. However in the inflammatory setting, expansion of the FoxP3+ subset was not affected by the absence of IRF8-dependent DCs, suggesting that other subsets of intestinal antigen presenting cells (APCs) can compensate their function in an inflammatory milieu...

  12. Current Hypothesis for the Relationship between Dietary Rice Bran Intake, the Intestinal Microbiota and Colorectal Cancer Prevention.

    Science.gov (United States)

    So, Winnie K W; Law, Bernard M H; Law, Patrick T W; Chan, Carmen W H; Chair, Sek Ying

    2016-09-15

    Globally, colorectal cancer (CRC) is the third most common form of cancer. The development of effective chemopreventive strategies to reduce CRC incidence is therefore of paramount importance. Over the past decade, research has indicated the potential of rice bran, a byproduct of rice milling, in CRC chemoprevention. This was recently suggested to be partly attributable to modification in the composition of intestinal microbiota when rice bran was ingested. Indeed, previous studies have reported changes in the population size of certain bacterial species, or microbial dysbiosis, in the intestines of CRC patients and animal models. Rice bran intake was shown to reverse such changes through the manipulation of the population of health-promoting bacteria in the intestine. The present review first provides an overview of evidence on the link between microbial dysbiosis and CRC carcinogenesis and describes the molecular events associated with that link. Thereafter, there is a summary of current data on the effect of rice bran intake on the composition of intestinal microbiota in human and animal models. The article also highlights the need for further studies on the inter-relationship between rice bran intake, the composition of intestinal microbiota and CRC prevention.

  13. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis in Mice via a Toll-Like Receptor 4/p21-Activated Kinase 1 Cascade.

    Science.gov (United States)

    Wu, Yaxin; Wu, Jiao; Chen, Ting; Li, Qing; Peng, Wei; Li, Huan; Tang, Xiaowei; Fu, Xiangsheng

    2018-03-05

    The underlying pathogenic mechanism of Fusobacterium nucleatum in the carcinogenesis of colorectal cancer has been poorly understood. Using C57BL/6-Apc Min/+ mice, we investigated gut microbial structures with F. nucleatum, antibiotics, and Toll-like receptor 4 (TLR4) antagonist TAK-242 treatment. In addition, we measured intestinal tumor formation and the expression of TLR4, p21-activated kinase 1 (PAK1), phosphorylated-PAK1 (p-PAK1), phosphorylated-β-catenin S675 (p-β-catenin S675), and cyclin D1 in mice with different treatments. Fusobacterium nucleatum and antibiotics treatment altered gut microbial structures in mice. In addition, F. nucleatum invaded into the intestinal mucosa in large amounts but were less abundant in the feces of F. nucleatum-fed mice. The average number and size of intestinal tumors in F. nucleatum groups was significantly increased compared to control groups in Apc Min/+ mice (P nucleatum groups compared to the control groups (P nucleatum groups (P nucleatum groups (P Fusobacterium nucleatum potentiates intestinal tumorigenesis in Apc Min/+ mice via a TLR4/p-PAK1/p-β-catenin S675 cascade. Fusobacterium nucleatum-induced intestinal tumorigenesis can be inhibited by TAK-242, implicating TLR4 as a potential target for the prevention and therapy of F. nucleatum-related colorectal cancer.

  14. Effect of Caenorhabditis elegans age and genotype on horizontal gene transfer in intestinal bacteria

    Science.gov (United States)

    Portal-Celhay, Cynthia; Nehrke, Keith; Blaser, Martin J.

    2013-01-01

    Horizontal gene transfer (HGT) between bacteria occurs in the intestinal tract of their animal hosts and facilitates both virulence and antibiotic resistance. A model in which both the pathogen and the host are genetically tractable facilitates developing insight into mechanistic processes enabling or restricting the transfer of antibiotic resistance genes. Here we develop an in vivo experimental system to study HGT in bacteria using Caenorhabditis elegans as a model host. Using a thermosensitive conjugative system, we provide evidence that conjugation between two Escherichia coli strains can take place in the intestinal lumen of N2 wild-type worms at a rate of 10−3 and 10−2 per donor. We also show that C. elegans age and genotype are important determinants of the frequency of conjugation. Whereas ∼1 transconjugant for every 100 donor cells could be recovered from the intestine of N2 C. elegans, for the age-1 and tol-1 mutants, the detected rate of transconjugation (10−3 and 10−4 per donor cell, respectively) was significantly lower. This work demonstrates that increased recombination among lumenal microbial populations is a phenotype associated with host aging, and the model provides a framework to study the dynamics of bacterial horizontal gene transfer within the intestinal environment.—Portal-Celhay, C., Nehrke, K., Blaser, M. J. Effect of Caenorhabditis elegans age and genotype on horizontal gene transfer in intestinal bacteria. PMID:23085995

  15. Interactions between intestinal microbiota and innate immune system in pediatric inflammatory bowel disease.

    Science.gov (United States)

    Cucchiara, Salvatore; Stronati, Laura; Aloi, Marina

    2012-10-01

    Inflammatory bowel disease (IBD) is the result of an altered immune homeostasis within the intestinal mucosa against the gut microbiota, leading to chronic inflammation in genetically predisposed individuals. Under normal conditions, the immune system defends against pathogens and prevents the passage of excessive intestinal bacteria; regulatory pathways must maintain a low-grade, controlled inflammation in a healthy gut, but also induce a protective response against pathogens. The innate immune system is the first-line defense from microbes; dendritic cells, macrophages, and epithelial cells produce an initial, immediate response. The immune system constantly controls commensal bacteria and utilizes constitutive antimicrobial mechanisms to sustain immune homeostasis. The discovery that several genes linked to IBD modulate microbial recognition and innate immune pathways, such as nucleotide oligomerization domain 2 (Nod2), and genes that mediate autophagy (ie, ATG16L1, IRGM), has highlighted the critical role of host-microbe interactions in controlling intestinal immune homeostasis. Commensal microorganisms actively interact with the intestinal mucosa and influence the activity of the immune system as well as the amplitude of the immune response. In contrast, host factors can influence microbes, which in turn modulate disease susceptibility. In this paper, we focus on the mechanisms that mediate host-microbe interactions and how the disruption of this balance leads to chronic intestinal inflammation in IBD.

  16. Characterizing the Intestinal Microbiome in Infantile Colic: Findings Based on an Integrative Review of the Literature.

    Science.gov (United States)

    Dubois, Nancy E; Gregory, Katherine E

    2016-05-01

    Approximately 20% of newborns will develop symptoms of infantile colic starting around 2 weeks of age. While health care providers have a greater understanding of the impact that inconsolable crying has on family dynamics, maternal-infant bonding, and health care resources, opportunities for study still exist in the area of intestinal microbiome research. Advances in molecular technologies utilizing 16S ribosomal RNA and ribosomal DNA created the opportunity for researchers to index the intestinal microbial composition to better understand its association with infantile colic. This integrative review provides a synopsis of the findings from five recent studies that utilized nonculture-based approaches to characterize the intestinal microbiome of infants with colic. Articles were identified through PubMed, CINAHL, and Google Scholar using the search terms colic, crying, fussiness, microbiome, and microbiota. The general aim of the research studies was to better understand the potential association of intestinal dysbiosis with the development of colic symptoms. The research found that infants who expressed symptoms of colic were colonized with significantly higher levels of Proteobacteria and exhibited lower bacterial diversity when compared to their unaffected counterparts. Additionally, colonization levels of Actinobacteria Bifidobacterium and Firmicute Lactobacilli were inversely related to the amount of crying and fussiness in newborns. The observed association of an imbalanced colonization of the intestines by noncommensal bacteria with the expression of infantile colic symptoms warrants further exploration. © The Author(s) 2015.

  17. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production

    Science.gov (United States)

    Jung, Y; Wen, T; Mingler, MK; Caldwell, JM; Wang, YH; Chaplin, DD; Lee, EH; Jang, MH; Woo, SY; Seoh, JY; Miyasaka, M; Rothenberg, ME

    2014-01-01

    Eosinophils are multifunctional leukocytes that reside in the gastrointestinal (GI) lamina propria, where their basal function remains largely unexplored. In this study, by examining mice with a selective deficiency of systemic eosinophils (by lineage ablation) or GI eosinophils (eotaxin-1/2 double–deficient or CC chemokine receptor 3–deficient), we show that eosinophils support immunoglobulin A (IgA) class switching, maintain intestinal mucus secretions, affect intestinal microbial composition, and promote the development of Peyer’s patches. Eosinophil-deficient mice showed reduced expression of mediators of secretory IgA production, including intestinal interleukin 1β (IL-1β), inducible nitric oxide synthase, lymphotoxin (LT) α, and LT-β, and reduced levels of retinoic acid-related orphan receptor gamma t–positive (ROR-γt+) innate lymphoid cells (ILCs) while maintaining normal levels of APRIL (a proliferation-inducing ligand), BAFF (B cell–activating factor of the tumor necrosis factor family), and TGF-β (transforming growth factor β). GI eosinophils expressed a relatively high level of IL-1β, and IL-1β–deficient mice manifested the altered gene expression profiles observed in eosinophil-deficient mice and decreased levels of IgA+ cells and ROR-γt+ ILCs. On the basis of these collective data, we propose that eosinophils are required for homeostatic intestinal immune responses including IgA production and that their affect is mediated via IL-1β in the small intestine. PMID:25563499

  18. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis

    Science.gov (United States)

    Koeth, Robert A.; Wang, Zeneng; Levison, Bruce S.; Buffa, Jennifer A.; Org, Elin; Sheehy, Brendan T.; Britt, Earl B.; Fu, Xiaoming; Wu, Yuping; Li, Lin; Smith, Jonathan D.; DiDonato, Joseph A.; Chen, Jun; Li, Hongzhe; Wu, Gary D.; Lewis, James D.; Warrier, Manya; Brown, J. Mark; Krauss, Ronald M.; Tang, W. H. Wilson; Bushman, Frederic D.; Lusis, Aldons J.; Hazen, Stanley L.

    2013-01-01

    Intestinal microbiota metabolism of choline/phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). Herein we demonstrate that intestinal microbiota metabolism of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis. Omnivorous subjects are shown to produce significantly more TMAO than vegans/vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. Specific bacterial taxa in human feces are shown to associate with both plasma TMAO and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predict increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (MI, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice significantly altered cecal microbial composition, markedly enhanced synthesis of TMA/TMAO, and increased atherosclerosis, but not following suppression of intestinal microbiota. Dietary supplementation of TMAO, or either carnitine or choline in mice with intact intestinal microbiota, significantly reduced reverse cholesterol transport in vivo. Intestinal microbiota may thus participate in the well-established link between increased red meat consumption and CVD risk. PMID:23563705

  19. Effects of Erythropoiesis-stimulating Agents on Intestinal Flora in Peritoneal Fibrosis.

    Science.gov (United States)

    Bilici, Muammer; Oz, Ibrahim Ilker; Uygun Ilikhan, Sevil; Borazan, Ali

    2017-05-01

    This study aimed to investigate the effects of erythropoiesis-stimulating agents (ESAs) on intestinal flora in peritoneal fibrosis. Twenty-four Wistar albino rats were divided into 3 groups as the control group, which received 0.9% saline (3 mL/d) intraperitoneally; the chlorhexidine gluconate (CH) group, which received 3 mL/d injections of 0.1% CH intraperitoneally, and the ESA group, which received 3 mL/d injections of 0.1% CH intraperitoneally and epoetin beta (3 doses of 20 IU/kg/wk) subcutaneously. On the 21st day, the rats were sacrificed and the visceral peritoneum samples were obtained from left liver bowel. Blood samples were obtained from abdominal aorta and intestinal flora samples were obtained from transverse colon. Histopathologically, the CH, ESA, and control groups had peritoneal thickness of 135.4 ± 22.2 µm, 48.6 ± 12.8 µm, and 6.0 ± 2.3 µm, respectively. Escherichia coli was the predominant bacterium in the intestinal flora in the control group. Significant changes in microbial composition of intestinal flora towards Proteus species and Enterobacter species was seen among the groups (P flora among these groups were significantly different (P flora by a clinically significant amount in experimental peritoneal fibrosis. We consider that ESAs achieve this via regulating intestinal peristaltism.

  20. Molecular Microbial Analysis of Lactobacillus Strains Isolated from the Gut of Calves for Potential Probiotic Use

    Directory of Open Access Journals (Sweden)

    Lorena P. Soto

    2010-01-01

    Full Text Available The intestinal microbiota has an influence on the growth and health status of the hosts. This is of particular interest in animals reared using intensive farming practices. Hence, it is necessary to know more about complexity of the beneficial intestinal microbiota. The use of molecular methods has revolutionized microbial identification by improving its quality and effectiveness. The specific aim of the study was to analyze predominant species of Lactobacillus in intestinal microbial ecosystem of young calves. Forty-two lactic acid bacteria (LAB isolated from intestinal tract of young calves were characterized by: Amplified Ribosomal DNA Restriction Analysis (ARDRA, by using Hae III, Msp I, and Hinf I restriction enzymes, and 16S rDNA gene sequencing. ARDRA screening revealed nine unique patterns among 42 isolates, with the same pattern for 29 of the isolates. Gene fragments of 16S rDNA of 19 strains representing different patterns were sequenced to confirm the identification of these species. These results confirmed that ARDRA is a good tool for identification and discrimination of bacterial species isolated from complex ecosystem and between closely related groups. This paper provides information about the LAB species predominant in intestinal tract of young calves that could provide beneficial effects when administered as probiotic.